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ABSTRACT 

To implement artificial neural networks on embedded systems, it is desirable to compute them using 

specifically designed hardware. Making this hardware can currently be done with high-level synthesis 

tools, but these often do not offer a developer enough transparency and options. A new design flow is 

presented that incorporates the modern functional hardware description language Clash. This design 

flow allows the developer to scale the implementation to their needs.  
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1 INTRODUCTION 

Machine learning has shown to be a capable tool in tackling many tasks within computer engineering. 

For many of these tasks, it is also beneficial to implement them on embedded systems, such as small 

robots [1]. Embedded systems have limitations that are not as prevalent as in general computing. There 

are often strict timing constraints, such as in real-time systems, or little power is available. Because 

some machine learning algorithms, like artificial neural networks (ANN), generally use a lot of computing 

power, they are not easily implemented within these constraints. A solution could be to transfer the 

computations to an FPGA or an ASIC. Because they can perform many of the calculations in parallel. 

FPGAs and ASICs will often use less power than a general-purpose processor would use for the same 

computation.  

Translating an ANN to an FPGA is currently not accessible to the computer engineers building the 

machine learning applications. It requires a different mindset and proficiency in a different field to 

develop an application in a hardware description language (HDL), compared to the data science 

knowledge needed for machine learning applications. A computer engineer attempting to offload work 

to an FPGA or an ASIC could use a general ANN accelerator. General ANN accelerators often support 

a wide variety of networks. For these general-purpose accelerators to support such a broad set of 

architectures, they will introduce more overhead than desired. 

Much research has been conducted into the effort of translating software implementations to 

hardware implementations. High-level synthesis (HLS) tools are developed for this purpose, which can 

translate C-like software to HDL. However, these tools offer little to no transparency in the compilation 

process. This can result in unforeseen consequences from small changes in the software 

implementation. Thus, limiting the control of the developer. 

A better intermediate language could be a functional language like Haskell, as it does not describe 

the steps to be taken by a processor but the relationship between input and output. 

In the software development community, flexible platforms for data scientists already exist, e.g., 

TensorFlow [2], Caffe [3], and Theano [4]. These offer a unified interface to build and test networks on 

various computing platforms, like CPU, GPU, TPU, and cloud computing facilities. The same would be 

useful for the development process from high-level software implementations to custom hardware 

accelerators.  

In this report we discuss the current status of using a different design flow to translate the artificial 

neural networks to an FPGA, namely using Clash. 

1.1 Problem statement 

The current HLS based systems do not offer enough transparency. The trade-off between resource 

usage and execution time is hard to make within these current tools.  

To build a flexible platform we need some intermediary steps, and in this research, we investigate 

whether Clash is useful in this process, thus we come to the following research question: 

How can Clash be used in a design flow from a software artificial neural network implementation to 

a hardware accelerator? 

To answer this main question, we will first investigate the following sub-questions: 

1. Can a design flow including Clash offer a developer an interface for making a time-area trade-

off? 

2. Can a design flow including Clash offer the developer transparency in their design choices?  

3. How much flexibility does a design flow including Clash offer? 

1.2 Overview of the report 

In chapter 2, the background knowledge, needed for this report, is discussed. Such as the machine 

learning terms, their meaning, and the tools used while creating the design flow.  

In chapter 3, related works, relevant papers researching aspects important for this research are 

summarized. Afterwards, we summarize the importance of the findings from the related works. 

In chapter 4, design space exploration, the broadest scope of developing any design flow is 

narrowed. We see that it is best to start from an existing framework, construct a compiler that will 
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translate from this framework to Clash. The framework is a library that eases the network creation, while 

the compiler eases the translation to FPGA. 

In chapter 5, we discuss how to implement the design flow chosen in chapter 4. Which languages to 

use for which purpose and the predefined building blocks used by the created compiler are discussed. 

In chapter 6, the resulting design flow is discussed. Firstly we discuss how it works, then we show 

an example of it being used and we show the characteristics of the resulting implementation. 

In chapter 7, we examine the resulting design flow and its performance to answer the questions from 

the problem statement. 

Finally, in chapter 8, the future improvements and possibilities are discussed. 
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2 BACKGROUND 

2.1 Artificial neural networks 

Artificial neural networks are a part of the study of machine learning (ML). Machine learning is a 

device used in computer science when problems that need to be solved, become too abstract to write 

a direct algorithm to calculate solutions. Instead, the algorithms will be trained to produce the correct 

behaviour. This behaviour is not based on logic predefined by the developer but based on relations the 

system learns itself.  

Examples of machine learning algorithms are decision trees, support-vector machines, Bayesian 

networks, genetic algorithms, artificial neural networks, and Q-learning. These approaches differ in what 

challenges they excel at and are thus used for different purposes.  

In this project, the developed design flow is focused on the artificial neural network. Other machine 

learning algorithms will not be discussed in similar detail. Neural networks are most computationally 

demanding and will thus benefit the most from acceleration by an FPGA or ASIC. In the following 

sections, we will discuss from the basis of the artificial neural network, the perceptron, to the extension, 

the convolutional neural network, which was used in the project. 

2.1.1 Machine learning frameworks 

Machine learning frameworks are frameworks in which it is easier to develop, train and test machine 

learning algorithms, compared to building the algorithm from the ground up. They offer access to 

training algorithms and activations functions, without the developer having to implement them. Usually, 

all this functionality will be accessed by including a library in the project. Furthermore, these libraries 

have a backend that speeds up the computations executed for the algorithms. 

Four machine learning frameworks are commonly used as tools in developing hardware, namely, 

TensorFlow, Keras, Caffe and Theano.  

TensorFlow allows developers to easily leverage their hardware when training ANNs, as it provides 

a general interface to many hardware platforms. This way a developer can design a network without 

thinking about the performance on specific hardware [2]. Together with a user-friendly development 

environment like Python and Keras, the development and testing of ANN can become very trivial.  Keras 

is a deep learning API written in Python running on top of TensorFlow. It enables even more user-

friendly and faster prototyping of ANNs [5]. 

Caffe(Convolutional Architecture for Fast Feature Embedding) is a framework developed and 

maintained by Berkeley Vision and Learning Center. It is written in C++ and has Python and MATLAB 

bindings [3].  

Theano is an open-source Python library for abstracting machine learning [4]. 

2.1.2 Perceptron 

The basis of the artificial neural network is the perceptron. It multiplies inputs by internal weights. 

The results are summed and fed through an activation function to give the activation of the perceptron. 

This is mathematically described by Equation 1. The perceptron is also shown schematically in Figure 

∑  ∗ 𝑓 

𝑥2 

𝑥1 

𝑥3 

𝑥0 

Perceptron 

𝑎 

Inputs 

Activation 

FIGURE 1 SCHEMATIC REPRESENTATION OF A PERCEPTRON 
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1. In the schematic, the internal weights are not shown to keep the schematic uncluttered. But each 

input (𝑥0 … 𝑥3) to the multiply and accumulate operator (the grey circle), has a corresponding weight 

(𝑤0 …𝑤3) within this operator. 

The perceptron can be used to make one prediction about a set of measurements. If the perceptron 

is used for a prediction, the activation (𝑎), the output of the perceptron, will be used as the prediction. 

The input (𝒙) is a vector consisting of 𝑛 values, in the schematic shown as 𝑥0 …𝑥𝑛−1. The perception 

has a vector of weights (𝒘) of the same size 𝑛. The weights and inputs get multiplied and summed, 

shown by the grey circle in the schematic and  ∑ 𝑤𝑛 ⋅ 𝑥𝑛
𝑵
𝒏=𝟎  in Equation 1. The result is a scalar value, 

which will be translated by the activation function 𝑓, in the schematic shown in the grey square.  

2.1.2.1 Example of using a perceptron 

As an example, the perceptron will be used for predicting flower 

species. More specifically, predicting the type of iris from several leaf 

measurements, in Figure 2 such an iris can be seen. The petals and 

sepals can be measured. These measurements of an iris can be used for 

predicting the likeliness of these measurements belonging to the Setosa 

species. In this case, the prediction will be taken as the class of the 

measurements: 0.0, not a setosa iris, or 1.0 a setosa iris. The network 

will receive four measurements of an iris and predict which class it 

belongs to. 

Four measurements of an iris are taken 
[5.1 𝑐𝑚, 3.5 𝑐𝑚, 1.4 𝑐𝑚, 0.2 𝑐𝑚]𝑇 from the data set [6], which are sepal length, sepal width, petal length, 

and petal width respectively. A pre-trained perceptron with weights 

[−0.06205392, 0.90441537,−1.3889375,−2.893819] and bias 3.0697248, predicts whether these 

Setosa measurements do indeed match the setosa species, see Equation 2. The prediction is 0.97, 

which is close to the Setosa target of 1.0, this means the perceptron predicts these measurements are 

very likely to belong to a Setosa iris. If measurements of a Versicolor iris are taken 

[7.0 𝑐𝑚, 3.2 𝑐𝑚, 4.7 𝑐𝑚, 1.4 𝑐𝑚]T, the prediction is 0.0064, close to the minimum of 0, thus the perceptron 

predicts these measurements do likely not correspond to a Setosa iris. See Equation 3 for the 

calculations. 

EQUATION 1 PERCEPTRON EQUATION 

𝒂 = 𝒇(∑ 𝒘𝒏 ⋅ 𝒙𝒏

𝑵

𝒏=𝟎

) 

Where 𝒂 is the activation, 𝒇 is the activation function, 𝒙 is the vector of inputs and 𝒘 is the vector of 
internal weights. 

EQUATION 2 EXAMPLE IRIS SETOSA PERCEPTRON CALCULATION WITH SETOSA MEASUREMENTS 

𝒂 = 𝒇(∑ 𝒘𝒏 ⋅ 𝒙𝒏

𝑵

𝒏=𝟎

) 

𝒂 = 𝝈 (
(−𝟎. 𝟎𝟔𝟐𝟎𝟓𝟑𝟗𝟐 ⋅ 𝟓. 𝟏) + (𝟎. 𝟗𝟎𝟒𝟒𝟏𝟓𝟑𝟕 ⋅ 𝟑. 𝟓)

+(−𝟏. 𝟑𝟖𝟖𝟗𝟑𝟕𝟓 ⋅ 𝟏. 𝟒)  + (−𝟐. 𝟖𝟗𝟑𝟖𝟏𝟗 ⋅ 𝟎. 𝟐) + 𝟑. 𝟎𝟔𝟗𝟕𝟐𝟒𝟖
) 

𝒂 = 𝝈(𝟑. 𝟑𝟗𝟓𝟒𝟐𝟕𝟑𝟎𝟑) =
𝟏

𝟏 + 𝒆−𝟑.𝟑𝟗𝟓𝟒𝟐𝟕𝟑𝟎𝟑
= 𝟎. 𝟗𝟕 

The activation function 𝒇 is the logistic function 𝝈 for this perceptron. The last activation of a network 
(in this case the network consists of only 1 neuron and is thus not a network) is the prediction, in this 
case, 𝒂=𝟎. 𝟗𝟕. High likelihood of being measurements of the Setosa. 

EQUATION 3 EXAMPLE IRIS SETOSA PERCEPTRON CALCULATION WITH VERSICOLOR MEASUREMENTS 

𝒂 = 𝒇(∑ 𝒘𝒏 ⋅ 𝒙𝒏

𝑵

𝒏=𝟎

) 

𝒂 = 𝝈 (
(−𝟎. 𝟎𝟔𝟐𝟎𝟓𝟑𝟗𝟐 ⋅ 𝟕. 𝟎) + (𝟎. 𝟗𝟎𝟒𝟒𝟏𝟓𝟑𝟕 ⋅ 𝟑. 𝟐)

+(−𝟏. 𝟑𝟖𝟖𝟗𝟑𝟕𝟓 ⋅ 𝟒. 𝟕)  + (−𝟐. 𝟖𝟗𝟑𝟖𝟏𝟗 ⋅ 𝟏. 𝟒) + 𝟑. 𝟎𝟔𝟗𝟕𝟐𝟒𝟖
) 

𝒂 = 𝝈(−𝟓. 𝟎𝟒𝟗𝟖𝟕𝟔𝟑𝟎𝟔) =
𝟏

𝟏 + 𝒆−(−𝟓.𝟎𝟒𝟗𝟖𝟕𝟔𝟑𝟎𝟔)
= 𝟎. 𝟎𝟎𝟔𝟒 

FIGURE 2 AN IRIS FLOWER [26] 
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The activation function 𝑓 is the logistic function σ for this perceptron. The last activation of the network 

is the prediction, in this case, 𝑎=0.0064. Not likely to be a Setosa. 

 

2.1.3 Dense Layers 

Dense layers are combinations of perceptrons, where 

the network can make multiple predictions at the same 

time. They are called dense layers because of the large 

number of connections with the previous layer, as every 

perceptron receives every input. They are also called fully 

connected layers for the same reason. 

In one layer all the perceptrons get the same 

measurements but have different internal weights. The 

schematic can be seen in Figure 3. A layer consists of 

multiple parallel perceptrons, in this example 3. The 

operation of a layer can mathematically be represented as 

in Equation 4. There is now a vector of activation functions 

(𝒇) and a vector of weight vectors (𝑾).  

EQUATION 4 DENSE/ FULLY CONNECTED LAYER 

𝒂 = 𝒇(𝑾 ⋅ 𝒙) 

Where 𝒂 is the vector of activations, 𝒇 is the vectorized activation function, 𝑾 is the 2D matrix, 

containing one vector of weights per perceptron. And 𝒙 is the vector of inputs 

As an example, we can use such a layer to predict for given measurements what is the most likely 

type of iris. We can use pre-trained weights: [[−0.06205392,−0.13310145,−0.14622506], [ 0.90441537,
0.28964716, 0.1499178 ], [−1.3889375 , −0.33376053,−0.08010176], [−2.893819  , 0.4568877 ,
1.6784256]] and biases: [ 3.0697248 , 0.80369616,−2.2667842 ]. 

These weights and biases, together with the logistic activation function, define 3 perceptrons in one 

layer as in Figure 3. The calculation can be seen in Equation 5. Where the weights and the 

measurements from the perceptron example are used in this layer. 

EQUATION 5 EXAMPLE OF A DENSE/ FULLY CONNECTED LAYER PREDICTING IRIS SPECIES 

𝒂 = 𝒇(𝑾 ⋅ 𝒙) 

The vectorized logistic function, 𝝈, will be used as the activations 𝒇.  𝒙 is extended with ones to add 

the biases within the matrix multiplication to 𝒙. 

𝒂 = 𝝈(𝑾 ⋅ 𝒙) 

𝒂 = 𝝈

(

 
 

[
 
 
 
 

𝟑. 𝟎𝟔𝟗𝟕𝟐𝟒𝟖 𝟎. 𝟖𝟎𝟑𝟔𝟗𝟔𝟏𝟔 −𝟐. 𝟐𝟔𝟔𝟕𝟖𝟒𝟐
−𝟎. 𝟎𝟔𝟐𝟎𝟓𝟑𝟗𝟐 −𝟎. 𝟏𝟑𝟑𝟏𝟎𝟏𝟒𝟓 −𝟎. 𝟏𝟒𝟔𝟐𝟐𝟓𝟎𝟔
𝟎. 𝟗𝟎𝟒𝟒𝟏𝟓𝟑𝟕 𝟎. 𝟐𝟖𝟗𝟔𝟒𝟕𝟏𝟔 𝟎. 𝟏𝟒𝟗𝟗𝟏𝟕𝟖
−𝟏. 𝟑𝟖𝟖𝟗𝟑𝟕𝟓  −𝟎. 𝟑𝟑𝟑𝟕𝟔𝟎𝟓𝟑 −𝟎. 𝟎𝟖𝟎𝟏𝟎𝟏𝟕𝟔
−𝟐. 𝟖𝟗𝟑𝟖𝟏𝟗 𝟎. 𝟒𝟓𝟔𝟖𝟖𝟕𝟕 𝟎. 𝟒𝟓𝟔𝟖𝟖𝟕𝟕 ]

 
 
 
 
𝑻

⋅ 𝒙

)

 
 

 

 
First, the Setosa iris measurements are input 

𝒂 = 𝝈

(

 
 

[
 
 
 
 

𝟑. 𝟎𝟔𝟗𝟕𝟐𝟒𝟖 𝟎. 𝟖𝟎𝟑𝟔𝟗𝟔𝟏𝟔 −𝟐. 𝟐𝟔𝟔𝟕𝟖𝟒𝟐
−𝟎. 𝟎𝟔𝟐𝟎𝟓𝟑𝟗𝟐 −𝟎. 𝟏𝟑𝟑𝟏𝟎𝟏𝟒𝟓 −𝟎. 𝟏𝟒𝟔𝟐𝟐𝟓𝟎𝟔
𝟎. 𝟗𝟎𝟒𝟒𝟏𝟓𝟑𝟕 𝟎. 𝟐𝟖𝟗𝟔𝟒𝟕𝟏𝟔 𝟎. 𝟏𝟒𝟗𝟗𝟏𝟕𝟖
−𝟏. 𝟑𝟖𝟖𝟗𝟑𝟕𝟓  −𝟎. 𝟑𝟑𝟑𝟕𝟔𝟎𝟓𝟑 −𝟎. 𝟎𝟖𝟎𝟏𝟎𝟏𝟕𝟔
−𝟐. 𝟖𝟗𝟑𝟖𝟏𝟗 𝟎. 𝟒𝟓𝟔𝟖𝟖𝟕𝟕  𝟏. 𝟔𝟕𝟖𝟒𝟐𝟓𝟔 ]

 
 
 
 
𝑻

⋅

[
 
 
 
 
𝟓. 𝟏
𝟑. 𝟓
𝟏. 𝟒
𝟎. 𝟐
𝟏 ]

 
 
 
 

)

 
 

 

= 𝝈([
3.3954273
0.76275662

−2.26427705
]) = [

0.96756132
0.68195193
0.09412505

] 

 
The network predicts Setosa very likely, 0.97, Versicolor probable 0.68, and Virginica unlikely, 0.094. 
For the measurements of the Versicolor, the result is: 

𝒂 = 𝝈

(

 
 

[
 
 
 
 

𝟑. 𝟎𝟔𝟗𝟕𝟐𝟒𝟖 𝟎. 𝟖𝟎𝟑𝟔𝟗𝟔𝟏𝟔 −𝟐. 𝟐𝟔𝟔𝟕𝟖𝟒𝟐
−𝟎. 𝟎𝟔𝟐𝟎𝟓𝟑𝟗𝟐 −𝟎. 𝟏𝟑𝟑𝟏𝟎𝟏𝟒𝟓 −𝟎. 𝟏𝟒𝟔𝟐𝟐𝟓𝟎𝟔
𝟎. 𝟗𝟎𝟒𝟒𝟏𝟓𝟑𝟕 𝟎. 𝟐𝟖𝟗𝟔𝟒𝟕𝟏𝟔 𝟎. 𝟏𝟒𝟗𝟗𝟏𝟕𝟖
−𝟏. 𝟑𝟖𝟖𝟗𝟑𝟕𝟓  −𝟎. 𝟑𝟑𝟑𝟕𝟔𝟎𝟓𝟑 −𝟎. 𝟎𝟖𝟎𝟏𝟎𝟏𝟕𝟔
−𝟐. 𝟖𝟗𝟑𝟖𝟏𝟗 𝟎. 𝟒𝟓𝟔𝟖𝟖𝟕𝟕  𝟏. 𝟔𝟕𝟖𝟒𝟐𝟓𝟔 ]

 
 
 
 
𝑻

⋅

[
 
 
 
 
𝟓. 𝟏
𝟑. 𝟓
𝟏. 𝟒
𝟎. 𝟐
𝟏 ]

 
 
 
 

)

 
 

= [
𝟎. 𝟎𝟎𝟔𝟑𝟔𝟗𝟑
𝟎. 𝟒𝟔𝟕𝟓𝟎𝟐𝟏𝟖
𝟎. 𝟑𝟎𝟐𝟏𝟎𝟐𝟔𝟕

] 

𝑓 

𝑓 

𝑓 
𝑥2 

𝑥1 

𝑥3 

𝑥0  

perceptrons Inputs 

𝑎0 

𝑎1 

𝑎2 

FIGURE 3 DENSE LAYER 
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Meaning Setosa unlikely, 0.0064, Versicolor probable, 0.47 and Virginica less probable, 0.30. Even 
though the layer is not that sure, the highest prediction is still correct. 

2.1.4 Artificial Neural Networks 

The complexity between the input and output of one layer is very limited, as the output is a linear 

combination of the inputs, with one possibly nonlinear activation function. If the network needs to find 

more complicated relationships in the data, multiple layers can be combined to allow for any relationship 

to be possible to be learned. An example to show that layers with only linear activations cannot predict 

nonlinear behaviour is shown in Figure 6. For both predictions, a network with architecture (4 hidden 

neurons, 1 output neuron) was used to predict the blue target. The network with hyperbolic tangent as 

an activation function (in orange) was able to predict nonlinear output, to match the target more closely 

than the network (in green) with linear activations could. 

Sequential layers can mathematically be described by Equation 6, where three layers 0, 1, and 2 are 

used. Which schematically looks like Figure 4.  

The activations of the first layer are the inputs of the next layer. The first layer will extract information 

that is not directly obvious related to the input or output. In Equation 6 we can see that 𝑓0(𝑊0 ⋅ 𝑥) is the 

description of the single-layer predictor from 2.1.3 Dense Layers, in this case, the output of this layer is 

multiplied by the weights of the following layer, 𝑊1, and activated by its activation function, 𝑓1, and so 

on till the output layer is reached. 

EQUATION 6 MATHEMATICAL DESCRIPTION OF AN ANN 

𝒚 = 𝒇𝟐 (𝑾𝟐 ⋅ 𝒇𝟏(𝑾𝟏 ⋅ 𝒇𝟎(𝑾𝟎 ⋅ 𝒙))) 

For a network with 3 layers, where y is the vector of predictions 𝒇𝒎 is the activation of layer m, 𝑾𝒎 
is the weight matrix of layer m and x is the input vector. 

 

 

 

 

 

 

 

 𝑥2 

𝑥1 

 

 

 

 

 

 

 

  

 

𝑥4 

𝑥3 

𝑥0 

Inputs 

𝑦0 

𝑦1 

FIGURE 4 MULTI-LAYER NETWORK 
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2.1.5 Convolutional layers 

The networks we have seen up to now work with a small set of measurements. The networks could 

also be used on images, to predict what items can be seen in the image for example. For an image, 

each measurement or input is one pixel value. For an RGB image of 6 by 6, that is 6 ⋅ 6 ⋅ 3 = 108 inputs. 

Thus, for larger images, the number of weights becomes unmanageably large. This can be limited by 

using some knowledge about the inputs. The input image is a 3D matrix of values, but the information 

about the location within the matrix of each value is lost in a dense network. 

Pixels close to each other are likely to have a relationship, and this relationship can be taken 

advantage of, to assist in making predictions about images. 

 We can try to find these relations in early layers. Small networks that look for the information on a 

small part of the image can be used as early layers. These small networks will be used on each part of 

the image as a filter. Applying such a filter to each part of the image is called convolution. Hence the 

name convolutional layer. In the following sections, the workings of these convolutional layers are 

discussed. 

2.1.5.1 Convolution 

Firstly, convolution can be explained in one dimension. The 1D discrete convolution is given by 

Equation 7. One signal is multiplied value by value by a filter, and the result of these multiplications is 

summed. This results in a new 1D sequence, where each output is a weighted average of the input 

2 2 
2 

  b2 
  

RGB image (8 x 8 pixels, 3 channels) 

   b0 
  

Filter 2x2 pixels, 3 

channels, 4 filters 

 

b1 
  

B0 

 
R0 

 

B1 

 
R1 

 

 

B2 

 
R2 

 

B3 

 
R3 

 

 

1 1 
1 

g2 
  

g0 
  

1 
  

g1 
  
0 0 
0 0 

r1 
  

0 
  3 

2 
1 

 

1 
 

1 
  

1 
  

1 
  

r2 
  

0 
  

G0 G1 

G2 G3 

r0 
  
r3 

  

One pixel, result of one 

step of the convolution 

FIGURE 5 CONVOLUTION OPERATION ON AN RGB IMAGE USING 4 FILTERS AND WINDOW SIZE 2X2 

FIGURE 6 A MODEL WITH NONLINEAR ACTIVATIONS MODELLING A SINE WAVE 
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sequence. For convolutional networks, the sequences and filters are finite and 2D, which means the 

output is also finite and 2D. 

EQUATION 7 1D DISCRETE CONVOLUTION EQUATION 

(𝒇 ∗ 𝒈)[𝒏] = ∑ 𝒇[𝒎]𝒈[𝒏 − 𝒎]

∞

𝒎=−∞

  

Where 𝒇 is the 1D input and 𝒈 the filter.  

2.1.5.2 Relation of dense networks and convolutional networks 

An artificial neural network with convolutional layers is called a convolutional neural network (CNN). 

The convolution operation is visually represented in Figure 5. The input is an input RGB image and a 

set of 4 filters is applied to the input image. In this case, the filters have the size of 2-by-2 pixels, and 

each pixel has 3 channels, while the input sequence is the image, which is a 3D matrix of 6-by-6-by-3. 

Multiple filter sequences are shown as brown, purple, orange and yellow. Each of these filter sequences 

has weights for each of the channels B0, B1, B2 and B3 for the blue channel, G0-G3 for the green 

channel and R0-R3 for the red channel. Each of these filters is convolved with its respective channel, 

resulting in 3 values per filter (∑ 𝑟𝑛 ⋅ 𝑅𝑛
3
𝑛=0 , ∑ 𝑔𝑛 ⋅ 𝐺𝑛

3
𝑛=0 , ∑ 𝑏𝑛 ⋅ 𝐵𝑛

3
𝑛=0 ), but these three are summed 

resulting in one value per filter. Shown as a value with a brown edge, a value with a purple edge, a 

value with an orange edge and a value with a yellow edge. The resulting pixel will be placed at the 

same index from the input image (x=0, y=0). In this case, because the filters have size 2-by-2, a window 

of size 2-by-2 was also taken from the input image at index (x=0, y=0). 

 After each filter has been applied to one index of the input sequence, (x=0, y=0), the filters will be 

applied to the next index in the input sequence (x=1, y=0). This new step will result in a different pixel 

at location (x=1, y=0) in the output image. When the filters have been applied to all indices of the input 

image, a new “image”, called a tensor is created. This tensor can be fed into a different convolutional 

layer. The following layer will have 4 channels instead of 3. The channels of the output tensor are equal 

to the number of filters in the convolutional layer. Channels are also often called features, as in later 

stages of a convolutional network there can be thousands of features/channels, which have no relation 

to colour channels. In the example of Figure 5, there are 4 filters, creating 4 features. These 4 filters 

applied to one window of the input image produce one “pixel” with 4 features. 

A network with convolutional layers has a similar equation as a standard artificial neural network, but 

some of the layers will have a convolution operation, instead of the matrix multiplication, as can be seen 

in Equation 8.  

A schematic representation of such a complete network with 2 convolutional layers and a fully 

connected layer can be seen in Figure 7. The network shown has two convolutional layers with ReLU 

activation. Each convolution has a pooling layer. The final classification is done by a dense layer. The 

pooling and activations will be discussed in 2.1.9 and 2.1.10 respectively. This example network 

predicts which vehicle is shown in the input image. 

EQUATION 8 MATHEMATICAL DESCRIPTION OF A CONVOLUTIONAL NEURAL NETWORK 

𝒚 = 𝒇𝟐 (𝑾𝟐 ⋅ 𝒇𝟏(𝑾𝟏 ∗ 𝒇𝟎(𝑾𝟎 ∗ 𝒙))) 

For a network with 3 layers, where y is the vector of predictions 𝒇𝒎 is the activation of layer m, 𝑾𝒎 
is the weight matrix of layer m and x is the input vector. The first two layers are convolutional layers, 

FIGURE 7 SCHEMATIC REPRESENTATION OF THE INNER WORKINGS OF A CNN FROM [25] 
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which means that the matrix multiplication (⋅) is replaced by the convolution operation (∗). The weights 
of a convolutional layer are often called filters. Where the size of a fully connected layer needs to 
match the size of the input, the filters are smaller than the input. 

2.1.6 Sparse neural networks 

For very large networks many weights can become zero or close to zero, making the weight matrices 

sparse. These networks can be classified as sparse networks. If these zero weights are removed from 

the network architecture, fewer computations are needed. Because the weights close to zero added 

very little to the output, the accuracy of the network will stay the same while performing fewer 

computations. 

2.1.7 Recurrent neural networks 

Recurrent neural networks store a state, such that they can work well with time series when making 

predictions. Because the recurrent and sparse networks are not supported in the resulting design flow, 

we will not elaborate further on them. 

2.1.8 Deep Neural Networks 

Most currently researched ANNs fall in the category Deep Neural Networks (DNN) or Deep 

Convolutional Neural Networks, which means they have many layers, thus a lot of depth. 

2.1.9 Pooling 

To decrease the size of convolutional layers, pooling layers are often implemented. Pooling layers 

take the maximum or average value out of windows of their input and produce a smaller feature map. 

Instead of stride (1,1) as seen in the convolution example, the stride is often equal to the window size. 

An example of pooling a sample of one feature can be seen in Figure 8. In this example, both the stride 

and windows are (2,2). The windows are shown with black lines around them. Each of those windows 

gets scaled down to one pixel in B and C, either by taking the average or by selecting the maximum.  

Pooling with window size and stride (2,2) results in the input feature being cut in half in both x and y-

direction. With both pooling methods, information about the input can be retained while removing 3 

quarters of the data. 

2.1.10 Activation layers 

Activation layers apply an activation function to their inputs. The input to an activation layer is the 

output of a convolutional or a dense layer.  

(A) (B) (C) 

FIGURE 8 EXAMPLES OF POOLING WITH WINDOW SIZE 2X2 AND STRIDE 2X2; (A) ORIGINAL SAMPLE, (B) MAX POOLING, (C) AVERAGE POOLING 
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These activation functions are often nonlinear functions, like the Rectified Linear Unit or a sigmoidal 

function. These nonlinear functions make it possible for an ANN to make nonlinear predictions, as the 

dense and convolutional layers can only perform linear transformations as seen in Figure 6. Multiple 

linear transformations would only result in one equivalent linear transformation. 

2.1.10.1 Activation functions 

Any function can be an activation function, but the most common are logistic, rectified linear unit and 

normalized logistic (softmax). The softmax is a normalized sigmoid, such that the sum of the outputs 

equal one. Other possible activation functions are the linear (no activation), exponential linear unit, 

softplus, and tanh. The exact workings of each of these activations are not important for the general 

working of the artificial neural networks. Some of the activation functions are shown in Figure 9. 

2.1.11 Normalization 

The output of the layers can be normalized, to keep them within a certain range. This is usually done 

through learning the variance and average of the features during training and using this to apply a 

transformation that centres the features around zero with a standard deviation of one. 

2.1.12 Tensors 

The multidimensional arrays containing the data between the layers are often called tensors. A tensor 

could be a single scalar value or a 1D vector, but when working with image processing they are often 

3D. The output and input of a convolution layer are usually 3D tensors. The input and output of fully 

connected layers are usually 1D tensors also called vectors.  

2.1.13 Training Artificial Neural Networks 

To make correct predictions, correct weights are 

required. These weights are found through some training 

process.  

For ANNs backwards propagation is normally used. 

Because of backwards propagation, activation functions are 

differentiable. 

To perform backwards propagation, a data set, with 

inputs and outputs, is collected. The network will start 

blindly making predictions based on the inputs. These 

predictions will be compared to the correct output. The 

difference between the prediction and the correct output is 

measured through a loss function (𝐸). If we differentiate the 

network with respect to the loss function, we can find a 

direction to move the weights in to get a smaller error. This 

process is performed iteratively until a local minimum is 

reached.  

w 

Er
ro

r 

𝜂 ⋅ 𝛻𝒘𝟏 𝐸 

𝑤1 𝑤2 

𝜂 ⋅ 𝛻𝒘𝟐𝐸 

𝜂 ⋅ 𝛻𝒘𝟎𝐸 

𝑤0 

FIGURE 10 REGRESSION OF ONE WEIGHT 

FIGURE 9 EXAMPLES OF ACTIVATION FUNCTIONS 
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A visual representation of the process of numerically stepping toward a local minimum can be seen 

in Figure 10, where a theoretical system with only one weight would get the error given by the dotted 

line. The derivative at the point 𝑤0 will point up the “hill” thus going the other way using a negative 

learning factor 𝜂, the weight will move towards the local minimum. 

2.2 Field Programmable Gate Array (FPGA) 

An FPGA is a device that contains programmable logical components. This allows a developer to 

design a system made of logical functions. Most computing tasks are done with a central processing 

unit (CPU). Where a CPU is an unchangeable block of logic elements that can execute instructions to 

perform a computation, an FPGA is more flexible. The elements to build a similar system are present 

but can also be used to build a different system. If an algorithm needs to be computed where two arrays 

need to be added, a CPU might have to do all additions one after another. The FPGA system could be 

implemented to perform this vector addition in one step. 

Executing a logical function on an FPGA instead of on a CPU can increase the speed and reduce 

the power required. The speed can increase due to the potential for parallelizing the operations needed 

to perform the function. The power consumption can decrease, as less control hardware might be 

necessary, and parts of the CPU which are not required for the computation will not be present. 

2.3 Compilation 

Compilation in computer science is the process of translating a program from one language to 

another. The translation is often from a higher-level language to a lower-level language. For example, 

GCC compiles programs from C to machine code. But MATLAB coder is a program that compiles a 

MATLAB script to C. 

2.4 Languages 

Some programming languages that are important to this research explained concerning how they 

are used. 

2.4.1 Python [7] 

Python is an interpreted language, which makes it easy to quickly build a prototype. However, it is 

not very performant because of the interpreter. It is an imperative language where the developer 

describes the steps to be taken by the processor, opposed to declarative languages where the 

developer describes the desired result instead. 

2.4.2 C(++) 

C and C++ are programming languages that provide the developer control over the processer 

executions. They are developed to be compiled into a sequential program to execute on a versatile 

processor. They are inherently imperative, giving the programmer the task of deciding how to come to 

the desired results. 

2.4.3 VHDL 

VHDL stands for (Very High Speed Integrated Circuit) Hardware Description Language, which is, 

together with Verilog, the most commonly used Hardware Description Language (HDL). They are very 

low level as they require the developer to have a lot of understanding of how the hardware works.  

2.4.4 Clash [8] 

Designing hardware for specific tasks will become more important as general-purpose processors 

seem to reach the limit of their size and speed. The design workflow of hardware may include multiple 

languages like is currently the case for many software projects.  

Clash is a functional hardware description language that can be used to design synchronous and 

asynchronous logic, thus also Mealy and Moore finite state machines. Clash is the name of both the 

language and the compiler. The language is an extension of a subset of Haskell, the Clash compiler 

can translate this language to VHDL and Verilog. Haskell is extended with time series in the form of 

signals. The functional language paradigm of Haskell is well suited for describing combinatorial 

operations. The signal allows for these combinatorial descriptions to be used on time series. Because 

Clash is based on the Haskell it features many modern abstraction mechanisms such as higher order 
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functions and type inference, while the paradigm on which Haskell is based, functional programming, 

is especially well suited for describing the combinatorial behaviour of a system. 
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3 RELATED WORK 

Because accelerating ANNs and specifically CNNs could provide such a great benefit, numerous 

ways of building the accelerators have been developed. In this chapter, we will explore how these 

design flows operate and which insights they offer. 

3.1 Frameworks 

3.1.1 WiderFrame: An Automatic Customization Framework for Building CNN Accelerators on 

FPGAs: Work-in-Progress 

The authors of [9] propose a framework for a systematic design space exploration methodology, for 

designing a convolutional network accelerator. This promises to make the right choices when starting 

with a CNN specification and an FPGA specification. Their schematic architecture can be seen in Figure 

11. 

This framework has been made because the existing frameworks only support one neural computing 

engine, while they have identified three architectures. These architectures have different parallelization 

characteristics. The engines are the vector operator unit, the 2D systolic array and the Winograd unit. 

These engines can also be seen in the other accelerator implementations in 3.2 Accelerator designs. 

The system can easily be extended with extra instructions to support emerging new CNN 

architectures. 

The hardware code template is written in high-level synthesis-based C++ language. In the hardware 

code template, a description is written of the engines and the other predefined blocks, that could be 

needed to develop the design that the DSE method proposes. 

From this paper, we can see how code templates can be used to build a custom accelerator for a 

network. 

3.1.2 ONNC: A Compilation Framework Connecting ONNX to Proprietary Deep Learning 

Accelerators 

The authors of [10] aim to translate Open Neural Network Exchange (ONNX) network specifications 

to deep learning accelerators. Where the intermediate representation (IR) within the compiler has a 

one-to-one mapping with the ONNX IRs, making it easy to add operators that are not in the standard 

environment. This should make it easier to make an accelerator with an instruction set, and then use 

this compiler framework to build the program to run a specified network. The toolchain is open source 

so anybody can easily add a backend for their accelerator. 

An important part of the compilation process is pass management, in which each pass can perform 

certain translations/optimizations. Pass management is inherited from LLVM. 

A big advantage of this Compiler compared to Glow and TVM, other compilation frameworks, is that 

no LLVM IR is used in between, which often has too fine-grained operations compared to the 

instructions going into Deep Learning Accelerators. 

From this paper, we can learn that translating a network specification, can best start from a higher-

level, coarser-grained description. 

 

FIGURE 11 ARCHITECTURE OF WIDERFRAME FROM [8] 
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3.2 Accelerator designs 

3.2.1 Scalable and Modularized RTL Compilation of Convolutional Neural Networks onto 

FPGA 

The authors of [11] translate Caffe and Theano based CNN models directly to an unspecified RTL 

code (likely VHDL or Verilog). 

The Convolutional layer is seen as 4 for loops, as can be seen in Code Block 1. 

Where 𝑁𝑜𝑓 = Number of output features, 𝑁𝑖𝑓 = number of input features, 𝑋, 𝑌 are the dimensions of 

the input features and K is the window size. 

These loops will be unrolled according to their analysis: 

unroll loop-3 such that pixels from different inputs can be multiplicated with their filters in parallel.  

How much the layer can be unrolled depends on the number of multipliers (𝑁𝑚𝑢𝑙𝑡) implemented, if 

𝑁𝑚𝑢𝑙𝑡 ≥ 𝑁𝑖𝑓, loop-3 can be fully unrolled. 𝑁𝑚𝑢𝑙𝑡 can be defined by the user. 

They can then unroll loop 4 to calculate if there are enough multipliers. They state that if they reorder 

their data, they could in the future also unroll loop 1. 

Their scalable convolution acceleration module can be seen in Figure 13 

Furthermore, they have modules for the other layers, but because the other layers use relatively less 

computation less time is put into optimizing these. 

The other modules are:  

• Pooling module, which has two variants, average and max pooling 

• Normalization module, which computes the local response normalization operation. All 

activations of a sample get normalized to have a standard deviation of 1 and a mean of 0. 

• Inner product module, which calculates the fully connected layers 

• DMA configuration module, which controls the Direct Memory Access (DMA) to communicate 

between the on and off-chip memory 

The block diagram for the integrated system can be seen in Figure 13. 

In the actual implementation, a softcore is used to coordinate the memory transfers, together with 

the DMA module. There is one shared multiplier bank which is the part of which the size can be 

configured to increase or decrease the area while increasing or decreasing the calculation time. 

1. Across the output feature maps of 𝑁𝑜𝑓 

2.     Across the input feature maps of 𝑁𝑖𝑓 

3.         Scan within one input feature map with 𝑋 ⋅ 𝑌 

4.             MAC within a kernel window of 𝐾 ⋅ 𝐾 

Loop-4 

Loop-3 

Loop-2 

Loop-1 

CODE BLOCK 1 FOUR FOR LOOPS DEFINING CONVOLUTION OPERATION FROM [11] 

FIGURE 13 CONVOLUTION ACCELERATION MODULE BLOCK DIAGRAM FROM [10] 

FIGURE 13 INTEGRATED SYSTEM FROM [10] 
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They mostly limit memory usage based on the finding that multicore processors use most of their 

power due to their cache [12]. 

From this paper, we can see how to unroll the convolution operation, and which building blocks could 

be built for the design flow. Furthermore, we can learn how the fully connected and convolutional layers 

can reuse hardware. The hardware that is implemented is a kind of vector unit, using multipliers with 

adder trees. 

3.2.2 Utilizing cloud FPGAs towards the open neural network standard 

Translating from open neural network exchange format (ONNX) to FPGAs has been shown to work 

[13]. They built an application to run ONNX models on cloud FPGAs. 

It is built as a streaming application, such that the intermediate results do not have to be stored in 

off-chip memory. The intermediate results are stored in block RAM, close to the arithmetic operations. 

The researchers tried the HLS4ML (an HLS tool) which didn’t work directly as it caused memory 

issues. So, they needed to make several modifications to the HLS4ML tool to make it work.  

8-bit integers are used in most of the network, multiple of these values are passed together to the 

DSP to improve performance, because the DSPs have an input of size 27, they can fit 2 8-bit integers 

at once. But different precisions are possible between the layers. The precision of the weight and 

activations can also be changed per layer. To achieve this, each layer has its own accelerator. 

Processing can be performed in batches, thus increasing the theoretical throughput. As more 

parallelism can be utilized as the weights can be used for multiple samples at the same time. 

During training, the weights were regularized to be positive and within a small range [0,2.5]. 

Their hardware optimized network performs significantly less accurate than a default model, they 

stated about 4% accuracy loss. The overview of how the system works can be seen in Figure 15. 

This paper shows how building an accelerator as a streaming operation with intermediate storage 

close to the operations will benefit a design. It also shows that scaling down the bit-width can be 

performed to decrease the resources needed at the cost of accuracy. 

3.2.3 Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural 

Networks [14] 

Eyeriss is a CNN accelerator, which has been developed with a hardware design that minimizes data 

transfers, as this can be a major factor in energy cost. An analysis framework is created that compares 

energy cost under area and processing parallelism constraints. It is implemented as an Application 

Specific Integrated Circuit (ASIC). It aims to support as many convolutional layers as possible, but 

because it is implemented beforehand it has limited supported CNN layer shapes:  

FIGURE 15 SYSTEM OVERVIEW FROM [12] 

FIGURE 14 BLOCK DIAGRAM OF A PE FROM  [13] 
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• Filter height: [1...12] 

• Filter width: [1...32] 

• Num of filters: [1...1024] 

• Num of channels: [1...1024] 

• Vertical stride: {1,2,4} 

• Horizontal stride: [1...12] 

These limitations will still cover the most common CNNs. 

The arithmetic precision is also decided beforehand at 16 bit. The accelerator consists of a 2D array 

of 168 Processing Elements. It is not a systolic array as some data is transferred globally to use data 

in parallel, thus the PEs are not necessarily in the same operating state. 

The block diagram of the PE can be seen in Figure 14. And how these PEs are used within the 

system can be seen in Figure 16. 

The multi dimensional convolution operation is first divided into 1D convolution operations. The 1D 

convolutions calculate partial sums (Psums), that are summed to create the output feature map 

(Ofmap). To limit the data transfer from off-Chip DRAM a run-length decoder is used, that encodes the 

leading number of zeros, which is often very large in a convolutional network. 

The design shows how a systolic array could be used as the computation engine. In this case, the 

systolic array is extended with some global data casts, resulting in an engine that is not a systolic array. 

It also provides some strategies for limiting data transfers between the FPGA and any off-chip memory. 

3.2.4 Angel-Eye: A Complete Design Flow for Mapping CNN Onto Embedded FPGA 

The authors of [15] design a flexible accelerator, together with a compiler for the Caffe network 

descriptions. The model is compressed before synthesis, by decreasing the bit-width in each layer. This 

compression can go down to 8-bit if it shows to be accurate enough. They analyse the statistics of the 

weights and outputs of each layer to see how many bits they need.  

The accelerator has three kinds of instructions: LOAD, SAVE and CALC. 

They use PEs that can compute convolution already using parallelism, but multiple PEs can be 

implemented to work side by side. Their accelerator only supports 3x3 kernel size, but they can pad 

smaller kernel sizes and split larger kernel sizes into 3x3 windows. 

This project shows an actual systolic array architecture as a computation engine. In this case, the 

design flow includes software development which drives the accelerator. The benefits of differentiating 

the bit-width per layer are also shown. 

FIGURE 16 SYSTEM ARCHITECTURE FROM [13] 

FIGURE 17 SYSTOLIC ARRAY ARCHITECTURE FROM [15] 
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3.2.5 Automated Systolic Array Architecture Synthesis for High Throughput CNN Inference on 

FPGAs 

Making a scalable CNN implementation on FPGAs has been achieved by making a systolic array 

[16], where they can transfer a high-level C implementation to a flexible 2D systolic array for computing 

CNNs while scaling up to the size of the FPGA. The 2D systolic array is chosen because it maps nicely 

to the architecture of FPGAs, resulting in low routing complexity. The structure of the systolic array can 

be seen in Figure 17. While the structure of the elements of the systolic array can be seen in Figure 18. 

The layers are defined as pseudo-C loops, which give some difficulty in mapping to the systolic array 

because of the unclear data dependencies. 

The systolic array only has local communication which allows for high clock frequencies. 

The convolution is mapped to the 2D systolic array using an analytical model that can be optimized 

for maximum throughput within the feasible design space. The analytical model is called the loop tiling 

[17] representation, which defines a link between the architecture and high-level program code. This 

intermediate representation (IR) is sequential, such that they can use some standard tools for the 

analysis and modelling. 

This paper shows the advantages of the systolic array, like the high clock frequency. The unrolling 

of the convolution operation is also discussed. 

3.2.6 Embedded Neural Network Design on the ZYBO FPGA for Vision-Based Object 

Localization 

The author of [1] has built a CNN implementation on the ZYBO FPGA platform using VHDL, to test 

whether this was feasible. This is tested because the latency when performing inference off-site is 

unpredictable. Performing CNN interference on the processor in an embedded system is infeasible, 

because of the power and resource limitations. 

To test the feasibility a robot was made that uses an FPGA to perform object tracking from a camera 

in a power-constrained and real-time environment. The network must tell from the camera whether 

another robot is centre, left, right or not in sight. 

An accelerator for this CNN is developed, where the network was created and trained using Keras-

TensorFlow and trained on a workstation. The FPGA is used to accelerate the CNN layers, while ARM 

cores are used for the final fully connected layers. Several choices are made to fit the network on the 

FPGA, the activation function is chosen to be ReLU, as ReLU is a very computationally effective 

activation function, as it can simply use the sign bit as mux input. Furthermore, the kernel size is kept 

to 3 by 3. 

Training of the network became hard with a versatile dataset; sigmoid functions were needed on the 

fully connected layers. Multiple convolutional layers without activation function seem to perform more 

similar to a convolutional layer with a larger kernel size (than the 3x3 used). This might indicate that a 

larger kernel size is desirable 

The generated data did not seem adequate for training this small CNN, but it also overfits. Thus, a 

different network architecture was chosen, namely a one-shot detection similar to YOLO. 

To reach a clock frequency of 100 MHz a pipeline is created with 4 stages. 

A python Keras object is automatically translated into instructions for the accelerator. This thus works 

for the convolution layers. 90% of calculation time for an object detection network was spent in the 

convolution layers. In the end, the object detection did not work due to an inadequate training set. 

From this paper, we see a possible application, where a network is trained on a workstation using a 

machine learning library. Afterwards, this network is implemented on an FPGA in a robot. The robot 

can perform inference using the accelerator. 

FIGURE 18 BLOCK DIAGRAM OF PE AND BUFFERS FROM  [15] 
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3.2.7 CaFPGA: An automatic generation model for CNN accelerator 

The authors of [18] have made an algorithm to translate Caffe network descriptions to Verilog. The 

model takes in a Caffe script, translates this to an IR. This IR is a hard data-flow graph (HDFG). The 

design space exploration algorithm will modify the HDFG for optimal performance. The workflow can 

be seen in Figure 20B. 

The accelerator they build uses an array of Processing Elements (PEs), in which they use a 2D 

convolver structure. Each PE calculates one layer from the network but can also calculate multiple 

layers if they are similar enough. The Design space exploration algorithm decides how many layers 

each PE can calculate. Between the PE there is a ReBuffer IP (their predefined blocks are called IP), 

which either stores the intermediate data in a Cache IP or stores it off-chip if there is not enough space 

available. 

The layer combinations can be seen visually in Figure 20A. The layers with similar window sizes can 

be calculated with only one PE, to be reused in time. 

The parallelism can be divided into temporal and spatial parallelism, where temporal parallelism 

means a pipeline structure. The convolutional layer parallelism is divided into three layers: feature-map-

level, window-level and operator-level. These parallelisms will be exploited as spatial parallelism, while 

the pipelining allows different images to be processed at the same time.  

This approach shows that when layers closely match, a PE can process multiple layers, while it does 

not have to be able to process all layers. We can also see a proof of concept of a design flow from 

Caffe, with custom predefined blocks. 

3.2.8 Other nameworthy accelerators 

ALAMO [19] uses adder trees and a shared multiplier bank, which is similar to the approach of [11]. 

 

3.3 Future of hardware description languages 

The authors of [20] discuss the challenges and needs for future hardware descriptions languages. 

Verilog is the current standard, but the future might be a multi-language environment with space for 

functional HDLs, and Virtual Machine approaches (commonly called HLS). In which higher-level 

languages can have their place next to the lower-level approaches. Languages like Clash offer more 

reusability and abstraction than Verilog, but the lower level can offer a more direct interface with the 

hardware for the developer. Although almost everything is expressible in Clash, it might in some cases 

be more convenient to do in VHDL or Verilog. For example, how to enter two 8-bit integers into one 

DSP, is more transparent when done in a lower-level language.  

FIGURE 20B WORKFLOW FRAMEWORK FROM 

[17] 
FIGURE 20A POSSIBLE LAYER FOLDING FROM [17] 
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The RTL Codes, Verilog and VHDL, are likely less readable, when produced by a compiler, compared 

to human written RTL Code. 

It might thus be beneficial to use multiple hardware description languages in a design flow when it is 

found which languages perform best for specific tasks. 

3.4 Conclusion  

The research on the topic of generating hardware architectures for ANNs can generally be split into 

the following approaches:  

1. Using an accelerator, this accelerator can be utilized via a specific software toolchain. 

2. A high-level synthesis (HLS) tool is used to compile a software implementation to an HDL 

implementation. 

3. A hybrid variant, where a combination of a soft-core processor is used together with a 

synthesized accelerator. 

The papers on design space exploration frameworks in 3.1 develop analysis tools for their 

architectures. This analysis is used to build an optimal system for a given architecture-platform 

combination. 

We can see that most existing tools are either based on classic RTL codes, VHDL and Verilog, or on 

a C++ implementation that will be translated to these RTL codes. Using a modern RTL has not been 

tested. 
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4 DESIGN SPACE EXPLORATION 

In this chapter, the possible choices while designing the system are 

discussed. The possible advantages and disadvantages of the options are 

weighed, and we elaborate on the choices made. 

4.1 Overview  

To include an ANN in an FPGA project we first have to develop, train and test 

a network architecture. We can build ANNs from scratch, but because many 

useful machine learning platforms have already been developed, it is not 

desirable to develop a new platform to translate networks to hardware. 

Therefore, an existing platform can be used as the basis to build, train and test 

architectures. 

Because the existing platforms do not support Clash or Haskell, the system 

needs to translate/compile from one of these high-level machine learning 

frameworks to an FPGA. In this system, Clash needs to be used as an 

intermediary to investigate whether it benefits the developer. 

To translate from the high-level platform to Clash, a compiler will be 

developed. It will take some representation in the high-level platform 

infrastructure and translate it to Clash. 

After translating the high-level implementation to Clash, we need to translate 

from Clash to RTL codes. This is done by the Clash compiler. The Clash 

compiler can compile to both VHDL and Verilog, allowing for some flexibility for 

the output. Both of these RTL Codes (VHDL and Verilog) are supported by the 

software coming with FPGA platforms, such as Quartus [21].  

4.1.1 Starting framework 

To build the compiler, a platform needs to be developed or chosen. Because 

no new framework will be designed for this design flow, an existing platform will 

be chosen. There are several possible platforms from which we can start the compilation: TensorFlow, 

TensorFlow-Keras, Theano, Caffe or the Open Neural Network eXchange (ONNX) [22]. TensorFlow is 

currently one of the most used frameworks. It comes packaged with the high-level API Keras, which 

makes prototyping artificial neural networks on TensorFlow even more user friendly. Theano and Caffe 

are developed by universities, Montreal Institute for Learning Algorithms [4] and Berkeley Vision and 

Learning Center [3] respectively. They offer mostly the same capabilities, but have fewer contributors 

and contributions, making them slightly less extensive. 

ONNX is a general way of representing Neural networks, and not meant for developing, training and 

testing the networks. But for sharing networks between different frameworks. Using ONNX as the basis 

would make most frameworks accessible to the system, albeit with an extra layer in between.   

Some frameworks exist for making quantized networks, where the arithmetic weights and are set to 

be of a type smaller than the floating-point numbers used in standard networks. Using ONNX would 

allow access to these quantized networks, which could be very beneficial for an FPGA based 

accelerator. 

Keras is chosen as the basis because Keras is currently very commonly used and user friendly. The 

resulting compiler will be a Keras-to-Clash compiler. Which representation we will use from the 

framework is discussed in the following section. 

4.1.2 The entry point to the framework 

The high-level ANN description needs to be compiled to some hardware implementation. Normally, 

the ML platforms translate the network into instructions for supported hardware, such as a CPU or a 

GPU. In this case, the Network needs to be translated to a different platform, the FPGA. Thus, 

somewhere in the standard process from building the network to running it on a CPU or GPU, the 

description needs to be branched off and translated to a different set of instructions, and in this case a 

hardware description. There are several options from where to start the translation: 

• A compiled implementation of the network 

FIGURE 21 OVERVIEW OF THE 

SYSTEM UNDER DESIGN 
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• An intermediary representation within the compiler framework 

• Python implementation for the platform 

• The high-level description within the platform 

These points are shown within the typical flow of a 

high-level implementation to an embedded 

implementation in Figure 22. 

The compiled implementation of the network is 

reached by first compiling the network into a lower-level 

language, that describes all the steps that need to be 

taken to compute the result. The existing compilers are 

aiming at CPU instructions or GPU instructions. This 

lower-level representation could be translated to Clash. 

However, lower level means the instructions are finer-

grained and describe the steps to be taken relating to a 

state instead of describing an architecture. Therefore, 

loops will often be used to describe the input to output 

translation, with calculations like multiplications and 

additions within the loops. These loops can be 

translated to higher-level functions like maps and folds, 

but the data dependency would need to be analysed. 

Doing this analysis has been proven to be very hard, 

and is thus not feasible [23]. 

When using an intermediary representation from the 

compiler, the representation will have moved towards 

the finer-grained, giving up some control, as the finer-

grained instructions allow less room for making choices 

later in the translation process. 

It would thus be more beneficial to use more coarse-

grained instructions for translating to Haskell. Coarse-grained instruction can include, convolve, 

normalize, apply an activation function to a tensor. Depending on the level of abstraction different 

building blocks are required. If the fine-grained instructions are taken, hardware needs to be designed 

that works similar to a processor, but specifically made to compute the specific instructions needed for 

the network. On the other hand, when the coarse-grained instructions are taken as the basis, the 

hardware can be specialized to perform the few tasks it can execute. 

The Python implementation is the script, that builds the network in the ML learning framework. The 

framework may support multiple ways of describing the network, which could make this route more 

difficult.  

The high-level description within the framework is a file type specific to each platform. The platforms 

often support some form of saving and exporting the implemented networks, such that they can be 

stored and used in another place or time. This representation will be consistent and contain all the 

parameters needed to build the network. Therefore, it is the best choice. Thus, some exporting function 

within the platform should be used to get a consistent description of the network. 

4.2 Constraints of the design flow 

To show the possibility of using Clash in a design flow, we develop a compiler. This compiler will 

translate from the high-level internal Keras description to a Clash description.  

This compiler is built for certain specifications, but will not be capable of translating any machine 

learning application. The space of all possible networks is too broad, thus targets will be set for the 

compiler and design flow. 

4.2.1 Size limitation 

Larger networks are shown to always be better at certain tasks, such as autoregressive language 

models [24]. However, larger networks come at the cost of more resource consumption and 

computation time. Therefore, we limit the network sizes for the design flow will support.  

While the system should be able to handle most network sizes in the end, it might be more feasible 

to start with a smaller ANN, like an ANN for the MNIST data set, and slowly extend the capabilities to 

support increasingly large networks. To support a larger network, more flexibility should be offered in 

FIGURE 22 POSSIBLE ENTRY POINTS 
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reusing computing resources and which memory can be used. The system will first support the smaller 

MNIST recognition network as a proof of concept and should be tested on larger networks such as 

AlexNet. 

4.2.2 Supported architectures 

Commonly used architectures are the following: 

• Deep fully connected networks 

• Convolutional neural networks 

• Sparse neural networks 

• Recurrent neural networks 

• Long short-term memory recurrent network 

From these, the most common ANN architectures are currently the CNN and the standard DNN. 

Thus, it would be most desirable to support at least one of these networks. CNN networks often also 

use fully connected layers from the DNN. Thus, to support CNN would likely also mean supporting DNN.  

A fully connected layer can be calculated as a special case of a convolutional layer. It would be a 

convolutional layer with a window size equal to the input. Other networks that are interesting to support 

are the sparse neural network, which could greatly benefit from being accelerated in hardware designed 

specifically for accelerating sparse networks. Recurrent neural networks could also be built, although 

the state they hold would require large additions to the hardware, as this could require much more 

memory and data following a different path. 

Convolutional networks and fully connected networks will be supported. 

4.3 Implementation choices 

Now that we have decided on the goals of the design flow, the development needs to be divided into 

smaller steps to build the design flow.  

4.3.1 System input 

To build an implementation that can process data on the FPGA, the input format needs to be defined. 

The input vector could be loaded on on-chip memory if the vector is expected to be small enough. The 

inputs are not likely to be small enough, thus the inputs need to enter the FPGA sequentially.  

More parallelism can be achieved if multiple input images are calculated at the same time, as the 

weights can be reused for both inputs. For cases where there is a stream of images coming in, it might 

be undesirable to wait for multiple images to come into storage before starting processing. 

Because for most machine learning applications it is infeasible to process a whole input vector at 

once, some way of splitting the input must be devised. Images can be split into windows that fit the 

convolutional window size. 

The final choice on the input is what type of data can be used as an input. 

• Integer 

• Unsigned integer 

• Floating point 

• Fixed point 

The fixed-point representation is chosen, because it balances the size and range flexibility, while not 

needing the hardware complexity that is required when doing floating-point arithmetic. 

4.3.2 How to implement the layers in the design flow 

The design flow will use predefined blocks to build an FPGA architecture that can compute a given 

ANN architecture. These blocks will be based on the layers present in an ANN. The Keras library has 

functions, which also match the theoretical building blocks of artificial neural networks. The layers can 

be based on these building blocks based on theory and the Keras library. 

4.3.2.1 Convolutional layer 

To perform the convolution operation several “neural network engines” have been developed and 

used in the past as discussed in chapter 3 Related Work: 

• The systolic array 

• The vector unit 

• The Winograd unit 
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Each of these can be implemented in the design flow, or multiple can be optional. Some automatic 

design space explorations can even compare the benefits of the engines to choose the right one for a 

given network. Thus, it might be useful to implement multiple. 

The systolic array has the advantage of very high clock speeds by limiting the combinational and 

data paths. 

The advantage of the vector unit is the natural way of describing the relationship from input to output. 

The scalar values from the matrices are mapped directly as would be expected from the defining 

convolution equation. 

The Winograd unit uses the Coppersmith-Winograd algorithm [25] to reduce the number of 

multiplications needed to perform matrix multiplications. In this case, used for convolution. 

Because this research also focuses on readability and is a proof of concept the vector unit is used.  

4.3.2.2 Fully connected layers 

The fully connected layers, also called dense layers, are usually much less computationally intensive 

in CNNs. They are less computationally intensive because they perform the final steps of the 

classification process where less intermediary data needs to be processed. Because they need fewer 

computations, they could be computed on a processor. 

Otherwise, a special predefined accelerator block can also be built for the fully connected layers, 

lastly, it is possible to make the convolutional layers flexible enough to handle the special case of a fully 

connected layer, as it can be seen as a special case of the convolutional layer, where the filter size is 

the image size, and the image is (usually) 1 dimensional. Using the convolutional processing element 

could become infeasible for fully connected layers if the fully connected layers are large. Large fully 

connected layers would request a large number of weights at the same time. For most convolutional 

networks the fully connected layers have a relatively small number of weights, thus the convolutional 

layer element can be used for the fully connected layers. 

4.3.2.3 Activation functions 

To support all possible activations the processor could be used, but this will require many data 

transfers. Otherwise, several commonly used activations can be implemented in one activation unit. 

Lastly, multiple activation units can be made, for the different activations that need to be supported.  

Many of the activation functions use divisions and exponents, which are expensive operations in an 

FPGA, thus, lookup tables and approximations should be considered. The ReLU and Sigmoid are the 

minimum that should be implemented. More activation functions can easily be added. 

4.3.2.4 Memory type and usage 

Because many ANNs use large amounts of data, this data needs to be stored. Often there is not 

enough space within an FPGA to store the input, intermediary results and output, hence external 

memory is often a necessity.  

External memory incurs more delays; therefore, it is desirable to manage the amount of external 

memory required and how often it needs to be accessed. The registers are the fastest memory type on 

the FPGA; however, the number of registers is limited. Because of the aforementioned, FPGAs also 

have internal block RAM, often available in larger amounts. Block RAM needs one clock cycle to retrieve 

the data and is thus marginally slower, than registers, but faster than external memory. It might be 

necessary to check for each storage element, what the size is and then select the appropriate storage 

type. If this analysis is not done, the system either always uses the larger option or the supported 

network sizes will be limited.  

In this case, because it is a proof of concept, only the block RAM will be implemented. The block 

RAM balances the available size and difficulty of communicating with off-chip memory. No analysis will 

be needed. 

4.3.3 How to build a compiler 

To use the workflow, a compiler is required that takes the Keras specifications and turns it into a 

usable Clash project. The compiler can be implemented in any software language, but the most obvious 

options to consider are:  

• Python 

• Haskell 

• C++ 
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These are considered because many of the machine learning environments are based in Python and 

Clash is based in Haskell. Any other language could also be used. For example, many compilers are 

implemented in C++, because of its potential for low execution time. Haskell can also be compiled and 

could thus offer similar performance to a C++ implementation. Furthermore, Haskell is especially well 

suited for handling tree structures, which are often present when talking about compilers, as the abstract 

syntax tree (AST) is a common intermediate structure to represent an abstraction of a program. 

In this case, Python was chosen because of the ease of prototyping. Its flexibility in how the language 

can be used makes prototyping easier. 

4.4 Space-time trade-off interface 

The goal of the system is to offer the developer flexibility and ease of implementing the time-area 

trade-off. Therefore, some user-friendly way of inputting some variables, which decide the 

area/resource usage should be implemented. A natural place to add these variables is at the top-level 

description of the network. This will be the point at which the developer adds the network to their project 

and can then immediately decide the amount of parallelism desired.  

The network can be made scalable in multiple ways: 

1. Multiple processing elements can be implemented per layer. 

2. The vector processing units can be implemented over multiple clock cycles. 

3. One layer processing element can work on multiple layers. 

For each type of parallelism accessible to the developer, extra variables need to be added to the 

interface. For the proof of concept, it is important to choose the most effective strategy. The number of 

variables that must be chosen will also increase with more options, which could clutter the interface.  

Multiple processing elements per layer offer large scale customizability. This is a viable option 

because it is an obvious place to implement the to start. 

The parallelism offered by spreading the vector processing unit operations over time could equally 

be used to change the execution time of each layer. Making the parallelism of the vector processing 

units available to be changed by the developer is a useful addition, as it allows for more fine-tuning.  

Allowing the developer to choose to let processing elements work on multiple layers can be useful if 

layers are similar enough. Because layers often do not behave the same using one element for multiple 

layers quickly becomes infeasible. 

Only the multiplying of processing units for each layer is present in this proof of concept. 

 

4.5 Automatic architecture analysis 

The parallelism in the layers should be balanced, such that they have similar execution times. Some 

papers also include some analysis of architecture, which model the system and can then optimize for 

some cost function, an example in 3.1.1. This often includes balancing bandwidth and parallelism. 

Furthermore, the resource usage (especially the DSP blocks) and their efficiency (how much of the 

operational time they are active) are used to measure the effectiveness of an implementation. To 

implement this automatic design space exploration some model of the network is required, which can 

then be measured and show some optimal or desired parallelism. This was not within the scope of this 

research. 
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4.6 Design space exploration overview 

An overview of the choices made in the design space exploration can be seen in. The path taken 

can be seen by being made bold. 

FIGURE 23 OVERVIEW OF THE DESIGN SPACE EXPLORATION OF THE CLASH IMPLEMENTATION 
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5 IMPLEMENTATION OF THE DESIGN FLOW 

To test whether the Clash paradigm offers a better way of translating machine learning algorithms to 

FPGAs and other hardware implementations, a design flow has been developed with a compiler that 

translates networks from a commonly used machine learning platform to a general hardware 

implementation in Clash. 

This will consist of a system in which the TensorFlow-Keras library can be used within python, to 

quickly build and train a network on available hardware. This trained network can then be translated to 

a general Clash implementation. The general Clash implementation can be included in a Clash project 

and the resource utilization can easily be changed by the developer. 

This chapter will show the important implementation choices for this design flow and the Keras-to-

Clash compiler. 

5.1 Design flow overview 

The proposed design flow for the user/developer is as follows: 

1. The developer builds a network within the python Keras environment, which makes it easy to 

build, train and test network architectures. 

2. This network can be translated to a Clash implementation. 

3. The developer can optimize this Clash implementation to their system, which can be tested 

within this environment. To see if the output is correct, and how many clock cycles one inference 

takes. 

4. The working system can be compiled to a lower-level hardware description language like VHDL, 

using the Clash compiler. 

5. This implementation can be implemented on an FPGA or used for ASIC design. 

5.2 Keras-to-Clash Compiler 

To translate the high-level Keras implementation to a usable Clash implementation a compiler is 

required. The schematic overview of the steps taken by such a compiler can be seen in Figure 24. It 

starts with the Keras specification written in Python. This gets saved in two files: the configuration and 

the weights. These two files are read by the parser. The parser produces a list of layer descriptions. 

This list goes to the emitter, together with a fixed-point format. The emitter produces three files. These 

files can be included in a Clash project, from where they can be compiled by the Clash compiler to 

VHDL or Verilog. An example of these files and representations is shown in chapter 6.2 Case study of 

the new design flow. 

5.2.1 Intermediate Representation within the Keras-to-Clash compiler 

The Keras-to-Clash compiler will have some internal representation, an intermediate representation 

when translating from the high level to the Clash description. The translation could also work together 

with the compiler frameworks made for ONNX [10]. 

For many high-level specifications, a compiler exists for embedded systems. These implementations 

are often optimized for microcontrollers, which gives different optimizations than needed for an FPGA, 

and translating this C(++) implementation often involves solving data dependencies within loops, which 

can take an intractable amount of time. 

Therefore, a custom IR is defined, this results in fewer dependencies. The custom IR only stores 

information important to this system, in a format that translates well to the implementation. The internal 

representation is a list of layer objects, implemented as Python dictionaries. Each layer can be agnostic 

of the other layers. This custom data format can also save development time in further stages, as the 

translation can be more direct. This custom representation will only hold the exact information needed 

for building the Clash implementation, the rest of the information, like the training method, can be 

removed. The dictionaries have different fields depending on the layer they describe, but they always 

have a “type” and an “input_shape”. The dense and convolutional layers also include their activation 

function, which is not implemented as a separate layer, following the standard from Keras. 
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5.2.2 Saving the Keras model 

After successfully training a model, the Keras library is used to store the network configuration as a 

JSON file. While the python pickle library is used to serialize and store the array of weights 

corresponding to this network. 

5.2.3 Parser 

The parser can read the contents of the Network configuration and weights file and produce a list 

object containing all the layers that are needed for the Clash implementation. This list contains the 

sequential layers, such as Convolutional, activation, and fully connected. These layers also contain the 

corresponding weight data. 

The format of the layers is tuned to the needs of the emitter. But it does not contain any data on what 

will be implemented, if the emitter decides that certain layers from the list will be multiple components 

in the Clash implementation, this parser does not need to be aware.  

5.2.4 Emitter 

The emitter processes the list of layer objects and combines it with the correct predefined blocks, set 

with the correct values, such as window size. It also produces the block RAM binary files, which contain 

the weights in a format that can be loaded onto an FPGA. To store the weights, the data format must 

be decided at this point, up till this point, the weights have been represented following the standard of 

Keras, which is float16, float32, or float64. But in the FPGA, this will need to be represented as some 

fixed-point representation. This format is presented to the emitter as a tuple of (sign bit {0,1}, integer 

bits ℕ, fractional bits ℕ). 

The emitter produces 3 types of files: 

FIGURE 24 FLOW CHART OF THE COMPILER 
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1. One Clash network description 

2. Several binary weights files 

3. One Clash file to read the weight files 

The network description gets linked to the predefined blocks by the emitter. It also sets the correct 

parameters for each predefined block and combines all these blocks into one network predictor function.  

The network (prediction) function is the interface for the developer to the machine-learned network. 

It is where the data is entered into the network, and the output predictions will be presented. At the 

same time, it presents the interface to the parallelism variables.  

This network function can be included in any Clash project, where the network could make useful 

predictions.  

The network function passes Natural numbers from the call to the predefined filter blocks, which 

instruct how many predefined Filter blocks should be instantiated in each layer. These Clash 

descriptions use Haskell abstractions like polymorphism and partial application, to define the network 

without fully specifying the parallelism. This can be done through its partial application. The “network” 

function takes the parallelism variables and then the input data, thus the parallelism variables can be 

passed resulting in a network function with defined parallelism. 

An example of using the network function can be seen in Code Block 2. The network gets the 

parallelism of its three layers set to 1, 2 and 5, given by natural numbers: d1, d2 and d5 (line 5). The 

network gets included in the topEntity function. 

topEntity :: (KnownDomain System) 1 

  => Clock System -> Reset System -> Enable System 2 

  -> Signal System (Maybe ((Pntr, Pntr), Vec 3 (Vec 3 (Vec 1 Repr)))) 3 

  -> Signal System (Maybe ((Pntr, Pntr), Vec 1 (Vec 1 (Vec 10 Repr)))) 4 

topEntity clk rst ena input = exposeClockResetEnable (network d1 d2 d5) clk rst ena input 5 

CODE BLOCK 2 NETWORK FUNCTION IMPLEMENTED AS THE TOP-LEVEL ENTITY

5.2.5 Compiling the network 

The emitted files can be included in a project, the parallelism must be defined before it can be 

compiled. The width is given as a Natural number, that must be known at compile time.  

5.3 Transparency in the output 

The developer can access the building blocks of the network, the layers, separately instead of the 

network function. This would allow the developer to perform actions on intermediate results if he so 

desires.  

To ensure that the generated code is usable by a developer, it should be readable. The developer is 

not shown too much of the internal structure. However, if they need to look, the structure should still be 

understandable. Thus, the naming of functions, parameters, and constants is important. The functions 

should not be too long or should be cut up into blocks that have clear objectives. A function should not 

get too many input variables. The project should be made of files named after their part of the system. 

Where possible the data transformations are expressed in higher-order functions, to provide clarity to 

the developer. 

Therefore, the layers are named after their counterparts in the Keras library, “dense”, “conv2d”, 

“flatten” and “maxpooling2d”, with a layer identifier, an integer, separated by an underscore. This way 

the developer could choose to spread the layers over multiple FPGAs. 

5.4 The Clash general implementations blocks 

To build the Haskell implementation, several predefined blocks are created which form the building 

blocks for the ANN accelerator. The Keras-to-Clash compiler will use these building blocks to 

sequentially build the network in the same order as the network was defined. It will set the correct 

parameters construed from the IR.  

The blocks used are discussed in this chapter. Each block uses internal registers to pipeline the data 

processed through the system, meaning all blocks can each work on one sample at the same time. To 

synchronize the blocks the Maybe typeclass from Haskell is leveraged. When no data is available 

Nothing is produced, and the following blocks will receive Nothing. When Nothing is received, the block 

does not need to start processing new data. 
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5.4.1 Filter  

The filter predefined block performs the multiplications and additions required for both convolutional 

and dense layers, in Keras these layers are built using keras.layers.Conv2D, for a 2D convolution. The 

implementation in Clash can be seen in Appendix A. Looking at line 86 from this implementation shown 

simplified in Code Block 3 we see how higher-order functions can be used to create multiple processing 

elements. The number of processing elements can be set when implementing the block by making the 

elements map over the input while splitting the weights into equal parts. In this example, the natural 

number passed through splits conveys the number of processing elements present, by presenting that 

many copies of the input.  

The processing elements each have predefined states, defined using Haskell datatype, which will be 

implemented efficiently by the Clash compiler. The Moore machine can be used to implement this state 

machine, while describing the combinatorics, that performs the data processing, without state. 

outputs = imapA filterUnit (replicate splits input) 1 

CODE BLOCK 3 USING TEH HIGHER-ORDER FUNCTION IMAPA TO USE A VARIABLE NUMBER OF PROCESSING ELEMENTS

The polymorphism of Clash allows the filter to be defined without setting the window input size. This 

definition of the filter unit is independent of the window size for the specific implementation. 

A schematic representation can be seen in Figure 25. In the shown example 3 filter Processing 

elements are instantiated, which all take 1/3 of the filters from memory. Because they have 1/3 of the 

filters, they will produce 1/3 of the output features. These partial output features are combined into the 

output “pixel” (a 1-by-1 window of the output tensor), which will be transferred to the following block of 

the system. 

The amount of filter processing elements is related to the depth of the layer. If the layers do not 

process an equal amount of data, control must be built in to handle the behaviour and data that do not 

match in time and space. For the proof of concept, limiting the number of processing elements that can 

be set to a divisor of the number of filters is adequate. Limiting the possible parallelism factors means 

no hardware will be wasted on processing dummy data and it limits the amount of control logic 

necessary. 

 

5.4.2 Pooling 

The Pooler predefined block can be one of two implementations, the average pooler, avgPooler, or 

the maximum pooler, maxPooler. They both calculate the maximum or average per feature, but this can 

be done very concisely as can be seen in Code Block 4. In lines 2-11 the avgPooler can be seen, the 

signature is similar to the maxPooler, lines 14-21, except, it requires the window size to calculate the 

average. In this case, the triple fmap (<<<$>>>) is used, because the average and max pooler apply to 

2D matrices. The result is buffered in a register, to avoid timing issues, the average and max functions 

are defined within their appropriate predefined block, line 6-11 and line 18-21. The schematic overview 

FIGURE 25 SCHEMATIC OF THE FILTERS PREDEFINED BLOCK WITH 3 FILTER PROCESSING ELEMENTS IMPLEMENTED 
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can be seen in Figure 26.  The polymorphism of Clash makes sure that the pooling can be performed 

on any size window that comes into the processing blocks. Where in the schematic, the representation 

a  number to draw it, this is not required in the code implementation. The input is treated as a vector of 

a vector, which can be concatenated and mapped over, regardless of size and depth. Such a pooling 

layer corresponds to the Keras function keras.layers.MaxPooling2D or keras.layers.AveragePooling2D. 

-- the average Pooler predefined block 1 

avgPooler windowSize i = o 2 

  where 3 

    o = register def $ avgWindow windowSize <<<$>>> i 4 

    -- function to find the average 5 

    avgWindow windowSize@(width, height) wind = avgs 6 

      where 7 

        size = snatToNum (width `mulSNat` height) 8 

        avgs = map (/size) sums 9 

        sums = map (foldl (+) 0 . concat) transposed 10 

        transposed = transpose $ map transpose wind 11 

 12 

-- the maximum Pooler predefined block 13 

maxPooler i = o 14 

  where 15 

    o = register def $ maxWindow <<<$>>> i 16 

    -- function to find the maxima 17 

    maxWindow wind = maxs 18 

      where 19 

        maxs = map (fold max . concat) transposed 20 

        transposed = transpose $ map transpose wind 21 

CODE BLOCK 4 CLASH IMPLEMENTATION OF THE POOLER PREDEFINED BLOCK

5.4.3 Activation 

The activation predefined block is a block that takes a function and applies it to the data from the 

input. The current implementation does not support the softmax function, thus if it is to be implemented, 

a different predefined block needs to be made. It supports the following activation functions: linear, 

ReLU, a logistic approximation from the authors of [26].  

The implementation of the activation predefined block can be seen in Code Block 5. Where the 

window coming in gets concatenated to a 1D vector. After that, the singleton function is used twice two 

give it the same dimensionality as the window. As an example, an input of a matrix with dimensions 

FIGURE 26 SCHEMATIC OVERVIEW OF THE POOLER PREDEFINED BLOCKS 
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3x3x16 gets transformed to a matrix with dimensions 1x1x144. All of these steps can be taken by 

Clash’s folds, which can work on any size vector, therefore not needing size to be set before it is 

implemented and gets a defined size. 

In lines 6-7 the linear activation is implemented; the output x is the same as the input. In lines 9-10 

the ReLU is implemented when the input is smaller than 0 the output is zero, if the input is larger than 

zero the output is the same as the linear activation.  

An approximation is made of the logistic function and this is used as the sigmoidal activation function. 

This can be seen in 16-28 and 30-31 respectively. The softmax is approximated by the sigmoidal 

function, as can be seen in 34-35. The body of the activation function line 44-46 shows how the 

activation function can be applied to all the scalars in the tensor. A quadruple fmap (<<<<$>>>>) is 

used. This is because the scalars the activation need to be applied to are in four functor wrappers: 

Signal dom, tuple, first vector dimension and second vector dimension. Haskell functor typeclass allows 

the operations to be done on the data without unwrapping all the layers of abstraction. 

The result is stored in a register, to prevent timing issues with the following layers. 

The softmax function is not yet fully supported. In inference, it can be replaced by a sigmoidal 

function. The softmax helps in training as it strengthens the difference between the outputs, making 

clearer to the training algorithm whether the network is making correct predictions. But the largest result 

can still be taken as the prediction when using a not normalized output. 

5.4.4 Memory 

Between the predefined blocks, the tensors sometimes need to be stored to collect the windows for 

the next layer. The output of the blocks often needs to be combined before the next block can work on 

them. 

The memory currently only supports using block RAM. When instantiating the memory predefined 

block, the compiler knows the size of the tensor it must store. The tensor is stored in a linear block ram 

where each address stores one “pixel”. Because the system transfers the 2d addresses of the pixels, 

these 2D coordinates can be consistently translated to the memory index. 

The schematic overview of the Memory controller predefined block can be seen in Figure 27. The 

data input is a tuple of an address ((𝑥𝑖 ,  𝑦𝑖)) and a pixel. The address gets translated to a linear index 

of the memory and the pixel is stored at that location. The valid memory address vector is updated. The 

valid memory address vector contains all the addresses of the block RAM that currently hold valid data. 

The window builder requests the pixel values from the Block RAM if they are valid according to the 

valid memory address vector. The window gets build in the output stage, which will output a complete 

window when it is filled. It builds the windows in sequence from top left to bottom right, idling when the 

pixels are not yet available. 

FIGURE 27 SCHEMATIC OVERVIEW OF THE MEMORY PREDEFINED BLOCK 



 

module Convolutional.Activation where 1 

import Clash.Prelude 2 

 3 

import Tools.Tools 4 

 5 

lin :: (Num a) => a -> a 6 

lin x = x 7 

 8 

relu :: (Ord a, Num a) => a -> a 9 

relu x = max 0 x 10 

 11 

-12 

- from https://www.researchgate.net/publication/228618304_Digital_Implementation_of_The_Sig13 

moid_Function_for_FPGA_Circuits 14 

-- and https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=646812 15 

planLogistic :: (Ord a, Bounded a, Fractional a, Bits a) => a -> a 16 

planLogistic x | (abs' x) < 1     = pos $ 0.5     + shiftR (abs x) 2 17 

               | (abs' x) < 2.375 = pos $ 0.625   + shiftR (abs x) 3 18 

               | (abs' x) < 5     = pos $ 0.84375 + shiftR (abs x) 5 19 

               | otherwise        = pos $ 1 20 

               where 21 

                 pos = if x < 0 then (1-) else (0+) 22 

                 -- abs of minBound is undefined, 23 

                 -- but in this case, it is okay to take the next value, 24 

                 -- as the difference of the result at the end of the range 25 

                 -- is minimal/zero 26 

                 abs' y | y == minBound = maxBound 27 

                        | otherwise = abs y 28 

 29 

sigmoid :: (Ord a, Bounded a, Fractional a, Bits a) => a -> a 30 

sigmoid = planLogistic 31 

 32 

-- because softmax is actually quite expensive, replace it with sigmoid 33 

softmax :: (Ord a, Bounded a, Fractional a, Bits a) => a -> a 34 

softmax = sigmoid 35 

 36 

------------------------------------------------------------------------------37 

activationUnit :: (HiddenClockResetEnable dom, 38 

  NFDataX (f2 (f3 (f4 b))), Default (f2 (f3 (f4 b))), Functor f2, 39 

  Functor f3, Functor f4) 40 

  => (a -> b) 41 

  -> Signal dom (f2 (f3 (f4 a))) -> Signal dom (f2 (f3 (f4 b))) 42 

activationUnit act_f i = o 43 

  where 44 

    o = register def (act_f <<<<$>>>> i) 45 

CODE BLOCK 5 CLASH IMPLEMENTATION OF THE ACTIVATION PREDEFINED BLOCK



5.4.5 Flattening 

To “flatten” the output of a convolutional layer to prepare it for a fully connected layer, means to 

change the multidimensional matrix to a 1D representation. This is done with the flatten predefined 

block as can be seen in Code Block 7. Only the description of the data changes, but in hardware, no 

transformations happen. The transformation happens in line 11, where it is also stored in a register. 

5.4.6 Indexing 

Because the windows are streamed through most of the predefined blocks, the structure of the 

tensors is lost. Hence, alongside each streamed window, coordinates that describe the position in the 

tensor are passed along. All predefined blocks receive a tuple of the address and the data and can 

manipulate either or both or pass both indices on, depending on their task. An example of the type 

description of a packet can be seen in Code Block 6. 

Signal dom (Maybe (address, (Vec x (Vec y (Vec n (SFixed 8 8)))))) 

CODE BLOCK 6 EXAMPLE TYPE DESCRIPTION OF A PACKET BETWEEN PREDEFINED BLOCKS 

5.4.7 No input 

When there is no data is available, the predefined block should not start producing nonsensical data, 

or get into undefined states. Therefore, the streamed data is always wrapped in a Maybe construct. The 

Maybe comes from Haskell and is in the functor and applicative typeclass. These typeclasses assist in 

handling this type of data and can in this case be used to instruct whether data should be processed. 

When a predefined block receives valid data, it will operate on it and produce valid output. Valid data in 

the Maybe construct is represented as Just data, invalid data is represented as Nothing.

-- The flatten units receive a: 1 

-- Signal Maybe (address, vec X (vec Y Vec N Repr)) 2 

flattenUnit :: (HiddenClockResetEnable dom, 3 

  NFDataX (f2 (f3 (Vec 1 (Vec 1 (Vec ((x * y) * n) a))))), 4 

  Default (f2 (f3 (Vec 1 (Vec 1 (Vec ((x * y) * n) a))))), 5 

  Functor f2, Functor f3) 6 

  => Signal dom (f2 (f3 (Vec x (Vec y (Vec n a))))) 7 

  -> Signal dom (f2 (f3 (Vec 1 (Vec 1 (Vec ((x * y) * n) a))))) 8 

flattenUnit i = o 9 

  where 10 

    o = register def ( (singleton.singleton.concat.concat) <<<$>>> i) 11 

CODE BLOCK 7 CLASH IMPLEMENTATION OF THE FLATTEN PREDEFINED BLOCK
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6 RESULTS 

A proof-of-concept design flow was made, based on the choices presented in Chapters 4 and 5.  

Our Keras-to-Clash compiler translates a Keras network description, such as shown in Code Block 8, 

to a scalable Clash description.  

6.1 Resulting design flow 

The new design flow including the Keras-to-Clash compiler, 

allows the developer to build and train a model in the Python & 

Keras environment. This model can be saved and loaded into the 

parse function of the parse module. The parser will take the 

keras_model and produce the IR (intermediate representation). 

The emitter processes the IR into Clash and block RAM files. 

These files can be included in a Clash project and compiled. These 

steps are shown in a flow chart in Figure 28 

The modules implemented in Python for the compiler can be 

seen in the class diagram in Figure 29. 

6.1.1 Modules of the design flow 

The model trainer is an abstract class that gives a name to a 

network and has a train model function. The Keras implementation 

FIGURE 29 CLASS DIAGRAM FOR THE KERAS TO CLASH DESIGN  FLOW FIGURE 28 RESULTING DESIGN FLOW CHART 
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of a network can implement the train_model function, such that it can be accessed by the compiler. The 

train_model function should return a Keras model. Some example implementations in Figure 29 include 

the MNIST CNN, MNIST Dense and a dense iris recognition network. 

6.2 Case study of the new design flow 

6.2.1 Building a network 

 

The first step of using the new design flow is building a 

machine learning application using Keras in Python. The 

application can be wrapped in a train_model function, to be 

accessible from outside the module. 

In Code Block 8, an example machine learning 

application is shown. In line 2, the training data is loaded 

together with the test data, input shape, and the number of 

prediction classes. The loading function will handle any 

necessary pre-processing of the data. In this case, the 

MNIST set of handwritten digits is loaded. An example is 

shown in Figure 30. The input shape of this dataset is (9,9,1) 

because the images are scaled down from the original 

(28,28,1). The number of classes is 10, because the digits 

are encoded as a vector of 10 values, where 0 is 

represented by [1,0,0,0,0,0,0,0,0,0], 1 is represented by [0,1,0,0,0,0,0,0,0,0], 2 by [0,0,1,0,0,0,0,0,0,0], 

and so on. 

The sequential model is instantiated (from line 3) and the layers are defined (lines 4-13). The dropout 

layer, line 11, is used during training only. Dropout layers set certain activations to zero randomly, to 

increase the robustness of the trained network.  These layers can be ignored in the compilation step. 

def train_model(): 1 

(x_train, y_train), (x_test, y_test), (input_shape, num_classes) = load_data() 2 

 3 

  model = keras.Sequential(    [ 4 

    keras.Input(shape=input_shape), 5 

    layers.Conv2D(16, kernel_size=(3, 3), activation="relu"), 6 

    layers.MaxPooling2D(pool_size=(2, 2)), 7 

    layers.Conv2D(16, kernel_size=(3, 3), activation="relu"), 8 

    layers.MaxPooling2D(pool_size=(2, 2)), 9 

    layers.Flatten(), 10 

    layers.Dropout(0.5), 11 

    layers.Dense(num_classes, activation="sigmoid"), 12 

    ] 13 

  ) 14 

 15 

model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) 16 

model.fit(x_train, y_train, batch_size=128, epochs=200, validation_split=0.1) 17 

return model 18 

CODE BLOCK 8 KERAS DNN FOR RECOGNIZING THE MNIST DATASET

6.2.2 Training the network 

This network was trained using TensorFlow-Keras on a workstation. The Keras library is used to 

define which loss function is used and which optimizer to use (line 12). Then the fit method from Keras 

is used to train the model on the training data. The network training does not keep the weights within a 

range.  Constraints could be given, such as non-negativity or a minimum and maximum value. If the 

format used later on is chosen beforehand, the weights can be limited to be within the range supported 

by the format. A weights distribution for a dense implementation is shown in  Figure 32.  This weight 

distribution can be used to estimate a useful format. 

FIGURE 30 EXAMPLE OF THE DOWNSCALED MNIST  

DATASET OF WRITTEN DIGIT [29] 



    Name = "MNISTConvNetwork" 1 

    model = train_model(name=name) 2 

 3 

    ksave.save_network(model, name=name, blockramfile=True) 4 

   5 

    with open("config.json", "r") as jsonfile: 6 

        contents = jsonfile.read() 7 

        network_dict = json.loads(contents) 8 

    with open("config.obj", "rb") as weightsfile: 9 

        network_weights = pickle.load(weightsfile) 10 

 11 

  network = parse(network_dict, network_weights) 12 

    (network_text, weights_text, blockram_texts) = emit(network, name, format=(1,7,8)) 13 

CODE BLOCK 9 SAVING A NETWORK, LOADING IT FROM FILES AND PARSING IT 

6.2.3 Compilation 

In Code Block 9, the train_model function is used to create a Keras model (line 2). This model gets 

saved with the save_network function (line 4). By saving the network, it can be reloaded and retrained, 

or compiled with different settings. In this case, the files are immediately read in lines 6-10. The internal 

representation from Keras is shown in Code Block 11. It is a JSON file, which holds name-value pairs. 

Besides the JSON file, a binary file containing the weight values is also stored in floating-point format. 

These files get read for parsing. The loaded network was passed to the Keras-to-Clash compiler. 

The files first get parsed, by the parse function from the parser module. This result in the IR object: 

network, line 12. This network is passed to the emitter, together with a name for the network and the 

format to save the weights in (line 13). The format in this example is 1 sign bit, 7 integer bits, and 8 

decimal bits. The emitter produces two Haskell file texts and a block RAM file per layer. 

The network_text is a Haskell file, which is shown in Appendix B. This file defines the building blocks 

for the network, using the predefined blocks.  Multiple predefined blocks are used for some of the layers 

while others layers are made up of one predefined block. The predefined blocks get stacked using 

function composition (signified by a dot) as can be seen in Code Block 10. When using function 

composition the first layer is on the right. We can see from right to left how the network processes an 

image. The image gets flattened by flatten_0, then dense_1 will process the flattened image. The 

parallelism of dense_1 can be set later. After the first dense layer, two more dense layers follow, for 

each the parallelism can be set by the developer. 

network width1 width2 width3 = (dense_3 width3).(dense_2 width2).(dense_1 width1).flatten_0 1 

CODE BLOCK 10 USING FUNCTION COMPOSITION TO STACK THE LAYERS OF A NETWORK

 

{"class_name": "Sequential", "config": {"name": "sequential", "layers": [{"class_name": "In1 

putLayer", "config": {"batch_input_shape": [null, 14, 14, 1], "dtype": "float32", "sparse":2 

 false, "ragged": false, "name": "input_1"}}, {"class_name": "Conv2D", "config": {"name": "3 

conv2d", "trainable": true, "dtype": "float32", "filters": 16, "kernel_size": [3, 3], "stri4 

des": [1, 1], "padding": "valid", "data_format": "channels_last", "dilation_rate": [1, 1], 5 

"groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "6 

GlorotUniform", "config": {"seed": null, "dtype": "float32"}}, "bias_initializer": {"class_7 

name": "Zeros", "config": {"dtype": "float32"}}, "kernel_regularizer": null, "bias_regulari8 

zer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": nul9 

l}}, {"class_name": "MaxPooling2D", "config": {"name": "max_pooling2d", "trainable": true, 10 

"dtype": "float32", "pool_size": [2, 2], "padding": "valid", "strides": [2, 2], "data_forma11 

t": "channels_last"}}, {"class_name": "Conv2D", "config": {"name": "conv2d_1", "trainable":12 

 true, "dtype": "float32", "filters": 16, "kernel_size": [3, 3], "strides": [1, 1], "paddin13 

g": "valid", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activat14 

ion": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "conf15 

ig": {"seed": null, "dtype": "float32"}}, "bias_initializer": {"class_name": "Zeros", "conf16 
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ig": {"dtype": "float32"}}, "kernel_regularizer": null, "bias_regularizer": null, "activity17 

_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "18 

MaxPooling2D", "config": {"name": "max_pooling2d_1", "trainable": true, "dtype": "float32",19 

 "pool_size": [2, 2], "padding": "valid", "strides": [2, 2], "data_format": "channels_last"20 

}}, {"class_name": "Flatten", "config": {"name": "flatten", "trainable": true, "dtype": "fl21 

oat32", "data_format": "channels_last"}}, {"class_name": "Dropout", "config": {"name": "dro22 

pout", "trainable": true, "dtype": "float32", "rate": 0.5, "noise_shape": null, "seed": nul23 

l}}, {"class_name": "Dense", "config": {"name": "dense", "trainable": true, "dtype": "float24 

32", "units": 10, "activation": "sigmoid", "use_bias": true, "kernel_initializer": {"class_25 

name": "GlorotUniform", "config": {"seed": null, "dtype": "float32"}}, "bias_initializer": 26 

{"class_name": "Zeros", "config": {"dtype": "float32"}}, "kernel_regularizer": null, "bias_27 

regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constrai28 

nt": null}}]}, "keras_version": "2.4.0", "backend": "tensorflow"} 29 

CODE BLOCK 11 INTERNAL HIGH-LEVEL REPRESENTATION OF KERAS 

6.2.4 Synthesis  

The network function created in Code Block 10 can be implemented in a Clash project such as in 

Code Block 12. This is an otherwise empty project where the prediction of the network is not used. This 

project can be synthesised by Intel Quartus Prime to produce the network shown in Figure 31. The RTL 

netlist corresponds nicely to the network implementation from Code Block 10, adding to the readability 

of the hardware implementation. Each of the layers is visible in the RTL netlist as well as in the network 

implementation. 

In Code Block 12, line 5 imports the output file of the Keras-to-Clash compiler containing the network 

function. This file also carries the data formats for the values in the block RAM (Repr) and the format of 

the coordinates (Pntr).  

In this project, the parallelism for the network is set to 1 for the first layer, 2 for the second layer and 

2 for the third layer (line 10). The input to this system is a window of a downscaled version of an image 

from MNIST. The windows have size 3-by-3 and have 1 channel (line 10). The network outputs a vector 

with 10 values which predicts which of the digits (0-9) is shown in the input image (line 11). 

module Test where 1 

import Clash.Prelude 2 

import qualified Data.List as L 3 

 4 

import MNISTNetwork (network, Repr, Pntr) 5 

 6 

topEntity :: (KnownDomain System) 7 

  => Clock System -> Reset System -> Enable System 8 

  -> Signal System (Maybe ((Pntr, Pntr), Vec 3 (Vec 3 (Vec 1 Repr)))) 9 

  -> Signal System (Maybe ((Pntr, Pntr), Vec 1 (Vec 1 (Vec 10 Repr)))) 10 

topEntity clk rst ena i = exposeClockResetEnable (network d1 d2 d2) clk rst ena i 11 

CODE BLOCK 12 INCORPORATING THE PRODUCED NETWORK IN A CLASH PROJECT



 

6.3 Simulation results 

The network produced by the Keras-to-Clash compiler can make predictions within the Clash 

interactive environment, to test the accuracy of the compiled design. The simulation can also be used 

to measure the number of clock cycles used to calculate one result.  

6.3.1 Resource utilization 

The DSP usage was tested by synthesizing the architecture with Intel Quartus Prime. When the 

fixed-point representation is set to (1,7,8), each filter unit uses one DSP block per input. Because the 

parallelism can be controlled per layer with an integer that is a divisor of the number of neurons, this 

results in the following DSP block usage, presented in Table 2, for the convolutional network. The 

parallelism available depends on the number of neurons/filters in the layer. For the current design flow, 

only divisors of this number can be used for parallelism. These constraints produce the table of possible 

options per network. 

6.3.2 Latency and throughput 

The results of the simulations for the convolutional network can be seen in Table 1, a subset of the 

possible configurations is simulated. The throughput of the system will be slightly higher than the figures 

in this table suggest, as the network can work on multiple samples at the same time due to the 

pipelining. The effects of this are very limited though, as for one output many samples need to be 

processed. Thus, only when all samples of one image have been processed by the first layer, can 

processing of a second image be started. 

The networks are simulated in the Clash interactive environment until an output that is not Nothing 

is presented. This can be seen as the latency, from the start of processing an image till an output is 

computed. Different configurations can take in samples at different frequencies. For each network, the 

maximum sample frequency is used to perform the simulation. The period between the samples is given 

in clock cycles between the samples. 

TABLE 1 CLOCK CYCLES FROM START TO FINISH WHEN PROCESSING ONE IMAGE 

Parallelism 
in layer 1 

Parallelism in 
layer 2 

Parallelism in 
layer 3 

Time between 
samples 

Total clock 
cycles 

DSP 
usage 

1 1 1 18 2804 217 

2 2 2 10 1631 434 

4 4 2 6 1047 740 

8 8 5 4 755 1544 

 

FIGURE 31 QUARTUS RTL NETLIST OF THE MNIST TEST NETWORK 
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TABLE 2 AVAILABLE DSP BLOCK USAGE FOR THE CONVOLUTIONAL MNIST RECOGNITION NETWORK 

layer 1 with 
16 filters 

chosen 
parallelism 

DSP blocks for 
layer 1 

layer 2 with 
16 filters 

chosen 
parallelism 

DSP blocks 
for layer 2 

layer 5 with 
10 neurons 

chosen 
parallelism 

DSP blocks 
for layer 5 

total 
(DSP 

blocks) 

1 9 1 144 1 64 217 

1 9 1 144 2 128 281 

1 9 1 144 5 320 473 

1 9 2 288 1 64 361 

1 9 2 288 2 128 425 

1 9 2 288 5 320 617 

1 9 4 576 1 64 649 

1 9 4 576 2 128 713 

1 9 4 576 5 320 905 

1 9 8 1152 1 64 1225 

1 9 8 1152 2 128 1289 

1 9 8 1152 5 320 1481 

2 18 1 144 1 64 226 

2 18 1 144 2 128 290 

2 18 1 144 5 320 482 

2 18 2 288 1 64 370 

2 18 2 288 2 128 434 

2 18 2 288 5 320 626 

2 18 4 576 1 64 658 

2 18 4 576 2 128 722 

2 18 4 576 5 320 914 

2 18 8 1152 1 64 1234 

2 18 8 1152 2 128 1298 

2 18 8 1152 5 320 1490 

4 36 1 144 1 64 244 

4 36 1 144 2 128 308 

4 36 1 144 5 320 500 

4 36 2 288 1 64 388 

4 36 2 288 2 128 452 

4 36 2 288 5 320 644 

4 36 4 576 1 64 676 

4 36 4 576 2 128 740 

4 36 4 576 5 320 932 

4 36 8 1152 1 64 1252 

4 36 8 1152 2 128 1316 

4 36 8 1152 5 320 1508 

8 72 1 144 1 64 280 

8 72 1 144 2 128 344 

8 72 1 144 5 320 536 

8 72 2 288 1 64 424 
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8 72 2 288 2 128 488 

8 72 2 288 5 320 680 

8 72 4 576 1 64 712 

8 72 4 576 2 128 776 

8 72 4 576 5 320 968 

8 72 8 1152 1 64 1288 

8 72 8 1152 2 128 1352 

8 72 8 1152 5 320 1544 

6.4 Bit-width compared to accuracy 

6.4.1 Experiment 

The compiler can use different fixed-width weight representations. The bit-width will affect the 

accuracy of the resulting network. To get an idea of the effect of using different bit widths in a design, 

the effect will be measured. 

A dense network for predicting MNIST digits was trained using Keras. A histogram of the weights 

present in the trained network is shown in Figure 32. As the format used gets smaller, the range of 

representable weights will decrease. From the histogram, we can see that most weights are close to 

zero, meaning that few weights will be clipped when the format gets smaller. 

This effect is measured by compiling a dense network with various bit-widths, namely   

6.4.2 Results 

The resulting accuracies can be seen in Table 3 and Figure 33. Bit widths from 6 to 34 were 

measured, while the Keras library used floating-point numbers with 32 bits.  

Because rounding the predictions can result in accuracy loss, we compare the accuracy of the 

network to the accuracy of the original network, but with the predictions rounded to the fixed point 

FIGURE 32 HISTOGRAM OF WEIGHTS IN AN MNIST ANN 
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format. If the difference between two values is smaller than can be represented by the format, just 

rounding can result in an incorrect prediction. The accuracy of the rounded predictions is shown next 

to the accuracy of the network. 

TABLE 3 ACCURACY DEPENDING ON BIT-WIDTH 

Format Total bits Accuracy after rounding Accuracy 

Keras 32 - 0.966 

1,16,17 34 0.967 0.911 

1,15,16 32 0.967 0.911 

1,14,15 30 0.967 0.912 

1,13,14 28 0.966 0.909 

1,12,13 26 0.964 0.909 

1,11,12 24 0.963 0.908 

1,10,11 22 0.963 0.912 

1,9,10 20 0.96 0.901 

1,8,9 18 0.956 0.899 

1,7,8 16 0.95 0.888 

1,6,7 14 0.936 0.793 

1,5,6 12 0.917 0.487 

1,4,5 10 0.901 0.243 

1,3,4 8 0.862 0.101 

1,2,3 6 0.824 0.084 
 

FIGURE 33 GRAPH OF ACCURACY DEPENDING ON BIT-WIDTH 
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7 CONCLUSION 

To definitively answer the main question, we will first answer the sub-questions. 

7.1.1 Can a design flow including Clash offer a developer an interface for making a time-area 

trade-off? 

As seen in the case study, the developer can set the parallelism in each layer in their network. The 

features of Clash, such as the strong type system and the higher-order functions, could be used to 

make a time-area trade-off. The strong type system can be used to set the number representation 

throughout the whole system at compile time. The higher-order functions can be used to make variable 

arrays of processing elements available. 

7.1.2 Can a design flow including Clash offer the developer transparency in their design 

choices? 

By using Clash in the resulting implementation, some of the steps in building an ANN become more 

transparent, such as connecting the layers using function composition. The higher-order functions let 

the parallelism be set in the implementation with one parameter, which decides the length of the array 

of processing elements. 

Using function composition from Haskell to build the network results in a very readable stacking of 

layers, which is not even achieved in the python-based platforms. 

The higher-order functions used to implement the operations can offer the developer greater inside 

into the operations happening within the system than for-loops could offer. 

7.1.3 How much flexibility does a design flow including Clash offer? 

The design flow offers the developer to change the parallelism in each layer and offers the developer 

to change the bit-width. This offers a large number of options to consider. For the small network from 

the case study, there were already 48 parallelism configurations. And each parallelism configuration 

can have any of the fixed-point representations, which have no upper bound. These options result in a 

small network already having a range of magnitudes in latency and resource utilization as seen in 

chapter 6.3 Simulation results. 

7.2 How can Clash be used in a design flow from a software artificial 

neural network implementation to a hardware accelerator? 

Clash can be used to build abstractions of the building blocks for a compiler, thus it could be used 

for the implemented design flow. Because of the abstraction, it offers the developer input in the 

parallelism used within the implementation. This allows the developer to make a time-area trade-off 

such that a network could be implemented on different FPGA platforms. 
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8 DISCUSSION 

8.1 Resulting design flow 

The relation between the set parallelism and the sample throughput is not directly visible but needs 

to be tested. This lessens the ease of building a project around the network function. Because it is not 

known how often the samples can be fed into the network function, and when a prediction is expected. 

Building the network as a function composition means that the layers cannot communicate 

information to previous layers like would be desirable for implementing backpressure. When using 

backpressure, layers will hold their output until the next layer is ready to receive data. This absence of 

communication to previous layers relates to the behaviour of ANNs not depending on future layers, 

while for control mechanisms this might be useful. 

A downside of Clash is that the memory access remains more abstract, while it can cost a lot of 

energy and execution time. Fine-tuning the memory access’s would allow for additional performance 

improvements. The system for building block RAM files in Clash is not flexible enough to allow the data 

type to be set after Keras-to-Clash compilation. The weights first need to be translated into fixed-point 

values and loaded into a block RAM file. Therefore limiting the flexibility within the Clash 

implementation. 

Furthermore, the block RAM files are not easily split up, meaning that instantiating multiple filter 

processing units will multiply the block RAM, instead of cutting the block RAM into multiple pieces. 

8.2 Case study 

Although the range of possible parallelism configurations is large, most of the configurations will not 

make efficient use of the DSP blocks. They could be idle a large part of the time, meaning their utilization 

will be inefficient. To provide the developer with more information on the consequences of their 

parallelism choices in terms of latency and throughput, a temporal model is required. This temporal 

model is necessary to find the optimal set of parallelism parameters for a given design. 

The case study does not show a useful project, but a nearly empty project. This nearly empty project 

assists in showing the resource utilization of the network, but showing a project in which the predictions 

of the network are used to perform some action, can convey the possible use of the network better. 

8.3 Simulation results 

The throughput of the system is probably even more important than the simulation output of a single 

sample. However, the system was not capable of processing multiple samples in sequence without a 

reset. This is a shortcoming of the current implementation. 

8.4 Bit-width compared to accuracy 

The bit-width of the network can be changed to as low as 1 bit. However, many of the lower bit widths 

will not have useful accuracies, as the network cannot be trained to work with such low precision 

numbers. From the simulation results, we can see that an 8-bit implementation works as well as random 

guesses while a 6-bit implementation works even worse. 

It is not clear why the network cannot reach the same accuracy as the Keras implementation of the 

network. This could indicate that there is some error somewhere in the implementation. 
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9 FUTURE WORK 

9.1 Process multiple inputs 

The resulting implementation should be able to process multiple inputs in sequence. To achieve this 

goal, the layers should be able to reset their state after the last sample of an input image has been 

processed. 

9.2 Memory improvements 

9.2.1 Splitting the memory blocks 

For a system that could be used to build machine learning into Clash projects, it would be necessary 

to allow the developer to decide which memory resource is used by the memory predefined blocks. 

Thus, they need some interface to an external  

9.2.2 Changeable block RAM representation  

Currently, the number representation is set when compiling from Keras to Clash. This means that 

when a different representation should be tested the network needs to be recompiled. It would be 

beneficial if the developer could choose the representation within the Clash environment. How this could 

be achieved is not directly obvious, but would make the design flow more user friendly. 

9.3 Other intermediate representations 

Currently, Keras is used as the basis and on top of Keras, a custom abstraction is created. The 

broadly supported ONNX (Open Neural Network Exchange) format could be used instead. This would 

mean that not only models defined in the Keras library can be translated, but models from any library, 

for which a translation to ONNX format exists, could be used to build a hardware model. 

For the design flow, it would mean developing in any Platform supported by ONNX, translating to an 

ONNX format. And this ONNX format can then be compiled into a Clash implementation. 

9.4 Quantized network training 

Frameworks for training quantized networks have been made, while this is not possible within Keras 

(yet). When the training step already includes the knowledge that the weights are quantized to some 

degree, this will more accurately train for the quantized weights. Often these platforms use a floating-

point representation in the background but do inference on the quantized version of this float value. 

Quantized networks are supported in ONNX, thus that could be used instead of the custom 

description as input. ONNX allows for different quantization per layer, which can be very useful. Thus, 

the design flow should be extended to enable different quantization per layer. 

9.4.1 Different quantization per layer 

It could be useful to have different bit-width per layer. Thus, an extension of the design flow should 

also allow for changing the quantization for each layer. 

9.5 Other architectures 

Next to convolutional neural networks, sparse neural networks are also very well suited to be sped 

up using an FPGA. They are designed to be applied to very large networks where many of the weights 

can be zero. In a normal network, the zeros do not account for a large part of the network, thus they 

are multiplied with their input and summed. This operation is a waste as 𝑤0 ⋅ 𝑥0 + 0 ⋅ 𝑥1 is not dependent 

on the result of the multiplication with zero. Hardware or software that can skip these operations can 

shorten the computation time of large networks where many weights are zero. 

Recurrent networks are another interesting architecture. They can hold on to information of previous 

inputs and can thus more effectively work with time series. Their implementation would be quite different 

as they need extra storage to keep a record of previous states. 
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9.6 Design Space Exploration framework 

An analysis of the emitted network should be done to give the developer indications on what 

relationship the parallelism in each layer has. If a layer must wait for a previous layer’s output, it is not 

beneficial to add more parallelization to the layer. These relations can be found analytically during the 

compilation. If we can report these relations to the developer, they can choose a more appropriate 

parallelization per layer. 

Currently, the design flow gives a lot of options for parallelism configurations, while most of these will 

not use the resources effectively. This analysis would greatly assist the developer. 

9.7 Window accessing 

Efficiently reading the data from 

memory can be done with the rolling 

window reading as can be seen in 

Figure 34. When going to the next 

operation only three new values 

need to be read from memory while 

the rest is shifted either left or up. 

This could increase the throughput of 

the resulting network 

implementation. 

 

9.8 More efficient 
convolution 

Newer faster methods for computing matrix multiplications have been developed, which could also 

be used. An example is the method by [27]. But the Winograd method seen before might already be a 

significant improvement. 

9.9 Backpressure 

Because the system follows the linear architecture of an ANN, layers cannot tell previous layers 

whether they are ready for new input. A control system that encompasses all layers could be 

implemented to keep track of the samples and the state of each layer. This would allow making sure no 

samples are lost when layers are busy. This control could take up resources to store the samples, but 

if the layers could tell previous layers that they are busy, this would not be an issue. The samples are 

simply held in the layers until the next layer is ready to process a new sample.  

FIGURE 34 EFFICIENT WINDOW ACCESSING FROM [16] 
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APPENDIX A

module Convolutional.Filter where 1 

import Clash.Prelude 2 

import Data.Maybe (isJust) 3 

import qualified Data.List as L 4 

 5 

import Tools.Tools 6 

 7 

import Convolutional.DotProduct (dotProduct') 8 

 9 

data State = StartUp | Running | Idle | Placement | Finished deriving (Generic, NFDataX, Sh10 

ow, Eq) 11 

 12 

{-# NOINLINE ft #-} 13 

 14 

ft s i = s' 15 

  where 16 

    (minIndex, maxIndex, filt, bias, inAddrWind) = i 17 

    (index, prev_index, vecIn, state, addr, wind) = s 18 

    filtLin = concat filt 19 

    windLin = concat wind 20 

    dotPs = zipWith (dotProduct' 0) filtLin windLin 21 

    index'' = if state == StartUp then minIndex else prev_index 22 

    indexWithin = satSub SatZero index'' minIndex 23 

    psum = (foldl (+) bias dotPs) 24 

    vecOut  | state == Running = replace indexWithin (psum) vecIn 25 

            | state == Placement = replace indexWithin (psum) vecIn 26 

            | otherwise = vecIn 27 

 28 

    state' | isJust inAddrWind && state == Idle = Running 29 

           | state == Running && index == maxIndex = Placement 30 

           | state == Placement = Finished 31 

           | state == StartUp = Idle 32 

           | state == Finished = Idle 33 

           | otherwise = state 34 

    index' = case state of 35 

      Running -> satSucc SatWrap index 36 

      Placement -> index 37 

      Finished -> minIndex 38 

      Idle -> minIndex 39 

      StartUp -> minIndex 40 

    (addr', wind') | state == Idle = case inAddrWind of 41 

                                      Just (inAddr, inW) -> (inAddr, inW) 42 

                                      Nothing -> (addr, wind) 43 
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                   | otherwise = (addr, wind) 44 

    s' = (index', index, vecOut, state', addr', wind') 45 

 46 

fo s = (index, o) 47 

  where 48 

    (index, _, vecIn, state, addr, _) = s 49 

    o = if state == Finished then Just (addr, vecIn) else Nothing 50 

 51 

{-# NOINLINE filterUnit #-} 52 

 53 

filterUnit splits nFilters filtRom biasRom filterIndex inp = o 54 

  where 55 

    filterIndex' = (snatToIndex nFilters . resize) <$> filterIndex 56 

    unitLength = nFilters `divSNat` splits 57 

 58 

    unitLength' = snatToNum unitLength 59 

    startIndex = satMul SatWrap unitLength' <$> filterIndex' 60 

    filterIndexSucc' = satSucc SatWrap <$> filterIndex' 61 

    endIndex = satPred SatWrap <$> satMul SatWrap unitLength' <$> filterIndexSucc' 62 

    startIndex' = if (snatToNum splits) == 1 then (pure 0) else startIndex 63 

    endIndex' = if (snatToNum splits) == 1 then (pure (snatToNum (nFilters `subSNat` d1))) 64 

else endIndex 65 

    ---------------------------------------------------------------------------- 66 

    wind0 = def -- replicate d3 (replicate d3 (replicate d1 0)) 67 

    addr0 = def -- (0,0) 68 

    vec0 = def  -- replicate unitLength 0 69 

    ---------------------------------------------------------------------------- 70 

    s0 = (0, 0, vec0, StartUp, addr0, wind0) 71 

 72 

    filt = filtRom index 73 

    bias = biasRom index 74 

 75 

    filterUnitInput = bundle (startIndex', endIndex', filt, bias, inp) 76 

    filterUnitOutput = moore ft fo s0 filterUnitInput 77 

 78 

    (index, out) = unbundle filterUnitOutput 79 

 80 

    o = out 81 

 82 

filtersUnit splits nFilters filtRom biasRom inp = out 83 

  where 84 

    filterUnit' = filterUnit splits nFilters filtRom biasRom 85 

    os = imapA filterUnit' (replicate splits inp) 86 

    out = concatOutput <$> bundle os 87 

    concatOutput ins = o 88 

      where 89 

      concatMaybe vecMaybes = vec' 90 
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        where 91 

        vec' = if all isJust vecMaybes then Just concatCleanVec else Nothing 92 

        cleanVec = getJustOrDef <$> vecMaybes 93 

        concatCleanVec = concat cleanVec 94 

      addr = (fmap fst . last) ins 95 

      vecs = snd <<$>> ins 96 

      vec = concatMaybe vecs 97 

      o = (,) <$> addr <*> vec 98 

 99 

CODE BLOCK 13 IMPLEMENTATION OF THE FILTER PREDEFINED BLOCK



 

module Convolutional.MemoryManager (memManager) where 1 

import Clash.Prelude 2 

import Data.Maybe (isJust) 3 

 4 

import Tools.Tools 5 

 6 

ramAddrTranslate :: Num a => a -> (a, a) -> a 7 

ramAddrTranslate maxX (x, y) = (x + y * maxX) 8 

 9 

getWriteAddr :: Maybe (a, b) -> a 10 

getWriteAddr (Just (addr, _)) = addr 11 

 12 

divideImgCntByStride :: (Integral b, Integral a) 13 

  => (SNat n1, SNat n2) -> (a, b) -> (a, b) 14 

divideImgCntByStride stride@(strX,strY) imgCnt@(x,y) = (x',y') 15 

  where 16 

    x' = x `div` (snatToNum strX) 17 

    y' = y `div` (snatToNum strY) 18 

 19 

memManager :: (HiddenClockResetEnable dom, 20 

  Default a1, Default b1, Integral b1, KnownNat n1, KnownNat b2, KnownNat a2, 21 

  NFDataX b1, NFDataX a1) 22 

  => Vec n1 Bool 23 

  -> (SNat a3, SNat b3) 24 

  -> (SNat a2, SNat b2) 25 

  -> (SNat n2, SNat n3) 26 

  -> (Signal dom b1 -> Signal dom (Maybe (b1, b4)) -> Signal dom a1) 27 

  -> Signal dom (Maybe ((b1, b1), b4)) 28 

  -> Signal dom (Maybe ((b1, b1), Vec a2 (Vec b2 a1))) 29 

memManager 30 

  valids0 31 

  imgSize@(imgWidth, imgHeight) 32 

  windSize@(windWidth, windHeight) 33 

  stride@(xStride, yStride) 34 

  ram 35 

  i = out 36 

  where 37 

    -----constants------------------------------ 38 

    windWidthI = snatToNum windWidth 39 

    windHeightI = snatToNum windHeight 40 

    imgWidthI = snatToNum imgWidth 41 

    imgHeightI = snatToNum imgHeight 42 

    maxImgX = imgWidthI - windWidthI + 1 43 

    maxImgY = imgHeightI - windHeightI + 1 44 

    -------counters------------------------------ 45 

    wndCounter = count2d windWidthI windHeightI 1 1 46 

    wndCnt' = wndCounter <$> wndCnt --create next window counter value 47 
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    wndCnt = register def $ isValidRead <?> wndCnt' <:> wndCnt --48 

only update the counter if a valid value was read to put in the window 49 

    isWindDone = 50 

      (((windWidthI - 1, windHeightI - 1) ==) <$> wndCnt) .&&. (isValidRead) 51 

    imgCounter = count2d maxImgX maxImgY (snatToNum xStride) (snatToNum yStride) 52 

    imgCnt'= imgCounter <$> imgCnt 53 

    imgCnt = register def $ (isWindDone .&&. isValidRead) <?> imgCnt' <:> imgCnt 54 

    -------counter to addresses------------------------------ 55 

    imgRamAddr = ramAddrTranslate imgWidthI <$> imgCnt 56 

    wndRamAddr = ramAddrTranslate imgWidthI <$> wndCnt 57 

    rdAddr = imgRamAddr + wndRamAddr 58 

    isValidRead = (!!) <$> valids <*> rdAddr -- check if the value is already written 59 

    isValidReadDelayed = toSignal $ delayN d1 def (fromSignal isValidRead) 60 

    isWriting = isJust <$> wr 61 

    wrAddr = getWriteAddr <$> wr 62 

    valids' = replace <$> wrAddr <*> (pure True) <*> valids 63 

    valids = register valids0 $ isWriting <?> valids' <:> valids 64 

    ------memory-------------------- 65 

    wr = (\(addr, v) -> ((ramAddrTranslate imgWidthI addr, v))) <<$>> i 66 

    memOut = ram rdAddr wr 67 

    -------bufs--------------- 68 

    wind0 = replicate windWidth (replicate windHeight def) 69 

    wind = register wind0 wind' 70 

    wndCntDelayed = toSignal $ delayN d1 def (fromSignal wndCnt) 71 

    wind' = isValidReadDelayed <?> 72 

      (uncurry <$> (replace2d <$> wind) <*> wndCntDelayed <*> memOut) <:> 73 

      wind 74 

    ------------- 75 

    isWindDoneDelayed = toSignal $ delayN d2 False (fromSignal isWindDone) 76 

    divdImgCnt = divideImgCntByStride stride <$> imgCnt 77 

    divdImgCntDelayed = toSignal $ delayN d2 def (fromSignal divdImgCnt) 78 

    -- 79 

    out = isWindDoneDelayed <?> (Just <$> bundle (divdImgCntDelayed, wind)) <:> (pure Nothi80 

ng) 81 

 82 

CODE BLOCK 14 CLASH IMPLEMENTATION OF THE MEMORY PREDEFINED BLOCK
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APPENDIX B 83 

{-# LANGUAGE AllowAmbiguousTypes #-} 1 

{-# LANGUAGE NoMonomorphismRestriction #-} 2 

{-# OPTIONS_GHC -Wno-missing-signatures #-} 3 

module MNISTNetwork where 4 

import Clash.Prelude 5 

import Tools.Tools 6 

 7 

import qualified Convolutional.MemoryManager as MemoryManager 8 

import qualified Convolutional.Filter as Filter 9 

import qualified Convolutional.Pooler as Pooler 10 

import qualified Convolutional.Activation as Activation 11 

import qualified Convolutional.Flatten as Flatten 12 

 13 

import qualified MNISTNetworkWeights as Weights 14 

type Repr = Weights.Repr 15 

type Pntr = Unsigned 8 16 

allValid n = replicate n True 17 

allInvalid n = replicate n False 18 

 19 

------------------------------------------------------------------------------ 20 

layer0InputShape :: (SNat 9, SNat 9) 21 

layer0InputShape = (d9, d9) 22 

{-# NOINLINE flatten_0 #-} 23 

flatten_0 :: (HiddenClockResetEnable dom, 24 

    NFDataX (f2 (f3 (Vec 1 (Vec 1 (Vec ((9 * 9) * n) a))))), 25 

    Default (f2 (f3 (Vec 1 (Vec 1 (Vec ((9 * 9) * n) a))))), 26 

    Functor f2, Functor f3) 27 

    => Signal dom (f2 (f3 (Vec 9 (Vec 9 (Vec n a))))) 28 

    -> Signal dom (f2 (f3 (Vec 1 (Vec 1 (Vec ((9 * 9) * n) a))))) 29 

flatten_0 = Flatten.flattenUnit 30 

------------------------------------------------------------------------------ 31 

layer1InputShape :: (SNat 1, SNat 1) 32 

layer1InputShape = ((SNat :: SNat 1), (SNat :: SNat 1)) 33 

{-# NOINLINE filters1 #-} 34 

filters1 :: (HiddenClockResetEnable dom,NFDataX a2, Default a2, 35 

  KnownNat m1, KnownNat n1) 36 

  => SNat (n1 + 1) 37 

  -> Signal dom (Maybe (a2, Vec 1 (Vec 1 (Vec 81 Repr)))) 38 

  -> Signal dom (Maybe (a2, Vec ((n1 + 1) * m1) Repr)) 39 

filters1 width = Filter.filtersUnit width (SNat :: SNat 39) Weights.wss1Rom Weights.bss1Rom 40 

filters1Ram :: (HiddenClockResetEnable dom, Enum addr) 41 

  => Signal dom addr 42 

  -> Signal dom (Maybe (addr, Vec 39 Repr)) 43 

  -> Signal dom (Vec 39 Repr) 44 
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filters1Ram = blockRam (def :: Vec (1 * 1) (Vec 39 Repr)) 45 

 46 

{-# NOINLINE memLayer1 #-} 47 

memLayer1 = MemoryManager.memManager 48 

  (allInvalid d1) (d1, d1) (d1,d1) (d1,d1) filters1Ram 49 

 50 

{-# NOINLINE activationLayer1 #-} 51 

activationLayer1 :: (HiddenClockResetEnable dom, 52 

  NFDataX (f2 (f3 (f4 b))), Default (f2 (f3 (f4 b))),  53 

  Functor f2, Functor f3, Functor f4, Ord b, Bounded b, Fractional b, Bits b) 54 

  => Signal dom (f2 (f3 (f4 b))) 55 

  -> Signal dom (f2 (f3 (f4 b))) 56 

activationLayer1 = Activation.activationUnit Activation.relu 57 

 58 

{-# NOINLINE dense_1 #-} 59 

dense_1 width = memLayer1 . activationLayer1 . filters1 width 60 

------------------------------------------------------------------------------ 61 

layer2InputShape :: (SNat 1, SNat 1) 62 

layer2InputShape = ((SNat :: SNat 1), (SNat :: SNat 1)) 63 

{-# NOINLINE filters2 #-} 64 

filters2 :: (HiddenClockResetEnable dom,NFDataX a2, Default a2, 65 

  KnownNat m1, KnownNat n1) 66 

  => SNat (n1 + 1) 67 

  -> Signal dom (Maybe (a2, Vec 1 (Vec 1 (Vec 39 Repr)))) 68 

  -> Signal dom (Maybe (a2, Vec ((n1 + 1) * m1) Repr)) 69 

filters2 width = Filter.filtersUnit width (SNat :: SNat 24) Weights.wss2Rom Weights.bss2Rom 70 

filters2Ram :: (HiddenClockResetEnable dom, Enum addr) 71 

  => Signal dom addr 72 

  -> Signal dom (Maybe (addr, Vec 24 Repr)) 73 

  -> Signal dom (Vec 24 Repr) 74 

filters2Ram = blockRam (def :: Vec (1 * 1) (Vec 24 Repr)) 75 

 76 

{-# NOINLINE memLayer2 #-} 77 

memLayer2 = MemoryManager.memManager 78 

  (allInvalid d1) (d1, d1) (d1,d1) (d1,d1) filters2Ram 79 

 80 

{-# NOINLINE activationLayer2 #-} 81 

activationLayer2 :: (HiddenClockResetEnable dom, 82 

  NFDataX (f2 (f3 (f4 b))), Default (f2 (f3 (f4 b))),  83 

  Functor f2, Functor f3, Functor f4, Ord b, Bounded b, Fractional b, Bits b) 84 

  => Signal dom (f2 (f3 (f4 b))) 85 

  -> Signal dom (f2 (f3 (f4 b))) 86 

activationLayer2 = Activation.activationUnit Activation.relu 87 

 88 

{-# NOINLINE dense_2 #-} 89 

dense_2 width = memLayer2 . activationLayer2 . filters2 width 90 

------------------------------------------------------------------------------ 91 

layer3InputShape :: (SNat 1, SNat 1) 92 
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layer3InputShape = ((SNat :: SNat 1), (SNat :: SNat 1)) 93 

{-# NOINLINE filters3 #-} 94 

filters3 :: (HiddenClockResetEnable dom,NFDataX a2, Default a2, 95 

  KnownNat m1, KnownNat n1) 96 

  => SNat (n1 + 1) 97 

  -> Signal dom (Maybe (a2, Vec 1 (Vec 1 (Vec 24 Repr)))) 98 

  -> Signal dom (Maybe (a2, Vec ((n1 + 1) * m1) Repr)) 99 

filters3 width = Filter.filtersUnit width (SNat :: SNat 10) Weights.wss3Rom Weights.bss3Rom 100 

filters3Ram :: (HiddenClockResetEnable dom, Enum addr) 101 

  => Signal dom addr 102 

  -> Signal dom (Maybe (addr, Vec 10 Repr)) 103 

  -> Signal dom (Vec 10 Repr) 104 

filters3Ram = blockRam (def :: Vec (1 * 1) (Vec 10 Repr)) 105 

 106 

{-# NOINLINE memLayer3 #-} 107 

memLayer3 = MemoryManager.memManager 108 

  (allInvalid d1) (d1, d1) (d1,d1) (d1,d1) filters3Ram 109 

 110 

{-# NOINLINE activationLayer3 #-} 111 

activationLayer3 :: (HiddenClockResetEnable dom, 112 

  NFDataX (f2 (f3 (f4 b))), Default (f2 (f3 (f4 b))),  113 

  Functor f2, Functor f3, Functor f4, Ord b, Bounded b, Fractional b, Bits b) 114 

  => Signal dom (f2 (f3 (f4 b))) 115 

  -> Signal dom (f2 (f3 (f4 b))) 116 

activationLayer3 = Activation.activationUnit Activation.sigmoid 117 

 118 

{-# NOINLINE dense_3 #-} 119 

dense_3 width = memLayer3 . activationLayer3 . filters3 width 120 

------------------------------------------------------------------------------ 121 

network width1 width2 width3  = (dense_3 width3).(dense_2 width2).(dense_1 width1).flatten_122 

0 123 

CODE BLOCK 15 OUTPUT OF THE KERAS TO CLASH COMPILER FOR THE FULLY CONNECTED NETWORK
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{-# LANGUAGE AllowAmbiguousTypes #-} 1 

{-# LANGUAGE NoMonomorphismRestriction #-} 2 

{-# OPTIONS_GHC -Wno-missing-signatures #-} 3 

module MNISTConvNetwork where 4 

import Clash.Prelude 5 

import Tools.Tools 6 

 7 

import qualified Convolutional.MemoryManager as MemoryManager 8 

import qualified Convolutional.Filter as Filter 9 

import qualified Convolutional.Pooler as Pooler 10 

import qualified Convolutional.Activation as Activation 11 

import qualified Convolutional.Flatten as Flatten 12 

 13 

import qualified MNISTConvNetworkWeights as Weights 14 

type Repr = Weights.Repr 15 

type Pntr = Unsigned 8 16 

allValid n = replicate n True 17 

allInvalid n = replicate n False 18 

 19 

-------------------------------------------------------------------------------- 20 

layer0InputShape :: (SNat 3, SNat 3) 21 

layer0InputShape = ((SNat :: SNat 3), (SNat :: SNat 3)) 22 

{-# NOINLINE filters0 #-} 23 

filters0 :: (HiddenClockResetEnable dom, NFDataX a2, Default a2, 24 

  KnownNat n1, KnownNat m1) 25 

  => SNat (n1 + 1) 26 

  -> Signal dom (Maybe (a2, Vec 3 (Vec 3 (Vec 1 Repr)))) 27 

  -> Signal dom (Maybe (a2, Vec ((n1 + 1) * m1) Repr)) 28 

filters0 width = Filter.filtersUnit width (SNat :: SNat 16) Weights.wss0Rom Weights.bss0Rom 29 

activationLayer0 :: (HiddenClockResetEnable dom, 30 

  NFDataX (f2 (f3 (f4 b))), Default (f2 (f3 (f4 b))), 31 

  Functor f2, Functor f3, Functor f4, Ord b, Bounded b, Fractional b, Bits b) 32 

  => Signal dom (f2 (f3 (f4 b))) 33 

  -> Signal dom (f2 (f3 (f4 b))) 34 

activationLayer0 = Activation.activationUnit Activation.relu 35 

 36 

filters0Ram :: (HiddenClockResetEnable dom, Enum addr) 37 

  => Signal dom addr 38 

  -> Signal dom (Maybe (addr, Vec 16 Repr)) 39 

  -> Signal dom (Vec 16 Repr) 40 

filters0Ram = blockRam (def :: Vec (12 * 12) (Vec 16 Repr)) 41 

 42 

{-# NOINLINE memLayer0 #-} 43 

memLayer0 = MemoryManager.memManager 44 

  (allInvalid d144) ((SNat :: SNat 12), (SNat :: SNat 12)) layer1InputShape (d2,d2) filters45 

0Ram 46 

 47 

{-# NOINLINE conv2d_0 #-} 48 
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conv2d_0 width = memLayer0 . activationLayer0 . filters0 width 49 

-------------------------------------------------------------------------------- 50 

layer1InputShape :: ( SNat 2, SNat 2) 51 

layer1InputShape = ((SNat :: SNat 2), (SNat :: SNat 2)) 52 

{-# NOINLINE poolerLayer1 #-} 53 

poolerLayer1 = Pooler.maxPooler 54 

 55 

pool1Ram = blockRam (def :: Vec (6 * 6) (Vec 16 Repr)) 56 

{-# NOINLINE memPoolerLayer1 #-} 57 

memPoolerLayer1 = MemoryManager.memManager 58 

  (allInvalid d36) ((SNat :: SNat 6), (SNat :: SNat 6)) layer2InputShape (d1,d1) pool1Ram 59 

 60 

{-# NOINLINE maxpooling2d_1 #-} 61 

maxpooling2d_1 = memPoolerLayer1 . poolerLayer1 62 

-------------------------------------------------------------------------------- 63 

layer2InputShape :: (SNat 3, SNat 3) 64 

layer2InputShape = ((SNat :: SNat 3), (SNat :: SNat 3)) 65 

{-# NOINLINE filters2 #-} 66 

filters2 :: (HiddenClockResetEnable dom, NFDataX a2, Default a2, 67 

  KnownNat n1, KnownNat m1) 68 

  => SNat (n1 + 1) 69 

  -> Signal dom (Maybe (a2, Vec 3 (Vec 3 (Vec 16 Repr)))) 70 

  -> Signal dom (Maybe (a2, Vec ((n1 + 1) * m1) Repr)) 71 

filters2 width = Filter.filtersUnit width (SNat :: SNat 16) Weights.wss2Rom Weights.bss2Rom 72 

activationLayer2 :: (HiddenClockResetEnable dom, 73 

  NFDataX (f2 (f3 (f4 b))), Default (f2 (f3 (f4 b))), 74 

  Functor f2, Functor f3, Functor f4, Ord b, Bounded b, Fractional b, Bits b) 75 

  => Signal dom (f2 (f3 (f4 b))) 76 

  -> Signal dom (f2 (f3 (f4 b))) 77 

activationLayer2 = Activation.activationUnit Activation.relu 78 

 79 

filters2Ram :: (HiddenClockResetEnable dom, Enum addr) 80 

  => Signal dom addr 81 

  -> Signal dom (Maybe (addr, Vec 16 Repr)) 82 

  -> Signal dom (Vec 16 Repr) 83 

filters2Ram = blockRam (def :: Vec (4 * 4) (Vec 16 Repr)) 84 

 85 

{-# NOINLINE memLayer2 #-} 86 

memLayer2 = MemoryManager.memManager 87 

  (allInvalid d16) ((SNat :: SNat 4), (SNat :: SNat 4)) layer3InputShape (d2,d2) filters2Ra88 

m 89 

 90 

{-# NOINLINE conv2d_2 #-} 91 

conv2d_2 width = memLayer2 . activationLayer2 . filters2 width 92 

-------------------------------------------------------------------------------- 93 

layer3InputShape :: ( SNat 2, SNat 2) 94 

layer3InputShape = ((SNat :: SNat 2), (SNat :: SNat 2)) 95 

{-# NOINLINE poolerLayer3 #-} 96 
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poolerLayer3 = Pooler.maxPooler 97 

 98 

pool3Ram = blockRam (def :: Vec (2 * 2) (Vec 16 Repr)) 99 

{-# NOINLINE memPoolerLayer3 #-} 100 

memPoolerLayer3 = MemoryManager.memManager 101 

  (allInvalid d4) ((SNat :: SNat 2), (SNat :: SNat 2)) layer4InputShape (d1,d1) pool3Ram 102 

 103 

{-# NOINLINE maxpooling2d_3 #-} 104 

maxpooling2d_3 = memPoolerLayer3 . poolerLayer3 105 

-------------------------------------------------------------------------------- 106 

layer4InputShape :: (SNat 2, SNat 2) 107 

layer4InputShape = (d2, d2) 108 

{-# NOINLINE flatten_4 #-} 109 

flatten_4 :: (HiddenClockResetEnable dom, 110 

    NFDataX (f2 (f3 (Vec 1 (Vec 1 (Vec ((2 * 2) * n) a))))), 111 

    Default (f2 (f3 (Vec 1 (Vec 1 (Vec ((2 * 2) * n) a))))), 112 

    Functor f2, Functor f3) 113 

    => Signal dom (f2 (f3 (Vec 2 (Vec 2 (Vec n a))))) 114 

    -> Signal dom (f2 (f3 (Vec 1 (Vec 1 (Vec ((2 * 2) * n) a))))) 115 

flatten_4 = Flatten.flattenUnit 116 

-------------------------------------------------------------------------------- 117 

layer5InputShape :: (SNat 1, SNat 1) 118 

layer5InputShape = ((SNat :: SNat 1), (SNat :: SNat 1)) 119 

{-# NOINLINE filters5 #-} 120 

filters5 :: (HiddenClockResetEnable dom,NFDataX a2, Default a2, 121 

  KnownNat m1, KnownNat n1) 122 

  => SNat (n1 + 1) 123 

  -> Signal dom (Maybe (a2, Vec 1 (Vec 1 (Vec 64 Repr)))) 124 

  -> Signal dom (Maybe (a2, Vec ((n1 + 1) * m1) Repr)) 125 

filters5 width = Filter.filtersUnit width (SNat :: SNat 10) Weights.wss5Rom Weights.bss5Rom 126 

filters5Ram :: (HiddenClockResetEnable dom, Enum addr) 127 

  => Signal dom addr 128 

  -> Signal dom (Maybe (addr, Vec 10 Repr)) 129 

  -> Signal dom (Vec 10 Repr) 130 

filters5Ram = blockRam (def :: Vec (1 * 1) (Vec 10 Repr)) 131 

 132 

{-# NOINLINE memLayer5 #-} 133 

memLayer5 = MemoryManager.memManager 134 

  (allInvalid d1) (d1, d1) (d1,d1) (d1,d1) filters5Ram 135 

 136 

{-# NOINLINE activationLayer5 #-} 137 

activationLayer5 :: (HiddenClockResetEnable dom, 138 

  NFDataX (f2 (f3 (f4 b))), Default (f2 (f3 (f4 b))), 139 

  Functor f2, Functor f3, Functor f4, Ord b, Bounded b, Fractional b, Bits b) 140 

  => Signal dom (f2 (f3 (f4 b))) 141 

  -> Signal dom (f2 (f3 (f4 b))) 142 

activationLayer5 = Activation.activationUnit Activation.sigmoid 143 

 144 
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{-# NOINLINE dense_5 #-} 145 

dense_5 width = memLayer5 . activationLayer5 . filters5 width 146 

-------------------------------------------------------------------------------- 147 

network width0 width2 width5  = (dense_5 width5).flatten_4.maxpooling2d_3.(conv2d_2 width2)148 

.maxpooling2d_1.(conv2d_0 width0) 149 

 150 

CODE BLOCK 16 OUTPUT OF THE KERAS TO CLASH COMPILER FOR THE CONVOLUTIONAL NETWORK

 



module MNISTNetworkWeights where 1 

import Clash.Prelude 2 

 3 

type Repr = Fixed Signed 32 32 4 

 5 

------------------------------------------------------------------------------ 6 

wss1Path = "bins/wss1.bin" 7 

wss1Rom :: (Enum addr, HiddenClockResetEnable dom) => 8 

     Signal dom addr -> Signal dom              (Vec 1 (Vec 1 (Vec 196 Repr))) 9 

wss1Rom rd = unpack <$> blockRamFile (SNat :: SNat 39) wss1Path rd (pure Nothing) 10 

 11 

bss1Path = "bins/bss1.bin" 12 

bss1Rom :: (Enum addr, HiddenClockResetEnable dom) => 13 

     Signal dom addr -> Signal dom Repr 14 

bss1Rom rd = unpack <$> blockRamFile (SNat :: SNat 39) bss1Path rd (pure Nothing) 15 

------------------------------------------------------------------------------ 16 

wss2Path = "bins/wss2.bin" 17 

wss2Rom :: (Enum addr, HiddenClockResetEnable dom) => 18 

     Signal dom addr -> Signal dom              (Vec 1 (Vec 1 (Vec 39 Repr))) 19 

wss2Rom rd = unpack <$> blockRamFile (SNat :: SNat 24) wss2Path rd (pure Nothing) 20 

 21 

bss2Path = "bins/bss2.bin" 22 

bss2Rom :: (Enum addr, HiddenClockResetEnable dom) => 23 

     Signal dom addr -> Signal dom Repr 24 

bss2Rom rd = unpack <$> blockRamFile (SNat :: SNat 24) bss2Path rd (pure Nothing) 25 

------------------------------------------------------------------------------ 26 

wss3Path = "bins/wss3.bin" 27 

wss3Rom :: (Enum addr, HiddenClockResetEnable dom) => 28 

     Signal dom addr -> Signal dom              (Vec 1 (Vec 1 (Vec 24 Repr))) 29 

wss3Rom rd = unpack <$> blockRamFile (SNat :: SNat 10) wss3Path rd (pure Nothing) 30 

 31 

bss3Path = "bins/bss3.bin" 32 

bss3Rom :: (Enum addr, HiddenClockResetEnable dom) => 33 

     Signal dom addr -> Signal dom Repr 34 

bss3Rom rd = unpack <$> blockRamFile (SNat :: SNat 10) bss3Path rd (pure Nothing) 35 

CODE BLOCK 17 CLASH WEIGHTS  FILE, OUTPUT BY THE KERAS-TO-CLASH COMPILER FOR THE DENSE MNIST NETWORK
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