
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Hardware/software co-design of
an RFID signal processing system

Mika Uytdewilligen
M.Sc. Thesis

July 2021

Supervisors:
Dr.ir. A.B.J. Kokkeler
Dr. S. Safapourhajari

Dr.ir. N. Alachiotis
Dr.ir. M.J.J.van Megen

Dr. P.J. Compaijen

Radio Systems Group
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Abstract

This thesis will investigate the realisation of an RFID signal processing system
to determine an RFID tag’s location using the MUSIC algorithm. The RFID
signal processing system can be a replacement for Electronic Article Surveil-
lance for retail at the entrance of stores. The optimal implementation of the
MUSIC algorithm on an embedded system using hardware and software co-
design is the main goal for this thesis. A System-On-Chip (SoC) is used to
implement the processing blocks of the MUSIC algorithm: covariance matrix
calculation, eigendecomposition and localization. These processing blocks are
implemented on the processing platform that is most well suited for the timing
and resource requirements. The platforms chosen are an FPGA for the covari-
ance matrix calculation to adhere to the hard deadline of the input processing,
and an ARM CPU for eigendecomposition and localization for the usage of the
integrated Floating Point Unit(FPU) and the appropriateness to use a high level
programming language to reduce the development time. The implementation
satisfies the requirements of a total processing chain latency of 0.5 seconds, has
an position estimation accuracy of 8 cm and is implemented within the available
resources.

2

Contents

1 Introduction 7
1.1 Introduction . 7

1.1.1 Constraints of the design 8
1.1.2 Hardware platform . 10
1.1.3 Things to take into account 11

1.2 Related work . 12
1.3 Research questions . 12
1.4 Structure of thesis . 12

2 Theory 14
2.1 Covariance . 20
2.2 Eigendecomposition . 22
2.3 Localization . 23

3 Platform 26
3.1 FPGA . 26
3.2 Processors . 27

4 Design 29
4.1 Covariance . 29
4.2 Eigendecomposition . 30
4.3 Localization . 31

5 Implementation 33
5.1 Covariance . 33

5.1.1 Structural process . 34
5.1.2 Partial sums . 35
5.1.3 Clock frequency . 35

5.2 Eigendecomposition . 42
5.2.1 CPU . 42

5.3 Localization . 43
5.3.1 CPU . 43

3

6 Analysis of the solutions 44
6.1 Covariance . 44
6.2 Eigendecomposition . 45
6.3 Localization . 46
6.4 Complete signal processing chain 47

7 Results and discussion 50
7.1 Covariance . 50

7.1.1 Results . 50
7.1.2 Discussion . 51

7.2 Eigendecomposition . 51
7.2.1 Results . 51
7.2.2 Discussion . 52

7.3 Localization . 53
7.3.1 Results . 53
7.3.2 Discussion . 55

8 Conclusion 56
8.1 Recommendations . 58

8.1.1 ADC number of bits . 58
8.1.2 Throughput . 58
8.1.3 Amount of antennas . 58

A Behavioral process 62

B Eigendecomposition 63

4

List of Figures

1.1 The detection area with latency constraint 9
1.2 The existing hardware platform 11

2.1 The receiving antenna array with the angle of arrival of the signal 15
2.2 IQ demodulation of the antenna signal 15
2.3 Multiple antenna array setup with IQ demodulation 16
2.4 IQ scatter plot of 4 channel ADC data [20] 17
2.5 The receiving antenna array for the transmitting source to be

located . 17
2.6 Simple covariance plots for different covariance values of X and

Y variable . 18
2.7 Simple visualisation of the result of the eigendecomposition of the

covariance matrix of figure 2.6 . 19
2.8 The processing blocks of the MUSIC algorithm 19
2.9 The relation between the receiving antenna array and the covari-

ance matrix . 20
2.10 Fundamental calculation blocks of equation 2.5 21
2.11 Covariance matrix format . 22
2.12 Visualisation of the steering vector 24
2.13 MUSIC spectrum example . 25

4.1 The design to be implemented . 29
4.2 The covariance calculation blocks 30

5.1 The processing blocks to be implemented 33
5.2 The covariance processing diagram 34
5.3 The FPGA structural summation with shift register to store the

partial sums . 34
5.4 The FPGA structural summation of the product with shift register 35
5.5 The implementation with colored dotted boxed around the parts

that share the same timing constraints. Teal is per ADC sample,
Blue is 78 times per 1024 ADC samples and Red is once per 1024
ADC samples . 36

5.6 Illustration of the largest combinatorial path 37
5.7 Covariance calculation block diagram 38

5

5.8 Bit depth for summation . 39
5.9 Bit depth for the product calculation 39
5.10 Bit depth for the covariance calculation 40
5.11 Filling the covariance matrix using the FPGA data by applying

the Hermitian conjugate to the upper triangle 42

6.1 Histogram of the eigendecomposition computation times zoomed
in . 46

6.2 Histogram of the localization computation times 47
6.3 The complete processing chain 48
6.4 Histogram of the completer ARM computation times 49

7.1 MUSIC spectra generated by the different implementations . . . 54

8.1 The complete processing chain 57

A.1 The FPGA behavioral covariance process 62

B.1 Histogram of the eigendecomposition computation times 63

6

Chapter 1

Introduction

This chapter will give the context for the thesis and introduce the problem that
is solved by this thesis.

1.1 Introduction

The problem to be solved in this thesis is hardware and software co-design in
an RFID tag signal processing system for an anti-theft system. The system to
be designed will locate an RFID tag by processing the response signal of the
RFID tag received by an antenna array. To do the localization of the RFID
tag the MUSIC(MUltiple SIgnal Classification) algorithm is used [19]. This
algorithm uses the correlation between the received signals on the antenna array
to determine the angle of arrival of one or more signals. The angle of arrival
can be transformed to the location of the RFID tag.

The localization of RFID tags is a method with multiple purposes. It can
be applied for store inventory and it could be used for example as an anti-theft
measure. For instance, for theft alarms, localization could result in a smarter
alarm that does not alarm only if RFID tags are too close to the gate but also
takes into account a larger area where the movement could be followed. In case
there is a tag with a direction outbound of the store with a certain speed, the
alarm could sound before the location where the gates would normally be placed.
Angle of arrival estimation is considered as the solution for this localization
problem, because it is able to estimate the location of the signal source in a
single observation. The angle of arrival method takes snapshots of the antennas
at the same time; thus, it has the benefit of having all the antenna data at the
exact same point in time.

Previous work on the implementation of the MUSIC algorithm uses one of
the possible architectures, hardware or software, for example pure FPGA im-
plementation instead of using a combination of CPU and FPGA [7]. This thesis
focusses on the implementation using hardware and software co-design on an
embedded system. This allows for selecting the optimal processing architec-

7

ture for the separate parts of the algorithm according to the characteristics of
software and hardware.

1.1.1 Constraints of the design

This hardware and software co-design is subject to four main constraints on the
design, in order of importance:

1. Performance

• Latency

• Throughput

• Sample size

2. Agility

• Fast development iterations

3. Resource utilization

4. Power consumption

These constraints will be handled in more detail in the paragraphs below.

Performance For the system, the latency is the time from receiving the signal
to the location determination, throughput how many tags can be processed and
the sample size the amount of samples used to calculate the covariance.

Latency : The latency of the system is the time frame within which the tag
should be processed and the location should be known. When a thief tries
to leave the store there is a 2 meter long detection area, therefore a latency
constraint should be set where the (s)he is detected before the thief is outside
the store. The constraint is taken to be 0.5 seconds as that is the time when a
walking person does not exit the alarm area before the tag is processed. This
requires the tag to be located in the alarming area within the time limit of 0.5
seconds. This gives a relevant timing for the alarm to activate and the shop
employees to act accordingly as can be seen in figure 1.1.

8

Figure 1.1: The detection area with latency constraint

Throughput : The throughput, which is the amount of tag-reads per second,
depends on the RFID reader used in the system. The RFID reader used in this
thesis has a throughput of 180 tag reads per second. This dependency is due to
the fact that the localization algorithm does not know the Electronic Product
Code(EPC) of the tag it is locating. The location returned by the algorithm
should be connected to the EPC read by the RFID reader. This results in the
throughput constraint to be the throughput of the RFID reader.

Sample size: Sample size of the signal samples is constrained by the time
during which the tag is transmitting and the sampling speed of the ADC. The
total amount of samples that is possible to measure during the communication
between the tag and the reader is constraint by equation 1.1 where the transmis-
sion time is determined by equation 1.2 [9]. The transmission time is dependent
on the data size to transmit, the data transfer rate, back link frequency of the
tag and the Miller number used in the communication protocol between the tag
and reader. Where the Miller number is the amount of cycles that are required
for every bit transmitted using the Miller-Modulated Subcarrier encoding [9].

Amount of samples = Transmission time ∗ ADC sampling frequency (1.1)

Transmission time =
EPCsize

Datarate
(1.2)

Data rate =
Back link frequency

Miller number
(1.3)

The tag used in this thesis has a back link frequency of 250KHz with a 128
bit EPC, the communication protocol uses 4 as the Miller number. This results
in the transmission time of 2.048ms, combining this time with the 3Msps sam-
pling frequency allows for 6144 samples to be taken during the communication
between the tag and the receiver.

The sample size used in this report is 1024 since it offers a good trade-off
between reduction of the noise effect and the input data size. The value of 1024

9

is chosen for reducing the effect of outliers in the sample data set and is a power
of 2 which is beneficial for the, on hardware implemented, calculations to be
done in this thesis.

Agility The implementation of this thesis is a testbed for future products and
research, this requires development iterations to be implemented quickly. The
final processing steps in the MUSIC algorithm are subject to optimization in
the implementation of this thesis.

Resource utilization The resources of the SoC are shared among other mod-
ules/processes. This limits the utilization of the resources on the SoC for the
implementation of this thesis.

Power consumption Power consumption is a constraint that weighs less but
should be considered when making choices for the platform for processing. This
is, however, no hard constraint and is considered as an additional benefit. Given
two options equal in performance the least power hungry option is preferred.

1.1.2 Hardware platform

This report focusses on the implementation of the MUSIC algorithm on an
existing hardware platform, the DE10-standard development kit with a Cyclone
V [2], a System on a Chip(SoC) with a Field Programmable Gate Array(FPGA)
and an ARM Cortex-A9 32bit dual-core processor [1]. This is the given hardware
platform as it is the current measurement setup, the overview is shown in the
block diagram of Figure 1.2.

10

Figure 1.2: The existing hardware platform

Considering the hardware platform used, the DE10-standard with a Cyclone
V, two processing categories are available:

• FPGA

• Processor

– Soft Core on the FPGA (NiosII) [3]

– ARM Cortex-A9 dual-core [1]

The separate processing platforms will be discussed in depth in chapter 3.

1.1.3 Things to take into account

Large dynamic range of values The calculations have a large dynamic
range in the resulting values, this gives rise to a possible problem for implemen-
tation on the FPGA as the FPGA does not support native floating point values.
This would require to have a fixed point value or have a separate implementa-
tion for working with floating point numbers. This is only a problem if fixed
point values do not provide sufficient precision or range.

Number of antenna elements Scaleability is not going to be discussed in
this work. The maximum amount of antennas that will be considered in this
thesis are 12. This is due to the fact that adding more antennas increases the
cost such that it would not be feasible in the field of this implementation.

11

1.2 Related work

There is work already done that is related to this thesis, most notable is the
paper on the MUSIC algorithm [19]. This paper introduces the MUSIC algo-
rithm and is used as the basis for the MUSIC algorithm parts in this thesis. The
literature also shows the combination of CPU and GPU platforms, where the
GPU is used for the highly parallel spectrum calculation and peak search in the
spectrum for the many processing cores on the GPU [14]. However, this is not
possible in this thesis as the hardware does not include a GPU. Furthermore
literature shows implementations purely on the FPGA with low latency imple-
mentation of the MUSIC algorithm [24]. There is also a paper that uses Virtual
Array Reduction to reduce the complexity of the calculations by limiting the
input for the MUSIC algorithm on FPGA [7]. The paper is published close to
the end of this thesis and was not used, but is recommended for future research.
To the best of our knowledge, the implementation of the MUSIC algorithm on
a SoC utilizing an FPGA and a CPU has not been investigated. Therefore,
the hardware-software co-design for MUSIC algorithm on a SoC including an
FPGA and a CPU is the main contribution of this thesis.

1.3 Research questions

The main research question in this work is as follows.

• How is the MUSIC algorithm implemented with optimal performance on
an Embedded system using hardware and software co-design?
To find the answer for this research question, it is divided into four smaller
research questions related to design and implementation of different blocks
of the processing chain of the MUSIC algorithm.

– Which processing platform is most suitable for covariance calcula-
tion?

– Which processing platform is most suitable for eigendecomposition?

– Which processing platform is most suitable for localization?

– How do hardware choices propagate in the resource usage of the Em-
bedded system?

The above mentioned questions are investigated in this thesis and the processing
chain of the MUSIC algorithm is designed, implemented and evaluated based
on the decisions.

1.4 Structure of thesis

Chapter2 will introduce the theoretical background on which this thesis is built
to determine the optimal solution. Chapter3 takes the introduced platforms and
elaborates on the characteristics of each platform to aid in the choice where to

12

process the algorithm parts. Chapter4 uses the theory and platform information
to provide a design decision for the processing platform for the MUSIC algorithm
processing parts. Chapter5 discusses the implementation choices made and how
the design decisions are implemented. Chapter6 performs timing analysis on
the implemented algorithm to validate if the timing complies to the constraints.
Chapter7 checks the output of the implementation to be the desired output.
Chapter8 draws the conclusion for this thesis and includes recommendations for
future research.

13

Chapter 2

Theory

As was described in the introduction, this research will focus on finding the
optimal implementation of the MUSIC algorithm for Angle of Arrival estimation
on an embedded system. This chapter will provide the theoretical background
regarding angle-of-arrival determination and the MUSIC algorithm specifically
[19].

As mentioned in section 1.1, the problem to be solved by the MUSIC al-
gorithm is the localization of a radio transmitter, in the case of this project a
replying RFID tag. The MUSIC algorithm is used for radio direction finding,
which makes it an ideal algorithm for solving our problem. If the hight of the
tag is known and fixed the location of the replying tag can be estimated using
the direction of the incoming signal. When multiple antennas are located at
different distances from a transmitter, a delay in the received signal can be seen
between the closest and the more distant antennas. This information can be
used to find the direction of the transmitting source.

In the simple 2D illustration, figure 2.1, at a point in time the phase between
the incoming radio wave and the antenna array is dependent on the location
of the transmitter. This allows the system to determine the delay of the signal
arriving at each antenna as shown in Figure 2.1 where the d sin(θ) indicates
the delay of the signal arriving at antenna 2 compared to antenna 1. The θ in
the d sin(θ) is the angle-of-arrival of the signal.

14

Figure 2.1: The receiving antenna array with the angle of arrival of the signal

The signal which is received by the antenna passes through a IQ-demodulator
to retrieve the In-phase and Quadrature data. This IQ demodulation is shown
in Figure 2.2, where the RF signal is split in the separate IQ data. The plot
shows two data points, this is because the fact the antenna switches between
two antenna states as the data transmitted is binary. This switching between
antenna states, ’1’ and ’0’, appears as 2 positions in the IQ plot of Figure 2.2.

Figure 2.2: IQ demodulation of the antenna signal

15

Figure 2.3: Multiple antenna array setup with IQ demodulation

For the multi antenna array setup it is crucial to synchronise the local oscil-
lators to be certain a snapshot of the IQ signal of each of the antennas is taken
at the exact same time, shown in Figure 2.3. This is crucial for the delay in
signal arriving at the antennas to be determined from the data snapshot.The
data received by the different antennas (channels) after IQ demodulation can
be shown in a scatter plot, the scattered data can be seen in figure 2.4.

The MUSIC algorithm, 2D MUSIC, elaborated above is for the far field
scenario. However, this is not always the case for this implementation as the
far field approach is only valid from a certain distance from the antenna. This
distance is the Fraunhofer distance calculated using equation 2.1, where the D
is the length of the antenna array [6].

dF =
2D2

λ
(2.1)

The length of the antenna array in this thesis is 0.4 m and the wavelength is
0.32577284 m, wavelength of 920.25MHz resulting in a Fraunhofer distance of

2∗0.42
0.32577284 = 0.98m. All tag reads within 0.98m of the receiving antenna array
are in the near field of the antenna array. When the near field is used for the
MUSIC algorithm the situation changes from a planar wave to a wave front
that has a curvature, as shown in Figure 2.5,and requires a different formula to
determine the expected delay between the antennas.

16

Figure 2.4: IQ scatter plot of 4 channel ADC data [20]

Figure 2.5: The receiving antenna array for the transmitting source to be located

When observing figure 2.4 the phase difference between the different channels
is present as rotation in the IQ plot. To extract this rotation angle between the

17

data channels, the covariance, of the received signals of the antennas, is used.
This is done by comparing the signals sampled by the different antennas in the
antenna array in relation to each of the other antennas in the antenna array.
A simple example is given now as the complex valued and multi dimensional
nature of the antenna data is too complex to be presented in this thesis. The
covariance of two simple variables can be shown as the shape of a cloud of data
points where a data point is a certain input for both variables and the result is
plotted versus two different axis (X and Y) see figure 2.6.

Figure 2.6: Simple covariance plots for different covariance values of X and Y
variable

The value of the covariance shows the relation between the two different
signals, figure 2.6. Positive values for the covariance show a relation in the same
direction, if the value of signal 1 increases, the value of signal 2 increases as well.
Negative values for the covariance result in an opposite direction of change of the
two signals, when the value of signal 1 increases the value of signal 2 decreases.
The opposite is also true i.e. when the value of signal 1 decreases the value of
signal 2 increases. This shows the important role of the sign of the covariance
value. As can be seen the main relationship between the signals is determined
by the sign of the covariance value. If the covariance is zero the two signals are
varying with no relation, between the two signals.
Using the covariance matrix of the received data, the next step is to extract
the direction of the correlated data change received by the antenna array. The
covariance matrix is determined by the shape of the cloud of data points (figure
2.6), as it depends on the correlation between the signals. To extract this data
from the covariance matrix, an eigendecomposition is used. The result of the
eigendecomposition provides us with the eigenvalues and eigenvectors of the
covariance matrix. When applying the eigendecomposition to the covariance
matrix of figure 2.6 we can plot the resulting eigenvectors in the same plot
resulting in figure 2.7

18

Figure 2.7: Simple visualisation of the result of the eigendecomposition of the
covariance matrix of figure 2.6

From figure 2.7, one of the most clear observations is the direction of the
largest eigenvector and the second largest eigenvector. The largest eigenvector is
in the direction of the relation between the signals which were used to calculated
the covariance. The second largest vector is in the direction of the noise of the
data set which was used to calculate the covariance. When the covariance is zero,
no location can be detected as there is no correlation between the received signals
of the antennas. The MUSIC algorithm is a subspace based algorithm [15].
When the eigenspace is calculated the next step of for the MUSIC algorithm is
to split the eigenspace into two subspaces, the signal and noise subspaces. To
determine the location of the tag steering vectors are required for all the possible
locations the tag can be within the detection area. Using the steering vectors and
the noise space, the location of the tag can be determined. Because the matrix
is hermitian the eigenspace is orthogonal, all vectors are orthogonal to each
other. This property of the eigenspace is used to calculate the matching grade
of the steering vector. The steering vector that is most orthogonal to the noise
space is the location that matches best with the signal space. This matching
for each steering vector in the detection area creates a MUSIC spectrum that
indicates the matching grade of the location to the signal subspace. This gives
the possible signal transmission locations that span the signal space.
All the above mentioned steps result the MUSIC algorithm to consist of the the
3 processing blocks including covariance, eigendecomposition and localization
shown in Figure 2.8, which are discussed in the following sections.

Figure 2.8: The processing blocks of the MUSIC algorithm

19

2.1 Covariance

Covariance is a measure of the correlation of changes in one variable with respect
to another variable. In the case of this implementation, the correlation to be
calculated is the correlation between antenna signals received by the antenna
array to determine the direction the signal is transmitted from. This process
can be seen in figure 2.9, where the antenna array of 3 antennas results in a
covariance matrix of size 3 ∗ 3 with one axis the antenna signals and the other
axis the complex conjugate of the antenna signals.

Figure 2.9: The relation between the receiving antenna array and the covariance
matrix

The covariance between signal 1 and signal 2 is calculated using the formula
in equation 2.2 [16]. The expected or mean value, E[], of the sample set which
needed to calculate the covariance can be obtained from equation 2.3.

cov(S1, S2) = E[(S1 − E[S1])(S∗
2 − E[S∗

2])]

= E[S1S
∗
2 − S1E[S∗

2] − E[S1]S∗
2 + E[S1]E[S∗

2]]
(2.2)

E[S1] =

∑
S1

number of samples(N)
(2.3)

Since the inputs of the covariance calculation are discrete samples, the result
of equation 2.2 becomes equation 2.4. This is done as the sample mean is
used for the expected mean value which requires the Bessel’s correction to be
applied [11].

cov(S1, S2) =
1

N − 1
Σ[S1S

∗
2 − S1E[S∗

2] − E[S1]S∗
2 + E[S1]E[S∗

2]] (2.4)

20

F
ig

u
re

2.
10

:
F

u
n

d
a
m

en
ta

l
ca

lc
u

la
ti

o
n

b
lo

ck
s

o
f

eq
u

a
ti

o
n

2.
5

21

To apply these calculations in an algorithmic format we can combine equa-
tions 2.4 and 2.3 into equation 2.5.

cov(S1, S2) =

∑
(S1S

∗
2 − S1

∑
S∗
2

N −
∑
S1

N S∗
2 +

∑
S1

N

∑
S∗
2

N N)

N − 1
(2.5)

Taking equation 2.5 and breaking it into its fundamental calculation block we
get figure 2.10.

Figure 2.11: Covariance matrix format

The result of applying equation 2.5 to the data set received by the antenna
setup is a matrix that shows the correlation between the antenna outputs. The
covariance matrix is shown in figure 2.11, where in each cell of the matrix
equation 2.5 is performed between the antenna on the column and the row. The
shape of this matrix is square with the size 12∗12 since 12 antennas are used in
this thesis. This matrix contains all the information required to determine the
location of the tag.

2.2 Eigendecomposition

After having calculated the covariance matrix the next step in the music al-
gorithm is using the covariance matrix and performing eigendecomposition on
it. The eigendecomposition is a method of taking a diagonalizable matrix and
decomposing the matrix into terms of its eigenvalues and eigenvectors. Where
mathematically the transformation is expressed by Ax = λx where λ are the
eigenvalues, x the eigenvectors and A the input matrix. The eigendecompo-
sition provides a space spanned by the eigenvectors, this is required for MU-
SIC as MUSIC is a subspace based algorithm [15]. The space resulting from
the eigendecomposition is split into a signal space and a noise space. From a

22

physics perspective the eigenvalues represent the RMS values of the correspond-
ing eigenvectors. The eigenvalues are used to split the space into the signal and
noise space. This is possible since there is a difference in the order of magnitude
of eigenvalues of the noise space and the signal space. The large eigenvalues
correspond to the signal space and the small magnitude correspond to the noise
space.
To calculate the eigenvalues and eigenvectors of the matrix, multiple algorithms
exist. In this thesis the divide and conquer algorithm will be used as it is a
common algorithm used in libraries e.g. Armadillo [18] [17].

The divide and conquer algorithm is based on the idea of splitting a larger
problem into smaller sub problems and recombining the results for a faster
calculation of the eigendecomposition [8]. For the divide and conquer algorithm
to be used the input matrix first has to be reduced to a symmetric tridiagonal
form, Equation 2.6 . This is done through orthogonal transformations.

T =


a1 b1 0

c1
. . .

. . .

. . .
. . . bn−1

0 cn−1 an

 (2.6)

Once the matrix is in a tridiagonal form, it can be divided in, usually 2, sub
matrices. From this point the eigenvalues should be calculated for these sub
matrices. When implementing this functionality it is done by recursive calls to
the divide and conquer algorithm. If the sub matrix is sufficiently small, the
QR algorithm can be called to calculate the eigenvalues and eigenvectors.
The QR algorithm is an iterative algorithm that decomposes an input matrix
Ak into Qk and Rk where is Rk is a right upper triangular matrix [12] [10]. The
QR algorithm then creates Ak+1 by using equation 2.7.

Ak = QkRk

Ak+1 = RkQk
(2.7)

Performing this operation iteratively results in matrix Afinal which is converging
to a diagonal matrix with the eigenvalues of matrix A. The matrix Uk converges
to the matrix of eigenvectors, where Uk = Q0Q1 · · ·Qk.

2.3 Localization

Finally the last step of the music algorithm is localization. Localization uses the
eigenvectors and eigenvalues obtained from the eigendecomposition and deter-
mines the location RFID tag. This is done by first generating a set of steering
vectors which are a set of vectors that contain a given set of possible locations.
The elements of the steering vector are the complex signals received by the
specific antennas as can be seen in figure 2.12.

23

Figure 2.12: Visualisation of the steering vector

These steering vectors can then be used to determine, using the noise space
of the eigenvectors, where the signal from the tag is located in the 3 dimensional
space. When comparing the localization to the version from the ”Multiple Emit-
ter Location and Signal Parameter Estimation” paper [19] the main difference
is that this thesis does not use the angle but the (x, y, z) coordinates of the
location. The first step is to calculate the phase of the signal arriving at the
antenna element. This is done using distance from the tag to the receiving an-
tenna element(eq:2.8) and the wavelength for the specific frequency band. This
is combined into equation 2.9, where a(x, y, z) is the resulting steering vector
for the location.

r1 =
√

(x1, y1, z1)2 − (x, y, z)2 (2.8)

a(x, y, z) =

e
(−2j∗π∗ r1

wavelength)

...

e(−2j∗π∗ r12
wavelength)

 (2.9)

Using the steering vector, a(x, y, z), the matching grade of the signal to steering
vector can be calculated using equation 2.10 [19].

Pmu(x, y, z) =
1

a∗(x, y, z)ENE∗
Na(x, y, z)

(2.10)

When for all the X and Y position at a fixed Z the Pmu is calculated the MUSIC
spectrum can be shown as shown in figure 2.13. Where the axis span the raster
of the area for which steering vectors are generated and the colors show the
matching grade of the steering vector to the signal space.

24

Figure 2.13: MUSIC spectrum example

Observing the MUSIC spectrum, figure 2.13, the estimated location of the
signal origin can be determined which is shown by the yellow peak (the high-
est value in the spectrum). The spectrum in the case of figure 2.13 is clear
and singular. However, since the MUSIC algorithm is designed for estimation
of multiple emitters, the spectrum can show multiple and different peaks in
the spectrum. This is even possible with a single signal due to the possibility
of reflections, which will have a different direction of arrival and/or different
travelled path length to the original signal.

25

Chapter 3

Platform

This Chapter will give the reader an insight into the strengths and weaknesses
of the available processing platforms.

In chapter 1.1.2 three platforms were mentioned: the FPGA, the ARM core
and the NiosII softcore. FPGA requires a hardware description language to
program and programs all the required logic elements and wires them together
as hardware. The NiosII and ARM are both referred to as processors. These
can both be programmed in the middle-level programming language C. The
ARM Cortex-A9 processor supports an operating system(OS) which makes it
possible to use other middle level and higher-level languages while programming
the application.

The performance of the ARM and NiosII processors is measured in Dmips/
MHz/ core. Where Dmips stands for Dhrystone million instructions per second
and Dhrystone is a synthetic computing benchmark containing no floating-point
operations.

The system introduced in section 1.1 has the ADC’s connected to the FPGA
and the final tag location is to be presented to the other parts of the eco system
on the ARM processor.

3.1 FPGA

An FPGA is a processing platform that has the advantage of being significantly
faster in some applications due to its parallel nature and the ability to optimize
the number of gates used for certain processes. This property is very advan-
tageous in the implementation case at hand. The data with high throughput
has to be highly parallel so that the system complies with the constraints set in
chapter 1.1.1.
The complexity of using an FPGA is in the programming. The FPGA program-
ming language is a hardware description language(HDL), which requires more
development time to program algorithms when compared to middle and high
level languages that are used by most processors. Using a hardware description

26

language, requires a more in-depth understanding of the algorithm and the abil-
ity to translate that understanding to a hardware implementation of the desired
algorithm.

Performance The resources of the FPGA [2] are:

• 25K logic elements or 9,430 Adaptive Logic Modules (ALMs)

• 400 MHz max clock frequency

• 36 DSP blocks

The performance of the FPGA is deterministic, it has no background running
tasks or other processes that can change the timing of the algorithm processing.
What is implemented on the FPGA is executed at the same time every single
execution as the algorithm is implemented as hardware. This deterministic
property is exploited to have a low and fixed latency from data acquisition to
processing.

3.2 Processors

The C programming language is more suited for algorithmic programming than
a HDL, as it allows the programmer to take a more mathematical approach.
This flexibility and less complexity in programming is generally preferred over
the complexity of the HDL if the resources and performance requirements allow
the use of processors.

It is worth noting that the execution time of algorithms on a processor is
variable due to background processes and other overhead in the system if an
operating system is used to manage multiple running programs. However, if
the program is running on a more real-time operating system or bare metal, it
becomes increasingly deterministic and fixed execution times arise. However,
for this project, we assume the scenario with an operating system running on
the ARM with multiple other background tasks as this is a given for this thesis
due to other modules are already present on the OS.

NiosII

The NiosII softcore is a processor that runs on the FPGA. This is an implemen-
tation provided by Intel. The benefit of the softcore is that it can run on the
FPGA and have fast and easy interfacing with the FPGA for accelerating algo-
rithms. This benefit is further emphasized by the 256 custom instructions that
can be implemented leveraging the use of the FPGA and VHDL code resulting
in an FPGA accelerated processing core.

27

Implementation The NiosII is implemented by using logic elements, 600
logic elements for the economic NiosII and between 3k and 4k logic elements
for the fast NiosII. [3] The Cyclone V SoC used in this thesis contains 25k logic
elements [2], this makes the utilization of the logic elements by the NiosII range
from 2.4% to 16% of the total amount of logic elements on the SoC.

Performance The performance of the NiosII is limited by the clock speed(400
MHz) of the FPGA and the implementation on the FPGA resulting in 0.753
Dmips/ MHz/ core for the fast NiosII and 0.107 Dmips/ MHz/ core for the
economic NiosII. [3]

ARM Cortex-A9

The ARM platform is a standard 32bit processor running on the RISC instruc-
tion set and is capable of doing floating-point calculations with a floating-point
unit.The ARM Cortex-A9 dual-core has an performance of 2.50 Dmips/ MHz/
core and is running at 925MHz with 2 cores. [1]

Choice of processor

Considering both the NiosII and the ARM it can be seen that the performance
of the NiosII(0.753 Dmips/ MHz/ core) is significantly less than the performance
of the ARM processor(2.50 Dmips/ MHz/ core). Even considering the benefit
of the custom instructions, it is not feasible to use the NiosII instead of the
ARM as the ARM is capable of communication/sharing data with the FPGA
(it is connected on the SoC) and hence is able, albeit in a less integrated way,
to use the FPGA for hardware accelerating certain processing tasks. Due to the
reasons mentioned above the NiosII is dismissed for the current application as
it is not advantageous when the ARM processor is available.

28

Chapter 4

Design

The design chapter will combine the knowledge of chapters 2 and 3 into design
decisions. The design specified in this chapter is implemented and tested in the
remainder of this thesis. The block diagram of the MUSIC algorithm discussed
in the previous chapters is repeated in figure 4.1.

Figure 4.1: The design to be implemented

The requirements for the design are:

• Maximum latency of 0.5 seconds

• Support 12 antennas

• Process the covariance in real-time

• Sample size of 1024

These requirements are the basis for the choices made in this design chapter for
the processing blocks in figure 4.1.

4.1 Covariance

In this section, it is assumed that not using floating point precision but staying
in integer precision has a negligible impact on the further processing in the
processing chain. Which is discussed in more detail in chapter 7, where the
implication of this assumption is discussed.The covariance block consists of the
sub blocks defined by section 2.1 figure 4.2 shows the composition of these sub
blocks with the corresponding rate of new data arriving at the input of the
block.

29

Figure 4.2: The covariance calculation blocks

In section 2.1, it was mentioned that the processing of the covariance cal-
culation has to be real-time as the data is only available for the time between
two ADC samples. Figure 4.2 shows the region where this data is used in green
with the corresponding data rate . This implies a clear preference for the FPGA
platform as it is the only platform in the options that offers true real-time de-
terministic behavior. CPU processing has the problem of running an OS with
multiple other processes, this makes it not possible to guarantee the real-time
processing of the data. The usage of an OS is a given for this platform as other
modules are already present on the OS. This is problematic since the input data
has a crucial latency window in which the data has to be processed before the
new input data arrives.
This is why the design decision is made to use the FPGA as the processing
platform for the covariance calculation.

4.2 Eigendecomposition

The eigendecomposition is a calculation step in the chain that does not have a
hard latency requirement but has a large number of individual operations. This
generates a list of the characteristics for the eigendecomposition:

• Soft latency limit

• High number of individual operations

This list favors the CPU implementation. As previously mentioned in chapter
3, the FPGA is highly deterministic which is not a necessity for the eigendecom-
position. On the other hand, FPGA processing platform requires every part of
the processing chain to be implemented on hardware which is quite detrimen-
tal for the resource utilization. This is emphasized by the high utilization of
multiplications by the eigendecomposition algorithm. Multiplications are imple-
mented using DSP blocks which are the most limited resource for the FPGA.
A significant portion of the resource utilization can be resolved by reusing the
individual processing blocks multiple times, this, however, limits the through-
put. The implementation of complex valued fixed point eigendecomposition has

30

high resource usage on the FPGA as paper [4] shows for a 4*4 matrix, where
the implementation of this thesis would require 12*12 with larger fixed point
numbers. This reduces the feasibility of the eigendecomposition on the FPGA.
The CPU does not have these characteristics in the configuration used in this
thesis, the CPU is non deterministic due to the operating system running on
the processor and the resource utilization is expressed in clock cycles. The non
deterministic behavior is no disadvantage in this processing step since the data
is present for a longer time and the processing latency can be variable. The
benefit of the CPU is in the resource utilization being expressed in clock cycles
and not in area as it is for an FPGA. Clock cycles are a generic resource and
can be used in all the operations required independent of the type of operations
(addition, multiplication, etc...).

The ARM CPU has a Floating Point Unit(FPU), a mathematical coprocessor
which is specifically designed for doing mathematical operations on floating
point numbers. This is an integrated hardware coprocessor in the ARM CPU,
the use of the this FPU does not require additional hardware or large additional
software resources. This allows the use the floating point precision required for
the eigendecomposition without additional resource usage and makes the CPU
the choice for the eigendecomposition processing platform. The CPU also allows
the use of pre-existing libraries for the mathematical operations. Which speeds
up the development time and introduces more optimized implementation of the
mathematical operations.

4.3 Localization

The localization is, as seen in section 2.3, a mathematical operation that relies on
floating point precision, multiplications, division and additions. The additions
do not impose difficulty on either processing platform, however, the floating
point precision and multiplications impose a higher resource usage on the FPGA.
This is problematic since the implementation of the covariance relies heavily on
the FPGA for the real-time deterministic execution. The covariance calculation
used most of the available DSP slices on the FPGA, consuming resource so the
localization could not be implemented using DPS slices. The use of DSP slices
increases the speed and efficiency of the multiplications on the FPGA, in the
case of this thesis the use of complex numbers increases the efficiency of the DSP
slices as the available IP blocks prefer the DSP blocks for the implementation.
The more problematic mathematical operation for the localization on the FPGA
platform is the division by a floating point number. This is not trivially done
on the FPGA since the divisor is not a guaranteed power of 2. If the number
was a guaranteed power of 2, the division could be done by a bit shift operation,
which would lose the decimal numbers. This bitshift operation is a low resource
resource operation. The ARM CPU allows, using the FPU, to use the floating
point precision required for the Localization.
Combining the above points, the design choice can be made to use the ARM
CPU for the localization calculations. The main reason for this is the presence

31

of the FPU on the ARM CPU which provides the mathematical operations with
floating point precision for low additional resource usage. An additional benefit
of the ARM platform for the localization is to not have to crossover into the
FPGA fabric and return the data to the ARM platform. This removes some
complexity and overhead for the implementation.

32

Chapter 5

Implementation

This chapter will discuss the problems and implications of the different platforms
and their implementations

In this chapter the process of implementing the design choices in chapter 4
is documented. This includes the choices how to implement required processing
parts, data storage and performance choices. For readability the processing
blocks to be implemented are repeated in Figure 5.1

Figure 5.1: The processing blocks to be implemented

5.1 Covariance

This section will elaborate decisions on choices and how the problems related
to the implementation of the covariance calculation on the FPGA and CPU
platforms were addressed. The covariance system to be implemented is repeated
in figure 5.2. Here the green part is where the input is only present for the time
between the ADC samples.

33

Figure 5.2: The covariance processing diagram

The different aspects of the covariance implementation on the FPGA will be
discussed and the choices are elaborated. The end of this section will provide a
description and conclusion on the final chosen implementation.

5.1.1 Structural process

Structural in the FPGA context means connecting pre-verified processing blocks
with known resource usage to create the required process. This approach results
in a very fine-grained control and insight into where the resources are utilized.
The summation of the incoming ADC signals is handled in a structural method
and is shown in figure 5.3. Here the process can be seen as connections be-
tween processing blocks. The summation has only one drawback, it requires
its resulting adder signal as input for the adder. This is a problem as when
there is no buffer in between the output and the input there is a possibility for
metastability problems to occur. This happens because a change at the input
changes the output which in turn changes one of the inputs of the adder. How-
ever, this is not the only problem as the summation IP block is to be re-used to
lower the resource utilization. This re-using of the same IP block introduces an
additional requirement for the data to be stored for 1 sampling period before
being presented at the input of the adder. To solve this data dependency a shift
register is used between the output and input of the adder block, as shown in
figure 5.3. This shift register retains the result of the adder calculated using the
previous sample, which is to be used in the next (partial) sum calculation for
the incoming signals.

Figure 5.3: The FPGA structural summation with shift register to store the
partial sums

34

The product implementation using the Complex multiplication IP block from
Intel is implemented as shown in figure 5.4. Where a multiplication of two signals
is added before the adder system of figure 5.3.

Figure 5.4: The FPGA structural summation of the product with shift register

The complete implementation of the covariance calculation in a structural
format is shown in figure 5.5. Where teal is used to show the most crucial
latency, those calculations must be done within the time between ADC samples.
This is due to the inputs only being present for this time before new signals
are present. Blue shows the covariance calculation. This is less crucial since
the covariance has the maximum latency of (clock cycles between adc samples∗
samplesize) clock cycles. Red is used to show the least time crucial part, this
contains supplying the complete covariance matrix to the next part of the total
angle of arrival processing chain.

5.1.2 Partial sums

For the summation of the products and the ADC signals, partial sums are
required to store the data of the previous cycle. To do this a shift register is
implemented, the implemented shift register is an IP block from Intel. This shift
register’s clock enable input controls a Finite State Machine(FSM) to control
the clock signal, the FSM determines when the clock signal is passed through
so smaller shift registers can be used than would be necessary when the clock
signal is connected directly to the clock input of the shift register.

5.1.3 Clock frequency

Clock frequency has an impact on the processing speed, heat production and
power consumption. The choice of the clock frequency is to be well balanced to
provide the required processing speed and maintain a limited heat production
and power consumption to keep the cooling solution as minimal as possible.
The clock frequency used as the starting point is 60Mhz as this is the cur-
rent systems clock frequency and is known to require no external cooling in the
form of active or passive cooling. The maximum clock frequency to be used is
400MHz, the maximum of the FPGA on the SoC. This frequency range results
in a range of 60Mhz/3Msps = 20 clock cycles to 400Mhz/3Msps = 133 clock
cycles between ADC samples arriving at the system, this is a significant range
in the processing time available between the ADC samples.

35

F
ig

u
re

5.
5:

T
h

e
im

p
le

m
en

ta
ti

on
w

it
h

co
lo

re
d

d
o
tt

ed
b

ox
ed

a
ro

u
n

d
th

e
p

a
rt

s
th

a
t

sh
a
re

th
e

sa
m

e
ti

m
in

g
co

n
st

ra
in

ts
.

T
ea

l
is

p
er

A
D

C
sa

m
p
le

,
B

lu
e

is
78

ti
m

es
p

er
10

24
A

D
C

sa
m

p
le

s
a
n
d

R
ed

is
o
n
ce

p
er

1
0
2
4

A
D

C
sa

m
p

le
s

36

Clock frequency is constrained by more factors in the design outside the genera-
tion of heat and the required clock cycles. Namely another factor in the selection
of clock frequency is the longest combinatorial path between clock cycles. The
timing of the longest combinatorial path consists of propagation delays of the
largest chain of consecutive non clocked logic.

Figure 5.6: Illustration of the largest combinatorial path

An example of the longest combinatorial path can be given using figure 5.6.
If the propagation delays of the 2 AND gates are added the total propagation
delay is 2.8ns which results in a max clock frequency of 1

2.8ns = 357.1429MHz.
However, if the calculation would have been made using the path of the OR gate
and the AND gate the total propagation delay would have been 2.5ns which
results in a max clock frequency of 1

2.5ns = 400MHz. This shows the critical
path of this very small and simple system to be the path of the 2 AND gates
as it has the lowest requirement for the maximum clock frequency to produce a
correct value at the output.

Resource limitation The main resource limitation of the FPGA is the ”area”
(logic elements) on the FPGA. The constraint in our design is the maximum
of 25k logic elements as this is the amount of logic elements in the FPGA.
This is one of the units used to show resource utilization, another unit is ALMs
which are used by the synthesis tool provided for the Cyclone V QuartusII. The
amount of ALMs available on the Cyclone V is 9430. This limitation indicates
the ALM usage for covariance calculation should be less than 9430. There are
other tasks implemented on FPGA in addition to the covariance calculations.
The FPGA is used by the entire algorithm and the communication between
peripherals and the ARM chip. This requires a limit to be set beyond which
the implementation is no longer feasible, this resource limit is chosen to be 1000
ALMS.
Resource limitation would also apply to the RAM storage, as this is a finite
resource on the Cyclone V chip. However, this resource is in abundance for this

37

application and thus not discussed in this report.

Cycles The main part of the program that has to be executed every sampling
cycle is the summation of all the incoming ADC signals and the summation of
the required products for the covariance matrix calculation. In the current set
up the clock of the FPGA runs at 60Mhz and the ADC generates 3 Msps, this
results in having 20 cycles to handle the above-mentioned summations before the
next samples are at the input of the covariance calculation block. This results in
the processing block diagram shown in figure 5.7. In this figure the two timing
domains are shown by there dotted boxes, the input is presented at a rate of 3
Msps and the output presents data once every 1024 samples. The output is the
right upper triangle and the diagonal of the covariance matrix. This is possible
because the covariance matrix is a Hermitian matrix. This gives the output
matrix the property of the lower left triangle being the Hermitian conjugate of
the right upper triangle. This property reduces the amount of products required
for the covariance matrix form 12∗12 = 144 to 12∗12∗ 1

2 +6 = 78 where the +6
is required to fill the diagonal. This is a reduction of the amount of calculation
of 45.8% compared to the full matrix.

Figure 5.7: Covariance calculation block diagram

Summarized, the required calculations are:

• Summing the 12 incoming ADC signals

• Summing the 78 required products of the incoming ADC signals

Each summation can be done in a separate clock cycle, however, for the prod-
ucts, this is not possible as 78 is significantly more than the 20 cycles available.
To solve this two solutions are available. Parallel calculation, in each clock cy-
cle 4 products are calculated, since 20 ∗ 4 = 80 there are sufficient calculations
for the required 78 calculations. Raise the clock speed, for this amount of cal-
culations it should be higher than calculations ∗ sampling speed in this case
78 ∗ 3Msps = 234MHz. The Parallel solution implies that 4 times the same
calculations have to be implemented on the FPGA and not a single implemen-
tation that is reused 78 times, the 4 implementations will be reused 20 times.
The raised clock speed implies that a single implementation can be reused 78

38

times. This makes raising the clock speed the least resource intensive choice
and the chosen solution in this thesis.
The final calculation, figure 2.10, of the covariance matrix is done spread out over
all of the clock cycles required to obtain all the samples to determine the covari-
ance matrix. This is not a bottleneck in the system as this is far greater amount
of cycles than are required to do the calculation, namely 1024∗78 = 79872 clock
cycles.

Number of bits Bit depth plays a significant role in the resource usage of
the FPGA as the number of bits required propagate to the output. 16 bits
input results in a 44-bit output of the complete covariance system. The ways
the number of input bits propagate to the output bits are shown in figure 5.8
and 5.9. Figure 5.8 shows that when a 16 bit input is summed for 1024 samples
the maximum size of the output is the maximum size of input times the amount
of samples. The bit representation of 1024 samples is 210, the calculation of
the number of output bits results in equation 5.1. An important remark is the
data is presented in a signed format, this means that the 16 bit signals carry
1 sign bit and 15 data bits, meaning an multiplication of two 16 bit signals is
215 ∗ 215 = 230 data bits with one sign bit resulting in a 31 bit output.

216 ∗ 210 = 226 (5.1)

Figure 5.8: Bit depth for summation

For figure 5.9 the same calculation holds as for the the summation in addition
to the multiplication before the summation. In the situation of the multiplica-
tion it can be observed the lowering of 1 bit at the input results in the output
number of bits lowering with 2.

Figure 5.9: Bit depth for the product calculation

For the effect of the bit depth on the covariance calculation figure 5.10, where
for all the mathematical calculations the input and output number of bits are
shown.

39

F
ig

u
re

5.
10

:
B

it
d

ep
th

fo
r

th
e

co
va

ri
a
n

ce
ca

lc
u

la
ti

o
n

40

Reducing the bit depth by 1 lowers the output number of bits by more than 1
at the covariance output. This has a significant impact on the required calcula-
tion resources implemented on the FPGA. When considering an implementation
similar to the one presented in this thesis, the bit depth of the input should be
considered to be lowered to reduce the FPGA resources.

To combat the loss of dynamic range of less bit depth an automatic gain
controller(AGC) can be used to always utilize the full range of the ADC. This
would allow the system to, for example, work with an 8 bit ADC and have
sufficient resolution whilst reducing the resource cost and complexity of the
processing done on the FPGA.

For this thesis it was not possible to change the ADC hardware and imple-
menting an digital AGC was outside of the scope of this thesis. This results in
not implementing the AGC mentioned in this paragraph.

Storage The results of the calculations have to be stored, this has to be
done in RAM blocks as otherwise to store the signals logic elements are used,
which are the computing resources of the FPGA. Using the logic elements is
a solution to be avoided when possible since the FPGA has dedicated storage
resources, M10K blocks. Such dedicated storage solution is utilized by the RAM
block IP for the FPGA provided by Intel. The RAM block uses the dedicated
M10K storage resources on the FPGA SoC, this way the storage of the results
is handled without increasing the logic utilization of the design. Intermediate
signals are not being stored using the RAM blocks due to the time limitation, the
time that it takes to send all the signals into the RAM block and retrieve them
for the calculations exceeds the latency limit by a significant margin. However
for the intermediate signals the shift registers are used which utilize the M10K
storage blocks.
RAM blocks, when the 2 port configuration is used, can be used to cross clock
domains within the FPGA, which enables us to have different clock domains on
the FPGA. In this way higher clock frequency is provided when it is necessary
for the time critical operations and a lower clock frequency can be used to reduce
power consumption.

Complex calculations Complex multiplications, divisions and additions are
required for covariance calculation. Complex addition is simple. For complex
product calculation, 2 separate sets of calculations of real numbers. To calculate
complex multiplication we have two choices: writing it from scratch in VHDL or
using an IP block provided by Intel. The choice of the implementation depends
on the requirements. The Intel IP implementation comes with a reduction in
development time since the IP block implementation is generated using a design
wizard in QuartusII. The design from scratch implementation comes with more
insight into the actions taken in the block and freedom to change certain aspects
and behaviour of the calculation.
In the implementation for this report the Intel IP block implementation is cho-
sen. The IP block was tested and the performance was observed to be within one

41

clock cycle. Furthermore, correct values were achieved with minimal resource
usage. Considering these, the Intel IP blocks were chosen for the complete
design of the covariance implementation on the FPGA.

5.2 Eigendecomposition

Implementation choices and problems faced for each the implementation of the
eigendecomposition are presented in the next sections.

5.2.1 CPU

The implementation on the ARM CPU is made using the programming language
C++.

FPGA covariance data translation

The covariance matrix that is received from the FPGA is not complete, two
operations have to be applied to the matrix. Dividing all the values by 1023 to
complete the covariance calculation and filling the lower triangle of the matrix
as shown in figure 5.11.

Figure 5.11: Filling the covariance matrix using the FPGA data by applying
the Hermitian conjugate to the upper triangle

Eigendecomposition

For the eigendecomposition the armadillo library for C++ is used [18] [17]. The
armadillo library provides functions for linear algebra operations and uses dif-
ferent back-ends (LAPACK [5]and Openblas [22] [23]) for the calculation. This
library has a special eigendecomposition function for symmetric/Hermitian ma-
trices. This function takes advantage of the characteristics of such matrices to
increase the speed of the eigendecomposition. This function in the library im-
plements the divide and conquer technique discussed in section 2.2 to calculate
the eigenvalues and eigenvectors of the covariance matrix.

42

5.3 Localization

Implementation choices and problems faced for the implementation of the lo-
calization are discussed in the next section.

5.3.1 CPU

The implementation of the localization on the ARM CPU is programmed in the
C++ programming language.

Steering vector generation The first step for the localization is to generate
the required steering vectors which can be saved to a binary format by the
Armadillo library used. This is done by a function that for each point in an XY
raster on a fixed Z calculates the corresponding steering vector to the antennas
using equation 2.9. In this thesis the raster is of size 251 ∗ 251. The raster
spans a physical space of 5*5 m, resulting in an maximal accuracy of 2cm for
the localization.

Isolating the noise space To calculate the MUSIC spectrum a noise space is
required. This noise space is isolated from the eigenvector space by splitting the
eigenvector space into a signal space and a noise space. This is done by splitting
of the largest eigenvectors of the eigenvector space, the amount is equal to the
amount of expected signal sources. This leaves the remaining eigenvectors to
be the noise space.

Calculating the spectrum The spectrum is calculated using equation 2.10,
where a(x, y, z) is the steering vector for the specific point on the raster and EN
is the noise space.

Libraries The matrices and matrix operations are implemented using the
”Armadillo” library [18] [17]. This is a library that performs efficient linear
algebra operations using multiple different possible back-ends. The back-ends
used in this implementation are LAPACK [5] and OpenBLAS [22] [23].

43

Chapter 6

Analysis of the solutions

In this chapter the final solution for implementation of the complete algorithm is
presented on separate processing platforms. Now that the MUSIC algorithm is
implemented on a SoC platform, the data gathered from the complete chain and
individual processing blocks can be analysed to determine the feasibility of the
solutions. If the feasibility is not adequate other solutions will be recommended.
The areas which are to be analysed are:

• performance

• resource utilization

• maximum latency of 0.5 seconds for the processing chain

The combination of the above mentioned factors give a measure of the feasibility
of the solution for the processing block of the MUSIC algorithm on the SoC
platform

6.1 Covariance

This section provides analysis on the implementation discussed in section 5.1.
The performance will be analysed to determine wether the processing is done
within in the required time and how the resources are utilized.

Performance The performance of the solution in for the covariance imple-
mentation is determined by the ability to process the required calculations
within the time between two ADC samples from the RX boards. The FPGA
clock for this processing block is 240MHz resulting in 240MHz

3Msps = 80 cycles to
process the samples of the 12 ADCs. The processing time in cycles for the
different processing blocks mentioned in figure 5.2 is shown in table 6.1. The
product summation and summation should be processed withing the 80 clock
cycles. As can be seen in table 6.1 these meet this requirement. The covari-
ance matrix meets the requirement since it is, with significant margin, within

44

80 ∗ 1024 = 81920 clock cycles to calculate the matrix. The 81920 clock cycles
are because it has to process the previous product summations and summations
before the next values are stored in the RAM block to calculate the covariance
matrix. Meeting the requirement with this significant margin is beneficial for
the processing blocks following the covariance in the block diagram of figure 4.1
to be within the total latency of 0.5 seconds. The total processing time of the
covariance on the FPGA is 341.7µs calculated using equations 6.1 and 6.2.

processing time = required clock cycles ∗ 1 second

clock frequency
(6.1)

82000 ∗ 4.16666667e−9 = 341.7µs (6.2)

Cycles required to calculate
Product summation 78
Summation 12
Covariance Matrix 80

Table 6.1: Processing time in clock cycles for the covariance on the FPGA

Resource utilization In this paragraph the resource usage of the implemen-
tation on the FPGA is analysed. The resources used by the implementation on
the FPGA compared to the available resources of the FPGA is shown in table
6.2. DSP block utilization is an area where the usage is large, i.e. 55.56% of
total available DSP blocks. This was expected with the complex multiplications
required and the realtime constraint of the covariance calculation. However, for
the other categories the overall resource usage of the covariance is below 10%
of the available resources. The low resource usage is beneficial, as mentioned
in section 5.1.3, since the resources are not exclusive to the Angle of Arrival
implementation in this thesis.

Used by covariance Available on the FPGA Percentage
Logic utilization (ALMS) 764 9,430 8.1%
Registers 202 37,736 0.5%
Block memory bits 15,080 1,400,000 1.1%
DSP blocks 20 36 55.6%

Table 6.2: Resource utilization by the covariance implementation of the FPGA

6.2 Eigendecomposition

This section will analyse the processing time required by the eigendecomposition
implementation of section 5.2. The processing time for the eigendecomposition
has a significant spread, this is due to the initialization of the variables in the
first iteration of the eigendecomposition. This is seen by the average processing
time of table 6.3 is close to the minimum processing time. This shows the

45

maximum value of table 6.3 is one of 3 outliers in the processing timings as the
average processing time is 0.013 ms slower compared to the minimum processing
time. These outliers are due to the OS scheduling another task instead of the
eigendecomposition. The spread of computation is large due to outliers . When
taking the outliers out, the computation time spread is shown in Figure 6.1,
where the distribution of the computation times is clearly visible. The spread
is due to the OS performing other tasks on the background and the application
not having exclusive access to the CPU.

Avg Min Max
Processing time(ms) 0.352 0.339 1.164

Table 6.3: Processing time for the Eigendecomposition on the ARM CPU over
3000 iterations

Figure 6.1: Histogram of the eigendecomposition computation times zoomed in

6.3 Localization

This section will analyse the processing time required by the localization im-
plementation of section 5.3. The spread of the processing times can be seen
in table 6.4, where the minimum, maximum and average processing times are

46

shown. The spread of the values in table 6.4 shows the maximum value is an
outlier as the average over 3000 iterations is 1.559 ms slower than the minimum
processing time and 26.687 ms faster than the maximum processing time. This
is a trend for the ARM CPU platform if section 6.2 is taken into account as well.
The spread of the computation time is shown in Figure 6.2 using a histogram,
the figure shows how the average computation is higher due to the outliers.
The spread is due to the OS performing other tasks on the background and the
application not having exclusive access to the CPU.

Avg Min Max
Processing time(ms) 365.855 364.296 392.542

Table 6.4: Processing time for the localization on the ARM CPU over 3000
iterations

Figure 6.2: Histogram of the localization computation times

6.4 Complete signal processing chain

The complete processing chain, consists of the two processing platforms: FPGA
and ARM CPU where the division of processing done in chapter 4 is shown in

47

Figure 6.3. The complete latency from ADC data to tag location should be
within 0.5 seconds constraint.

Figure 6.3: The complete processing chain

The complete processing chain can be split in two separate processing times,
the processing time on the FPGA and the ARM CPU.

FPGA processing time The FPGA processing time is deterministic and
fixed since the FPGA processing is done as hardware. The processing time is
calculated in section 6.1 to be 341.7µs or 0.3417ms.

ARM CPU processing time The ARM processing time consists of the
eigendecomposition and the localization combined. This combination is tested
over 3000 iterations and the processing time is shown in table 6.5. The spread
of the computation time is shown in Figure 6.4 using a histogram. The figure
shows how the average computation for combination of localization and eigen-
decomposition is higher due to the outliers which is similar to the localization.

Avg Min Max
Processing time(ms) 366.000 364.655 390.861

Table 6.5: Processing time for the processing chain on the ARM CPU over 3000
iterations including outliers

48

Figure 6.4: Histogram of the completer ARM computation times

Complete chain processing time The complete chain’s processing time is
adding the processing times of the FPGA and ARM CPU. This results in a
processing time of an average 364.997ms and a maximum 391.203ms including
the outliers. The average and maximum processing times lie, with a minimum
margin of 100ms, within the constraint of 0.5s or 500ms.

49

Chapter 7

Results and discussion

Here the results of the implementation of the complete algorithm are presented.
To validate the answers of the processing blocks python with a widely used
library, Numpy, is used [21] [13].

7.1 Covariance

7.1.1 Results

The result of the covariance implementation on the FPGA is discussed in this
section. The Numpy covariance function will be supplied with the same input
data as the FPGA implementation and the values will be compared. What will
be observed is the output of the Numpy function is a floating point number and
the output of the FPGA implementation is an integer. This results in an error
that will be discussed below. First, the output of Numpy is shown in table 7.1.
For the readability a 3*3 sub array is taken from the upper left corner of the
output matrix. The same sub array is taken from the output of the FPGA and
is shown in in table 7.2. The previous statement on the difference in number
representation is observed when comparing the two tables.

S1 S2 S3
S1 39881.02735139+0j -5391.83977311+35908.66478991j 49423.97414162+10372.74660542j
S2 -5391.83977311-35908.66478991j 33981.6564772+0j 2736.91463717-46390.16252177j
S3 49423.97414162-10372.74660542j 2736.91463717+46390.16252177j 65013.19838633+0j

Table 7.1: Covariance Numpy

50

S1 S2 S3
S1 39881+0j -5392+35909j 49423+10373j
S2 -5392-35909j 33982+0j 2737-46390j
S3 49423-10373j 2737+46390j 65013+0j

Table 7.2: Covariance FPGA

When taking a closer look at the tables 7.2 and 7.1, it can be observed
that the difference in values is no more than 1, as the value is floored to the
nearest integer of the floating point number shown in table 7.1. The maximum
error for the covariance due to the truncation done in the division is calculated
by the effect of the propagation through the covariance calculation shown in
Figure 2.10, this calculation is shown in equations 7.1 and 7.2. The maximum
error for the implemented covariance system on the FPGA is 1024. Moreover, a
division by 1023 is done on the ARM CPU processor to preserve floating point
values. This fact can be seen when comparing the covariance matrices from
python and FPGA (tables 7.2 and 7.1), the error does not exceed 1.001.

Max error = −Max summation value − Max summation value

+((
Max summation value

sample size
+ 1)2 − (

Max summation value

sample size
)2) ∗ sample size

(7.1)

− 227 − 227 + ((
227

1024
+ 1)2 − (

227

1024
)2) ∗ 1024 = 1024 (7.2)

7.1.2 Discussion

For the covariance matrix calculation implementation on the FPGA, it is ob-
served that the error is due to the use of integers and requiring a division. This
could be solved by taking the covariance calculation and adjusting it to either
avoid division on the FPGA or move the division to the end of the calculation
which reduces the error in the covariance matrix. Since most elements in the
covariance calculation (see equation 2.5) rely on the division, this is the place
to increase the accuracy most for the covariance implementation.

7.2 Eigendecomposition

7.2.1 Results

The eigendecomposition implementation is done in both python and C++ where
python is the baseline for validation of the C++ eigendecomposition. The eigen-
values acquired by Python and C++ are shown to be identical by table 7.3.
However, when looking at the eigenvectors in table 7.4 the vectors are not the
same element wise. When projecting the two eigenvectors on each other the
projection shows the vectors to be identical due to the projection value being

51

1.0. This is possible because the eigenvectors are normalized, being unit vectors.
The projection value of the two vectors is calculated by using equation

Projection = vector1T · vector2H (7.3)

Python Eigenvalues C++ Eigenvalues
3.1863e+05 3.1863e+05
2.0313e+03 2.0313e+03
9.3701e+02 9.3701e+02
6.3122e+02 6.3122e+02
3.5468e+02 3.5468e+02
2.9582e+02 2.9582e+02
1.6448e+02 1.6448e+02
1.3200e+02 1.3200e+02
8.0242e+01 8.0242e+01

Table 7.3: Eigenvalue comparison between Python and C++

C++ eigenvector Python eigenvector
-0.33737613+0.10133277j 0.35226409+0.j
-0.39408206+0.21520513j 0.43933252-0.09274676j
-0.35878056+0.08726183j 0.36871753+0.01963406j
0.05021557+0.23421448j 0.01928504-0.23876082j
0.13762553+0.29380102j -0.04729243-0.3209719j
0.12833544+0.30085998j -0.03636325-0.32506106j
0.27690357+0.06280886j -0.24713071-0.13981038j
0.33482636-0.12070866j -0.35539705+0.01928813j
0.24704778+0j -0.23660437-0.07106667j

Table 7.4: Eigenvector comparison between Python and C++, with a projection
value of 1

7.2.2 Discussion

When designing the assumption made in the covariance calculation, the integer
based covariance calculation does not impact the accuracy of the system, it
is shown the projection value of the eigenvectors lies between 1 and 0.9996.
This shows the assumption to be correct, the integer based calculation does not
impact the eigendecomposition is negligible.

52

7.3 Localization

7.3.1 Results

The localization has two results in the context of this thesis: the music spectrum
and the location of the RFID tag that is transmitting the response. For this
section several comparisons are done to show validity of the result, this resulted
in three scenarios:

• a pure python implementation, from covariance to localization

• a FPGA covariance implementation with python eigendecomposition and
localization

• a FPGA covariance implementation with C++ eigendecomposition and
localization

This shows the effect of the covariance error due to the FPGA implementation
on the localization result. It also shows the result of the C++ implementation of
the eigendecomposition which is compared to the python implementation using
Numpy.

The spectra generated by the implementations are shown in Figure 7.1. Ob-
serving the spectra it is clear they calculated spectra are very similar. Figure a
and Figure b of Figure 7.1 are almost identical, indicating the error introduced
by the FPGA implementation of the covariance is negligible in the current imple-
mentation of the processing chain. One remark in to be made is the maximum
height of the spectrum in Figure b is slightly higher than Figure a, showing
the difference in the input covariance matrix between the two implementations.
Figure c is almost identical to Figure b.

53

(a) The complete processing implementa-
tion using python

(b) The covariance on FPGA an eigende-
composition and localization on python

(c) The complete processing with covari-
ance on the FPGA and the eigendecompo-
sition and localization using C++

Figure 7.1: MUSIC spectra generated by the different implementations

The next result of the localization is the actual determined location of the
tag, the locations with their corresponding implementation are shown in table
7.5. The stability of the location determination across the three implementation
is high, having a maximum deviation of 1 location on the raster in either X or
Y direction. When comparing the results with the actual physical tag location,
the X location for all three implementations is correct with a maximum error
of 1. The Y location of the three implementations has a larger deviation than
the X location with an error between 3 and 4 locations on the raster. Knowing
the raster has a resolution of 2cm per index the localization error by the imple-
mentation is 8cm. However, the results are inconclusive to what platform is the
best to implement the algorithm on as the implementations have either better
Y localization or X localization. This shows the algorithm to be insensitive to
the platform it is implemented on.

54

X-index Y-index
Python 124 164
FPGA and Python 123 163
FPGA and C++ 123 163
Physical location 124 160

Table 7.5: The location of the tag in the raster given by the different implemen-
tations

7.3.2 Discussion

The error in the implementation of the localization is due to lack of precision in
the steering vectors. For more precise steering vectors, the characteristics of the
receiving antennas have to be well known, this is proven to be a difficult task
when antenna suppliers do not provide the characteristics. This is a direction
in which a significant increase in accuracy of the localization of the tag can be
gained especially in the Y direction.

55

Chapter 8

Conclusion

In this thesis we investigated an efficient implementation for the MUSIC al-
gorithm on an embedded system using hardware and software co-design. The
summary of the constraints this thesis was required to comply with are shown
in table 8.1.

Total latency <0.5 seconds
FPGA resource usage <1000 ALMs
Throughput 180 tag reads
Sample amount 1024
Supported antennas 12

Table 8.1: Constraints of this thesis

The research questions that have been set in chapter 1 to be answered in
this thesis are as follows

• How is the MUSIC algorithm implemented with optimal performance on
an Embedded system using hardware and software co-design?

– Which processing platform is most suitable for covariance calcula-
tion?

– Which processing platform is most suitable for eigen decomposition?

– Which processing platform is most suitable for localization?

– How do hardware choices propagate in the resource usage of the Em-
bedded system?

56

Figure 8.1: The complete processing chain

The available platforms for processing were introduced in chapter 3. Based
on design decisions explained in chapter 4, the complete processing chain was
designed and implemented as shown in Figure 8.1. Design decisions were made
such that the constraints mentioned in chapter 1 are met. The platform to
process the covariance is the FPGA because the FPGA’s characteristics are
suitable to adhere to hard timing constraints. Since the eigendecomposition
and localization require floating point precision, for which a FPU is located on
the ARM CPU, the ARM CPU was chosen to be the processing platform for
the eigendecomposition and the localization. This choice concerning processing
platform has the additional benefit of allowing the use of libraries which have an
efficient implementation and are simple to use for the solution implementation.

The choice of implementation was tested and it was confirmed that it can
comply with the timing constraints while providing the desired output data.
The timing validation was done in chapter 6, where it was shown that the
covariance implementation meets the hard deadline set by the constraints and
the eigendecomposition and localization meet the softer latency by a margin
of 100ms. The validation of the output was done in chapter 7. It was shown
that the covariance output is correct according to a reference implementation
and the possible maximum error is lower than 1% of the expected covariance
values. The eigendecomposition and localization were validated in combination
through the MUSIC spectrum and the estimated location. The accuracy of the
eigendecomposition and localization algorithms in the embedded platform was
validated compared to a reference implementation in Python which runs on a
PC. The location estimate is within 10cm of the physical location and which is
within 2cm accuracy of the Python estimate.

With the implementation of this thesis the throughput of the ARM process-
ing chain is not sufficient to meet the 180 tag reads per second that is set as
the constraint. However, this is due to the implementation of this thesis being
a test bed the localization calculates the entire MUSIC spectrum instead of just
finding the location. This requires 251 ∗ 251 = 63001 calculations to find the
location. If the system was not a testbed an optimal peak finding algorithm
could be used to find the peaks in the spectrum instead of calculating the entire
spectrum.

The conclusion of the thesis is that the current implementation of the MU-
SIC algorithm strikes a good balance between performance and resource usage,
whilst performing within the constraints of the application. Also, it has elabo-
rated why the platforms are well suited for their processing parts of the MUSIC
algorithm.

57

8.1 Recommendations

This section will show directions for future research to build upon this thesis.

8.1.1 ADC number of bits

For the resource usage due to hardware choices, the number of bits of the ADC
is discussed in section 5.1.3. However, this thesis did not have hardware changes
in its scope, therefore no implementation results have been presented to support
the resource reduction by lowering the number of bits of the ADCs. As a future
research, the effect of lowering the number of bits should be investigated to use
the minimal number of bits that are required to achieve the accuracy needed by
the implementation and lowering the resource utilization.

8.1.2 Throughput

To increase the throughput an optimization algorithm can be implemented to
find the peaks in a more efficient way. If an algorithm for localization is used
that finds the location in, for example using divide and conquer which has a
worst case O(nlog(n)), 603 calculations are required lowering the computation
time by a factor of 104 . This optimization results in a computation time of
391ms
104 = 3.76 for the localization which results in a processing time that is below

the RFID reader read speed of 1 second
180tag reads = 5.5ms This satisfies the constraint

by a significant margin as the throughput is limited by the communication in
this case.

8.1.3 Amount of antennas

This thesis used 12 antennas to determine the location of the RFID tag. Future
research should investigate the use of less antennas to lower the complexity and
data to be processed by the signal processing while maintaining the accuracy.
This could allow the implementation to meet the requirements with a higher
margin and gives more room for optimizing the implementation.

58

Bibliography

[1] White paper: The arm cortex-a9 processors. https://web.

archive.org/web/20141117060156/http://www.arm.com/files/pdf/

ARMCortexA-9Processors.pdf, Sep 2009.

[2] Cyclone v device datasheet. https://www.intel.com/content/dam/www/
programmable/us/en/pdfs/literature/hb/cyclone-v/cv_51002.pdf,
Nov 2019.

[3] Nios® ii performance benchmarks. https://www.intel.la/content/

dam/www/programmable/us/en/pdfs/literature/ds/ds_nios2_perf.

pdf, May 2020.

[4] Abdulrahman Alhamed and Saleh Alshebeili. Fpga implementation of
complex-valued qr decomposition. 2016 5th International Conference on
Electronic Devices, Systems and Applications (ICEDSA), 2016.

[5] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA, third edition, 1999.

[6] Constantine A. Balanis. Field regions. Wiley, 1997.

[7] Uzma M. Butt, Shoab A. Khan, Anees Ullah, Abdul Khaliq, Pedro Re-
viriego, and Ali Zahir. Towards low latency and resource-efficient fpga
implementations of the music algorithm for direction of arrival estimation.
IEEE Transactions on Circuits and Systems I: Regular Papers, page 1–12,
2021.

[8] Jan Cuppen. A divide and conquer method for the symmetric eigenproblem.
Numerische Mathematik, 36:177–195, 06 1980.

[9] Daniel Dobkin. The RF in RFID: passive UHF RFID in practice. 01 2007.

[10] J. Francis. The qr transformation. The Computer Journal, 4, 04 1962.

[11] Upton Graham J G. and Ian Cook. variance. Oxford University Press,
2002.

59

https://web.archive.org/web/20141117060156/http://www.arm.com/files/pdf/ARMCortexA-9Processors.pdf
https://web.archive.org/web/20141117060156/http://www.arm.com/files/pdf/ARMCortexA-9Processors.pdf
https://web.archive.org/web/20141117060156/http://www.arm.com/files/pdf/ARMCortexA-9Processors.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_51002.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_51002.pdf
https://www.intel.la/content/dam/www/programmable/us/en/pdfs/literature/ds/ds_nios2_perf.pdf
https://www.intel.la/content/dam/www/programmable/us/en/pdfs/literature/ds/ds_nios2_perf.pdf
https://www.intel.la/content/dam/www/programmable/us/en/pdfs/literature/ds/ds_nios2_perf.pdf

[12] WALTER GANDER. Algorithms for the qr-decomposition. 01 1980.

[13] Charles R. Harris, K. Jarrod Millman, Stéfan J van der Walt, Ralf
Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Tay-
lor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane,
Jaime Fernández del Ŕıo, Mark Wiebe, Pearu Peterson, Pierre Gérard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Ab-
basi, Christoph Gohlke, and Travis E. Oliphant. Array programming with
NumPy. Nature, 585:357–362, 2020.

[14] Qinghua Huang and Naida Lu. Optimized real-time music algorithm with
cpu-gpu architecture. IEEE Access, 9:54067–54077, 2021.

[15] Vijay Madisetti. Subspace-Based Direction Finding Methods. CRC Press,
2010.

[16] Kun Il Park. Fundamentals of probability and stochastic processes with
applications to communications. Springer, 2018.

[17] Conrad Sanderson and Ryan Curtin. Armadillo: a template-based c++
library for linear algebra. The Journal of Open Source Software, 1(2):26,
2016.

[18] Conrad Sanderson and Ryan Curtin. A user-friendly hybrid sparse matrix
class in c++. Mathematical Software – ICMS 2018, page 422–430, 2018.

[19] R. Schmidt. Multiple emitter location and signal parameter estimation.
IEEE Transactions on Antennas and Propagation, 34(3):276–280, 1986.

[20] R.G.J.F.O.J. van Lakwijk. Tracking of uhf rfid tagged stock in retail. Jun
2013.

[21] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. Cre-
ateSpace, Scotts Valley, CA, 2009.

[22] Qian Wang, Xianyi Zhang, Yunquan Zhang, and Qing Yi. Augem: Au-
tomatically generate high performance dense linear algebra kernels on x86
cpus. In SC ’13: Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis, pages 1–12, 2013.

[23] Zhang Xianyi, Wang Qian, and Zhang Yunquan. Model-driven level 3
blas performance optimization on loongson 3a processor. 2012 IEEE 18th
International Conference on Parallel and Distributed Systems, 2012.

[24] Zhou Zou, Wang Hongyuan, and Yu Guowen. An improved music algorithm
implemented with high-speed parallel optimization for fpga. In 2006 7th
International Symposium on Antennas, Propagation EM Theory, pages 1–
4, 2006.

60

Appendices

61

Appendix A

Behavioral process

The first implementation of the covariance matrix calculation on the FPGA
is done in behavioural format. The resulting process is shown in figure A.1,
which contains optimizations to adhere to the required latency of the input
data being available for only 20 clock cycles. This was shown to be not feasible
as the resource usage was high and the nature of the behavioural format does
not allow for fine-grained control over the resource usage of the calculation and
implementation.

Figure A.1: The FPGA behavioral covariance process

62

Appendix B

Eigendecomposition

Figure B.1: Histogram of the eigendecomposition computation times

63

	Introduction
	Introduction
	Constraints of the design
	Hardware platform
	Things to take into account

	Related work
	Research questions
	Structure of thesis

	Theory
	Covariance
	Eigendecomposition
	Localization

	Platform
	FPGA
	Processors

	Design
	Covariance
	Eigendecomposition
	Localization

	Implementation
	Covariance
	Structural process
	Partial sums
	Clock frequency

	Eigendecomposition
	CPU

	Localization
	CPU

	Analysis of the solutions
	Covariance
	Eigendecomposition
	Localization
	Complete signal processing chain

	Results and discussion
	Covariance
	Results
	Discussion

	Eigendecomposition
	Results
	Discussion

	Localization
	Results
	Discussion

	Conclusion
	Recommendations
	ADC number of bits
	Throughput
	Amount of antennas

	Behavioral process
	Eigendecomposition

