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Abstract: Feature selection has been used to battle the ever-increasing dimensionality of datasets used
for machine learning applications. Many feature selection methods, such as the Chi-Square test and
Laplacian score, determine feature importance via a hand-crafted metric, often tailored to a specific
type of dataset. This paper proposes a method for deciding feature importance by training a supervised
sparse neural network model using Sparse Evolutionary Training and scoring features depending on
Neuron Strength. The features are selected in one shot after a network has been trained and, can
outperform Chi-Square test feature selection, performing best in image recognition tasks.

1 Introduction
Feature selection is an important field of re-

search of data-driven learning. It focuses on find-
ing the ”best” subset of features for classifica-
tion, clustering or regression tasks. Depending
on the type of dataset used, feature selection can
be categorized as supervised, semi-supervised or
unsupervised [1]. Semi-supervised and unsuper-
vised learning refers to learning from data points
that have (partially) unknown ground truth la-
bels, as opposed to supervised learning, in which
the ground truth labels are all known.

Feature selection is often used to find a smaller
subset of variables while still capturing the es-
sential information for label prediction. This
becomes essential when analyzing very high-
dimensional data, as it is not uncommon to run
into computational limitations both in memory
and speed when considering all, primarily redun-
dant, features [1].

Data features used for training machine learn-
ing models have a significant impact on the per-
formance achieved. Irrelevant or partially rele-
vant features can have a negative influence over
model performance as well as introduce memory
bottlenecks. Feature selection can aid in the fol-
lowing:
• avoid overfitting and improve model perfor-

mance

• provide faster and more cost-effective mod-
els
• gain a deeper insight into the underlying pro-

cesses that generated the data [2]
A standard tool for building models for high-

dimensional data is to pass it through an artifi-
cial neural network. Today’s computational ad-
vancements in efficient matrix computation, par-
allelization on GPUs and offloading the compute
to the cloud have allowed for the training of
deep neural network architectures for very high
dimensional datasets. Artificial Neural Networks
(ANNs) are among the most successful artificial
intelligence methods today. The use of ANNs has
led to significant breakthroughs in deep reinforce-
ment learning [3], computer vision [4], natural
language processing [5] and more [6]. Though
made infeasible for applications for autonomous
agents as the mentioned methods require exten-
sive computing facilities [7].

1.1 Reducing the size of the model

To reduce the number of parameters in an ANN,
the connections can be pruned after training to
reduce the parameter count by over 90% while
maintaining model accuracy [8]. Though such
methods still require the training of an initially
fully-connected dense neural network to make
use of the overparameterizing power of neural
networks in the training phase. This aids in
reducing compute in the inference stage of the
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model, though still requiring the whole computa-
tion to train a dense neural network.

1.2 Sparse neural networks

Mocanu et al. [9] propose the Sparse Evo-
lutionary Training method for training a sparse
neural network from scratch, starting with a ran-
domly initialized graph and pruning connections
after each training epoch based on weight magni-
tude. The same proportion of pruned connections
are regrown at random in the network, maintain-
ing a fixed sparsity level but dynamically chang-
ing its architecture.

Atashgahi et al. [10] propose a method for
extracting important features, called QuickSelec-
tion, by considering the combined weights of each
input neuron and assigning importance based on
this metric. The selected features proved to help
find the best subset of features for unsupervised
learning problems implemented using an autoen-
coder neural network.

1.3 What this paper focuses on

This paper combines Sparse Evolutionary
Training and Neuron Strength used in the Quick-
Selection algorithm as the importance metric to
perform supervised feature selection, in contrast
to the unsupervised feature selection proposed in
[10].

The paper aims to answer the following re-
search questions:
• Can Sparse Evolutionary Training (SET) in

combination with Neuron Strength be used
to perform supervised feature selection on
various datasets?
• How do the selected features using SET com-

pare to standard statistical methods for fea-
ture selection?

2 Background

2.1 Feature selection

Feature selection aims to select a subset of fea-
tures from a dataset to reduce the memory and
computation time required for the model, cap-
turing relevant features while discarding redun-
dant or insignificant features. In many classifica-
tion problems, it is challenging to learn a good
classifier if the dataset is riddled with redun-
dant/irrelevant features. Reducing the number of

features can drastically reduce training time and
yield a more general classifier [11].

Feature selection methods come in several
forms: filter, wrapper and embedded methods.
The filter method selects features based on an im-
portance score assigned to each feature, selecting
only k highest scoring features. Examples of scor-
ing (importance) metrics of each feature include
information gain, the correlation between fea-
tures and labels, Chi-Square score, Fisher score,
Mutual Information.

Wrapper methods approach feature selection as
a search problem, attempting to determine the
best combination of features for a classification
[11] or clustering [12] problems. Wrapper meth-
ods generally follow three steps [11]:

1. Search for a subset of features,
2. Evaluate the selected subset by the perfor-

mance of the classifier,
3. Repeat 1. and 2. until the desired perfor-

mance is reached.
Embedded methods rely on extracting impor-

tant features while the model is being trained. A
common type of embedded method is regulariza-
tion, introducing constraints on certain features
and reducing overfitting.

2.2 Sparse Evolutionary Training

Sparse Evolutionary Training, as proposed by
Mocanu et al., uses a dynamically changing neu-
ral network architecture with a fixed sparsity
level.

A sparse artificial neural network is initialized
as a Erdős–Rényi random graph [9], in which the
probability of a weight existing from ith neuron
in the (k − 1)th layer to the jth neuron in the kth

layer is given by:

p(W k
ij) =

ε(nk + nk−1)

nknk−1
, (1)

where nk refers to the number of neurons in
the kth hidden layer, and ε controls the sparsity.

After each training epoch, a fraction ζ of the
smallest weights in magnitude is removed from
each layer. The same proportion of weights is
then randomly reinitialized in each layer to pro-
vide a fixed sparsity level. Once the loss of the
model converges, the training is stopped.
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2.3 QuickSelection

Atashgahi [10] performs unsupervised feature
selection by training a sparse denoising autoen-
coder using Sparse Evolutionary Training. To se-
lect the important features from the trained net-
work, a Neuron Strength metric for determin-
ing feature relevance is proposed. The Neuron
Strength is defined as the sum of the absolute val-
ues of weights outgoing from a given input neu-
ron:

si =
n1∑
j=1

|W 1
ij |, (2)

where n1 corresponds to the number of neu-
rons in the first hidden layer and W 1

ij to the
weights connecting ith neuron in the input layer
to the jth neuron in the first hidden layer.

The computed strength for each input neuron
is ranked from highest to lowest, and a subset of
k highest-scoring neurons, corresponding to the
important features, is used to construct a new
dataset. It is important to note that this kind of
feature selection computes the important features
in one shot after a sparse neural network has been
trained, allowing for computationally inexpensive
feature selection provided the sparse neural net-
work is trained efficiently.

Figure 1: Overview of the ”QuickSelection” al-
gorithm, the color depth indicating the increas-
ing strength of neurons in the input layer as the
sparse topology changes during training after 5
and 10 epochs [10]

3 Related work

3.1 Sparse neural networks

There has been an extensive body of research
in the field of sparse neural networks. LeCun
et al. 1990 [13] propose removing unimportant
weights from a neural network to improve perfor-
mance. In 2015 Han et al. [14] had demonstrated
a technique for retraining the network after prun-
ing while reducing the storage and computation
required by order of magnitude without affecting
the accuracy.

In 2019, Frankle and Carbin [8] formalized a
hypothesis, stating that if a dense neural network
can be trained to a certain accuracy, a subset of
that network with the same random initialization
can be trained in isolation to match the accuracy
of the dense counterpart. Reducing the parameter
count by over 90%, drastically reducing the stor-
age and compute requirements of the network in
the inference stage. Though promising, the hy-
pothesis does not provide steps to guessing the
initial sub-network architecture and initialization
that converges without training a dense neural
network architecture first. Mocanu’s et al. [9]
proposed method addressed the problem by train-
ing a sparse neural network architecture from
scratch with a fixed sparsity, removing unimpor-
tant connections at each epoch and redistributing
new connections at random in the same number
as had been removed.

3.2 Feature selection

Feature selection methods are used in data-
preprocessing to achieve efficient data reduction.
Since an exhaustive search for the best subset of
features is rarely feasible, a large body of research
has been conducted over the past 50 years to ex-
tract important feature sets by means of an impor-
tance metric.

Backwards elimination feature selection was
first introduced in 1963 [15], and since then, nu-
merous methods have focused on extracting ’im-
portant features’. The tutorial by Huang [16] pro-
vides a summary of feature selection techniques
and the definitions of feature ’importance’, and a
survey by Jović et al. [1] elaborates on the best
applications for varied learning tasks.

A common technique for feature selection is by
assigning an ’importance’ score to the features.
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Chi-Square scoring and Information Gain is often
used for text classification tasks [17], along with
the commonly used Fisher score and Generalized
Fisher Score for feature selection as proposed by
Gu et al. [18]

3.3 Chi-Square

As a baseline to compare to, we consider fea-
tures selected using the Chi-squared χ2 score. The
Chi-squared score is computed as in 3 for each
feature.

χ2 =
N∑
i=1

(Oi − Ei)
2

Ei
, (3)

where O refers to the observation (or ground
truth label) and E is the expected value for the
hypothesis that the features are independent.

Again, the features are ranked according to
their score, and a subset of top k features is se-
lected.

The standard Python library scikit-learn pro-
vides many tools for selecting important features
based on various scoring metrics using the Selec-
tKBest method. For example, SelectKBest can se-
lect features for classification tasks based on the
Chi-Square score [19], ANOVA F-value score [20]
or by Mutual Information [21].

4 Proposed method
The proposed method takes several steps, ini-

tially requiring to train a neural network and
selecting important features from a trained net-
work. Feature importance is determined from the
trained network’s inherent weights and sparse ar-
chitecture. We begin by training a supervised
multi-layer perceptron with a sparse architecu-
ture using Sparse Evolutionary Training [22]
and determining feature importance via Neuron
Strength metric proposed by Atashagi, used in un-
supervised feature selection [10]. The important
features are then used to transform the original
high-dimensional dataset to a lower dimensional
one for classification.

4.1 Sparse Neural Network model

We begin by training a sparse multi-layer per-
ceptron network using Sparse Evolutionary Train-
ing on a supervised classification problem as fol-
lows:

1. Initialize a network as an Erdős–Rényi ran-
dom graph, where each bipartite connection
between layers has a probability of existing
given by Equation 1
For each epoch perform:

2. Forward and backward propagation mini-
mizing loss, such as MSE given in Equation
4

LMSE =
1

N

N∑
i=1

(y − ŷ)2, (4)

where y is the the ground truth label and ŷ
the prediction label output of the neural net-
work

3. Remove ζ of the smallest weights in magni-
tude and add the same number of connec-
tions at random to the network

4. Repeat until training loss converges.
Mocanu, Stone, Nguyen, et al. [9] provides ad-

ditional information into the direct implementa-
tion of the SET algorithm.

The trained networks weights are stored for
later feature selection.

4.2 Feature selection

Once the network has been trained, the inher-
ited architecture and weights can be used to se-
lect important features from the dataset in a sin-
gle shot.

Important features are gauged by considering
the first hidden layer weights, and computing
the ’strength’ of each input neuron correspond-
ing to a feature. Neuron Strength is defined in
Equation 2, and each corresponding feature is
ranked. From the original set of features F =
{f1, f2, . . . , fn} we construct a new set of k fea-
tures with the highest ’strength’ Fs ⊂ F, Fs =
{f ′1, f ′2, . . . , f ′k}, |Fs| = k.

If the network was initially trained on a dataset
X ∈ Rm×n, where m corresponds to the number
of training instances and n to the number of fea-
tures in the untampered dataset.

X =

f1 f2 f3 . . . fn


x(1)

x(2)

...
x(m)

(5)
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then we transform the dataset X to a new
dataset X′, removing all features but the ones
contained in the set Fs

X′ =

f ′1 f ′2 f ′3 . . . f ′k


x(1)

x(2)

...
x(m)

(6)

5 Experiment and Results

5.1 Setup

The architecture used contains 3 hidden lay-
ers, containing 3000 neurons each. Each training
sample minimizing the MSE loss of the network
defined in Equation 4.

All hidden layers using the ReLU(x) =
max(0, x) activation function, except for the final
output using the sigmoid σ(x) = 1

1+e−x activa-
tion. The sparse network is trained for 40 epochs
for each dataset and the input layer - first hid-
den layer weights are stored. The value for 40
epochs was chosen after training the network for
100 epochs, and observing convergence for loss at
around 30 epochs for the chosen datasets. All hy-
perparameters for training the sparse neural net-
work are presented in Table 2.

For each input neuron corresponding to a fea-
ture, we consider the strength as defined in Equa-
tion 2 as select the subset of features with the
highest-ranking strengths. Original dataset X is
transformed to only consist of columns contain-
ing highest-ranking features. With a significantly
reduced dataset X′, a classifier can be trained to
predict the labels of the dataset. A support vector
machine using the standard Python scikit-learn li-
brary is used with a radial basis function for the
kernel for this implementation [23].

Chi-Square often being used for text classifica-
tion problems [17] [24] [25], the text datasets
in 1 are chosen for direct comparison to the pro-
posed method, along with more varied datasets
provided in [26].

Datasets considered are presented in Table 1.

Dataset Examples Features Classes Data type
BASEHOCK 1993 4862 2
PCMAC 1943 3289 2
RELATHE 1427 4322 2

Text

orlraws10P 100 10304 10
warpAR10 130 2400 10
ORL 400 1024 40
COIL20 1440 1024 20

Face images

Isolet 1560 617 26 Spoken letters
madelon 2600 500 2 Artificial

Table 1: Datasets used with the number of in-
stances, features and classes for feature selection

Hyperparameter
# of hidden layers 3
Activation functions ReLU → ReLU → ReLU → σ
Loss function MSE (Equation 4)
Batch size 10
Epochs 40
Learning rate 0.01
Momentum 0.9
Weight decay 0.0002
ζ (fraction removed) 0.3
k (max features) 100
ε (sparsity) 20

Table 2: Hyperparameters for training used for all
datasets presented in Table 1

5.2 Training

The training and test accuracy for each of the
datasets is presented in Figure 2, with each net-
work’s sparsity and training time presented in
an Appendix in Table 8. The training time is
recorded when run on a local machine with an
Intel Core i5-8250U CPU @ 1.6GHz and 8Gb of
RAM.

5.3 Feature selection

Up to k = 100 features are selected for clas-
sification using an SVM [27] with a Radial Ba-
sis Function kernel for both the features selected
using both methods implemented via scikit-learn
[19]. The results for classifier accuracies are pre-
sented in Figure 3. Best test accuracies and the
corresponding number of features are presented
in Table 3, along with the final accuracy of trained
sparse multi-layer perceptron. The presented re-
sults are for general investigation when not fine-
tuning the hyperparameters. For a more rigorous
analysis, avoiding overfitting on the test set, a val-
idation set should be considered.
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Figure 2: Training/test accuracy/loss during
training of the sparse multi-layer perceptron for
each dataset, from which the features are later
selected
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Figure 3: SVM classifier accuracy with increas-
ing number of features for feature selection using
Neuron Strength trained on a sparse neural net-
work and Chi-Square feature selection
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Chi-Square Neuron Strength
Dataset

Sparse MLP
final test accuracy [%]

Best test
accuracy [%]

Corresponding
# of features

Best test
accuracy [%]

Corresponding
# of features

BASEHOCK 89.02 62.11 91 71.83 96
PCMAC 82.09 62.73 82 84.41 80
RELATHE 83.19 59.03 56 63.45 90
orlraws10P 79.41 50.00 39 76.47 59
warpAR10P 72.73 31.82 53 45.45 78
ORL 82.09 37.31 74 82.83 74
COIL20 98.96 63.13 99 100 97
Isolet 90.38 53.27 80 91.73 91
madelon 59.28 55.71 76 77.51 20

Table 3: Best accuracies for the SVM classifiers along with the corresponding number of features achiev-
ing the best test accuracy. Comparing with the trained sparse multi-layer perceptron final test accuracy
(considering all features)

6 Discussion

The proposed method for feature selection cor-
rectly identifies features that correlate to the
output, with overlapping features selected by
the Chi-Squared method. Upon training for 40
epochs for each dataset, the selected feature
showed to perform better on a SVM classifier than
the ones selected by Chi-Square scoring on al-
most all datasets, with the exception of RELATHE
dataset.

A sharp increase in accuracy in the beginning
as the number of selected features increases can
be seen in Figure 3, which is not present in BASE-
HOCK, PCMAC or RELATHE. This is due to the
nature of the dataset, as the features are text to-
kens and accuracy steadily increases as we con-
sider more of the text. A similar pattern can be
seen for the Chi-Square method evaluated on the
text datasets.

Feature selection using Neuron Strength seems
to perform best in image recognition tasks, since
naturally the trained sparse network will have
strong connections closer to the center of the im-
age, quickly finding a pattern to disregard pix-
els close to the borders, and thus rapidly and
monotonically increasing the accuracy. A simi-
lar pattern of important features arising towards
the center of the image are observed in Atash-
gahi’s work on unsupervised feature selection
[28]. Though interesting to note is that Chi-
Squared method, in this case, performs much
worse.

Only the madelon dataset failed to converge
to a low loss value, as the test loss increased to
a steady level as presented in Figure 2. In an
attempt to resolve the issue, various values for
batch size were used ranging from 4 to 64, as well
as training for more epochs with a reduced learn-
ing rate and varying the momentum, but without
much improvement. Despite this, Figure 3 shows
≈ 70% test accuracy as compared to the ≈ 50%
accuracy when using Chi-Squared. The tapering
off of accuracy at around 20 features is explained
by the nature of the dataset, as madelon is an ar-
tificial dataset of 500 features, only 20 of which
are relevant for the label prediction and the re-
maining 480 are artificial noise [29].

6.1 Further research

The time required to select features using Neu-
ron Strength seems to pose a disadvantage, as it
requires to train a neural network from scratch.
Though when scaled to higher dimensional data
may provide an alternative approach to feature
selection and could scale better than the Chi-
Square methods, or more computationally expen-
sive methods, such as Fisher score or Laplacian
score. Further research could go into finding op-
timal cases for the use of Neuron Strength for su-
pervised feature selection over other methods for
very high-dimensional data.

7 Conclusion
The presented results show that a sparse neu-

ral network trained for supervised learning prob-
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lems possesses characteristics that help select im-
portant features from a dataset by using Neuron
Strength as the importance metric. Compared
with the Chi-Square feature selection method, the
features selected using Neuron Strength outper-
forms Chi-Square with the chosen datasets, per-
forming best in image recognition tasks.

Further research is still required to determine
the the scalability of the method as well as the
further investigation of the circumstances under
which the proposed method outperforms other
supervised feature selection methods with hand-
crafted importance metrics.
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8 Appendix

1st Layer 2nd Layer 3rd Layer Output Layer
Dataset

Parameters Density (%) Parameters Density (%) Parameters Density (%) Parameters Density (%)
Training time

BASEHOCK 156368 1.07 119203 1.32 119202 1.32 5999 99.98 0:19:15
PCMAC 124957 1.26 119224 1.32 119217 1.32 6000 100 0:21:28
RELATHE 145615 1.12 119197 1.32 119205 1.32 5999 99.98 0:14:27
orlraws10P 264935 0.86 119206 1.32 119172 1.32 25963 86.54 0:02:20
warpAR10P 107176 1.48 119243 1.32 119191 1.32 25927 86.4 0:01:27
ORL 79465 2.58 119199 1.32 119185 1.32 47599 39.66 0:01:34
COIL20 79470 2.58 119194 1.32 119182 1.32 38059 63.43 0:03:55
Isolet 70951 3.83 119192 1.32 119180 1.32 42166 54.06 0:03:45
madelon 68414 4.56 119178 1.32 119189 1.32 6000 100 0:20:40

Table 4: Network architecture for each dataset and the training time required when run on local machine
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