
MASTER THESIS

GENERATING SYNTHETIC
TRAINING IMAGES FOR
INSTANCE SEGMENTATION
USING SALIENT OBJECT
DETECTION AND IMAGE
COMPOSITIONS
Pratik A. Naik

FACULTY OF ENGINEERING TECHNOLOGY
DEPARTMENT OF BIOMECHANICAL ENGINEERING

EXAMINATION COMMITTEE
dr. E.H.F. van Asseldonk
dr.ir M. Vlutters
dr. N. Strisciuglio

DOCUMENT NUMBER
 BW - 798

JUNE 2021

ABSTRACT

Instance segmentation is the task in computer vision where each object in an image is localized,
identified and given a pixel-level segmentation map. Instance segmentation is used in applications such
as autonomous driving and robotic manipulation. Deep neural network models have performed well on
the instance segmentation task. However, these deep neural networks require a lot of annotated data
for training. This data is usually manually annotated. This manual annotation process is expensive
and time-consuming. Manually annotating is difficult for an individual researcher or a small research
group because there is no way to determine the number of images needed to sufficiently train a model.
To solve this problem, a synthetic image generation pipeline is proposed and tested for the instance
segmentation task with Mask R-CNN models.
In this study, synthetic images and their annotations are generated using foreground extraction and
image compositing. A salient object detection network called U2-Net is used for the foreground
extraction step. Images are composed with the extracted foregrounds using operations like random
flipping, scaling, and rotating. Along with this, the effects of adding noise, adding unlabelled instances
were studied. The effects of using hybrid datasets and initializing training with synthetic data and
then retraining the model with real image data were also studied.
Generating synthetic image datasets required 20% of the time needed to manually annotate images.
However, models trained on synthetic images with added noise and unlabelled instances have, on
average, 50% of the performance of the model trained on real image datasets. Models trained on
hybrid datasets which contain both synthetic and real images do not have any benefit as these have
performance almost equal to their real image subsets. Retrained models were initially trained with
synthetic or hybrid datasets and then retrained with real images. Retrained models performed better
than the model that was trained on only the real images.

i

ACKNOWLEDGEMENT

There are a lot of people that have helped and supported me in bringing this assignment to fruition.
Special thanks to the following people.

I would like to extend my deepest gratitude to my parents, Anil Naik and Vaishali Naik, for all of
their support and love. I am grateful for all the opportunities that they provided for me.

I am also very thankful to Dr.Ir. Mark Vlutters for the opportunity to work on this assignment.
Completing the assignment would not have been possible if not for his insights and feedback. Thank
you for allowing me to steer the assignment.

I would also like to thank Dr. Edwin van Asseldonk for providing the feedback to improve the
report. Also, thank you to Dr. Nicola Strisciuglio for his valuable feedback on the assignment.

Finally, I would like to thank my housemates and my friends for their support and encouragement
which kept me going.

ii

CONTENTS

Abstract i

Acknowledgment ii

1 Introduction 1
1.1 Problem Background . 1
1.2 Research Goals . 2

2 Background 3
2.1 Instance Segmentation . 3

2.1.1 Instance Segmentation datasets . 3
2.2 Evaluation metric for instance segmentation task . 3
2.3 Instance Segmentation Models . 4
2.4 Detectron2 . 5
2.5 Previous works using Synthetic Datasets . 5
2.6 Salient Object Detection, Datasets and Model . 6
2.7 Pycococreatortools . 6

3 Methods 7
3.1 Proposed Image Synthesis Pipeline . 7

3.1.1 Image Data . 8
3.1.2 Foreground Extraction with Salient Object Detection 8
3.1.3 Image Composer . 8
3.1.4 Image Annotator . 10
3.1.5 Neural Network . 10

3.2 Folder Structure for the Synthetic Image Generation Pipeline 10
3.3 Experiments . 11

3.3.1 Single class dataset . 11
3.3.2 Two-class dataset . 11

3.4 Ten classes datasets . 12
3.4.1 Basic Synthetic Dataset . 12
3.4.2 Synthetic Dataset with Unlabelled instances . 13
3.4.3 Hybrid Datasets . 13
3.4.4 Subsets of the Hybrid datasets . 13
3.4.5 Datasets with Noise . 13
3.4.6 Retrained Models . 14

4 Results 15
4.1 Foreground Extraction . 15
4.2 Image Composer . 15
4.3 Single Class Dataset . 16
4.4 Two Class Dataset . 16
4.5 Ten Class Datasets . 17

iii

4.5.1 Basic Datasets . 18
4.5.2 Datasets with Noise . 19
4.5.3 Retrained model . 19

5 Discussion 22

References 26

A First appendix 30
A.1 Foreground extraction with Chroma Key . 30

iv

1 INTRODUCTION

1.1 Problem Background

Computer Vision research aims to create algorithms that can perform functions of the human
visual system[1]. Automating the function of the human visual system allows for applications where
computers can perform tasks such as object tracking [2], path planning in robotics [3], object or human
pose estimation [4], and detecting cancer cells [5].

Image Classification is the task in computer vision research where a single object in the given image
has to be recognised. The most popular example for image classification task is the MNIST dataset
[6]. It is used for handwritten digit recognition. Other image classification datasets are CIFAR-10 [7]
and Caltech-101 [8]. Each Image in the datasets for this task only contain one object per image.

Object Detection is the computer vision task where for the given image, objects have to be recognised
and localized. Deep neural networks are usually employed for object detection task. These deep neural
networks require a lot of training images. For the object detection task, the training images have to be
annotated with a bounding box around the object and the object class. KITTI [9] and Pascal VOC[10]
are datasets used for object detection. Object detection task is class-aware and instance-aware.

Semantic segmentation is the computer vision task where for a given image, object classes have
to be recognised and a segmentation mask for all the pixels in the image has to be generated. The
semantic segmentation task is class-aware but not instance-aware. This means that no information is
provided about the number of occurrences of the given class in the image. ADE20K[11] and PASCAL
context[12] are datasets made for semantic segmentation tasks.

Instance Segmentation is the computer vision task where each object instance in the image is
segmented at the pixel level. It differs from Semantic segmentation since semantic segmentation is
not instance-aware but it does provide pixel-level segmentation for the image. Object Detection or
localization tasks are class-aware and instance-aware but do not provide pixel-level segmentation.
Instance segmentation is a combination of these tasks since it is class-aware, instance-aware, and
provides pixel-level segmentation.

Deep neural networks are used to perform instance segmentation tasks. However, these neural
networks need to be trained on image data before they can be used. There are instance segmentation
datasets available for certain tasks. Such as the Cityscapes dataset[13] which has 25000 annotated
images for 30 classes. Cityscapes dataset has been used for urban street scene understanding for use
in autonomous driving. The 2014 COCO dataset[14] has 2.5 million object instances for 91 object
categories. This is a general-purpose dataset with object supercategories such as animal, sports,
kitchen, and vehicle.

1

Annotating these large-scale datasets is time-consuming and expensive. The annotations for in-
stance segmentation have to be made manually. This involves outlining each object in the image and
mentioning the name of the object. For the Cityscapes dataset, 1.5 hours were needed to annotate
a single image from the 5000 finely annotated images, while the remaining 20000 coarsely annotated
images required 7 minutes per image. In the case of the COCO dataset, it took 22 worker hours to
annotate every 1000 object instances. That is about 1.32 minutes per annotation. They used Amazon
Mechanical Turk[15] to crowdsource the image annotations.

For a small research group or an individual, it is time-consuming to annotate such datasets. Also,
there are no ways to estimate the number of images needed to train a model sufficiently. In [16], a
neural network model was trained on a manually annotated, 52 image dataset with about 400 objects
per image. In the detectron2 tutorial[17], there is an example of a balloon dataset of 61 images with
255 objects being trained to an Average Precision(AP) value of 66. This suggests that for specialized
tasks, smaller datasets can be used. However, for generalized tasks such as detecting and segmenting
everyday objects in a home setting, large datasets are needed.

Synthetic datasets have been used in [18] to generate datasets using Chroma Key techniques and 3D
models. Using 3D models to generate images for computer vision tasks requires models to be prepared
by Graphic Designers. Using this method, the annotations can be automated but creating the models
requires labour and time.

1.2 Research Goals

The main goal of this thesis is:

Generating synthetic training images for instance segmentation using salient object detection and
image compositions

To achieve this goal it is broken down into smaller parts with its own sub-goals to get a perspective
on the overarching aim:

• Develop a data generation to create synthetic image compositions with labelled pixel data

– Take pictures of objects

– Extract foreground objects from the pictures

– Generate synthetic images and ground truth labels by making image compositions using
the foreground objects

• Experiment with unlabelled foreground objects, noisy images and hybrid datasets

• Train off-the-shelf instance segmentation neural networks using the generated data.

• Evaluate the performance of the neural networks on real, non-synthetic images.

• Evaluate network performance for training with synthetic images on a class not seen in previous
datasets.

2

2 BACKGROUND

2.1 Instance Segmentation

The task of detecting all the instances of a category in an image and marking their pixels was first
described by [19]. It was first known as Simultaneous Detection and Segmentation. There has been a
significant amount of research on this task since then and has been used in autonomous vehicles and
robotics[20]–[22].

2.1.1 Instance Segmentation datasets

The largest dataset for instance segmentation is the Microsoft Common Objects in Context (COCO)
[14]. It contains instance-level segmentation of 91 categories over 328k images. The 91 categories in
the dataset are chosen based on indoor and outdoor objects that can be recognized by a 4-year-old.
Only 80 of these categories are annotated for the instance segmentation task. It is widely used to
benchmark neural network models on instance segmentation tasks. The annotation format used in
the dataset is used by other datasets as well.

Other instance segmentation datasets are Large Vocabulary Instance Segmentation(LVIS) [23] and
Cityscapes[13] . LVIS uses the same images from the COCO dataset but has annotations for around
1000 categories. The annotation format is also the same as the COCO dataset. As mentioned previ-
ously, the Cityscapes dataset has instance segmentation annotations for urban scenes from 50 cities
around the world.

For robot perception using instance segmentation, there are datasets like Object Cluttered Indoor
Dataset (OCID) [24] which contains images of indoor scenes with 89 everyday objects cluttered in them.
OCID has images in RGB-D format. The images are captured using two ASUS Xtion Pro cameras.
Other such datasets include Autonomous Robot Indoor Dataset (ARID) for Object Detection task and
Yale-CMU-Berkeley(YCB) dataset for instance segmentation tasks for robotic manipulation research.

2.2 Evaluation metric for instance segmentation task

The evaluation used for calculating the performance of the network on the validation dataset is the
same as the one used for the original Mask R-CNN paper[25]. To determine the accuracy of the model
predictions Intersection over Union is used. Intersection over Union is calculated by:

IoU = model prediction ∩ ground truth
model prediction ∪ ground truth (2.1)

For the COCO metric, IoUs are calculated for 10 different thresholds starting from 0.5 to 0.95 with a
step size of 0.05. Precision is the metric which shows the number of correct predicitions made by the
model compared to the total number of predictions made by the model. It is calculated using:

Precision = True Positive
True Positive + False Positive (2.2)

3

Recall shows the completeness of the model predictions with respect to the ground truths in the
dataset. Recall is calculated using:

Recall = True Positive
True Positive + False Negative (2.3)

Average Precision is the area under the Precision-Recall curve. AP is calculated for all 10 IoU thresh-
olds and then averaged to get the COCO Average Precision score. Separate metrics for different sizes
of the foreground objects also exists. It is called AP over scales in COCO evaluation for detection task.
APs is average precision for image objects with area smaller than 322 pixels. APl is average precision
for image objects with area larger than 962 while APm is for image objects between 322 pixels and
962 pixels.

Average Precision for the instance segmentation task is denoted by AP type ’segm’ and the average
precision for object detection task is denoted by ’bbox’.

(a) (b)

Figure 2.1: (a) shows ground truth and example model prediction for the object detection task or ’bbox’. (b)
shows ground truth and example model prediction for the instance segmentation task or ’segm’. The ground
truth is shown in green and model prediciton in red. The bounding box method for localizing objects is not
accurate because the dog covers a small part of the image while the rest is background. Segmentation maps
are more accurate compared to bounding boxes. The images are only for demonstrating how the metrics are
calculated. Both model prediction and ground truth are manually drawn for the images above.

2.3 Instance Segmentation Models

Mask R-CNN is one of the neural networks that has performed well on the Instance Segmentation
task[25]. It is a modification of the Faster R-CNN[26] network which was used for object detection
tasks. Mask R-CNN models have achieved an AP score of 39.2 on the COCO test dataset. Mask
R-CNNs can process images at around 5 frames per second.

Residual networks[27](ResNet) are used as the backbone for Mask R-CNN. ResNets perform better
than plain deep neural networks by passing the gradients on some layers forward without performing

4

any operation. This helps to solve the problem of vanishing gradient where the later layers in the plain
deep networks do not perform any learning because the gradients from the loss function are nearly
zero. Because of the skipped layers in ResNets, this problem does not occur.

The architecture of Mask R-CNN has two parts - the backbone and the head. The backbone
consists of a Residual Neural Network with a feature extractor like Feature Pyramid Network (FPN).
The backbone is usually pre-trained with the ImageNet dataset. The backbone learns to detect objects
based on low-level features of the image. Pre-training is useful to reduce training times and for limited
training data. Although, if there is sufficient training data then using randomly initialized backbone
layers leads to similar performance but training time might be slightly higher according to [28].

The head for a Mask R-CNN is the ‘Mask predicting head’ which produces a bounding box, object
classification and the mask of the object. The head is the later layers of the neural network which
detect high-level features of the object. Fine-tuning of the model entails training of this head. This
head can be replaced to train a different set of categories. This allows for the backbone to be the same
for tasks that are similar enough. Fine-tuning of only the head requires significantly less training data
than training, both the backbone and head, from scratch.

2.4 Detectron2

Detectron2 [29] is a platform made by Facebook Artificial Intelligence Research (FAIR) group. It
is based on the PyTorch library. It allows for easy and quick implementation of neural networks for
different tasks like instance segmentation, panoptic segmentation, semantic segmentation, keypoint
detection and object detection. Using the configuration file in Detectron2, quick changes can be made
to models. It also has pre-trained models of various neural network models.

2.5 Previous works using Synthetic Datasets

To generate synthetic datasets, the first step is to extract foreground objects from images. These
extracted foregrounds can then be composited over different backgrounds. In 2008, [18] experimented
with synthetic datasets using ChromaKey techniques as well as CAD models for the Object Recognition
task. A green screen was used to quickly collect images and extract the foreground objects. They
reported that their method of annotating synthetic data was 135 times faster than manually generating
the training data. They changed the backgrounds of the images they captured to augment their
dataset. Their experiments with using CAD models show that generating synthetic datasets using
CAD models requires more time, also adding object shadows did not seem to have any effect on the
final performance. The coloured background used has to be lit evenly to produce good foreground
extractions. Also, using ChromaKey techniques leads to colour spill in the foreground objects because
of reflected light from the background.

In [30], image data was collected for the object classification task using AlexNet [31]. The images
were collected using a robotic arm. The robotic arm took pictures of objects on a platform. The
robotic arm rotated around the object to take pictures from different angles. This setup allows for
quick data capture. They report that capturing 676 images required 580 seconds. The setup used has
a green screen which leads to the same problems as discussed above. Using robotic setup allows for
faster and automated image capture but the size of the object that can used is limited by the working
space of the robot.

In [32], the BigBIRD dataset [33] was used to create synthetic datasets. Each object in the BigBIRD
dataset has 600 images taken from different viewpoints. They cut the object instances from the dataset
and paste them onto background scenes from the UW scenes dataset [34]. They are trying to solve

5

the Object Detection task. They use a Faster R-CNN as the detection model. To make the detection
network invariant to composition artefacts they used different blending techniques. This functions as
a good data augmentation tool but cannot be used for generating synthetic datasets with classes that
are not present in any pre-existing datasets. Data augmentation is maximising the effect of an existing
dataset. If a dataset does not exist for the given object class, it will have to be manually annotated.
Synthetically generating the dataset for the object class could be faster than manually annotating the
dataset.

In [35], a Mask R-CNN head with an EfficentNet backbone is used on the COCO and LVIS datasets
for instance segmentation task. They report a data augmentation method of using copy-pasting
foreground objects onto different background images. They claim an improvement in 2.2 AP over
the COCO dataset baseline, using this simple copy-pasting method. This was the only literature for
copy-pasting method implemented on instance segmentation for a general purpose task but it is only
used as a data augmentation tool. [36] generated synthetic data for seed phenotyping using instance
segmentation in agricultural domain.

In [37], Off-the-shelf games are used to generate synthetic data and to annotate. Grand Theft Auto
5 was used to generate a dataset that is similar to Cityscapes. A wrapper was used which allowed
them to record, modify and reproduce rendering commands. These commands were then used to
generate pixel-level semantic segmentation labels. They report that model trained on their synthetic
dataset and 1/3rd real data from CamVid dataset outperformed baseline models trained on CamVid
dataset. Generating training data from video games using this method is a lot faster than manually
annotating datasets however the object classes are limited by the video games 3D asset library. The
same issue also happens with [38] where the SUN-CG dataset[39] is used to generate RGB images
using Blender[40]. Capturing images of the objects would take less time than making 3D assets for
the object.

2.6 Salient Object Detection, Datasets and Model

As mentioned above, ChromaKey technique provides poor results if the conditions are not right and
making 3D models to generate synthetic datasets would be time consuming. For this reason, salient
object detection is chosen to extract the foreground objects from images.

Salient object detection task in computer vision deals with distinguishing the most visually distinct
objects from a given image. For the given RGB image, a binary mask is produced which segments the
salient object. The saliency of the object is determined by the colour, texture, contrast with respect to
the background. The binary masks that are produced here can be used to extract foreground objects
without the need for Chroma Key techniques.

There have been multiple deep neural networks to solve this problem. Networks that can perform
real-time at the same time outperforming other state-of-the-art networks are U2-Net[41] and BASNet
[42] . U2-Net has a Residual U block architecture while BASNet uses a ResNet-34 architecture.

2.7 Pycococreatortools

Pycococreatortools [43] is an open-source repository for annotating Instance segmentation datasets
in the COCO format. It provides various tools for processing binary masks to create a COCO format
dataset. It takes the images and binary masks as the input and outputs a JSON file that contains the
annotations. The COCO format requires the annotation to be in Run Length Encoding for ’crowd’
annotations or Polygon format. The binary masks are converted to the chosen annotation format.
Based on the binary mask, other annotation information like bounding box dimensions, width, height
,and area of the segmentation are generated.

6

3 METHODS

3.1 Proposed Image Synthesis Pipeline

Figure 3.1 shows the different components of the Image Synthesis Pipeline. The name of the component
and the function they perform are:

• Foreground Extraction: It can either use ChromaKey methods or U2 Net to extract the fore-
ground object from Image data provided.

• Image Composer: It takes the extracted foreground objects and performs scaling, rotation,
flipping operations on them. It also makes a segmentation map of the composed images which
is used for making annotations.

• Image Annotator: It processes the segmentation maps made by Image Composer and outputs a
JSON file with annotations like the COCO dataset.

• Neural Network: The Neural Network used here is a Mask R-CNN R-50 FPN. It is implemented
in PyTorch[44].

Figure 3.1: Image Synthesis Pipeline

7

3.1.1 Image Data

Deciding the object categories

Based on the 80 categories available for instance segmentation in the COCO dataset, a list of easily
available objects was prepared. This list consisted of 26 objects from the COCO dataset. To test the
performance of the image generation pipeline on adding classes not seen in previous datasets, a ‘pen’
class was added to the list.

Collecting Images

From the aforementioned list, all the unique objects for each category were collected. These objects
were photographed in front of a contrasting background. This was done to help the salient object
detection network to make segmentation easier. The objects were photographed from different angles
and also changing the pose of the objects. At the end of this step, 1092 images were collected for
the 26 objects that appear in the COCO dataset. For the ’pen’ category 226 images were collected.
The images were taken using a Mi A2 smartphone camera. Image resolution was 4000 × 3000. Total
time needed to collect all the images was around 4 hours. Number of images taken for each class and
number of instances appearing in the COCO dataset is shown in Table 3.1.

3.1.2 Foreground Extraction with Salient Object Detection

The salient object detection network used was U2-Net [41]. U2-Net provided binary masks for the
images in real-time. This is important when batch processing thousands of images. However, one
drawback is that it produces the masks at a resolution of 320 × 320 pixels. This output was enlarged
to the original resolution of the images. This caused the edges of the foreground object to become
blurred. To refine the foreground object boundary, CascadePSP[45] was used and then the foreground
objects segmentation mask was binarized.

3.1.3 Image Composer

After the foregrounds objects had been extracted, these were used by the Image composer script to
generate image compositions. The classes to include in the image compositions were selected by adding
the name of the object in the ’chosen_objects’ list or if all the objects were to be included then the
’choice’ variable can be changed as required. The number of objects to include in each image were set
using the variables ’upper_lim’ and ’lower_lim’. The number of images to generate can be prescribed
by changing the value of the ’BatchSize’ variable. The resolution of the Image Compositions can be
set using the variable ’bg_size’. The image composer script uses multiprocessing to reduce the time
required to generate the images.

The foreground objects were placed randomly on the backgrounds provided. The size of the fore-
ground was randomly selected between 0.05 to 0.75 times the width of the image. The foregrounds
were also randomly flipped. Also, complete rotation of the foregrounds was possible and the angle
was chosen at random. This was done to augment the few images that were available. It is possible
for the images to be only be partially visible, also overlapping foreground objects can also be present
in the synthetic dataset to mimic real images.

The Image composer script produces three outputs. The first is the image compositions, second
is the coloured masks which is used to generate the binary annotation masks.The binary masks are
the third output of the Image Composer. The synthetic images had a resolution of 1920 × 1080. A
Gaussian filter of 1 pixel radius is applied on all the images. Number of objects in each image was
randomly selected between 2 and 10.

8

Classes Images collected Number of instances in COCO dataset
Apple 21 1662
Backpack 36 5756
Banana 33 2346
Book 205 5562
Bottle 110 8880
Carrot 18 1764
Cell phone 60 5017
Chair 12 13354
Clock 23 4863
Cup 161 9579
Fork 30 3710
Handbag 7 7133
Keyboard 24 2221
Knife 61 4507
Laptop 37 3707
Mouse 23 1964
Orange 10 1784
Potted Plant 8 4624
Remote 20 3221
Scissors 28 975
Spoon 58 3682
Teddy Bear 9 2234
Toothbrush 59 1041
Umbrella 11 4142
Vase 18 3730
Wine glass 10 2643
Total 1092 110101

Table 3.1: Table showing number of images collected and number of instances appearing in the COCO
dataset for the given class.The classes highlighted in red are selected in the ten class dataset.

9

3.1.4 Image Annotator

The inputs to the Image Annotator are the binary masks produced from the segmentation map. The
annotations are made in the format of the COCO dataset. The annotations are stored in the JSON
file format. This annotation file is then used to train the neural network. This annotation file can be
used in any Deep Learning framework to train instance segmentation neural networks. The script for
annotating the dataset according to the COCO format was taken from Pycococreatortools [43].

For the object detection task, a dataset in COCO format requires the following information:

• Info

• Licenses

• Categories

• Images

• Annotations

The classes which have to be annotated can be added to the ‘CATEGORIES’ list in the Image
Annotator script. The COCO dataset format requires the category id here to begin at 1, 0 is reserved
for the ’background’. Pycococreatortools converts the binary masks into polygon notation which is
stored in the ’Annotations’ list along with other information generated from the polygons such as
area, bounding box dimensions and the category id of the object and the image id in which the object
appears.

3.1.5 Neural Network

The Neural Network selected is Mask R-CNN based on ResNet-50 architecture and Feature Pyramid
Network. There are Mask R-CNN models that are deeper than 50 layers and have better mask AP
values but these take longer to train and run inferences on image. Also, deeper models tend to be
take up more space on the GPU. The chosen model is a good trade-off between speed of training and
inference, model size and accuracy. The neural network models were trained on a Nvidia Titan Xp
GPU.

3.2 Folder Structure for the Synthetic Image Generation Pipeline

Base
|-- Annotations
|-- Backgrounds
|-- Classes
| |-- apple
| |-- backpack
| |-- ...
| ‘-- wine glass
|-- ColouredMasks
|-- Composed
|-- EFObjects
| |-- apple
| |-- backpack
| |-- ...
| ‘-- wine glass
‘-- Mask

|-- apple
|-- backpack

10

|-- ...
‘-- wine glass

• Annotations: It contains the binary masks which are used for annotations. The annotation
masks are saved in the format of ’ImgNumber_ObjectName_InstanceNum.png’.

• Backgrounds: The backgrounds used by the image composer are stored in this folder.

• Classes: The raw image data is stored in sub-folders here.

• ColouredMasks: It contains the coloured masks from which the binary masks are made. Coloured
mask is saved with the same name as the composed image.

• Composed: The composed images are stored in this folder.

• EFObjects: Extracted foreground objects are stored in this folder. It follows the same sub-folders
as ”Classes”.

• Mask: It contains the binary masks made by the foreground extraction method. They are used
when composing the images. It also has the same sub-folders as ”Classes”

3.3 Experiments

3.3.1 Single class dataset

To check the performance of a neural network that is trained on synthetic images, a toy dataset
consisting of 61 synthetic images was created. This dataset contains 269 instances of ‘pen’ object. The
dataset was modelled after the example shown in the Detectron2 tutorial on Google Collaboratory [46].
The example has 61 images and 255 instances of ‘balloon’ object. While selecting the backgrounds
for the synthetic dataset, care was taken not to include a pen in the background because having an
unlabelled pen instance in the background would probably confuse the neural network and lead to
poor performance.

The training parameters for the Mask R-CNN model are mentioned below:

• Learning Rate: 0.00025

• Images per batch for Backbone: 2

• Batch size per image for Region of Interest head: 128

Figure 3.2: Examples from the synthetic Pen dataset

3.3.2 Two-class dataset

A two-class dataset consisting of ‘book’ and ‘bottle’ classes was created. The two classes were chosen
because these two classes had the highest number of images collected as can be seen in Table 3.1. It
consists of 200 synthetic images with 862 instances of which 441 belong to ‘book’ while 421 belong to
‘bottle’. This dataset also contains unlabelled instances of foreground objects. This was done to make

11

sure that the neural network is invariant to the artefacts from copy-pasting. Some example images
are shown in Figure 3.3 The training parameters for the Mask R-CNN model are mentioned below:

Figure 3.3: Examples from the two class synthetic dataset. Annotated instances are highlighted.

• Learning Rate: 0.00025

• Images per batch for Backbone: 2

• Batch size per image for Region of Interest head: 256

3.4 Ten classes datasets

The training parameters for the Mask R-CNN model are mentioned below:

• Learning Rate: 0.00025

• Images per batch for Backbone: 2

• Batch size per image for Region of Interest head: 512

3.4.1 Basic Synthetic Dataset

This dataset contains 10 classes with the highest number of images as shown in Table 3.1. It has 5999
images and 26016 object instances. It only has these 10 classes in the images. No unlabelled foreground
classes were added to this dataset. A Gaussian filter was used at the end of the image composition
step to filter image composition artefacts. It was observed that the Image Annotator added some
wrong annotations due to salt and pepper noise in the binary masks. This caused the bounding
boxes made by the annotator to be bigger than the actual foreground object. This was caused by a
poor binarization threshold in the step where binary masks were created. Also, sometimes foreground
objects that did not exist in the image would get annotated. This was a bug from Pycococreatortools
and it has been fixed for the other datasets. Examples of this can be seen in Figure 3.4.

Two datasets of Basic type were made. The first dataset has 26016 object instances while the second
dataset contains 31841 object instances. This was done to make the dataset similar to the subset of
the COCO dataset used for training which is used as the benchmark dataset.

Figure 3.4: Examples from the synthetic 10 classes dataset. The instances for spoon and knife in the center
image have bounding boxes much larger than the actual object. This was caused by a bug in the annotation
step. This was fixed for the subsequent datasets.

12

3.4.2 Synthetic Dataset with Unlabelled instances

This dataset contains the same 10 classes as shown in Table 3.1. It also has 5999 images and
28771 object instances. It has unlabelled foreground objects added. This is similar to the foreground-
shaped cut-outs implemented in [47]. This is done to make the neural network model invariant to the
composition artefacts. Examples from the dataset are shown in Figure 3.5

Figure 3.5: Examples from the synthetic 10 classes dataset with unlabelled instances. Unlabelled instances
can be seen which are not highlighted.

3.4.3 Hybrid Datasets

Hybrid datasets consisting of Synthetic images as well as real images from the COCO dataset were
created. This was done to test the performance of the neural network if it was trained on both
synthetic datasets and real images. The idea behind this is that the easily produced synthetic images
would teach object semantics i.e shape, texture, colour while the real images would teach the syntax
i.e contextual placement of the objects.

Four hybrid datasets were made with different amounts of synthetic and real images.

• Hybrid50S50R contains 6000 images of which 3000 are synthetic and 3000 are real images with
33561 object instances.

• Hybrid75S25R contains 6000 images of which 4500 are synthetic and 1500 are real images with
29409 object instances.

• Hybrid90S10R contains 6000 images of which 5400 are synthetic and 600 are real images with
27798 object instances.

• Hybrid98S02R contains 6000 images of which 5880 are synthetic and 120 are real images with
27311 object instances.

The number of object instances was randomly determined for each image. Only the upper and lower
limits for those were provided.

3.4.4 Subsets of the Hybrid datasets

Models were also trained with real images from the Hybrid datasets to check how well models trained
on this part of the dataset perform on the validation dataset. These have been named COCO_3000,
COCO_1500, COCO_600 and COCO_120. Synthetic datasets of the same size and similar number
of instances were also created.

3.4.5 Datasets with Noise

After looking at the results for the models on the datasets mentioned above, the hybrid datasets
and synthetic subsets had noise added to observe the effect of noise addition. Since Real-world images
contain various types of noise due to factors like poor lighting or blur, adding noise to training image
helps the model to become robust to these effects. Zero mean Gaussian noise with standard deviation
of 10 was added to all the images.

13

The noise injected datasets are:

• Hybrid50S50Rnoise

• Hybrid75S25Rnoise

• Hybrid90S10Rnoise

• Hybrid98S02Rnoise

• Synth3000noise

• Synth1500noise

• Synth600noise

• Synth120noise

3.4.6 Retrained Models

The models trained on the Synth_120noise dataset and the Hybrid98S02Rnoise dataset were re-
trained on the COCO_120 dataset. This was done to see how well a retrained model performs
compared to a model trained on a single dataset.

The training parameters for the Mask R-CNN model are mentioned below:

• Learning Rate: 0.00025

• Images per batch for Backbone: 2

• Batch size per image for Region of Interest head: 512

14

4 RESULTS

4.1 Foreground Extraction

The total time needed for foreground extraction from the 1318 images using U2-Net was 2 hours
28 minutes or 6.5 seconds per image. Five seconds are required to refine the segmentation mask than
generating the segmentation mask for each image. The extracted foreground objects are stored in
“Base/EFObjects/ObjectName”.

Figure 4.1: Foreground extracted with U2-Net. Edges of the extracted foreground have some colour from the
background

(a) (b) (c) (d)

Figure 4.2: Steps taken for foreground extraction. (a) shows the image that is fed to U2-Net. (b) is the output
from the U2-Net. The edges of the foreground object because of the resizing from the output of U2-Net. (c)
shows the image after binary thresholding. This removes the blurry edges but it also removes the some parts
of the foreground. (d) shows the output from the CascadePSP network.

4.2 Image Composer

The time needed to generate 6000 images using this Image Composer script was 52 minutes or 0.52
seconds per image. The reported time is for a 40-core Intel Xeon E5-2630 processor. The time needed
to generate 6000 images on a single core was 11 hours and 21 minutes or 6.8 seconds per image.
Examples of these outputs are shown in Figure 4.3 and Figure 4.4.

15

Figure 4.3: The generated image and its corresponding coloured mask.

Figure 4.4: The generated binary masks from the coloured mask. These are used for making the
annotations

4.3 Single Class Dataset

A validation set consisting of 16 real images was created using images downloaded from the internet.
The validation set has 31 instances of ‘pen’ object. These images were collected from the internet
to make sure they were not the same pens as in the Synthetic dataset. The Time needed to collect
and annotate these images for the validation dataset was 29 minutes. The open-source VGG Image
Annotation[48] tool was used for annotating the dataset. The model trained on the dataset of 61
synthetic images was tested on this validation dataset. Table 4.1 shows that the training models using
the generated synthetic images is possible and some model predictions for the validation set are shown
in Figure 4.5.

Model name APtype AP AP50 AP75 APs APm APl

SynthPen bbox 57.061 77.647 67.909 40 40.594 61.777
segm 41.471 69.002 44.387 16 9.924 51.55

Table 4.1: Test results on the validation dataset for the model trained on synthetic pen dataset. The bbox
denotes the bounding box test for the object detection task and segm denotes segmentation test for instance
segmentation test. AP50 and AP75 refer to Average Precision calculated at 0.5 and 0.75 IoU thresholds respec-
tively. APs is average precision for image objects with area smaller than 322 pixels. APl is average precision
for image objects with area larger than 962 pixels while APm sits between APs and APl.

4.4 Two Class Dataset

The validation set for the two-class dataset is a subset of the COCO validation dataset from 2017.
This subset contains 200 images. To compare the model trained on the Synthetic dataset, another

16

Figure 4.5: Examples of the predictions made by the model trained on the Synthetic Pen dataset.

model was trained on a 200 image subset of the COCO 2017 train dataset. The validation dataset
contains 200 images with 430 instances of ‘bottle’ object and 422 instances of ‘book’ object. Results
for the models trained on the Synthetic dataset and COCO subset are shown in Table 4.2. Figure 4.6
shows the performance for each class as well as overall AP for both models. Since, the model trained
on synthetic images does not see humans during training, the model overgeneralizes them as ’bottle’.

Model name APtype AP AP50 AP75 APs APm APl APbottle APbook
Synthetic segm 11.234 17.994 12.797 6.739 23.05 29.738 19.028 3.44
COCO_subset segm 16.792 29.938 17.049 11.853 29.858 33.424 27.76 5.825
Synthetic bbox 12.042 18.916 13.615 8.548 26.411 27.86 20.122 3.963
COCO_subset bbox 20.114 34.722 20.857 16.974 30.938 28.682 31.335 8.892

Table 4.2: Results for the models trained on two class dataset when tested on COCO subset

Figure 4.6: The model trained on Synthetic images performs poorly compared to model trained on
the COCO subset.

4.5 Ten Class Datasets

The benchmark for the Ten class dataset was also a subset of the COCO validation dataset from 2017.
The validation dataset contains 1399 images out of the 5000 images present in the COCO validation

17

dataset. This validation set is used to check the performance of all the models trained on a dataset
that has these ten classes.

4.5.1 Basic Datasets

Table 4.3 shows the AP scores for the models trained on Synthetic, Real and Hybrid images. For the
given ten classes, the models trained on the synthetic dataset perform poorly compared to the model
trained on real data, see Tabel 4.3. Also, adding unlabelled object instances in the background of the
synthetic images provides an improvement in the AP scores. The models trained on hybrid models
have performance that is similar (for Hybrid50S50R and Hybrid75S25R) or worse (for Hybrid 90S10R
and Hybrid98S02R) than the models trained on the real image subsets of these datasets. The results
are shown in Figure 4.7.

Model Name Trained on AP Segm AP bbox
COCO10cls_retrial Real 22.359 25.829
Hybrid50S50R Hybrid 20.647 23.786
COCO_3000 Real 20.372 23.080
COCO_1500 Real 19.299 20.988
Hybrid75S25R Hybrid 19.098 21.782
COCO_600 Real 19.046 20.983
COCO_120 Real 16.408 16.903
Hybrid90S10R Hybrid 16.336 18.647
Hybrid98S02R Hybrid 11.521 13.0490
SynthUL10_30k Synthetic 6.780 7.441
Synth10_new Synthetic 4.384 4.502

Table 4.3: Results of the models trained on the basic Synthetic, Hybrid and Real Datasets. Models
trained on real images perform better than models trained on synthetic datasets. While hybrid datasets
perform better than synthetic datasets their performance is similar to their real image subsets, it would
be better to train the models only on the real image subsets.

Figure 4.7: Results of the models trained on the basic synthetic(blue), hybrid(yellow) and real(green)
datasets. The results for instance segmentation task are shown in ’segm’ and object detection task
are shown in ’bbox’

18

4.5.2 Datasets with Noise

The results for the effects of noise are shown in Table 4.4. Adding Gaussian noise to the synthetic
images has a positive effect on the AP scores. However, for the models trained on hybrid datasets,
there is a drop in performance compared to the same datasets without noise added. The results are
shown in Figure 4.8.

Model Name Trained on AP Segm AP bbox
Synth_3000 Synthetic 4.393 4.809
Synth_1500 Synthetic 6.531 7.251
Synth_3000noise Synthetic_noise 6.820 7.666
Synth_600 Synthetic 8.048 8.710
Synth_1500noise Synthetic_noise 8.872 9.488
Synth_120 Synthetic 10.090 10.693
Synth_600noise Synthetic_noise 10.145 11.120
Synth_120noise Synthetic_noise 10.853 11.427
Hybrid98S02Rnoise Hybrid_noise 11.454 12.554
Hybrid98S02R Hybrid 11.521 13.049
Hybrid90S10Rnoise Hybrid_noise 15.863 17.816
Hybrid90S10R Hybrid 16.336 18.647
Hybrid75S25Rnoise Hybrid_noise 17.813 20.444
Hybrid75S25R Hybrid 19.098 21.782
Hybrid50S50Rnoise Hybrid_noise 20.005 22.897
Hybrid50S50R Hybrid 20.647 23.786

Table 4.4: Results of models trained on synthetic and hybrid datasets with injected Gaussian noise.

Figure 4.8: Results of models trained on datasets trained on noise injected Synthetic and Hybrid
datasets.The results for instance segmentation task are shown in ’segm’ and object detection task are
shown in ’bbox’

4.5.3 Retrained model

The results for the retrained model are shown in Table 4.5. The model trained on the Synth_120noise
and COCO_120 performs better than models trained on only one of the datasets. The results are
shown in Figure 4.9.

19

Figure 4.9: Results of the retrained model with AP values for the models trained only the individual
datasets. The results for instance segmentation task are shown in ’segm’ and object detection task
are shown in ’bbox’

Model Name Trained on AP segm AP bbox
Synth_120noise Synthetic_noise 10.853 11.427
Hybrid98S02R Hybrid 11.521 13.049
Hybrid98S02R_COCO120 Retrained 12.123 12.986
COCO_120 Real 16.408 16.903
Synth120noise_COCO120 Retrained 17.010 18.753
COCO10cls_retrial Real 22.359 25.829

Table 4.5: Results of the retrained models and the models trained only on a single dataset.

Model Name Trained on AP Segm AP bbox
SynthUL10_30k Synthetic 6.780 7.441
Synth_120noise Synthetic_noise 10.853 11.427
COCO_120 Real 16.408 16.903
Synth120noise_COCO120 Retrained 17.010 18.753
Hybrid50S50R Hybrid 20.647 23.786
COCO10cls_retrial Real 22.359 25.829

Table 4.6: Results for the best performing models for each type of dataset that it was trained on.

20

Model Name Trained on AP Segm AP bbox
COCO10cls_retrial Real 22.3599230126633 25.8290412509275
Hybrid50S50R Hybrid 20.6473487944007 23.7862924613006
COCO_3000 Real 20.3720406108857 23.0804160673462
COCO_sub_30k Real 20.0932892360644 22.7893008635648
Coco_sub_25k Real 20.0754779167853 21.3652843390615
Hybrid50S50Rnoise Hybrid_noise 20.0057397609868 22.897084027899
COCO_1500 Real 19.2998030866941 20.9880890942207
Hybrid75S25R Hybrid 19.0985588346187 21.7823048961323
COCO_600 Real 19.0466465664014 20.9839608817647
Hybrid75S25Rnoise Hybrid_noise 17.81391414654 20.4443130004371
Synth120noise_COCO120 Retrained 17.0107642810354 18.7538981444623
COCO_120 Real 16.4089314925237 16.9035177186389
Hybrid90S10R Hybrid 16.33617043679 18.6477623775332
Hybrid90S10Rnoise Hybrid_noise 15.8634721450247 17.8167799764698
Hybrid98S02R_COCO120 Retrained 12.1233482391871 12.986023392189
Hybrid98S02R Hybrid 11.5219484350429 13.0490318285698
Hybrid98S02Rnoise Hybrid_noise 11.4549652507704 12.5546001858221
Synth_120noise Synthetic_noise 10.8538563602302 11.4277551557503
Synth_600noise Synthetic_noise 10.1456286406607 11.1201775462215
Synth_120 Synthetic 10.0909362173562 10.6932368072078
Synth_1500noise Synthetic_noise 8.87256809267108 9.48806213290685
Synth_600 Synthetic 8.04887874640627 8.71078538572301
Synth_3000noise Synthetic_noise 6.82066300466192 7.66642831036009
SynthUL10_30k Synthetic 6.78003565748531 7.44138373823832
Synth_1500 Synthetic 6.53164701712607 7.25121175367227
SynthUL10_1k Synthetic 6.47045917324177 7.48715856506703
SynthUL_10cls_retrialSTEPS Synthetic 6.06917487661886 6.81542416253592
Synth10_retrialwSTEPS Synthetic 4.93368671857218 5.21580851557049
Synth_3000 Synthetic 4.3932626842535 4.80973619384677
Synth10_new Synthetic 4.38482643859574 4.50278792036657
Synth10 Synthetic 3.75106635787171 3.97694824885489

Table 4.7: AP scores for all the models that were trained.

21

5 DISCUSSION

All of the ten-class datasets have a low value of AP compared to the 37 AP of the pretrained Mask
R-CNN model provided by Detectron2. The reason for this is that the chosen classes have a poor AP
score on the pre-trained Mask R-CNN as well, this is shown in Table 5.1. The average AP for these
10 classes is 25.88. Also, the model that provided the best AP among the ten classes datasets was
COCO10cls_retrial with an AP of 22.359. This is close enough to the value reached by the model
trained on the full dataset which has around 32000 images for these ten classes alone.

The models trained on synthetic data tend to perform poorly as compared to the models trained
on real data. The reason for this could be that models trained on synthetic datasets tend to overfit
on image composition artefacts. This was also observed by [32], [47]. To avoid this overfitting, they
suggested training the network with copies of the image with different filters applied. Only Gaussian
filtering was performed on the synthetic images that were produced. To avoid overfitting to these
artefacts, style transfer techniques like [49] could also be used.

It is also observed that models trained on synthetic with unlabelled instances in the background
perform better than models trained on the basic synthetic image dataset. This suggests that adding
those unlabelled instances helps the model become invariant to composition artefacts. Since, the
models trained on synthetic datasets did not have a ‘person’ class, they tended to misclassify humans as
‘bottle’ or ‘backpack’. If humans are introduced to the synthetic image as unlabelled in the background
or labelled objects this error could be reduced.

Hybrid datasets did not perform better than their real image subsets. Only Hybrid50S50R model
scored better than its subset, COCO_3000. The rest of the models trained on Hybrid datasets
performed poorly compared to their subset, particularly Hybrid98S02R. Using these hybrid datasets
provides no benefit to the model performance.

It can be seen from the results in 4.4 that addition of noise to the synthetic datasets improves the
AP score for the model considerably. However, this is not seen in hybrid datasets. There is a loss of
AP score for all the models that are trained on noise injected Hybrid datasets.

The retrained models perform better than the models trained only on the single dataset. It can be
seen that there is a significant improvement in the performance of the Synth_120noise model and the
retrained model. It also performs slightly better than the COCO_120 model. The Synth120noise_COCO120
model is trained only on 240 images.

This work only considered randomly placing the the foreground objects in the image, however real
images have contextual information. Generating images with contextual awareness could help improve
the performance of models trained on synthetic datasets. [47], [50], [51] used Generative Adversarial
Networks, Probability Guided heat maps and neural networks to predict placement of foreground
objects for contextually accurate synthetic images.

22

category AP category AP category AP
person 47. 659 bicycle 17. 969 car 41.815
motorcycle 32. 986 airplane 49.252 bus 63. 667
train 61. 038 truck 35. 068 boat 23. 022
traffic light 26. 765 fire hydrant 62. 378 stop sign 66. 174
parking meter 45.015 bench 17.275 bird 30. 338
cat 66. 854 dog 57. 179 horse 41.555
sheep 43. 681 cow 46. 896 elephant 55. 802
bear 69.355 zebra 56.278 giraffe 51.522
backpack 16.44 umbrella 44.65 handbag 14. 933
tie 31.189 suitcase 39.446 frisbee 62.388
skis 3.222 snowboard 21.955 sports ball 46. 843
kite 30.874 baseball bat 24.689 baseball glove 38.559
skateboard 31.492 surfboard 31.171 tennis racket 53.682
bottle 38.238 wine glass 30.948 cup 41.307
fork 15.283 knife 12.811 spoon 12.155
bowl 40.012 banana 19.467 apple 20.167
sandwich 36.739 orange 30.311 broccoli 21.661
carrot 18.588 hot dog 27.428 pizza 50. 275
donut 45.267 cake 35.038 chair 18.14
couch 36.135 potted plant 22.723 bed 32.042
dining table 16.106 toilet 57.366 tv 57.325
laptop 59.19 mouse 64.251 remote 28.451
keyboard 50.812 cell phone 34.009 microwave 55.995
oven 31.137 toaster 43.311 sink 35.765
refrigerator 57 book 10. 240 clock 50.323
vase 36.551 scissors 20.594 teddy bear 43.648
hair drier 0.636 toothbrush 14.988

Table 5.1: Result of the Mask R-CNN ResNet-50 FPN model provided by Detectron2 on COCO
val2017 dataset. The selected ten classes are highlighted.

23

Based on the results, it can be concluded that the synthetic dataset generation pipeline can be used
to train instance segmentation models. The best models trained on synthetic datasets achieves about
50% AP as a model trained on a real dataset. Generating synthetic datasets required only 20% of
the time required to manually annotating a dataset. Annotating images manually requires constant
attention from the user. For the synthetic image generation pipeline, user is required only for the
image collection step and the rest of the steps are executed by the computer.

It was also observed that smaller synthetic datasets (<600 images) had better results than larger
datasets. Adding unlabelled objects in the background could be a good way to improve the performance
of the instance segmentation model. One way to do this would be to check the misclassifications and
then adding unlabelled instances accordingly.

The recommended way to generate datasets would be to initialize model training with the synthetic
dataset and then use the model predictions to improve the annotations for the rest of the raw real
image data. Initializing from synthetic datasets provides the benefit of having a model that does
perform well on at least the AP-large (instances with an area larger than 962) and AP-medium
instances(instances with an area between 322 and 962). The focus can then be shifted to annotating
only the AP-small (area smaller than 322) instances. The AP-small comprise 41% of the total COCO
dataset [14]. Having a synthetic dataset that is similar to the actual validation set in this regard could
increase the accuracy of the instance segmentation model. The total number of object instances for
the datasets and number of instances across different scales is shown in table 5.2.

24

Dataset Name Total number of instances Area-small Area-medium Area-large
COCO train2017 860001 356338 295160 208498
COCO val2017 36781 15315 12569 8897
COCO_120 813 444 283 85
COCO_1500 9633 5050 3607 974
COCO_3000 20575 11211 7397 1960
COCO_600 4170 2170 1612 388
COCO_train_subset 33411 17314 12391 3698
COCO_val_subset 4963 2826 1589 547
COCO2cls_train 862 564 253 45
COCO2cls_val 852 603 212 37
hybrid50S50R 33561 11486 9025 13043
hybrid75S25R 29409 5514 6072 17820
hybrid90S10R 27798 2686 4614 20498
hybrid98S02R 27311 1440 3682 22186
pen_train 269 18 55 196
penVal 31 1 4 26
Synth_10cls 26016 540 3103 22372
Synth_120 539 15 62 462
Synth_600 3201 83 440 2678
Synth_UL10cls_new 31819 787 4164 26866
Synth10cls_new 31841 768 4071 27001
Synth2clsUL 833 10 85 738

Table 5.2: Table showing the number of object instances in each dataset. Area-small refers to object
instances having an area under 322 pixels. Area-large is for object instances with an area above
962 pixels. Area-medium is for object instances with an area between 322 and 962 pixels. Real
image datasets have more object instances for the Area-small and Area-medium scale compared to
the synthetic and hybrid datasets. Majority of the images in the real datasets are Area-small.

25

Bibliography

[1] T S Huang. “Computer Vision: Evolution and Promise”. en. In: (), p. 5.
[2] Marjolein Bruijning, Marco D. Visser, Caspar A. Hallmann, et al. “trackdem: Automated particle

tracking to obtain population counts and size distributions from videos in r”. en. In: Methods in
Ecology and Evolution 9.4 (2018). _eprint: https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/2041-
210X.12975, pp. 965–973. issn: 2041-210X. doi: https://doi.org/10.1111/2041-210X.12975.
url: https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041- 210X.
12975 (visited on 05/17/2021).

[3] Qing Li, Gaochen Min, Peng Chen, et al. “Computer vision-based techniques and path plan-
ning strategy in a slope monitoring system using unmanned aerial vehicle”. en. In: Interna-
tional Journal of Advanced Robotic Systems 17.2 (Mar. 2020). Publisher: SAGE Publications,
p. 1729881420904303. issn: 1729-8814. doi: 10.1177/1729881420904303. url: https://doi.
org/10.1177/1729881420904303 (visited on 05/18/2021).

[4] Daniil Osokin. “Real-time 2D Multi-Person Pose Estimation on CPU: Lightweight OpenPose”.
In: arXiv:1811.12004 [cs] (Nov. 2018). arXiv: 1811.12004. url: http://arxiv.org/abs/1811.
12004 (visited on 05/18/2021).

[5] Claire Lifan Chen, Ata Mahjoubfar, Li-Chia Tai, et al. “Deep Learning in Label-free Cell Clas-
sification”. en. In: Scientific Reports 6.1 (Mar. 2016). Number: 1 Publisher: Nature Publishing
Group, p. 21471. issn: 2045-2322. doi: 10.1038/srep21471. url: https://www.nature.com/
articles/srep21471 (visited on 05/18/2021).

[6] Yann Lecun. “Gradient-Based Learning Applied to Document Recognition”. en. In: PROCEED-
INGS OF THE IEEE 86.11 (1998), p. 47.

[7] Alex Krizhevsky. “Learning Multiple Layers of Features from Tiny Images”. en. In: (), p. 60.
[8] Li Fei-Fei, Rob Fergus, and Pietro Perona. “Learning Generative Visual Models from Few Train-

ing Examples: An Incremental Bayesian Approach Tested on 101 Object Categories.” en. In: (),
p. 9.

[9] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for autonomous driving? The
KITTI vision benchmark suite”. In: 2012 IEEE Conference on Computer Vision and Pattern
Recognition. ISSN: 1063-6919. June 2012, pp. 3354–3361. doi: 10.1109/CVPR.2012.6248074.

[10] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, et al. “The Pascal Visual Object
Classes (VOC) Challenge”. en. In: International Journal of Computer Vision 88.2 (June 2010),
pp. 303–338. issn: 0920-5691, 1573-1405. doi: 10.1007/s11263- 009- 0275- 4. url: http:
//link.springer.com/10.1007/s11263-009-0275-4 (visited on 05/18/2021).

[11] Bolei Zhou, Hang Zhao, Xavier Puig, et al. “Scene Parsing through ADE20K Dataset”. en. In:
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI:
IEEE, July 2017, pp. 5122–5130. isbn: 978-1-5386-0457-1. doi: 10.1109/CVPR.2017.544. url:
http://ieeexplore.ieee.org/document/8100027/ (visited on 05/18/2021).

26

https://doi.org/https://doi.org/10.1111/2041-210X.12975
https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.12975
https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.12975
https://doi.org/10.1177/1729881420904303
https://doi.org/10.1177/1729881420904303
https://doi.org/10.1177/1729881420904303
http://arxiv.org/abs/1811.12004
http://arxiv.org/abs/1811.12004
https://doi.org/10.1038/srep21471
https://www.nature.com/articles/srep21471
https://www.nature.com/articles/srep21471
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1007/s11263-009-0275-4
http://link.springer.com/10.1007/s11263-009-0275-4
http://link.springer.com/10.1007/s11263-009-0275-4
https://doi.org/10.1109/CVPR.2017.544
http://ieeexplore.ieee.org/document/8100027/

[12] Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, et al. “The Role of Context for Object Detection
and Semantic Segmentation in the Wild”. en. In: 2014 IEEE Conference on Computer Vision and
Pattern Recognition. Columbus, OH, USA: IEEE, June 2014, pp. 891–898. isbn: 978-1-4799-5118-
5. doi: 10.1109/CVPR.2014.119. url: https://ieeexplore.ieee.org/document/6909514
(visited on 05/18/2021).

[13] Marius Cordts, Mohamed Omran, Sebastian Ramos, et al. “The Cityscapes Dataset for Semantic
Urban Scene Understanding”. en. In: arXiv:1604.01685 [cs] (Apr. 2016). arXiv: 1604.01685. url:
http://arxiv.org/abs/1604.01685 (visited on 04/09/2021).

[14] Tsung-Yi Lin, Michael Maire, Serge Belongie, et al. “Microsoft COCO: Common Objects in
Context”. In: arXiv:1405.0312 [cs] (Feb. 2015). arXiv: 1405.0312. url: http://arxiv.org/
abs/1405.0312 (visited on 04/05/2021).

[15] Kevin Crowston. “Amazon Mechanical Turk: A Research Tool for Organizations and Information
Systems Scholars”. en. In: Shaping the Future of ICT Research. Methods and Approaches. Ed. by
Anol Bhattacherjee and Brian Fitzgerald. IFIP Advances in Information and Communication
Technology. Berlin, Heidelberg: Springer, 2012, pp. 210–221. isbn: 978-3-642-35142-6. doi: 10.
1007/978-3-642-35142-6_14.

[16] Wei Guo, Bangyou Zheng, Andries B. Potgieter, et al. “Aerial Imagery Analysis Quantify-
ing Appearance and Number of Sorghum Heads for Applications in Breeding and Agronomy”.
English. In: Frontiers in Plant Science 9 (2018). Publisher: Frontiers. issn: 1664-462X. doi:
10.3389/fpls.2018.01544. url: https://www.frontiersin.org/articles/10.3389/fpls.
2018.01544/full (visited on 05/18/2021).

[17] Detectron2 tutorial. en. url: https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-
m5 (visited on 05/18/2021).

[18] Benjamin Sapp, Ashutosh Saxena, and Andrew Y Ng. “A Fast Data Collection and Augmenta-
tion Procedure for Object Recognition”. en. In: (), p. 7.

[19] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, et al. “Simultaneous Detection and Segmen-
tation”. In: arXiv:1407.1808 [cs] (July 2014). arXiv: 1407.1808. url: http://arxiv.org/abs/
1407.1808 (visited on 04/08/2021).

[20] Julien Champ, Adan MoraFallas, Hervé Goëau, et al. “Instance segmentation for the fine detec-
tion of crop and weed plants by precision agricultural robots”. en. In: Applications in Plant Sci-
ences 8.7 (2020). _eprint: https://bsapubs.onlinelibrary.wiley.com/doi/pdf/10.1002/aps3.11373,
e11373. issn: 2168-0450. doi: https : / / doi . org / 10 . 1002 / aps3 . 11373. url: https : / /
bsapubs.onlinelibrary.wiley.com/doi/abs/10.1002/aps3.11373 (visited on 05/17/2021).

[21] Eslam Mohamed, Mahmoud Ewaisha, Mennatullah Siam, et al. “Monocular Instance Motion
Segmentation for Autonomous Driving: KITTI InstanceMotSeg Dataset and Multi-task Base-
line”. en. In: arXiv:2008.07008 [cs] (Feb. 2021). arXiv: 2008.07008. url: http://arxiv.org/
abs/2008.07008 (visited on 04/09/2021).

[22] Kentaro Wada, Kei Okada, and Masayuki Inaba. “Joint Learning of Instance and Semantic
Segmentation for Robotic Pick-and-Place with Heavy Occlusions in Clutter”. en. In: 2019 In-
ternational Conference on Robotics and Automation (ICRA). Montreal, QC, Canada: IEEE,
May 2019, pp. 9558–9564. isbn: 978-1-5386-6027-0. doi: 10.1109/ICRA.2019.8793783. url:
https://ieeexplore.ieee.org/document/8793783/ (visited on 04/09/2021).

[23] Agrim Gupta, Piotr Dollar, and Ross Girshick. “LVIS: A Dataset for Large Vocabulary Instance
Segmentation”. en. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR). Long Beach, CA, USA: IEEE, June 2019, pp. 5351–5359. isbn: 978-1-72813-293-8.
doi: 10.1109/CVPR.2019.00550. url: https://ieeexplore.ieee.org/document/8954457/
(visited on 04/16/2021).

27

https://doi.org/10.1109/CVPR.2014.119
https://ieeexplore.ieee.org/document/6909514
http://arxiv.org/abs/1604.01685
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
https://doi.org/10.1007/978-3-642-35142-6_14
https://doi.org/10.1007/978-3-642-35142-6_14
https://doi.org/10.3389/fpls.2018.01544
https://www.frontiersin.org/articles/10.3389/fpls.2018.01544/full
https://www.frontiersin.org/articles/10.3389/fpls.2018.01544/full
https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5
https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5
http://arxiv.org/abs/1407.1808
http://arxiv.org/abs/1407.1808
https://doi.org/https://doi.org/10.1002/aps3.11373
https://bsapubs.onlinelibrary.wiley.com/doi/abs/10.1002/aps3.11373
https://bsapubs.onlinelibrary.wiley.com/doi/abs/10.1002/aps3.11373
http://arxiv.org/abs/2008.07008
http://arxiv.org/abs/2008.07008
https://doi.org/10.1109/ICRA.2019.8793783
https://ieeexplore.ieee.org/document/8793783/
https://doi.org/10.1109/CVPR.2019.00550
https://ieeexplore.ieee.org/document/8954457/

[24] Markus Suchi, Timothy Patten, David Fischinger, et al. “EasyLabel: A Semi-Automatic Pixel-
wise Object Annotation Tool for Creating Robotic RGB-D Datasets”. In: arXiv:1902.01626 [cs]
(Mar. 2019). arXiv: 1902.01626 version: 2. url: http://arxiv.org/abs/1902.01626 (visited
on 04/16/2021).

[25] K. He, G. Gkioxari, P. Dollár, et al. “Mask R-CNN”. In: 2017 IEEE International Conference
on Computer Vision (ICCV). ISSN: 2380-7504. Oct. 2017, pp. 2980–2988. doi: 10.1109/ICCV.
2017.322.

[26] Shaoqing Ren, Kaiming He, Ross Girshick, et al. “Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks”. en. In: arXiv:1506.01497 [cs] (Jan. 2016). arXiv:
1506.01497. url: http://arxiv.org/abs/1506.01497 (visited on 05/18/2021).

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, et al. “Deep Residual Learning for Image Recogni-
tion”. en. In: arXiv:1512.03385 [cs] (Dec. 2015). arXiv: 1512.03385. url: http://arxiv.org/
abs/1512.03385 (visited on 05/18/2021).

[28] Kaiming He, Ross Girshick, and Piotr Dollar. “Rethinking ImageNet Pre-Training”. en. In: (),
p. 10.

[29] Yuxin Wu, Alexander Kirillov, Francisco Massa, et al. Detectron2. https : / / github . com /
facebookresearch/detectron2. 2019.

[30] Yiming Liu, Shaohua Zhang, Xiaohui Xiao, et al. “A Robotized Data Collection Approach for
Convolutional Neural Networks”. en. In: Intelligent Robotics and Applications. Ed. by YongAn
Huang, Hao Wu, Honghai Liu, et al. Lecture Notes in Computer Science. Cham: Springer In-
ternational Publishing, 2017, pp. 472–483. isbn: 978-3-319-65298-6. doi: 10.1007/978-3-319-
65298-6_43.

[31] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet classification with deep
convolutional neural networks”. en. In: Communications of the ACM 60.6 (May 2017), pp. 84–
90. issn: 0001-0782, 1557-7317. doi: 10.1145/3065386. url: https://dl.acm.org/doi/10.
1145/3065386 (visited on 04/17/2021).

[32] Debidatta Dwibedi, Ishan Misra, and Martial Hebert. “Cut, Paste and Learn: Surprisingly Easy
Synthesis for Instance Detection”. In: arXiv:1708.01642 [cs] (Aug. 2017). arXiv: 1708.01642.
url: http://arxiv.org/abs/1708.01642 (visited on 04/17/2021).

[33] Arjun Singh, James Sha, Karthik S. Narayan, et al. “BigBIRD: A large-scale 3D database of
object instances”. en. In: 2014 IEEE International Conference on Robotics and Automation
(ICRA). Hong Kong, China: IEEE, May 2014, pp. 509–516. isbn: 978-1-4799-3685-4. doi: 10.
1109/ICRA.2014.6906903. url: http://ieeexplore.ieee.org/document/6906903/ (visited
on 04/17/2021).

[34] Kevin Lai, Liefeng Bo, Xiaofeng Ren, et al. “A Large-Scale Hierarchical Multi-View RGB-D
Object Dataset”. en. In: (), p. 8.

[35] Golnaz Ghiasi, Yin Cui, Aravind Srinivas, et al. “Simple Copy-Paste is a Strong Data Aug-
mentation Method for Instance Segmentation”. In: arXiv:2012.07177 [cs] (Dec. 2020). arXiv:
2012.07177 version: 1. url: http://arxiv.org/abs/2012.07177 (visited on 04/17/2021).

[36] Yosuke Toda, Fumio Okura, Jun Ito, et al. “Training instance segmentation neural network
with synthetic datasets for crop seed phenotyping”. In: Communications Biology 3 (Apr. 2020),
p. 173. doi: 10.1038/s42003-020-0905-5.

[37] Stephan R. Richter, Vibhav Vineet, Stefan Roth, et al. “Playing for Data: Ground Truth from
Computer Games”. In: arXiv:1608.02192 [cs] (Aug. 2016). arXiv: 1608.02192. url: http://
arxiv.org/abs/1608.02192 (visited on 04/17/2021).

[38] Maximilian Denninger, Martin Sundermeyer, Dominik Winkelbauer, et al. “BlenderProc”. In:
arXiv:1911.01911 [cs] (Oct. 2019). arXiv: 1911.01911. url: http://arxiv.org/abs/1911.
01911 (visited on 04/17/2021).

28

http://arxiv.org/abs/1902.01626
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/ICCV.2017.322
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://doi.org/10.1007/978-3-319-65298-6_43
https://doi.org/10.1007/978-3-319-65298-6_43
https://doi.org/10.1145/3065386
https://dl.acm.org/doi/10.1145/3065386
https://dl.acm.org/doi/10.1145/3065386
http://arxiv.org/abs/1708.01642
https://doi.org/10.1109/ICRA.2014.6906903
https://doi.org/10.1109/ICRA.2014.6906903
http://ieeexplore.ieee.org/document/6906903/
http://arxiv.org/abs/2012.07177
https://doi.org/10.1038/s42003-020-0905-5
http://arxiv.org/abs/1608.02192
http://arxiv.org/abs/1608.02192
http://arxiv.org/abs/1911.01911
http://arxiv.org/abs/1911.01911

[39] Shuran Song, Fisher Yu, Andy Zeng, et al. “Semantic Scene Completion from a Single Depth
Image”. In: Proceedings of 30th IEEE Conference on Computer Vision and Pattern Recognition
(2017).

[40] Blender Online Community. Blender - a 3D modelling and rendering package. Blender Founda-
tion. Stichting Blender Foundation, Amsterdam, 2018. url: http://www.blender.org.

[41] Xuebin Qin, Zichen Zhang, Chenyang Huang, et al. “U2-Net: Going deeper with nested U-
structure for salient object detection”. en. In: Pattern Recognition 106 (Oct. 2020), p. 107404.
issn: 0031-3203. doi: 10.1016/j.patcog.2020.107404. url: https://www.sciencedirect.
com/science/article/pii/S0031320320302077 (visited on 02/19/2021).

[42] Xuebin Qin, Zichen Zhang, Chenyang Huang, et al. “BASNet: Boundary-Aware Salient Object
Detection”. en. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). Long Beach, CA, USA: IEEE, June 2019, pp. 7471–7481. isbn: 978-1-72813-293-8.
doi: 10.1109/CVPR.2019.00766. url: https://ieeexplore.ieee.org/document/8953756/
(visited on 04/20/2021).

[43] Patrick Wspanialy. pycococreator. May 2018. doi: 10.5281/zenodo.4627206. url: https:
//zenodo.org/record/4627206 (visited on 04/20/2021).

[44] Adam Paszke, Sam Gross, Soumith Chintala, et al. “Automatic differentiation in PyTorch”. en.
In: (Oct. 2017). url: https://openreview.net/forum?id=BJJsrmfCZ (visited on 04/20/2021).

[45] Ho Kei Cheng, Jihoon Chung, Yu-Wing Tai, et al. “CascadePSP: Toward Class-Agnostic and
Very High-Resolution Segmentation via Global and Local Refinement”. In: arXiv:2005.02551
[cs] (May 2020). arXiv: 2005.02551. url: http://arxiv.org/abs/2005.02551 (visited on
03/22/2021).

[46] Ekaba Bisong. “Google Colaboratory”. In: Sept. 2019, pp. 59–64. isbn: 978-1-4842-4469-2. doi:
10.1007/978-1-4842-4470-8_7.

[47] Shashank Tripathi, Siddhartha Chandra, Amit Agrawal, et al. “Learning to Generate Synthetic
Data via Compositing”. In: arXiv:1904.05475 [cs] (July 2019). arXiv: 1904.05475. url: http:
//arxiv.org/abs/1904.05475 (visited on 04/17/2021).

[48] Abhishek Dutta and Andrew Zisserman. “The VIA Annotation Software for Images, Audio and
Video”. en. In: Proceedings of the 27th ACM International Conference on Multimedia. Nice
France: ACM, Oct. 2019, pp. 2276–2279. isbn: 978-1-4503-6889-6. doi: 10.1145/3343031.
3350535. url: https://dl.acm.org/doi/10.1145/3343031.3350535 (visited on 04/23/2021).

[49] Xu Zheng, Tejo Chalasani, Koustav Ghosal, et al. “STaDA: Style Transfer as Data Augmenta-
tion:” en. In: Proceedings of the 14th International Joint Conference on Computer Vision, Imag-
ing and Computer Graphics Theory and Applications. Prague, Czech Republic: SCITEPRESS
- Science and Technology Publications, 2019, pp. 107–114. isbn: 978-989-758-354-4. doi: 10.
5220/0007353401070114. url: http://www.scitepress.org/DigitalLibrary/Link.aspx?
doi=10.5220/0007353401070114 (visited on 04/17/2021).

[50] Hao-Shu Fang, Jianhua Sun, Runzhong Wang, et al. “InstaBoost: Boosting Instance Segmenta-
tion via Probability Map Guided Copy-Pasting”. In: arXiv:1908.07801 [cs] (Aug. 2019). arXiv:
1908.07801 version: 1. url: http://arxiv.org/abs/1908.07801 (visited on 04/17/2021).

[51] Lingzhi Zhang, Tarmily Wen, Jie Min, et al. “Learning Object Placement by Inpainting for
Compositional Data Augmentation”. en. In: Computer Vision ECCV 2020. Ed. by Andrea
Vedaldi, Horst Bischof, Thomas Brox, et al. Vol. 12358. Series Title: Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2020, pp. 566–581. isbn: 978-3-030-58600-3
978-3-030-58601-0. doi: 10.1007/978-3-030-58601-0_34. url: http://link.springer.com/
10.1007/978-3-030-58601-0_34 (visited on 04/17/2021).

[52] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software Tools (2000).

29

http://www.blender.org
https://doi.org/10.1016/j.patcog.2020.107404
https://www.sciencedirect.com/science/article/pii/S0031320320302077
https://www.sciencedirect.com/science/article/pii/S0031320320302077
https://doi.org/10.1109/CVPR.2019.00766
https://ieeexplore.ieee.org/document/8953756/
https://doi.org/10.5281/zenodo.4627206
https://zenodo.org/record/4627206
https://zenodo.org/record/4627206
https://openreview.net/forum?id=BJJsrmfCZ
http://arxiv.org/abs/2005.02551
https://doi.org/10.1007/978-1-4842-4470-8_7
http://arxiv.org/abs/1904.05475
http://arxiv.org/abs/1904.05475
https://doi.org/10.1145/3343031.3350535
https://doi.org/10.1145/3343031.3350535
https://dl.acm.org/doi/10.1145/3343031.3350535
https://doi.org/10.5220/0007353401070114
https://doi.org/10.5220/0007353401070114
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0007353401070114
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0007353401070114
http://arxiv.org/abs/1908.07801
https://doi.org/10.1007/978-3-030-58601-0_34
http://link.springer.com/10.1007/978-3-030-58601-0_34
http://link.springer.com/10.1007/978-3-030-58601-0_34

A FIRST APPENDIX

A.1 Foreground extraction with Chroma Key

To use the Chroma Key method to extract the foreground object, the images should be clicked in
front of a backdrop that does not contain any colours of the foreground object. The image is converted
into Hue-Saturation-Value (HSV) format. Images in RGB format produce incorrect segmentation
masks of the foreground object. For extracting the foreground the hue of the backdrop should be
calculated first. This is done by taking the median hue at the edges of the image. The region where
the median is calculated is 5 per cent of the image width on both side, see Figure A.2. The backdrop
could have a hue value within some range. To remove the backdrop, an estimate is taken for this
range as Median Hue ± 15. Unlike, RGB channels which range from 0 to 255, the Hue channel for
HSV format ranges from 0 to 179 in OpenCV.

Figure A.1: Median hue is calculated from the region covered by blue rectangles on the image.

Because of the backdrop used, the foreground objects might have similar colour due to reflections
from the background. As a result, the foreground objects are incorrectly segmented. Shadows and
uneven lighting conditions can also lead to similar issues where the background appears in the final
image, as shown in Figure. A.2 .

There are various artefacts from the foreground extraction. Along the edges of the extracted fore-
ground object in Figure. A.2, it can be observed that the colour of the background is still present.
Some parts inside the foreground object have also been eroded. Also, there are patches where the
backdrop has not been removed properly. The Instance segmentation model might over fit these arte-
facts and would not learn to properly detect and segment objects on the real images. The artefacts
can be removed using morphological transformations from OpenCV [52].

30

Figure A.2: An example where the foreground object is not clearly segmented

31

	Abstract
	Acknowledgment
	Introduction
	Problem Background
	Research Goals

	Background
	Instance Segmentation
	Instance Segmentation datasets

	Evaluation metric for instance segmentation task
	Instance Segmentation Models
	Detectron2
	Previous works using Synthetic Datasets
	Salient Object Detection, Datasets and Model
	Pycococreatortools

	Methods
	Proposed Image Synthesis Pipeline
	Image Data
	Foreground Extraction with Salient Object Detection
	Image Composer
	Image Annotator
	Neural Network

	Folder Structure for the Synthetic Image Generation Pipeline
	Experiments
	Single class dataset
	Two-class dataset

	Ten classes datasets
	Basic Synthetic Dataset
	Synthetic Dataset with Unlabelled instances
	Hybrid Datasets
	Subsets of the Hybrid datasets
	Datasets with Noise
	Retrained Models

	Results
	Foreground Extraction
	Image Composer
	Single Class Dataset
	Two Class Dataset
	Ten Class Datasets
	Basic Datasets
	Datasets with Noise
	Retrained model

	Discussion
	References
	First appendix
	Foreground extraction with Chroma Key

