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Abstract

Random forests have many different implementations in R-packages. This study
aims to analyse the performance of different random forests and to provide guidelines
on which R-package to use. The R-packages studied in this paper are extraTrees,
party, randomForestSRC, ranger, RLT, RRF and KnowGRRF. Only regres-
sion problems are considered in this study. The analysis is done by comparing the
R-packages to randomForest regarding the mean squared error, the runtime and
the variable importance. This is done by testing the R-packages on different types of
data. Based on the computations in this research it can be concluded that RLT is
advised to use for numerical data to obtain the lowest MSE. In all other cases ranger
is suggested to use as it has a significantly lower runtime. Furthermore, the mean
decrease in accuracy found in randomForest or the unbiased mean decrease found
in party are recommended methods to use for obtaining the variable importance.
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1 Introduction

Regression problems are presented in the form Y = βX + e where Y is a vector consisting
of n variables, X is an n × p matrix consisting of n observations of p predictor variables,
β is a vector consisting of p unknown parameters and e represents the error terms. The
error terms are all mutually independent and have an expected value of 0. Several methods
are available to approximate the relation between the predictor variables and the response
variable. The method of least squares tries to approximate the solution by minimizing the
sum of the squares of the residuals. The residuals are the difference between the actual
value, Y , and the predicted value of the model. However, this procedure may fail when for
example the number of variables is very high. Then the random forest algorithm can be
used to solve the model. Random forest is an ensemble method that combines a number
of decision trees. Every decision tree gives a prediction and the random forest algorithm
uses this to obtain a final prediction [1]. There are already multiple algorithms available
in R. However, it is not always clear which R-package one should choose to obtain the best
results when having a certain type of data set. The aim of this study is to investigate the
performance of the R-packages extraTrees [16], party [11], randomForestSRC [10],
ranger [18], RLT [21], RRF [4] and KnowGRRF [8] compared to randomForest [2],
which will be used as a benchmark. The approach will be to analyse the performance of
the R-packages on different types of data sets. To provide a framework for the research,
the following questions can be asked in order determine for what conditions the R-packages
are an improvement of randomForest:

1) Which R-packages perform well regarding the mean squared error?
2) Which R-packages are preferred concerning the runtime?
3) Which R-package contains the most accurate method to identify the variable impor-
tance?
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2 R-packages information

This section will first explain the random forest algorithm in general. In addition, the
measurements which are used in this paper to assess the performance of the R-packages
will be discussed. Lastly, all the R-packages studied in this paper are examined.

2.1 Random forest algorithm

The data has n observations and p predictor variables. The algorithm will grow t trees on
the data and the random forest will produce output Ŷ as the predicted value. The general
steps taken in every algorithm are the following [23]:
Step 1: Draw t new data samples from the data
Step 2: Select for every data sample the variables for the trees to be grown on
Step 3: Grow a tree on every data sample
Step 4: Take the average of all the results from the trees
The steps are also shown in Figure 1.

Figure 1: Random forest algorithm

2.2 Performance measurements

The performance of the algorithms will be based on 3 aspects, namely the mean squared
error (MSE), the runtime and the variable importance (VI). Firstly, the MSE is the average
squared difference between the predicted value and the actual value:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)2 (1)

where Yi is the actual value of the response which can be found in the data sets and Ŷi is
the predicted value given by the random forest for observation i ∈ {1, 2, . . . , n}. Secondly,
the runtime of the random forest is the time the algorithm requires to grow the forest.
Lastly, the VI evaluates the importance of a variable for the model.
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2.3 R-packages

In the following subsections all the R-packages analysed in this paper will be examined. In
section 2.3.1 the benchmark algorithm will be explained focusing on the construction of the
algorithm and the variable importance. In the subsequent subsections various R-packages
are discussed in which the differences with the benchmark will be highlighted regarding
the algorithm and the variable importance. Refer to Appendix A to see the alternative
R-packages which have been considered.

2.3.1 randomForest

The R-package randomForest will be used in this study as the benchmark. In random-
Forest new samples are created with bagging. Bagging means that each new sample is
drawn with replacement from the original data set and therefore many trees have different
samples to be trained on. All the new samples created by bagging will have n observations
which is the same size as the original data set X. In addition, the observations which are
not in the newly generated sample form the test set of the new sample. It is said that the
test set consists of the out-of-bag (OOB) observations. Then a tree is grown on the new
sample using random feature selection. With random feature selection is meant that at
each node of a tree, a small group of variables to split on is selected at random. For this
the parameter mtry is used to denote the number of variables selected at random and for
regression the default setting is equal to p/3 variables. Now, from this group of variables,
the best binary split is chosen. In this case, the best split is the one which gives the largest
reduction in the MSE as defined in Equation 1 [3]. So it first determines the best cutting
threshold for the variables and then chooses the best variable to split on. The algorithm
will stop splitting nodes when the minimum number of observations in a terminal node is
reached, for regression the default setting is 5. Lastly, every tree gives an estimate of the
response variable and then an overall prediction is made by the average of all the estimates
[1, 13].

The variable importance
The R-package randomForest has 2 methods to measure the VI. The first one is the mean
decrease in accuracy. This is measured by first computing the MSE on the OOB data for
every tree and taking the average over all the trees. Then the same is done again but with
the mth variable permuted. Then the VI for the mth variable is the percentage of increase
between the first one and the second one. The higher the increase, the more important
the variable is considered. The second one is the mean decrease in node impurity. This
is measured by computing for a variable the difference between residual sum of squares
(RSS) before and after a split. RSS is defined as

∑n
i=1(Yi−

ˆ̂Yi)2. This is summed up over
all splits over all trees. The higher this number will be, the more important the variable
is considered.

2.3.2 extraTrees

The R-package extraTrees stands for extremely randomized trees. Compared to ran-
domForest it has 2 significant differences. Firstly, extraTrees chooses the cut at each
node randomly. Like in randomForest, it first chooses a random subset ofmtry variables.
However, at each node extraTrees chooses the cut uniformly randomly, while random-
Forest chooses the best cutting threshold for the variable. After the cutting threshold has
been fixed, the feature with the biggest gain is chosen, which is similar to randomForest

5



[17]. Secondly, extraTrees samples without replacement and uses therefore the complete
original dataset. So it does not perform bootstrapping like in randomForest. The aim
of extraTrees is to achieve a faster computation time compared to randomForest while
having a similar MSE [7].

The variable importance
The R-package extraTrees does not have a method to measure the VI.

2.3.3 party

The R-package party includes a function called cforest which means conditional inference
forest. This is an unbiased forest consisting of conditional inference trees which are called
ctrees. The main difference with randomForest is that a significance test is used to select
splitting variables rather than selecting the variable that maximizes the decrease in MSE.
So ctrees apply a significance test to determine whether there exists a statistically signifi-
cant association between the predictor variables and the response variables. If this is the
case, the predictor with the highest association with the response variable is chosen to split
on [20, 12]. It is expected that cforest is not biased towards variables with many cut points
and also has a better performance on data with correlated variables than randomForest.

The variable importance
The R-package party has 2 different procedures to measure the VI. The first one is the
mean decrease in accuracy as in randomForest. The second one is the unbiased mean
decrease in accuracy. This method adjusts for correlations between predictor variables.
This is done by permuting within a grid determined by the covariates that are associated
to the variable of interest [11].

2.3.4 randomForestSRC

The R-package randomForestSRC (RFSRC) stands for a fast unified Random Forests
for Survival, Regression and Classification. This R-package provides many options for the
user on how to build the random forest. The main difference with randomForest is that
RFSRC generates the bootstraps without replacement. The bootstraps will have a size
of 0.632 times the original data size. So it is expected that randomForestSRC will be
faster than randomForest.

The variable importance
The VI computed in randomForestSRC has 3 different methods to measure the VI. The
first one is mean decrease in accuracy as in randomForest. However, as randomForest-
SRC does not perform bootstrapping, it will not have OOB data to obtain the VI as in
randomForest. So in this case it will use the out of sample data to obtain the VI. The
second one works similarly to the mean decrease in accuracy, except now the variable will
not be permuted. Every time a split is made on this variable, it will randomly choose to
go to the right or left daughter node. The third one also works similarly to mean decrease
in accuracy except now the variable will not be permuted, but every time a split is made
on this variable, it will go to the opposite daughter node.

2.3.5 ranger

The name ranger comes from the words ’RANdom forest GeneRator’ and it is a fast
implementation of randomForest. A significant difference between ranger and ran-
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domForest is the technique used for selecting the variable set and a splitting variable at
the nodes. Normally, all values of the mtry variables need to be evaluated as splitting
candidates. However, for high dimensional data which has many variables, this is not very
efficient. In ranger 2 different splitting algorithms are used. The first algorithm sorts the
values of the features beforehand and retrieves them by their index. In the second one, the
raw values are retrieved and sorted while splitting. The first one should be used for nodes
containing many observations and the second one for nodes containing less observations.
Furthermore, in ranger, drawing the mtry variables as potential splitting variables in each
node is done by sampling without replacement. In this way, copies of the original data is
prevented which is more memory efficient. In addition, node information is saved in simple
data structures and whenever possible it tries to free memory early [19]. This is all done
with the aim to obtain a faster random forest. Hence, it is expected that ranger will be
faster than randomForest.

The variable importance
In ranger there are 3 options to measure the VI. The first two methods to measure the
VI are the same as in randomForest. The third one is unbiased mean decrease in node
impurity. It is unbiased in terms of the number of categories and category frequencies.
This method achieves this by identifying 2 parts in the node impurity. The first part is the
reduction in node impurity directly related to the predictor variable and the second part is
the reduction in node impurity solely related to the structure of the predictor variable. The
unbiased node impurity method only measures the first part for the variable importance
[15].

2.3.6 RLT

RLT means Reinforcement Learning Trees which uses a different method for selecting the
splitting variable and it also has an option of making high dimensional splits. It chooses
the splitting variable that gives the greatest gain in the future rather than the greatest gain
from the immediate split, which makes it more efficient to make high dimensional cuts [22].

At the first node of a tree, the split will be made on the variable with the highest variable
importance. After the first split has been made, the algorithm finds the qth variable with
the lowest importance and puts this one and all variables with a lower variable importance
in the muted set. Also, it finds the rth variable with the highest importance and puts
this one and all variables with higher variable importance than this one in the protected
set. To determine a splitting variable at the subsequent nodes in a tree, only the variable
importance of variables which are not in the muted set are considered. Now there are 2
options to make a split:

• one dimensional split: the variable with the highest variable importance is chosen.
The threshold for the cut point is chosen uniformly randomly.

• k dimensional split: the split is made on a linear combination of k variables, namely
βX where β is a vector of length k and X consists of k variables. The vector β is
chosen according to [22]. Only variables that have a minimal percentage α of the
maximum variable importance in the current node are considered. Then similarly to
a one dimensional split, the cutting threshold is chosen uniformly randomly.

Now the set of muted variables is updated for the daughter nodes. This is done by adding
the variables with the lowest variable importance to the set of muted variables. Now after
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every split, the protected set is updated at every node by adding the splitting variable
from that node. The muted set is updated by finding the qth variable with the lowest im-
portance among the variables that are not in the muted set and also not in the protected
set. Then this variable and all the variables with a lower variable importance than that
one, are put in the muted set.

The aim is to choose r such that all informative variables will be in the protected set.
The number q can be tuned by choosing a certain percentage of the number of nonmuted
variables at each internal node. It is expected that RLT works well for data sets with
many uninformative variables and works less well for data sets in which all variables are
important.

The variable importance
The VI is computed for every variable in every node of a tree for the variables which are
not in the muted set. The VI is obtained with the use of randomForest with the mean
decrease of accuracy. The VI for the variables in the muted set equals 0.

2.3.7 RRF

RRF denotes Regularized Random Forest which is based on the randomForest R-
package. The main difference between those is that features are selected with a regu-
larization framework in the random forest. This is done by first assigning a gain to each
feature. Then the features that have not already been selected before will be penalized.
Due to this, less features are selected and a compact high quality subset of features is
created.

The algorithm keeps track of a feature set F which is initially empty at the first node
of the first tree. Let gain(Xj,v) be the measure of selecting feature Xj at node v. The
highest gain of a feature will be selected to split the node on. Now in a regularized forest
the gain of choosing feature Xj will be penalized if it is not in feature set F :

gainRRF =

{
gain(Xj , v), if (Xj , v) ∈ F
λgain(Xj , v) if (Xj , v) /∈ F

where λ ∈ (0, 1] is called the penalty factor. Once a feature that is not in F is cho-
sen, it will be added to F and the set will be continued to use in the next leaves of the
tree and also in the next trees of the forest [6]. This procedure is also displayed in Figure 2.
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Figure 2: The feature selection procedure in RRF [5]

As RRF will identify the most important features and is less likely to select noise features
to split a node on, it is expected that it will work well for data sets with a combination of
informative and uninformative features.

There is also an option in the R-package to make a guided regularized random forest
(GRRF). This also makes use of the importance scores obtained by randomForest of
features to guide the RRF. Here the penalty factor is not the same for every feature:

gainGRRF =

{
gain(Xj , v), if (Xj , v) ∈ F
λjgain(Xj , v) if (Xj , v) /∈ F

where λj = (1− γ) + γ
Importancej

maxP
j=1Importancej

where γ ∈ [0, 1] is called the importance coef-

ficient and Importancej denotes the variable importance of predictor variable j [5].

The variable importance
The VI computed by the R-package RRF has exactly the same 2 methods as in random-
Forest.

2.3.8 KnowGRRF

KnowGRRF denotes Knowledge-Based Guided Regularized Random Forest. It differs
from randomForest by feature selection. First, in this case the gain is defined by:

gainKnow−GRRF =

{
gain(Xj , v), if (Xj , v) ∈ F
λigain(Xj , v) if (Xj , v) /∈ F

where λi = scoreδj and scorej ∈ [0, 1] and δ ∈ [0,∞) is the tuning parameter. The scorej in-
dicates the importance of predictor j. The importance can be obtained by combining a set
of priors from a number of domains for every predictor [9]. However, in this study the im-

portance of features will be used just like in GRRF and hence scorej =
Importancej

maxP
j=1Importancej

is obtained. The number of features selected is quite sensitive to the tuning parameter δ
and when a higher value for δ is set, it is likely to choose less features. Thus, compared to
RRF, is expected to work better on data sets with just a few informative variables and a
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lot of uninformative variables.

The variable importance
As KnowGRRF defines what variables to use and then employs randomForest to grow
the forest, the VI is also retrieved from randomForest.
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3 Method

In this section the different data sets on which the R-packages are tested are described.
Firstly, categorical data and numerical data will be discussed. Then data with categorical
and numerical covariates is examined. Lastly, data with correlated features is described.

3.1 Categorical data

To generate data sets with categorical variables, the categories of the variables Xi,j are
sampled with replacement using the function sample. In this function, the number of
classes and the probability of the occurrence of a class can be set. The subscripts for Xi,j

describes the ith observation of the jth variable. The response variable Yi is determined
by Yi = β0 + β1Xi,1 + β2Xi,2 + · · · + βpXi,p + ei where ei is the error term and βk with
k ∈ {0, 1, . . . , p}. The error term is drawn from a uniform distribution, namely U(0, 5).

A small data set of 1 variable is generated to give a visualisation of a tree using cate-
gorical data set. The predictor variable Xi,1, is generated with 3 classes ’A’, ’B’ and ’C’ for
100 observations. The variable is drawn from a discrete distribution where all classes are
equally likely to be drawn. The response variable Yi is determined by Yi = β0+β1Xi,1+ei

where β0 = 1 and β1 =


2, if Xi,1 is class A
9, if Xi,1 is class B
20, if Xi,1 is class C

.

Figure 3 shows a ctree from the R-package party of the data just described. The white
circles in the figure display which predictor was chosen to make the split at each node
and the p-values of the significance test. In the edges, the classes chosen for the split are
shown. Also, in the gray leaves of the tree the number n represents the total number of
observations in that specific leaf and the number y denotes the estimate in that specific leaf.

Figure 3: A ctree of 1 predictor variable with 3 classes
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Several data sets with different characteristics are created to explore the effect on the per-
formance of the R-packages. This is done by varying the number of variables, the number
of classes, the number of informative variables and the occurrence of classes. An overview
of the data sets is given in Table 1. In data set AE, the first 2 variables are taken to be
informative and the other variables are redundant. In data set AF, the occurrence of a
certain class is higher than the other two classes for all variables.

Table 1: Information about categorical data sets

Name of
data set

Number of
variables

Number of
classes per variables

Number of
informative variables

Probability of
occurrence of a class

AA 16 all 3 classes all informative all equally likely
AB 8 all 3 classes all informative all equally likely
AC 8 all 20 classes all informative all equally likely

AD 8 4 with 3 classes and
4 with 20 classes all informative all equally likely

AE 8 all 3 classes 2 informative all equally likely
AF 8 all 3 classes all informative 5/6, 1/12, 1/12

3.2 Numerical data

For the numerical data several data sets are generated, each representing a different aspect.
The variables in the numerical data are drawn from a normal distribution Xi,j ∼ N (µ, σ2)
with mean µ, drawn from uniform distribution µ ∼ U(5, 20) and variance σ2 drawn from
uniform distribution σ2 ∼ U(0, 5). The noise ei in the response variable is introduced by
drawing ei from a uniform distribution ei ∼ U(0, 1). In Table 2 the characteristics of the
generated data sets is displayed. In the last column, the different aspects that are explored
in the data sets is specified.
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Table 2: Information about numerical data sets

Name of data set Number of
variables Response variable Aspect of data set

BA 5 Yi = 5 + 2Xi,1 + 4Xi,2 +Xi,3

+3Xi,4 + 2.5Xi,5 + ei

Linear and only
informative variables

BB 5 Yi = 5 + 2Xi,1 + 400Xi,2 +Xi,3

+3Xi,4 + 2.5Xi,5 + ei

Linear, only informative
variables and one
variable with higher
importance

BC 5 Yi = X2
i,1 + ei

Higher-order and
only first variable
informative

BD 5 Yi = Xi,1Xi,2 + ei

Interaction and only
first and second
variable informative

BE 5 Yi = Xi,1Xi,2Xi,3Xi,4Xi,5 + ei
Interaction and only
informative variables

BF 25

Yi = 5 + 2Xi,1 + 4Xi,2 +Xi,3

+3Xi,4 + 2.5Xi,5 + 2Xi,6 + 4Xi,7

+Xi,8 + 3Xi,9 + 2Xi,10 + 4Xi,11

+Xi,12 + 3Xi,13 + 2Xi,14 + 4Xi,15

+Xi,16 + 3Xi,17 + 2Xi,18 + 4Xi,19

+Xi,20 + 3Xi,21 + 2Xi,22 + 4Xi,23

+Xi,24 + 3Xi,25 + ei

Linear and only
informative variables

BG 25

Yi = 5 + 2Xi,1 + 400Xi,2 +Xi,3

+3Xi,4 + 2.5Xi,5 + 2Xi,6 + 4Xi,7

+Xi,8 + 3Xi,9 + 2Xi,10 + 4Xi,11

+Xi,12 + 3Xi,13 + 2Xi,14 + 4Xi,15

+Xi,16 + 3Xi,17 + 2Xi,18 + 4Xi,19

+Xi,20 + 3Xi,21 + 2Xi,22 + 4Xi,23

+Xi,24 + 3Xi,25 + ei

Linear, only informative
variables and one
variable with higher
importance

BH 25 Yi = 5 + 2Xi,1 + 4Xi,2 + ei

Linear and only first
and second variable
informative

BI 50 Yi = 5 + 2Xi,1 + 4Xi,2 + ei

Linear and only first
and second variable
informative

To give a visualisation of what happens in a random forest, a tree from cforest was extracted
which was run on data set BA with 100 observations. Figure 4 shows on which predictor
the split was made and the threshold for the split.
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Figure 4: A ctree on data set BA

3.3 Categorical and numerical data combined

The numerical variables are drawn from a normal distribution Xi,j ∼ N (µ, σ2) with mean
µ drawn from uniform distribution µ ∼ U(5, 20) and variance σ2 drawn from uniform dis-
tribution σ2 ∼ U(0, 5). The categorical variables are drawn from a discrete distribution
where the occurrence of a class is equally likely. All categorical variables are generated
with 3 classes. The response variable Y is determined by Y = β0 + β1Xi,1 + β2Xi,2 +
· · · + β16Xi,16 + ei where ei is drawn from a uniform distribution U(0, 5) and βk with
k ∈ {0, 1, . . . , 16} are defined for certain values. An overview of the data sets is given in
Table 3:

Table 3: Information about numerical and categorical data sets

Name of data set Number of
numerical variables

Number of
categorical variables

CA 8 8
CB 14 2
CC 2 14

3.4 Correlated data

To create correlated variables in the data sets the relation between various variables is
specified. This is done by using a correlation matrix which displays the correlation between
variables. A data set is generated by sampling n × p values from N (0, 1). All the data
sets consist of p = 25 variables and of n = 1200 observations. Then using the function
genCorData from the R-package simstudy and specifying the correlation matrix, 200
observations are generated such that these are correlated to train the random forest. Then
the other 1000 observations which are not correlated are used to test the random forest.
The values in the correlation matrices generated are defined as:

• Correlation matrix 1: σi,j = 0.6|i−j|.
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• Correlation matrix 2:

{
σi,j = 0.4 if i 6= j

σi,j = 1 if i = j
.

• Correlation matrix 3:

{
σi,j = 0.7 if i 6= j

σi,j = 1 if i = j
.

The first correlation matrix could be interpreted as for example correlation between alleles
in biomedical data sets where alleles closer to each other are more correlated than ones
further. The second and third correlation matrix could be interpreted as a correlation
between variables in econometric data where all variables are equally correlated. The
following table displays the data sets generated with certain characteristics:

Table 4: Information about data sets with correlated variables

Name of
data set

Correlation
matrix used Response variable

DA 1 Yi = 5Xi,3 + 3Xi,15 + ei
DB 1 Yi = Xi,1 +Xi,2 + ...+Xi,24 +Xi,25 + ei
DC 1 Yi = Xi,2Xi,3 +Xi,6Xi,7 +Xi,12Xi,24 + ei
DD 2 Yi = 5Xi,3 + 3Xi,15 + ei
DE 2 Yi = Xi,1 +Xi,2 + ...+Xi,24 +Xi,25 + ei
DF 2 Yi = Xi,2Xi,3 +Xi,6Xi,7 +Xi,12Xi,24 + ei
DG 3 Yi = 5Xi,3 + 3Xi,15 + ei
DH 3 Yi = Xi,1 +Xi,2 + ...+Xi,24 +Xi,25 + ei
DI 3 Yi = Xi,2Xi,3 +Xi,6Xi,7 +Xi,12Xi,24 + ei
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4 Results

This section will give the results of the 7 different R-packages with different kind of data
sets which have been discussed. The R-package randomForest will be used as bench-
mark, so that the other R-packages can be compared to it. To assess the performance of
the analyzed R-packages on the different data sets, the R-packages will be compared to
the benchmark on 3 aspects. Firstly, the MSE is measured for the random forests and
compared with the MSE of randomForest. The MSE is chosen as evaluation measure
over the OOB error because not all the random forests can be evaluated with the OOB
error. This is due to the fact that some random forests do not have OOB data. The MSE
will be measured by first training the random forests on 200 observations and then it will
be tested for 1000 observations. Secondly, the runtime of the R-packages is regarded. The
runtime of each R-package will be kept track off and will be compared to the runtime of
randomForest on the same data sets. This is done with the use of the R-package mi-
crobenchmark which can measure the execution time of R expressions [14]. The mean
of the MSE and the mean of the runtime will be taken of 100 runs. The results of this is
given in the first 4 sections displayed in tables to give a clear overview of the results per
type of data set. In addition, a few graphs which display the diversity of the runtimes will
be presented which will be obtained using the R-package microbenchmark. This results
is shown in Section 4.5. The last aspect to assess the performance is variable importance.
For this, several tables which show the variable importance of different R-packages on data
sets is shown in Section 4.6.

The settings of the R-packages are as following:
• mtry, the number of variables which can be chosen from at a node is set to p/3

(rounded down). An exception is RLT as the framework for reinforcement learning
trees of this R-package will consider all the variables and does not have the parameter
mtry.

• ntree, the number of trees grown is set to 500, except for RLT where it is set to 100
considering the runtime.

• nodesize, the minimum number of observations in a terminal node is set to 5 for all
R-packages. However, in RLT there is no nodesize parameter, but nmin is used
instead. The parameter nmin denotes the minimum number of observations needed
in an internal node to perform a split. It is recommended to set this to twice the
desired size of the terminal node, which in this case is 10 [21]. In addition, party
does not have the parameter nodesize. In cforest, a split is not made on a node if
the significance test is rejected.

Also, the following extra parameter settings for specific R-packages are used:
• For the penalty factor λ in the R-package RRF, 2 values have been chosen to contrast

and compare the effects, namely λ = 0.5 and λ = 0.8. Now RRF0.5 and RRF0.8

denote a regularized random forest with a penalty factor of 0.5 and 0.8, respectively.
Furthermore, a guided regularized random forest (GRRF) can also be grown in the
R-package. For the importance coefficient γ, the values 0.4 and 0.5 are chosen for
GRRF0.4 and GRRF0.6, respectively.

• For the R-package RLT a percentage of the number of nonmuted variables at each
node for the number of newly muted variables, called the muting percentage, is
set to 0.2 and 0.5. There is also an option to make a high dimensional split. A
one dimensional split and a split of a linear combination of 2 variables are chosen.
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The parameters α and r which were discussed in Section 2.3.6 is set to the default
setting. So 4 different settings are tried, namely RLT1,0.2, RLT1,0.5, RLT2,0.2 and
RLT2,0.5, where the first subscript denotes the number of variables the split is made
on and the second subscript denotes the muting percentage.

• The tuning parameter δ in the R-package KnowGRRF will be obtained by min-
imizing the akaike information criterion (AIC) for every dataset. This is done by
using the BFGS quasi-Newton method [9]. The AIC asseses the quality of a model
compared to other models. Then randomForest is used to grow the forest using
the features selected by KnowGRRF. If KnowGRRF chooses all the variables,
the performance will be equal to randomForest.

In the tables the dash is used if the random forest does not work for this type of data.
For example, extraTrees and RLT cannot handle categorical data as these R-packages
choose the threshold for splitting on a variable uniformly randomly, which is not possible
for categorical data.

4.1 Results on the categorical data sets

Table 5: MSE and runtime in seconds for the data sets AA, AB and AC per
R-package

AA MSE AA runtime AB MSE AB runtime AC MSE AC runtime
randomForest 200.897 0.3076 74.170 0.2412 448.248 0.2028

extraTrees - - - - - -
KnowGRRF 196.856 0.1603 61.095 0.2231 453.020 0.1990

party 266.730 0.5497 123.396 0.5803 386.823 1.6166

RFSRC 219.658 0.1168 90.702 0.1162 474.878 0.1623

ranger 188.142 0.0382 72.039 0.0393 473.842 0.0335

RLT1,0.2 - - - - - -
RLT1,0.5 - - - - - -
RLT2,0.2 - - - - - -
RLT2,0.5 - - - - - -
RRF0.5 196.856 0.2946 71.023 0.2365 569.766 0.1792

RRF0.8 197.174 0.2903 71.075 0.2359 570.263 0.1869

GRRF0.4 197.189 0.2980 71.013 0.2376 570.667 0.1959

GRFF0.6 197.311 0.2979 71.074 0.2233 570.468 0.1919
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Table 6: MSE and runtime in seconds for the data sets AD, AE and AF per
R-package

AD MSE AD runtime AE MSE AE runtime AF MSE AF runtime
randomForest 252.419 0.3223 13.051 0.2279 21.870 0.0734

extraTrees - - - - - -
KnowGRRF 252.958 0.3282 6.458 0.0669 20.414 0.0633

party 223.148 2.8946 23.776 0.5345 38.461 0.2081

RFSRC 243.414 0.1735 16.134 0.1057 19.895 0.0574

ranger 234.928 0.0460 13.690 0.0381 21.369 0.0153

RLT1,0.2 - - - - - -
RLT1,0.5 - - - - - -
RLT2,0.2 - - - - - -
RLT2,0.5 - - - - - -
RRF0.5 245.086 0.3114 12.607 0.2187 21.437 0.0696

RRF0.8 245.022 0.3052 12.545 0.2249 21.429 0.0720

GRRF0.4 244.498 0.3133 12.504 0.2232 21.465 0.0706

GRFF0.6 244.940 0.3065 12.486 0.2156 21.486 0.0716

From Tables 5 and 6 can be seen that regarding the MSE, there is no clear outstanding
R-package. Only party performs slightly better on data set AC and AD, but performs
worse on the other data sets. Focusing on the runtime, it is noticeable that ranger is
always the fastest.

4.2 Results on the numerical data sets

Table 7: MSE and runtime in seconds for the data sets BA, BB and BC per
R-package

BA MSE BA runtime BB MSE BB runtime BC MSE BC runtime
randomForest 252.655 0.1065 922 178 0.0910 3350.59 0.0946

extraTrees 251.067 0.0312 989 325 0.0353 4070.12 0.0285

KnowGRRF 252.655 0.1065 922 178 0.0910 3350.59 0.0946

party 400.872 0.1654 1 718 636 0.1440 6042.87 0.1653

RFSRC 300.386 0.0633 1 179 557 0.0590 3798.30 0.0580

ranger 252.622 0.0292 930 594 0.0210 3348.09 0.0242

RLT1,0.2 243.539 10.8776 92 052 5.8588 214.53 14.0109

RLT1,0.5 352.697 7.6101 76 451 3.1843 195.16 6.1655

RLT2,0.2 108.998 11.2874 93 877 6.0063 208.19 14.1161

RLT2,0.5 266.011 8.5546 76 841 3.2595 179.84 5.7584

RRF0.5 252.402 0.0967 921 878 0.0842 3338.04 0.0932

RRF0.8 252.444 0.1103 922 427 0.0786 3358.77 0.0940

GRRF0.4 251.896 0.1047 922 803 0.0812 3362.41 0.0947

GRFF0.6 252.009 0.1043 926 006 0.0873 3345.02 0.0903
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Table 8: MSE and runtime in seconds for the data sets BD, BE and BF per
R-package

BD MSE BD runtime BE MSE BE runtime BF MSE BF runtime
randomForest 2494.634 0.0965 4.091 · 1010 0.0887 3466.773 0.5955

extraTrees 2629.600 0.0313 4.067 · 1010 0.0267 3513.309 0.1739

KnowGRRF 525.480 0.0860 4.091 · 1010 0.0887 3430.239 0.4239

party 4027.188 0.1503 5.473 · 1010 0.1481 3857.866 0.5194

RFSRC 2841.943 0.0525 4.234 · 1010 0.0493 3556.546 0.1794

ranger 2485.349 0.0228 4.094 · 1010 0.0227 3471.565 0.0939

RLT1,0.2 505.085 6.1141 4.752 · 1010 6.1647 3739.234 34.7281

RLT1,0.5 479.624 4.9774 6.114 · 1010 4.9430 3883.996 31.4323

RLT2,0.2 346.853 6.3825 3.393 · 1010 6.2752 3210.999 36.6481

RLT2,0.5 302.075 5.3093 5.235 · 1010 5.4803 3523.321 35.1311

RRF0.5 2492.779 0.0943 4.089 · 1010 0.0858 3471.317 0.5672

RRF0.8 2483.017 0.0893 4.085 · 1010 0.0868 3471.020 0.5753

GRRF0.4 2497.537 0.0878 4.084 · 1010 0.0857 3471.291 0.5560

GRFF0.6 2498.397 0.0941 4.076 · 1010 0.0869 3467.286 0.5845

Table 9: MSE and runtime in seconds for the data sets BG, BH and BI per
R-package

BG MSE BG runtime BH MSE BH runtime BI MSE BI runtime
randomForest 474 216 0.3415 89.657 0.4315 101.719 0.9255

extraTrees 368 954 0.1127 80.612 0.1397 96.717 0.3119

KnowGRRF 470 486 0.2391 23.016 0.1127 21.965 0.1267

party 987 641 0.2957 142.891 0.3668 133.697 0.7191

RFSRC 573 353 0.1057 99.490 0.1676 95.790 0.2827

ranger 477 804 0.0489 90.000 0.0808 102.208 0.1327

RLT1,0.2 79 399 25.2492 28.159 27.7455 22.080 31.6840

RLT1,0.5 71 402 19.3870 24.430 20.4363 18.206 20.1803

RLT2,0.2 80 152 25.2727 17.177 28.0479 11.333 32.2992

RLT2,0.5 73 307 19.2715 13.900 20.7216 8.491 19.9887

RRF0.5 474 077 0.3325 89.854 0.4204 99.806 0.8975

RRF0.8 478 431 0.3304 89.786 0.4186 101.784 0.8953

GRRF0.4 477 913 0.3333 89.886 0.4196 101.472 0.8891

GRFF0.6 473 703 0.3330 89.253 0.4141 96.027 0.9166

It is clear from Tables 7, 8 and 9 that RLT has overall the lowest MSE when using the
correct parameter settings. Regarding the runtime, ranger has overall the lowest runtime.
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4.3 Results on the data sets with categorical and numerical variables

Table 10: MSE and runtime in seconds for the data sets CA, CB and CC per
R-package

CA MSE CA runtime CB MSE CB runtime CC MSE CC runtime
randomForest 1154.432 0.5078 2058.861 0.5253 318.661 0.4228

extraTrees - - - - - -
KnowGRRF 1100.597 0.3421 2003.556 0.3636 318.661 0.4228

party 1520.923 0.6910 2443.505 0.5956 418.888 0.7273

RFSRC 1270.628 0.1661 2174.462 0.1795 344.183 0.1421

ranger 1132.658 0.0684 2056.985 0.0839 308.744 0.0530

RLT1,0.2 - - - - - -
RLT1,0.5 - - - - - -
RLT2,0.2 - - - - - -
RLT2,0.5 - - - - - -
RRF0.5 1150.285 0.4771 2062.325 0.5116 312.400 0.4267

RRF0.8 1150.843 0.4839 2062.794 0.4964 312.396 0.4150

GRRF0.4 1148.941 0.4863 2057.981 0.5144 312.232 0.4241

GRFF0.6 1149.188 0.4887 2060.693 0.4824 312.637 0.4046

From Table 10 it can be seen that the MSE is quite similar for all R-packages and that the
runtime is much lower for ranger compared to the other R-packages.

4.4 Results on the data sets with correlated variables

Table 11: MSE and runtime in seconds for data sets DA, DB and DC per R-
package

DA MSE DA runtime DB MSE DB runtime DC MSE DC runtime
randomForest 8.196 0.3915 8.145 0.3362 4.686 0.5056

extraTrees 7.889 0.1356 7.171 0.1029 4.245 0.1212

KnowGRRF 6.924 0.1508 14.884 0.2015 3.983 0.1049

party 10.513 0.3593 11.853 0.3052 4.682 0.3360

RFSRC 8.646 0.1533 9.210 0.1092 4.541 0.1382

ranger 8.190 0.0771 8.127 0.0509 4.689 0.0593

RLT1,0.2 1.698 37.8587 11.952 19.0354 3.421 18.0506

RLT1,0.5 1.337 24.6933 13.764 13.8167 3.276 12.9269

RLT2,0.2 0.741 36.8546 9.247 19.4601 3.268 17.9437

RLT2,0.5 0.495 28.0792 11.992 14.2328 3.162 12.9636

RRF0.5 8.182 0.3774 8.157 0.3235 4.692 0.4971

RRF0.8 8.209 0.3812 8.163 0.3230 4.694 0.4966

GRRF0.4 8.192 0.3819 8.150 0.3196 4.690 0.4937

GRRF0.6 8.165 0.3806 8.168 0.3229 4.686 0.4948
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Table 12: MSE and runtime in seconds for data sets DD, DE and DF per R-
package

DD MSE DD runtime DE MSE DE runtime DF MSE DF runtime
randomForest 6.776 0.3450 7.058 0.3366 4.846 0.5158

extraTrees 8.819 0.1037 4.260 0.1019 4.047 0.1265

KnowGRRF 0.922 0.0899 13.272 0.2370 4.716 0.1757

party 7.715 0.3083 12.503 0.2981 5.142 0.3565

RFSRC 7.131 0.1062 8.313 0.1061 4.871 0.1400

ranger 6.752 0.0496 7.085 0.0495 4.842 0.0597

RLT1,0.2 2.244 15.7706 15.533 22.3365 3.185 26.2374

RLT1,0.5 1.915 10.8121 20.867 16.7434 3.260 20.3467

RLT2,0.2 0.532 15.9826 11.732 22.7296 3.004 26.3262

RLT2,0.5 0.288 10.7058 17.216 17.3598 3.024 20.2786

RRF0.5 6.761 0.3263 7.157 0.3189 4.826 0.5052

RRF0.8 6.803 0.3222 7.124 0.3197 4.826 0.5071

GRRF0.4 6.762 0.3231 7.110 0.3139 4.833 0.5056

GRRF0.6 6.771 0.3211 7.319 0.3209 4.834 0.5078

Table 13: MSE and runtime in seconds for data sets DG, DH and DI per R-package

DG MSE DG runtime DH MSE DH runtime DI MSE DI runtime
randomForest 9.465 0.7771 9.224 0.3252 7.635 1.1538

extraTrees 14.265 0.2357 3.418 0.0981 6.011 0.3015

KnowGRRF 1.197 0.2036 17.961 0.2281 7.775 0.5337

party 8.592 0.7156 17.570 0.2842 9.501 0.9485

RFSRC 9.465 0.2063 9.576 0.1022 8.668 0.2707

ranger 9.497 0.1060 9.398 0.0485 7.587 0.1244

RLT1,0.2 3.744 36.5478 23.399 22.1106 4.243 55.3419

RLT1,0.5 3.209 26.1168 32.312 16.5422 4.521 40.2478

RLT2,0.2 0.895 40.4316 16.828 22.4248 3.542 53.9144

RLT2,0.5 0.414 27.9544 26.387 16.8341 3.840 40.7548

RRF0.5 9.318 0.7281 9.373 0.3117 7.572 1.1383

RRF0.8 9.436 0.7209 9.348 0.3126 7.576 1.1229

GRRF0.4 9.549 0.7291 9.426 0.3084 7.559 1.1320

GRRF0.6 9.418 0.7348 9.668 0.3109 7.575 1.1388

From Tables 11, 12 and 13 it can be noticed that RLT performs well on data set DA,
DC, DD, DF, DG and DI regarding the MSE. These are the data sets containing several
uninformative variables. Considering the runtime, it is clear that ranger has the lowest
compared to other R-packages.

4.5 Results on frequency distribution of the runtime

In this section the frequency distribution of the runtimes on the data sets is considered.
All the R-packages are run 100 times on the data set BB and BF and the frequency dis-
tribution of the runtimes are displayed in Figure 5 and Figure 6.
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Figure 5: Runtimes of all R-packages on data set BB
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Figure 6: Runtimes of all R-packages on data set BF

From Figure 5 and Figure 6 it is noticeable that the variety in the runtimes of RLT is
more scattered while the variety of the runtimes of the other algorithms is more concen-
trated and with a few outliers. This could be explained by the fact that RLT considers all
variables as splitting candidates, except for the ones that are in the muted set whereas the
other R-packages select mtry random potential splitting candidates and then choose the
optimal split. This is also tested and demonstrated in Figure 7 and Figure 8 where ranger
is run 1000 times on data set BB and BF, respectively. In Figure 7 mtry values of 1 and
5 are used and in Figure 8 mtry values of 1, 8 and 25 are used to see the difference in the
time of the outliers. The R-package ranger was chosen to evaluate this, as this R-package
had been noticed to be the fastest.
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Figure 7: Runtimes of ranger on data set BB

Figure 8: Runtimes of ranger on data set BF

4.6 Results on variable importance

This section shows the results concerning the variable importance. The measures for VI
per R-package has already been discussed in Section 2.3. The methods for measuring VI
considered are:

• Accuracy permutation which is the mean decrease in accuracy using permutation.
This is in the R-packages randomForest, party, randomForestSRC, ranger and
RRF.
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• Node impurity which is the mean decrease in node impurity. This method is accessible
in the R-packages randomForest, ranger and RRF.

• Accuracy random which is the mean decrease in accuracy using random assignment
instead of permutation. This is available in the R-package randomForestSRC.

• Accuracy anti which is the mean decrease in accuracy using opposite assignment
instead of permutation. This one is also available in the R-package randomForest-
SRC.

• Unbiased node impurity which is the unbiased mean decrease in node impurity. This
can be retrieved from the R-package ranger.

• Unbiased accuracy permutation which is the unbiased mean decrease in accuracy
using permutation. This method can be found in the R-package party.

For every data set the variable importance of every method is obtained and presented in
the following tables. The values are obtained by adding the VI over 20 runs and then
normalizing them by the maximum. This is done in order to make it easier to compare the
importance of the variables. In Tables 14, 15 and 16 the VI for data sets AE, BH and DD
are displayed, respectively. The results for the other data sets for the VI can be found in
Appendix B. In the first column, the informative variables are marked in bold.

Table 14: Variable Importance on data set AE per method

Variable Accuracy
permutation

Node
impurity

Accuracy
random

Accuracy
anti

Unbiased
node

impurity

Unbiased
accuracy

permutation
1 100 100 100 100 100 100

2 74.24 45.09 39.08 35.25 36.59 48.06

3 −0.63 7.30 0.75 0.65 0.17 0.10

4 −3.30 6.50 0.01 −0.04 −0.88 −0.40
5 −4.27 6.58 −0.02 −0.03 −1.00 −0.12
6 0.47 7.54 1.05 0.88 0.79 −0.07
7 1.76 7.71 1.02 0.66 0.16 0.56

8 1.72 8.22 1.55 1.51 1.71 0.62

In Table 14 it can be noticed that all methods correctly identify the most important
variables. In addition, accuracy permutation clearly identifies the second variable as more
important than the other methods. Moreover, node impurity assigns compared to the other
methods relatively high variable importance to the uninformative variables.
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Table 15: Variable Importance on data set BH per method

Variable Accuracy
permutation

Node
impurity

Accuracy
random

Accuracy
anti

Unbiased
node

impurity

Unbiased
accuracy

permutation
1 47.97 23.12 24.34 21.59 19.84 17.15

2 100 100 100 100 100 100

3 −0.20 3.00 1.52 1.18 0.70 −0.04
4 −0.81 2.06 0.97 0.71 −0.74 −0.04
5 2.23 3.71 3.51 3.55 1.74 0.03

6 −1.25 2.60 1.65 1.37 −0.06 −0.18
7 −1.30 2.19 0.96 0.86 −0.81 −0.18
8 −0.14 2.61 1.68 1.52 −0.03 −0.09
9 −1.79 3.15 2.75 2.40 0.70 −0.03
10 −0.17 2.78 1.26 1.13 0.11 −0.04
11 −0.95 1.78 0.55 0.41 −1.23 −0.08
12 −0.80 2.04 0.61 0.46 −1.10 −0.07
13 −0.40 2.47 1.11 0.90 −0.36 −0.03
14 −0.73 2.24 0.71 0.50 −0.65 0.09

15 −2.45 3.13 2.92 2.52 0.61 −0.12
16 1.07 2.54 0.83 0.59 −0.21 0.03

17 −1.05 2.23 0.72 0.53 −0.58 −0.01
18 −2.02 2.04 0.55 0.38 −0.95 −0.17
19 −1.56 3.63 2.32 1.85 1.17 −0.15
20 1.70 3.00 2.19 1.97 −0.01 0.03

21 0.38 4.05 2.52 2.16 1.94 0.05

22 −0.01 2.34 1.15 0.88 −0.75 −0.04
23 0.73 2.25 1.19 0.84 −0.64 0.04

24 0.09 3.27 2.49 2.18 0.65 −0.05
25 −0.22 1.95 0.84 0.60 −1.14 −0.12

From Table 15 it is clear that all methods identify the 2 most important variables cor-
rectly. Accuracy permutation identifies the first variable significantly more important than
the other methods. In addition, unbiased accuracy permutation clearly identifies the un-
informative variables, as these have an assigned value very close to 0.
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Table 16: Variable Importance on data set DD per method

Variable Accuracy
permutation

Node
impurity

Accuracy
random

Accuracy
anti

Unbiased
node

impurity

Unbiased
accuracy

permutation
1 14.61 10.30 3.70 4.04 17.51 0.60

2 11.31 3.15 1.42 1.00 4.81 0.41

3 100 100 100 100 100 100

4 4.80 2.09 1.08 0.75 3.43 0.16

5 9.27 4.25 1.44 1.25 8.66 0.38

6 4.63 2.24 0.96 0.69 4.38 0.13

7 13.55 5.98 1.71 1.37 10.99 0.53

8 6.50 3.52 1.78 1.24 6.81 0.35

9 4.96 2.05 0.82 0.61 3.55 0.06

10 13.37 8.68 4.12 3.34 15.19 1.03

11 11.46 5.84 2.04 1.81 11.88 0.52

12 10.14 7.40 2.77 2.27 13.23 0.77

13 6.31 2.25 1.06 0.69 4.39 0.17

14 10.30 6.76 3.31 2.88 12.57 0.89

15 55.33 44.31 28.90 26.82 51.23 24.26

16 2.99 1.36 0.50 0.33 1.95 0.02

17 11.98 8.27 4.01 3.42 13.56 0.45

18 14.93 7.47 3.10 2.55 14.34 1.60

19 0.80 1.40 0.35 0.24 1.20 0.04

20 3.86 2.17 0.94 0.63 3.16 0.10

21 12.10 5.19 2.20 1.86 10.32 0.31

22 9.05 3.36 1.77 1.31 7.13 0.41

23 8.43 3.10 1.70 1.14 5.71 0.11

24 11.03 4.78 2.77 2.58 9.27 0.43

25 8.67 4.65 1.91 1.53 9.52 0.81

From Table 16 it is noticeable that accuracy permutation assigns the highest value to the 2
informative variables. Moreover, unbiased accuracy permutation has again assigned values
very close to 0 for all the uninformative variables compared to the other methods.
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5 Conclusion

The aim of this study is investigate the performance of the random forests in the R-packages
extraTrees, party, randomForestSRC, ranger, RLT, RRF and KnowGRRF and
to provide guidelines on which R-package to use. The performance of the R-packages is
measured on 3 aspects, namely the MSE, the runtime and the VI. Regarding the MSE,
the R-package RLT works well on numerical data, but the runtime of RLT is significantly
higher than the other R-packages. However, the muting percentage should be tuned appro-
priately to the data set. In case of many uninformative variables, the muting percentage
can be chosen higher and in case of many informative variables, it should be kept low. On
data sets with categorical variables, the R-package ranger would be a suitable option, as
the MSE is similar to the other R-packages and the runtime is significantly faster. Focusing
solely on the runtime of the R-packages, it can be concluded from the computations that
the R-package ranger is preferred independent of the type of data. In addition, regarding
the frequency distribution of the runtimes, it can be concluded that a lower value of mtry
increases the chance of having higher outliers in the runtime. This may result from the fact
that a lower value for mtry will give more randomness and increases the chance of selecting
very poor splitting features making the runtime longer. Regarding the VI, several meth-
ods have been analysed, namely accuracy permutation, node impurity, accuracy random,
accuracy anti, unbiased node impurity and unbiased accuracy permutation. From this, it
can be concluded that the accuracy permutation and the unbiased accuracy permutation
identify the important variables most accurately. The former clearly identifies the most
important variables while the latter clearly identifies the true noise variables. Accuracy
permutation can be found in many R-packages whereas unbiased accuracy permutation is
only available in the R-package party. The reason why accuracy permutation performs
better than node impurity, could be attributed to the fact that accuracy permutation ob-
tains its result from a global effect over the whole tree, whereas node impurity acquires
this from local points at every node in the trees.

Below is given a concise conclusion for every analysed R-package.

• extraTrees: compared to randomForest, this R-package is always faster on the
data sets analyzed. This can be explained by the fact that extraTrees chooses the
cut threshold randomly while randomForest chooses the best cut which is compu-
tationally more expensive. However, the performance does not show any significant
difference. The MSE is in every run quite close to the MSE of randomForest.

• party: compared to randomForest, this R-package always performs worse, except
on data set AC and data set AD. These are the categorical data sets with variables
with many classes. As for the runtime, it is in general much slower than random-
Forest. The higher runtime could be caused by performing a significance test to
split the nodes. The results for the MSE, could perhaps be attributed to the settings
for the unbiased trees being not optimally set.

• randomForestSRC: compared to randomForest, this R-package is always faster.
As for the MSE of randomForestSRC, it performs slightly worse than random-
Forest. These results could be explained by the fact that randomForest samples
the data sets without replacement, which is computationally less expensive.

• ranger: compared to randomForest, this R-package is always significantly faster.
It is also the fastest R-package compared to all the other R-packages. The perfor-
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mance is approximately the same as randomForest. The fastness of the algorithm
can be explained by all the methodological decisions made to speed up the algorithm.

• RRF: compared to randomForest, the performance of this R-package and all op-
tional parameters is very similar. No significant improvement of MSE and runtime
on the data sets are made. An option why no significant improvements is made,
could be that the parameters were not chosen optimally.

• RLT: on data sets with numerical variables it performs overall better compared to
randomForest. This can be explained by the fact that RLT considers all variables
for splitting while mtry has not yet be chosen optimally for randomForest. It is
noticeable that on data set BA which only has informative variables, the performance
gets worse when more variables are muted. Similarly, on data set BH which has not
only informative variables, the performance gets better when more variables are
muted. Furthermore, in both cases the performance gets better when the split is
made on a linear combination of 2 variables instead of only one variable. This is
effect is more prominent on datasets where the response variable is predicted by a
linear relation.

• KnowGRRF: compared to randomForest, the MSE of the R-package on the data
sets is improved, especially when only the correct features are chosen. The im-
provement is most prominent on data sets with a lot of uninformative variables. In
addition, the runtime is also often faster, which can be explained by the fact that
the random forest is grown on less variables.

It might be interesting for future research to also look at other R-packages with different
random forest algorithms. Another alternative is to look at the computational complexity
of the algorithms or to use different kinds of data, for example using the sine function or
logarithm.
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A Alternative R-packages

1. R-package adabag. This R-package contains the Adaboost algorithm, which stands
for adaptive boosting. This R-package has not been selected, as it was beyond the
scope of this research.
See: https://CRAN.R-project.org/package=adabag

2. R-package blockForest. This R-package uses block-structured covariate data for
prediction. It was not selected as it was beyond the scope of this research.
See: https://CRAN.R-project.org/package=blockForest

3. R-package drf. It estimates the multivariate conditional distribution based on their
joint conditional distribution. This R-package was not selected as it was relatively a
new method and not yet well documented.
See: https://CRAN.R-project.org/package=drf

4. R-package grf. It gives as output an estimate of the predictive distribution. This
R-package was therefore not selected as it would be complicated to compare to ran-
domForest.
See: https://CRAN.R-project.org/package=grf estimation of predictive distributions

5. R-package h2o. This R-package is an interface for the ’H2O’ Open Source Machine
Learning Platform. It also contains a function for random forest. This R-package
is not selected as random forests are not considered to be the main point of this
R-package.
See: https://CRAN.R-project.org/package=h2o

6. R-package hyperSMURF. This random forest handles highly imbalanced data by
oversampling the minority class and undersampling the majority class. This R-
package was not selected as it cannot be used for regression tasks.
See: https://CRAN.R-project.org/package=hyperSMURF

7. R-package iRF. This R-package grows feature weighted random forests. This R-
package was not selected as it was beyond the scope of this research.
See: https://CRAN.R-project.org/package=iRF

8. R-package JRF. This R-package contains joint random forest for estimating multiple
related networks. This R-package was not chosen as it is not commonly used.
See: https://CRAN.R-project.org/package=JRF

9. R-package LongituRF. It contains a random forest constructed for high-dimensional
longitudinal data. This R-package was not selected as it was too data specific.
See: https://CRAN.R-project.org/package=LongituRF

10. R-package obliqueRF. A random forest that consists of oblique decisions trees. This
R-package was not selected as it could not be used for regression tasks.
See: https://CRAN.R-project.org/package=obliqueRF

11. R-package orf. This R-package is similar to randomForest, but it can also take into
account ordering information of the categorical outcome variable. This R-package
was not chosen as it was beyond the scope of this research.
See: https://CRAN.R-project.org/package=orf
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12. R-package quantreg. This algorithm gives the full conditional distribution of a
response variable. Therefore, this R-package was not selected as the final estimate
would be complicated to compare to randomForest.
See: https://CRAN.R-project.org/package=quantreg

13. R-package RandomForestGLS. This R-package is an extension of random forests
for the case of dependent error processes. This R-package is less widely used.
See: https://CRAN.R-project.org/package=RandomForestsGLS

14. R-package randomUniformForest. The forest is constructed by unpruned trees.
The cut points at each node is selected using the continuous uniform distribution.
This R-package was not selected as it is less commonly used.
See: https://CRAN.R-project.org/package=randomUniformForest

15. R-package Rborist. It is an optimized form of randomForest as it is faster. This
R-package was not selected as the construction of the algorithm was not well docu-
mented.
See: https://CRAN.R-project.org/package=Rborist

16. R-package rFerns. It build a random ferns model of the data. The model is based
on extending the naïve Bayes classifier. This R-package was not selected as it can
only be used for classification tasks.
See: https://CRAN.R-project.org/package=rFerns

17. R-package RGF. This R-package is an interface to a Python implementation of
regularized greedy forests. This R-package was not selected as it was beyond the
scope of this study.
See: https://CRAN.R-project.org/package=RGF

18. R-package rotationForest. This method obtains its predicted value using feature
extraction. This R-package was not chosen as it only works for classification.
See: https://CRAN.R-project.org/package=rotationForest

19. R-package trtf. In this R-package a transformation is grown using transformation
trees. It can detect distributional changes and it gives as output value an estimation
of the conditional distribution function. This R-package was not chosen, as the final
estimate would be difficult to compare to randomForest.
See: https://CRAN.R-project.org/package=trtf

20. R-package wsrf. It implements an alternative variable weighting method for variable
subspace selection. This R-package was not selected as it can only be used for
classification.
See: https://CRAN.R-project.org/package=wsrf
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B Supplementary results on variable importance

Table 17: Variable Importance on data set AA per method

Variable Accuracy
permutation

Node
impurity

Accuracy
random

Accuracy
anti

Unbiased
node

impurity

Unbiased
accuracy

permutation
1 44.29 43.21 25.26 18.16 31.67 27.57

2 16.05 22.66 6.12 3.73 8.97 6.45

3 4.84 17.81 2.64 1.66 2.56 2.35

4 43.08 40.49 23.91 17.52 32.92 24.13

5 41.61 38.55 20.66 13.46 28.67 20.22

6 13.42 21.77 5.41 3.34 11.96 3.08

7 67.41 68.96 46.33 37.06 67.00 79.70

8 9.83 22.09 3.87 2.89 11.63 3.89

9 100 100 100 100 100 100

10 27.64 29.33 11.37 7.61 16.86 13.16

11 5.62 18.95 2.60 1.65 3.58 2.06

12 12.50 18.69 4.40 2.52 2.14 1.24

13 29.24 30.38 13.02 8.50 14.76 13.56

14 6.17 19.45 2.83 1.51 2.39 1.34

15 8.93 18.75 2.52 1.36 2.55 0.92

16 43.63 50.22 25.37 22.41 47.45 38.76

Table 18: Variable Importance on data set AB per method

Variable Accuracy
permutation

Node
impurity

Accuracy
random

Accuracy
anti

Unbiased
node

impurity

Unbiased
accuracy

permutation
1 97.91 97.84 100 100 97.72 65.82

2 37.27 39.45 22.39 17.71 19.00 14.66

3 12.84 27.82 8.80 5.91 2.53 4.22

4 96.05 88.58 93.45 85.84 84.54 68.75

5 91.76 82.63 81.35 69.82 74.71 55.14

6 46.10 46.12 32.25 26.10 33.37 18.24

7 100 100 98.06 90.02 100 100

8 10.58 30.18 9.39 7.40 11.99 5.47
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Table 19: Variable Importance on data set AC per method

Variable Accuracy
permutation

Node
impurity

Accuracy
random

Accuracy
anti

Unbiased
node

impurity

Unbiased
accuracy

permutation
1 96.97 98.01 100 100 6.80 65.74

2 16.61 64.88 22.30 18.64 1.19 −1.63
3 68.27 84.82 56.41 53.02 14.47 43.02

4 100 100 88.16 88.52 60.81 100

5 54.67 86.55 56.81 57.66 100 41.71

6 67.96 81.86 56.57 55.27 41.65 45.85

7 50.90 80.39 43.42 42.05 30.76 8.85

8 87.33 88.63 71.57 73.22 76.37 28.40

Table 20: Variable Importance on data set AD per method

Variable Accuracy
permutation

Node
impurity

Accuracy
random

Accuracy
anti

Unbiased
node

impurity

Unbiased
accuracy

permutation
1 94.86 31.97 80.16 85.32 91.06 75.37

2 37.91 16.15 37.68 32.07 32.84 30.07

3 1.95 9.26 2.39 1.55 1.71 1.15

4 100 33.97 100 100 100 100

5 91.24 96.77 38.71 29.63 26.22 86.09

6 16.51 69.57 14.70 9.95 0.06 18.39

7 65.05 92.28 28.49 22.24 29.27 38.70

8 86.73 100 27.25 21.85 21.00 56.58

Table 21: Variable Importance on data set AF per method

Variable Accuracy
permutation

Node
impurity

Accuracy
random

Accuracy
anti

Unbiased
node

impurity

Unbiased
accuracy

permutation
1 81.43 70.56 98.01 93.08 68.20 66.53

2 36.29 19.12 17.94 13.97 10.82 8.40

3 8.38 11.95 9.33 6.68 4.66 1.32

4 83.94 100 100 100 100 85.44

5 73.09 39.51 55.09 45.84 33.75 37.51

6 54.73 36.41 47.47 42.73 35.99 27.93

7 100 91.78 84.49 78.69 90.18 100

8 9.70 5.55 5.54 4.23 −1.38 1.32
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Table 22: Variable Importance on data set BA per method

Variable Accuracy
permutation

Node
impurity

Accuracy
random

Accuracy
anti

Unbiased
node

impurity

Unbiased
accuracy

permutation
1 34.13 38.66 34.60 33.37 9.46 13.06

2 100 100 100 100 100 100

3 23.21 38.60 21.68 19.94 13.69 12.49

4 74.92 67.91 59.84 58.97 52.40 48.87

5 51.01 50.20 39.94 39.55 26.47 27.69

Table 23: Variable Importance on data set BB per method

Variable Accuracy
permutation

Node
impurity

Accuracy
random

Accuracy
anti

Unbiased
node

impurity

Unbiased
accuracy

permutation
1 0.95 18.12 7.02 5.82 1.62 0.58

2 100 100 100 100 100 100

3 −4.27 17.94 10.72 11.07 1.66 −1.15
4 −5.69 18.44 15.72 16.12 1.93 −1.83
5 0.49 17.49 8.21 8.23 0.86 0.12

Table 24: Variable Importance on data set BC per method

Variable Accuracy
permutation

Node
impurity

Accuracy
random

Accuracy
anti

Unbiased
node

impurity

Unbiased
accuracy

permutation
1 100 100 100 100 100 100

2 1.45 16.87 9.26 8.41 1.56 0.01

3 −3.38 16.80 9.09 8.08 1.55 0.27

4 1.14 15.06 7.20 6.17 −1.22 0.48

5 −1.30 17.50 8.79 7.51 2.86 −0.11

Table 25: Variable Importance on data set BD per method

Variable Accuracy
permutation

Node
impurity

Accuracy
random

Accuracy
anti

Unbiased
node

impurity

Unbiased
accuracy

permutation
1 100 100 100 100 100 80.60

2 91.63 90.83 97.22 97.64 89.00 100

3 −1.83 33.83 20.62 18.92 5.40 1.39

4 −6.67 37.00 37.86 40.53 11.52 −2.96
5 1.35 33.63 17.35 15.09 3.99 1.72
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Table 26: Variable Importance on data set BE per method

Variable Accuracy
permutation

Node
impurity

Accuracy
random

Accuracy
anti

Unbiased
node

impurity

Unbiased
accuracy

permutation
1 74.83 71.33 74.11 72.19 41.63 44.99

2 61.55 76.33 84.72 82.68 52.93 59.04

3 100 100 100 100 100 100

4 80.45 80.25 80.03 78.07 58.72 61.97

5 70.05 67.82 62.44 59.51 34.60 56.90

Table 27: Variable Importance on data set BF per method

Variable Accuracy
permutation

Node
impurity

Accuracy
random

Accuracy
anti

Unbiased
node

impurity

Unbiased
accuracy

permutation
1 −2.93 21.65 4.53 1.84 −7.72 −1.63
2 88.22 94.39 100 100 89.34 50.58

3 −17.23 21.17 7.09 3.08 −5.40 −1.58
4 10.06 35.57 37.00 30.45 14.03 −1.30
5 54.61 58.75 48.32 39.95 48.48 29.81

6 13.76 37.71 22.65 16.52 19.31 6.18

7 38.25 49.35 43.47 35.49 33.07 9.54

8 1.02 25.40 8.19 4.48 −0.11 0.18

9 97.75 86.31 72.28 75.42 79.41 45.05

10 37.56 39.28 20.02 17.26 19.83 10.79

11 100 100 86.80 84.93 100 100

12 5.77 43.17 30.99 25.08 24.05 −1.89
13 33.37 33.13 15.86 9.96 8.94 7.64

14 11.40 40.50 20.58 12.94 18.38 4.10

15 40.15 41.69 34.21 27.51 23.69 3.10

16 5.47 21.28 5.48 2.09 −6.34 0.60

17 53.08 57.36 43.48 34.32 39.54 15.92

18 26.81 36.61 22.03 15.89 16.85 11.59

19 41.52 57.58 28.06 22.35 44.59 29.29

20 5.79 24.98 10.49 5.52 −0.66 1.20

21 59.49 56.68 41.74 37.06 43.60 24.65

22 44.71 52.47 40.27 33.62 40.95 26.13

23 47.48 45.96 30.26 23.69 27.73 17.54

24 6.06 24.88 8.50 4.80 −4.63 −0.02
25 61.16 61.05 36.40 29.54 54.08 33.23
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Table 28: Variable Importance on data set BG per method

Variable Accuracy
permutation

Node
impurity

Accuracy
random

Accuracy
anti

Unbiased
node

impurity

Unbiased
accuracy

permutation
1 0.66 2.43 0.83 0.78 0.55 0.03

2 100 100 100 100 100 100

3 −0.59 2.94 1.40 1.19 0.82 −0.15
4 −0.69 1.60 0.59 0.43 −0.71 −0.14
5 0.44 1.73 1.50 1.48 −0.42 −0.07
6 −0.72 1.87 1.11 0.96 −0.20 0.07

7 −0.64 1.58 0.67 0.56 −0.67 −0.10
8 −0.43 2.03 1.05 0.93 −0.22 −0.09
9 −2.54 3.24 3.94 3.51 1.00 −0.07
10 1.14 3.14 1.53 1.49 1.17 0.05

11 −0.85 1.44 0.47 0.45 −0.86 −0.06
12 −0.43 1.69 0.87 0.79 −0.54 −0.04
13 −0.90 1.70 0.64 0.55 −0.68 0.01

14 0.38 1.71 0.70 0.58 −0.58 0.10

15 −1.94 1.82 1.40 1.31 −0.38 −0.05
16 0.26 1.87 0.66 0.49 −0.37 0.03

17 1.26 2.31 0.97 0.91 0.21 0.10

18 −1.69 1.41 0.47 0.37 −0.74 −0.21
19 −1.60 2.63 1.53 1.24 0.60 −0.16
20 0.15 2.53 2.08 1.93 0.54 −0.01
21 −1.03 2.27 1.83 1.58 0.12 −0.00
22 0.09 1.99 0.66 0.58 −0.12 −0.07
23 0.25 1.56 0.56 0.43 −0.96 0.03

24 −0.13 1.86 1.34 1.08 −0.44 0.00

25 −0.34 1.56 0.48 0.38 −0.91 −0.01

Table 29: Variable Importance on data set BI per method

Variable Accuracy
permutation

Node
impurity

Accuracy
random

Accuracy
anti

Unbiased
node

impurity

Unbiased
accuracy

permutation
1 42.38 18.55 17.50 15.50 17.09 16.17
2 100 100 100 100 100 100
3 0.81 1.74 0.54 0.45 0.25 0.03
4 -1.27 0.97 0.20 0.13 -0.51 -0.04
5 -0.02 1.13 0.62 0.55 -0.37 -0.04
6 -1.13 1.04 0.31 0.19 -0.69 0.04
7 -0.25 1.27 0.74 0.58 -0.20 -0.02
8 1.03 1.29 0.52 0.45 -0.16 -0.01
9 1.31 1.87 2.03 1.73 0.40 0.10
10 -0.98 1.49 0.74 0.66 -0.03 -0.01
11 -0.40 1.12 0.25 0.16 -0.19 0.05

Continued on next page
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Table 29 – continued from previous page

Variable Accuracy
permutation

Node
impurity

Accuracy
random

Accuracy
anti

Unbiased
node

impurity

Unbiased
accuracy

permutation
12 0.02 0.92 0.10 0.06 -0.70 -0.03
13 0.38 1.52 0.81 0.66 0.48 -0.00
14 -0.36 1.28 0.35 0.31 -0.36 0.03
15 -0.74 2.16 2.25 1.75 0.48 -0.14
16 3.58 2.18 2.46 1.76 0.58 -0.01
17 0.68 1.71 0.89 0.74 0.35 0.04
18 0.04 0.93 0.20 0.15 -0.42 -0.01
19 -2.03 2.24 1.81 1.34 0.84 -0.22
20 -0.96 0.86 0.11 0.07 -0.69 -0.02
21 0.17 1.56 0.58 0.42 0.07 0.06
22 -1.07 1.07 0.39 0.28 -0.39 -0.02
23 -0.00 3.36 1.80 1.53 2.47 0.06
24 -0.15 1.28 0.43 0.31 -0.22 -0.00
25 -0.80 0.97 0.16 0.13 -0.49 -0.05
26 -0.63 1.18 0.37 0.26 -0.27 0.00
27 -0.40 0.90 0.26 0.17 -0.59 -0.02
28 -0.11 1.08 0.62 0.53 -0.42 0.01
29 -0.73 0.76 0.18 0.13 -0.76 -0.02
30 -0.79 1.92 1.65 1.21 0.75 -0.03
31 0.13 1.21 0.38 0.32 -0.45 0.02
32 -1.09 1.47 0.96 0.72 0.00 0.00
33 -1.47 1.21 0.44 0.36 -0.30 -0.07
34 -0.98 0.93 0.20 0.14 -0.87 -0.01
35 -0.16 1.16 0.55 0.42 -0.41 -0.06
36 -0.06 1.58 0.52 0.47 0.13 -0.03
37 -0.37 1.54 0.36 0.27 0.47 -0.02
38 0.25 1.30 0.51 0.39 -0.39 -0.01
39 0.15 1.26 0.38 0.27 -0.45 -0.03
40 -0.33 0.94 0.26 0.19 -0.71 -0.06
41 0.22 1.77 1.27 1.00 0.33 -0.01
42 -0.37 1.20 0.33 0.23 -0.34 -0.08
43 -1.54 0.95 0.37 0.26 -0.76 -0.02
44 1.64 2.79 0.67 0.56 1.97 0.16
45 2.62 2.17 1.26 1.17 1.28 0.20
46 0.14 1.17 0.32 0.22 -0.33 0.08
47 -0.71 0.97 0.28 0.20 -0.80 0.00
48 -1.13 1.70 0.85 0.72 0.38 -0.02
49 -0.18 1.56 0.32 0.22 0.08 0.02
50 0.15 1.45 0.53 0.42 -0.13 0.01
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Table 30: Variable Importance on data set CA per method

Variable Accuracy
permutation

Node
impurity

Accuracy
random

Accuracy
anti

Unbiased
node

impurity

Unbiased
accuracy

permutation
1 7.75 8.17 2.24 1.51 3.38 0.79

2 −2.23 4.68 0.02 −0.00 −0.42 −0.14
3 1.87 4.98 0.69 0.59 0.60 −0.02
4 21.54 17.54 12.67 12.07 21.81 5.35

5 6.09 6.84 2.50 2.09 4.42 1.37

6 6.88 6.53 1.99 1.48 2.95 1.47

7 1.47 5.69 0.59 0.45 0.83 0.12

8 0.22 4.89 0.05 0.09 −0.66 −0.10
9 46.78 44.35 31.71 26.26 35.53 18.79

10 −1.79 14.32 5.70 3.88 1.00 −0.07
11 20.31 22.99 14.93 11.04 11.03 4.93

12 18.42 23.27 12.57 9.01 9.72 3.65

13 63.77 63.23 46.49 42.41 58.38 46.92

14 13.39 21.46 11.69 8.85 9.56 2.76

15 100 100 100 100 100 100

16 17.93 24.05 11.73 8.52 10.94 2.59

Table 31: Variable Importance on data set CB per method

Variable Accuracy
permutation

Node
impurity

Accuracy
random

Accuracy
anti

Unbiased
node

impurity

Unbiased
accuracy

permutation
1 −4.41 5.84 −0.41 −0.32 −0.36 −0.92
2 7.87 9.32 2.85 2.14 5.85 2.85

3 37.10 44.40 26.62 18.91 32.58 19.44

4 1.44 21.81 5.10 3.58 4.15 −0.03
5 28.25 37.03 19.52 13.78 21.41 13.85

6 26.42 39.02 27.06 21.11 24.07 12.38

7 35.32 41.37 21.97 15.74 27.37 18.89

8 25.17 35.69 21.25 16.43 23.84 10.29

9 62.08 77.45 56.32 50.84 71.25 65.62

10 1.53 19.71 10.34 6.84 0.40 1.07

11 47.61 66.15 54.89 45.27 59.60 32.80

12 11.39 27.13 11.18 7.84 13.12 4.02

13 75.93 83.04 63.17 55.52 79.86 78.21

14 0.51 20.51 5.25 3.51 −0.89 −0.40
15 100 100 100 100 100 100

16 30.46 40.87 19.29 14.77 32.13 27.19
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Table 32: Variable Importance on data set CC per method

Variable Accuracy
permutation

Node
impurity

Accuracy
random

Accuracy
anti

Unbiased
node

impurity

Unbiased
accuracy

permutation
1 19.82 12.78 9.36 7.89 12.60 8.06

2 8.42 8.19 2.62 1.81 3.52 1.76

3 1.53 5.79 0.83 0.53 1.49 −0.22
4 36.79 25.20 24.14 24.17 28.34 16.40

5 9.08 7.52 2.61 1.88 2.94 1.19

6 9.55 9.19 4.14 3.08 6.52 1.68

7 14.74 10.71 6.35 5.44 9.70 6.25

8 −1.30 4.44 0.02 −0.01 −0.88 −0.11
9 46.74 26.56 30.31 28.76 28.44 30.18

10 4.81 6.46 1.71 1.36 0.95 0.49

11 0.48 5.57 0.62 0.38 0.61 −0.11
12 0.21 4.86 0.23 0.12 −0.04 0.03

13 4.79 6.18 1.59 0.98 2.11 0.43

14 3.95 5.80 1.52 1.05 1.86 0.69

15 100 100 100 100 100 100

16 3.84 15.41 6.52 4.61 1.39 0.61
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Table 33: Variable Importance on data set DA per method

Variable Accuracy
permutation

Node
impurity

Accuracy
random

Accuracy
anti

Unbiased
node

impurity

Unbiased
accuracy

permutation
1 12.57 9.73 3.73 3.37 14.58 1.13

2 28.13 26.43 15.38 15.91 33.10 7.61

3 100 100 100 100 100 100

4 20.49 16.01 8.48 7.46 22.34 4.08

5 6.95 6.38 2.55 2.12 9.77 0.51

6 0.50 2.50 0.73 0.49 1.69 −0.07
7 0.28 1.87 0.54 0.33 0.14 −0.02
8 −1.64 1.73 0.47 0.33 −0.51 −0.04
9 0.10 2.04 0.50 0.30 −0.02 −0.03
10 0.16 2.37 0.58 0.37 0.82 0.01

11 4.22 2.77 1.33 0.90 1.20 0.02

12 2.22 2.50 0.84 0.56 0.98 −0.04
13 6.48 3.63 1.65 1.12 2.64 0.31

14 26.20 12.14 6.73 5.34 15.25 3.12

15 65.59 31.78 29.79 24.84 34.36 33.41

16 10.25 4.49 1.74 1.22 4.83 0.25

17 6.20 4.87 2.57 1.87 5.06 0.17

18 1.90 2.43 0.98 0.64 1.19 0.06

19 −0.24 1.96 0.70 0.61 0.49 −0.08
20 −0.15 1.58 0.46 0.31 −0.44 −0.03
21 −0.59 1.44 0.34 0.21 −0.87 −0.02
22 −0.23 1.64 0.40 0.25 −0.55 −0.00
23 −0.07 1.99 0.43 0.30 0.11 0.02

24 −0.87 1.64 0.45 0.30 −0.61 0.01

25 −1.73 1.46 0.22 0.12 −0.96 −0.04
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Table 34: Variable Importance on data set DB per method

Variable Accuracy
permutation

Node
impurity

Accuracy
random

Accuracy
anti

Unbiased
node

impurity

Unbiased
accuracy

permutation
1 43.62 28.66 29.07 20.47 24.20 9.64

2 56.60 34.14 38.52 27.90 32.87 11.44

3 71.61 58.19 60.10 44.30 58.26 21.16

4 57.22 39.00 38.31 27.23 38.14 10.68

5 82.87 73.38 69.83 58.47 72.66 34.06

6 78.65 65.24 60.57 48.43 66.43 27.68

7 56.65 37.53 31.99 23.34 36.37 9.89

8 69.81 51.28 46.44 36.08 52.44 33.87

9 52.90 36.41 31.61 22.86 35.58 11.62

10 77.47 64.15 58.67 50.92 65.52 22.01

11 62.70 48.22 39.21 31.62 49.45 14.46

12 95.95 95.68 92.52 88.67 92.56 39.09

13 54.84 36.10 28.31 22.01 41.20 9.90

14 94.66 93.82 79.51 74.44 92.59 28.42

15 100 100 100 100 100 100

16 53.20 34.59 26.61 21.29 38.78 5.04

17 64.49 41.72 37.03 27.53 43.38 10.16

18 77.36 50.74 51.26 40.24 51.08 18.30

19 71.99 62.08 53.88 46.59 61.19 23.24

20 58.88 40.66 43.66 30.84 39.41 13.23

21 79.47 63.15 62.57 47.10 63.10 33.76

22 79.31 57.90 57.66 43.40 56.36 32.31

23 29.84 18.10 14.99 10.05 11.69 1.81

24 60.22 35.24 34.44 24.15 32.26 10.97

25 36.04 22.80 19.17 13.45 16.81 3.01
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Table 35: Variable Importance on data set DC per method

Variable Accuracy
permutation

Node
impurity

Accuracy
random

Accuracy
anti

Unbiased
node

impurity

Unbiased
accuracy

permutation
1 3.92 12.54 6.76 4.85 8.81 11.05

2 84.63 77.52 72.04 64.74 78.97 66.59

3 100 100 100 100 100 100

4 21.89 24.39 19.75 18.27 24.65 9.98

5 13.73 21.16 14.25 11.67 20.31 −1.11
6 68.54 50.58 26.97 19.90 49.96 42.91

7 71.60 49.83 26.86 18.90 49.52 27.65

8 8.68 12.41 3.78 2.70 7.95 8.18

9 −1.72 6.49 2.05 1.34 −0.86 1.72

10 2.32 9.49 4.61 3.56 2.84 7.96

11 −6.25 10.56 3.29 2.27 4.41 −2.80
12 41.87 27.47 17.58 13.11 23.81 15.57

13 −3.97 7.01 1.85 1.22 −1.27 −1.18
14 3.84 8.32 1.64 1.11 1.28 −0.32
15 2.13 11.33 3.21 2.15 3.47 4.79

16 0.02 8.26 1.59 1.02 0.19 −2.08
17 4.96 9.84 2.28 1.83 2.53 −1.85
18 7.73 7.63 1.09 0.71 −2.03 −0.04
19 4.87 8.88 3.91 2.87 1.45 −3.47
20 13.89 12.29 2.91 2.10 7.52 21.38

21 −4.58 9.55 4.05 2.59 1.94 −2.75
22 −6.90 7.40 2.99 1.92 −1.09 −3.86
23 −6.90 16.51 14.76 12.21 12.92 −1.36
24 4.72 18.85 13.62 10.68 14.30 9.70

25 8.94 7.78 2.09 1.34 −1.59 6.40
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Table 36: Variable Importance on data set DE per method

Variable Accuracy
permutation

Node
impurity

Accuracy
random

Accuracy
anti

Unbiased
node

impurity

Unbiased
accuracy

permutation
1 69.15 58.24 57.39 58.15 68.86 29.93

2 43.73 8.93 13.55 8.05 14.11 7.89

3 74.11 39.70 47.66 32.93 54.01 46.92

4 52.98 12.51 16.66 10.51 20.01 8.20

5 73.71 36.59 40.88 30.81 48.77 39.58

6 67.11 18.96 26.34 17.32 28.29 23.45

7 66.58 22.95 28.61 20.06 34.02 18.68

8 58.85 26.86 34.40 24.92 41.58 25.16

9 62.55 20.14 26.07 16.96 30.12 23.34

10 83.02 40.15 50.53 33.32 48.93 46.05

11 72.23 55.56 52.89 46.86 68.81 45.15

12 100 100 100 100 100 100

13 47.90 11.18 15.95 9.30 16.64 6.94

14 74.35 27.27 36.91 24.19 35.83 24.08

15 90.97 86.46 81.95 79.50 90.18 79.48

16 45.45 10.73 14.47 9.41 18.30 7.15

17 70.21 28.71 34.84 21.81 36.97 16.36

18 74.15 40.04 44.87 33.59 55.62 40.43

19 59.33 16.66 24.17 15.81 25.68 17.91

20 45.57 10.06 15.22 9.75 18.09 5.63

21 79.55 36.69 50.38 35.74 51.99 50.65

22 69.68 24.07 33.12 22.92 33.45 30.89

23 64.26 22.47 29.58 19.13 30.92 16.40

24 64.35 35.16 39.51 33.11 48.12 30.01

25 78.61 52.07 56.36 46.26 66.00 62.41
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Table 37: Variable Importance on data set DF per method

Variable Accuracy
permutation

Node
impurity

Accuracy
random

Accuracy
anti

Unbiased
node

impurity

Unbiased
accuracy

permutation
1 14.02 14.05 22.19 18.78 13.97 3.60

2 75.02 68.79 90.51 78.68 73.83 53.16

3 81.08 93.95 100 100 94.82 100

4 22.41 14.43 13.73 11.05 13.95 8.62

5 2.98 15.52 21.33 18.78 17.41 5.68

6 45.74 30.70 20.87 14.01 31.08 19.12

7 61.20 39.21 37.35 28.82 46.47 27.85

8 21.25 27.51 36.31 30.03 29.46 12.93

9 29.13 15.32 11.04 7.60 15.10 19.81

10 49.93 52.19 47.47 44.36 61.28 46.37

11 46.00 44.70 53.63 44.64 51.82 32.17

12 81.51 52.17 59.08 46.13 57.81 42.96

13 8.20 18.90 18.66 16.69 20.73 17.63

14 24.37 13.85 9.19 6.31 13.05 9.41

15 37.19 23.37 17.55 14.15 25.77 47.94

16 18.89 15.76 16.57 12.62 14.72 3.08

17 55.90 62.20 47.41 36.54 71.04 22.77

18 33.92 17.75 28.62 23.95 19.47 9.24

19 20.53 22.58 29.75 23.54 25.34 6.71

20 24.90 13.96 19.32 16.98 13.87 39.28

21 23.51 21.70 25.48 21.24 26.01 8.41

22 5.69 9.29 7.87 6.48 5.94 0.75

23 25.41 29.97 36.64 35.06 33.35 9.28

24 100 100 93.77 75.61 100 58.93

25 2.69 22.06 26.69 24.48 26.66 19.96
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Table 38: Variable Importance on data set DG per method

Variable Accuracy
permutation

Node
impurity

Accuracy
random

Accuracy
anti

Unbiased
node

impurity

Unbiased
accuracy

permutation
1 28.69 22.55 7.85 9.53 34.17 1.03

2 14.41 3.31 1.38 1.20 9.91 0.44

3 100 100 100 100 100 100

4 15.06 2.34 0.61 0.98 5.78 0.56

5 19.46 3.81 1.80 1.20 10.27 1.11

6 15.06 3.45 1.51 1.16 10.35 0.29

7 25.02 9.61 3.58 3.02 19.66 1.99

8 13.97 3.30 1.73 1.10 8.59 1.42

9 16.00 4.07 1.62 1.28 11.09 0.58

10 21.92 6.45 4.09 2.81 16.10 3.20

11 19.47 7.26 2.97 2.77 18.46 1.73

12 21.69 10.67 3.57 3.32 22.92 1.67

13 15.75 3.10 1.74 1.23 10.04 0.75

14 20.37 6.42 4.83 3.34 14.86 1.66

15 58.89 47.65 29.51 27.70 60.71 32.43

16 11.32 2.82 1.37 1.12 8.78 0.16

17 22.07 7.19 3.53 2.34 15.78 1.24

18 25.11 7.01 4.49 3.01 16.72 3.45

19 9.55 1.22 0.47 0.34 3.77 0.15

20 15.36 4.58 1.91 1.68 13.10 0.51

21 23.08 10.95 5.77 4.83 23.29 1.61

22 15.02 2.87 1.48 1.00 8.54 0.64

23 20.35 6.61 3.48 2.52 16.84 1.89

24 19.46 5.49 3.71 2.58 15.16 1.75

25 17.99 7.37 3.96 3.23 18.12 1.72
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Table 39: Variable Importance on data set DH per method

Variable Accuracy
permutation

Node
impurity

Accuracy
random

Accuracy
anti

Unbiased
node

impurity

Unbiased
accuracy

permutation
1 72.40 52.87 56.14 55.04 67.68 23.48

2 48.19 8.41 14.16 9.01 18.53 8.04

3 68.15 26.37 36.68 26.85 44.63 58.48

4 73.28 8.10 16.69 9.28 16.56 13.87

5 84.99 24.72 38.11 21.47 35.95 46.93

6 66.02 13.58 22.23 13.37 28.33 21.51

7 70.46 13.42 18.90 11.82 24.69 20.27

8 72.64 10.25 22.00 11.95 20.26 27.47

9 70.13 15.43 25.00 15.55 29.41 26.14

10 77.73 19.44 32.16 20.10 35.08 61.90

11 77.05 40.16 52.93 40.89 61.06 81.25

12 100 100 100 100 100 100

13 65.74 9.09 17.95 9.89 17.83 12.70

14 65.38 23.91 33.04 23.90 37.54 19.17

15 87.45 72.84 75.98 71.11 83.42 89.17

16 59.50 32.74 35.39 31.97 48.63 13.03

17 85.64 18.79 31.64 17.25 27.24 20.45

18 96.89 25.11 44.21 23.96 36.12 64.12

19 65.59 9.02 17.50 10.06 19.69 25.12

20 47.57 13.30 16.78 11.94 26.81 8.55

21 73.70 36.16 47.52 36.80 54.07 50.48

22 64.48 11.04 20.15 11.62 22.85 20.49

23 82.47 29.54 43.72 26.13 41.39 53.53

24 58.80 22.38 29.72 20.72 41.26 33.53

25 81.30 31.63 49.13 33.35 48.45 79.70
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Table 40: Variable Importance on data set DI per method

Variable Accuracy
permutation

Node
impurity

Accuracy
random

Accuracy
anti

Unbiased
node

impurity

Unbiased
accuracy

permutation
1 31.57 11.46 34.36 36.96 16.29 6.35

2 63.36 35.24 68.78 71.01 48.21 40.49

3 68.47 51.50 70.75 75.75 69.26 100

4 29.72 11.67 32.89 29.76 20.43 11.63

5 36.53 19.74 36.95 35.79 28.95 31.73

6 58.18 20.95 43.56 39.66 34.09 35.84

7 91.86 49.18 46.58 43.47 59.64 43.83

8 42.14 25.17 42.30 40.49 33.15 29.85

9 41.14 15.38 22.90 21.31 19.56 32.14

10 63.87 50.88 78.11 82.98 63.64 62.96

11 60.40 27.12 25.21 23.38 41.83 84.20

12 93.24 31.71 48.24 44.37 38.76 48.34

13 32.50 14.35 42.64 40.84 26.48 29.42

14 36.94 40.25 48.20 46.57 51.66 13.63

15 45.57 17.32 26.20 26.64 27.43 96.39

16 43.12 19.16 40.52 36.30 29.31 11.84

17 72.30 51.01 45.31 37.98 60.33 47.99

18 56.37 23.31 54.16 51.61 38.53 51.84

19 28.78 12.22 33.49 34.04 19.06 15.19

20 24.12 8.27 29.07 29.80 20.70 9.47

21 42.93 32.57 52.47 53.30 46.42 23.18

22 45.05 14.61 35.58 34.25 27.00 12.13

23 66.69 57.14 71.28 71.03 69.58 62.96

24 100 100 100 100 100 52.09

25 48.57 37.39 55.64 55.43 52.31 37.31
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