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Abstract

Rationale Generalized Epilepsy with Febrile Seizures Plus (GEFS+) and Dravet Syndrome (DS) are
two epilepsy syndromes in the same spectrum, with divergent clinical phenotypes, that can both be
caused by a mutation in the voltage-gated sodium channel of neurons. The pathophysiological mech-
anisms underlying GEFS+ and DS are far from understood. In vitro neuronal networks derived from
healthy control- and patient stem cells show distinct differences in spontaneous electrical network ac-
tivity. The processes underlying these differences are challenging to unravel. Here, we use an in silico
model to elucidate the role of sodium channel mutations and network dynamics in explaining the in
vitro observations.

Approach We combine existing models to obtain a model of 100 thermodynamic Hodgkin-Huxley neu-
rons, including spike-frequency adaptation, sparsely connected via plastic AMPA and NMDA synapses.
We first calibrate parameters such that the model can replicate the behavior observed from healthy
(WT) neuronal networks. For GEFS+ and DS, we modify the voltage-gated sodium channel dynamics.

Results Our model faithfully reproduces the behavior of the WT cultures. We found that changes in
sodium channel dynamics were not sufficient to reproduce the behavior of the GEFS+ and DS cultures.
Additional downscaling of the synaptic weights and adaptive mechanisms resulted in network behavior
similar to that of GEFS+ and DS cultures.

Significance Our results suggest that homeostatic synaptic plasticity, modeled by downscaling of the
synaptic weights, has a considerable influence on the behavior of GEFS+ and DS neuronal networks.
This could potentially explain the large inter-patient variability in clinical phenotypes and tractability.
To further validate these hypotheses, the influence of homeostatic plasticity needs to be evaluated in
vitro and the computational model needs to be expanded to incorporate long-term plasticities.
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1 | Introduction

Epilepsy is one of the most common neurological disorders in the world, affecting more than 68 million
people worldwide [1]. In many patients, epilepsy can be treated with anti-epileptic drugs (AEDs) or
brain surgery, but a substantial part of the cases remains intractable. In some patients, the disorder may
be truly untreatable. In other patients, finding the right treatment is complicated by our incomplete
understanding of the pathophysiological mechanisms underlying some forms of epilepsy. Even for cases
that are treatable with AEDs, finding the effective drugs and the optimal dose can take long periods of
trial and error [2].

Two such poorly understood epilepsy disorders are Generalized Epilepsy with Febrile Seizures Plus
(GEFS+) and Dravet Syndrome (DS). GEFS+ is a familial epilepsy spectrum characterized by gen-
eralized tonic-clonic seizures. Usually, there is a predisposition to febrile seizures. Febrile seizures are
associated with body temperatures above 38 °C in children younger than 5 years [3]. GEFS+ patients
continue to have these seizures past the age of 5 or progress to show afebrile seizures [4]. Dravet syn-
drome (DS) is a severe form of GEFS+ and is characterized by more frequent and prolonged febrile
seizures [4]. Seizures of DS patients are often unresponsive to anti-epileptic therapy and can even be
exacerbated by some of the conventional therapies [5]. Moreover, DS can cause mild to severe and
permanent intellectual disability, especially if the seizures are not controlled [3]. Both GEFS+ and
DS can be caused by a mutation in the SCN1A gene, which is one of the most commonly mutated
genes associated with epilepsy [4, 6]. The SCN1A gene encodes for the α-1 subunit (the pore) of the
voltage-gated sodium channel. These channels have a crucial role in neuron excitability [7]. Mutations
in the SCN1A gene can lead to a large variety of clinical phenotypes [6] and even identical mutations can
lead to divergent phenotypes with varying severities [4]. The pathophysiological mechanisms underlying
GEFS+ and DS, and their divergent phenotypes, remain largely unknown.

To gain more insight into these mechanisms, human in vitro models can be used. The recent develop-
ments in human induced pluripotent stem cell (hiPSC) technology with the possibility to differentiate
patient stem cells into neurons allow us to make these models of human neuronal diseases [8]. The
group of dr N. Nadif Kasri used this method to culture excitatory neuronal networks of healthy control
subjects (WT), a patient with GEFS+, and a patient with DS (both with an SCN1A mutation). The
behavior of the networks was captured by measuring the spontaneous electrical network activity using
micro-electrode arrays (MEAs). There are distinct differences between the activity observed from the
WT, GEFS+, and DS cultures, as shown in Figure 1. Similar to the distinct phenotype of GEFS+
and DS in patients, they also appear to have a defined signature in in vitro neuronal networks. These
features can be used to gain insight into the pathophysiological network behavior. However, because
not all processes are easily controlled or measured in vitro, it remains difficult to identify the exact
mechanisms that produce this pathophysiological network behavior.

Figure 1: Extracellular voltage
recordings from 12 MEA electrodes
(stacked signal) of three neuronal
cultures. The WT cultures show
regular bursts of network activ-
ity with almost no activity in the
inter-burst period. GEFS+ cul-
tures show bursting at a lower
rate with more out-of-burst activ-
ity and less similarity between elec-
trodes. DS cultures show bursts
with a longer duration and even
more out-of-burst activity. Data
kindly provided by dr. N. Nadif
Kasri.
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In silico models can be used to gain insight into the specific mechanisms underlying the behavior seen in
in vitro models. Such neuronal computational models have been used widely to aid in the fundamental
understanding of single neuron dynamics [9–14], and neuronal network behavior [15–25]. Single neuron
models of GEFS+ and DS [26–28] neglect network behavior, and their findings cannot explain the
undisclosed features of GEFS+ and DS. Neuronal network models of in vitro systems do include network
dynamics and can simulate realistic network behavior. However, most of these models use simple neuron
models, such as the Leaky integrate-and-fire- (LIF), or the Izhikevich neuron model [29]. These simple
models suffice when focusing on network dynamics but if network behavior is hypothesised to arise
from detailed ion channel dynamics, like in GEFS+ and DS, we need a more detailed neuron model.
Therefore, this thesis will aim to use a biophysically realistic neuron in an in silico network model of
WT, GEFS+, and DS neuronal cultures. The first objective is to develop a model that can simulate
the behavior observed in WT cultures, using a neuron model that includes ion-channel dynamics. The
second objective is to explore changes to the neuron and network model dynamics that result in a
model that can simulate behavior observed from GEFS+ and DS cultures. In this way, we can identify
candidate mechanisms for the characteristics we observe in vitro and use this knowledge to make a
substantiated hypothesis about the mechanisms underlying GEFS+ and DS.
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2 | Background

2.1 Genetic epilepsies

Epilepsy is a group of neurological disorders characterized by an endured predisposition of the brain
to generate epileptic seizures [30]. An epileptic seizure is a transient change in behavior, experience,
or motor function due to abnormal, excessive, or disproportionately synchronous neuronal activity [30].
Epilepsy can be caused by brain injury, metabolic conditions, or a genetic predisposition to seizures.
More than 500 genetic loci are associated with various forms of epilepsy [31]. Epilepsy-associated genes
often encode ion channels and synaptic proteins. The mechanisms through which these mutations lead
to epilepsy are largely unknown [32]. Childhood epileptic encephalopathies, such as Dravet Syndrome,
are increasingly linked to specific mutations. These disorders are also some of the most severe and
intractable classes of epilepsy [31]. Many of the identified mutations are in the SCN1A gene, encoding
the voltage-gated sodium channel α1 subunit (Nav1.1). This gene appears to be an epilepsy superculprit
since more and more phenotypes associated with a mutation in this gene are identified [6]. These pheno-
types range from benign to extremely severe. A generally benign condition is Generalized Epilepsy with
Febrile Seizures Plus (GEFS+). In GEFS+, febrile seizures continue to occur beyond the age when they
typically abate. Moreover, patients may experience afebrile seizures, including generalized tonic-clonic,
absence, and atonic seizures [33]. On the severe side of the spectrum is Dravet Syndrome (DS). DS is
a rare and intractable epilepsy syndrome associated with cognitive deficit and developmental delay in
language, motor function, learning, and social skill [34]. DS usually presents itself around six months of
age in a previously normally developing baby. DS generally first shows hemiclonic or generalized febrile
status epilepticus. Until the first life year, babies experience recurrent convulsive febrile episodes that
may occur as frequently as every 1-2 months. Between the ages of 1 and 4, other seizure types can
emerge, such as myoclonic seizures, complex partial, and absence seizures [4]. GEFS+ and DS show
clinical similarities, including the frequent occurrence of febrile seizures. Moreover, in some families
with heterozygous SCN1A mutation, both disorders are present. This suggests that GEFS+ and DS
represent a clinical spectrum of the same disease [35]. More than 330 mutations of the SCN1A gene have
been registered to this date [6]. These mutations can cause different types of defects in the voltage-gated
sodium channel and may lead to epilepsy in different ways. The different mechanisms may explain why
some cases are often treatable, like GEFS+, and some are not, like DS. To describe the wide range of
possible dysfunctions of the voltage-gated sodium channel associated with GEFS+ and DS, the most
important findings are summarized below.

Generalized Epilepsy with Febrile Seizure Plus (GEFS+)
SCN1A mutations in GEFS+ patients are often inherited. Multiple researchers investigated the effect of
several mutations on the sodium channel functioning. Spampanato et al. [36, 37] cloned three mutations
into the Nav1.1 rat gene and determined the electrophysiological properties of the resulting channel.
One mutation resulted in enhanced slow inactivation of the sodium current, resulting in a persistent-like
current. The second mutation showed accelerated recovery from inactivation. These would theoretically
both result in hyperexcitability of the neurons, which could lead to epilepsy. A third mutation showed
a hyperpolarized shift in the voltage dependence of activation and inactivation of the sodium channels.
The shift in activation would result in neuron hyperexcitability, while the shift in inactivation would
result in hypoexcitability of the neuron. Other research characterized four mutations associated with
GEFS+ using patch-clamp recordings of recombinant human SCN1A heterologous expressed in cultured
mammalian cells [33, 38]. One mutation resulted in a depolarizing shift in the voltage dependence of
activation, leading to hypoexcitability of the neuron. A second mutation showed accelerated recovery
from inactivation, which would lead to hyperexcitability of the neuron. A third showed complete loss of
function, which would lead to neuron hypoexcitability. The last mutation showed altered channel inac-
tivation, resulting in a persistent sodium current and thus neuron hyperexcitability. Volkers et al.[39],
using mutagenesis in human-derived cells, found that an SCN1A mutation resulted in a hyperpolarizing
shift in the voltage dependence of activation, slower recovery from inactivation, and increased persistent
sodium current. There are thus mixed biophysical gating effects that, together, might cause GEFS+.
This mix of effects can cause either hypo- or hyperexcitability in the neurons. Hyperexcitability of
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neurons causes hyperexcitability of the brain and can thus cause seizures. It is not obvious, however,
how hypoexcitability of neurons can lead to epilepsy. One hypothesis is that inhibitory neurons are
affected more severely and become more hypoexcitable than excitatory neurons. This could alter the
excitation/inhibition balance in the brain, leading to general hyperexcitability.

Dravet syndrome (DS)
SCN1A mutations in DS patients often arise de novo. Most of the mutations result in haploinsufficiency
[40]. The Caterall group [41] showed in a mouse model of the disease that interneurons, but not
pyramidal neurons, had dramatically reduced sodium current density. They suggest that the Nav1.1
is the primary functional sodium channel in interneurons and that glutamatergic pyramidal neurons
rely on other sodium channels. They hypothesize that DS is due to disturbed excitation/inhibition
balance [42]. This hypothesis is challenged by models using hiPSC derived neurons obtained from DS
patients [43, 44]. These models show an increased sodium current density and hyperexcitability in both
inhibitory and excitatory neurons. Further analysis of the sodium channels revealed delayed inactivation
of the channels, leading to a persistent-like sodium current. Some mutations resulted in a significant
hyperpolarizing shift in the voltage-dependence of activation compared to WT. These neurons showed
higher spontaneous spiking and greater excitability than WT neurons [43]. Interestingly, mutations that
resulted in nonfunctional sodium channels also led to higher sodium current density in the neurons. The
research showed upregulation of voltage-gated sodium channel mRNAs and thus upregulation of other
brain sodium channel transcripts in response to the SCN1A haploinsufficiency. This could also explain
the inter-individual variability among patients with heterozygous mutations. Depending on differences
in genetic background, this upregulation may differ.

2.2 hiPSC derived neuronal cultures on MEAs

In vitro neuronal models are a promising tool to study the complex behavior of healthy and pathological
neuronal networks. Apart from measuring the electrophysiological properties of individual neurons,
cultures can also be used to measure the activity of large networks to get insight into neuronal network
development and organization [45]. Micro-electrode arrays (MEAs) are cell culture dishes with embedded
micro-electrodes. MEAs allow for non-invasive, simultaneous, and long-term recordings of a population
of neurons at a millisecond time scale. A MEA can detect changes in the extracellular field caused by
the current flows from the closest neurons and other nearby cells. Extracellular action potentials can be
measured when electrodes are placed in the vicinity (± 100 µm) of the Action Potential (AP), or spike,
origin [46]. MEAs can measure the spontaneous activity of neuronal networks. This activity is usually
characterized by spontaneous regular network bursting activity. Network bursts (NBs) are defined as
synchronized bursts of firing activity in neurons spread throughout the whole network, separated by
longer intervals of almost complete silence. The properties of the bursting behavior, like the burst rate
and the burst duration, are often characteristic of the neuronal network and can give insight into the
dynamics [8]. We therefore often extract features from the MEA recordings, like the NB rate and the
percentage of spikes in NBs, to describe the network dynamics. MEAs have been widely used to measure
activity from a range of different neuronal culture systems, like primary cell cultures and brain slices,
mainly taken from rats [8]. With the advancement in human induced pluripotent stem cell (hiPSC)
technology, it also became possible to make in vitro models of neuronal networks that more closely
resemble the human brain. hiPSCs are cells, usually derived from fibroblasts or leukocytes, that have
been ’reprogrammed’ back into an embryonic-like pluripotent state. From this pluripotent state, the
cells can give rise to an almost unlimited source of any type of human cell [47]. Because these cells have
the same genotype as the human subject, they can be used to establish patient-specific in vitro models
of genetic disorders. These models can be used for diagnosis and treatment optimization for individual
patients [48]. Moreover, these models can be used to gain insight into the disease mechanisms [49].
Recently, there have been technical advances enabling the differentiation of pluripotent cells towards
relatively pure populations of specific neuronal subtypes such as excitatory and inhibitory neurons [50].
hiPSC derived neurons can form a unique model of neurological diseases with a genetic origin because
they capture the patient’s entire genetic background, which may influence disease onset and progression
[51]. An example of such a model is that by Frega et al. [52], where they used hiPSCs to obtain a
model for Kleefstra syndrome. They cultured hiPSC derived neuronal networks on MEAs to elaborately
study the network behavior. The properties of spontaneous electrical activity were significantly different
between healthy control and patient lines but were consistent across different control lines or different
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patient lines [8, 52]. Quraishi et al. [53] used hiPSC derived neuronal networks on MEAs to obtain
a model for a childhood epilepsy syndrome. Both studies uncovered a robust and defined phenotype,
elucidated several important disease mechanisms, and proposed new treatments. This illustrates the
potential of hiPSC derived neuronal networks cultured on MEAs.

2.3 Computational modeling

Computational modeling is a powerful tool to identify candidate mechanisms underlying (pathological)
neuronal processes. Using physiologically relevant models, computational modeling enables generating
hypotheses, making new predictions, and refining experiments [54]. This section will shortly discuss
previous research on computational models of epilepsy and cultured neuronal networks to better under-
stand where this study fits in. Moreover, we consider a biophysical neuron model including ion channel
dynamics and other important mechanisms to be modeled.

2.3.1 Computational models of epilepsies and cultured neuronal networks

Several computational models have already been made to study GEFS+ and DS. Spampanato et al.
[26] made computer simulations of single neurons, including functional effects of three mutations they
found in patients with GEFS+. They used an Hodgkin-Huxley (HH) neuron model, including ion
channel dynamics, to model shifts in voltage dependency and accelerated recovery from inactivation of
the sodium channel. The model showed that each mutation resulted in an increased tendency to fire
repetitive APs. Kahlig et al. [27] used a Markov model of a neuron to model the effect of a particu-
lar GEFS+ SCN1A mutant. They found that this resulted in an increased persistent sodium current.
Berecki et al. [28] modeled the result of a DS mutation that had severe outcomes in patients. They used
whole-cell patch-clamp measurements to get experimental data from mammalian cells cotransfected
with the mutant sodium channel. An HH-type neuron model was used to incorporate hyperpolarizing
shifts of the activation and inactivation of the sodium channel and enhanced fast inactivation. Simu-
lations showed the model neurons were hyperexcitable by a left shift in their rheobase relative to control.

These studies all used patch-clamp data of single neurons to fit activation, inactivation, and time con-
stants. However, the resulting simulations were not compared to experiments. Moreover, they looked
at mammalian cells transfected with mutant sodium channels. This has limitations, as the neurons did
not have other characteristics of human patient neurons, including possible protein processing or mod-
ulatory activity that changes the function of a given mutation. Also, they only studied single neurons,
ignoring the relevance of network dynamics in epilepsy.

Several researchers developed computational models of cultured networks of neurons; they focused on
neuron interaction, unaddressed in the studies mentioned above. Gritsun et al. [15–17] simulated the
behavior of rodent cultured neuronal networks on MEAs using a random connectivity network model
with 5000 Izhikevich neurons. Spontaneous activity was either induced using noise injection or with
endogenously active neurons. A simple synapse model of inhibitory and excitatory synapses with short-
term facilitation and depression was included. This model reproduced bursting behavior with features
in the same ranges as observed experimentally. Masquelier and Deco [21] researched the adaptive mech-
anisms at play in excitatory cortical neuron cultures using a computational model and in vitro rodent
neuron assemblies. Experimentally, they observed spontaneous NBs with relatively constant durations
and inter-NB-intervals in a binomial distribution. Their computational model consisted of 800 LIF
neurons. The neurons were fully connected via a model of AMPA and nonlinear NMDA synapses. The
neurons were subjected to spike-frequency adaptation in the form of an afterhyperpolarizing current.
Moreover, every neuron received a substantial amount of synaptic noise. The synapses were subjected
to short term facilitation and depression (STF and STD). With this model, they were able to recreate
the complex statistics of the NBs. By varying the contributions from the different fatigue mechanisms,
they found that STD is responsible for quenching the NB, STF for promoting multiple subsequent NBs,
and adaptation for forcing a long (experimentally observed) inter-NB-interval. Park et al. [20] also
modeled NBs observed in in vitro networks of rodent neurons. They investigated the variability of
burst dynamics according to a wide range of parameters such as connectivity, recovery time constants,
and noise. They modeled 64 (one neuron for each MEA electrode) LIF neurons with injected noisy
current. They used a simple linear synapses model that was subjected to STD and STF. The neurons
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were locally connected in a probabilistic way determined by the Euclidean distance between them. They
found that the burst profile is largely dependent on STD, while connectivity and noise play a smaller role.

These computational models reproduced several of the characteristics observed from in vitro neuronal
networks. However, these studies used cultures of rodent cells, while hiPSCs might be more suitable to
model a human brain since there are significant differences between human and rodent neuron cultures
[55]. Moreover, these models and other models of neuronal cultures [19, 22, 25] used simple neuron
models that do not include ion channel dynamics. This limits the modeling of diseases caused by
changes in ion channel dynamics. To our knowledge, currently, no in silico model including a detailed
neuron model that can simulate an in vitro network of neurons derived from human cells exists.

2.3.2 Biophysical neuron and network models

Cellular neuron models allow us to study how changes at the molecular level, like mutations in ion
channels, affect neuronal behavior. The highest level of detail is obtained by compartmental modeling.
Compartmental modeling is well suited to obtain detailed information about the cell and accurately
simulate extracellular voltage in the proximity of the neuron. However, compartmental modeling is
computationally expensive, especially if networks with many neurons need to be simulated. Since we
want to simulate large networks of neurons in this research, a slightly simpler neuron model is preferred.
A one-compartment physiologically realistic neuron model is the Hodgkin-Huxley model.

The Hodgkin-Huxley model
The traditional Hodgin-Huxley (HH) model [56] describes a single neuron as a modified electrical circuit
where the charge carriers are sodium (Na+), potassium (K+), and other ions (Leak current, L), mainly
calcium and chloride, flowing through the cell membrane. Every component of the cell is treated as an
electrical element. The lipid bilayer is represented by a capacitance (Cm). Voltage-gated ion channels are
represented by conductances (gi, where i is the specific ion) that are both voltage- and time-dependent.
I is an externally applied membrane current per unit area. The electrochemical gradients driving the
flow of ions are included via the Nernst potentials of the ions (Ei). The variable of interest is the
membrane potential (Vm). The simplest HH model describes the properties of an excitable cell by a set
of four ordinary differential equations:

dVm
dt

=
1

Cm
(−ḡKn4 (Vm − EK)− ḡNam

3h (Vm − ENa)− ḡl (Vm − El) + I), (1)

dn

dt
= αn (Vm) (1− n)− βn (Vm)n, (2)

dm

dt
= αm (Vm) (1−m)− βm (Vm)m, (3)

dh

dt
= αh (Vm) (1− h)− βh (Vm)h, (4)

where αi and βi are rate constants for the i-th ion channel. These depend on voltage but not on
time. To obtain conductances, the maximal conductances ḡi are multiplied with acbd, where a and b
are dimensionless gating variables of ion channels. The variables used here are n,m, h, associated with
respectively potassium activation, sodium activation, and sodium inactivation. c and d are integers. The
sodium current is transient since the corresponding channel contains both activation and inactivation
gates. The potassium current is persistent since the channels do not have inactivation gates. Expressions
for the rate constants can be fitted to experimental data. The HH model can simulate APs. If a constant
current input I exceeds a specific threshold current, Ith or rheobase, the neuron will start to spike. If
the input current increases, the frequency of the spikes will increase. An example is shown in Figure 2.
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Figure 2: Dynamics of the Hodgkin-Huxley neuron model. Between t = 0 and t = 25 ms, no external input
current I is applied. The neuron is at rest. At t = 25 ms, a continuous input current of 8 pA is applied. Since
I < Ith, the membrane potential settles at a new resting potential. At t = 75 ms, I = 25 pA, which is slightly
higher than Ith, therefore APs are generated. When I is raised to 35 pA at t = 150 ms, the AP frequency
increases.

Figure 3: Hodgkin-Huxley neuron showing spike-frequency adaptation in response to a continuous external
input current. As the current input persists, the interval between subsequent spikes grows and thus the frequency
of the spikes lowers.

Synaptic plasticity and spike-frequency adaptation
From previous computational modeling of spontaneous network activity of cultured neuronal networks
[19, 21, 22, 57, 58], it becomes apparent that a few mechanisms are necessary to model NB activity as
observed from the MEA recordings.

An important mechanism to generate spontaneous synchrony is spike-frequency adaptation, especially
in networks of purely excitatory neurons [21, 57]. Spike-frequency adaptation is the phenomenon that
neurons show a reduction in firing frequency when stimulated with a constant current [59]. An example
is shown in Figure 3. Several possible biophysical mechanisms can cause spike-frequency adaptation.
They can be divided into two categories. The first is the inactivation of depolarizing currents. Sodium
channels responsible for AP generation inactivate in response to depolarization and then recover slowly.
This ensures that after a spike, fewer sodium channels are available for AP generation. This causes
the delay to the next spike to increase. The second category is activity dependent activation of slow
hyperpolarizing currents. The activity can either be voltage or spike dependent. An example of a
voltage-dependent hyperpolarizing current is the non-inactivation potassium current IM . Examples
of spike dependent hyperpolarizing currents are the calcium-activated potassium current or the after-
hyperpolarizing current IAHP . These currents are activated by an increase in calcium concentration in
the cell due to calcium influx at the peak of an AP. Neurons can have several adaptation processes with
different time constants [59]. However, it is not easily determined what mechanisms are at play in the
neurons we try to model. One might choose to model one of the mechanisms that sufficiently recreates
the effects of spike-frequency adaptation observed in experiments.

13



Masquelier and Deco [21] and Park et al. [20] demonstrated the importance of short-term synaptic
plasticity in obtaining the correct NB characteristics in simulations of neuronal networks. Synaptic
plasticity [60] means that the synaptic strength, the amplitude of the post-synaptic potentials (PSPs),
can vary over time and depends on previous activity. There are different mechanisms of synaptic
plasticity, each with their own time frame. Synapses can experience both potentiation and depression.
We usually differentiate between short-term- and long-term plasticity. Since we are not interested in large
structural network changes over time in this study, we will not further discuss long-term plasticity. Short-
term plasticity can last for a few minutes at maximum and includes facilitation (STF) and depression
(STD). STF arises because the calcium concentration in the presynaptic neuron increases, increasing
the synaptic vesicles’ ability to fuse with the membrane. STD is caused by depletion of the readily
available synaptic vesicles [60]. Markram and Tsodysk [61] showed that at synapses between excitatory
neurons, only short-term depression is at play.
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3 | Methods

3.1 Experimental data

Experimental data is provided by the group of dr. N. Nadif Kasri. hiPSC lines [8] were obtained by
reprogramming skin fibroblasts (WT) or leukocytes (GEFS+ and DS), and they were differentiated
into upper layer excitatory cortical neurons. About 20.000 neurons were co-cultured with 20.000 rodent
astrocytes per well. Spontaneous network activity was recorded using multiwell-MEAs consisting of
24 individual wells (Multichannel systems, MCS GmbH, Reutlingen, Germany). Each well has 12
electrodes with a diameter of 30 µm, spaced 300 µm apart. The activity of the networks was recorded
for 10 minutes in a recording chamber maintained at a constant 37 ◦C/95% O2/5% CO2. The neurons
were cultured for 37 DIV (Days In Vitro) when measurements were taken.

3.2 Model components

The model consists of biologically realistic neurons, connected via plastic synapses into a network.
The model is made up of several existing submodels that turned out to be critical for the generation
of realistic network bursting behavior in previous research. Neuron, synapse, and network parameter
values are based on literature where possible. We calibrate the remaining parameters to experimental
data using an empirical parameter search.

3.2.1 Neuron model

We use a HH type neuron model as explained in section 2.3.2. Expressions for the rate constants well
suited for cortical pyramidal cells are used, adapted to experimentally observed single-cell electrophys-
iology by [62]:

αm =
−0.32 (Vm − VT − 13)

exp [− (Vm − VT − 13) /4]− 1
, (5)

βm =
0.28 (Vm − VT − 40)

exp [(V − VT − 40) /5]− 1
, (6)

αh = 0.128 exp [− (Vm − VT − 17) /18] , (7)

βh =
4

1 + exp [− (Vm − VT − 40) /5]
, (8)

αn =
−0.032 (Vm − VT − 15)

exp [− (Vm − VT − 15) /5]− 1
, (9)

βn = 0.5 exp [− (Vm − VT − 10) /40] . (10)

We introduce VT to allow for adjusting the spike threshold to our experimental data. Maximal conduc-
tances are also taken from [62]. Nernst potentials and VT are adapted such that the simulated neurons
have the same resting membrane potential, spike threshold potential, and AP amplitude as our in vitro
neurons. All parameter values can be found in Table 1.

Adaptation model
We include spike-frequency adaptation in every neuron in the form of an additional after-hyperpolarization
current IAHP , given by:

IAHP = gAHP (Vm − EK). (11)

The current is modeled as a potassium current driven by an increase of the calcium concentration inside
the neuron. The calcium concentration in the neuron increases when an AP is fired. gAHP is the accom-
panying conductance, which is initially zero. When a spike occurs, the conductance increases with αCa.

15



Figure 4: Change of the shape of the AP in response to a temperature increase from 37◦C (black line) to 40◦C
(orange line) of a neuron with a constant current input I = 14 pA. For the higher temperature, the amplitude
of the AP is slightly decreased and the duration of the AP is reduced.

The conductance then decays back to zero with time constant τAHP . The resulting equation for the
conductance is:

dgAHP
dt

= −gAHP
τAHP

+ αCaδ(t− t0), (12)

where δ(t − t0) is zero for t 6= t0 and otherwise 1. This models only a calcium-activated potassium
current, but the effect can also correspond to other fatigue mechanisms such as those explained in sec-
tion 2.3.2. τAHP is the apparent recovery timescale of all these mechanisms combined, which is chosen
in the 2-8s range found in literature [21]. Parameters for the WT model can be found in Table 1.

Noise and heterogeneity
To induce spontaneous activity in the neurons, we induce voltage fluctuations in every neuron, using:

Vnoise = σ
√
glCmξ, (13)

where ξ is Gaussian white noise with mean zero and σ is the standard deviation of the resulting noise
in the membrane potential. This noise can mimic synaptic or membrane noise.

Besides noise, we need to add more heterogeneity to the neurons since heterogeneous cell properties are
proven to be crucial to obtain non-periodic synchronization of neurons as seen in cultures [63]. We model
this in the form of a continuous externally applied current I with amplitudes drawn from a uniform
distribution between -9.5 and 9.5 pA. This is to account for the biological differences between neurons.
Because of the difference in externally applied current, some neurons are more excitable than others.

Temperature dependency
We include temperature dependency in the neuron model to eventually validate the models of GEFS+
and DS. Hodgkin and Huxley assumed that only the rates of change of the conductance gating variables
depend on temperature [56]. To model this, we multiply these rates of change by a factor φ:

φ = 3(T−37)/10, (14)

where T is the temperature in degrees Celsius. The effect of temperature increase on the AP of the
neuron resulting from a constant current input can be seen in Figure 4. We can see the amplitude and
duration of the AP are reduced as temperature increases, which is in line with literature [64].

16



A B

Figure 5: Dynamics of the neuron model. A. Simplified bifurcation diagram only showing stable equilibria.
The black lines denote a stable fixed point. The orange lines denote the maximum and minimum values of Vm at
the stable limit cycle. At the SNIC (Saddle-Node on an Invariant Circle) bifurcation, an undrawn saddle point
collides with the stable fixed point, and both disappear. Because these fixed points were on an invariant circle,
their collision gives rise to a stable limit cycle. At H, a supercritical Hopf bifurcation (Lyapunov coefficient =
-4.24e-3) occurs, leading to a depolarization block. The stable limit cycle collides with an undrawn unstable
fixed point that then becomes a stable fixed point. B. I-F curve of the neuron model. The neuron starts firing
when I exceeds the threshold Ith=13 pA. The neuron stops firing when the depolarization block is reached at
I=300 pA.

Thus, the resulting neuron equations are:

dVm
dt

=
1

Cm
(−ḡKn4 (Vm − EK)− ḡNam

3h (Vm − ENa)− ḡl (Vm − El) + I + IAHP+) + Vnoise, (15)

dn

dt
= φ(αn (Vm) (1− n)− βn (Vm)n), (16)

dm

dt
= φ(αm (Vm) (1−m)− βm (Vm)m), (17)

dh

dt
= φ(αh (Vm) (1− h)− βh (Vm)h). (18)

Figure 5 shows the simplified bifurcation diagram and current-frequency (I-F) curve of this model neuron
at 37◦C without noise. We can see in the bifurcation diagram that the radius of the stable limit cycle
does not appear to slowly decrease to 0 at the Hopf bifurcation. This is due to the spike-frequency
adaptation. It keeps the neuron from reaching a depolarization block at high input currents, and then
suddenly, a bifurcation point is reached. A bifurcation diagram without the spike-frequency adaptation
current can be found in Appendix A.

3.2.2 Synapses and plasticity

Since all in vitro neurons are excitatory, we only model glutamatergic synapses. Excitatory postsynaptic
currents (EPSCs) have both AMPA and NMDA components. We add a synaptic current Isyn to the
HH equations:

Isyn(t) = IAMPA(t) + INMDA(t). (19)

AMPA-type glutamate receptors display an approximately linear current-voltage relationship when they
open. Therefore, they can be modeled as an ohmic conductance gAMPA multiplied with the difference
between the membrane potential Vm of the post-synaptic neuron and the Nernst potential EAMPA of
the AMPA channels [65]. In contrast with AMPA-receptors, NMDA-receptor-mediated conductance
also depends on the postsynaptic voltage. The voltage dependency is caused by blocking of the pore of
the NMDA-receptor from the outside by a magnesium ion. At resting potential, the channel is nearly
completely blocked. When the cell depolarizes, the magnesium block is lifted. The fraction of channels
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that are not blocked by magnesium can be fitted to:

u(Vm) =
1

1 + e−aVm [Mg2+]o/b
, (20)

where Vm is the membrane potential of the postsynaptic neuron and [Mg2+]o is the extracellular
magnesium concentration, which we simply take to be 1 mM [66]. We take a = 0.062 mV−1 and
b = 3.57 mM [66]. We assume that the magnesium block changes instantaneously with voltage and
is independent of the gating of the channel. The NMDA-receptor-mediated synaptic current is then
modeled as the conductance multiplied with u(Vm) and multiplied with the driving force. The con-
ductances can be modeled as maximal conductances of all the AMPA and NMDA channels, ḡAMPA

and ḡNMDA respectively, times the fraction of open AMPA and NMDA channels. The fraction of open
NMDA channels is the sum of the fractions of open channels per synapse with pre-synaptic neuron j,
sNMDA
j , multiplied with the synaptic weight from pre-synaptic neuron j to the post-synaptic neuron
wj . The equations for both synaptic currents are thus given by:

IAMPA = ḡAMPA(Vm − EAMPA)

NE∑
j=1

wjs
AMPA
j , (21)

INMDA = ḡNMDAu(Vm)(Vm − ENMDA)

NE∑
j=1

wjs
NMDA
j . (22)

The fraction of open channels is given by:

dsAMPA
j

dt
= −

sAMPA
j

τAMPA
+
∑
k

δ(t− tkj −∆), (23)

dsNMDA
j

dt
= −

sNMDA
j

τNMDA,decay
+ αNMDAx

NMDA
j (1− sNMDA

j ), (24)

dxNMDA
j

dt
= −

xNMDA
j

τNMDA,rise
+

∑
k

δ(t− tkj −∆). (25)

Here, xNMDA
j is an auxiliary gating variable for NMDA, and αNMDA is a multiplicative constant. The

fraction of open channels gets increased every time the pre-synaptic neuron spikes at time tkj ; there-
fore, we sum over all these spikes. τNMDA,rise and τNMDA,decay are the rise and decay times for the
NMDA synapses and τAMPA the decay time for AMPA synapses. These equations and the values for
the time constants are taken from [21]. We neglect the AMPA rise time because it is very short [21].
∆ is a homogeneous conduction delay which we will further explain in section 3.2.3. The values of the
parameters can be found in Table 1. We choose the values of the maximal conductances such that
the AMPA:NMDA current ratio matches experimental observations. Figure 6 shows the different time
courses of AMPA and NMDA synaptic currents.

Short-Term Depression
All synapses are modulated by STD. We use the phenomenological model proposed by Markram and
Tsodysk [61]. The model is based on the concept of synaptic resources, of which only a fraction, x, is
available. The synaptic weight wj is multiplied with xj , where xj obeys:

dxj
dt

=
1− xj
τD

− Uxj
∑
k

δ(t− tkj −∆), (26)

where τD is the time constant of STD, which value Markram and Tsodysk determined for excitatory
synapses to be 813 ms. U is the strength of STD, set to U = 0.015, which is in the biological range also
measured by Markram and Tsodysk [61].
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Figure 6: Excitatory Post-Synaptic Currents (EPSCs) after the arrival of one pre-synaptic spike at t = 1 ms.
The AMPA EPSC rises instantaneously and decays fast. The NMDA EPSC rises relatively slow and decays
even slower.

3.2.3 Network properties

We use a sparsely connected network of N = 100 neurons. We randomly connect all neurons to a subset
of other neurons with a connection probability of 30%. This means every neuron is connected to about
30 other neurons. Different numbers of neurons (N = 50-10.000) and different types of connectivity
were explored (full connectivity, small-world topology, and distance-dependent connectivity), the meth-
ods and outcomes can be found in Appendix B.

Previous simulations showed that non-homogeneous weights are necessary to obtain realistic bursting
behavior [15]. Therefore, we take synaptic weights wij from a normal distribution with a mean of 1 and
a standard deviation of 0.7. We set values below 0 to 0, and values above 2 to 2. This causes about 1
in 15 synapses to be 0, and thus these synapses perish.

The conduction delay ∆ij of the synapse from neurons i to j is determined by the euclidean distance
between these neurons. We place all neurons on a square grid of 10 times 10 neurons. We give every
neuron an x and y coordinate based on their place in the grid and the grid distance dgrid. We set
this distance to 45 micrometer, which is the average distance between neurons in vitro. We assume the
maximal conduction delay ∆max between two neurons is 25 ms, as was measured in cultured neuronal
networks [67]. We determine the conduction velocity, v by dividing the maximal distance between
neurons in the model by the maximal delay:

v =

√
102 + 102dgrid

∆max
. (27)

The delay is then determined by dividing the Euclidean distance between the neurons by the conduction
velocity:

∆ij =

√
(xi − xj)2 + (yi − yj)2

v
. (28)

3.3 Model validation

To validate the model, an experimental intervention is performed on the cultures by the group of dr. N.
Nadif Kasri. We perform the same intervention in the model, and we compare the effect. As experimental
intervention, AMPA and NMDA-receptors are blocked. AMPA-receptors are blocked using NBQX and
hydrochloride. NMDA-receptors are blocked using Dizocilpine. An 8 well setup is used, where the basal
behavior is recorded for 10 minutes, followed by adding the hydrochloride and NBQX to four wells and
Dizocilpine to the remaining four wells. After 10 minutes, another 10-minute recording is made. In
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the simulation, we model this by simulating a basal network for 10 minutes, then keeping the random
number realizations the same as we subsequently remove the AMPA and NMDA currents, IAMPA and
INMDA, from all the neurons, and simulate for 10 minutes.

3.4 Modeling GEFS+ and DS

3.4.1 Modification of the voltage-gated sodium channel

To model the hypothesized changes in the voltage-gated sodium channel functioning, we use a modifica-
tion of the HH model that permits alteration of the activation, inactivation, conductance, and voltage
sensitivity of the sodium channel. Moreover, since our HH model does not differentiate between fast and
slow inactivation, we model the change to a persistent sodium current differently. We add a separate
persistent sodium current, with infinitely fast activation m∞ and slow inactivation hp. The parameters
γNa, γNap, γτm, γτh, γαm, γαh, γβm, γβh, ∆Vm and ∆Vh are incorporated into the HH equations:

dVm
dt

=
1

Cm
(−ḡKn4 (Vm − EK)− γNa(1− γNap)ḡNam

3h (Vm − ENa)− ḡl (Vm − El) (29)

+ γNapḡNapm∞hp(Vm − ENa) + I + IAHP ) + Vnoise, (30)

dn

dt
= φ(αn (Vm) (1− n)− βn (Vm)n), (31)

dm

dt
= φγτm(γαmαm (Vm −∆Vm) (1−m)− γβmβm (Vm −∆Vm)m), (32)

dh

dt
= φγτh(γαhαh (Vm −∆Vh) (1− h)− γβhβh (Vm −∆Vh)h), (33)

dhp
dt

= φ(αh (Vm) (1− hp)−
4

1 + exp[(Vm − VT − 40)/5]
hp), (34)

where γNa modulates the maximum conductance of the sodium channels, which is analogous to alter-
ing the expression levels of the channel. Increasing γNap above 0, will result in a shift to a persistent
sodium current. γτm and γτh scale both rate constants α and β with the same factor so that effec-
tively, the time constants, τi = 1

αi(Vm)+βi(Vm) of the i = m and i = h gate respectively, are scaled

by 1/γτi, while leaving the steady state, i∞ = αi(Vm)
αi(Vm)+βi(Vm) unaffected. The kinetics of the sodium

channel are also modified by altering the rates of activation and deactivation of both the m and h gate
individually using γαm, γαh, γβm and γβh, leading to changes in both time constants and steady-states.
The parameters ∆Vm and ∆Vh simultaneously shift the voltage sensitivity of both rate constants of
the m and h gate respectively. ∆Vi > 0 corresponds to a depolarizing shift in the voltage depen-
dency and ∆Vi < 0 to a hyperpolarizing shift. The WT sodium channel model has parameter values
γNa = γτm = γτh = γαm = γαh = γβm = γβh = 1 and γNap = ∆Vm = ∆Vh = 0.

Since we have 10 parameters to modify the sodium channel functioning, it is not computationally feasi-
ble to explore the entire parameter space. This may also be unnecessary since it is biologically unlikely
that more than two parameters are altered simultaneously. Only Volkers et al. [39] found a mutation
that resulted in changes that should be modeled by three of these parameters, but one of the effects
was very small compared to the other two. Therefore, we only look at changes in single parameters or
combinations of two parameters. First, we explore changes in single parameters and determine the step
size for a more extensive parameter space exploration with combinations of 2 parameters.

Besides changes in the dynamics of the voltage-gated sodium channel, network parameters might also
change. The synaptic strengths might change; therefore, we incorporate a scaling factor S, with which
all synaptic weights w are multiplied.

3.4.2 GEFS+ and DS model validation

To validate the GEFS+ model and the DS model, we again use an experimental intervention. As
GEFS+ and DS are both often associated with febrile seizures, we suspect the response of the GEFS+
and DS cultures to temperature increase will be different from WT cultures. Thus, the temperature
of the three cultures is increased from 37 ◦C to 40 ◦C. We do the same in the model and compare the
effect. Temperature is included in the model as described in section 3.2.1.
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Figure 7: A. Photo of the electrodes in a Multiwell-MEA well with cultured neurons in our lab. B. Positions
of the virtual electrodes (orange dots) in the grid of 100 neurons (black dots) of the model.

3.5 Simulations

We made custom Python 3.6 code for the Brian 2 simulator [68]. The differential equations of the
neurons are integrated numerically using the Exponential Euler method. The synapse equations are
integrated using the Euler Forward method. Both use a 100 µs-time step, which is the same as the
sample time of the MEA recordings. The code can be found on https://github.com/Ninontwik/

Master_Thesis_final.git.

3.6 Data analysis

To optimally compare simulation and experiment, we first have to obtain a model output similar to the
experimental recordings. Next, we have to define output measures that give a defined description of the
network behavior and differences in behavior between WT, GEFS+ and DS networks.

3.6.1 Model output

To mimic the signal measured from the in vitro neuronal networks with the MEAs, we model virtual
electrodes. We define 12 electrodes with positions with the same arrangement as the multi-well MEA
set up, as can be seen in Figure 7. Every electrode measures a weighted sum of the membrane potential
of the surrounding neurons. The signal measured by the electrodes is computed as follows:

Velec =

N∑
i=1

Vm,i

D
√

(xelec − xi)2 − (yelec − yi)2
, (35)

where D scales the distance dependence. We take D such that every electrode measures voltage from
about 10 surrounding neurons. The output of a simulation is the signal from the 12 virtual electrodes.

3.6.2 Output measures

The signal measured in vitro with the MEAs, and the virtual electrode signal from the model, are
handled in the same manner. To obtain signals containing APs, signals are filtered between 100 and
3500 Hz using a Butterworth filter [8]. We detect APs using an amplitude threshold-based method. The
threshold is determined for every electrode; we set it to four times the root mean square of the signal
[8]. In both simulations and experiments, the NBs have an all-or-nothing nature and are easy to detect
based on the spike rate. We determine the spike rate at 20 millisecond time windows. The start of the
NB is detected when the spike rate of three subsequent time windows is higher than a threshold (thr1).
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Figure 8: Illustration of NB detection. The orange rectangle spans the detected NB. Top: raster plot of spikes
detected at the 12 electrodes. Bottom: NB detection based on the spike rate. The start of the NB is detected
if the spike rate rises above thr1. The end of the NB is detected if the spike rate falls below thr2.

We set this threshold to be 1
4 th of the maximum spike rate of the signal. The end of the NB is detected

when the spike rate falls below 1
100 th of the maximum spike rate (thr2). This is illustrated in Figure 8.

To make sure the burst is a network burst, and does not consist of spikes at only one electrode, a check
is performed. If the spike count of the entire burst is made up of more than 80% of spikes of a single
electrode, the burst is excluded. We validate this method by visual inspection of the signals.

We define four output measures based on the most notable differences between the signals measured
from WT, GEFS+ and DS cultures. These are:

• the Mean Network Burst Rate (MNBR), the average amount of NBs per minute,

• the Mean Network Burst Duration (MNBD), the mean time difference between the start and the
end of the NBs in seconds,

• the Percentage of Spikes In Burst (PSIB), which is the # of spikes in NBs
# of spikes outside NBs100%,

• ElecSD, which is the mean standard deviation of the fractions of spike counts every electrode
contributes to NBs. If this number is 0, every electrode contributes the same amount of spikes to
the NBs. A high number means the spikes in the NBs come more from some electrodes than others.
In other words, ElecSD provides a measure for in-burst activity similarity between electrodes.

All measures are computed over 10 minutes (600 seconds) of measurement.

3.6.3 Statistical analysis

From in vitro experiments, we have 600-second measurements from 12 different wells per culture type.
To mimic the different wells with the model, we model 12 networks with different random number re-
alizations. This results in 12 networks with different random connectivity, different synaptic weights w,
and different externally applied currents I. Networks are simulated for 600 seconds each.

We perform statistical analysis using the SciPy statistical functions module in Python 3.6. We ensure
normal distributions using a Shapiro-Wilk Test. Equal variances of the to-be-compared groups are
ensured using Levene’s test. When comparing three groups (WT, GEFS+ and DS) with equal variances,
we perform a one-way ANOVA and post-hoc Tukey HSD test. If variances are not equal, we perform a
one-way ANOVA with Welch correction and post-hoc Games-Howell test. When comparing experiment
to simulation, a Welch’s t-test is performed. p-values<0.05 are considered significant in all cases.
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Table 1: Overview of WT model parameters.

Parameter Description Value Unit
Cm Membrane Capacitance 1 µF·cm−2

ḡK Maximum voltage-gated potassium conductance 5 mS·cm−2

ḡNa Maximum voltage-gated sodium conductance 50 mS·cm−2

ḡl Leak conductance 0.3 mS·cm−2

EK Nernst potential of potassium -80 mV
ENa Nernst potential of sodium 70 mV
El Nernst potential of the leak current -39.2 mV
VT Potential to adapt spike threshold -30.4 mV
αCa Strength of spike-frequency adaptation (SFA) 0.0035 nS
τAHP Apparent recovery timescale of all SFA mechanisms 6 s
σ Standard deviation of the noisy input 4.1 mV
ḡAMPA Maximal conductance of AMPA 0.2808 nS
ḡNMDA Maximal conductance of NMDA 0.0981 nS
EAMPA Nernst potential of AMPA 0 mV
ENMDA Nernst potential of NMDA 0 mV
αNMDA Multiplicative constant of NMDA dynamics 0.5 kHz
τAMPA Decay time for AMPA synapses 2 ms
τNMDA,decay Decay time for NMDA synapses 100 ms
τNMDA,rise Rise time for NMDA synapses 2 ms
ḡNap Maximal persistent sodium conductance 0.1 mS·cm−2
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4 | Results

4.1 Experimental results

The experimental results are shown in Figure 9. We can see distinct differences in output measures
between WT, GEFS+, and DS. For MNBR, there is a significant difference between all three groups. The
MNBD is significantly higher in DS cultures, compared to WT and GEFS+. The PSIB is significantly
lower in both GEFS+ and DS, compared to WT. The ElecSD is significantly higher in both GEFS+
and DS, compared to WT.

4.2 Model results

4.2.1 WT model

The results of the WT model are shown in Figure 10. There are no significant differences between
MNBR and MNBD of experiment and simulation. There is, however, a significant difference in PSIB
and ElecSD. The fraction difference between the means of the PSIB of experiment and simulation is
only 4%. We see that the variances of the output measures of simulations are smaller than those of
experiments.

4.2.2 Model validation

The results of the model validation are shown in Figure 11. When blocking the NMDA receptors in vitro,
we only see a significant change in the MNBD. As can be seen from the boxplot, the same happens in
simulations. There is no significant difference in normalized MNBD between experiment and simulation,
although the simulation observations have a more narrow distribution. As in experiments, there is also
no significant change in MNBR, PSIB, and ElecSD in the simulations when the NMDA receptors are
blocked. When the AMPA receptors are blocked, all bursting behavior vanished in both experiment
and simulations in all cases.

4.2.3 GEFS+ and DS models

To obtain a model of GEFS+ and DS, we first explored the effect of single modification parameters
as described in section 3.4.1. We observed that every parameter either increased or decreased neuron
excitability and that this effect was roughly linear, meaning that if an increase of a parameter increased
excitability, increasing it further increased excitability more, and decreasing it decreased excitability.
For every parameter, we defined if increasing its value resulted in increased or decreased excitability
and the parameter range for which this effect was stable. The result can be seen in Table 2. Because of
the roughly linear effect of the modification parameters, we chose a large step size for parameter space
exploration. The parameters γNa, γτm, γτh, γαm, γαh, γβm γβh were explored for the values 0.5, 0.75, 1,
1.25 and 1.5. γNap was explored for values 0, 0.1 and 0.2. ∆Vm and ∆Vh were explored for values -5 mV,
-2 mV, 0 mV, 2 mV and 5 mV. The effect on the network behavior of changing one or combinations of
two parameters was observed. We found that parameter changes leading to increased neuron excitability
always led to a higher MNBR, and parameter changes leading to decreased neuron excitability always
led to lower MNBR. Changes of 2 parameters always had the sum of the individual effect qualitatively.
So if parameters 1 and 2 both increased MNBR, changing both parameters simultaneously increased
the MNBR even more. We observe lower MNBR in GEFS+ and DS cultures, but also lower PSIB and
higher ElecSD. In simulations, the PSIB never dropped below 96.68%, and the ElecSD never significantly
increased when only varying the modification parameters. Thus, changing the dynamics of the sodium
channel alone does not result in the experimentally observed behavior. We also varied the weight scaling
parameter S and found that decreasing it resulted in lower PSIB. Decreasing S, however, also led to
lower MNBDs, which is not seen in GEFS+ and DS cultures. This effect can be counteracted by
suppressing the adaptive mechanisms (spike-frequency adaptation and STD). Thus, increasing neuron
excitability, decreasing S, and decreasing the adaptive mechanisms resulted in network behavior similar
to experimentally observed behavior of GEFS+ and DS networks.
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Figure 9: Comparison of WT, GEFS+ and DS spontaneous neuronal network activity in experiments. Top:
representative raster plots of 120 seconds from WT, GEFS+ and DS cultures. Bottom: Box plots of output
measures of the cultured neuronal networks. Per culture type (WT, GEFS+ and DS), 12 wells were recorded
for 600 seconds each. Output measures for each well were calculated. ns P>0.05, * P<0.05, ** P<0.01, ***
P<0.001, one-way ANOVA with post-hoc Tukey HSD was performed between culture types.
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Figure 10: Comparison of WT behavior as observed from experiment (EXP) and simulations (SIM). Top:
representative raster plots of 120 seconds from two wells of the experiment, and two simulations with different
random number realisation. Bottom: boxplots of the output measures of 12 wells and 12 simulations. ns P>0.05,
** P<0.01, **** P<0.0001, Welch’s t-test was performed between experiment and simulation.
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Figure 11: Comparison of the effect of blocking of AMPA (AMPArb) and NMDA (NMDArb) receptors on
network behavior between experiment (EXP) and simulations (SIM). Top: representative raster plots of 120
seconds from experiment and simulation. Bottom: Box plot showing the effect of NMDA receptor blocking
on the MNBD in 4 wells in experiment and 4 simulations. ns P>0.05, a Welch’s t-test was perfomed between
experiment and simulation.
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Table 2: Effect of increasing the values of the modification parameters on the neuron excitability. Increasing
the parameter value (making it more positive) either increases (↑), decreases (↓), or does not influence (-) neuron
excitability. The ranges for which the effect is stable are also given.

Parameter Excitability Stable range
γNa ↑ 0.07 - 7.8
γNap ↑ 0 - 0.91
γτm ↑ 0.18 - ∞
γτh ↑ 0.001 - 6.2
γαm ↑ 0.35 - 9.3
γαh ↑ 0.04 - 7.9
γβm ↓ 0.29 - 3.8
γβh - 0.15 - 25
∆Vm ↓ -13 - 6 mV
∆Vh ↑ -15 - 23 mV

Table 3: Overview of parameters that were altered to obtain the model of GEFS+ and DS.

Parameter Description WT value GEFS+ value DS value

αCa
Strength of spike-frequency
adaptation

0.0035 0.0025 0.001

S Synaptic weight scaling factor 1.65 0.67 0.53
U Strength of STD 0.015 0.007 0.0042

∆Vm, ∆Vh
Shift of voltage dependence
of the m- and h-gate

0 mV -2 mV 0 mV

γαm Modifies activation rate of m-gate 1 1 1.5

Because multiple modification parameters can increase neuron excitability, several possibilities arise to
model GEFS+ and DS networks. We know the genetic mutation of the GEFS+ patient is a missense
mutation in the voltage sensing domain of the sodium channel. Therefore we choose to further analyze
a GEFS+ model with a hyperpolarized shift in both activation and inactivation of the sodium channel.
We keep in mind that this is just one option and that more possibilities can lead to roughly the same
behavior. The DS patient has a missense mutation in the pore domain of the channel. We choose to
further analyze a DS model where there is an increased rate of activation of the m-gate. The parameters
we altered with respect to the WT model can be found in Table 3.

4.2.4 GEFS+

The results of the GEFS+ model are shown in Figure 12. There are no significant differences between
MNBR and MNBD of experiment and simulation. There is a slight significant difference in PSIB. The
simulations have a higher PSIB than is observed in experiments, as was also seen in the WT model.
However, the PSIB of the simulations is significantly lower than that of WT simulations, which is in
line with the experimentally observed difference between WT and GEFS+. There was a significant
difference between ElecSD of experiment and simulations. There was no significant difference between
ElecSD from the WT and GEFS+ simulations.

4.2.5 Dravet Syndrome

The results of the DS model are shown in Figure 13. There are no significant differences between MNBR
and MNBD of experiment and simulation. There is a significant difference between PSIB and ElecSD
of experiment and simulation. However, there is a significant decrease in PSIB of the DS simulation
compared to the WT simulation. There is also a significant increase in ElecSD compared to the WT
simulation. So PSIB and ElecSD follow the same trend in simulations as in the experiments.
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Figure 12: Comparison of GEFS+ behavior as observed from experiment (EXP) and simulations (SIM). Top:
representative raster plots of 120 seconds from WT and GEFS+ of the experiment and simulations. Bottom:
boxplots of the output measures of 12 wells and 12 simulations. ns P>0.05, * 0.01<P<0.05, **** P<0.0001,
Welch’s t-test was performed between experiment and simulation.
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Figure 13: Comparison of DS behavior as observed from experiment (EXP) and simulations (SIM). Top:
representative raster plots of 120 seconds from WT and DS of the experiment and simulations. Bottom: boxplots
of the output measures of 12 wells and 12 simulations. ns P>0.05, **** P<0.0001, Welch’s t-test was performed
between experiment and simulation.
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Figure 14: The effect of temperature on the MNBR of WT, GEFS+ and DS neuronal networks in experiment
and simulations. Box plots of the normalized MNBR (40◦C/37◦C) of experiment and simulations are shown.
Note that the y-scales are different. We see that the trend of the simulations appears to be the same as
experimentally observed. However, while no significant differences are found between groups in experiments
(one-way ANOVA p>0.05), there are slight significant differences in simulations. Moreover, experiments show
larger relative increases in MNBR compared to simulations for all types. ns P>0.05, * 0.01<P<0.05, one-way
ANOVA with Welch correction and post-hoc Games-Howell.

4.2.6 GEFS+ and DS model validation

The results of the GEFS+ and DS model validation are shown in Figure 14. In experiments, we observed
that increasing the temperature from 37◦C to 40◦C resulted in a significantly increased MNBR in WT,
GEFS+, and DS networks. Unexpectedly, there are no significant differences in normalized MNBR
(40◦C/37◦C) between the groups (WT, GEFS+, and DS) in the experiment (one-way ANOVA p=0.11).
Simulations with the WT model show no increase in MNBR when the temperature is increased. However,
there is a significant increase in MNBR in both GEFS+ and DS simulations. In contrast to experiment,
there are slight significant differences between the groups in simulations (one-way ANOVA with Welch
correction, p=0.008). Simulations with the GEFS+ model and the DS model both showed a slightly
higher normalized MNBR than WT (post-hoc Games-Howell, p=0.047 and p=0.035 respectively).
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5 | Discussion

5.1 WT model results

We used an in silico model comprising 100 HH-neurons to simulate the behavior of WT in vitro neu-
ronal networks. Our model successfully simulated essential features of experimentally observed network
behavior, like the MNBR and MNBD (see Figure 10). However, there were also some distinct differences
between experiment and simulations.

PSIBs in simulations are significantly higher than those measured in experiments. The main cause
appears to be that neurons in simulations spike with a higher frequency during an NB than neurons in
experiment. This is because, in an NB, every neuron receives a large amount of synaptic current input
caused by the high connectivity of the network [20]. In a burst, all neurons participate and reinforce the
NB. We see that if we dramatically increase the number of neurons (for example to 10.000) and reduce
the connectivity, the synaptic current every neuron receives in NBs lowers. This causes the neuron spike
rate in NBs, and thereby the PSIB, to decrease. The high PSIB is thus likely a consequence of the small
number of neurons in the model.

The ElecSD in the simulations is much lower than in experiments. This means that there are larger
differences between the 12 electrode measurements in vitro. One reason is that, in our model, all neurons
are homogeneously distributed over the area with the electrodes, whereas the electrodes in cultures may
have many neurons close by or none at all. Additionally, other inhomogeneities, such as the nearby
presence of the astrocytes, can impact the electrode recording [46]. Another reason for the large dif-
ference in ElecSD between experiment and simulation is that almost all neurons contribute to the NB
in simulations, while this might not be the case in the cultures. Other studies with models of cultured
neuronal networks also noted this difference between their simulations and experiments [15, 20, 21]. The
reason all neurons participate could be the small number of neurons and the low amount of heterogeneity
between the neurons in the model [21]. Even though some neurons are more active than others, they
will all become active within an NB due to the high connectivity. PSIB and ElecSD can still be useful
measures despite their significant differences between experiment and simulation because they capture
the difference between healthy and GEFS+/DS behavior in vitro. We would like to see the same trend
of lowered PSIB and heightened ElecSD in the GEFS+ and DS simulations, as we see in the experiments.

The output measures from our simulations show a more narrow distribution than the output measures
of experimental recordings (see Figure 10). This most likely reflects biological differences between the
wells in experiment; these differences are not included in the model. Mainly the amount and distribu-
tion of alive and functional neurons and astrocytes per well have been shown to affect neuronal network
functionality [8]. Moreover, slight variations in routine cell culturing and maintenance, such as varia-
tion in the culture medium, can have significant effects on the network behavior [69]. This may cause
differences in the output measures of experiments that can not be obtained with the different random
number realizations in simulations.

We validated the WT model using the same experimental intervention in vitro and in silico. In exper-
iments, the NMDA- and the AMPA-receptors of the cultured neurons were blocked. For simulations,
we removed the NMDA and AMPA synaptic currents from the neurons. The resulting simulations
reproduce the characteristics of the experimental observations (see Figure 11). The main consequence
of the blocking of NMDA-receptors is shortening of the NB. In simulations, the amount of shortening is
always the same, while the values for normalized MNBD in experiments vary more. This could again be
caused by inhomogeneities not accounted for in the model. For example, every model neuron receives the
same ratio of AMPA and NMDA current, while in cultures, the ratio of AMPA- and NMDA-receptors
could differ per synapse [70]. Previous studies on rodent-derived neuronal networks and hiPSC derived
neuronal networks showed that burst duration is directly influenced by AMPA and NMDA-receptors
[52, 71]. Therefore, it is likely that, because the change in NMDA/AMPA ratio is equal for all simula-
tions when blocking NMDA-receptors, the MNBD will also shorten equally for every simulation. Also
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note that only four experimental measurements were available, and thus also only four simulations were
used. Repeating this experiment might reveal other effects of the NMDA-receptor blocking. In the rep-
resentative rasterplots of the experiment and simulation with AMPA-receptor blockage (see Figure 11),
it appears that neurons in the simulation are more active than neurons in experiment. However, the
difference in the amount of measured APs could also be due to the method of detecting the APs. The
threshold for AP detection is based on the root mean square of the signal. The experimental signals
generally are noisier, and thus their threshold for AP detection will be higher, especially when there are
no NBs.

It could be argued that the used validation method is somewhat limited, as it only evaluates the AMPA
and NMDA synaptic current implementation. However, we observed that most of the modeled mecha-
nisms influence one another. For example, because NMDA blocking decreases NB duration, the level of
spike-frequency adaptation and thereby NB rate are also altered. Other modeling studies have also re-
ported such interplay between different modeled mechanisms [19–21]. Therefore, this validation method
goes beyond the scope of synaptic currents. Nevertheless, more validation experiments could improve
the validation, as will also be discussed in section 5.4.

Increasing the temperature in the WT model does not increase the MNBR like observed in experiments
(see Figure 14). Temperature is only included in the model as a Q10 on the rates of change of the
conductance gating variables. However, temperature dependencies of other processes are also suggested,
like STD [72] and the amplitude of excitatory PSPs [73, 74]. Still, the effect of temperature on the
network can be used to compare WT, GEFS+, and DS network behavior. However, conclusions should
be drawn with caution since apparently, not all temperature mechanisms are properly included in the
model.

5.2 GEFS+ and DS model results

We attempted to model the GEFS+ and DS neuronal networks by modifying the WT model. We in-
cluded modification parameters in the HH equations to model changes in voltage-gated sodium channel
dynamics. We found that changes in sodium channel dynamics by themselves could not reproduce the
behavior of the GEFS+ and DS networks observed experimentally. We were able to reproduce the
experimentally observed behavior by increasing the neuron excitability with the modification parame-
ters and lowering the synaptic scaling factor S and the strength of the adaptive mechanisms (STD and
spike-frequency adaptation).

The MNBR and MNBD of both GEFS+ and DS behavior could be replicated with the resulting models.
In both GEFS+ and DS simulations, we also observe a lower PSIB compared to WT simulations. This
agrees with the trend we see in vitro. However, PSIB is still higher than experimentally observed, which
is presumably due to a higher firing rate in model neurons as discussed above. It can also be seen from
the representative rasterplots in Figure 12 and 13, that there appears to be more activity outside the
bursts in simulations than in experiments, even though the PSIB is higher in simulations.

For DS simulations, we observe an expected higher ElecSD compared to WT, while we did not see this
in GEFS+ simulations. The NBs in DS are longer than those in GEFS+; this gives more room for
variability between electrodes, explaining the increased ElecSD. However, in both GEFS+ and DS, the
ElecSD is significantly lower than observed in experiments. A possible cause could be the small number
of neurons with high connectivity. It appears in the experiments that some neurons contribute much
less to the NB, while in simulations every neuron contributes approximately evenly. One can imagine
that in the neuronal networks, when the synaptic strengths are downscaled, some groups of neurons
might be partly disconnected from the rest of the network. This is supported by the hypothesis that
cultured neuronal networks have highly connected subgroups of neurons, only lightly connected to other
subgroups [75, 76]. With only 100 neurons, we can not observe these groups or the de-coupling of
groups. We therefore attempted to model DS with 10.000 neurons and a more realistic topology. This
is further explained in Appendix B. In simulations with these large networks, we still do not see the
amount of change in ElecSD seen in experiments between WT and the pathologies. Another possible
explanation is that there is more heterogeneity in the neuron population than we modeled. There are
significant variances observed in the intrinsic properties of neurons derived from hiPSCs; for example,
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the rheobase and maximum spike frequency can differ largely from one neuron to another [77]. This
could cause some neurons to be more susceptible to the change in sodium channel dynamics than others.
The neurons in the model are relatively homogeneous and have exactly the same modification of their
sodium channel. More heterogeneities can be incorporated in the neuron equations to potentially affect
the ElecSD.

In the GEFS+ and DS model validation, simulations appear to follow the same trend as experimental
observations (see Figure 14). However, there are no significant differences between the normalized
MNBR of the three groups in the experiment. We did expect to find a difference, as both GEFS+ and
DS are clinically often responsive to temperature [4, 33, 35]. In simulations, there are slight differences in
normalized MNBR between the groups. This disparity between experiment and simulations could arise
from incomplete or incorrect modeling of temperature dependencies; after all, the normalized MNBRs of
all groups are lower in simulations compared to experiment. However, the difference in significance may
well be a result of the limited dataset available [78]. As GEFS+ and DS neurons are likely responsive
to elevated temperature [79, 80], it is valuable to investigate this matter further.

5.2.1 Interpretation of modifications

Besides using the modification parameters, we altered S and the strength of the adaptive mechanisms to
obtain the GEFS+ and DS models. Here we will try to interpret these parameter changes. We lowered
the value of S, which is a variable that scales all the synaptic weights. This synaptic downscaling is
something also observed in vivo [81] and in vitro [82]. Synaptic downscaling is a form of homeostatic
plasticity, a group of mechanisms to promote stability in neuronal firing rates [83]. Homeostatic synaptic
downscaling is a negative feedback response to persistently elevated network activity. Such downscaling
is observed in in vitro networks when the neuronal network activity is artificially elevated [84]. The
primary mechanism for synaptic downscaling is a decrease of AMPA-receptor numbers [82]. However,
also the pre-synaptic neurotransmitter system can be altered [85]. When the activity of all neurons
increases, all synaptic strengths of the excitatory synapses can decrease [83]. Previous research with
hiPSC derived excitatory neuronal networks showed that homeostatic synaptic plasticity was present in
these networks [52]. They found that insertion of AMPA-receptors was initiated by neuronal inactivity.
Similarly, in our networks, AMPA-receptors numbers could be decreased as a response to the heightened
network activity due to the sodium channel modifications. Thus, a decrease of S could correspond to
homeostatic synaptic plasticity.

To counteract the burst shortening effect of the synaptic downscaling, we lowered the effect of STD and
spike-frequency adaptation. A lowered STD could be caused by homeostatic synaptic plasticity. Deper-
rois et al. [86] showed that long-term synaptic depression can lower STD, for example by a reduction
in neurotransmitter release. Since we use a phenomenological model for STD, we have to manually
lower the strength of STD to account for this effect. The decreased spike-frequency adaptation can be
interpreted as a result of the sodium channel mutations. In the model, we use one simple mechanism
of spike-frequency adaptation to model the effect of all possible mechanisms. One mechanism for spike-
frequency adaptation is the use-dependence of channel activity. Spampanato et al. [36] showed that
two mutations resulting in GEFS+ caused a decrease in the use-dependence of channel activity. This
could thus cause a decrease in spike-frequency adaptation. We can see from the representative raster
plots in Figure 12 that in the experiments, the time after a burst when the neurons are somewhat silent,
seems to disappear in the GEFS+ cultures. This also suggests that spike-frequency adaptation might
be suppressed.

For both STD and spike-frequency adaptation, more biologically realistic mechanisms could be modeled.
In that way, it could be tested if the mechanisms mentioned above and their interactions can explain
the lengthening of the bursts. Costa et al. [87] proposed a model which accounts for the change
in STD through long-term plasticity mechanisms. Benda et al. [88] proposed a phenomenological
model for spike-frequency adaptation that encompasses all possible mechanisms. Currently, we did not
include a homeostatic plasticity model, nor other forms of long-term synaptic plasticity. This is because
these forms of plasticity would take time to show an effect. The simulations used in this research
are computationally expensive, and the simulation times are approximately twice the simulated times.
Therefore, simulation of long-term effects would take weeks. Moreover, this research does not focus
on long-term changes in behavior but only looks at stationary behavior. To closely investigate the
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interaction between all above-mentioned mechanisms, it might be helpful to use a simple, more efficient
model, e.g. with LIF neurons, including homeostatic synaptic plasticity and other long-term effects.
Toyoizumi et al. [89] propose a model to capture the interaction between homeostatic synaptic plasticity
and other forms of long-term synaptic plasticity.

5.2.2 Multiple possible models

It is possible to simulate the GEFS+ and DS network behavior in multiple ways. Different choices of
the modification parameters result in simulations with the same MNBR and MNBD as observed in the
GEFS+ and DS cultures. Previous research with single neuron models of GEFS+ and DS also showed
that different channel modifications resulted in the same change in neuron behavior [26, 28]. Figure 12
and 13 show one example of a combination of modifications that results in behavior similar to that
observed in vitro. We can thus identify candidate mechanisms that cause hyperexcitability in neurons,
but we cannot narrow it down to one mechanism. Using single neuron path-clamp measurement, more
information could be obtained about the dynamics of the sodium channel [33, 36, 38]. This could narrow
down the modeling possibilities. If the model then also incorporates biophysical STD, spike-frequency
adaptation, and homeostasis models, it could potentially be used to identify and test AEDs [2, 90, 91].
The use of drugs could also be a way to validate the model [92]. The effect of drugs can be predicted
using several models with different sodium channel dynamics. The model that best predicts the behavior
of the cultures where the drug is administered, is then the most likely.

We decided to further analyze one model possibility for GEFS+ and one for DS. The GEFS+ patient
from whom the neurons in the cultures originate has a mutation in the voltage-sensing domain of the
sodium channel. Therefore, it seemed sensible to model a change in the voltage dependency of the
sodium channels. We modeled a hyperpolarized shift in the voltage-dependence of activation and inac-
tivation, which was also found in another GEFS+ mutant sodium channel [37]. One would think that
the shift in inactivation would lead to decreased excitability of the neuron. However, since both acti-
vation and inactivation move in the same direction, the window current (the voltage region where the
sodium channels can continue to open between activation and inactivation), will move to lower voltages
where the membrane potential of the neuron more often resides. Therefore, the neuron is more often
activated and thus hyperexcitable.

The patient with DS has a missense mutation in the pore domain of the sodium channel. Therefore,
we chose to model a higher rate of activation of the m-gate. This accelerated activation was also found
in other research, where it was caused by a mutation that resulted in a GEFS+ like clinical phenotype
[93].

5.3 Implications

The question remains what the above-analyzed findings implicate for GEFS+ and DS. Earlier research
with single neuron models showed some mutations associated with GEFS+ and DS resulted in neu-
ron hyperexcitability [26, 28]. They argue that this neuron hyperexcitability could be the cause of
epilepsy. With this research, we showed that if the model is correct, neuron hyperexcitability alone
can not explain the network behavior of GEFS+ and DS neurons. Network modifications are needed
to obtain the GEFS+ and DS behavior. The most important candidate mechanism we identified for
this is homeostatic plasticity. We predict that the synaptic strengths in the GEFS+ and DS neuronal
networks are significantly lower compared to WT networks. This prediction can be tested by measuring
the amplitude of miniature excitatory PSPs (mEPSPs) in the cultures. If homeostatic plasticity indeed
has a significant effect on these epileptic networks, this also gives rise to new hypotheses regarding some
mechanisms of epilepsy. Something that remains largely unknown is why patients with the same genetic
mutation, even within the same family, can show a severely different clinical phenotype, ranging from
benign forms of GEFS+ to DS. Moreover, studies investigating correlations between SCN1A mutations
and phenotype severity have not found a reliable correspondence [94–97]. The amount of homeostatic
plasticity might vary per patient based on genetic background or other factors. Therefore, we identify
the amount of homeostatic plasticity as a candidate mechanism for phenotype-variability.
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Another partly unexplained characteristic of DS is the developmental delay in language, motor function,
learning and social skill of patients. To our knowledge, no linkage between the type of SCN1A mutation
and cognitive outcome has been found [98, 99], or between environmental factors and cognitive outcome
[100]. This suggests another mechanism might influence cognitive outcome. Swann et al. [101] argue
that homeostatic mechanisms are actively engaged in the epileptic brain. These mechanisms try to
re-establish normal neuronal network activity. In some forms of intractable epilepsies, like DS, seizures
are so intense and frequent that these mechanisms cannot restore normal activity levels. Nevertheless,
homeostatic mechanisms remain active and could become maladaptive, meaning the mechanisms are
driven to such extremes that they induce undesirable effects. Swann et al. argue, by analyzing multiple
mechanisms of homeostasis, that this maladapiveness could result in learning impairment. High amounts
of homeostatic plasticity could thus potentially be a mechanism that causes the learning impairments
observed in children with DS.

To our knowledge, this model is a unique combination of a detailed neuron model in a network structure
calibrated to human neuronal network activity. Other research used single neuron models [26–28], or
network models with simple neuron models [15–25]. Research with detailed neuron models in a network
context is often not calibrated to experiments [22], or is too complicated, meaning they have numerous
neuronal types organized in complicated multi-layer structures [102]. Our model is simple in that it
only includes one type of excitatory neurons and one type of connections. This makes our model easy
to compare to excitatory neuron cultures. Our in silico model can faithfully replicate the behavior of
the human in vitro neuronal networks with accurate time scales. Mechanisms underlying experimental
observations can be investigated with this model, while model predictions can be confirmed in the
cultures. Therefore, this model forms a useful tool to accompany research with hiPSC neuron cultures
on genetic disorders.

5.4 Limitations

5.4.1 Number of neurons

We modeled only 100 neurons, while cultures consist of about 20.000 neurons. As more elaborately
discussed in appendix B, increasing the number of neurons did not change the essential characteristics
of the network behavior, such as the MNBD and MNBR. Other modeling studies found a similar effect
of increasing the number of neurons [16, 19]. However, increasing the number of neurons did result
in more realistic maximum spike rates in NBs and larger differences between electrode measurements.
Because we look at relative changes in network behavior from WT to GEFS+ and DS, we do not think
the number of neurons influences the conclusions.

5.4.2 One-compartment model

We modeled neurons using a one-compartment model with only one type of voltage-gated sodium
channels. However, there are distinct differences between the dendrites, axon, and soma of neurons
in voltage-gated channel expression [103]. Also, the Nav1.1 expression is not homogeneous throughout
the neuron [104]. These channels are predominantly expressed in the initial segments of axons. We
modeled changes in Nav1.1 dynamics as if all voltage-gated sodium channels, or a subset homogeneously
distributed throughout the neuron, were altered. In reality, only a subset of channels in a specific part
of the neuron might be altered. This could result in complex neuron dynamics that we did not find in
our simulations. To map the extend of the effect of our simplification, it might be useful to research the
difference in neuron dynamics between one-compartment models and multi-compartment models with
heterogeneous Nav1.1 channel distribution.

5.4.3 Parameter values

A lot of the parameter values used for the WT model were not based on experimental measurements.
Examples are the degree of spike-frequency adaptation and STD, the timescale of spike-frequency adap-
tation, and the amount of noise every neuron receives. The used values are tweaked in such a way that
the simulations resembled the experimentally observed behavior. However, it often became apparent
that multiple combinations of parameters resulted in roughly the same behavior. For example, to in-
crease the MNBR, one can increase the synaptic strength, increase the amount of noise every neuron
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receives or shorten the time scale of spike-frequency adaptation. The certainty of these parameter values
can be improved by performing more model validations. More experimental manipulations can be com-
pared to model manipulations [105]. Moreover, more output measures can be taken into account, such
as the distribution of the inter-NB-intervals [105]. For example, this distribution will be more narrow if
the burst rate is more determined by strong synapses rather than a lot of noise.
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6 | Conclusion and
Recommendations

This research aimed to elucidate the role of sodium channel mutations and network dynamics in ex-
plaining in vitro observations of GEFS+ and DS neuronal networks using a biophysical computational
model. We combined elements of existing models to obtain a detailed neuronal network model compris-
ing 100 HH neurons. Our model faithfully reproduces the behavior of WT cultures. Modifications of
the voltage-gated sodium channel were insufficient to transition to a GEFS+ or DS model. Additional
downscaling of the synaptic weights and adaptive mechanisms resulted in simulations that did reproduce
the experimentally observed behavior of GEFS+ and DS neuronal networks. We identify homeostatic
plasticity as a candidate mechanism responsible for a large part of the GEFS+ and DS network dynamics.

To further verify our newly gained hypothesis, we have several recommendations for further research.
First, a computational model could be made that includes biophysical models of long-term synaptic
plasticities and their effects on short-term plasticity. In this way, we can test whether the interplay of
these mechanisms is as we hypothesized here based on literature. Second, our predictions about the
significant role of homeostatic plasticity in GEFS+ and DS networks can be partially confirmed by
measuring mEPSPs in the neuron cultures. We predict that mEPSPs in GEFS+ and DS cultures will
be significantly lower than in WT cultures.

This model forms a unique and valuable tool to accompany research with cultured neuronal networks
derived from hiPSCs. By utilizing either more experimental measurements or performing more vali-
dations, the modeling possibilities for the GEFS+ and DS networks could be further narrowed down,
and more precise models can be obtained. These models can then potentially be used to make more
predictions about important mechanisms or the effectiveness of different AEDs. Moreover, the model
could be calibrated to cultures of other genetic pathologies to assist in unraveling these disorders.
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100. Jansson, J. S., Hallböök, T. & Reilly, C. Intellectual functioning and behavior in Dravet syndrome:
A systematic review. Epilepsy and Behavior 108, 107079. issn: 15255069 (July 2020).

101. Swann, J. W. & Rho, J. M. How is homeostatic plasticity important in epilepsy? Advances in
Experimental Medicine and Biology 813, 123–131. issn: 22148019 (2014).

102. Van Drongelen, W. et al. Role of persistent sodium current in bursting activity of mouse neocor-
tical networks in vitro. Journal of Neurophysiology 96, 2564–2577. issn: 00223077 (2006).
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A | Bifurcation diagram

A B

Figure A.1: Dynamics of the neuron model without spike-frequency adaptation. A. Simplified bifurcation
diagram only showing stable equilibria. The black lines denote a stable fixed point. The orange lines denote
the maximum and minimum values of Vm at the stable limit cycle. At the SNIC (Saddle-Node on an Invariant
Circle) bifurcation, an undrawn saddle point collides with the stable fixed point and both disappear. Because
these fixed points were on an invariant circle, their collision gives rise to a stable limit cycle. At H, a supercritical
Hopf bifurcation (Lyapunov coefficient = -4.24e-3) occurs leading to a depolarization block. The stable limit
cycle collides with an undrawn unstable fixed point, that then becomes a stable fixed point. B. I-F curve of the
neuron model. The neuron starts firing when I exceeds the threshold Ith=12 pA. The neuron stops firing when
the depolarization block is reached at I=292 pA
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B | Number of neurons and
connectivity

This appendix will elaborate on the effect of different numbers of neurons and different topologies
on single neuron and network behavior. We will also attempt to simulate DS behavior with 10.000
neurons and small-world topology to see if this will result in more prominent differences between the
measurements from the 12 electrodes.

B.1 Methods

B.1.1 Number of neurons

The number of neurons, N , can be set to any perfect square, such that the grid on which the neurons
are placed is n times n, where n =

√
N . The remainder of the methods described in chapter 3 can

be used, as these correct for the number of neurons (e.g., the conduction delay). We investigate the
effect of the number of neurons using N=9, 16, 49, 100, 900, and 10.000. As we increase the number of
neurons, we decrease either the connection probability or the synaptic scaling factor S. For the analysis,
we look at the filtered electrode signals, rather than raster plots since the number of neurons mainly
influences the shape of the NBs and since all electrodes pick up spikes from all neurons for small N .

B.1.2 Topologies

Different types of connectivity and topology have been used to model cultured neuronal networks.
Masquelier et al. [21] used a full connectivity, which resulted in realistic network bursting behavior.
Baltz et al. [106] used a random sparse connectivity with connection probabilities between 5- and 25%.
A distant dependent connectivity was employed by Park et al. [20] and Pasquale et al. [25], with which
they could replicate complicated network behavior. A small-world topology was proposed to be the
origin of optimal network behavior in cultured neuronal networks by several researchers [17, 75, 76]. We
investigated the effect of all these topologies on our neuronal network behavior. We will shortly discuss
the implementation of these connectivities.

Random sparse connectivity
Neurons are randomly connected to other neurons with a connection probability P . P is set to 1 for a
full connectivity and P<1 for a sparse connectivity. We investigate the effect of the connection proba-
bility for values P = 0.05, 0.1, 0.5, and 1.

Distance-dependent connectivity
Distant dependent connectivity was easily incorporated using the grid already in place. The probability
that neurons i and j are connected depends on the euclidean distance, d(i, j), between the neurons:

P (i, j) = αe−
d(i,j)

2 , (36)

where α determines the chance of overall connectivity.

Small-world topology
A small-world network is a graph in which most nodes can be reached within a small number of steps
(short average path length) and where nodes often appear in small, highly connected groups (high
clustering). Because of this short path length, this graph is often proposed to be optimal for distributed
information processing [75]. They are therefore often hypothesized to exist in neuronal networks [17, 75,
76]. To generate a small-world topology, we use a Watts-Strogatz model [107]. In short, a ring lattice
is created of N nodes, where every node is connected to its K nearest neighbors. Then, for every node,
every edge is rewired with probability p to a random other node, where self-loops are avoided. Thus,
if p=0, there is a ring lattice structure, while if p=1, there is a random connectivity. In between, a
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Figure B.1: Random rewiring procedure of the Watts-Strogatz model to obtain a small-world network. Image
taken from [107].

small-world network appears. This is illustrated in Figure B.1. In the simulations, we use p=0.5. We
take K to be N times the connection probability.

B.2 Results and discussion

B.2.1 Number of neurons

We already observe NB-like behavior in networks with 9 and 16 neurons, but we cannot obtain the
correct time scales. NBs are much shorter, and the NB rate is much higher. With 49 neurons, accurate
time scales can be obtained. From N=49 and up, the inter-NB-intervals and the NB durations become
more narrowly distributed with a higher number of neurons. This is as expected since as there are more
neurons, the noise will be more evened out. If we increase the number of neurons but do not decrease
the connection probability, the NB durations will increase. If we increase the number of neurons but
decrease the connection probability, the behavior of the network will stay qualitatively the same up to
10.000 neurons. The electrode measurements of an experiment and simulations with N = 49, 100, and
900 are shown in Figure B.2. The peak synaptic current does change as the number of neurons changes.
For a low number of neurons, the connectivity (P or S) must be high to obtain the desired network
behavior. This results in high peak synaptic currents at the start of NBs (around 250 pA). As a result,
the firing frequency of the neurons is high and the amplitude of the APs is low, as can be foreseen
from the I-F-curve and the bifurcation diagram in Figure 5. If we increase the number of neurons,
the connectivity can be downscaled, and the peak synaptic current will lower (to approximately 180
pA). The shape of the burst will look more like observed in experiments. Examples of the membrane
potential of a single neuron in an NB and of simulations with different numbers of neurons are shown
in Figure B.3. Examples of the electrode measurements in an NB from an experiment and simulations
with different numbers of neurons are shown in Figure B.4.

B.2.2 Topologies

For small numbers of neurons (N = 49, 100, 900), there is no observable difference in network behavior
between a random sparse connectivity, a distant dependent connectivity, and a small-world topology.
All these topologies are approximately random for small networks. Low connection probabilities result
in too short NBs, while large values of P or a full connectivity can be compensated by lowering the value
of S. For the large network of 10.000 neurons, the choice of topology introduces minor differences. Both
the distance dependent connectivity and the small-world topology result in a network where the NBs
are always initiated in the same small part of the network and then spread throughout the remainder
of the network. This better replicates experimentally observed behavior. Examples of the electrodes
measurements in an NB in experiment and a simulation with random connectivity, a simulation with
distance-dependent connectivity, and a simulation with small-world topology are shown in Figure B.5
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Figure B.2: Voltage recordings from 12 electrodes of one well from experiment, and from simulations with
N=49, 100 and 900 neurons. The network behavior remains qualitatively the same for different numbers of
neurons.

Figure B.3: Membrane potential of single neurons in a NB in a network with 49 and 10.000 neurons. We can
see that for small networks at the start of an NB, the firing frequency of a single neuron is higher, and the AP
amplitude is lower, compared to large networks. This is likely caused by a higher peak synaptic current.
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Figure B.4: Voltage recordings during a NB from 12 electrodes of one well from experiment, and from simula-
tions with N=100, 900 and 10.000 neurons. Because of the low AP amplitudes of the neurons in small networks,
the electrode signals look different from experimental observations at the start of an NB. In larger networks, the
NBs look more like experiment.
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Figure B.5: Voltage recordings within a NB from 12 electrodes of one well from experiment, and from simu-
lations with 10.000 neurons and different topologies, namely sparse connectivity (labelled N=10.000), distance-
dependent connectivity and small-world topology.
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Figure B.6: Voltage recordings within a NB from 12 electrodes of one well from experiments with DS cultures,
and simulations with the DS model with 100 neurons and random sparse connectivity, and 10.000 neurons and
small-world topology.

B.2.3 DS model with many neurons

We observe large differences between the measurements from different electrodes during an NB in
experiments with DS cultures. We cannot simulate these large differences with our model with 100
neurons. We hypothesize that if we increase the number of neurons and use a topology with clusters
of highly connected neurons that are less strongly connected to other clusters, like in a small-world
network, clusters might become more disconnected from others when we decrease S to simulate DS. We
tried this with N=10.000 and P=0.05 in a small-world topology. The result is shown in Figure B.6. We
see that there are larger differences between electrodes compared to the simulations with 100 neurons.
However, compared to experimental observations, the measurements from the different electrodes are
still far too similar in the simulations. This might be because some neuron heterogeneities are not
modeled. It might also be because the topology is still not realistic enough. Another approach would
be to apply Hebbian learning to the synaptic weights or to include growth dynamics like in the model
of Gritsun et al. [17].
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