
EFFICIENT VIDEO PIPELINES FOR
DRONE APPLICATIONS

W.A. (Wolfgang) Baumgartner

MSC ASSIGNMENT

Committee:
dr. ir. J.F. Broenink
ing. M.H. Schwirtz
ir. E. Molenkamp

July 2021

050RaM2021
Robotics and Mechatronics

EEMathCS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

1

ii Efficient Video Pipeline for Drone Applications

Wolfgang Baumgartner University of Twente

iii

Summary2

A video pipeline design has been proposed in this project to look at a basic part of numerous3

machine vision applications involving drones. Most research in that field focuses on a complete4

application and does not look at the influence of implementation choices on video streaming.5

This project tries to fill in that gap.6

Several options are explored to design a video pipeline that fits on a drone. A developer board7

is used that combines hardware and software to have enough performance and is suitable for8

use on a drone. The communication block of the design is tested and reached an average band-9

width of 461 MB/s with a latency of 76.6e µs.10

The results indicate that the proposed design is feasible. Additionally, it can be used as a start-11

ing point for visual odometry or machine vision applications. Unfortunately, as yet nothing can12

be said about the influence of combining hardware and software on performance.13

Robotics and Mechatronics Wolfgang Baumgartner

iv Efficient Video Pipeline for Drone Applications

Wolfgang Baumgartner University of Twente

v

Contents14

1 Introduction 115

1.1 Context . 116

1.2 Problem statement . 117

1.3 Project goals . 118

1.4 Plan of approach . 219

1.5 Outline report . 220

2 Background 321

2.1 GPU . 322

2.2 FPGA . 423

3 Design 624

3.1 Introduction . 625

3.2 Requirements . 626

3.3 Design criteria . 727

3.4 Platform choice . 728

3.5 Video Pipeline Design . 929

3.6 Comparing solutions . 1130

4 Testing 1331

4.1 Introduction . 1332

4.2 Setup . 1333

4.3 Execution . 1434

4.4 Results . 1435

5 Discussion 1636

6 Conclusions and Recommendations 1837

6.1 Conclusions . 1838

6.2 Recommendations . 1839

A How to use the DE10 NANO SOC kit without an OS 1940

A.1 Requirements . 1941

A.2 Process . 1942

B De10-nano SoC-board 2043

C Software 2244

D Visual Odometry 2345

Robotics and Mechatronics Wolfgang Baumgartner

vi Efficient Video Pipeline for Drone Applications

D.1 Introduction . 2346

D.2 Process . 2347

D.3 Advantages . 2448

D.4 FAST . 2449

Bibliography 2650

Wolfgang Baumgartner, 12-07-2021 University of Twente

1

1 Introduction51

1.1 Context52

Machine vision is a well established discipline that investigates how to extract information from53

digital images and how to interpret these images. Examples are an algorithm processing a cam-54

era feed to find a red ball or a system that can count traffic on a crossroads. These tasks seem55

easy to perform for a human. Intuitively, one can recognize known objects and give meaning56

to visual information. However, it is hard to express these tasks in a way a machine can un-57

derstand. Therefore, it is not surprising that there is a lot of existing research on automatically58

processing images and related tasks.59

An interesting branch of machine vision deals with smaller systems like drones. Drones are fast60

and can provide sight on hard-to-reach places. That makes them ideal for automated inspec-61

tion tasks. However, drones also provide an additional challenge. Often, machine vision com-62

putations are performed on computer platforms that offer a lot of computational resources. On63

a drone, that is not possible because these platforms are usually too big and heavy. Therefore,64

machine vision implementations need to deal with limited resources that smaller computer65

platforms offer.66

One example of such an implementation was done by Schmid et al. (2014). A commercial67

quadrotor drone was used as a basis for their design which was adapted to make autonomous68

navigation possible. For that, a combination of hardware and software processed the drone’s69

camera feeds to track it’s own motion. In experiments, the drone could safely navigate through70

a building and a coal mine. As this study focussed on designing a drone capable of autonomous71

navigation, it is beyond its scope to optimize the amount of image data processed or compare72

different ways of video streaming. A similar quadrotor drone was used by Meier et al. (2012) that73

uses image data to avoid obstacles and for flight control. Measurements showed that fusing in-74

ertial and visual data improved accuracy of the planned flight path. Additionally, the project75

resulted in a basic platform for autonomous flight for future research. As these objectives were76

reached, it was neglected to explain the choice of hardware for the image processing unit or its77

influence on measurements. In summary, two studies about autonomous drones have been78

shown that do not investigate the influence of choices concerning video streaming hardware.79

1.2 Problem statement80

Despite the fact that research on the just mentioned applications always needs video stream-81

ing, it does not get the necessary attention. It is essential for any machine vision application82

and influences its performance. This is also true for autonomous drone applications. There-83

fore, the focus of this thesis is video streaming in a drone context.84

One of the challenges of video streaming is the amount of data that needs to be processed on85

time. Cameras have high data output, especially when resolution and frame rate of the video86

are high. In the chosen context, this is even more difficult because of limited resources on a87

system like a drone. Nonetheless, it is important for this thesis to keep bandwidth high.88

1.3 Project goals89

Figure 1.1: block diagram of top-level design

Robotics and Mechatronics Wolfgang Baumgartner

2 Efficient Video Pipeline for Drone Applications

The goal of this project is to investigate the problem mentioned before, namely video streaming90

for drone applications. For this purpose, a video pipeline is designed. This design must observe91

relevant limitations for use on a drone and achieve sufficient performance for an actual appli-92

cation. Figure 1.1 shows what the most important design blocks are. The result of this design93

process fills the gap of earlier mentioned research and serves as groundwork for autonomous94

drones.95

As already mentioned, resources for this design are limited. A drone can only carry a light,96

small platform that does not use too much power. This means that there is much less process-97

ing power available than on for example a big desktop PC. To compensate for this decrease98

in processing power, hardware and software are combined to make high performance video99

streaming possible. This project investigates how to integrate hardware and software in a ben-100

eficial way.101

1.4 Plan of approach102

As this project has the objective to design a video pipeline, different options for the design have103

been explored. Requirements have been defined to have a measure of what a good solution104

is. The design has been split in several parts and for each part, various solutions have been105

compared. The best option from each part has been picked to get a feasible design for a video106

pipeline.107

In order to show the feasibility in practice, as much as possible of this design has been im-108

plemented and tested. For this, a significant part has been chosen and expanded with a test109

bed. Performance of this implementation has been measured to evaluate the proposed video110

pipeline and check if the earlier defined requirements have been fulfilled.111

1.5 Outline report112

In Chapter 2, two different hardware accelerators are explained and compared. The following113

chapter illustrates the video pipeline and what led to the proposed design. Subsequently, parts114

of the pipeline are implemented and tested which is shown in Chapter 4. The test results are115

interpreted and discussed in Chapter 5. Finally, Chapter 6 describes what can be concluded116

and what is recommended for future projects.117

Wolfgang Baumgartner, 12-07-2021 University of Twente

3

2 Background118

Typically, machine vision algorithms like visual odometry are implemented in software and run119

on high-performance desktop computers (Warren et al., 2016; Song et al., 2013; Nistér et al.,120

2006). These systems are often rather big and consume a lot of power to deliver the necessary121

performance. On a drone however, these resources are quite limited. The embedded hardware122

platform needs to offer sufficient performance within these limits (Jeon et al., 2016). Therefore,123

GPUs and FPGAs are a viable option as hardware accelerators for this project that can outper-124

form a pure CPU solution. A solution based on an ASIC can also be powerful enough. However,125

development time is much bigger than the available time for this project.126

2.1 GPU127

A modern GPU consists of several computation units. Each of these units contains a number128

of simple processing cores, control logic, a small memory cache and some dedicated cores for129

special functions. The Fermi architecture described in Gao (2017) for example has 16 stream-130

ing multiprocessors with 32 CUDA cores each. All of these computation units have their own131

registers available as well as some shared memory and L1 cache. Additionally, there is a shared132

L2 cache and a large RAM which is similar to main memory for a CPU. Another example is visi-133

ble in Figure 2.1 which shows two of the 16 streaming multiprocessors inside a NVIDIA Geforce134

8800GTX. This graphics card is not actually a candidate for this project as it is too heavy and135

needs too much power. However, the architecture is similar to GPUs on modern embedded136

platforms like the Nvidia Jetson series.137

Figure 2.1: A pair of streaming multiprocessors of a NVIDIA Geforce 8800GTX; each multiprocessor
contains eight stream processors, two special function units, shared cache, control logic and shared
memory (Owens et al., 2008)

Older GPUs were mainly built to compute 3D graphics and for that they contained a graphics138

pipeline with more dedicated stages as opposed to general purpose computation units nowa-139

days. However, the main idea holds that high performance is accomplished by processing the140

whole data set in parallel. This means a single processing step is computed in parallel for a lot141

of data in contrast to a CPU pipeline that tries to compute several steps in parallel on a single142

data point.143

Robotics and Mechatronics Wolfgang Baumgartner

4 Efficient Video Pipeline for Drone Applications

Traditionally, using a GPU for anything else but graphics was a difficult task because for a long144

time there were no high-level languages for GPUs available. This meant that any task to be145

run on a GPU had to be mapped on the graphics pipeline and expressed in terms of vertices146

or fragments. Nowadays though there are several languages that are relatively easy to use for a147

software programmer. Nvidia’s CUDA for example is an API that can be used together with C148

code (Owens et al., 2008; Gao, 2017).149

2.2 FPGA150

Figure 2.2: Structure of an island-style FPGA (Betz, 2005)

Most Field Programmable Gate Arrays (FPGA) consist of three building blocks. One of these151

blocks is called a logic element. It is made of a lookup table with four inputs, a full adder and a152

flip-flop and can be configured to behave like any logic gate. Therefore, it is a suitable building153

block for a digital circuit. A logic element can be connected directly to another logic element or154

via a routing channel when it is on another part of the chip. The last building block is the I/O155

pad which allows an FPGA to communicate with the environment. These three elements are156

enough to form a digital circuit with input and output (Altera, 2011). An illustration of a typical157

FPGA structure appears in Figure 2.2.158

Modern devices additionally feature dedicated hardware like memory blocks or multipliers.159

These can reduce the area of a circuit because such functionality requires a lot of logic elements160

to implement. More complex examples of such dedicated blocks are DSP blocks or embedded161

processors. They can also feature logic elements that are structured a bit differently but with162

the same function (Intel, 2019b; Cullinan et al., 2013). Although FPGAs still fulfil the same role,163

they have evolved a lot over the years.164

There are several ways to describe the desired behaviour of an FPGA. First, a hardware descrip-165

tion language (HDL) can be used which is comparable to a programming language. The most166

common HDLs are Verilog and VHDL. More recently, some vendors like Xilinx and Intel try to167

raise the abstraction level by releasing compilers that can synthesize a circuit from a behaviour168

description in C/C++. At last, not all behaviour descriptions have to be written by hand as de-169

sign suites like Intel’s Quartus Prime comes with prebuilt blocks that can be combined in the170

Platform Designer.171

After a digital circuit is described in the mentioned ways, the circuit needs to be synthesized.172

Nevertheless, it is considered good practice to simulate a circuit first. This has the advantage173

that all signals are visible for testing. On a synthesized circuit, this depends on the design but174

it is usually not the case which makes debugging more difficult. Software like Quartus Prime175

Wolfgang Baumgartner, 12-07-2021 University of Twente

CHAPTER 2. BACKGROUND 5

places all necessary gates including routing and I/O pins on the target device. The behaviour176

description is mapped onto the hardware (Chu, 2006; Farooq et al., 2012).177

Robotics and Mechatronics Wolfgang Baumgartner, 12-07-2021

6 Efficient Video Pipeline for Drone Applications

3 Design178

Figure 3.1: block diagram of top-level design

3.1 Introduction179

As context for the design objective, a use case has been picked that describes the application180

that was envisioned as long term goal. This use case is a drone that can inspect modern wind181

turbines. It has to fly up and down the tower on which the generator is mounted and look182

for signs of damage. This means it needs to autonomously navigate the wind turbine in its183

environment. Additionally, some kind of sensor is necessary to inspect the turbine structure.184

The objective for this design space exploration is a video pipeline that serves as a basis for visual185

odometry on for example a drone. This means there needs to be a video source that streams186

image data. The data needs to be available for hardware and software to enable advanced im-187

age processing in the future. Additionally, communication between hardware and software on188

the targeted platform is necessary. Finally, a way of outputting information is required. Figure189

3.1 is a representation of this video pipeline without implementation details.190

In order to reach the design objective, requirements have been set up in the following sec-191

tion. These form a basis for the design criteria in the subsequent section. In Section 3.4, the192

platform choice is explained. The section after that describes how the design was divided in193

parts which were separately explored and evaluated according to the established design crite-194

ria. Each chosen part solution was combined for the design which is subject of the last section195

in this chapter.196

3.2 Requirements197

As a first step towards a design, requirements need to be deduced from the use case mentioned198

earlier. As this use case is about an inspection drone, the design has to be implemented on a199

small, lightweight platform that fits on a drone. As this project is about a video pipeline, the200

sensor is a camera. Consequently, the design must be able to process the data coming from the201

camera. That means a certain bandwidth must be available while the latency must be low as202

well. Given that this project aims for video streaming as basis for more complex designs, there203

should still be resources available after implementation.204

One of the most important requirements for this project is the bandwidth, i.e. the amount of205

data that can be processed in a certain time span. It has a significant influence on performance206

of machine vision algorithms. Looking at our drone, higher bandwidth means a higher resolu-207

tion and more pictures per second can be processed. As there is more information available for208

an algorithm to work on, accuracy improves. An example with a working application is Schmid209

et al. (2014) that successfully tests an autonomous drone in a coal mine while making use of a210

camera stream with 18.75 MB/s. In the mentioned case, it means two cameras taking 15 pic-211

tures per second with a resolution of 750x480 pixels. This design aims at 18.75 MB/s which is212

equivalent to 30 pictures per second with a resolution of 750*480 pixels from a single camera.213

There are camera modules available with this amount of data output. Therefore, these num-214

bers were chosen as a requirement for this project.215

Another important characteristic for video streaming is latency which is the time from a picture216

being taken to the processed result. This latency is relevant for an autonomous drone because217

it influences the time between recognizing for example an obstacle and appropriate course218

Wolfgang Baumgartner University of Twente

CHAPTER 3. DESIGN 7

correction to avoid the obstacle. This makes the latency also a critical characteristic because219

a low latency can help avoid accidents. Logically, low latency is desirable. The precise rela-220

tion between latency and performance of an autonomously navigating drone is hard to derive221

analytically. Therefore, a latency of 0.3s was considered sufficiently low for this design.222

This design is meant as a basic starting point for machine vision applications. Therefore, there223

still has to be the possibility to add algorithms to the implemented design. This means that the224

chosen platform has to offer resources which can be used for later additions to the design.225

As the end product is for drones and other robotics projects, this design has to be implemented226

on a platform that is small and light enough to fit on a drone. Nikolic et al. (2014) presents227

a module performing a SLAM algorithm fused with inertial data. It was tested in Omari et al.228

(2014) and is light and small enough for a drone. The mentioned module weighs 130 g and its229

dimensions are 144 x 40 x 57 mm. This size is used as a requirement for this project to make230

sure that the result fits on a drone. An overview of all requirements can be found in Table 3.1.231

requirement number
bandwidth 18.75 MB/s
latency 0.3 s
weight 130 g
size 144 x 40 x 57 mm

Table 3.1: requirements

3.3 Design criteria232

In order to evaluate the considered solutions in the following sections, criteria are chosen that233

are relevant for the design. Each possible solution gets a certain number of points for each234

criterion. Additionally, each criterion gets a weighting factor corresponding to the importance235

for the design. Points get multiplied with the related weighting factor, the sum of all points for236

a solution gives its score. All design criteria are in Table 3.2.237

For the design process, the time it takes to build and implement the design is quite important238

because time is limited and it is hard to accurately plan a schedule.239

Bandwidth counts just as much as this is the criterion where the hardware acceleration should240

be noted the most. Therefore, the objective is as well to make bandwidth a strong point for this241

design.242

Latency has been chosen as it is also part of the requirements. However, it is less important for243

the video pipeline because the result is not yet used for a critical process like in an autonomous244

drone.245

The amount of resources available for this design are determined by the platform choice de-246

scribed in the following chapter, which is in itself a limiting factor. However, it is not supposed247

to be optimized for efficiency which is why the resources criterion has a low weighting factor.248

It is much more important for possible applications that might be designed in future research.249

3.4 Platform choice250

From the requirements described earlier, there are some that are especially relevant for the251

choice of a suitable platform. This platform needs to offer enough performance for this project252

as well as some extra resources for future algorithms. Additionally, the platform has to meet253

the weight and size limit in order to fit on a drone. And lastly, the platform must allow the254

combination of hardware and software as this is crucial for the approach mentioned in the255

Robotics and Mechatronics Wolfgang Baumgartner, 12-07-2021

8 Efficient Video Pipeline for Drone Applications

design criterion weighting factor
build time 3
bandwidth 3
latency 2
resource use 1

Table 3.2: weighting factors of the design criteria

Introduction. With the relevant requirements in mind, we can now discuss which hardware256

accelerator is suitable.257

One option introduced in Chapter 2 is to use an FPGA. It works like a reconfigurable digital cir-258

cuit which has several implications. First, it allows to perform different tasks at the same time or259

process several data points simultaneously which is important for the established bandwidth260

requirement. Second, FPGA implementations can be optimized to keep latency low. There-261

fore, choosing an FPGA for this design would help to satisfy the latency criterium. Additionally,262

latency in an FPGA is deterministic which makes real-time applications possible.263

The second option mentioned earlier was a GPU. GPU architecture makes it possible to pro-264

cess a lot of data in parallel because it is optimized for bandwidth. This has the downside that265

latency can be quite big and variable. Also, GPUs are rather easy to program. NVIDIA for ex-266

ample offers an API called CUDA which allows to use C-like code for programming (NVIDIA,267

2019).268

advantage FPGA GPU
parallelism digital circuit streaming cores
latency deterministic -
configuration HDL CUDA

Table 3.3: Advantages of using an FPGA or a GPU

The just mentioned advantages of FPGA and GPU were weighed to see which one is more suit-269

able for this project. It was decided to go for a platform which incorporates an FPGA because270

that makes latency more manageable. Furthermore, potential GPUs usually are quite big and271

the few suitable platforms with a GPU are expensive. Therefore, a platform that uses an FPGA272

as a hardware accelerator seems like the best option. A summary of the advantages is shown273

in Table 3.3 and Table 3.4 shows the score of both options according to the established design274

criteria.275

solution/criterion build time bandwidth latency resources score
FPGA 1 3 3 3 21
GPU 2 2 1 2 16

Table 3.4: Possible platforms and their design criteria score

This said, a well-suited option turns out to be the DE10-nano SOC kit. It features an Intel Cy-276

clone V SE SoC combining an FPGA with 110k logic elements and a dual ARM core. The amount277

of logic elements is sufficient because Nikolic et al. (2014) used a Xilinx Zedboard with 85k logic278

elements to implement SLAM which is more demanding than visual odometry. However, an279

Intel-based device was chosen over other vendors because of previous experiences with the280

software tools that Intel provides for development. Also, the platform falls within the size and281

Wolfgang Baumgartner, 12-07-2021 University of Twente

CHAPTER 3. DESIGN 9

weight requirements established in Section 3.2. Communication between hardware and soft-282

ware is expected to be fast enough because FPGA and CPU reside on a single chip.283

3.5 Video Pipeline Design284

Having discussed the requirements and platform choice for the design, the following section285

covers the video pipeline design itself. In this section, the design is split up in the blocks input,286

communication and output (see Figure 3.1). For each block, possible solutions are compared287

and evaluated according to the criteria in Section 3.3. In the last Section of this Chapter, all part288

solutions will be put together for the complete, chosen solution.289

3.5.1 Data input290

The first block is about acquiring data. A camera records a video and it needs to connect to291

an interface. This can happen either by connecting the camera to several hardware pins or by292

using the USB interface.293

Figure 3.2: block diagram of data input with hardware interface

In order for the data to enter the system via hardware pins, a hardware interface has to be294

written in a hardware description language. It also requires a driver for software control of the295

data input (see Figure 3.2). Consequently, connecting the camera with hardware pins requires a296

lot of development work and build time. The upside is that performance is expected to be high.297

Taking the MT9V034 CMOS image sensor in a camera module as an example, our platform298

offers enough power for a hardware interface. The 50 MHz FPGA clock is sufficient to switch299

the input pins fast enough as the image sensor has a clock rate of 27 MHz. This ensures a300

high bandwidth while latency in this block is kept low because it is a digital circuit. As it is301

only necessary to switch pins and route the data to the next block, it does not require a lot of302

resources either.303

Moving on to the second option which is a USB camera with a software interface. A Logitech304

C920 for example works out of the box with Linux and offers 62.3 MB/s of data. Using USB305

adds latency compared to the hardware interface because the operating system is responsible306

for that. It is not possible to use a real-time operating system within the available time for307

this project which means that latency is not deterministic and hard to control. However, it308

is impossible to measure the latency in this specific block only. Therefore, the latency gets a309

slightly lower score. Bandwidth is more than sufficient and gives a high score. This solution310

does not require a lot of resources as the driver is part of the existing kernel and expected to be311

quite efficient.312

In the end, both solutions are quite similar. The USB camera is easier to implement. Manually313

writing a hardware interface that matches the timing of the camera module can be challenging.314

Nonetheless, if done correctly, latency is expected to be lower than with a USB camera. The315

score with applied weight factors is shown in Table 3.5.316

Robotics and Mechatronics Wolfgang Baumgartner, 12-07-2021

10 Efficient Video Pipeline for Drone Applications

solution/criterion build time bandwidth latency resources score
camera + HW interface 1 3 3 3 21
USB camera 2 2 2 3 19

Table 3.5: Possible solutions for data input, weight factors applied accordingly

3.5.2 Communication HW/SW317

Moving on now to consider communication between FPGA and CPU. There is a complex bus318

architecture on the DE10-nano SoC connecting all the different parts on the chip. Several319

bridges allow devices on the FPGA or the ARM core to function as master and initiate data320

transfers on the chip. They mainly differ in width and in which side is master and slave. For a321

simplified block diagram of the connections between FPGA and CPU see Figure B.2. For more322

information see Intel (2019b). Additionally, different parts on the chip can move data around.323

The CPU or the dedicated ARM DMA are options on the ARM core while it is also possible to324

implement DMA blocks on the FPGA fabric. In more complex designs the placement of this325

block is also important. However, in this design communication is by default after data input.326

The possible options are:327

• Hardware DMA with the FPGA-to-HPS (Hard Processor System) bridge328

• Hardware DMA with SDRAM bridge329

• ARM DMA with HPS-to-FPGA bridge330

For this part of the design, the bandwidth is very important. It is a part that does add overhead331

to the design but it is necessary to make use of the hardware accelerator. Therefore, it is a332

potential bottleneck when the implementation is not performing well. This is also restricted by333

platform choice.334

There are several possible ways to move data from one place to another on this platform. The335

simplest method is to use the CPU for that. However, the CPU usually has a lot of tasks to do336

and using a DMA controller improves overall performance. Therefore, only DMA options were337

considered for this design. The ARM core has an integrated DMA controller which is "primarily338

used to move data to and from other slow-speed HPS modules" (Intel, 2019a). Another chip339

from the same device family was tested here (Land et al., 2019) where a bandwidth of 28 MB/s340

was mentioned. That is much lower than the 100 Gb/s peak bandwidth advertised on the Intel341

website (Intel, 2018). A DMA controller implemented on the FPGA can be a way to improve342

communication bandwidth between FPGA and CPU. Quartus Prime comes with a normal DMA343

controller and a scatter/gather controller as IP cores. The Intel Cyclone V design guidelines344

(Intel, 2019a) recommend to use the scatter/gather controller.345

There are not only several relevant DMA options but more data bridges as well to choose from.346

The first option is the FPGA-to-HPS bridge which allows communication between FPGA and347

CPU. In this case, it can enable a DMA controller in the FPGA fabric to move data to and from348

memory connected to the ARM core. It has a width of up 128 bit and a special port for cache-349

coherent memory access. It is expected to be fast enough for this design because the design350

guidelines recommend this bridge for data transfers (Intel, 2019a). However, documentation351

does not mention expected bandwidth because it always depends on the particular design as352

well. Another interesting bridge is the lightweight HPS-to-FPGA bridge which is suitable for353

control signals. Most devices implemented on an FPGA have control registers which can be354

accessed by software. Using the lightweight bridge only for control signals helps keep latency355

down because data traffic is routed through a different bridge. There is also a counterpart to356

Wolfgang Baumgartner, 12-07-2021 University of Twente

CHAPTER 3. DESIGN 11

that bridge that allows the ARM core to initiate data transfers. The HPS-to-FPGA bridge is simi-357

lar to the just mentioned bridge except that master and slave are different. The last option is the358

FPGA-to-SDRAM bridge which allows an FPGA master direct access to the memory controller359

without involving the L3 interconnect. According to the design guidelines, this bridge offers360

the most bandwidth while keeping latency low. It does not offer cache-coherent access and it361

is harder to set up.362

After having discussed the available bridges and DMAs that are relevant for this design, the363

solution for this design block is discussed. As data moving device, the scatter/gather DMA was364

selected because it is recommended by (Intel, 2019a) and it is expected to be much faster than365

the ARM core. Additionally, the ARM DMA might be more useful when there are peripherals366

used that are directly connected to the ARM core. Together with this DMA, the FPGA-to-HPS367

bridge is most suitable as it is not hard to implement and should offer enough bandwidth.368

In this case, the solution with the SDRAM bridge has the same amount of points but still the369

solution with a higher build time score was chosen because of lack of time.370

solution/criterion build time bandwidth latency resources score
HW DMA + FPGA-to-HPS bridge 2 2 2 3 19
HW DMA + SDRAM bridge 1 3 2 3 19
ARM DMA + HPS-to-FPGA bridge 2 1 1 3 14

Table 3.6: Possible solutions for HW/SW communication, weight factors applied accordingly

3.5.3 Output371

This part of the design is about showing the results of earlier executed image processing. There372

are two options on the DE10-nano. The board comes with an HDMI output that can be used373

to show the current image. Alternatively, relevant data like measured bandwidth or latency can374

be displayed in a text interface. The possible options are:375

• images and diagrams via HDMI376

• text interface377

The HDMI output is more versatile as it can present information in different ways. Written text378

and numbers can be displayed as well as processed images or diagrams. However, it is harder to379

set up on the DE10-nano because one has to manually connect all pins on the board and write a380

hardware interface for it. There is an HDMI controller on the board but there is no ready-made381

interface available that allows the use of this controller. On the other hand, a text interface is382

really simple to make and can display all the relevant data. See Table 3.7 for the score.383

solution/criterion build time bandwidth latency resources score
SW console text 3 2 2 3 22
HW HDMI 1 3 3 2 20

Table 3.7: Possible solutions for output, weight factors applied accordingly

3.6 Comparing solutions384

Thus far, each part of the design has been discussed and they can be put together. For the data385

input, the HW interface scores more points than the USB camera because it offers more per-386

formance. The data is then sent to RAM by a scatter/gather DMA via the FPGA-to-HPS bridge.387

The results can be seen on a text interface. Figure 3.3 displays the solution in a block diagram.388

Robotics and Mechatronics Wolfgang Baumgartner, 12-07-2021

12 Efficient Video Pipeline for Drone Applications

According to the established design criteria, this is the best design among the considered op-389

tions.390

Figure 3.3: block diagram of the solution

As can be seen in this Chapter, the design is complex and its implementation time-consuming.391

This makes implementation challenging because available time is limited. Therefore, it was392

decided to only implement the communication block. It is a vital part of the video pipeline and393

its performance is a good indicator for the overall pipeline performance.394

Wolfgang Baumgartner, 12-07-2021 University of Twente

13

4 Testing395

4.1 Introduction396

This chapter describes the tests. As mentioned in the previous Chapter, the communication397

block was implemented and its performance measured. As it is a big part of the proposed de-398

sign, this gives an indication of the overall design performance. Additionally, the results show399

if the platform is a suitable choice. In this case, bandwidth and latency are measured as per-400

formance indicators while area on the FPGA and CPU usage show the resources used. These401

results show if the proposed design is relevant for future research.402

4.2 Setup403

Figure 4.1: block diagram of the test setup

The design block described in Section 3.5.2, which was implemented for testing, moves data404

between the FPGA and the CPU part of the board. A scatter/gather DMA was selected to do the405

actual copying of data. It is controlled by software which sends commands via the lightweight406

HPS-to-FPGA bridge. The FPGA-to-HPS bridge is used for transferring data from the FPGA to407

the on-chip RAM on the CPU.408

This design block was expanded with a data source to simulate a camera taking pictures. This409

data source realized on the FPGA side is an IP core included in the Quartus software which410

generates certain data patterns and streams them to the DMA. Data can then be sent from the411

Robotics and Mechatronics Wolfgang Baumgartner

14 Efficient Video Pipeline for Drone Applications

FPGA to the CPU’s on-chip RAM. Then, all necessary measurements are done in software as412

well as a text interface which shows the results. An overview of the setup is shown in Figure 4.1.413

4.3 Execution414

Software has been written that controls all the mentioned peripherals and gets all necessary415

measurements. First, the data generator and the DMA are prepared. Then, a descriptor is con-416

structed which contains information about the following data transfer. A clock is started and417

right after that, the data transfer starts. As soon as the DMA is not busy any more, the clock418

stops. The measured time is used to calculate bandwidth. After that, several small data trans-419

fers are executed and measured in the same way. The average of the measured times is the420

latency for a data transfer.421

For the bandwidth measurement, 64 kB of data are sent to the on-chip RAM. In the time mea-422

sured, several things happen to make the data transfer possible. The software checks if the423

DMA can accept another descriptor. If so, the descriptor is sent to the DMA. Subsequently, the424

DMA dispatcher is activated and starts the transfer. After that, the software waits until the DMA425

stops sending a busy signal (see Figure 4.2). The bandwidth is the amount of transferred data426

divided by time. In comparison, the latency measurement works similar as the same things for427

a data transfer have to happen. However, only 2 kB of data are sent.428

Figure 4.2: sequence diagram of the bandwidth and latency measurements

The last measurements that are discussed here, are measurements concerning the amount of429

used resources in this implementation. For the FPGA, the amount of used LEs and other blocks430

are read from the Quartus Prime synthesis report. For the CPU resources, the Linux command431

time is used. It measures the execution time of a command, the CPU time spent on it and432

the CPU usage. These measurements give an indication about the possibility of extending the433

proposed design.434

4.4 Results435

The bandwidth has been measured with different burst sizes with each series being measured436

20 times. The results are shown in Table 4.1 and Figure 4.3 shows the measured bandwidth with437

a burst size of eight. The latency was measured 200 times in total with a burst size of one. Table438

4.2 shows the results. In both tables, averages and standard deviation were calculated with all439

Wolfgang Baumgartner, 12-07-2021 University of Twente

CHAPTER 4. TESTING 15

values and adapted average and adapted standard deviation excluding outlying measurements.440

Quartus reports that 6072 adaptive logic modules (modern logic elements) were used which is441

14% of the available ALMs. According to the time command, it takes 0.01 s to execute the code442

which takes 52% of the CPU. Table 4.3 shows the used resources for the implementation.443

bandwidth in MB/s
burst size 1 2 4 8 16
minimal 328 325 452 383 452
maximal 443 452 461 464 463
average 428 441 458 457 459
standard deviation 24 28 3 17 3
adapted average 433 448 458 461 459
adapted standard deviation 7 3 3 1 3

Table 4.1: bandwidth measurements

Figure 4.3: bandwidth measurements with a burst size of eight

minimal maximal average standard deviation
latency in ns 74,110 111,060 76.6×103 2.5×103

adapted average adapted standard deviation
latency in ns 76.5×103 0.5×103

Table 4.2: latency measurements

area 6072 LEs
14 %

execution time 0.01s
CPU usage 52%

Table 4.3: resources used

Robotics and Mechatronics Wolfgang Baumgartner, 12-07-2021

16 Efficient Video Pipeline for Drone Applications

5 Discussion444

The objective of this project is to design a video pipeline suitable for drone applications. A445

combination of hardware and software has been used to achieve high performance that fits on446

a drone. In this chapter, the measurements from the previous chapter are discussed to evaluate447

if the objective has been reached.448

First of all, all measurements satisfy the previously established requirements. It is noteworthy449

that the measured bandwidth is about 25 times the required bandwidth (see Section 3.2). Also,450

the measured latency is much lower than the latency stated as requirement. Additionally, there451

are resources left to complete the video pipeline. As all requirements are met, the measure-452

ments suggest that the proposed design is feasible.453

Aside from how the measurements relate to the requirements, the bandwidth measurements454

show some peculiarities. When looking at the adapted average, choosing a burst size of eight is455

the best choice for the proposed design. When the average including all values is the deciding456

characteristic, a burst size of 16 should be chosen. However, that is apparently because the457

series with a burst size of 16 does not have an outlier. Figure 4.3 shows a series of measurements458

with the outlier right at the beginning. Outliers are not exclusively occurring at the beginning459

of the measurement. The outliers do increase standard deviation by several factors but there460

are so few that the average does not change a lot. It is not clear what the cause of the outliers is.461

A possible reason is that the operating system interrupted the user code during the bandwidth462

measurement.463

The latency measurement has only one outlier and therefore it has almost no influence on the464

average while the standard deviation changes by a factor of five. Here, all values were measured465

with a burst size of one as it simplified the measurement. A higher burst size might lower the466

latency because the DMA can transfer more data without interruptions.467

While the measurements satisfy the requirements, it is important to look at how meaningful468

they are. Several facts speak against these measurements being meaningful:469

• only one part of the video pipeline has been implemented and tested470

• bandwidth and delay measurements include overhead like the control sequence for the471

DMA472

• the bandwidth has been measured by transferring 64 kB at a time to the on-chip RAM be-473

cause of technical issues; results might be different transferring more data to the SDRAM474

• reading data from the on-chip RAM and transferring it to memory on the FPGA might475

lead to a different bandwidth476

There are also some reasons that speak for these measurements being meaningful:477

• the implemented design part is the biggest part in the design478

• even though reading from the on-chip RAM was not tested, it is very similar to writing to479

it and bandwidth is expected to be similar480

• in case of bandwidth and latency, requirements are exceeded a lot481

• overhead from measuring time expected to be small compared to transfer time482

After considering these facts, it is still reasonable to believe that the proposed design is feasible.483

In the Introduction, it was stated that autonomous drones are a valuable research topic and484

this project is a first step towards that application. Therefore, it is interesting to discuss if this485

design might also be extended to a visual odometry module. On one hand, the measurements486

suggest that the proposed design is feasible and there are resources left to implement a bigger487

Wolfgang Baumgartner University of Twente

CHAPTER 5. DISCUSSION 17

design. On the other hand, the difference between the implemented part of the design and a488

module performing visual odometry is quite big. This means that it is impossible to conclude489

anything about a visual odometry module with the information currently available.490

The approach to combine hardware and software was chosen to increase performance. There491

is no conclusive evidence that it did or did not work. The measured bandwidth exceeds the492

requirements but there is no pure software solution to compare it to. Also, the implemented493

block (see Subsection 3.5.2) would probably not be necessary when all calculations are done494

by a single CPU because all the acquired data would stay in main memory. However, combin-495

ing hardware and software did increase the complexity of the project. There are more options496

on how to solve a problem but also more information and experience is needed to make an in-497

formed decision. A lot of practical experience was acquired this way. However, implementation498

for testing took longer than expected.499

As the complexity increases because of the chosen approach, so increases the necessary knowl-500

edge to develop a good design. Adding hardware to it required hardware design knowledge.501

Additionally, drivers were necessary to make software and hardware work together. This also502

meant that development and implementation required more time. Furthermore, debugging503

was much more complicated as low-level details in an FPGA design are hard to observe but can504

be crucial for a design. In conclusion, the original design objective was very ambitious and had505

to be limited in order to finish within the available time.506

Robotics and Mechatronics Wolfgang Baumgartner, 12-07-2021

18 Efficient Video Pipeline for Drone Applications

6 Conclusions and Recommendations507

6.1 Conclusions508

This project set out to propose a video pipeline design that might be used as a starting point509

for machine vision applications. As discussed in the previous chapter, a design has been pro-510

posed and tested. The results suggest that the design is feasible, but only a part of it has been511

implemented. Therefore, the performance of the implemented video pipeline might be differ-512

ent from the part in the conducted experiment. Additionally, the project provides insight into513

video pipeline design with limited available resources. It is suitable for further studies and,514

eventually, applications.515

Another project goal was "to integrate hardware and software in a beneficial way" (see Chap-516

ter 1). Both hardware and software are used in the design. Therefore, this goal is also achieved.517

However, it is unclear how combining hardware and software influences the performance of518

the video pipeline. Nonetheless, the proposed video pipeline is a good starting point for ma-519

chine vision applications with a similar design approach.520

6.2 Recommendations521

A natural progression of this work is to implement the complete video pipeline design and test522

the performance. For the experiment, a camera interface can replace the pattern generator and523

additional software is needed for data transfers to main memory. Then, the performance can524

be measured again to see if the new results confirm or disprove the conclusions in this project.525

A further study could extend the proposed video pipeline to assess if it is suitable for visual526

odometry. For that, several image processing algorithms like feature detection and matching527

can be added to the design and measure the resulting performance. Implementing such a de-528

sign would show if the currently chosen hardware and approach is suitable for an application529

including visual odometry.530

Wolfgang Baumgartner University of Twente

19

A How to use the DE10 NANO SOC kit without an OS531

A.1 Requirements532

• Quartus Prime Software 18.1533

• Intel SoC FPGA Embedded Development Suite 18.1534

A.2 Process535

• Compile your hardware project with Quartus Prime536

• Generate the header file with all memory addresses derived from Platform Designer file537

• Convert .sof output file to .rbf file with the following command:538 � �
539

$ quartus_cpf −c * . sof * . rbf540 � �541

• Download the software example Altera-SoCFPGA-HardwareLib-Unhosted-CV-GNU542

from the Intel website543

• Compile with Eclipse DS-5544

• Start the preloader generator with545 � �
546

$ bsp−editor547 � �548

in the embedded command shell549

• Disable watchdog, enable boot from SD, enable FAT support, disable semihosting550

• Use make command to build preloader551

• Use make uboot to build bootloader image552

• Generate bootloader script file with553 � �
554

$ mkimage −T s c r i p t −C none −n ’ Scr ipt F i l e ’ −d555

u−boot . s c r i p t u−boot . scr556 � �557

• Prepare SD card with an "a2" partition for the preloader and a FAT32 partition for your558

hardware project, bootloader and software559

• Copy preloader in "a2" partition and all other files to the FAT partition560

• Put SD card in board, turn on and connect to serial console561

Robotics and Mechatronics Wolfgang Baumgartner

20 Efficient Video Pipeline for Drone Applications

B De10-nano SoC-board562

The chosen platform for this project is the DE10-nano development kit. It is based on the Cy-563

clone 5 SE 5CSEBA6U23I7 chip which combines an FPGA and an ARM core. As shown in Figure564

B.1, there are a lot of connectors and peripherals connected to the chip which makes this board565

versatile and powerful.566

Figure B.1: block diagram of DE10-nano (Terasic, 2017)

The FPGA features 110k logic elements and about 6 kB of dedicated RAM. There is a USB Blaster567

port connected to it for programming. 40 GPIO pins are available as well as extra pins similar568

to the Arduino header. There are several 50 MHz clock sources that can be combined with PLLs569

to increase clock frequency. The HDMI can be used for output directly to a screen.570

The processor on the chip is a 800 MHz dual-core ARM Cortex-A9. It has access to 1 GB of571

DDR3 RAM. There is an ethernet port, a USB interface and a micro SD card slot for an operating572

system.573

Figure B.2 shows the interconnect between the microprocessor subsystem(MPU), FPGA and574

peripherals on the chip. Of special interest are the bridges connecting the L3-interconnect575

with the FPGA portion. The lightweight HPS-to-FPGA bridge offers little bandwidth and low576

Wolfgang Baumgartner University of Twente

APPENDIX B. DE10-NANO SOC-BOARD 21

Figure B.2: simplified block diagram of connection system between HPS and FPGA (Intel, 2019a)

latency. This bridge is suitable for control signals from software to synthesized hardware on577

the FPGA portion. The other two bridges offer a wider interface and more bandwidth, i.e. are578

more suitable for sending data.579

There is one last connection between the FPGA portion and the SDRAM controller subsystem.580

It allows any synthesized hardware access to main memory and is even wider than the other581

bridges. The FPGA-to-SDRAM interface therefore offers the most throughput and lower latency582

than the other data bridges. The downside is that it only offers non-cacheable memory access.583

Robotics and Mechatronics Wolfgang Baumgartner, 12-07-2021

22 Efficient Video Pipeline for Drone Applications

C Software584

The ARM core is powerful enough to run an operating system. In this case the embedded Linux585

distribution Angström was used. Intel provides a meta layer for the DE10-nano together with a586

build recipe. Therefore, the yocto project was used to build an image for the board. The recipe587

includes a preloader, the bootloader uboot and it generates a device tree for the kernel. The588

kernel version 4.9 is built as well as a root filesystem.589

For the hardware design, Intel Quartus Prime 18.1 was used. Already implemented blocks in the590

platform designer - previously known as Qsys - were used as much as possible. All the hardware591

projects were based on the example design provided by the board designer Terasic.592

Software development was done on the ARM DS-5 IDE as part of the Intel SoC Embedded De-593

velopment Suite. This includes some libraries and drivers for Cyclone 5 chips as well as the594

cross compiler arm-linux-gnueabihf-gcc 5.4 provided by Linaro.595

Wolfgang Baumgartner University of Twente

23

D Visual Odometry596

D.1 Introduction597

Visual Odometry is a way to track the motion of a drone or a robot. A camera on a drone sees598

the environment move when the drone itself moves. These changes can be used to estimate599

the drone’s motion. There are different ways to do this. The feature-based method which looks600

at certain points in consecutive images is relevant for this project. By tracking these points and601

observing their movement, it can be deduced how the drone moved.602

What makes Visual Odometry relevant for this project is that it can be used for path planning. A603

camera is the only sensor necessary to track a drone’s movement. As cameras can be very small,604

they fit easily on a drone. Enabling a drone to track its own position would also allow it to plan605

its own path; therefore, developing a video pipeline on a lightweight processing platform is a606

step towards autonomous drones (Yousif et al., 2015).607

There is a range of research for VO. Weiss et al. (2011) extended VO and used a SLAM algorithm608

to let a drone take off, fly to waypoints and land autonomously. Dunbabin et al. (2005) built609

an underwater vehicle to inspect for coral reef inspection. To circumvent the lack of GPS signal610

underwater, VO was used for navigation. Nistér et al. (2006) proposed a VO system to let ground611

vehicles successfully navigate on their own. The most famous example of VO is probably the612

Mars Rovers Spirit and Opportunity. In Maimone et al. (2007) and Cheng et al. (2006) the VO613

algorithm was used to make navigation more accurate, especially when the terrain made wheel614

odometry unreliable.615

Figure D.1: Essential components of Visual Odometry

D.2 Process616

As shown in Figure D.1 this process starts with a sequence of images. The first step is the de-617

tection of points of interest. These features can be simple like corners or more elaborate like618

windows. As an example of a feature detector the FAST algorithm shall be explained soon.619

Once, all features in two or more consecutive frames are detected, they need to be matched. A620

criterion like the Sum of Square Differences or the Sum of Absolute Differences can be used as621

a measure of similarity.622

Robotics and Mechatronics Wolfgang Baumgartner

24 Efficient Video Pipeline for Drone Applications

When a sufficient number of corresponding features in consecutive frames is found, a transfor-623

mation between frames can be calculated. In the ideal case that 3D coordinates of said features624

are known, the following formula can be applied:625

T = ar g mi nT
∑ |Xi−T X́i|2 (D.1)

T is the transformation between one frame and the next, X is one 3D point observed in the cur-626

rent frame and X́ is the corresponding 3D point in the previous frame. The necessary amount627

of feature pairs depends on the system’s degrees of freedom and the type of camera model628

applied. More feature pairs increase the accuracy of the transformation as well as the compu-629

tational effort.630

In cases where image points are compared with triangulated 3D points from the previous631

frame, a re-projection function can be used. When there is no 3D information available yet,632

like in the first two frames, epipolar geometry can be exploited to get a transformation from633

one frame to the next. These methods are described in more detail in Yousif et al. (2015).634

D.3 Advantages635

As mentioned earlier, VO is a way to measure egomotion. However, there are also other meth-636

ods with each their set of advantages. Compared to methods like LIDAR (light detection and637

ranging sensor) or INS (inertial navigation system), a camera is quite cheap and delivers a lot638

of information which allows accurate trajectory estimates, with relative position error ranging639

from 0.1% to 2% (Scaramuzza and Fraundorfer, 2011).640

Unlike GPS, it does not need clear sight of the sky. Therefore, it works inside and outside.641

Nonetheless, not all environments are particularly suited for VO as lighting conditions or move-642

ments in the environment have a great impact on accuracy.643

Furthermore, VO is not affected by slippery or loose terrain like wheel odometry is. It does not644

require additional signals or satellites which makes on-board solutions easier. Additionally, it645

can be combined with other vision-based algorithms as a camera is already present.646

The biggest challenge for VO is the computational effort due to the amount of data that needs to647

be processed. Especially when high accuracy is crucial, extra optimisation steps are necessary648

that can be computationally expensive. While on a ground station, this might not be a big649

problem, small onboard platforms that fit on a drone, might struggle with this (Aqel et al., 2016).650

D.4 FAST651

Figure D.2: Illustration of segment test

The Features From Accelerated Segment Test (FAST) algorithm is a feature detector, more652

specifically a corner detector. It places an approximated circle around a pixel in question such653

that 16 pixels lie on this circle as shown in Figure D.2. Then pixel intensities are compared. If654

Wolfgang Baumgartner, 12-07-2021 University of Twente

APPENDIX D. VISUAL ODOMETRY 25

there is a segment on the circle with enough pixels that are either lighter or darker than the655

centre pixel plus a threshold, then the centre pixel lies on a corner.656

According to Yousif et al. (2015), FAST is computationally efficient which makes it suitable for657

embedded applications. Additionally, Kraft et al. (2008) successfully implemented it on an658

FPGA and found that it its implementation does not require a lot of resources and allows for659

a high frame rate. The main downside of this algorithm is that it is sensitive to noise. An alter-660

native algorithm to solve this problem would be the SIFT (Scale Invariant Feature Transform)661

algorithm but it is computationally much more expensive (Yousif et al., 2015).662

Robotics and Mechatronics Wolfgang Baumgartner, 12-07-2021

26 Efficient Video Pipeline for Drone Applications

Bibliography663

Altera, C. (2011), Cyclone 3 Device handbook, volume 1, Altera Corporation.664

Aqel, M. O. A., M. H. Marhaban, M. I. Saripan and N. B. Ismail (2016), Review of visual665

odometry: types, approaches, challenges, and applications, vol. 5, no.1, pp. 1897–1897,666

ISSN 2193-1801, doi:10.1186/s40064-016-3573-7.667

https://www.ncbi.nlm.nih.gov/pubmed/27843754668

Betz, V. (2005), FPGA Architecture for the Challenge.669

http://www.eecg.toronto.edu/~vaughn/challenge/fpga_arch.html670

Cheng, Y., M. W. Maimone and L. Matthies (2006), Visual odometry on the Mars Exploration671

Rovers - A tool to ensure accurate driving and science imaging, vol. 13, no.2, pp. 54–62, ISSN672

1070-9932, doi:Doi10.1109/Mra.2006.1638016.673

<GotoISI>://WOS:000238068600011674

Chu, P. P. (2006), RTL hardware design using VHDL : coding for efficiency, portability, and675

scalability, Wiley-Interscience, Hoboken, N.J., ISBN 047178639X 9780471786399676

0471786411 9780471786412 1280448105 9781280448102, doi:10.1002/0471786411.677

http://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5237648678

Cullinan, C., C. Wyant, T. Frattesi and X. Huang (2013), Computing Performance Benchmarks679

among CPU, GPU, and FPGA.680

Dunbabin, M., J. Roberts, K. Usher, G. Winstanley, P. Corke, I. I. C. o. R. Proceedings of the and681

S. A. A. Automation Barcelona (2005), A Hybrid AUV Design for Shallow Water Reef682

Navigation, IEEE, pp. 2105–2110, ISBN 0-7803-8914-X, doi:10.1109/ROBOT.2005.1570424.683

Farooq, U., Z. Marrakchi and H. Mehrez (2012), Tree-based heterogeneous FPGA architectures :684

application specific exploration and optimization, Springer, New York, NY, ISBN685

9781461435945 1461435943 1461435935 9781461435938.686

http://books.scholarsportal.info/viewdoc.html?id=/ebooks/687

ebooks2/springer/2012-06-14/1/9781461435945http:688

//link.springer.com/10.1007/978-1-4614-3594-5689

Gao, H. (2017), Basic Concepts in GPU Computing.690

https://medium.com/@smallfishbigsea/691

basic-concepts-in-gpu-computing-3388710e9239692

Intel, C. (2018), Cyclone V Device Overview.693

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/694

literature/hb/cyclone-v/cv_51001.pdf695

Intel, C. (2019a), Cyclone V and Arria V SoC device design guidelines, Intel.696

Intel, C. (2019b), Cyclone V Device Handbook, volume 1, ALTERA CORPORATION.697

Jeon, D., D.-H. Kim, Y.-G. Ha and V. Tyan (2016), Image processing acceleration for intelligent698

unmanned aerial vehicle on mobile GPU, vol. 20, no.5, pp. 1713–1720, ISSN 1433-7479,699

doi:10.1007/s00500-015-1656-y.700

https://doi.org/10.1007/s00500-015-1656-y701

Kraft, M., A. Schmidt and A. Kasiński (2008), High-Speed Image Feature Detection Using FPGA702

Implementation of Fast Algorithm, in Proceedings of the Third International Conference on703

Computer Vision Theory and Applications, volume 1, pp. 174–179.704

Land, B., J. Diaz, H. Ryan and A. Weld (2019), DE1-SoC: ARM HPS and FPGA Addresses and705

Communication Cornell ece5760.706

https://people.ece.cornell.edu/land/courses/ece5760/DE1_SOC/707

HPS_peripherials/FPGA_addr_index.html708

Wolfgang Baumgartner University of Twente

https://www.ncbi.nlm.nih.gov/pubmed/27843754
http://www.eecg.toronto.edu/~vaughn/challenge/fpga_arch.html
<Go to ISI>://WOS:000238068600011
http://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5237648
http://books.scholarsportal.info/viewdoc.html?id=/ebooks/ebooks2/springer/2012-06-14/1/9781461435945 http://link.springer.com/10.1007/978-1-4614-3594-5
http://books.scholarsportal.info/viewdoc.html?id=/ebooks/ebooks2/springer/2012-06-14/1/9781461435945 http://link.springer.com/10.1007/978-1-4614-3594-5
http://books.scholarsportal.info/viewdoc.html?id=/ebooks/ebooks2/springer/2012-06-14/1/9781461435945 http://link.springer.com/10.1007/978-1-4614-3594-5
http://books.scholarsportal.info/viewdoc.html?id=/ebooks/ebooks2/springer/2012-06-14/1/9781461435945 http://link.springer.com/10.1007/978-1-4614-3594-5
http://books.scholarsportal.info/viewdoc.html?id=/ebooks/ebooks2/springer/2012-06-14/1/9781461435945 http://link.springer.com/10.1007/978-1-4614-3594-5
https://medium.com/@smallfishbigsea/basic-concepts-in-gpu-computing-3388710e9239
https://medium.com/@smallfishbigsea/basic-concepts-in-gpu-computing-3388710e9239
https://medium.com/@smallfishbigsea/basic-concepts-in-gpu-computing-3388710e9239
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_51001.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_51001.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_51001.pdf
https://doi.org/10.1007/s00500-015-1656-y
https://people.ece.cornell.edu/land/courses/ece5760/DE1_SOC/HPS_peripherials/FPGA_addr_index.html
https://people.ece.cornell.edu/land/courses/ece5760/DE1_SOC/HPS_peripherials/FPGA_addr_index.html
https://people.ece.cornell.edu/land/courses/ece5760/DE1_SOC/HPS_peripherials/FPGA_addr_index.html

Bibliography 27

Maimone, M., Y. Cheng and L. Matthies (2007), Two years of Visual Odometry on the Mars709

Exploration Rovers, vol. 24, no.3, pp. 169–186, ISSN 1556-4959.710

Meier, L., P. Tanskanen, L. Heng, G. H. Lee, F. Fraundorfer and M. Pollefeys (2012), PIXHAWK: A711

micro aerial vehicle design for autonomous flight using onboard computer vision, vol. 33,712

no.1-2, pp. 21–39, ISSN 0929-5593, doi:10.1007/s10514-012-9281-4.713

<GotoISI>://WOS:000305227600003714

Nikolic, J., J. Rehder, M. Burri, P. Gohl, S. Leutenegger, P. T. Furgale and R. Y. M. Siegwart (2014),715

A Synchronized Visual-Inertial Sensor System with FPGA Pre-Processing for Accurate716

Real-Time SLAM, Eidgenössische Technische Hochschule Zürich,717

doi:10.3929/ethz-a-010061790.718

http://e-collection.ethbib.ethz.ch/show?type=inkonf&nr=907719

Nistér, D., O. Naroditsky and J. Bergen (2006), Visual odometry for ground vehicle720

applications, vol. 23, no.1, pp. 3–20, ISSN 1556-4959, doi:10.1002/rob.20103.721

https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20103722

NVIDIA, C. (2019), CUDA C Programming Guide, NVIDIA Corporation,723

https://docs.nvidia.com/cuda/index.html.724

Omari, S., P. Gohl, M. Burri, M. Achtelik and R. Siegwart (2014), Visual industrial inspection725

using aerial robots, in Proceedings of the 2014 3rd International Conference on Applied726

Robotics for the Power Industry, pp. 1–5, doi:10.1109/CARPI.2014.7030056.727

Owens, J. D., M. Houston, D. Luebke, S. Green, J. E. Stone and J. C. Phillips (2008), GPU728

Computing, vol. 96, no.5, pp. 879–899, ISSN 0018-9219, doi:10.1109/JPROC.2008.917757.729

Scaramuzza, D. and F. Fraundorfer (2011), Visual Odometry [Tutorial], vol. 18, no.4, ISSN730

1070-9932, doi:10.1109/MRA.2011.943233.731

Schmid, K., P. Lutz, T. Tomić, E. Mair and H. Hirschmüller (2014), Autonomous Vision-based732

Micro Air Vehicle for Indoor and Outdoor Navigation, vol. 31, no.4, pp. 537–570, ISSN733

1556-4959, doi:10.1002/rob.21506.734

Song, S., C. C. Guest and M. Chandraker (2013), Parallel, real-time monocular visual odometry,735

Proceedings - IEEE International Conference on Robotics and Automation, pp. 4698–4705,736

ISSN 1050-4729, doi:10.1109/ICRA.2013.6631246.737

Terasic, I. (2017), DE10-NANO Board Schematic.738

https://software.intel.com/content/www/us/en/develop/articles/739

de10-nano-board-schematic.html740

Warren, M., P. Corke and B. Upcroft (2016), Long-range stereo visual odometry for extended741

altitude flight of unmanned aerial vehicles, vol. 35, no.4, pp. 381–403, ISSN 0278-3649,742

doi:10.1177/0278364915581194.743

Weiss, S., D. Scaramuzza and R. Siegwart (2011), Monocular-SLAM–based navigation for744

autonomous micro helicopters in GPS-denied environments, vol. 28, no.6, pp. 854–874,745

ISSN 1556-4959, doi:10.1002/rob.20412.746

https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20412747

Yousif, K., A. Bab-Hadiashar and R. Hoseinnezhad (2015), An Overview to Visual Odometry748

and Visual SLAM: Applications to Mobile Robotics, vol. 1, no.4, pp. 289–311, ISSN749

2363-6912, doi:10.1007/s40903-015-0032-7.750

Robotics and Mechatronics Wolfgang Baumgartner, 12-07-2021

<Go to ISI>://WOS:000305227600003
http://e-collection.ethbib.ethz.ch/show?type=inkonf&nr=907
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20103
https://software.intel.com/content/www/us/en/develop/articles/de10-nano-board-schematic.html
https://software.intel.com/content/www/us/en/develop/articles/de10-nano-board-schematic.html
https://software.intel.com/content/www/us/en/develop/articles/de10-nano-board-schematic.html
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20412

	Summary
	Contents
	1 Introduction
	1.1 Context
	1.2 Problem statement
	1.3 Project goals
	1.4 Plan of approach
	1.5 Outline report

	2 Background
	2.1 GPU
	2.2 FPGA

	3 Design
	3.1 Introduction
	3.2 Requirements
	3.3 Design criteria
	3.4 Platform choice
	3.5 Video Pipeline Design
	3.6 Comparing solutions

	4 Testing
	4.1 Introduction
	4.2 Setup
	4.3 Execution
	4.4 Results

	5 Discussion
	6 Conclusions and Recommendations
	6.1 Conclusions
	6.2 Recommendations

	A How to use the DE10 NANO SOC kit without an OS
	A.1 Requirements
	A.2 Process

	B De10-nano SoC-board
	C Software
	D Visual Odometry
	D.1 Introduction
	D.2 Process
	D.3 Advantages
	D.4 FAST

	Bibliography

