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Abstract 
Background: Currently, surgical resection of the esophagus is the only curative treatment for a patient 
with non-metastatic esophagus cancer. Despite a substantial improvement in the survival of these 
patients, esophagectomy is burdened with high procedure-related morbidity. The most common and 
severe postoperative complications after esophagectomy are pneumonia and anastomotic leakage. To 
assist clinicians in the early detection of postoperative complications, machine learning models could 
support in detecting novel predictors and patterns of postoperative deterioration.  
 
Objective: This research aimed to explore the ability of machine learning algorithms to predict major 
complications in patients who underwent esophagectomy by using structured and unstructured 
postoperative data. 
 
Methods: Postoperative structured and unstructured data of patients who underwent esophageal 
resection for cancer were extracted from the electronic health record. These patients were divided 
into two groups, one reference group, group 0 and a group with patients who suffered from either 
pneumonia or anastomotic leakage, group 1. The structured postoperative data contained vital signs 
and laboratory tests. The unstructured data consisted of nursing assessments reports, which we 
converted to text features by using a bag of words model. Both the structured and unstructured data 
was used to predict postoperative complications, specifically anastomotic leakage and pneumonia, 
using logistic regression, support vector machines, decision trees and random forest.  
 
Results: We identified 164 patients of which 112 patients belong to group 0 and the other 52 in group 
1. When using structured data alone we predicted postoperative complications using random forest 
with an area under the receiver operating curve of 0.88, a sensitivity of 44% and a specificity of 94%. 
After the addition of text features, the AUC improved to 0.90 and the specificity increased to 97%, 
while the sensitivity decreased to 12%. The overall performance of all of our models did not improve 
when adding text features to the models.  
 
Conclusions: This study revealed that machine learning models have an overall fair prediction of 
postoperative complications after surgery when using postoperative data, both structured and 
unstructured. Within these models, C-reactive protein and temperature are important predictors of 
anastomotic leakage and pneumonia. Furthermore, the potential of text features needs to be further 
explored to improve the prediction of postoperative complications after esophagectomy.    
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List of abbreviations 
 

 
 
 
  

CRP: C-reactive protein 

ZGT: Ziekenhuisgroep Twente 

ML: Machine Learning 

EHR: Electronic Health Record 

SVM: Support Vector Machines 

BP: Blood Pressure 

HR: Heartrate 

RR: Respiratory Rate 

ICU: Intensive Care Unit 

k-NN: k-Nearest Neighbor 

BoW: Bag of Words 

TF-IDF: Term Frequency – Inverse Document Frequency 

ROC: Receiving Operating Curve 

AUC: Area Under Curve 

LDA: Latent Dirichlet Allocation 
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Chapter 1 – Introduction 
Esophageal cancer is a prominent cause of cancer-related mortality across the world. The two 
predominant histological subtypes of esophageal cancer are squamous cell carcinoma and 
adenocarcinoma. In western countries, there is a preponderance of the adenocarcinoma subtype, 
which is related to an increase in the incidence of gastro-esophageal reflux disease, Barrett’s 
esophagus and obesity. Other risk factors of adenocarcinoma are smoking, the male gender and the 
white race [1]. In the Netherlands, the incidence of patients diagnosed with esophageal cancer has 
increased over the past decades, from 814 patients in 1990 to 2.521 in 2019 [2]. Currently, surgical 
resection of the esophagus is the only curative treatment for a patient with non-metastatic esophagus 
cancer [3]. Traditionally, esophagectomy was performed using an open surgical procedure, but several 
randomized controlled trials have shown that minimally invasive esophagectomy decreases 
postoperative complications and increases the quality of life [4]–[6]. Esophagectomy is followed by 
reconstruction surgery to restore intestinal continuity. The stomach’s vascularity is very rich and is 
therefore suitable as a conduit for esophageal reconstruction. There are two approaches to accomplish 
digestive tract reconstruction, namely the gastric tube and the whole-stomach approach, of which the 
gastric-tube approach is superior [7]. Furthermore, there are various techniques devised to design an 
anastomosis of the esophageal remnant with the stomach e.g. end-to-side, side-to-side, hand-sewn or 
mechanically-sewn. However, there is insufficient scientific evidence to point out the pre-eminence of 
certain techniques [8].   
 
Esophagectomy is a high-risk procedure and despite a substantial improvement of the survival due to 
multimodality therapy and centralization of care, postoperative complication rates remain high, 
around 60%, even in renowned centers of expertise [3]. The most common and severe postoperative 
complications are pneumonia and anastomotic leakage [9]. The pathophysiology of postoperative 
pneumonia after esophagectomy is associated with the patient’s age and comorbidities, postoperative 
pain, atelectasis, aspiration and postoperative ventilatory requirements [10]–[12]. The most important 
predisposing factors for anastomotic leaks are ischemia of the gastric conduit, impairment of oxygen 
delivery and errors in surgical techniques. During esophageal reconstruction, both venous drainage as 
arterial supply is sacrificed, which has a negative effect on the healing of the anastomoses and could 
result in a leak [13]. These postoperative complications not only exert an ongoing negative impact on 
the quality of life but are also related to unplanned readmission [14], [15]. The onset of postoperative 
complications is not well understood and the recognition of these complications can be challenging 
due to variations in patient’s response to a complication and varying levels of a clinician’s experience. 
As a result, postoperative complications also occur post-discharge provoking unplanned readmissions 
and re-operations [15]. The 30-days readmissions rate is reported in several studies and lies between 
11% and 18% [15]–[18]. Hospital readmissions are associated with worse long term survival and a 
substantial increase in healthcare costs [17]. Therefore, early detection of postoperative complications 
is important, not only to prevent or manage a complication but also to avoid premature discharge after 
esophagectomy. The utility of predictors of anastomotic leakage or pneumonia, such as C-reactive 
protein (CRP) [19]–[24], the neutrophil/lymphocyte ratio [24], [25] or drain amylase levels [26]–[28] 
can be helpful to early recognize postoperative complications. In the Ziekenhuisgroep Twente (ZGT) in 
Almelo the Netherlands, surgeons already utilize such laboratory measurements together with vital 
signs and the overall condition of the patient to assess whether the patient is suffering from an 
anastomotic leakage or pneumonia. In addition to these predictors, the use of machine learning (ML) 
algorithms could enable precise prognostication and risk stratification of patients who underwent 
esophagectomy. Furthermore, ML techniques could identify patterns in data that are yet unknown by 
combining such predictive values [29]. Ultimately, a ML model could assist in identifying patients at 
risk for postoperative complications, which will support clinicians in making actionable decisions to 
diagnose or manage a postoperative complication.   
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To follow up on the current research within this field, we want to use postoperative parameters 
together with ML techniques to early predict postoperative complications. Examples of such 
postoperative parameters are the number of leukocytes or heart rate, which are measured on daily 
basis. In earlier exploratory research these postoperative features showed to be of high value to 
predict major postoperative complications. In addition to these postoperative parameters, 
unstructured data, i.e. free-text data, could improve ML models, since it contains valuable information, 
nuances and context. Most of the collected data in healthcare are unstructured, e.g. medical 
prescriptions or radiological assessments. Extraction and analysis of unstructured data are more 
challenging compared to structured data because it comes from different sources and is more variable 
and heterogeneous [30]. However, unstructured data can play a key role in the prediction of 
postoperative complications, especially in a clinical setting where the patient’s well-being is not easily 
captured in structured data.  
 
The aim of this research is to explore the ability of machine learning algorithms to predict major 

complications in patients who underwent esophagectomy by using structured and unstructured 

postoperative data from electronic health records (EHR). In this research, we focus on the occurrence 

of anastomotic leakage and pneumonia, because these are the most common severe postoperative 

complications for esophageal cancer patients. 
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Chapter 2 – Related work  
Predicting postoperative complications is difficult, not only after esophagectomy but in all surgical 
areas. Talmor et al. [31] summarized the scoring systems that have been researched for predicting 
postoperative complications. They have discovered that most predictive scores and models are 
developed from administrative databases and have at best moderate discriminatory value. 
Furthermore the heterogeneity of the study population makes it challenging to utilize such models to 
specific surgical subgroups. However, they have found the following risk factors of postoperative 
morbidity: increasing age, frailty, poor cardiorespiratory reserve and chronic renal failure. Recently, 
ML algorithms are increasingly used to predict postoperative complications after surgery in general or 
after different types of surgery [29], [32]–[35]. Some of these studies used clinical data from electronic 
health records (EHR), while others relied on national quality registrations. The ML models that were 
often utilized are logistic regression [29], [34], support vector machines (SVM) [29], decision trees [32] 
and random forest [29]. ML is gaining interest in healthcare for its ability to learn from large datasets 
without being explicitly programmed. These algorithms are able to recognize statistical patterns from 
large sets of data by combining different features, which is an impossible performance for humans. 
Furthermore, ML models can learn patterns from patient data incredibly fast, which could help 
physicians draw information from the experience of such models [36]. An example is the study of 
Bronsert et al. [35], who developed a ML model for the surveillance of patients who underwent surgery 
by using EHR data. They constructed a model that correctly classified 83% of the patients with a 
postoperative complication. However, the generalizability of this model is limited as they used data 
from one hospital. ML techniques have not been used yet to predict postoperative complications after 
esophagectomy. Only one study, performed by Bolourani et al [37], used ML algorithms to predict early 
readmission after esophagectomy. Although Bolourani et al showed promising results, the ML model 
they constructed was based on a national readmission database, which does not contain granular 
information about the patient’s daily, postoperative condition. For example, this national readmission 
database records the diagnosis of sepsis but does not capture the levels of leukocytes or core 
temperature of a patient. Consequently, this model is not yet ready to be adopted in clinical practice, 
since it is not a head-to-head comparison against the judgment of an experienced physician [38].  
 
Postoperative complications, especially post discharge, drive unplanned readmissions after 
esophagectomy [15]. As a result, surgeons are reluctant to discharge patients after esophagectomy. 
Safe discharge criteria after esophagectomy are therefore of high value. Müller et al [39] aimed to 
achieve international consensus on safe hospital discharge criteria after esophagectomy using the 
Delphi methodology. An international expert panel found agreement on nine criteria to determine a 
‘fit-for-discharge’ status [39]. The general domains of the criteria were: vital signs, laboratory tests, 
wound status, drains and catheters, pain control, recovery of respiratory function, restoring bowel 
movement, upper gastrointestinal symptoms, tolerance on nutrition and mobilization and selfcare. 
These criteria need to be validated and are not implemented in clinical practice yet, but could assist in 
the decision-making regarding a patient’s discharge. Furthermore these criteria could also be used as 
indicators to rule out postoperative complications. Other studies have already shown the importance 
of laboratory values [19]–[28], physical activity [40] and vital signs [41] as prognostic indicators of 
severe postoperative complications after esophagectomy.  
 
Another emerging data source to predict outcomes after surgery is unstructured data. Other studies 
already proved the significance of text data from the EHR, e.g. clinical notes and radiologist reports, to 
discover patterns and topics to support data-driven decision-making [42], [43]. Particularly in a clinical 
setting where the symptoms of deterioration are not easily captured in structured data, text data could 
be of added value. For example, Barber et al [44] used unstructured data in a retrospective study to 
predict postoperative complications after ovarian cancer surgery. They used natural language 
processing to add preoperative CT scans, which led to an increase of 20–25% in the ability to predict 
postoperative complications. They utilized a BoW model to convert free written text into features. 
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Another approach to use clinical text data is shown by Goh et al [43]. They utilized Latent Dirichlet 
Allocation, which is a topic model that generates topics, based on patterns of word frequency from a 
set of documents.  
 
Based on the related work discussed in this chapter, we expect that ML technique have great potential 
to predict postoperative complications after esophagectomy. Models that are most often utilized in 
this field are logistic regression, SVM, decision trees and random forest. Features that could play an 
important role in such models are laboratory test, especially CRP levels, and vital signs. Moreover, 
unstructured data could add value to the prediction of postoperative complication as it could explain 
more about the general patient’s wellbeing.  
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Chapter 3 – Description of  dataset 
In this chapter we describe the contents and characteristics of our dataset. In section 3.1 we explain 

how we included and labelled our patient population. Thereafter, in section 3.2, we describe the data 

we extracted from the EHR of these patients, both the structured data and unstructured data.   

3.1 Study population 
In our institution, laparo-thoracoscopic minimally invasive esophagectomy was introduced in 2010 and 
became the standard surgical procedure for esophagectomy. For that reason, we only included 
patients who underwent surgery from 2010 in this research. In total, 412 patients were selected for 
this study. All of these patients underwent esophagostomy for esophageal cancer from December 
2010 to December 2020 in ZGT Almelo. Only one patient was excluded due to the patient’s death on 
the day of surgery. After patient selection, we divided the patients into a reference group (group 0) 
and a complication group (group 1). Cases that could not be grouped into any of these categories were 
excluded.  

Patients with a major complication were appointed to 
group 1. In this study, we focused on the most common 
and severe complications, namely anastomotic leakage 
and pneumonia. We combined the two complications in 
one group as these are both inflammatory diseases. Of 
our patient population, 40% was diagnosed with either 
anastomotic leakage (83) or pneumonia (117). These 
complications were manually registered by an 
experienced clinician, who used the Utrecht pneumonia 
scoring system to record patients diagnosed with 
pneumonia. To ascertain the diagnosis of anastomotic 
leakage the clinician used the diagnostic pathway 
depicted in figure 1, which shows the most common ways 
to diagnose anastomotic leakage. Both the diagnosis and 
the date of diagnosis of these complications in these 
patients were documented. 
 
The reference group consisted of patients who were not 
diagnosed with major complications, such as pneumonia 
or atrial fibrillation. We did not register each possible 
postoperative complications in our data acquisition, since 
that is a highly time-consuming task. Therefore, we could 
not guarantee that the patients in group 0 experienced no 
complications at all during hospitalization, e.g. a wound 
infection could still have occurred in patients from this 
group. Therefore, we only included patients whose 
admission duration was according to our postoperative 
recovery protocol. In 2017 a fast-track protocol after 

esophagectomy was implemented in our hospital and since then patients with a normal postoperative 
recovery were generally discharged after eight days. Before November 2017, patients without 
complications were usually hospitalized for ten days. Accordingly, we selected patients with an 
admission duration of maximal ten days if hospitalized before November 2017 and patients with an 
admission of eight days or less after November 2017.  
 

  

Figure 1 – Flowchart of most common diagnostic 
approach of anastomotic leakage in patients who 
underwent esophagectomy. 
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3.2 Data extraction and preparation 
From the patients in this study, both structured and unstructured clinical data were collected from the 
electronic health record, from the first day after surgery (day 1) until two weeks after surgery (day 14).  
 

3.2.1 Structured data 
The structured data consisted of the vital signs, i.e. 
heart rate (HR), systolic blood pressure (systolic BP), 
respiratory rate (RR) and temperature and laboratory 
values, namely leukocyte count, CRP and amylase 
levels. After esophagectomy, patients are initially 
admitted to the intensive care unit (ICU), where vital 
signs are mostly monitored continuously. When a 
patient is transferred to the surgical ward, vital signs 
are manually measured several times per day depending on the patient’s clinical well-being. In this 
study, we combined these measurements, besides their difference in acquisition. For example, at the 
ICU the HR is measured using electrocardiographic electrodes, while at the ward a pulse-oximeter is 
used. We chose to combine the measurements to reduce the number of missing values and because 
the clinical interpretation and application is similar. A bulk extraction from the EHR was done of each 
day in our postoperative window, for both the continuous vital data and the manual vital data. Since 
the vital signs are measured continuously at the ICU, we would receive an enormous amount of data 
if we would extract all the data available. To avoid this, we chose to collect one measurement per hour 
of each day, resulting in a maximum of 24 measurements per day for each vital sign. For the manual 
vital data, we extracted a maximum of 20 measurement per day, since vital signs are measured usually 
two to three times per day at the ward. Ultimately, after we concatenated the continuous vital data 
with the manual data, our dataset consisted of a maximum of 44 measurements per day for each vital 
sign. We filtered these measurements to remove physiologically unrealistic values. In table 1 the cut-
off values of each vital parameter that we used to filter the vital sign measurements are shown. We 
decided to not use all these measurements, because we would have too many missing values. We 
retained three measurements per day in different time windows. We divided each postoperative day 
into three time intervals: 1) from midnight to 8 am, 2) from 8 am to 4 pm and 3) from 4 pm to midnight. 
These windows are based on the daily shifts of the nurses in which they often measure the vital signs. 
In each interval, we preserved the value that occurred at the earliest time within this interval. In this 
way we expected roughly the same amount of time between the three values of each day. For the 
laboratory measurements, we extracted a maximum of 3 measurements per day and preserved the 
most abnormal value of each day in our dataset. For leukocytes, CRP and amylase, the highest value is 
the most deviating value. This resulted in one measurement per day for each laboratory measure. 
 

3.2.2 Unstructured data 
The unstructured data consisted of daily reports of the nurses from the ICU and the surgical ward, 
written in Dutch. In our institution, the nursing assessment of the patient is documented according to 
Gordon’s functional health patterns. Two patterns of this system were used in this study, namely 
health perception and activity. In addition, the general information and observations reported by 
nurses were also included. We chose these in particular because we expected to find indications of 
clinical deterioration, specifically signs of anastomotic leakage or pneumonia, in these patterns and 
reports. We extracted all the available text data from these particular forms from the first day after 
surgery until two weeks after surgery. When we found multiple reports of the same form on the same 
day for one patient, we concatenated the text together. By doing this, we preserved one text document 
of each form on each day for every patient. 
 
In table 2, an overview is shown of the entire dataset used in this research. This table shows the 
number of measurements we collected from the EHR and which we preserved in our dataset. 

Table 1 – Cut-off values of vital parameters 

Heartrate 30 – 220 beats/min 

Systolic blood pressure 40 – 200 mmHg 

Respiratory rate 6 – 40 breaths/min 

Temperature 34 – 42 0C 
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Furthermore we added the percentage of missing values per parameter, which we further explain in 
the next section.  
 
Table 2  – Overview of the dataset used in this study. For each parameter the number of measurements we extracted from 
the EHR are shown. Furthermore the number of datapoints we selected from the extraction into our dataset and the method 
of selection is given. The percentage of missing values is also shown for each parameter in our dataset. For the vital parameters 
we selected one unit for each of the three predefined time windows from the extracted data. For the laboratory parameters 
we selected the most deviating value for our dataset from the three measurements we extracted. In regards to the 
unstructured data, we extracted all the available data from the EHR and concatenated the reports if more than one report of 
one day for a particular patient was found. 

 
Maximum number of 
datapoints extracted 

Selection 
method 

Number of datapoints 
selected for dataset 

Total of 
missing values 

 per day  per day % 

Structured 
data: 

    

HR 
Continuous: 24 

Manual: 20 
Time window* 3 42.4 

Systolic BP 
Continuous: 24 

Manual: 20 
Time window* 3 45.2 

RR 
Continuous: 24 

Manual: 20 
Time window* 3 68.8 

Temperature 
Continuous: 24 

Manual: 20 
Time window* 3 43.8 

Amylase 3 
Most deviating 

value 
1 50.6 

Leukocytes 3 
Most deviating 

value 
1 34.6 

CRP 3 
Most deviating 

value 
1 34.9 

Unstructured 
data: 

    

Activity All available Concatenation 1 49.2 

General 
information 

All available Concatenation 1 48.4 

Health 
Perception 

All available Concatenation 1 58.6 

Observations All available Concatenation 1 64.4 

 
* We divided each postoperative day into three time windows: 1) from midnight to 8 am, 2) from 8 am to 4 pm and 3) from 4 
pm to midnight and selected one measurement per time window. 

 

3.2.3 Missing values 
Missing values are inevitable and ubiquitous in clinical research. During postoperative recovery, clinical 
parameters are measured more frequently during the first days after surgery, especially at the ICU, 
compared to the end of admission. As a result, our dataset contains missing values, of which the extend 
grows towards discharge. In table 2, the percentage of missing values of each variable in the dataset 
is given. Note that there is no postoperative data available after discharge, so when a patient is 
hospitalized for less than two weeks, which is often the case, there are many missing values. As a result 
the percentage given in table 2 shows a distorted view on the actual missing data during admission. 
Therefore we created missing plots to give more insight in the occurrence of missing values for every  
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parameter. In figure 2a, an overview of the incidence of missing values in the HR data is depicted. This 
plot shows that the number of missing values increases over time resulting in a more fragmented  
appearance of the data. This is due to the continuous monitoring at the ICU in the first few days after 
surgery. Interestingly, this plot shows a gap in the data in the first few days in the first cases of our 
study population. This is most probably the result of the use of different ICU monitors in that year, 
which did not export the data to the EHR of these patients. The systolic BP and temperature resemble 
the same pattern of missing values, which is plausible as vital signs are mostly measured all together. 
These plots are shown in appendix 1. However, the number of missing values is significantly higher in 
the respiratory rate data and shows fragmentation earlier in the postoperative window. In addition, 

(a) 

(b) 

Figure 2 – Mapping of missing values of (a) heart rate and (b) leukocytes count of each patient in the dataset. Every blue line 
represents a unit that is present in our dataset, while white lines represent missing values. 
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the number of missing values in the leukocyte data are shown in figure 2b and illustrates that this 
parameter is measured on a daily basis. The CRP data looks very similar to figure 2b, while the amylase 
data shows a higher number of missing values and is measured less regularly, see also appendix 3.  
Missing data need to be handled because many ML models do not support missing data, so imputation 

of missing values is a necessity. Another reason for imputation is to obtain an improved estimate of 

the underlying distribution of each variable. In other words, with imputation techniques we aim at 

population level and not at the level of a single unit. In this study, we used two imputation techniques, 

namely k-nearest neighbor (k-NN) imputation and multiple imputation. k-NN imputation was applied 

to CRP levels and leukocytes count. In k-NN missing values are estimated by values extracted from 

other similar cases. This could be either a value from one other case or the (weighted) average of k 

other cases. The advantages of NN are that imputed values are actual values that occurred in the 

dataset. This makes this method very suitable for CRP levels and leukocytes count, as the course in 

these variables is important to maintain. We used four nearest neighbors as samples to use for 

imputation, which were weighted equally. For HR, RR, systolic BP, temperature and amylase we used 

multiple imputation. Multiple imputation is considered to be a very powerful technique. This technique 

provides an unbiased and valid distribution of the data based on the available data and is often used 

to deal with missing data. The unstructured data contained missing values as well, even some patients 

had no written report at all. However, there are no imputations techniques available to impute this 

particular type of data. We solved this by using a bag of words model which uses zeros when text data 

is absent, this is further explained in the next chapter.   
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Chapter 4 – Materials and methods 
In this chapter, we focus on the materials and methods we used to conduct our research. In section 
4.1 we describe the design of this study. Subsequently, in section 4.2 we explain the selection of 
features to train the ML models, followed by section 4.3 which explains the machine learning 
algorithms used in this study and lastly, in section 4.3, the software that we applied is specified.  
 

4.1 Study design 
This study is a single-center retrospective cohort study regarding patients who underwent 
esophagectomy for esophageal cancer in ZGT Almelo, the Netherlands. As described in the previous 
chapter, we extracted postoperative data from these patients to construct a ML model to predict 
pneumonia or anastomotic leakage after esophagectomy. Input features used for training include vital 
signs (HR, systolic BP, RR and temperature), laboratory measures (amylase, CRP and leukocytes) and 
nursing assessment reports (activity, general information, health perception and observations). 
Furthermore, we calculated the increase in CRP and leukocytes between each day as additional 
features, by subtracting the value measured on each day by the value measured on the previous day.  
 

4.2 Text features 
Before features could be derived from the nursing assessments, pre-processing of the raw text was 
necessary. Text pre-processing consisted of lowering text and removal of punctuation and digits. 
Thereafter the text was tokenized, which means that the text was separated into (word)-tokens, which 
was followed by stopwords removal. The list of stopwords that we used is specified in appendix 2. 
Examples of commonly used stopwords are ‘dat’, ‘het’ or ‘toen’. In addition, a stemming algorithm, 
namely the Kraaij-Pohlmann stemmer, was used to reduce words to their stem. However, this stemmer 
made drastic reductions of words, making them difficult to read and was therefore turned off.  
 
After pre-processing, the text data was further inspected by creating word cloud plots. Such plots 
visualize the most frequent words that occur in a certain text and could assist in familiarizing with the 
text content and finding the most discriminating tokens. To create these plots, the text data of each 
nursing assessment form were divided into a reference group and a complication group. Thereafter, 
the reports of each patient within each group were combined and converted into a word cloud. For 
every group and form, a word cloud of unigrams and bigrams was created.  
 

4.2.1 Bag of words model 
To extract features from the unstructured data a so-called bag-of-words (BoW) model was used. This 
model describes the occurrences of words (unigrams) or short phrases (n-grams) from a certain 
vocabulary within a document. By calculating the word frequencies, a frequency vector is obtained of 
each document within a collection of documents, named the corpus. A visual example of a BoW model 
is depicted in figure 2. The advantage of this method is that it is an easy, flexible and fast way to analyze 
and apply unstructured data. The disadvantage is that this method ignores the context in which words 
occur. To overcome this disadvantage, bigrams were included as well.  
 
To use a BoW model, a vocabulary of unique n-grams is defined first. The size of the vocabulary is very 
important. When the size is too small, the vocabulary will lack discrimination. When the vocabulary is 
too elaborate, not only the computation load will increase dramatically, but also the number of 
features will grow significantly, which will affect model performance negatively. There are no 
guidelines to select the right size of the vocabulary. Therefore, we experimented with different sizes 
of vocabularies: namely 40, 80 and 200. The performance of these different vocabularies was 
evaluated during training and testing of the machine learning models. To select uni- and bigrams that 
indicate anastomotic leakage or pneumonia, we chose the top 40, 80 and 200 most frequent unigrams 
and bigrams of each form that were reported at the day the complication was diagnosed (i.e. we 
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created a dictionary of size 40, 80 and 200 for activity, health perception, general information and 
observations based on the day the complication was diagnosed). 

 
 Figure 3 – An example of a bag of words model to create text features. First, the sentences are split into so-called tokens, 
single words. Then the frequency of each term of the vocabulary is determined per document. This results in a vector of term 
frequencies of each document based on the same vocabulary, that can be used as a text feature. 

Another disadvantage of using BoW is that it only represents the term frequency, which does not 
reflect the importance of a word. Therefore we calculated the term frequency - inverse document 
frequency (TF-IDF), which identifies the importance of a term within a document. Words that occur 
often in every document have less value, e.g. and, not, it, etc. TF-IDF will prevent that words with a 
high term frequency will dominate the vocabulary. After scoring the frequencies of uni- and bigrams, 
we calculated the TF-IDF of each term within each document according to the following equation: 
 

𝑤𝑖,𝑗  =  𝑡𝑓𝑖,𝑗  ∙  𝑙𝑜𝑔 (
𝑁

𝑑𝑓𝑖

) 

 
𝑤𝑖,𝑗  =  TF − IDF score for term 𝑖 in document 𝑗 

𝑡𝑓𝑖,𝑗  =  frequency of term 𝑖 in document 𝑗 

𝑑𝑓𝑖  =  number of documents containing term 𝑖 
𝑁 =  total number of documents 

 

 
(1) 

4.3 Feature selection 
In this study, we compared the recovery from esophagectomy between the patients in group 0 and 
group 1 to predict postoperative complications. In the complication group, the postoperative day of 
the diagnosis of pneumonia or anastomotic leakage varied among patients, which is visualized in figure 
3. Both pneumonia and anastomotic leakage occurred most frequently on day two and three. To create 
an accurate comparison it is important to acknowledge that patients, whether they are in group 0 or 
1, are in a different condition a week after surgery compared to directly after esophagectomy. As a 
result, it is not fair to compare the data of e.g. a patient with a complication on day six to the data of 
a patient from group 0 on day two. Moreover, the feature vectors of a ML model need to be of the 
same size, therefore we have to set a limit to the amount of postoperative data we use of each patient. 
To do this, we focused on the initial four days after esophagectomy and selected the data until one 
day before a complication was diagnosed. We decided to use a feature size of two consecutive days, 
which means that we could include patients who were diagnosed with pneumonia or anastomotic 
leakages on day three, four and five after surgery. In other words, when a patient was diagnosed on 
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day four, the postoperative data of day two and three were selected as input. This is also visualized in 
figure 5. For the reference group 0, we randomly selected data of two consecutive days, either day 
one and two, day two and three or day three and four.  
 
To train our ML models different combinations of features were used to discover the most important 
variables in predicting postoperative complications. At first, we used a dataset consisting of only the 
structured data (vital signs and laboratory values). Thereafter we added the BoW vectors and/or the 
TF-IDF vectors of a dictionary of different sizes (40, 80 and 200).  
 

4.4 Machine learning algorithms 
The input features were divided into a 
trainingset (70%) and a testset (30%). We used 
a stratified split to ensure a consistent 
distribution of patients from group 0 and 1 in 
both test- and trainingset. In this research, we 
utilized random forest, decision trees, logistic 
regression and support vector machine models 
to predict complications after esophagectomy. 
The settings of these models are further 
specified in appendix 3. The features of logistic 
regression and SVM were scaled, which was not 
necessary for decision trees and random forests. 
To establish a balanced dataset between class 0 
and 1 an under-sampling method named 
NearMiss [45] was evaluated as well. This could 
be beneficial to the sensitivity of the model. 
 
To evaluate the relevance of each feature in 
these models, we estimated the feature 
importance of each feature, structured and 
unstructured, after the models were trained and 

Figure 4 – Number of patients diagnosed with pneumonia or anastomotic leakage per day after esophagectomy. Day 0 is the 
day of surgery. 

Figure 5 – Diagram of the input and output of each ML model 
in this study. The postoperative data of two consecutive days of 
each patient from the trainingset is the input of the ML model 
to predict the outcome. Day x is defined as follows:  

𝑥 =  {
{3,4,5}                          𝑓𝑜𝑟 𝑔𝑟𝑜𝑢𝑝 0

𝑑𝑎𝑦 𝑜𝑓 𝑐𝑜𝑚𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑔𝑟𝑜𝑢𝑝 1
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tested. For logistic regression and SVM, we used the coefficients of these models to assess the 
importance of each feature. Coefficients of a regression model are the numbers by which the feature 
values are multiplied in the model equation and describe the magnitude and orientation of the relation 
between the independent variable (feature) and the dependent variable (group 0 or group 1). For the 
decision tree and random forest models, we used the impurity decrease to determine the importance 
of each feature.  
 
The ML models were validated by using the test set. The performance of the models was evaluated 
using the receiver operating characteristic (ROC) curve and its area under de curve (AUC). Furthermore, 
the accuracy, precision, sensitivity (recall) and specificity were calculated by using the confusion matrix 
of the test set. For more information, appendix 4 shows the confusion matrix and equations of these 
metrics. We also calculated these metrics for the training set, to evaluate whether our models are 
overfitting. Overfitting occurs when a model is too complex for the amount of noisiness in the training 
data, which results in overgeneralization. This can be recognized by a much better performance of the 
trainingset compared to the testset.   
 

4.5 Software and hardware  
The structured data was extracted directly from our EHR (HiX, Chipsoft) using Microsoft SQL Server 
Management Studio, version 18.5.1, combined with Microsoft Visual Studio, version 16.9.4. After 
these extractions, the quality of the data was manually evaluated in the EHR application by cross-
checking random samples in the data. The unstructured data was extracted from the EHR by using 
CTcue version 3.5.7 (CTcue B.V. Amsterdam, the Netherlands). This is a software tool developed to 
enable easy and custom data extraction from the EHR. Pre-processing of the data, feature generation 
and model construction were computed in Python version 3.9.0 (Python Software Foundation, 
Wilmington Del).  
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Chapter 5 – Results 
In this chapter, we present the results we obtained in this research. We first discuss the population 
characteristics in section 5.1 and the results of the text analysis in section 5.2. Thereafter we present 
the performance of the ML models and the most important features to predict postoperative 
complications in section 5.3. 
 

5.1 Population characteristics 
From the dataset, described in chapter 3, 164 patients were selected to train and test our models. The 
majority of this population were men (79.1%) and the median age was 66. From this population, 112 
patients were divided into the reference group, group 0. Group 1 contain the other 52 patients who 
suffered from anastomotic leakage (23) or pneumonia (29) in the first three to five days after 
esophagectomy.  
 

5.2 Text analysis 
Word clouds were generated from each nursing assessment form, for both the reference and 
complication group. In figure 6 word clouds of unigrams and bigrams are shown of the health 
perception report of the complication group. For these plots, we only used the reports written on the 
day the patient was diagnosed with either pneumonia or anastomotic leakage. This displays the 
vocabulary that is used by nurses to describe the patient’s health perception while suffering from a 
major inflammatory complication. These word clouds reveal that pain and how the patient is feeling, 
e.g. short of breath, tired or good, are the most important themes that are discussed in the health 
perception reports. Furthermore, pain medication and vital signs such as temperature and oxygen 
requirement are discussed in these reports. Frequently used unigrams, such as ‘goed’ and ‘pijn’, can 
be used in different ways to describe the patient’s circumstances. Therefore, the bigrams are 
important to understand the context in which these words are recorded. For example, the word pain 
could be used to describe the absence of pain or to report an increase in pain complaints. 
 

Table 3 – Overview of performances outcomes of several ML models based on two different feature sets. Set 1 contains the 
vital signs and laboratory data. Set 2 is an extension of set 1 with the TF-IDF vectors of the nursing assessment reports based 
on a vocabulary of 40 uni- and bigrams. The values in brackets are the performance outcomes for the trainingset to assess 
whether the models are overfitting.  

 

5.3 Model performance 
Various features were evaluated to train machine learning models. In table 3 an overview is shown of 
the performance of four ML models when using two different feature sets. The first set is without the 
text data and the second set contains the TF-IDF vectors of a vocabulary of 40 words. Smaller and 

 
Accuracy Precision Sensitivity Specificity AUC 

Logistic regression 

Set 1 

Set 2 

 
0.80 (0.82) 
0.80 (0.96) 

 
0.80 (0.74) 
0.67 (0.94) 

 
0.50 (0.64) 
0.75 (0.94) 

 
0.94 (0.90) 
0.82 (0.97) 

 
0.78 (0.87) 
0.84 (0.99) 

SVM 

Set 1 

Set 2 

 
0.74 (0.81) 
0.68 (0.89) 

 
0.67 (0.75) 
0.50 (0.90) 

 
0.38 (0.58) 
0.44 (0.72) 

 
0.91 (0.91) 
0.79 (0.96) 

 
0.81 (0.86) 
0.81 (0.94) 

Decision Tree 

Set 1 

Set 2 

 
0.74 (0.82) 
0.82 (0.85) 

 
0.80 (1.00) 
0.73 (0.79) 

 
0.25 (0.42) 
0.69 (0.72) 

 
0.97 (1.00) 
0.88 (0.91) 

 
0.80 (0.84) 
0.79 (0.84) 

Random forest 
Set 1 

Set 2 

 
0.78 (0.92) 
0.70 (0.82) 

 
0.78 (1.00) 
0.67 (1.00) 

 
0.44 (0.75) 
0.12 (0.44) 

 
0.94 (1.00) 
0.97 (1.00) 

 
0.89 (0.97) 
0.90 (0.97) 
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larger vocabularies were also used in our analysis, but the model performance remained nearly the 
same. We also applied a NearMiss under-sampling algorithm, but this dramatically diminished the 
performance and was therefore turned off. In the brackets, the performance metrics of the training 
set are described. This shows that especially random forest and decision trees are prone to overfitting 
when using both our feature sets. Logistic regression and SVM show little overfitting when using only 
the structured data features, but do overfit when using the second set of features. Interestingly, most 
models have a rather low sensitivity against a high specificity. For example, the SVM model trained 
and tested with the first feature set shows a sensitivity of 38% and a specificity of 91%. When adding 
the text features in the second feature set, the sensitivity increase in every model, except for random 
forest. However, this is at the expense of the specificity and precision, that decrease when adding text 
features in these models.  
 

(a) 

(b) 

Figure 6 – Word clouds of words and phrases associated with pneumonia or anastomotic leakage based on the form health 
perception. The size of the words or phrases indicates their frequency. These reports are written by nurses on the day the 
complication was diagnosed and show the most frequently used words to describe the patient’s health perception.  Figure (a) 
depicts the most occurring unigrams in these reports and (b) shows the most frequent bigrams used by nurses. 
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5.3.1 Feature importance 
To gain more understanding in the features that are important in the prediction of the ML models, we 

evaluated feature importance. In figure 7, the coefficients of each feature from the structured data of 

the logistic regression model are shown. Positive coefficients indicate that, based on this feature, the 

output class is likely to be positive, so in group 1. Negative coefficients make it less likely for the case 

to be in group 1. Coefficients close to zero are less relevant in the classification. Note that logistic 

regression was trained and tested using scaled features. Based on figure 7, the following features are 

most important: temperature in the evening shift 48 and 24 hours before the diagnosis, the difference 

between CRP levels and amylase 24 hours before the diagnosis. 

Moreover, we have also obtained the feature importance of the structured data features in a random 

forest model. In figure 8, the importance of each structured data feature is shown. The five most 

important features in order of importance are: CRP levels measured 48 hours in advance, the 

difference between CRP levels, amylase measured 48 hours in advance, the temperature measured in 

the evening shift 48 hours in advance and amylase measured 24 hours in advance. 

Based on the most relevant features of logistic regression and random forest, we experimented with 
another feature set, containing only the temperature and CRP features. In figure 9 we have shown the 
performance of logistic regression and random forest based on this feature set compared to the 
performance of the entire structured dataset. Remarkably, the performance of logistic regression 
increases when selecting only CRP and temperature features, while random forest maintained a steady 
performance on both datasets. The true positive rate, sensitivity, on the other hand, decreases when 
using this selection of features. 

Figure 7 – Coefficients of the vital signs and the laboratory measurements of our logistic regression model. Coefficients close 
to zero are less relevant in the classification of the two classes. Positive coefficients indicate that this particular feature will 
predict a sample as group 1 when all the other features are zero. Conversely, when the coefficient is negative, this feature will 
predict a sample into group 0. 
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Besides the structured data features, we also estimated the most prominent text features. In table 4, 

the top ten most important features of each model are given. Note that the same terms can occur in 

different forms and are probably used in a different context. Furthermore, the time window in which 

the feature is important is given, which could either be 24 or 48 hours before a potential postoperative 

complication. The weight of these terms is evaluated using the coefficient of logistic regression and 

SVM and the impurity decrease in random forest. These results data need to be interpreted with 

caution as the role of text features was of limited value in our models.  

 
(a) 

 
(b) 

Figure 8 – Feature importance of vital signs and laboratory values in a random forest model based on impurity decrease.  

Figure 9 – ROC curve of the performance of logistic regression compared to random forest when using all the structured 
data (a) and using only CRP and temperature features (b). 
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What stands out is that the form health perception occurs most often as the source in the top ten most 
important features. The other forms occur far less often. 
 
Table 4 – Overview of the top ten most important uni- and bigrams for three different ML models. Per term, the form in 
which it occurred and the time window in which it was mentioned is given. GI = general information, HP = health perception, 
Ob = observations and Ac = activity. For logistic regression and SVM the coefficients are used and for random forest feature 
importance is evaluated using impurity decrease.  

 
 

5.3.2 Classification using feature subsets  
In our previous results, the complication group consisted of patients who were diagnosed with 

pneumonia or anastomotic leakage on day three, four or five after surgery. To assess whether this is a 

disadvantage, we split the structured features of group 0 and 1 into three groups according to the day 

of complication diagnosis (3, 4 or 5). Note that these subgroups are rather small, see figure 4, causing 

a substantial risk of overfitting. Especially on day five the amount of patients is too small and is 

therefore inadequate to train a ML model. In figure 10 the prediction by a logistic regression model of 

the patients diagnosed on day three (a) and day four (b) are shown. The prediction of a complication 

on day three is almost random, while the prediction on day 4 is much better and closer to the 

performance when using the entire patient population. Attention must be paid to the fact that these 

models both overfitted the data due to the small number of patients.  

Logistic Regression Support Vector Machines Random Forest 

Term Form Weight Term Form Weight Term Form Weight 

Temp GI 48h 0.810 Voelt goed HP 48h  0.745 Kortademig HP 24h 0.021 

Kortademig HP 24h 0.650 Geeft goed HP 24h  0.630 Geen klachten  Ob 48h 0.013 

Niet goed HP 24h 0.558 Temp GI 24h  0.556 Zuurstof HP 24h 0.010 

Hoest HP 24h 0.545 Verhoogd Ob 48h  0.529 Benauwd HP 24h 0.010 

Verhoogd Ob 48h 0.519 Verhoogd Ob 24h  0.514 Niet benauwd HP 24h 0.010 

Geen klachten HP 48h 0.505 Kortademig HP 24h 0.509 Zuurstof Ob 24h 0.009 

Goed voelen HP 48h 0.437 Hoest HP 24h  0.475 Voelt goed HP 24h 0.006 

Gezakt Ob 24h  0.426 Zuurstof Ob 48h  0.368 Niet benauwd HP 48h 0.005 

Beter voelen HP 24h 0.424 
Erg 

vermoeid  
Ac 48h  0.344 Ging goed Ac 24h 0.004 

Voelt goed HP 48h 0.421 Niet goed HP 24h  0.340 Hoest GI 24h 0.004 



25 
 

 

 

  

 (a) (b) 

Figure 10 – ROC curve of logistic regression model to predict pneumonia or anastomotic leakage on (a) day three and (b) day 
four after esophagectomy using structured data features. 
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Chapter 6 – Discussion 
This research aimed to explore the ability of machine learning algorithms to predict major 
complications in patients who underwent esophagectomy by using structured and unstructured EHR 
data. In this chapter, we further discuss the findings of this research in section 6.1 and evaluate the 
strengths and limitations of this study in section 6.2. Thereafter, in section 6.3, we give our view on 
future research to predict postoperative complications after esophagectomy.  
 

6.1 Interpretation of results 
In this study, we found that postoperative data is useful to predict postoperative complications in 
patients who underwent esophagectomy. Based on table 3, our random forest model revealed the 
highest AUC, namely 0.90, when using both structured and unstructured data. Nevertheless, the 
sensitivity was rather low, 12%, against an excellent specificity of 97%. Remarkably, all of our models 
revealed a high specificity, against a poor sensitivity. Although the sensitivity increased when adding 
text features from nursing assessments, except for random forest, the overall performance did not 
improve when adding text features. Furthermore, our results show that our ML models added a 
minimal improvement to the classification of postoperative complications after esophagectomy over 
more traditionally used logistic regression models. 
 
In our view, machine learning is a powerful technique to discover important features to predict 
postoperative deterioration. This study confirmed the significance of CRP levels and temperature to 
predict anastomotic leakage or pneumonia. It also revealed that amylase measured 24 hours before a 
complication is an important indicator of postoperative complications. The coefficients of the logistic 
regression model in figure 7 demonstrated that amylase levels are important to confirm a 
complication, while the difference in CRP levels could help rule out postoperative complications. We 
also discovered that the performance of our random forest model remained similar when utilizing 
solely CRP and temperature features compared to the results based on the entire structured dataset, 
see figure 9. This suggests that a random forest model is more efficient in selecting the most 
discriminating features from our structured dataset compared to our logistic regression model. It also 
further substantiates that CRP and temperature together are the most important parameters to 
predict postoperative complications. These results are in agreement with what we expected at the 
beginning of our research. In our current clinical practice, we consider the level of CRP the most 
indicative biomarker of an inflammatory complication. Furthermore, high levels of amylase are 
considered alarming and indicative of anastomotic leakage. Many other studies have already indicated 
the predictive value of CRP [19]–[22] and drain amylase levels [26]–[28] to predict anastomotic leakage 
in an early stage. Aiolfi et al [19] showed in a meta-analysis that CRP levels measured on day three, 
four and five after esophagectomy are useful as a negative test to rule out anastomotic leakage. This 
also explains why it is easier to rule out anastomotic leakage than to detect it, which is why we found 
a far better true negative rate, than a true positive rate. However, when using the data of day three, 
we were unable to predict postoperative complications, see figure 10. It is possible that CRP levels on 
day three are not as discriminating compared to day four.  
 
The sensitivity of our ML models was overall very low, while the specificity was rather high. This 
demonstrates that based on our dataset it is easier to classify the patients without complications than 
the patients with complications and that our classifiers generate more false negatives than false 
positives. This could be due to the size of group 0 (n=112), which was probably sufficient for the models 
to learn to classify these cases. The complication group (n=52) seemed to be too small to find patterns 
and indicators to classify them. This may also explain why the under-sampling algorithm, named 
NearMiss, deteriorated the classification and suggests that when the complication group grows, the 
sensitivity could increase as well. Another reason for the low sensitivity of our classifiers could be the 
heterogeneity among patients during their postoperative recovery after esophagectomy. Our models 
demonstrated in figure 10 that predicting a postoperative event on day three is much more difficult 
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than on day four. Even though the population of these two subgroups is far too small to draw any firm 
conclusions, it illustrates that on day three the overlap between group 0 and 1 is more substantial than 
on day four. In other words, it is plausible that normal recovery from a surgery of this extent overlaps 
with a complicated recovery, especially in the first few days after surgery. Kohl et al. [46] have 
investigated the normal inflammatory or stress response to surgery and trauma. They stated that all 
inflammatory markers peak about day two after surgery and return to normal levels around day six. 
This could explain the overlap between the two patient groups on day three postoperatively. 
Furthermore, the article explains that the ability to adequately respond to surgical trauma requires an 
integrated interaction between several organs and systems. As a result, an unrecognized disease, e.g. 
coronary artery disease, could interfere the normal recovery and potentially result in complications. It 
is therefore important for clinicians to be able to recognize deviations from the normal inflammatory 
response after surgery. Such deviations could indicate pre-existing medical diseases or postoperative 
complications. However, there is still little insight into the normal inflammatory reaction after 
esophagectomy to be prepared for expected responses and recognize abnormal time courses. On top 
of that, Urschel et al. [13] has shown in their research that the severity of the morbidity due to 
anastomotic leakage is variable and mostly dependent on the gastric viability, the site of the leak (neck 
or thorax), the timing of the leak and the containment of the leak by surrounding tissue. In other words, 
there are different responses to anastomotic leakage, which also makes it difficult to predict 
postoperative complications. When taking a closer look at the patients who were falsely classified as 
negative, we see that most of these cases are classified wrongly in all models. It is unclear why all 
models struggle to classify the same specific patients as most of them have abnormal inflammatory 
and temperature measurements. Patients that are truly predicted positive most often have very high 
levels of amylase or CRP, which are more obvious signs of postoperative inflammatory complications. 
We hypothesize that there is a substantial part of the complication group that do not show obvious 
signs of complications and are therefore wrongly predicted as normal. These particular patients are 
especially difficult to recognize in clinical practice. More research is therefore needed into these 
specific patients to find patterns of deviation from normal postoperative recovery after 
esophagectomy.   
 
This study also showed that the role of RR, HR and systolic BP, is inferior to the importance of CRP and 
temperature in our models. We were expecting that these vital signs would be of more added value to 
detect serious illness in our patient population. Nevertheless, based on our current clinical experience, 
vital signs show abnormalities when a patient is already severely ill, which probably makes these 
parameters less useful in the early prediction of postoperative deterioration. Moreover, both Evans et 
al. [48] and Lockwood et al. [49] have systematically reviewed the importance of vital signs and have 
shown that vital signs measurements are only of limited value to detect serious illness in adults and 
that normal vital signs do not necessarily indicate stable physiological function. Since these studies, 
measuring techniques have improved to increase the reliability and usefulness of vital signs 
monitoring, but recording the RR remains challenging, especially on the ward [50]. This explains the 
increase in missing values in the RR data compared to the other vital signs, see figure 11 in appendix 
1. The potential predictive value of RR could therefore be underestimated due to missing values and 
the challenges to correctly estimating the RR. Furthermore, in our study design, we chose to use a 
maximum of three measurements of each vital sign per day, while especially HR, RR and systolic BP 
show much more fluctuation during the day compared to laboratory values. As a result, our three 
measurements might be too small to resemble the physiological function of these patients. It is likely 
that the use of continuous monitoring of vital signs would therefore be more effective in detecting 
postoperative complications. However, this would dramatically increase the amount of data and would 
complexify our study design. Moreover, continuous data is currently only available during admission 
at the ICU, while most patients spend the majority of their hospital stay at the ward.  
 
In regards to the unstructured data, we have shown in table 4 the ten most important uni- and bigrams 
of each ML model. Since the text features hardly improved the performance of our models, we cannot 
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draw strong conclusions from these results, other than that these results highlight that the nursing 
assessments of the patient’s health perception play the most relevant role in our models. We were 
expecting a more meaningful addition of the text features to the classification. In our opinion, the 
reports of the nursing assessments capture the patients’ clinical well-being, which could potentially 
give more context to the structured data. In our clinical practice, biomarkers are always evaluated 
together with a patients’ clinical condition when diagnosing postoperative complications. One 
explanation of the limited value of text data could be the size of the vocabulary. There are no guidelines 
on selecting the appropriate size of the vocabulary of a BoW model. In this research, we used four 
different written forms, namely health perception, general information, activity and observations. We 
added text features with a vocabulary of size 40, this means that we had 40 features of each form of 
two days, resulting in a total of 320 features. Our population consisted of only 164 patients, so the 
number of features compared to the number of patients is way out of proportion. This has probably 
contributed to the overfitting of our models, which in case of logistic regression and SVM was quite 
substantial after adding the text features, resulting in poorer classification. To solve this we used only 
one of the forms, namely the patient’s health perception, but this did not improve the performance of 
the models. Therefore it is also possible that the nursing assessments contain too little discriminative 
information to predict postoperative complications. We are aware that every nurse has a different 
approach towards recording information about patients. Although they often use the same words to 
describe certain conditions, some nurses will report more than others and have different priorities in 
recording patient information. When using a more uniform vocabulary and method of reporting the 
patient’s well-being, the text features might become more useful to predict postoperative 
complications. However, in clinical practice this is probably not a feasible and efficient way to report 
for nurses, as they prefer to write in free text. It is also possible that our approach with a BoW model 
is not suitable for this type of data. Another approach to use clinical text data is shown by Goh et al 
[43]. They utilized Latent Dirichlet Allocation (LDA) which is a topic model that generates topics, based 
on patterns of word frequency from a set of documents. LDA is also considered a technique for 
dimensionality reduction, as it summarizes the discussion about a particular topic of each document. 
This technique could potentially solve our challenge with the vocabulary size. Furthermore, it is then 
easier to add other clinical unstructured data, without growing too many features and without the 
potential overlap found among clinical notes. However, this technique is much more complex 
compared to a BoW model and is therefore not suited for an explorative study of our size. 
 
Similar studies that developed predictive models of the risk of postoperative complications used 
patient data from large national clinical registries, which often contain demographic characteristics, 
comorbidities, information about the surgical procedure and other pre-operative data [33]–[35], [37], 
[47]. Such databases often lack granular information, such as HR or leukocytes count, which we 
focused on in our study. However, we did not include any pre-operative factors, nor did we utilized 
demographic characteristics of our population. Based on the results of these studies, adding 
preoperative data, such as comorbidities, could contribute to the early prediction of complications, 
especially within the first few days after surgery, when little postoperative data is available. 
 

6.2 Strength and limitations 
To the best of our knowledge, this is the first study that utilizes structured and unstructured 
postoperative data to predict postoperative complications in patients who underwent 
esophagectomy. This study has demonstrated that postoperative data, especially CRP levels, amylase 
and temperature, together with ML algorithms are able to make a fair prediction of anastomotic 
leakage and pneumonia. Furthermore, we have discovered that the physiological diversity of the 
response to surgical trauma and postoperative complications forms a big challenge in the early 
detection of postoperative complications. ML could be a great technique to gain more insight into the 
inflammatory response of not only esophagectomy but on surgery in general.  
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We are aware that our research contains some limitations. To begin with, we were able to include all 
patients who underwent esophagectomy from 2010 until the end of 2020 in our research. However, 
the number of patients is still relatively small and our models are therefore prone to overfitting. 
Moreover, this is a single-center study, which limits the generalizability of our findings. Secondly, our 
reference group, group 0, did not necessarily contain merely patients with an uncomplicated recovery. 
Due to lack of time, we decided to use patients with an admission according to our fast track protocol. 
Although we are certain that group 0 does not contain patients with pneumonia or anastomotic 
leakage, patient with for instance a wound infection could still appear in this group. This perhaps 
blurred the discrimination between group 0 and group 1. Lastly, an existing limitation of working with 
clinical data is the number of missing values. In our missing analysis, we have seen that especially 
respiratory rate showed the most substantial number of missing values. This is because nurses on the 
ward have to count the RR by themselves, which requires focus and time. Since we focused on the first 
few days of the postoperative recovery, the number of missing values was less substantial compared 
to the end of our postoperative window. We, therefore, expect that together with our imputation 
techniques, missing data did not bias our results. 
 

6.3 Recommendations 
This retrospective study has shown that ML models can predict postoperative complications with high 
specificity based on postoperative data. But before we continue to apply ML models to postoperative 
data in these patients, we need a better understanding of the physiological variation among patients 
during uncomplicated recovery and severe inflammatory complications. To start with, a thorough 
trend analysis of CRP levels during postoperative recovery is beneficial to define the range of a normal 
inflammatory response after esophagectomy. It is important to not only focus on the absolute values 
but also zoom in on the slope of CRP levels during postoperative recovery because the difference in 
CRP levels between days was an important feature in our models. Furthermore, we recommend having 
a closer look at the patients with postoperative complications and to investigate the differences in 
inflammatory responses among them. ML techniques could then be a great tool to find new patterns 
that can discriminate this normal range from patients with a postoperative event. Ultimately, we 
believe that ML models could then be useful to support clinicians in recognizing patients that deviate 
from normal recovery after esophagectomy. 
 
Lastly, this study does not rule out the potential of text data to predict postoperative complications. 
In further research, it is important to create a discriminative vocabulary when using BoW and to 
evaluate this with an experienced physician. Besides that, other sources of unstructured data are 
interesting to incorporate, for example, clinicians’ notes or radiological reports could contain other 
aspects of the patients’ (pre-operative) clinical condition. 
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Chapter 7 – Conclusion 
In conclusion, this study revealed that ML models have an overall fair prediction of postoperative 
complications after surgery when using postoperative data. Within these models, CRP and 
temperature are important predictors of anastomotic leakage and pneumonia. Furthermore, text 
features could contribute to a better sensitivity of models to predict major postoperative 
complications, but its potential needs to be further researched. We also recommend to investigate the 
physiological differences in the inflammatory response to surgical trauma and postoperative 
complications to enable better recognition of deviation from normal recovery after esophagectomy. 
 
Despite the limitations of this research and our future recommendations, our results indicate that ML, 
based on both structured and unstructured data, may improve the ability to predict postoperative 
complications after esophagectomy. Our approach is not only useful in patients who underwent 
esophagectomy, but can also be generalized to other clinical areas.  
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Appendices 

Appendix 1 – Missing values plots  
(a) 

(b) 

Figure 11 – Missing values plot of (a) respiratory rate and (b) systolic blood pressure 
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(a) 

(b) 

  

Figure 12 – Missing values plot of (a) temperature and (b) amylase levels 
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Figure 13 – Missing values plot of CRP levels 



38 
 

Appendix 2 – List of stopwords 
'aan', de', hem', meer', over', voor', 
aangaande', der', het', men', overigens', vooraf', 
aangezien', det', hier', meneer', pas', vooral', 
achter', deze', hierboven', met', precies', vooralsnog', 
achterna', dhr', hierin', mevr', reeds', voorbij', 
af', die', hij', mevrouw', rondom', voordat', 
afgelopen', dienst', hijzelf', mezelf', seldam', voorheen', 
akturk', dikwijls', hoe', mg', sinds', vrij', 
al', dit', hoewel', mgr', sindsdien', vroeg', 
aldaar', doch', hr', mij', slechts', waar', 
aldus', doen', hun', mijn', sommige', waardoor', 
alhoewel', dokter', i', mijzelf', spoedig', waarom', 
alle', door', i.o', miligram', steeds', waarschijnlijk', 
allebei', doorgaans', iemand', mililiter', svp', wanneer', 
alleen', dr', iets', misschien', tamelijk', want', 
alles', dus', ik', ml', te', waren', 
als', echter', in', mn', tegen', was', 
alsnog', een', inmidddels', moet', ten', wat', 
althans', eens', io', morgen', tenzij', we', 
altijd', eerdat', iom', mv', ter', weer', 
ander', eerder', ipv', mvr', terwijl', wegens', 
andere', eerst', irza', mw', tgv', wel', 
arts', elk', is', na', tijdens', welke', 
arts-assistent', elke', ivm', naar', toch', werd', 
artsass', en', ja', nabij', toe', wezen', 
ass', enige', je', nadat', toen', wie', 
assistent', enigzinds', jezelf', nadien', tot', wij', 
averdijk', enkel', jij', net', totdat', wijzelf', 
behalve', enkele', jijzelf', niets', tov', wil', 
beide', enz', jou', nog', tussen', worden', 
ben', enzovoorts', jouw', nogal', u', wordt', 
betreffende', er', juist', nu', uit', ws', 
bij', erdoor', jullie', o', uitgezonderd', zal', 
binnen', etc', kan', obv', uw', ze', 
boven', etcetera', klaar', of', vaak', zelf', 
bovendien', even', kon', om', van', zelfs', 
bovenstaand', eveneens', kouwenhoven', omdat', vanavond', zich', 
cc', evt', kunnen', omhoog', vandaan', zichzelf', 
cm', gauw', l', omlaag', vanmiddag', zij', 
daar', gedurende', later', omtrent', vanmorgen', zijn', 
daarheen', geen', leoniek', onder', vanuit', zo', 
daarin', geweest', liever', ondertussen', vanwege', zodra', 
daarna', haar', liter', ongeveer', vb', zonder', 
daarnaast', had', ltr', ons', vd', zou', 
daarnet', hare', maar', onszelf', veel', zowat' 
daarom', heb', mag', ook', verder',  
daarop', hebben', mbt', op', vervolgens', 

 

dan', heeft', mbv', opnieuw', via', 
 

dat', heer', me', opzij', volgens', 
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Appendix 3 – Specifications of ML models 
 
Logistic Regression  
Model: sklearn.linear_model.LogisticRegression 
Settings:   

- Random state = 0 
- other = default 

 
Support Vector Machines 
Model: sklearn.svm.SVC 
Settings: 

- kernel type = polynomial 
- degree = 1 
- Regularization parameter = 3 
- Other = default 

 
Decision Tree 
Model: sklearn.tree.DecisionTreeClassifier 
Settings:  

- Function to measure the quality of a split = gini 
- maximum depth of the tree = 3 
- Other = default 

 
Random Forest 
Model: sklearn.ensemble.RandomForestClassifier 
Settings: 

- number of trees = 500 
- maximum depth of the tree = 3 
- random state = 42 
- Other = default 
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Appendix 4 – Performance metrics 
 

 

 
 

 

 

 

 

Accuracy =  
𝑇𝑃 +  𝑇𝑁

𝑃 +  𝑁
 

Precision =  
𝑇𝑃

𝑃𝑃
 

Sensitivity =  
𝑇𝑃

𝑃
 

Specificity =  
𝑇𝑁

𝑁
 

 

 

  

 Predicted (PN): 
0 

Predicted (PP): 
1 

Actual (N): 
0 True negative (TN) False positive (FP) 

Actual (P): 
1 

False negative (FN) True positive (TP) 
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