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Summary	
Mechanical	ventilation	is	the	mainstay	of	supportive	therapy	in	the	intensive	care	unit	for	
patients	with	respiratory	failure.	Although	life-saving,	mechanical	ventilation	may	also	cause	
secondary	lung	injury.	Settings	poorly	adapted	to	the	patient’s	physiology	may	result	in	poor	
outcome;	however,	finding	the	optimal	settings	for	the	individual	patient	is	still	an	ongoing	
debate.	As	a	result,	the	ventilation	may	not	always	be	optimally	adapted	to	the	individual	patient	
which	may	have	negative	effects	on	the	patient’s	lungs	and	respiratory	muscle	function	and	may	
worsen	clinical	outcomes,	including	the	increase	of	the	duration	of	ventilation.	
	
Our	hypothesis	was	that	a	closed-loop	mechanical	ventilation	system	that	is	based	on	a	model	
that	considers	a	limited	set	of	well-chosen	aspects	of	the	physiology	of	breathing	may	be	able	to	
improve	these	limitations.	The	aim	of	this	thesis	was	to	develop	a	simple	but	credible	model	that	
is	aimed	towards	this	objective.	This	model	may	be	the	initial	step	towards	incorporating	such	a	
system	in	clinical	practice	and	may	provide	a	first	insight	in	the	clinical	applicability	in	the	
context	of	the	critically	ill	mechanically	ventilated	patient.	
	
From	the	literature	review	and	conversations	with	clinicians	it	resulted	that	a	model	of	the	gas	
exchange	and	the	respiratory	drive	with	low	complexity	could	be	of	an	improvement	to	current	
clinical	practice	by	increasing	the	insight	in	the	patient’s	respiratory	parameters	and	variables	
and	predicting	patient	responses	to	changes	in	ventilator	settings.	
	
A	two-compartment	model	based	on	the	gas	exchange	was	developed	of	which	the	dynamical	
behaviour	consists	of	a	slow	and	a	fast	exponential	component.	The	model	reaches	an	
equilibrium	state	that	is	dependent	on	the	minute	ventilation.	For	carbon	dioxide,	this	behaviour	
complies	with	the	behaviour	found	in	an	experimental	study	that	was	conducted	in	a	healthy	
volunteer.	Aggregated	model	parameter	groups	could	be	identified,	and	predictions	could	be	
made	with	the	identified	model	that	were	qualitatively	similar	to	the	results	of	the	experimental	
study.	While	the	limited	observability	and	resources	limit	the	possibilities	for	extensive	model	
validation,	this	gives	an	indication	that	the	simple	model	may	have	the	right	structure	to	
describe	the	gas	exchange	of	carbon	dioxide.		
	
The	developed	model	may	be	an	addition	to	current	clinical	practice	by	improving	the	clinician’s	
insight	into	the	efficiency	of	the	gas	exchange	of	patients	on	mechanical	ventilation.	This	may	
give	the	clinician	an	improved	insight	into	the	readiness	of	the	patient	for	weaning	and	may	
make	better-substantiated	ventilator	setting	choices	possible.	Increased	testing	and	
experimental	validation	are	required	before	clinical	application	is	possible.	
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Glossary	
 

name	 definition	
accessory	muscles		 The	muscles	that	assist	in	breathing	but	do	not	play	a	primary	role.	
acute	respiratory	distress	
syndrome		

A	type	of	respiratory	failure	characterized	by	rapid	onset	of	widespread	
inflammation	in	the	lungs.	

airway	occlusion	pressure	 The	pressure	generated	at	the	airways	during	a	period	of	no	airflow	in	the	airways.	
alveolar	dead	space	 The	sum	of	the	volumes	of	the	alveoli	which	have	little	or	no	blood	flowing	through	

their	capillaries.	
alveolar	infiltration	 A	substance	denser	than	air,	e.g.	blood	or	pus,	which	lingers	within	the	lungs.	
assisted	ventilation	 Mode	of	ventilation	where	the	inspiratory	efforts	of	the	patient	are	detected	and	

ventilatory	assist	is	delivered	accordingly.	
blood	gasses	 Measurement	of	the	concentration	of	pH,	oxygen,	carbon	dioxide	and	several	other	

components	present	in	a	sample	of	blood.	
breathing	effort		 The	energy-consuming	activity	of	the	respiratory	muscles	aimed	at	driving	

respiration.	
controlled	ventilation	 A	mode	of	ventilation	in	which	the	ventilator	delivers	the	pre-set	volume	or	pressure	

regardless	of	the	patient's	own	inspiratory	efforts.	
dynamical	analysis	 An	area	of	mathematics	used	to	describe	the	behaviour	of	complex	dynamical	

systems,	usually	through	differential	equations.	
eigenvalue	 A	scalar	that	describes	the	relationship	between	the	individual	system	state	variables	

and	their	derivatives.	
equilibrium	state	 The	state	of	a	system	in	which	properties	have	constant	values	if	external	conditions	

are	unchanged.	
order	of	system	 The	number	of	independent	energy	storage	elements	in	the	system.		
parameter	identification	 The	determination	of	the	most	optimal	combination	of	values	of	the	model	

parameters.	
patient-ventilator	asynchrony		 A	mismatch	between	the	patient’s	respiratory	system	and	the	ventilator,	regarding	

time,	flow,	volume,	or	pressure	demands.	
PEEP	 The	pressure	in	the	lungs	above	atmospheric	pressure	at	the	end	of	expiration.	
pulmonary	fibrosis	 A	lung	disease	that	occurs	when	lung	tissue	becomes	scarred	and	damaged.	
pulmonary	shunt	 The	passage	of	venous	blood	through	the	lungs	without	participation	in	gas	exchange.	
respiratory	mechanics		 The	mechanical	properties	of	the	pulmonary	system;	the	airway	pressures,	airflow	

rate	and	lung	volumes.	
spontaneous	breathing	trial	 A	trial	that	assesses	the	patient's	ability	to	breathe	while	receiving	minimal	or	no	

ventilatory	support.	
time	constant	 the	duration	in	seconds	during	which	a	variable	rises	of	falls	exponentially	and	

becomes	63.2%	of	its	final	value.	
observability	 A	measure	of	how	well	internal	states	of	a	system	can	be	retrieved	from	measured	

outputs.	
ventilation-perfusion	
mismatch	

A	condition	in	which	one	or	more	areas	of	the	lung	receive	either	no	oxygenated	air	
or	no	blood	flow.		

ventilator-induced	lung	injury	 An	acute	lung	injury	that	develops	during	mechanical	ventilation.		
weaning	 The	process	of	reducing	ventilatory	support,	ultimately	resulting	in	a	patient	

breathing	spontaneously	and	being	disconnected	from	the	ventilator.	
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1.	Introduction	
1.1.	Background	and	research	problem	
	
It	is	probable	that	somewhere	in	the	next	decade	patients	and	clinicians	will	arrive	at	the	
hospital	in	self-driving	cars.	This	makes	it	hard	to	imagine	that	mechanical	ventilation,	which	is	
the	mainstay	of	supportive	therapy	in	the	intensive	care	unit	for	patients	with	respiratory	
failure,	is	still	mainly	manually	operated.	This	clinician-in-the-loop	system	is	labour-intensive	
and	requires	expert	knowledge	[1].	Settings	poorly	adapted	to	the	patient’s	physiology	may	
result	in	poor	outcome;	however,	finding	the	optimal	settings	for	the	individual	patient	is	still	an	
ongoing	debate.	As	a	result,	mechanical	ventilation	may	not	always	be	optimally	adapted	to	the	
individual	patient	which	may	have	negative	effects	on	the	patient’s	lungs	and	respiratory	muscle	
function	and	may	worsen	clinical	outcomes,	including	the	increase	of	the	duration	of	ventilation.	
 
Closed-loop	mechanical	ventilation	systems	have	been	the	subject	of	research	for	a	long	time.	
Closed-loop	mechanical	ventilation	is	in	essence	the	automatic	control	of	ventilator	settings	
based	on	measured	physiological	variables.	In	figure	1	the	workflow	of	simple	closed-loop	
mechanical	ventilation	is	presented	schematically.	In	this	example,	the	system	has	one	
physiological	variable	that	is	controlled.	The	clinician	sets	a	desired	value	for	this	variable,	and	
the	variable	is	constantly	measured	with	a	sensor	and	compared	to	the	desired	value.	The	
controller	will	determine	the	difference	between	the	actual	value	and	the	desired	value	and	give	
an	appropriate	adjustment	of	ventilator	settings.	This	adjustment	in	ventilator	settings	should	
impose	changes	in	patient	ventilation	that	should	bring	the	controlled	physiological	variable	to	
the	desired	value.	Since	these	desired	values	or	target	ranges	of	physiological	variables	depend	
on	the	initial	parameters	set	by	the	clinician,	it	is	of	utmost	important	that	these	are	
programmed	correctly	for	the	individual	patient.			
	

	
 

Figure 1 Schematic overview of closed-loop mechanical ventilation.  	

Closed-loop	mechanical	ventilation	systems	that	involve	the	measurement	of	multiple	variables	
to	control	multiple	settings	are	able	to	mimic	the	response	of	real	human	physiology	closely	[2].	
The	controllers	of	these	advanced	closed-loop	mechanical	ventilation	systems	are	often	based	
on	models	that	aim	to	describe	the	state	of	the	patient	being	controlled.		
	
In	the	recent	years,	several	advanced	closed-loop	mechanical	ventilation	systems	have	been	
developed.	An	example	is	the	automated	system	INTELLiVENT-adaptive	support	ventilation	
(ASV)	[3,	4].	This	system	controls	the	respiratory	rate,	tidal	volume,	end-tidal	carbon	dioxide	
and	oxygen	saturation	by	automatic	adaption	of	the	ventilator	settings.	A	limitation	of	
automated	modes,	such	as	ASV,	is	that	the	patient’s	breathing	effort	is	not	measured	directly.	
Proportional	closed-loop	mechanical	ventilation	systems	do	consider	patient	effort	and	adjust	
ventilatory	support	proportional	to	this	effort.	An	example	of	a	proportional	system	is	neurally	
adjusted	ventilatory	assist	(NAVA)	that	measures	the	electrical	activity	of	the	diaphragm	(EAdi)	
via	electrodes	embedded	on	a	nasogastric	catheter	to	control	the	ventilator	output	[5].		
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Although	the	current	closed-loop	mechanical	ventilation	systems	seem	promising,	there	is	room	
for	further	improvement.	The	closed-loop	mechanical	ventilation	systems	that	are	used	in	
current	practice	mainly	focus	on	the	mechanics	of	breathing.	For	example,	there	are	currently	no	
commercially	available	closed-loop	systems	that	consider	the	metabolism,	efficiency	of	the	gas	
exchange	and	the	acid-base	balance	[6].	As	a	result,	the	clinician	must	set	most	of	the	ventilator	
settings	manually.	Choosing	the	optimal	ventilator	settings	may	be	challenging	because	insight	
in	certain	parts	of	the	physiological	state	of	the	patient	may	be	low.	Throughout	the	duration	of	
mechanical	ventilation,	it	is	therefore	often	unknown	what	the	optimal	combination	of	ventilator	
settings	is	for	the	individual	patient	[1].	As	a	result,	the	ventilation	may	not	be	optimally	adapted	
to	the	individual	patient	throughout	the	duration	of	mechanical	ventilation.	A	stated	before,	this	
may	have	negative	effects	on	the	patient’s	lungs	and	respiratory	muscle	function	and	may	
worsen	clinical	outcomes,	including	the	increase	of	the	duration	of	ventilation.	
	
Our	hypothesis	is	that	a	closed-loop	mechanical	ventilation	system	that	is	based	on	a	model	that	
considers	a	limited	set	of	well-chosen	aspects	of	the	physiology	of	breathing	to	determine	the	
optimal	ventilator	settings	may	be	able	to	improve	these	limitations.	The	physiological	model,	
that	forms	the	basis	of	the	system,	could	provide	insight	in	patient	specific	respiratory	
parameters	and	variables	that	cannot	be	directly	obtained	from	current	routine	clinical	
measurements.	This	would	provide	constant	insight	into	a	patient’s	physiological	state	which	
may	enable	individualization	and	optimization	of	patient	treatment	[7,	8].	This	may	limit	the	
negative	consequences	of	mechanical	ventilation	on	the	patient's	breathing	function,	and	hence,	
it	may	reduce	the	time	spent	on	mechanical	ventilation,	which	is	clinically	and	economically	
important		[6,	9,	10].		
	
1.2.	Research	questions	
	
The	aim	of	this	thesis	is	to	develop	a	simple	but	credible	model	of	the	physiology	of	breathing	
based	on	the	difficulties	encountered	in	current	clinical	practice.	This	model	will	be	the	initial	
step	towards	the	use	of	a	closed-loop	system	based	on	a	model	of	the	full	physiology	of	
breathing	in	clinical	practice	and	will	allow	for	a	first	insight	in	the	clinical	applicability.	
	
The	research	questions	of	this	thesis	are:	

- What	is	the	state-of-the-art	of	closed-loop	mechanical	ventilation?	
- How	can	model-based	closed-loop	mechanical	ventilation	be	used	to	improve	the	current	

clinical	practice	of	mechanical	ventilation?		
- What	dynamic	model	of	the	physiology	of	breathing	satisfies	these	requirements?	
- What	is	the	dynamic	behaviour	of	the	developed	model?	
- What	relevant	information	about	the	dynamic	behaviour	of	the	real	breathing	system	

can	be	obtained	from	experimental	measurements?		
- How	can	this	information	be	used	to	evaluate	the	model’s	ability	to	identify	the	

respiratory	parameters	and	predict	the	ventilatory	responses?	

1.3.	Approach	and	outline	of	this	thesis	
	
To	answer	these	questions,	several	actions	were	performed.	First,	a	literature	review	of	the	
current	state-of-the-start	was	conducted.	Parallel	to	this	literature	review,	conversations	with	
clinicians	and	a	literature	research	were	conducted	to	specify	the	possible	improvements	that	a	
model	of	the	physiology	of	breathing	could	add	to	current	clinical	practice.	Subsequently,	a	
model	was	developed	aiming	to	satisfy	these	requirements.	A	dynamical	analysis	of	the	model	
was	performed	to	identify	the	dynamic	behaviour	of	the	model.	With	the	obtained	knowledge,	an	
experiment	within	practical	limitations	was	created	that	could	be	used	to	obtain	the	relevant	
information	about	the	dynamic	behaviour	of	the	real	breathing	system.	This	information	was	



 

 8 

used	to	assess	the	validity	of	the	model	structure	and	the	identifiability	of	the	respiratory	
parameters.		
	
The	overall	structure	of	this	thesis	takes	the	form	of	six	chapters.	Chapter	2	begins	by	describing	
the	state-of-the	art	and	the	possible	improvements	that	can	be	achieved	in	current	clinical	
practice	by	using	model-based	closed-loop	mechanical	ventilation.	Chapter	3	describes	the	
development	and	the	dynamical	analysis	of	the	model.	Chapter	4	describes	the	design	of	the	
experiment	and	the	obtained	experimental	results.	Chapter	5	contains	a	discussion	about	the	
implications	and	limitations	of	the	presented	concepts	and	results	and	suggestions	for	further	
research.	The	thesis	finishes	with	a	conclusion	in	chapter	6.		
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2.	State-of-the-art	of	closed-loop	mechanical	ventilation	and	
possible	improvements.	
Before	the	development	of	the	model	can	start,	it	is	crucial	to	determine	what	the	desirable	
improvements	in	current	clinical	practice	are.	Subsequently,	it	can	be	determined	what	
components	and	functions	the	model	should	encompass.	To	create	a	complete	overview,	the	
general	workflow	of	mechanical	ventilation	is	discussed	briefly	in	section	2.1.	In	section	2.2.	it	is	
described	what	the	current	state-of-the-art	of	closed-loop	mechanical	ventilation	is.	In	section	
2.3.	the	possible	improvements	that	can	be	obtained	in	clinical	practice	using	a	new	model-
based	closed-loop	mechanical	ventilation	system	are	described.	In	section	2.4.	the	most	
important	results	are	summarized,	interpreted	and	their	implications	for	the	development	of	the	
model	are	stated.		
	
2.1	General	overview	of	the	workflow	mechanical	ventilation		
	
The	duration	of	mechanical	ventilation	can	be	roughly	and	globally	divided	into	three	global	
stages,	but	this	may	vary	between	patients	according	to	the	indication	for	mechanical	
ventilation.	Each	stage	has	different	aims	and	conditions	regarding	to	the	monitoring	of	
parameters	and	variables.		
	
The	first	stage	starts	when	a	patient	arrives	at	the	ICU	with	respiratory	failure	and/or	an	
indication	to	intubate	and	start	mechanical	ventilation.	The	patient	is	often	sedated	and	is	put	on	
controlled	mechanical	ventilation.	During	controlled	mechanical	ventilation,	the	patient	cannot	
breathe	spontaneously.	The	main	aim	of	this	stage	is	to	give	the	lungs	time	to	repair.	It	is	
therefore	very	important	to	monitor	the	pressures	and	the	volumes	applied	to	the	lungs	which	
should	stay	low	to	prevent	further	injury	and	inflammation	(e.g.,	ventilator-induced	lung	injury).	
The	blood	gases	should	stay	between	predetermined	safe	bounds.	However,	reaching	optimal	
blood	gasses	comes	second	to	the	protection	of	the	lungs.	The	clinician	may	for	example	allow	
permissive	hypercapnia,	where	a	very	high	carbon	dioxide	fraction	in	the	blood	is	allowed	for	
the	sake	of	keeping	the	tidal	volume	and	pressure	low.	It	is	assessed	at	least	daily	whether	a	
patient	on	a	controlled	mode	of	ventilation	can	be	switched	to	an	assisted	form	of	ventilation	
and	sedation	can	be	lowered.	
	
When	the	lungs	have	mostly	healed,	the	next	stage	of	mechanical	ventilation	starts.	The	aim	of	
this	stage	is	to	recover	the	breathing	function	of	the	patient.	In	this	stage,	the	patient	is	on	
assisted	ventilation,	during	which	the	ventilator	detects	inspiratory	effort	of	the	patient	and	
delivers	pressure	assist	accordingly.	During	this	stage,	the	lungs	can	handle	a	larger	range	of	
pressures	and	volumes.	As	a	result,	the	clinician	can	choose	higher	values	for	the	applied	tidal	
volume	which	may	make	it	easier	to	reach	the	desired	blood	gasses.	It	is	assessed	regularly	
whether	the	level	of	ventilatory	support	can	be	reduced.		
	
The	last	stage	is	the	weaning	stage	and	starts	when	the	patient	is	still	on	the	ventilator	but	
seems	to	be	able	to	breathe	sufficiently	with	low	support	(PEEP	<8,	FiO2<0.5).	Weaning	is	the	
term	used	to	describe	the	process	of	withdrawing	the	ventilatory	support	and	eventually	
removing	the	patient	from	the	ventilator.	It	is	not	always	clear	when	a	patient	is	ready	for	
weaning.	As	a	result,	the	clinician	needs	to	trust	in	his	own	insight	and	experience.	The	patient	
will	start	a	spontaneous	breathing	trial	(SBT),	during	which	the	patient	is	not	yet	extubated	but	
does	not	receive	any	support	or	a	limited	amount	of	ventilator	support,	allowing	to	test	the	
readiness	for	weaning	of	the	ventilator.	Throughout	the	SBT,	which	usually	takes	30	minutes,	
respiratory	parameters	and	blood	gases	are	monitored.	If	sufficient,	the	patient	can	be	released	
from	the	ventilator.	When	the	blood	values	are	not	sufficient	or	when	the	patient	meets	criteria	
for	SBT	failure	at	any	time	point	during	the	SBT,	ventilatory	support	will	be	resumed	[29].	This	
is	common,	25	percent	of	patients	fail	in	the	first	spontaneous	breathing	trial	[30].	On	the	other	
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hand,	there	are	indications	that	weaning	sometimes	takes	place	later	than	strictly	necessary	
[31].		
	
The	current	closed-loop	mechanical	ventilation	systems	often	only	focus	on	one	stage	of	
mechanical	ventilation.	For	example,	there	are	several	closed-loop	systems	that	solely	focus	on	
the	breathing	mechanics	and	are	only	usable	during	the	first	stage.	In	the	next	section,	the	closed	
loop	mechanical	ventilation	systems	that	are	used	in	current	clinical	practice	are	described.	
	
2.2.	The	state-of-the-art	of	closed-loop	mechanical	ventilation.	
	
In	this	section,	several	examples	of	closed	loop	mechanical	ventilation	systems	are	given.	The	
systems	are	categorized	based	on	the	controlled	physiological	variable	or	variables.		
	
Closed-loop	control	based	on	gas	exchange	
	
Several	closed	loop	models	based	on	the	control	of	oxygen	have	been	developed.	Most	of	these	
systems	are	focussed	on	neonates.	The	AVEA-CLiO2	is	a	commercially	available	system	for	
neonates	based	on	oxygenation	control	[11].	This	system	controls	the	oxygen	saturation	and	
maintains	this	variable	within	a	target	range	by	adapting	the	fraction	of	inspired	oxygen.	A	study	
of	Salverda	et	al.	(2021)	that	included	a	total	of	588	infants	found	that	the	use	of	the	system	did	
not	lower	the	mortality	or	morbidity,	but	did	reduce	the	duration	of	invasive	ventilation	[12].	
	
No	commercial	systems	that	are	solely	based	on	the	control	of	carbon	dioxide	have	been	
developed	thus	far.	In	a	study	of	Martinoni	et	al.	(2004)	a	model-based	control	system	was	
created	that	controls	the	end-tidal	carbon	dioxide	fraction	by	adjusting	the	minute	ventilation.	
The	system	is	based	on	a	model	of	Chiari	et	al.	that	consists	of	three	compartments:	lung,	brain	
and	body	tissue	[13].	The	system	was	tested	in	clinical	settings	and	the	model-based	controller	
seemed	to	meet	the	requirements	for	routine	clinical	application	[14].	However,	clinical	
implementation	has	never	been	achieved.	
	
The	former	systems	were	based	on	either	the	control	of	carbon	dioxide	or	oxygen.	A	recently	
developed	system	of	Hermand	et	al.	(2016)	controls	both	the	partial	pressures	of	oxygen	and	
carbon	dioxide	in	the	arterial	blood.	A	mathematical	model	that	mimics	the	central	and	
peripheral	chemoreceptor	responses	in	humans	uses	the	values	of	the	partial	pressures	to	adjust	
the	minute	ventilation.	The	model	response	matches	with	experimental	data	but	the	model	has	
not	been	tested	in	clinical	practice	thus	far	[15].		
	
A	disadvantage	of	the	closed-loop	ventilation	strategies	presented	in	the	former	section,	is	that	
they	focus	only	on	the	gas	exchange	and	do	not	consider	the	lung	mechanics.	Achieving	proper	
oxygenation	and	emission	of	carbon	dioxide	may	require	large	tidal	volumes	or	ventilator	
pressures,	which	may	cause	ventilator-induced	lung	injury	(VILI).	With	clinical	ventilation	
strategies	becoming	focused	on	protective	ventilation	that	aims	to	prevent	VILI,	the	lung	
mechanics	are	an	important	aspect	to	take	into	consideration	[6].	
	
Closed-loop	control	based	on	the	respiratory	mechanics	
	
Most	closed-loop	mechanical	ventilation	systems	used	in	current	clinical	practice	are	mainly	
based	on	the	respiratory	mechanics.	An	example	is	adaptive	support	ventilation	(ASV)	that	
controls	the	minute	ventilation	by	finding	the	optimum	combination	of	respiratory	rate	and	tidal	
volume	based	on	the	respiratory	mechanics	of	the	patient.	The	respiratory	mechanics	consist	of	
the	lung	compliance,	airway	resistance	and	expiratory	time	constant	[4].	This	principle	is	based	
on	the	Otis	equation	which	states	that	there	is	an	optimum	respiratory	rate	that	minimises	the	
breathing	effort	[16].			
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Another	example	is	SmartCare	that	adapts	the	delivered	pressure	support	level	to	the	patient’s	
effort.	The	system	continuously	determines	the	patient’s	respiratory	mechanics	and	patterns.	
The	aim	is	to	simulate	clinical	reasoning	to	avoid	under-	or	over-assistance	during	mechanical	
ventilation	by	constantly	adjusting	the	level	of	pressure	support.	These	frequent	adjustments	in	
pressure	support	would	be	unrealistic	if	attempted	by	a	clinician.	The	system	also	has	an	
automated	weaning	protocol	that	consists	of	an	automated	reduction	of	pressure	support	level	
and	thereafter	an	automated	spontaneous	breathing	test.[17]		
	
Closed-loop	control	based	on	the	multiple	components	of	the	physiology	
	
Recently,	researchers	and	industry	have	presented	automated	systems	which	are	based	on	a	
culmination	of	the	categories	described	before.	This	encompasses	maintaining	optimal	blood	
gasses,	preventing	VILI	and	improving	patient-ventilator	synchrony.	
	
INTELLiVENT-ASV	is	a	system	based	on	ASV	that	provides	automatic	gradual	decreases	in	
inspiratory	support	levels	to	facilitate	weaning	of	the	patient	from	the	ventilator	[22].	This	
system	controls	the	respiratory	rate,	tidal	volume,	end-tidal	carbon	dioxide	and	oxygen	
saturation	by	automatic	adaption	of	the	ventilator	settings	to	reach	target	values	set	by	the	
clinician.	The	ventilator	setting	that	are	adapted	are	the	fraction	of	inspiratory	oxygen,	minute	
ventilation	and	positive	end-expiratory	pressure.	The	system	has	shown	to	be	feasible	and	able	
to	deliver	protective	ventilation	in	passive	and	spontaneously	breathing	patients	with	different	
lung	conditions	[23].	However,	there	are	few	experienced	facilities	where	INTELLiVENT-ASV	can	
be	used,	and	therefore,	its	usage	status	and	efficacy	have	not	yet	been	reported	[24].	One	of	the	
reasons	for	this	is	that	the	clinical	situations	in	which	INTELLiVENT-ASV	should	be	used	have	
not	yet	been	clarified.		
	
Other	systems	are	developed	but	not	yet	commercialized.	An	example	is	the	system	of	
Schwaiberger	et	al.	(2018).	This	system	reacts	protocol-driven	to	any	measured	change	in	
respiratory	mechanics	or	oxygenation.	It	controls	the	airway	pressures,	oxygen	saturation	and	
end-tidal	carbon	dioxide	fraction	by	adjusting	the	tidal	volume,	PEEP,	respiratory	rate	and	the	
fraction	of	inspired	oxygen	accordingly.	A	pilot	animal	study	showed	promising	results,	but	
clinical	trials	have	yet	to	be	performed	[25].		
	
Closed-loop	control	based	on	breathing	effort	
	
The	former	described	automated	modes	integrate	closed-loop	principles	but	do	not	directly	
measure	patient	effort.	Proportional	modes	of	ventilation	are	assisted	modes	of	ventilation	that	
measure	patient	effort	and	deliver	assistance	proportional	to	this	effort	[18].		
	
Proportional	assist	ventilation	with	load-adjustable	gain	factors	(PAV+)	determines	the	
inspiratory	effort	of	the	patient	by	measuring	the	volume	and	airflow	being	pulled	in	by	the	
patient.	End-inspiratory	occlusions	are	used	to	determine	the	respiratory	system	resistance	
(𝑅!")	and	elastance	(𝐸!")	every	couple	of	breaths.	𝑅!"	is	the	resistance	of	the	respiratory	tract	to	
airflow	and	𝐸!"	is	the	measure	of	the	elastic	properties	of	the	lung	and	pleura.	Using	equation	1,	
the	ventilator	can	calculate	the	total	pressure	that	is	delivered	to	the	respiratory	system	(𝑃!"!#$ 	).	
[4]		
	

𝑃!"!#$ 	 = 	𝑃%&'!	 + 	𝑃()*+$& 	 = (𝑎𝑖𝑟𝑓𝑙𝑜𝑤	 × 	𝑅𝑟𝑠) + (𝑣𝑜𝑙𝑢𝑚𝑒	 × 	𝐸𝑟𝑠)	 (1)	
	
PAV+	is	designed	in	a	way	that	the	work	is	shared	between	the	patient	and	the	ventilator.	The	
total	pressure	is	the	sum	of	the	pressure	generated	by	the	breathing	muscles	and	the	pressure	
generated	by	the	ventilator.		The	clinician	will	determine	what	percentage	of	the	total	pressure	
should	be	accounted	for	by	the	ventilator.	For	example,	if	the	clinician	sets	this	level	of	assist	at	
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70	percent,	the	ventilator	will	provide	70	percent	of	the	calculated	total	pressure,	the	remaining	
being	assumed	by	the	patient’s	respiratory	muscles	[19].		
	
Neurally	adjusted	ventilatory	assist	(NAVA)	is	an	assisted	ventilation	mode	that	measures	the	
electrical	activity	of	the	diaphragm	(EAdi)	via	transoesophageal	electromyography	using	a	
modified	nasogastric	catheter	with	electrodes	at	the	level	of	the	diaphragm	[5].	The	EAdi	is	used	
to	control	the	ventilator:	ventilator	assist	is	provided	proportional	to	the	EAdi	over	the	full	
inspiratory	phase	according	to	a	gain	(NAVA	level,	in	cmH2O/uV)	set	by	the	clinician.	Improved	
patient-ventilator	synchrony	for	this	system	was	shown	by	Piquilloud	et	al.	[20].	Vahedi	et	al.	
showed	positive	staff	experiences	with	the	use	of	NAVA	in	clinical	practice	[21].	One	drawback	is	
that	NAVA	is	only	available	on	one	ventilator	brand,	which	hinders	widespread	implementation.	
NAVA	can	be	used	with	both	noninvasive	and	invasive	mechanical	ventilation.	In	addition,	EAdi	
monitoring	is	available	in	other	modes	than	NAVA	as	well,	as	a	measure	to	monitor	diaphragm	
activity	and	patient-ventilator	interaction	in	order	to	further	optimize	ventilation	management.	
	
Model-based	decision	support	systems		
	
Systems	have	been	created	that	computerize	clinical	protocols	which	medical	staff	use	to	adapt	
mechanical	ventilator	settings.	These	decision	support	systems	are	not	able	to	make	changes	to	
the	ventilator	themselves	but	propose	the	changes	to	the	clinician.	Even	though	these	systems	
are	not	closed-loop	systems,	they	are	described	in	this	section	because	of	their	similarities	with	
closed	loop	systems.		
	
The	INVENT	system,	recently	commercialised	as	the	Beacon	Caresystem,	is	an	open-loop	system	
that	combines	a	set	of	physiological	models	describing	pulmonary	gas	exchange,	lung	mechanics,	
ventilation,	the	acid-base	chemistry	of	blood,	respiratory	drive	and	metabolism	[9,	26].	The	
Beacon	Caresystem	presents	advice	for	ventilator	adjustments	and	the	physiological	rationale	
behind	this	advice.	A	study	by	Spadaro	et	al.	(2018)	has	shown	that	use	of	the	Beacon	
Caresystem	resulted	in	appropriate	responses	to	changes	in	pressure	support	levels	while	acting	
to	preserve	respiratory	muscle	function	[27,	28].	It	is	currently	being	researched	if	the	use	of	the	
decision	support	system	over	the	entire	duration	of	ICU	stay	will	reduce	the	time	spent	on	
mechanical	ventilation	and	the	difficulty	of	the	weaning	process	[26].		
	
Another	decision	support	model	that	is	currently	being	developed	is	the	Lung	and	Diaphragm	
Protective	Ventilation	(LDPV)	model,	aiming	to	assist	the	clinician	in	adjusting	mechanical	
ventilation	settings	toward	target	ranges	that	are	considered	safe	for	the	lungs	and	the	
diaphragm.	The	model	considers	the	respiratory	drive,	pharmacokinetics	of	propofol,	acid–base	
homeostasis,	ventilator	settings	and	lung	and	respiratory	muscle	mechanics.	It	differs	from	
existing	mechanical	ventilation	models	by	focusing	on	output	indicators	that	reflect	lung	and	
diaphragm	safety.	This	model	has	not	been	tested	in	clinical	settings,	but	initial	simulations	have	
produced	results	which	demonstrate	simulated	physiological	responses	consistent	with	what	is	
expected.[7]	
	
Overview	
	
In	table	1	an	overview	is	given	of	the	closed	loop	systems	described	in	this	section.	The	model-
based	decision	support	systems	are	not	included.		
	
Table 1 Overview of the state-of-the-art systems described in this section.   

system	 controlled	variable	 adapted	variable	 source	
Martinoni	et	al.	
(2004)	

End-tidal	𝐶𝑂#	 Minute	ventilation	 [14]	

Hermand	et	al.	
(2016)	

Partial	pressure	arterial	𝐶𝑂#	and	𝑂#	 Minute	ventilation	 [15]	
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AVEA-CLiO2	 𝑂#	saturation	 fraction	of	inspired	𝑂#	 [11]	
ASV	 Breathing	effort	 Tidal	volume,	respiratory	rate	 [4]	
Dräger	SmartCare		 Respiratory	rate,	tidal	volume,	end-tidal	𝐶𝑂#	 Pressure	support	level	 [23]	
PAV+	 Airflow,	volume		 Pressure	support	level	 [4]	
NAVA	 Electrical	activity	of	the	diaphragm	 Triggering,	level	of	inspiratory	assist,	

cycle-off	
[5]	

INTELLiVENT-ASV	 Respiratory	rate,	tidal	volume,	end-tidal	𝐶𝑂#,	
𝑂#	saturation	

Respiratory	rate,	tidal	volume,	
inspiratory	time,	PEEP,	fraction	of	
inspired	𝑂#	

[23]	

Schwaiberger	et	al.	
(2018)	

Airway	pressures,	tidal	volume,	end-tidal	𝐶𝑂#,	
𝑂#	saturation	

Tidal	volume,	PEEP,	respiratory	rate,	
I:E-ratio	and	fraction	of	inspired	𝑂#	

[25]	
	

 
	
2.3.	Possible	improvements	of	current	clinical	practice	with	a	model-based	closed-loop	system	
	
In	the	introduction	the	hypothesis	was	stated	that	model-based	closed-loop	mechanical	
ventilation	systems	could	be	of	use	by	providing	insight	in	the	important	patient’s	specific	
parameters.	This	would	result	in	ventilator	settings	that	are	optimally	adapted	to	the	individual	
patient.	To	improve	the	specification	of	the	clinical	problem,	we	have	spoken	to	an	intensivist	
and	a	technical	physician	specialized	in	the	respiratory	system	of	the	Amsterdam	UMC	and	a	
respiratory	physiologist	of	the	Medisch	Spectrum	Twente.	The	questions	that	were	asked	during	
these	conversations	are	presented	in	appendix	4.	We	have	also	searched	in	literature	for	the	
difficulties	that	are	encountered	in	monitoring	the	important	parameters	and	choosing	the	
optimal	ventilator	settings.	The	possibilities	for	a	system	based	on	a	model	of	the	physiology	of	
breathing	to	overcome	these	difficulties	are	described	at	the	end	of	this	section.	
	
Monitoring	the	mechanical	properties	of	the	respiratory	system	
	
Accurate	monitoring	of	the	mechanical	properties	of	the	respiratory	system	is	important	to	
understand	respiratory	failure	in	patients	on	mechanical	ventilation	and	to	optimize	mechanical	
ventilation	settings	[32].	There	are	several	parameters	that	describe	the	mechanical	properties	
of	the	respiratory	system.	The	first	is	the	respiratory	system	compliance	which	is	the	measure	of	
the	lung	and	chest	wall’s	ability	to	stretch	and	expand.	The	compliance	can	be	determined	from	
the	tidal	volume	(V!),	the	plateau	pressure	(𝑃,$#!)	and	total	positive	end-expiratory	pressure	
(PEEP).		
	
	

𝐶-* =
V!

𝑃./01 − 𝑃𝐸𝐸𝑃!"!
	 (2)	

	
	
The	respiratory	resistance	is	the	resistance	of	the	respiratory	tract	to	airflow	during	inhalation	
and	exhalation.	Airway	resistance	can	be	measured	by	dividing	the	difference	between	the	
plateau	pressure	(𝑃./01)	and	the	peak	pressure	(𝑃.203)	by	the	airflow	in	liters	per	second	
(𝜙#4-).	
	

𝑅-* =
𝑃.203 − 𝑃./01

𝜙#4-
	 (3)	

	
During	controlled	modes	of	ventilation,	a	simple	end-inspiratory	occlusion	maneuver	is	used	to		
compute	𝑃.203 	and	𝑃./01 ,	whereas	an	end-expiratory	occlusion	is	performed	for	measurement	
of	total	PEEP.	Resistance	measurements	can	only	be	done	with	a	constant	flow	condition	such	as	
in	volume-controlled	mode;	compliance	measurements	can	be	performed	during	both	pressure-
controlled	and	volume-controlled	modes.	
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During	assisted	ventilation,	obtaining	an	inspiratory	hold	and	measurement	of	pulmonary	
mechanics	may	be	complicated	because	of	the	combination	of	both	ventilator	and	respiratory	
muscle	pressures	during	inspiration	[32].	It	may	then	be	necessary	to	use	an	esophageal	balloon	
catheter	for	dynamic	rather	than	static	measures	of	lung	and	chest	wall	mechanics.	However,	
esophageal	manometry	is	minimally	invasive	and	may	be	complicated	to	perform	[29].	
	
Although	several	experts	have	confirmed	that	the	measurement	of	𝐶-*	and	𝑅-*	in	spontaneously	
breathing	patients	is	feasible	and	reliable,	it	is	still	rarely	applied	in	the	clinical	practice	[32,	33].	
In	addition,	not	all	available	mechanical	ventilation	systems	allow	occlusion	maneuvers	during	
assisted	ventilation	modes	[29].			
	
Monitoring	the	gas	Exchange	
	
The	gas	exchange	describes	the	movement	of	oxygen	and	carbon	dioxide	between	the	alveoli	
and	the	capillaries	in	the	lungs.	An	impaired	gas	exchange	may	have	several	causes,	e.g.	
pulmonary	shunt,	ventilation-perfusion	(V/Q)	mismatch	and	alveolar	dead	space [34].	In	clinical	
practice,	description	of	the	efficiency	of	the	gas	exchange	is	limited	to	two	single	lumped	indices	
[9].	For	oxygen,	this	is	the	ratio	between	the	partial	pressure	of	oxygen	in	the	arterial	blood	and	
the	fraction	of	inspired	oxygen	(𝑃#𝑂5/𝐹𝑖𝑂5)	which	primarily	describes	oxygenation	
abnormalities	due	to	regions	of	the	lung	with	pulmonary	shunt	and	low	V/Q	ratio.	For	carbon	
dioxide,	this	is	the	ratio	between	the	end-tidal	carbon	dioxide	fraction	and	the	partial	pressure	
of	carbon	dioxide	in	the	arterial	blood	(	𝐸𝑡𝐶𝑂5/𝑃#𝐶𝑂5).		It	is	used	to	approximate	the	effects	of	
high	V/Q	ratio	and	alveolar	dead	space	on	𝐶𝑂5-elimination	[9].	
	
These	indices	do	not	allow	for	separation	of	the	causes	of	impaired	gas	exchange.	There	are	
indications	that	in	patients	with	acute	respiratory	distress	syndrome	(ARDS),	dead	space	has	
prognostic	value	and	can	be	used	to	guide	ventilator	settings.	Several	studies	have	demonstrated	
that	elevated	dead	space	in	patients	with	ARDS	is	associated	with	an	increased	risk	of	mortality	
[35-37].	However,	dead	space	is	seldom	calculated	in	clinical	practice	because	it	requires	the	
alveolar	carbon	dioxide	fraction,	which	is	difficult	to	measure	or	estimate	[38].			
	
Monitoring	the	breathing	effort		
	
Breathing	effort	is	the	energy-consuming	activity	of	the	respiratory	muscles	aimed	at	driving	
respiration.	Maintaining	patient	breathing	effort	during	mechanical	ventilation	has	advantages	
and	disadvantages.	The	positive	effects	of	maintaining	breathing	effort	are	protection	against	
respiratory	muscle	atrophy	and	improved	oxygenation	[39].	The	potential	negative	effect	of	
maintaining	breathing	effort	is	patient	self-inflicted	lung	injury	where	intense	effort	may	
generate	too	large	pressures	that	may	be	damaging	to	the	lungs	[40].	Finding	the	balance	
between	the	former	named	advantages	and	disadvantages	remains	a	challenge	in	mechanical	
ventilation	[41],	especially	in	patients	with	excessive	respiratory	drive.		
	
There	is	no	specific	diagnostic	technique	for	the	assessment	of	breathing	effort.	Physicians	
perform	physical	examination	to	assess	breathing	effort	in	clinical	practice,	like	recruitment	of	
accessory	muscles	or	an	increased	respiratory	frequency	[42].	However,	this	does	not	allow	for	
quantitative	assessment	of	breathing	effort.		
	
For	quantitative	assessment	of	the	breathing	effort,	the	parameters	work	of	breathing	(WOB)	
and	pressure-time	product	(PTP)	are	considered	the	gold	standard.	[42].	The	WOB	is	the	energy	
consumed	for	respiration,	often	expressed	in	joule	per	litre.	The	PTP	is	the	integral	of	all	
pressures	generated	by	the	breathing	muscles	measured	for	one	minute.	For	assessment	of	the	
WOB	and	PTP,	it	is	necessary	to	perform	pressure	measurements	which	are	difficult	to	interpret	
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and	obtain.	For	this	reason,	quantitative	assessment	of	the	breathing	effort	is	rarely	performed	
in	clinical	practice	and	is	limited	to	specialised	research	facilities	[43].			
	
Monitoring	the	respiratory	drive	
	
The	respiratory	drive	describes	the	intensity	of	the	output	of	the	respiratory	centers	[44].	There	
is	no	technique	that	can	measure	the	respiratory	drive	directly.	As	a	result,	the	respiratory	
output	is	used	to	quantify	the	respiratory	drive.	The	respiratory	drive	is	often	qualitatively	
assessed	by	clinical	signs,	e.g.	dyspnea	and	the	use	of	accessory	respiratory	muscles.	Other	
examples	of	assessment	are	the	electrical	activity	of	the	diaphragm	(EAdi),	the	airway	occlusion	
pressure	and	measurement	of	the	esophageal	and	gastric	pressures	[44].	Pressure	
measurements	for	inspiratory	effort	only	reflect	the	respiratory	drive	if	both	neural	
transmission	and	diaphragm	function	are	functional.	
	
EAdi	records	the	electrical	activity	of	the	diaphragm	with	electrodes	incorporated	into	a	
nasogastric	tube	[45].	This	is	the	output	that	is	closest	to	the	output	of	the	respiratory	centers.	It	
is	easy	the	measure,	minimally	invasive	and	the	activity	represents	the	whole	diaphragm.	The	
limitation	of	EAdi	is	that	there	are	no	normal	values	because	EAdi	varies	greatly	between	people.	
However,	it	can	be	useful	to	monitor	changes	in	in	the	diaphragm	activity	within	a	patient	over	
time	[42].		
	
The	airway	end-expiratory	occlusion	pressure	is	a	noninvasive	measurement	that	reflects	the	
output	of	the	respiratory	control	centre	[46].	When	an	end-expiratory	airway	occlusion	is	
applied,	spontaneous	respiratory	effort	by	the	patient	during	the	occlusion	will	generate	a	
negative	pressure	in	the	airway	pressure	that	represents	the	respiratory	muscle	effort	[32].	
	
The	esophageal	or	gastric	pressure	is	measured	via	an	air-filled	balloon	catheter	inserted	in	the	
esophagus	or	stomach	[47].	The	esophageal	pressure	(Pes)	indicates	the	level	of	effort	for	all	
inspiratory	muscles,	while	the	differential	pressure	(gastric	pressure	minus	esophageal	pressure	
=	transdiaphragmatic	pressure	(Pdi))	indicates	effort	of	the	diaphragm	only.	Measurements	are	
rarely	done	in	clinical	practice	because	they	are	challenging	to	perform	and	the	results	may	be	
difficult	to	interpret	for	clinicians[29].	
	
An	important	limitation	of	manometry	in	assessing	the	respiratory	drive	is	that	it	is	not	possible	
to	make	a	distinction	between	impairments	in	the	breathing	muscles	and	the	neural	drive.	This	
imposes	the	risk	of	underestimating	respiratory	drive	in	patients	with	respiratory	muscle	
weakness.	In	these	patients,	despite	a	high	neural	drive	(EAdi),	inspiratory	effort	(Pes,	Pdi)	
might	be	low.	
	
Monitoring	the	blood	gases	
	
Blood	gas	analysis	during	mechanical	ventilation	provides	information	that	allows	the	
assessment	of	oxygenation,	ventilation	and	acid-base	status.	Modern	blood	gas	machines	
measure	the	partial	pressures	of	oxygen	and	carbon	dioxide	and	the	pH	directly.	These	are	then	
used	to	calculate	the	bicarbonate	concentration,	base	excess	and	oxygen	saturation.	The	blood	
gasses	are	measured	multiple	times	per	day	but	there	is	no	standard	protocol	for	the	
measurement	of	the	blood	gases,	which	can	be	a	problem	in	understaffed	intensive	care	units	
[29].		
	
Possible	improvements	in	monitoring	parameters	using	a	model-based	closed-loop	system	
	
In	the	former	paragraphs,	it	was	described	that	in	current	clinical	practice	there	is	often	limited	
insight	in	the	important	parameters	relating	to	the	physiological	state	of	the	patient.	An	
improvement	that	a	new	model-based	closed-loop	mechanical	ventilation	system	could	provide	
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is	the	improved	identification	and	observation	of	the	important	physiological	parameters	and	
variables.	A	model	can	provide	insight	in	parameters	and	variables	that	cannot	be	directly	
obtained	from	measurements	by	using	measured	data	to	estimate	the	physiological	parameters	
and	variables.	
	
An	example	of	a	model	that	could	provide	insight	in	patient	specific	parameters	is	the	pressure	
reconstruction	model	that	was	developed	by	Damanhuri	et	al.	(2016).	This	model	was	used	to	
calculate	how	much	breathing	effort	is	exerted	by	the	patient	during	reverse	triggering,	which	is	
a	specific	from	of	patient-ventilator	asynchrony	in	a	sedated	patient	during	fully	controlled	
mechanical	ventilation.	The	model’s	input	were	the	airway	pressures	and	flow,	and	no	additional	
clinical	protocols	or	invasive	procedures	were	necessary	[48].	It	is	unlikely	that	this	model	can	
be	translated	to	the	spontaneously	breathing	patient	during	assisted	modes	of	ventilation,	due	to	
differences	in	airway	pressure	and	flow	waveform	profiles;	however,	it	would	be	interesting	to	
further	explore	whether	there	are	certain	airway	pressure	and	flow	patterns	or	parameters	that	
could	predict	the	amount	of	patient	effort	in	the	spontaneously	breathing	patient.	
	
The	identification	of	parameters	through	perturbations	in	the	system	input	may	be	an	important	
technique	to	improve	insight	in	the	respiratory	parameters.	Jawde	et	al.	(2020)	described	a	
model	that	can	obtain	the	patient	specific	respiratory	mechanics	after	application	of	
perturbations	in	the	breathing	pattern.	The	system	variates	the	respiratory	rate	and	tidal	
volume	breath-to-breath.	From	the	measured	change	in	airway	pressures	and	airflows	the	
model	can	determine	the	time-dependent	respiratory	resistance	and	elastance	of	the	patient	
[49].	Both	models	have	not	yet	been	tested	in	clinical	practice.		
	
A	system	that	could	provide	the	automatic	application	of	an	end-inspiratory	and	end-expiratory	
occlusion	manoeuvre	could	provide	improved	identification	of	the	parameters	that	describe	the	
respiratory	mechanics.	From	the	end-inspiratory	occlusion	manoeuvre,	the	respiratory	
resistance	and	compliance	can	be	determined	in	controlled	modes.	In	assisted	modes,	the	
respiratory	resistance	and	compliance	could	be	estimated	using	short	occlusions	and	models,	as	
is	done	in	PAV+.	Through	the	end-expiratory	occlusion	the	airway	occlusion	pressure	can	be	
obtained	which	provides	insight	in	the	respiratory	drive	[44].	
	
Measurements	that	are	an	addition	to	those	available	in	routine	clinical	care	may	be	included	to	
the	system	to	allow	for	identification	of	a	greater	number	of	parameters	[1].	An	example	is	the	
use	of	non-invasive	sensors.	In	a	study	of	Doorduin	et	al.	(2016)	it	was	found	that	the	
measurements	of	end	tidal	carbon	dioxide	with	volumetric	capnography	could	be	used	to	
determine	the	true	Bohr	dead	space	[38].		
Continuous	transcutaneous	measurement	of	the	pH	and	partial	pressures	of	oxygen	and	carbon	
dioxide	has	been	developing	for	many	years,	and	it	may	prove	useful	in	capturing	respiratory	
and	hemodynamic	failures	in	critically	ill	patients	[50].		
	
Determination	of	the	optimal	ventilator	settings	
	
Choosing	the	optimal	value	for	ventilator	setting	can	be	challenging	because	it	is	not	always	
known	what	the	optimal	settings	are	in	certain	situations.	An	example	is	the	pressure	support	
level	where	there	is	a	trade-off	between	beneficial	and	detrimental	effects.	When	ventilating	
patients	with	pressure	support,	the	clinical	challenge	is	to	determine	the	level	of	pressure	
support	which	reduces	the	risk	of	respiratory	muscle	atrophy	and	promotes	weaning,	without	
stressing	or	exhausting	the	patient	and	causing	diaphragm	fatigue,	or	introducing	asynchrony	
between	the	patient	and	the	ventilator	[9].		
	
Another	example	is	setting	the	level	of	positive	end-expiratory	pressure	(PEEP).	PEEP	has	the	
advantage	that	is	prevents	the	collapse	of	the	alveoli.	However,	the	disadvantage	of	PEEP	is	that	
it	can	lead	to	overstretching	of	other	lung	parts.	This	means	that	the	value	of	PEEP	should	be	
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chosen	as	low	as	possible	while	still	preventing	alveolar	collapse.	The	optimal	level	of	PEEP	is	
dependent	on	many	factors,	e.g.	severity	of	lung	damage,	degree	of	recruitability.	Studies	
comparing	low	and	high	PEEP	in	ARDS	patients	do	not	show	an	unequivocal	answer.	The	choice	
of	PEEP	also	proves	subjective	with	high	inter-clinician	variability	[51].		
	
The	last	example	given	in	this	section	is	the	level	of	the	fraction	of	inspired	oxygen	(𝐹𝑖𝑂5).	
Breathing	in	air	with	sufficient	oxygen	is	important	to	prevent	hypoxia.	However,	there	are	also	
dangers	to	inspiring	a	high	concentration	of	oxygen	for	a	long	duration	of	time.	Examples	are	the	
suppression	of	the	respiratory	drive,	alveolar	infiltration	and	toxicity.	Toxicity	may	cause	
inflammation	and	eventually,	pulmonary	fibrosis.	It	is	not	always	possible	to	determine	when	
the	toxic	level	will	be	reached	and	it	may	therefore	be	difficult	to	determine	what	the	optimal	
value	of	𝐹𝑖𝑂5	is.	[52]	A	high	𝐹𝑖𝑂5	also	causes	nitrogen	washout.	The	oxygen	molecules	will	
replace	the	nitrogen	molecules	in	the	lungs.	When	the	nitrogen	concentrations	lower,	the	alveoli	
will	start	to	collapse.	This	may	result	in	hypoxemia	because	fewer	alveoli	participate	in	the	gas	
exchange.		
	
Possible	improvements	in	determination	of	the	optimal	ventilator	settings	using	a	model-based	
closed-loop	system	
	
In	the	former	paragraphs,	it	was	described	that	choosing	the	optimal	ventilator	settings	can	be	
challenging.	The	optimal	ventilator	settings	often	have	significant	inter-individual	variability	[1].	
The	ability	of	a	model-based	closed-loop	system	adapted	to	the	individual	patient	to	predict	the	
response	to	changing	ventilator	settings	would	be	a	useful	addition	to	clinical	practice	[53].	
Accurate	prediction	of	responses	to	changing	ventilator	settings	may	enable	more	personalised	
and	efficient	ventilation.	This	will	minimise	the	risk	of	VILI	and	may	reduce	the	duration	of	
mechanical	ventilation,	which	is	clinically	and	economically	important	[10].			
	
Morton	et	al.	(2018)	developed	and	validated	a	single	compartment	lung	model	that	uses	the	
information	about	the	lung	mechanics	available	at	a	low	PEEP	to	predict	the	lung	mechanics	at	a	
higher	PEEP.	The	model	could	accurately	predict	peak	inspiratory	pressures	after	changes	in	
PEEP	and	could	improve	clinician	confidence	in	attempting	potentially	dangerous	treatment	
strategies.[54]	
	
These	predictions	can	be	further	substantiated	with	artificial	intelligence.	With	most	data	
becoming	digitized,	it	is	plausible	that	in	the	future	the	data	that	describes	the	development	of	
the	state	of	the	patient	will	be	available	to	the	ventilator	[6].	Artificial	intelligence	may	learn	
about	the	specific	patient	response	to	ventilator	changes	and	can	therefore	provide	predictions.		
	
An	example	is	the	artificial	neural	network	model	developed	by	Kuo	et	al.	(2015).	This	model	
receives	a	set	of	variables	belonging	to	the	subjects’	characteristics	and	the	breathing	pattern	
and	uses	artificial	intelligence	to	determine	the	chance	of	successful	extubation.	In	clinical	
practice,	this	model	could	help	clinicians	to	select	the	appropriate	earliest	weaning	time.	The	
downside	of	using	a	predictive	model	based	on	artificial	intelligence	compared	to	a	regular	
predictive	model	is	that	the	model	is	not	transparent	for	clinicians	and	the	reasoning	behind	
decisions	is	not	available	[55].	These	models	are	also	solely	based	on	routinely	obtained	
'standard'	measurements,	and	not	on	in-depth	physiology	or	patient	effort.	
	
2.4.	Implications	of	the	desirable	improvements	for	the	design	of	the	model	
	
The	closed-loop	mechanical	ventilation	systems	that	are	used	in	current	clinical	practice	mainly	
focus	on	the	respiratory	mechanics.	In	section	2.2.	it	was	described	that	the	systems	that	do	
encompass	multiple	aspects	in	their	systems	are	perceived	as	complicated	and	non-transparent	
by	clinicians	and	therefore	their	usage	is	low	[21,	24].	The	systems	that	are	currently	used	also	
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do	not	consider	the	different	stages	of	mechanical	ventilation	described	in	section	2.1	and	are	
therefore	not	usable	throughout	the	whole	duration	of	mechanical	ventilation.	
	
In	section	2.3.	it	was	described	that	obtaining	insight	in	important	parameters	that	describe	the	
physiological	state	of	the	patient	is	often	challenging.	During	assisted	ventilation,	it	is	difficult	to	
obtain	insight	in	the	respiratory	mechanics,	the	breathing	effort	and	the	respiratory	drive	
because	of	the	combination	of	ventilator	and	patient	efforts.	Other	parameters,	like	the	
physiological	dead	space,	are	useful	to	acquire	but	require	difficult	measurements.	
It	was	also	described	that	selecting	ventilator	settings	can	introduce	a	difficult	balance	between	
sufficient	oxygenation,	prevention	of	breathing	function	degeneration	and	prevention	
of	ventilator-induced	lung	injury	[56].	Throughout	the	duration	of	mechanical	ventilation,	it	is	
often	unknown	what	the	optimal	combination	of	ventilator	settings	is	for	the	individual	patient	
[1].	The	chosen	combinations	of	ventilator	settings	often	vary	among	clinicians	in	similar	
situations	[57].		
	
In	section	2.3.	the	possible	improvements	that	a	new	model-based	closed-loop	ventilation	
system	could	add	to	current	practice	were	described.	The	first	improvement	is	the	improved	
identification	and	observation	of	the	important	physiology	parameters	and	variables	that	cannot	
be	measured	directly.	A	model	could	provide	insight	in	parameters	and	variables	that	cannot	be	
directly	obtained	from	measurements	by	using	measured	data	to	estimate	the	values.	When	
insight	in	the	important	parameters	is	obtained,	the	patient-specific	model	parameters	can	be	
identified,	and	it	is	possible	to	adapt	the	model	to	the	individual	patient.	Measurements	that	are	
an	addition	to	those	available	in	routine	clinical	care	may	be	included	to	allow	for	identification	
and	observation	of	a	greater	number	of	parameters	and	variables	[1].	Examples	described	in	this	
section	are	the	automatic	periodic	application	of	an	end-inspiratory	and	end-expiratory	
occlusion	manoeuvre,	perturbations	in	the	breathing	pattern	or	the	use	of	state-of-the-art	non-
invasive	sensors	[50,	58].	Periodically	identifying	the	important	parameters	could	provide	better	
insight	in	the	patient’s	physiological	state	and	its	development	for	the	clinician.		
	
This	also	induces	the	second	improvement.	The	model	that	is	adapted	to	the	patient	can	predict	
patient	responses	to	changes	in	ventilator	settings.	The	ability	to	predict	the	response	to	
changing	ventilator	settings	would	offer	insight	in	the	optimal	ventilator	settings	that	current	
care	and	equipment	cannot	provide	[53].	This	will	minimise	the	risk	of	VILI	and	may	reduce	the	
duration	of	mechanical	ventilation,	which	is	clinically	and	economically	important	[10].	These	
predictions	could	be	further	substantiated	through	the	use	of	artificial	intelligence.		
	
Our	new	model	should	focus	on	the	two	improvements	that	are	described	above.	This	pleads	for	
a	model	that	has	low	complexity	but	is	adequately	valid,	so	that	all	important	parameters	can	be	
identified	with	limited	information.	Another	benefit	that	this	induces	it	that	the	model	will	be	
transparent	and	understandable	for	clinicians	which	may	improve	the	usage.	The	model	
parameters	should	be	adaptable	to	the	individual	patient	to	allow	for	model	predictions	of	
patient	responses	to	changing	ventilator	settings.	In	the	first	stadium	of	development,	this	model	
could	provide	insight	in	respiratory	parameters	and	variables	that	the	clinician	may	use	to	
choose	the	optimal	ventilator	settings.	In	a	later	stadium	of	development,	this	model	could	be	
the	basis	of	a	closed-loop	mechanical	ventilation	system	based	on	the	physiology	of	breathing	
that	can	automatically	adapt	the	ventilator	settings.	
	
The	choice	is	made	to	mainly	focus	our	model	on	the	gas	exchange	and	the	respiratory	drive.	We	
are	aware	that	gaining	insight	in	the	respiratory	mechanics	is,	especially	in	the	first	stage	of	
mechanical	ventilation,	of	equal	or	even	greater	importance.	However,	the	choice	to	focus	on	the	
other	aspects	of	the	physiology	of	breathing	is	made,	because	most	commercialized	systems	
already	focus	on	the	respiratory	mechanics.	It	is	suspected	that	a	system	that	focusses	on	the	gas	
exchange	and	the	respiratory	drive	can	also	be	very	useful	in	clinical	practice.	Especially	during	
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the	later	stages	of	mechanical	ventilation	when	the	patient	comes	near	the	weaning	stage	and	
assessment	of	the	breathing	function	of	the	patient	becomes	of	great	importance.		
	
It	will	likely	not	be	possible	to	provide	insight	in	all	the	important	respiratory	parameters	and	
make	elaborate	predictions	with	the	simple	model	that	is	developed	in	this	thesis.	However,	
before	the	creation	of	elaborate	models,	it	is	important	to	research	what	the	base	structure	of	
these	models	should	be.	When	the	results	of	simulations	with	the	model	are	qualitatively	similar	
to	the	responses	measured	in	an	experimental	study,	we	may	be	able	to	show	the	first	signs	of	
the	use	of	such	a	model	in	clinical	practice	by	identifying	aggregated	parameter	groups	and	
making	simple	predictions.	In	the	next	section,	the	development	of	the	model	is	described.		
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3.	Model	development	and	analysis		
	
In	this	section,	the	development	and	the	subsequent	dynamical	analysis	of	the	model	are	
described.	In	section	2.4.	it	was	described	which	requirements	for	the	model	followed	from	
current	clinical	practice.	The	model	should	have	low	complexity	and	will	mainly	focus	on	the	gas	
exchange	and	the	respiratory	drive.	In	section	3.1.	the	development	of	a	model	that	meets	these	
requirements	is	described.	Since	the	model	is	created	on	a	theoretical	basis,	it	is	necessary	to	
find	out	if	the	mode	has	the	right	structure	to	accurately	describe	the	real	breathing	system.	
With	the	dynamical	analysis	and	subsequent	simulations	described	in	section	3.2,	the	dynamic	
behaviour	of	the	model	can	be	analysed	and	a	hypothesis	for	the	dynamic	behaviour	of	the	real	
breathing	system	can	be	stated.	This	hypothesis	will	later	be	tested	with	an	experiment.	In	
section	3.3.	the	most	important	results	are	summarized,	interpreted	and	their	implications	for	
the	experiment	design	are	stated.	
	
3.1.	Model	development	
	
3.1.1.	The	schematic	model	
	
In	the	introduction	the	workflow	of	closed	loop	mechanical	ventilation	systems	was	briefly	
described.	The	human	breathing	system	is	in	essence	also	a	closed	loop	system.	In	this	case,	the	
sensor	that	measures	a	physiological	variable	is	not	an	artificial	sensor	but	are	the	central	and	
peripheral	chemoreceptors	that	measure	the	𝐶𝑂5	and	𝑂5	concentrations	and	the	pH	of	the	blood	
and	the	extracellular	fluid	(ECF).	In	the	respiratory	control	centre	(controller)	that	is	located	in	
the	brain,	the	concentrations	are	compared	to	the	desired	value.	In	this	case,	the	actuation	is	not	
a	change	in	ventilator	settings	but	a	change	in	movement	of	the	breathing	muscles.	The	patient	
(process)	may	start	ventilating	more	or	less	to	obtain	the	desired	blood	gasses.		
	
	

 
Figure 2 Schematic overview of the human ventilatory control function. 

The	development	of	the	model	will	consist	of	three	main	steps:	
- Creation	of	a	schematic	model	
- Derivation	of	the	mathematical	equations	
- Implementation	in	Simulink	

The	first	step	is	the	creation	of	a	schematic	model.	In	figure	3	this	model	is	presented.	The	grey	
blocks	in	the	schematic	model	represent	the	four	general	components	of	a	closed	loop	system	
that	were	described	in	the	previous	paragraph:	the	process,	the	sensor,	the	controller	and	the	
actuator.	The	four	components	have	different	subsystems	that	are	represented	by	the	white	
coloured	blocks.	The	arrows	represent	the	information	flow	or	the	physiological	interactions	
between	the	different	subsystems.	The	values	of	the	cursive	variables	belonging	to	the	arrows	
are	transferred	from	one	subsystem	to	another.	The	receiving	subsystem	will	use	this	
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information	to	determine	the	value	of	other	variables.	For	this,	mathematical	equations	are	used	
that	are	described	in	section	3.2.		
	
In	the	process	block	there	are	three	subsystems	that	can	store	𝐶𝑂5	and	𝑂5:	the	venous	blood,	the	
arterial	blood	and	the	alveolar	air.	In	these	subsystems,	cursive	variables	are	displayed,	which	
represent	the	state	variables.	The	state	variables	are	variables	that	are	not	transported	between	
subsystems	but	give	information	about	the	accumulation	of	𝐶𝑂5	and	𝑂5	in	the	storage	blocks.	In	
section	3.2.	the	content	of	each	subsystem	is	described	in	detail.		
	
	
	 	

Figure 3 Schematic model of the physiology of breathing  
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3.1.2	Mathematical	equations	describing	the	relevant	physiology	
	
In	the	former	section,	an	overview	of	the	schematic	model	with	the	different	subsystems	was	
given.	Each	subsystem	contains	mathematical	equations	that	are	described	in	this	section.	To	
avoid	repetition,	only	the	equations	for	𝐶𝑂5	will	be	described	in	this	section	of	the	report.	In	
appendix	1	the	equations	for	𝑂5	can	be	found.		
	
Breathing	mechanics	
	
Since	our	model	is	not	mainly	focussed	on	the	breathing	mechanics,	a	simple	first	order	system	
will	be	used	to	describe	the	beathing	mechanics.	The	intrapleural	pressure	(𝑃6.(𝑡))	is	the	
pressure	in	the	intrapleural	space.	Because	the	lungs	and	the	chest	wall	pull	away	from	each	
other	on	opposite	sides	of	the	intrapleural	space,	the	intrapleural	pressure	is	less	than	
barometric	pressure	(𝑃7(𝑡)).	During	inspiration,	the	inspiratory	muscles	expand	the	chest,	
making	𝑃6.(𝑡)	more	negative.	The	lungs	respond	by	expanding	passively.		
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	

The	alveolar	pressure	(𝑃0(𝑡))is	equal	to	the	pressure	in	the	alveoli.	The	transpulmonary	
pressure	(𝑃1.(𝑡))	is	the	pressure	across	the	alveolar	wall.	It	is	equal	to	the	difference	between	
the	alveolar	pressure	and	the	intrapleural	pressure.		
	

𝑃1.(𝑡) = 𝑃0(𝑡) − 𝑃6.(𝑡)	 (4)	
	

𝑃1.	is	also	proportional	to	the	difference	between	the	alveolar	volume	(V8(𝑡))	and	the	
Functional	residual	capacity	(𝑉9:;)	and	inversely	proportional	to	the	respiratory	system	
compliance	(𝐶-*).		
	

𝑃1.(𝑡) =
V8(𝑡) − 𝑉9:;

𝐶-*
	 (5)	

	
Airflow	in	the	airways	(𝜙0<(𝑡))	is	proportional	to	the	pressure	over	the	airways	(Δ𝑃0<(𝑡))	and	
inversely	proportional	to	total	respiratory	system	resistance	(𝑅-*).	𝑃0<(𝑡)	is	equal	to	the	
difference	between	𝑃0(𝑡)	and	the	ventilator-induced	pressure	at	the	mouth	(𝑃=(𝑡)).	When	the	
patient	is	not	attached	to	a	ventilator,	𝑃=(𝑡)	equals	zero.	All	pressures	have	values	relative	to	the	
atmospheric	pressure.			
	

𝜙0<(𝑡) =
𝑃0<(𝑡)
𝑅-*

=
𝑃0(𝑡) − 𝑃=(𝑡)

𝑅-*
	 (6)	

Figure 4 The transpulmonary pressure is equal to the difference between the 
alveolar pressure and the intrapleural pressure.  
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In	figure	5	a	conceptual	model	of	the	breathing	mechanics	can	be	seen.	Using	Kirchhoff’s	law,	it	
can	be	determined	that	the	airflow	in	the	airways	(𝜙0<(𝑡))	is	equal	to	the	airflow	to	the	alveoli	
(𝜙0(𝑡)).	This	flow	is	equal	to	the	change	in	alveolar	volume.		

	

𝜙0<(𝑡) =
dV8(𝑡)
𝑑𝑡

	 (7)	

	
Kirchhoff’s	law	also	states	that	the	sum	of	all	the	pressures	in	the	conceptual	model	should	be	
equal	to	zero.		
	

𝑃=(𝑡) − 𝑃0<(𝑡) − 𝑃1.(𝑡) − 𝑃6.(𝑡) = 0	 (8)	
	
After	combining	the	formed	equations,	equation	9	is	obtained.	
	

𝑅-* ⋅ 𝐶-* ⋅
dV8(𝑡)
𝑑𝑡

+ (V8(𝑡) − 𝑉9:;) = 𝐶-* ⋅ (𝑃=(𝑡) − 𝑃6.(𝑡))	 (9)	

	
Explanation:	From	this	equation,	the	alveolar	volume	and	airflow	as	a	function	of	time	can	be	
determined	when	the	pressures	and	resistance	and	compliance	are	known.	The	values	of	the	
alveolar	volume	and	airflow	will	be	transported	to	the	subsystem	‘the	alveolar	air’	(figure	3).	The	
system	‘the	alveolar	air’	will	use	its	own	equations	to	determine	the	value	of	other	variables.	These	
variables	are	in	turn	transported	to	other	blocks.	This	is	the	global	workflow	of	a	mathematical	
model.		
	
Alveolar	air		
	
The	change	in	the	number	of	𝐶𝑂5	molecules	in	the	alveolar	air	(𝑚0	;?!(𝑡))	depends	on	the	
diffusion	flow	from	the	capillaries	to	the	alveolar	space	(𝜙@4A	;?!(𝑡))	and	the	outflow	of	𝐶𝑂5		
from	the	body	(𝜙0<	;?!(𝑡)).		
	

𝑑𝑚0	;?!(𝑡)
𝑑𝑡

= 𝜙@4A	;?!(𝑡) − 𝜙0<	;?!(𝑡)	 (10)	

	
The	relation	between	the	partial	pressure	of	𝐶𝑂5	in	the	alveolar	air	(𝑃0	;?!)	and	the	
concentration	of	𝐶𝑂5	in	the	alveolar	air	is	linear.	The	factor	𝑘B	describes	the	linear	relation	
between	both	variables.		
	
	

Figure 5 schematic overview of the respiratory mechanics. 
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𝑃0	;?!(𝑡) = 𝑘B ⋅
𝑚0	;?!(𝑡)
𝑉0(𝑡)

	 (11)	

	
The	flow	of	𝐶𝑂5	in	and	out	of	the	lungs	(𝜙0<	;?!(𝑡))	is	dependent	on	the	airflow	(𝜙0<(𝑡))	and	
during	exhalation	on	the	concentration	of	𝐶𝑂5	in	the	lungs	(𝐶0"#!(𝑡))	or	during	inhalation	on	the	
concentration	of	𝐶𝑂5	in	the	inspired	air	(𝐶#!("#!

(𝑡)).		
	
Inhalation	

𝜙0<	;?!(𝑡) = 𝐶#!("#!
(𝑡) ⋅ 𝜙0<	(𝑡)	 (12)	

	
Exhalation	

𝜙0<	;?!(𝑡) = 𝐶0"#!(𝑡) ⋅ 𝜙0<	(𝑡)	 (13)	
	
	
Diffusion	between	alveolar	air	and	the	pulmonary	capillaries	
	
The	movement	of	𝐶𝑂5	across	the	alveolar	blood-gas	barrier	occurs	by	simple	diffusion.	Fick’s	
law	describes	that	the	net	flow	is	proportional	to	the	difference	in	partial	pressures	of	𝐶𝑂5	in	the	
alveolar	air	and	the	blood.	The	diffusion	coefficient	(𝐷/"#!)	is	dependent	on	the	properties	of	
both	the	barrier	and	the	gas.	If	we	assume	that	the	alveolar	air,	blood-gas	barrier	and	pulmonary	
capillary	blood	are	uniform	in	space	and	time,	then	the	net	diffusion	of	𝐶𝑂5	from	the	alveolar	air	
to	pulmonary	capillary	blood	is	described	by	equation	14.		
	

𝜙@4A	;?!(𝑡) = 𝐷/"#! F𝑃%;?!(𝑡) − 𝑃0"#!(𝑡)G	 (14)	
	
	
Arterial	blood	
	
The	change	of	the	total	𝐶𝑂5	mass	in	the	arterial	blood	(𝑚#$%!

(𝑡))	is	equal	to	the	sum	of	the	flows	
that	carry	𝐶𝑂5	in	and	out	of	the	compartment.	The	outgoing	flow	consists	of	the	diffusion	flow	
and	the	flow	of	𝐶𝑂5	molecules	from	the	arterial	blood	to	the	venous	blood	(𝜙#%	"#!(𝑡)).	The	
ingoing	flow	is	the	flow	of	𝐶𝑂5	molecules	from	the	venous	blood	to	the	arterial	blood	(𝜙%#	"#!(𝑡))	
	

𝑑𝑚#$%!
(𝑡)

𝑑𝑡
= 𝜙%#	"#!(𝑡) − 𝜙@4A	"#!(𝑡) − 𝜙#%	"#!(𝑡)	

	

(15)	
	

	
The	flow	of	𝐶𝑂5	from	the	venous	to	the	arterial	compartment	(𝜙%#	"#!(𝑡))	and	the	flow	of	𝐶𝑂5		
from	the	arterial	to	the	venous	compartment	(𝜙#%	"#!(𝑡))	are	described	by	equation	16	and	17.	
The	flows	between	the	blood	compartment	are	equal	to	the	product	of	the	blood	flow	in	the	
compartment	(𝑄(𝑡))	and	the	concentration	of	𝐶𝑂5	in	the	sending	compartment.	
	

𝜙%#	"#!(𝑡) = 𝑄(𝑡) ⋅
𝑚%"#!

(𝑡)
𝑉%	

	
(16)	
	

	

𝜙#%	"#!(𝑡) = 𝑄(𝑡) ⋅
𝑚#"#!

(𝑡)
𝑉#	

	

	

(17)	
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The	partial	pressure	of	𝐶𝑂5	in	the	arterial	blood	(𝑃#"#!(𝑡))	is	dependent	on	the	mass	
concentration	of	𝐶𝑂5	in	the	arterial	blood	(𝐶#"#!(𝑡)).	The	carbon	dioxide	dissociation	curve	that	
describes	the	relationship	between	𝑃#"#!(𝑡)	and	𝐶#"#!(𝑡)	is	shown	in	figure	6.	The	curve	is	near-
linear	in	the	physiological	range.	Therefore,	the	constants	𝑘5	and	𝑘C	are	introduced	to	describe	
this	relation.	The	decreasing	slope	of	the	curve	is	likely	caused	by	the	buffering	of	𝐶𝑂5	in	
bicarbonate.	The	buffering	of	𝐶𝑂5	in	bicarbonate	will	not	be	added	to	this	first	model	to	keep	the	
model	simple.			
	

𝑃#"#!(𝑡) = 𝑘5 ⋅
𝑚#$%!

(𝑡)
𝑉#	

− 𝑘C	 (18)	

	
	
	
	
 
 
	
	
	
	
	
	
	
	
	
	
	
	
	
Venous	blood	
	
The	change	of	the	total	𝐶𝑂5	mass	in	the	venous	blood	(𝑚%$%!

(𝑡))	is	equal	to	the	sum	of	the	flows	
that	carry	𝐶𝑂5	in	and	out	of	the	compartment.	The	outgoing	flow	is	the	flow	of	𝐶𝑂5	molecules	
from	the	venous	blood	to	the	arterial	blood.	The	ingoing	flow	consists	of	the	flow	of	𝐶𝑂5	
molecules	from	the	arterial	blood	to	the	venous	blood	and	the	metabolic	flow	of	𝐶𝑂5	molecules	
(𝜙(&!	"#!(𝑡)).	
	

𝑑𝑚%$%!
(𝑡)

𝑑𝑡
= 𝜙#%	"#!(𝑡) + 𝜙(&!	"#!(𝑡) − 𝜙%#	"#!(𝑡)	

(19)	
	

	
	
The	partial	pressure	of	𝐶𝑂5	in	the	venous	blood	(𝑃%"#!(𝑡))	is	dependent	on	the	mass	
concentration	of	𝐶𝑂5	in	the	venous	blood	(𝐶%"#!(𝑡)).	The	carbon	dioxide	dissociation	curve	that	
describes	the	relationship	between	𝑃%"#!(𝑡)	and	𝐶%"#!(𝑡)	is	shown	in	figure	6.	The	curve	is	near-
linear	in	the	physiological	range.	Therefore,	the	constants	𝑘D	and	𝑘E	are	introduced	to	describe	
this	relation.	The	constants	𝑘D	and	𝑘E	differ	from	𝑘5	and	𝑘C	because	the	curve	for	the	venous	
blood	is	shifted	up	compared	to	the	arterial	blood	because	of	the	Haldane	effect.	The	Haldane	
effect	describes	the	ability	of	haemoglobin	to	carry	increased	amounts	of	𝐶𝑂5	in	the	
deoxygenated	state	as	opposed	to	the	oxygenated	state.	As	a	result,	a	higher	concentration	of	
𝐶𝑂5	is	necessary	in	deoxygenated	blood	to	reach	a	similar	partial	pressure.	
	

Figure 6 The dissociation curve of carbon dioxide. A 
tangent is added in the physiological range of the 
PaCO2. 
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𝑃%"#!(𝑡) = 𝑘D ⋅
𝑚%"#!

(𝑡)
𝑉%	

− 𝑘E	

	
(20)	

	
A	single	blood	compartment	(simplification)	
	
If	the	dynamical	analysis	of	the	original	model	proves	impossible,	a	simplification	should	be	
applied.	A	simplification	of	the	model	is	described	here	that	turns	the	third	order	model	in	a	
second	order	model.	The	block	for	the	arterial	and	the	venous	blood	are	merged	into	one	single	
block	that	describes	the	total	blood	volume.		
	
The	change	of	the	total	𝐶𝑂5	mass	in	the	blood	(𝑚F$%!

(𝑡))	is	equal	to	the	sum	of	the	flows	that	
carry	𝐶𝑂5	in	and	out	of	the	compartment.	The	outgoing	flow	is	the	flow	of	𝐶𝑂5		molecules	that	
diffuse	to	the	lungs	and	the	ingoing	flow	is	the	metabolic	flow	of	𝐶𝑂5	molecules.	
	

𝑑𝑚F$%!
(𝑡)

𝑑𝑡
= 𝜙(&!	"#!(𝑡) − 𝜙@4A	"#!(𝑡)	

(21)	
	

	
	
The	partial	pressure	of	𝐶𝑂5	in	the	blood	(𝑃F"#!(𝑡))	is	dependent	on	the	mass	concentration	of	
𝐶𝑂5	in	the	arterial	blood.	The	constants	𝑘G	and	𝑘H	are	used	to	describe	the	relation.	
	
	
	

𝑃F"#!(𝑡) = 𝑘G ⋅
𝑚F"#!

(𝑡)
𝑉F	

+ 𝑘H	

	
(22)	

	
	
Metabolism	
	
The	metabolism	encompasses	all	the	chemical	processes	involved	in	energy	production,	energy	
release	and	growth.	The	metabolism	requires	a	supply	of	𝑂5	and	produces	𝐶𝑂5.	The	respiratory	
quotient	(RQ)	is	the	ratio	of	moles	of	𝐶𝑂5	produced	per	moles	of	𝑂5	consumed	at	the	tissue	level.		
	

𝜙(&!	;?!(𝑡) = 𝑅𝑄 ⋅ 𝜙(&!	?!(𝑡)	
	 (23)	

Perfusion	
	
Perfusion	(𝑄(𝑡))	is	the	input	variable	for	the	subsystems	‘arterial	blood’	and	‘venous	blood’.	It	
represents	the	convective	movement	of	blood	that	carries	the	dissolved	gasses	to	and	from	the	
lung.		
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Central	and	peripheral	chemoreceptors	
	
The	central	and	the	peripheral	chemoreceptors	measure	concentrations	in	the	blood	and	the	
cerebrospinal	fluid	(CSF)	and	are	the	source	of	feedback	for	assessing	the	effectiveness	of	
ventilation.	When	the	𝑃#"#!	is	too	high	or	the	𝑃##!	is	too	low,	the	firing	rate	of	the	of	the	
chemoreceptors	will	increase.	This	will	in	turn	stimulate	the	breathing	muscles	and	increase	
ventilation.		
	
When	the	blood-gas	parameters	are	nearly	normal,	
the	central	chemoreceptors	are	of	most	importance.	
These	receptors	are	sensitive	to	the	pH	of	the	
cerebrospinal	fluid	(CSF)	which	is	dependent	on	the	
𝑃'!"#	[44].	The	central	chemoreceptor	response	is	
slow,	with	a	time	constant	in	the	range	of	60	to	150	
seconds	[59].		
The	peripheral	chemoreceptors	are	primarily	
sensitive	to	𝑃'"#	 ,	𝑃'!"#	 ,	and	the	pH	of	the	arterial	
blood.	Their	contribution	to	respiratory	drive	in	
healthy	subjects	is	modest.	They	are	relevant	in	
ventilated	patients	in	whom	hypoxemia,	hypercapnia,	
and	acidosis	are	more	common	[60].	The	response	of	
the	peripheral	chemoreceptors	is	fast,	with	a	time	
constant	of	10	to	30	seconds	[59].	
	
	
In	figure	7	it	is	shown	that	the	closed-loop	relationship	between	𝑃'!"#		and	the	equilibrium	value	
of	the	minute	ventilation	is	linear	when	𝑃'!"#	increases	above	40	mmHg	(setpoint).	When	𝑃'!"#			
decreases	below	40	mmHg,	the	respiratory	drive	lowers	gradually	[61].		
	
For	now,	the	choice	is	made	to	only	model	the	central	chemoreceptors	since	these	are	of	most	
importance	in	healthy	subjects.	In	equation	24	the	relation	between	the	activity	of	the	central	
chemoreceptors	(𝑎(()	(𝑡))	and	the	partial	pressure	of	C𝑂5	in	the	arterial	blood	is	presented.	This	
relation	is	dependent	on	the	desired	value	of	the	partial	pressure	of	𝐶𝑂5	in	the	arterial	blood	
(𝑃'!"# 	*+,-)+*),	the	activity	of	the	central	chemoreceptors	in	the	normal	situation	(𝑘I)	and	the	
parameter	𝑘J.	The	value	of	𝑘J	is	likely	dependent	on	𝑃'"# .		
 
𝑖𝑓	𝑃#"#! >	𝑃#"#!	./01%230:	

𝑎++-(𝑡) = F𝑃#"#!(𝑡) − 𝑃#"#! 	@&*4-&@G ⋅ 𝑘J + 𝑘I	 (24)	
	
	
Central	pattern	generator	
	
The	central	pattern	generator	(CPG)	is	located	in	the	medulla	and	consists	of	the	neurons	that	
generate	the	respiratory	rhythm.	The	CPG	receives	input	from	the	central	and	peripheral	
chemoreceptors.	In	our	model	only	the	central	chemoreceptors	are	considered	and	the	relation	
between	the	activity	of	the	central	pattern	generator	(𝑎+,K)	and	the	activity	of	the	central	
chemoreceptors	is	described	with	the	parameter	𝑘BL.	
	

𝑎+,K = 𝑎++- ⋅ 𝑘BL	
	 (25)	

	
	

Figure 7 The minute volume induced by the ventilatory control 
centre is dependent on the partial pressure of carbon dioxide in the 
arterial blood. This figure presents the relationship in healthy 
subjects.  
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Breathing	muscles	
	
The	muscles	that	produce	a	quiet	inspiration	are	called	the	primary	muscles	of	inspiration	and	
include	the	diaphragm	and	the	intercostal	muscles.	During	inspiration,	the	muscles	will	create	a	
decrease	in	the	intrapleural	pressure	(𝑃4,)	which	makes	air	flow	into	the	lungs.	The	size	and	
frequency	of	the	breaths	are	dependent	on	the	output	of	the	central	pattern	generator	[62].	The	
central	pattern	generator	can	influence	the	frequency	or	the	depths	of	the	breaths.	For	this	
model,	it	is	chosen	to	let	the	central	pattern	generator	influence	the	intrapleural	pressure	that	
influences	the	depth	of	the	breaths.		
	

𝑃4,(𝑡) = 𝑎+,K ⋅ 𝑘BB	
	 (26)	

In	appendix	1	the	implemented	Simulink	model	and	a	table	that	contains	the	model	variables	
and	parameters,	their	abbreviations	and	their	initial	values	is	presented.		
	
3.2.	Dynamical	analysis	of	the	model	
	
In	this	section,	the	dynamical	analysis	of	the	model	is	described.	The	model	is	created	on	a	
theoretical	basis.	Therefore,	it	is	necessary	to	find	out	if	the	model	that	has	been	created,	has	the	
right	structure	to	accurately	describe	the	breathing	system.	With	the	dynamical	analysis	and	
subsequent	simulations,	we	hope	to	analyse	the	dynamic	behaviour	of	our	model	and	state	a	
hypothesis	for	the	dynamic	behaviour	of	the	breathing	system.	In	section	4	an	experiment	will	
be	described	that	can	be	used	to	test	this	hypothesis.		
	
The	dynamic	components	that	will	be	analysed	are	the	equilibrium	states,	the	eigenvalues	and	
the	time	constants.	When	a	system	is	stable	and	the	system	input	is	constant,	all	state	variables	
of	the	system	(𝑚!	#$!(𝑡),𝑚%	#$!(𝑡)		etc)	will	eventually	reach	a	constant	value	which	is	called	the	
equilibrium	state.		
The	eigenvalues	of	a	system	describe	the	relationship	between	the	individual	system	state	
variables	and	their	derivatives.	The	time	constants	can	be	derived	from	the	eigenvalues	and	
describe	the	exponential	response	of	a	system	after	perturbation.	The	time	constant	is	the	time	
it	takes	for	the	systems	response	to	reach	63.2%	of	its	final	equilibrium	value.		
	
The	analysis	that	is	conducted	is	an	open-loop	analysis,	which	means	that	only	the	process	block	
of	the	model	will	be	analysed,	and	the	feedback	loop	is	disregarded.	The	process	and	the	
controller	will	both	add	dynamic	components	to	the	dynamic	behaviour	of	the	full	system.	It	is	
very	difficult	to	determine	what	dynamic	behaviour	is	induced	by	the	process	and	what	dynamic	
behaviour	is	induced	by	the	controller.	This	makes	interpretation	difficult.	Therefore,	we	have	
chosen	to	perform	an	open-loop	analysis	to	identify	the	properties	of	the	process	first.			

 
Figure 8 The different components of a closed-loop system. During open-loop analysis, the dynamic behaviour of the process 
is analysed, and the feedback-loop is disregarded.	
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The	process	model	can	be	divided	in	two	subsystems	that	can	be	analysed	separately:	the	
breathing	mechanics	and	the	gas	exchange.	The	first	subsystem	represents	the	mechanics	of	
breathing	and	can	be	analysed	over	one	breathing	cycle.	More	information	about	this	subsystem	
can	be	found	in	the	paragraph	‘breathing	mechanics’	in	section	3.1.2.	The	second	subsystem	
represents	the	exchange	of		𝑂5	and	𝐶𝑂5	and	can	be	analysed	over	multiple	breathing	cycles.	
More	information	about	this	subsystem	can	be	found	in	the	paragraphs	‘alveolar	air’	to	
‘metabolism’	in	section	3.1.2.			
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	

Both	systems	will	be	analysed	separately.	We	will	start	with	the	open-loop	analysis	of	the	
mechanics	of	breathing.	The	derivations	belonging	to	the	equations	described	in	this	section	can	
be	found	in	appendix	2.			
	
3.2.1.	Open-loop	analysis	of	the	mechanics	of	breathing	
		
The	first	step	in	the	analysis	is	determining	the	state	equations.	The	state	equations	express	the	
time	derivatives	of	the	state	variables	in	variables	and	parameters.	The	subsystem	‘mechanics	of	
breathing’	only	has	one	state	variable,	𝑉$(𝑡).	The	corresponding	state	equation	is	created	with	
the	equations	from	section	3.1.2.	and	is	presented	as	equation	27.		
	

𝑑𝑉!(𝑡)
𝑑𝑡 =

𝐶"# ⋅ 𝑃$ − 𝐶"# ⋅ 𝑃%& − 𝑉!(𝑡) + 𝑉'() 	
𝐶"# ⋅ 𝑅"#

	 (27)	
	

Figure 9 The process block of the model can be divided into two separate subsystems that can be analysed separately. 

The	exchange	of		𝑂4	and	𝐶𝑂4 

The	mechanics	of	breathing 
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The	second	step	in	the	analysis	is	the	expression	of	the	equilibrium	state.	In	equation	28,	the	
equilibrium	state	of	𝑉!(𝑡)	is	expressed	in	model	parameters.	When	these	model	parameters	are	
known,	the	exact	value	of	the	equilibrium	state	of	𝑉!(𝑡)	can	be	determined.	
	

𝑉!	+, = 𝐶"# ⋅ 𝑃$	+, − 𝐶"# ⋅ 𝑃%&	+, + 𝑉'() 	 (28)	
	

The	eigenvalues	of	the	system	determine	the	relationship	between	the	individual	system	state	
variables.	Since	this	system	only	has	one	state	variable,	the	eigenvalue	is	equal	to	the	factor	
between	this	state	variable	and	its	derivative.		

𝜆B =
−1

𝐶-* ⋅ 𝑅-*
 (29)	

From	this	eigenvalue,	the	time	constant	can	be	calculated	that	represents	how	fast	the	lungs	fill	
or	empty	during	in-	or	expiration.		

𝜏B = 𝐶-* ⋅ 𝑅-*	
	 (30)	

	
It	is	found	that	the	time	constant	is	the	product	of	the	respiratory	resistance	(𝑅-*)	and	
compliance	(𝐶-*).		
	
3.2.2.	Open-loop	analysis	of	the	exchange	of	𝑂5	and	𝐶𝑂5	
 
Here,	the	gas	exchange	between	the	lungs	and	the	blood	will	be	described.	To	avoid	repetition,	
only	the	equations	for	𝐶𝑂5	will	be	described	in	this	section	of	the	report.	In	appendix	2	the	
equations	for	𝑂5	can	be	found.		

Unfortunately,	full	analysis	for	this	subsystem	of	the	original	model	deemed	impossible.	The	
subsystem	of	the	exchange	of	𝑂5 and 𝐶𝑂5 is	a	third	order	system	with	three	state	variables	
(𝑚!!"#

(𝑡),𝑚-!"#
(𝑡),𝑚.!"#

(𝑡))	which	makes	it	complicated	to	analyse.	In	appendix	2	the	steps	of	the	
analysis	of	the	original	third	order	system	that	were	possible	are	shown.	

The	third	order	system	can	be	replaced	by	a	second	order	system	that	has	one	merged	blood	
component	instead	of	two	separate	compartments	for	arterial	and	venous	blood.	The	state	
variables	in	this	simplified	model	are	the	mass	of	carbon	dioxide	in	the	alveolar	air	(𝑚!!"#

(𝑡))	and	
the	mass	of	carbon	dioxide	in	the	blood	(𝑚.!"#

(𝑡)).	The	equations	belonging	to	this	model	are	
described	in	the	paragraph	‘A	single	blood	compartment	(simplification)’	in	section	3.1.2.	

The	first	step	in	the	analysis	is	the	determination	of	the	state	equations.	The	state	equations	are	
created	with	the	equations	from	section	3.1.2.	Equation	31	presents	the	state	equation	of	the	
mass	of	carbon	dioxide	in	the	alveolar	air	compartment.	Since	the	system	of	the	gas	exchange	is	
analysed	separately	from	the	system	of	the	mechanics	of	breathing,	the	term	𝜙0<(𝑡)	is	
substituted	by	the	term	𝜙0<	#%K(𝑡).	Where	𝜙0<	#%K(𝑡)	is	equal	to	the	average	outflow	and	inflow	
of	air	per	second	over	multiple	cycles.		𝐶)/#	-01	represents	the	mass	carbon	dioxide	per	litre	
atmospheric	air.		

	
𝑑𝑚!!"#

(𝑡)
𝑑𝑡 = 𝐷2 ⋅ \𝑘3 ⋅

𝑚.!"#
(𝑡)

𝑉.
+ 𝑘4 − 𝑘5 ⋅

𝑚!!"# 	
(𝑡)

		𝑉!	6+1	
^ −

𝑚!!!"#	
(𝑡)

		𝑉!	6+1	
⋅ 𝜙!7	-86(𝑡) + 𝐶)/#	-01 ⋅ 𝜙!7	-86(𝑡)	 (31)	
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Equation	32	presents	the	state	equation	of	the	mass	of	carbon	dioxide	in	the	
merged	blood	compartment.	
	

𝑑𝑚.!"# 	
(𝑡)

𝑑𝑡 = −𝐷2	 ⋅ \𝑘3 ⋅
𝑚.!"# 	

(𝑡)
𝑉.

+ 𝑘4 − 𝑘5 ⋅
𝑚!!"# 	

(𝑡)
		𝑉!	6+1	

^ + 𝜙1+0	(𝑡)	

	

(32)	

The	second	step	in	the	analysis	is	the	expression	of	the	equilibrium	state.	In	equations	33	and	
34,	the	equilibrium	states	of	𝑚!!"# 	

(𝑡)	and	𝑚.!"# 	
(𝑡)	are	expressed	in	model	parameters	and	variables.		

	
𝑚!!"# 	+,

		𝑉!	6+1	
=

𝜙1+0	(𝑡)
𝜙!7	-86(𝑡)

+ 𝐶)/#	-01	
	

(33)	

	

𝑚.!"# 	+,

𝑉.
=
\−𝐷2	 ⋅ 𝑘4 + 𝐷2	 ⋅ 𝑘5 ⋅ `

𝜙1+0	(𝑡)
𝜙!7	-86(𝑡)

+ 𝐶)/#	-01a^ + 𝜙1+0	(𝑡)

𝐷2	 ⋅ 𝑘3
	

	

(34)	

	
	
The	state	equations	can	be	notated	into	the	state	space	form	that	is	represented	in	equation	35.	
In	this	form,	the	different	state	variables	of	the	system	are	represented	in	the	state	vector	x(𝑡).	
The	derivatives	of	the	state	variables	are	represented	in	the	vector	ẋ(𝑡).	The	inputs	of	the	
system	are	represented	by	the	vector	u(𝑡).	The	state-space	representation	provides	a	compact	
way	to	describe	and	analyse	systems	with	multiple	inputs	and	outputs.	A	and	B	represent	the	
matrices	that	describe	the	relations	between	the	vectors.			
	
	

ẋ(𝑡) = A ⋅ x(𝑡) + B ⋅ u(𝑡)	 (35)	

	
The	state	matrix	A	is	of	use	for	determination	of	the	eigenvalues.	After	filling	in	the	vectors	ẋ(𝑡)	
and	x(𝑡),	the	state	matrix	is	determined.		It	is	important	to	note	that	since	our	model	is	not	
linear,	the	state	matrix	contains	the	variable	𝜙!7	-86(𝑡).	If	we	wanted	to	obtain	a	numeric	value	we	
would	have	to	choose	an	equilibrium	value	for	𝜙!7	-86(𝑡)	and	we	would	have	to	linearize	the	state	
equations	around	this	point.	However,	since	we	are	only	interested	in	the	expressions	for	the	
eigenvalues,	we	can	leave	the	variable	in	the	state	matrix.		

Q
𝑚0	𝐶𝑂2	̇
𝑚F	𝐶𝑂2		̇

	

S = 𝐴 ⋅ U
𝑚0	𝐶𝑂2	
𝑚F	𝐶𝑂2		

	
V 

	

𝐴 =

⎣
⎢
⎢
⎢
⎡
−𝑘1 ⋅ 𝐷𝐿 − 𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

𝑉𝐴	𝑔𝑒𝑚	
𝐷𝐿 ⋅ 𝑘6
𝑉𝐵

𝐷𝐿 ⋅ 𝑘1
𝑉𝐴	𝑔𝑒𝑚

−𝐷𝐿 ⋅ 𝑘6
𝑉𝐵 ⎦

⎥
⎥
⎥
⎤
	

	
The	eigenvalues	of	the	system	are	determined	by	taking	the	determinant	of	the	A-matrix	and	
setting	it	to	zero.		

|𝐴 − 𝜆𝐼| = 0 

After	performing	the	calculations	described	in	appendix	2	the	following	expressions	for	the	
eigenvalues	are	obtained.		
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b𝜆5𝜆@
d =

⎣
⎢
⎢
⎢
⎢
⎡
−
1
2\
𝑘5 ⋅ 𝐷2 + 𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

𝑉!	6+1	
+
𝐷2 ⋅ 𝑘3
𝑉.

^ +
1
2
j\

𝑘5 ⋅ 𝐷2 + 𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

𝑉!	6+1	
+
𝐷2 ⋅ 𝑘3
𝑉.

^
@

− 4 ⋅
𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

𝑉!	6+1	
⋅
𝐷2 ⋅ 𝑘3
𝑉.

−
1
2\
𝑘5 ⋅ 𝐷2 + 𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

𝑉!	6+1	
+
𝐷2 ⋅ 𝑘3
𝑉.

^ −
1
2
j\

𝑘5 ⋅ 𝐷2 + 𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

𝑉!	6+1	
+
𝐷2 ⋅ 𝑘3
𝑉.

^
@

− 4 ⋅
𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

𝑉!	6+1	
⋅
𝐷2 ⋅ 𝑘3
𝑉. ⎦

⎥
⎥
⎥
⎥
⎤

	 (36)	

	
The	system	has	two	different	eigenvalues	and	the	corresponding	equations	could	be	expressed	
in	model	parameters.	Three	different	terms	of	aggregated	parameters	are	present	in	the	
expressions.	These	terms	are	 5*⋅7+

8,	-./	
	(1),	

𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

8,	-./	
	(2)	and	

o9⋅p:
=;

	(3).	To	refer	more	easily	to	these	terms,	
each	term	has	an	assigned	number	that	is	notated	in	brackets	behind	the	term.		
	
Terms	1	and	2	describes	the	relation	between	the	current	mass	of	𝐶𝑂5	and	the	change	of	the	
mass	of	the	𝐶𝑂5	in	the	alveolar	space.	Term	3	describes	the	relation	between	the	current	mass	of		
𝐶𝑂5	and	the	change	of	the	mass	of	𝐶𝑂5	in	the	blood.		
	
When	we	look	closely	at	the	expressions	of	the	eigenvalues,	it	can	be	seen	that	the	sum	of	the	
three	different	terms	occurs	both	for	and	under	the	square	root.	When	looking	at	the	theoretical	
values	of	some	of	the	parameters,	it	is	expected	that	the	sum	of	the	three	term	is	large	compared	
to	the	product	of	term	2	and	3	that	is	located	under	the	square	root.	The	eigenvalues	can	thus	be	
represented	as	− B

5
𝑎 ± B

5
√𝑎5 − 𝑏	with	𝑏 << 𝑎.	This	results	in	the	expectation	of	one	eigenvalue	

close	to	zero	and	one	eigenvalue	that	is	further	from	zero.	Since	the	time	constants	are	equal	to	
the	inverse	of	the	eigenvalues,	this	results	in	a	small	and	a	large	time	constant.	No	expectations	
can	yet	be	stated	about	the	exact	values	of	these	eigenvalues	and	time	constants.		
	
From	the	expressions	of	the	eigenvalues,	the	expressions	of	the	time	constants	are	composed.		
	

)
𝜏<
𝜏4+ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

2

1
𝑘< ⋅ 𝐷= + 𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

𝑉>	?+@	
+ 𝐷= ⋅ 𝑘A𝑉B

7 − 91
𝑘< ⋅ 𝐷= + 𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

𝑉>	?+@	
+ 𝐷= ⋅ 𝑘A𝑉B

7
4

− 4 ⋅
𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)
𝑉>	?+@	

⋅ 𝐷= ⋅ 𝑘A𝑉B
2

1
𝑘< ⋅ 𝐷= + 𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

𝑉>	?+@	
+ 𝐷= ⋅ 𝑘A𝑉B

7 + 91
𝑘< ⋅ 𝐷= + 𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

𝑉>	?+@	
+ 𝐷= ⋅ 𝑘A𝑉B

7
4

− 4 ⋅
𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)
𝑉>	?+@	

⋅ 𝐷= ⋅ 𝑘A𝑉B ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

	 (37)	

	
	
3.2.3.	Model	simulations		
 
The	model	was	implemented	in	Simulink	and	simple	simulations	were	performed.	These	
simulations	can	provide	more	insight	in	the	dynamic	behaviour	of	the	model.	The	initial	model	
parameters	were	estimated	from	literature	and	can	be	found	in	table	10	in	appendix	1.	Since	the	
parameters	in	the	model	are	not	yet	identified,	the	model	simulations	should	only	be	analysed	
qualitatively.	In	figure	10	the	change	of	the	alveolar	volume	over	time	is	shown.	The	shape	of	
this	graph	is	determined	by	the	simple	first-order	model	that	was	used	to	describe	the	breathing	
mechanics.		
	
In	figure	11	the	initial	responses	of	the	partial	pressure	of	𝐶𝑂5	in	the	blood	and	the	alveolar	air	
are	shown.	As	expected,	these	variables	progress	exponentially	and	eventually	reach	an	
equilibrium	value.	Both	responses	seem	to	have	similar	time	constants.	Which	means	that	if	the	
mass	of		𝐶𝑂5	in	the	alveolar	air	is	in	equilibrium,	the	mass	of		𝐶𝑂5	in	the	blood	is	also	in	
equilibrium.	The	responses	may	be	the	sum	of	two	exponential	responses.	Fluctuations	can	be	
seen	in	the	response	that	represent	the	in-	and	outflow	of	𝐶𝑂5	caused	by	the	breathing	cycle.		
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In	figure	12	the	influence	of	the	average	in-	and	outflow	of	air	(minute	ventilation/60)	on	the	
initial	simulated	response	of	the	partial	pressure	in	the	blood	is	shown.	It	is	shown	that	an	
increase	in	the	average	airflow	causes	a	decrease	in	time	constant	and	a	decrease	in	the	
equilibrium	value	of	the	partial	pressure	of	𝐶𝑂5	in	the	blood.	This	complies	with	equations	34	
and	37.	In	equation	34	it	is	shown	that	when	the	average	airflow	𝜙!*	%+,(𝑡)	increases,	the	
nominator	will	decrease	and	the	equilibrium	value	for	the	mass	of		𝐶𝑂5	in	the	blood	(𝑚.!"# 	+,	

)	will	
therefore	decrease.		
	
In	equation	37	it	can	be	seen	that	the	large	time	constant	is	equal	to	
	 2

`
𝑘1⋅𝐷𝐿+𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

𝑉𝐴	𝑔𝑒𝑚	
+𝐷𝐿⋅𝑘6

𝑉𝑏
a−j`

𝑘1⋅𝐷𝐿+𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

𝑉𝐴	𝑔𝑒𝑚	
+𝐷𝐿⋅𝑘6

𝑉𝑏
a
2
−4⋅

𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

𝑉𝐴	𝑔𝑒𝑚	
⋅𝐷𝐿⋅𝑘6
𝑉𝑏

				

	
in	section	3.2.2	it	was	described	that	it	is	expected	that	both	0+⋅2,3𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

41	234	
+ 2,⋅05

46
	terms	(before	and	

under	the	root)	will	cancel	each	other	out.	Thus,	the	term	4 ⋅ 𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)
8,	-./	

⋅ 7+⋅55
86

	will	likely	determine	the	
size	of	the	time	constant.	When		𝜙!*	%+,(𝑡)	increases,	this	term	will	increase	and	since	it	is	located	
in	the	denominator,	the	time	constant	will	decrease.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure 11 The simulated initial response of the partial pressure of 
CO2 for the blood and the alveolar air. Figure 10 The simulated alveolar volume over time.  

𝜙78	9:;(𝑡) ⋅ 2 

𝜙78	9:;(𝑡) 
𝜙78	9:;(𝑡) ⋅ 0.5	 
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3.3.	Implications	of	the	dynamical	analysis	for	the	experiment	design	
	
A	two-order	model	with	low	complexity	that	encompasses	the	gas	exchange	and	the	respiratory	
drive	was	created.	Several	simplifications	of	reality	were	applied	in	this	model.	The	buffering	of	
carbon	dioxide	in	bicarbonate	and	the	relation	between	carbon	dioxide	and	the	acid-base	
balance	of	the	blood	were	not	included.		
	
It	was	not	possible	to	analyse	the	dynamical	behaviour	of	the	original	model.	For	this	reason,	a	
slightly	simplified	model	was	created	that	has	one	blood	compartment	instead	of	two.	It	was	
possible	to	analyse	the	dynamical	behaviour	of	this	slightly	simplified	model.	
	
Expressions	for	the	eigenvalues,	time	constants	and	equilibrium	values	were	derived.	From	
these	expressions	it	followed	that	the	model	has	one	eigenvalue	that	is	close	to	zero	and	one	
eigenvalue	that	is	further	from	zero.	As	a	result,	the	model	response	can	be	described	by	a	fast	
and	a	slow	exponential	response.	It	is	not	known	what	causes	these	two	responses.	Our	
expectation	is	that	directly	after	the	perturbation,	the	concentration	of	carbon	dioxide	in	the	
alveolar	air	is	much	higher	than	the	concentration	of	carbon	dioxide	in	the	blood	and	the	
atmosphere.	During	the	first	few	breaths	the	alveolar	air	will	be	almost	completely	replaced	by	
atmospheric	air	and	the	concentration	of	carbon	dioxide	will	decrease	fast	(fast	response).	When	
the	concentration	of	carbon	dioxide	in	the	alveolar	air	is	slightly	lower	than	the	concentration	of	
carbon	dioxide	in	the	blood,	the	concentration	in	the	alveolar	air	will	lower	more	gradually	
because	carbon	dioxide	molecules	will	diffuse	constantly	from	the	blood	to	the	alveolar	air	(slow	
response).		
	
	It	also	followed	that	the	concentrations	of	𝑂5	and	𝐶𝑂5	in	the	alveolar	space	and	blood	are	
dependent	on	the	average	airflow,	which	is	dependent	on	the	minute	ventilation,	and	will	
eventually	reach	equilibrium	value.	The	eigenvalues,	time	constants	and	equilibrium	values	are	
expressed	in	model	parameters	and	no	expectations	can	yet	be	stated	about	their	exact	values.	
The	hypothesis	is	that	the	behaviour	of	the	real	breathing	system	will	comply	with	the	model’s	
dynamical	behaviour.	
Experimental	measurements	should	be	performed	to	allow	for	comparison	between	the	
dynamic	behaviour	of	the	model	and	the	dynamic	behaviour	of	the	real	breathing	system.	If	the	
qualitative	behaviour	is	similar,	this	would	indicate	a	suitable	model	structure.		
	
If	the	dynamic	behaviour	of	the	model	is	similar	to	that	of	the	real	beathing	system,	it	may	be	
possible	to	identify	aggregated	parameter	groups	of	the	model.	We	can	then	try	to	make	
predictions	with	the	identified	model	to	show	a	first	application	of	the	model.	In	section	2	it	was	
described	that	one	of	the	ways	a	model	could	add	value	to	clinical	practice	was	by	providing	
insight	in	the	respiratory	parameters	and	variables	and	making	predictions	of	patient	response	
to	adjustments	in	ventilator	settings.	In	the	next	section,	the	design	of	the	experiment	that	is	
used	to	test	the	hypothesis	that	the	behaviour	of	the	real	breathing	system	will	comply	with	the	
model’s	dynamical	behaviour	is	described.	With	this	experiment	it	may	be	possible	to	perform	a	
first	experimental	evaluation	of	the	model.	
	
 	

Figure 12 The influence of the average airflow on the simulated 
initial response of the partial pressure of CO2 in the blood	



 

 35 

4.	Experimental	evaluation	of	the	model	
	
The	aim	of	this	section	is	to	describe	how	the	experimental	measurements	and	subsequent	data	
analysis	should	be	performed	to	obtain	relevant	information	about	the	dynamic	behaviour	of	the	
breathing	system.	From	the	dynamical	analysis	described	in	section	3	followed	that	the	model	
response	can	be	described	by	the	sum	of	a	fast	and	a	slow	exponential	time	constant.	It	also	
followed	that	the	concentrations	of	𝑂5	and	𝐶𝑂5	in	the	alveolar	space	and	blood	are	dependent	on	
the	minute	ventilation	and	will	eventually	reach	equilibrium	value.	The	design	of	the	experiment	
is	based	on	the	hypothesis	that	the	real	breathing	system	will	present	the	same	dynamic	
behaviour	as	the	model.			
	
If	the	dynamic	behaviour	of	the	model	is	similar	to	that	of	the	real	beathing	system,	it	may	be	
possible	to	identify	aggregated	parameter	groups	of	the	model.	We	can	then	try	to	make	
predictions	with	the	identified	model	to	show	a	first	application	of	the	model.		
	
Before	we	will	go	into	detail	about	the	experimental	protocol	and	data	analysis,	a	description	
about	the	general	process	of	model	identification	and	validation	is	given.	Adapting	the	model	
parameters	to	a	specific	person	or	situation	is	called	model	identification.	Models	are	often	
established	on	a	theoretical	basis	and	the	exact	values	of	the	model	parameters	may	be	
unknown.	The	values	of	these	parameters	can	be	determined	from	experimental	measurements.	
The	response	of	the	model	is	compared	to	the	experimental	measurements	(identification	
measurement	set)	and	the	parameters	are	adapted	till	the	model	response	is	similar	to	the	
measured	response.	The	result	is	an	identified	model.	Then,	simulations	will	be	performed	with	
the	identified	model	and	the	model	responses	are	again	compared	to	experimental	
measurements	(validation	measurement	set).	If	the	response	of	the	final	model	is	similar	to	the	
validation	measurement	set,	this	indicates	a	well-structured	and	-identified	model.	It	is	
important	that	the	measurements	used	for	validation	are	different	than	the	measurements	used	
for	identification	of	the	model.	Similar	datasets	may	result	in	an	overestimation	of	the	
performance	of	the	model.	

	

	
	
It	is	important	to	keep	in	mind	that	the	main	aim	of	the	experiment	is	not	to	identify	and	validate	
the	model.	The	main	aim	is	to	create	a	first	experimental	protocol	that	is	based	on	the	dynamical	
analysis	of	the	model	and	to	find	out	what	insights	can	be	obtained	from	this	protocol.	For	this	
reason,	this	experiment	was	only	conducted	with	one	subject,	being	the	M-student	who	
performed	this	research,	and	no	ethics	application	was	yet	submitted.	In	a	later	stadium,	more	
extensive	research	with	a	larger	study	population	may	be	conducted	to	improve	validity.	
	
4.1.	Experimental	protocol	
 
4.1.1.	general	concept	
 

Figure 13 General workflow of model identification and validation. 
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When	a	person	breathes	in	air	with	an	increased	or	decreased	fraction	of	inspired	carbon	
dioxide	(𝐹4'*,𝐶𝑂5)	for	a	period	of	time,	this	will	create	perturbation	of	the	equilibrium	state	of	
the	breathing	system.	This	means	that	the	fractions	of	𝑂5	and	𝐶𝑂5	in	the	alveolar	air	and	the	
blood	will	deviate	from	their	equilibrium	values.	
	
When	the	person	starts	breathing	atmospheric	air	again,	the	
fractions	of	𝑂5	and	𝐶𝑂5	in	the	alveolar	air	and	the	blood	will	return	
to	their	original	equilibrium	state.	From	the	dynamical	analysis	
described	in	section	3,	it	is	suspected	that	the	initial	condition	
response	will	consist	of	the	sum	of	two	exponential	responses.	One	
response	with	a	fast	time	constant	and	one	response	with	a	slow	
time	constant.	In	figure	14	it	is	presented	how	such	a	response	may	
look	like.	The	hypothesis	was	that	these	time	constants	and	
equilibrium	values	are	dependent	on	the	average	in-	and	outflow	of	
air.	For	this	reason,	it	is	suspected	that	different	time	constants	and	
equilibrium	values	will	be	obtained	when	someone	is	breathing	with	
different	minute	ventilations.		
	
	
The	hypothesis	that	followed	from	the	dynamical	analysis	is	that	if	multiple	measurements	are	
conducted	and	during	each	measurement	the	subject	breathes	with	a	different	constant	minute	
ventilation,	different	equilibrium	values	for	the	concentration	of	𝑂5	and	𝐶𝑂5	in	the	alveolar	air	
and	the	blood	will	be	reached	and	different	time	constants	will	describe	the	transient	response.	
This	is	shown	in	figure	12	that	presents	the	simulations	that	were	performed	with	the	model.		
The	experimental	setup	and	protocol	are	based	on	this	principle.		
 
4.1.2.	experimental	setup	
	
The	measurements	were	conducted	in	the	TechMed	centre.	During	the	experiment,	the	subject	
was	seated	in	upright	position	on	a	chair	and	was	breathing	through	the	mask	of	the	Viasys	
Oxycon	Mobile	device.	During	all	measurements,	the	flow	sensor	in	the	Oxycon	mobile	measured	
the	airflow,	tidal	volume	and	the	respiratory	rate.	Oxygen	and	carbon	dioxide	sensors	in	the	
Oxycon	mobile	device	measured	the	fraction	of	inspired	carbon	dioxide	(𝐹4'*,𝐶𝑂5)	and	oxygen	
(𝐹4'*,𝑂5)	and	the	fraction	of	expired	carbon	dioxide	(𝐹&q,𝐶𝑂5)	and	oxygen	(𝐹&q,𝑂5).	After	every	
measurement,	the	obtained	data	was	stored	in	a	designated	file	for	
offline	analysis.	
	
Elevation	of	the	𝐹4'*,𝐶𝑂5	and	reduction	of	the	𝐹4'*,𝑂5	(perturbation)	
was	achieved	by	rebreathing	in	a	balloon	that	was	attached	to	the	
Oxycon	mobile	mask.	After	the	period	of	perturbation	which	lasted	180	
seconds,	the	balloon	was	decoupled	manually.		
	
During	parts	of	the	measurements,	the	breathing	frequency	was	
controlled	by	an	auditory	tone	generated	from	a	computer.	To	maintain	
a	constant	inspiratory	period-to-respiratory	period	(IE/II)	ratio	of	0.5,	
subjects	were	instructed	to	inhale	when	the	first	beep	was	heard	and	
exhale	when	the	second	beep	was	heard.	The	tidal	volume	was	
displayed	real-time	on	the	screen	and	subject	was	instructed	to	
maintain	a	constant	tidal	volume.	The	measurements	were	stopped	
when	the	subject	indicated	that	this	was	desirable.		
	
	
	

Figure 14 The sum of a fast and a slow 
exponential response. The response will 
eventually reach an equilibrium value. This 
value does not have to be equal to zero. 

Figure 15 Person wearing the Viasys 
Oxycon Mobile device 
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4.1.3.	measurement	protocol	
	
Four	different	measurements	were	performed.	All	measurements	were	repeated	three	times	for	
improved	accuracy.	During	the	first	180	seconds	of	all	the	measurements,	the	subject	rebreathed	
in	a	balloon.	This	caused	the	𝐹𝑖𝐶𝑂2 	to	increase	and	this	caused	the	𝐹𝑖𝑂2 	to	decrease.	After	180	
seconds,	the	balloon	was	manually	decoupled	from	the	mask	and	the	subject	was	breathing	
atmospheric	air	for	a	period	of	600	seconds.	This	is	called	the	period	of	recovery.			
	
During	all	measurements,	the	subject	was	breathing	with	a	natural	non-imposed	frequency	
during	the	period	of	rebreathing.	In	the	first	measurement,	the	subject	was	also	breathing	with	a	
natural	frequency	during	the	period	of	recovery.	In	the	second	to	fourth	measurement,	the	
subject	was	breathing	with	an	imposed	breathing	frequency	and	tidal	volume,	and	therefore	
minute	ventilation	during	the	period	of	recovery.	The	chosen	frequencies	were	12,	16	and	20	
breaths	per	minute.	The	exact	measurement	protocol	can	be	seen	in	table	2.	
	
The	different	imposed	frequencies	will	result	in	different	values	for	the	minute	ventilation	and	
are	therefore	necessary	to	test	our	hypothesis.	The	hypothesis	that	followed	from	the	dynamical	
analysis	was	that	if	multiple	measurements	were	conducted	and	during	each	measurement	the	
subject	breathed	with	a	different	constant	minute	ventilation,	different	equilibrium	values	for	
the	concentration	of	𝑂5	and	𝐶𝑂5	in	the	alveolar	air	and	the	blood	would	be	reached	and	different	
time	constants	would	describe	the	transient	response.	
We	also	wanted	to	perform	an	open-loop	analysis,	and	therefore	it	was	important	that	the	
ventilatory	control	function	of	the	patient	could	not	influence	the	minute	ventilation	by	adapting	
the	breathing	frequency	or	the	tidal	volume.		
	
Table 2 The measurement protocol 

Measurement	 Task	 Breathing	frequency	(b/m)	 Time	(s)	 repetitions	

1		
rebreathing	 natural	 180	

3	
recovering	 natural	 600	

2	
rebreathing	 natural	 180	

3	
recovering	 12	 600	

3	
rebreathing	 natural	 180	

3	
recovering	 20	 600	

4	
rebreathing	 natural	 180	

3	recovering	 16	 600	
	
4.2.	Data	analysis	
	
Due	to	limited	observability,	it	was	not	possible	to	measure	the	blood	gasses	during	the	
experiment.	It	was	also	not	possible	to	measure	the	concentrations	of	𝑂5	and	𝐶𝑂5	in	the	alveolar	
air	directly.	It	was	assumed	that	the	fractions	of	𝑂5	and	𝐶𝑂5	in	the	alveolar	air	could	be	
described	by	the	𝐹&q,𝐶𝑂5	and	𝐹&q,𝐶𝑂5.	
	
Measurement	2	and	3	were	used	for	identification	purposes.	The	measured	𝐹&q,𝐶𝑂5	and	
𝐹&q,𝐶𝑂5	over	time	from	the	measurements	were	used	to	identify	the	time	constants	and	
equilibrium	values.	Since	each	measurement	was	repeated	three	times,	the	repetitions	were	
averaged	to	form	one	graph	per	measurement.	Using	the	least	squares	fitting	method,	an	
exponential	function	of	the	form	𝑦 = 𝑎 ⋅ b1 − 𝑒F⋅qc + 𝑐	was	fitted	on	the	slow	and	the	fast	
component	of	the	graphs	belonging	to	the	𝐹&q,𝐶𝑂5	and	𝐹&q,𝐶𝑂5.	If	the	fitting	was	possible,	the	
time	constants	could	be	determined	from	the	found	values	for	𝑏	and	the	equilibrium	value	could	
be	determined	from	the	found	values	for	𝑎	and	𝑐.		
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For	reliable	identification	of	the	time	constants	and	equilibrium	values,	the	minute	ventilation	
should	be	constant.	To	check	if	this	was	the	case,	the	minute	ventilation	was	calculated	by	taking	
the	product	of	the	tidal	volume	and	the	respiratory	rate	every	5	seconds.	The	result	was	plotted	
over	time	and	visually	inspected	to	assess	if	minute	ventilation	was	constant.		
	
4.2.1.	Identification	of	model	parameter	aggregates	using	the	time	constants	and	equilibrium	
values.	
	
Only	the	identification	process	of	the	model	parameter	aggregates	for	carbon	dioxide	is	
described	here.	The	identification	process	for	oxygen	is	described	in	appendix	2.		
	
If	it	was	possible	to	determine	the	time	constants	from	the	measurements,	the	found	time	
constants	were	filled	in	in	equation	38	and	39.	Equation	38	contains	the	expression	for	the	small	
time	constant	that	was	derived	during	the	dynamical	analysis.		
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(38)	

	
	
Equation	39	contains	the	expression	for	the	large	time	constant	that	was	derived	during	the	
dynamical	analysis.		
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(39)	

	
The	unknown	parameters	in	both	equations	were	divided	into	two	parameter	groups	indicated	
with	the	capital	𝐺.	The	average	airflow	(𝜙!7	-86(𝑡))	and	time	constant	(𝜏EFG6)	could	be	determined	
from	the	measurements.	The	parameter	𝑉0	K&(	was	set	in	advance	because	it	could	be	reliably	
estimated	from	literature.	The	exact	value	is	presented	in	table	10	in	appendix	1.	
	

𝜏E-"6+ =
2

`𝐺5 +
𝜙!7	-86(𝑡)
𝑉!	6+1	
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@
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(40)	

	
with	
	

𝐺: =
𝐷;	#$< ⋅ 𝑘:
𝑉!	,=>

	

	

𝐺# =
𝐷0	12# ⋅ 𝑘3

𝑉4
		

	
	
The	least	squares	fitting	method	was	used	to	attempt	to	obtain	the	optimal	combination	of	
values	for	𝐺:	and	𝐺<.	
	
If	it	was	possible	to	determine	the	equilibrium	values	of	𝐹&q,𝐶𝑂5,	the	found	equilibrium	values	
were	filled	in	in	equation	41.	
	

𝑚$89! 	56

		𝑉$	758	
=
𝜙859	(𝑡)
𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

+ 𝐶𝐶𝑂2	𝑎𝑡𝑚	 (41)	
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Since,	the	output	that	we	measured	is	not	the	mass	concentration	of	𝐶𝑂5	f

𝑚𝐴𝐶𝑂2	𝑒𝑞

		𝑉𝐴	𝑔𝑒𝑚	
g	but	the	

fraction	of	expired	𝐶𝑂5	1𝐹𝐸𝐶𝑂2 	𝑒𝑞2,	we	have	to	replace	
8=89!	>?

		;=	@>A	
	with	𝐹2"#! 	&x ⋅ 𝑘BD.	The	constant	𝑘BD	

is	necessary	to	equalize	the	units	since	𝐹2"#! 	&x 		has	the	unit	%	and	the	
8=89!	>?

		;=	@>A	
	has	the	unit	K

/
.		

	
	

𝐹2"#! 	&x ⋅ 𝑘BD =
𝜙𝑚𝑒𝑡	(𝑡)
𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

+ 𝐶𝐶𝑂2	𝑎𝑡𝑚	

	

(42)	

	
The	unknown	parameters	𝑘BD	and	𝜙1+0	-86			in	the	equations	were	collected	into	the	parameter	
group	indicated	with	𝐺D.	
	

𝐹=89! 	56 =
𝐺>

𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)
+ 𝐶𝐶𝑂2	𝑎𝑡𝑚	

	
(43)	

with	
	

𝐺D =
𝜙(&!	(𝑡)
𝑘BD

	

	
	
4.2.2.	Simulations	and	validation	of	the	identified	model	
	
If	identification	of	the	parameter	groups	was	possible,	simulations	were	performed	with	the	
identified	model	to	compare	the	model	responses	to	measurement	4.	Measurement	4	was	not	
used	for	model	identification	to	limit	the	overestimation	of	the	performance	of	the	model.	
During	the	simulations,	the	𝐹4'*,𝐶𝑂5	was	increased	for	180	seconds	and	after	this	period	the	
𝐹4'*,𝐶𝑂5	was	set	to	zero	to	mimic	the	situation	in	the	experiment.	The	average	airflow	in	the	
model	was	set	to	the	same	value	used	in	measurement	4.	The	time	constants	and	the	equilibrium	
value	of	𝐹𝑒𝐶𝑂2 	belonging	to	the	simulated	response	were	compared	to	the	time	constant	and	the	
equilibrium	value	of	𝐹𝑒𝐶𝑂2 	of	measurement	4.	 	
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4.3	Experimental	results		
 
In	this	section,	the	findings	of	the	experimental	measurements	and	subsequent	analysis	are	
presented.	These	results	give	insight	into	the	correspondence	between	the	simulated	behaviour	
of	the	model	and	the	behaviour	of	the	real	breathing	system.	The	results	are	organized	based	on	
the	research	questions.			
	
4.3.1.	What	relevant	information	about	the	dynamic	behaviour	of	the	real	breathing	system	can	be	
obtained	from	experimental	measurements?	

In	figure	16	and	17	it	is	shown	that	the	response	after	a	period	of	rebreathing	appears	to	have	
two	different	components.	The	first	is	a	fast	exponential	component	with	a	time	constant	in	the	
order	of	seconds.	The	second	is	a	slow	exponential	component	with	a	time	constant	in	the	order	
of	minutes.	This	complies	with	the	hypothesis	that	followed	from	the	dynamical	analysis	in	
section	3.	The	total	detected	response	is	the	sum	of	the	two	exponential	responses.		

 

Figure 16 The averaged graphs belonging to measurement 2 and 3. 
The transient response of the fraction of the expired 𝐶𝑂4 after a period 
of rebreathing is displayed. 

Figure 19 The progression of the fraction of expired 𝐶𝑂4 belonging to 
measurement 3 (20 rpm) with two fitted exponential fittings belonging to 
the slow and the fast exponential component.  

Figure 17 The averaged graphs belonging to measurement 2 and 3. The 
transient response of the fraction of the expired 𝑂4 after a period of 
rebreathing is displayed.  

 

Figure 18 The progression of the fraction of expired 𝐶𝑂4 belonging to 
measurement 2 (12 rpm) with two fitted exponential fittings belonging 
to the slow and the fast exponential component.  
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Figure	18	and	19	show	the	fits	that	were	found	for	the	fast	and	slow	exponential	component	of	
𝐹&q,𝐶𝑂5	for	measurement	2	(12	rpm)	and	3	(20	rpm).	The	squared	norms	of	the	residuals	of	al	
fittings	are	presented	in	appendix	3.	

Figure	20	and	21	show	the	fits	that	were	found	for	the	fast	exponential	component	of	𝐹&q,𝑂5.	
The	squared	norms	of	the	residuals	of	al	fittings	are	presented	in	appendix	3.	No	acceptable	fit	
was	found	for	the	slow	exponential	component	of	𝐹&q,𝑂5.	
	
In	table	3	it	is	shown	that	the	when	the	subject	was	breathing	with	a	respiratory	rate	of	20	a	
lower	equilibrium	value	for	the	fraction	of	expired	𝐶𝑂5	and	smaller	time	constants	were	found	
compared	to	when	the	subject	was	breathing	with	a	respiratory	rate	of	12.	
	
Table 3 The equilibrium values and the small and the large time constants belonging to the fitted exponentials of the 
response of the fraction of expired CO2 are presented for measurement 2 (12 rpm) and 3 (20 rpm). 

Respiratory	rate	 Equilibrium	value	(%)	 Large	time	constant	(s)	 small	time	constant	(s)	
12	 3.0	 130.2	 13.6	
20		 2.4	 52.5	 13.5	
	
In	table	4	it	is	shown	that	when	the	subject	was	breathing	with	a	respiratory	rate	of	20	a	smaller	
time	constant	was	found	for	the	response	of	the	fraction	of	the	expired	𝑂5	compared	to	when	the	
subject	was	breathing	with	a	respiratory	rate	of	12.	
	
Table 4 The small time constants belonging to the fitted exponentials of the response of the fraction of expired O2 are 
presented for measurement 2 (12 rpm) and 3 (20 rpm). 

Respiratory	rate	 small	time	constant	(s)	
12	 15.3	
20		 13.6	
	
	
	
	
	
	

Figure 20 The graph of the progression of the fraction of expired 𝑂4 
belonging to measurement 2 (12 rpm) with two fitted exponential 
functions belonging to a slow and a fast time constant.   

Figure 21 The graph of the progression of the fraction of expired 𝑂4 
during measurement 3 (20 rpm) with two fitted exponential functions 
belonging to a slow and a fast time constant.  
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4.2.2.	How	can	this	information	be	used	to	evaluate	the	identifiability	of	the	respiratory	parameters	
as	well	as	the	model	accuracy	in	predicting	ventilatory	responses?	
	
Model	identification	
	
The	model	parameter	identification	method	described	in	section	4.1	can	only	be	conducted	
when,	after	rebreathing,	the	minute	ventilation,	and	therefore	the	average	airflow,	is	constant	
during	the	measurement.	The	figures	in	appendix	3	show	that	during	the	measurements	the	
minute	ventilation	was	not	constant	from	180	to	210	seconds.	As	a	result,	the	fast	exponential	
component	cannot	be	used	for	model	parameter	identification	purposes.	Only	the	slow	
exponential	component	can	be	used	to	identify	the	model	parameters.	Since	the	slow	
exponential	component	could	not	be	identified	for	oxygen,	only	the	model	that	describes	carbon	
dioxide	can	be	identified.	
	
The	optimally	fitted	values	of	the	different	parameter	groups	are	stated	in	table	5.	
	
Table 5 The fitted optimal values for the different parameter group. 

	Parameter	group	 Parameters	 Identified	value	
𝐺?	 𝐷0	12# ⋅ 𝑘?

𝑉𝐴	𝑔𝑒𝑚
	 20.7	

𝐺#	 @B	89!⋅BC
;D

		 41.7	

𝐺>	 𝜙859	CD7	
𝑘?>

	 0.2	

	
	In	table	6	it	is	shown	that	the	large	time	constant	belonging	to	the	measurement	2	(12	rpm)	is	
predicted	20.68	seconds	too	small	by	the	identified	model.	The	time	constant	belonging	to	
measurement	3	(20	rpm)	is	predicted	13.23	seconds	too	large	by	the	identified	model.	The	
model	could	not	be	identified	to	fit	both	measurement	2	and	3	perfectly.		
	
Table 6 The predicted and the measured time constants and their difference for measurement 2 (12 rpm) and 3 (20 rpm).  

Respiratory	rate	 Measured	time	constant	(s)	 Predicted	large	time	constant	
(s)	

Error	(s)	

12	 130.2	 109.5	 -20.7	
20	 52.5	 65.7	 13.2	
	
In	table	7	it	is	shown	that	the	equilibrium	value	predicted	by	the	identified	model	and	the	
measured	equilibrium	value	are	almost	similar.		
	
Table 7 The predicted and the measured equilibrium value for the fraction of expired 𝐶𝑂# and their difference 
for measurement 2 (12 rpm) and 3 (20 rpm). 

Respiratory	rate	 Measured	equilibrium	value	
(%)	

Predicted	equilibrium	value	
(%)	

Error	(%)	

12	 3.0	 2.9	 0.0	
20	 2.4	 2.4	 0.0	
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Model	validation	
	
In	figure	22	it	is	shown	that	the	response	predicted	by	the	identified	model	is	qualitatively	
similar	to	the	measured	response	in	measurement	4.		

	
	

	
	
In	table	8	it	is	shown	that	for	measurement	4	the	identified	model	predicted	an	equilibrium	of	
the	fraction	of	expired	𝐶𝑂5		that	was	0.13	percent	lower	than	the	measured	value.	The	identified	
model	predicted	a	time	constant	that	was	19.94	seconds	smaller	than	the	measured	time	
constant.		
	
Table 8 The predicted and the measured time constant and equilibrium value and their difference for measurement 4. 

	 predicted	 measured	 error	
Large	time	constant	(s)	 82.38	 102.32	 -19.94	
Equilibrium	value	(%)	 2.59	 2.72	 -0.13	
	
4.3	Implications	of	the	experimental	results	for	the	applicability	of	the	model	
	
The	main	aim	of	this	section	was	to	create	a	first	experimental	protocol	that	is	based	on	the	
dynamical	analysis	of	the	model	and	to	find	out	what	insights	can	be	obtained	from	this	protocol.		
	
For	carbon	dioxide,	the	experimental	protocol	is	suitable	for	analysis	of	the	dynamic	response	of	
the	𝐹&q,𝐶𝑂5	which	is	related	to	the	𝑚0𝐶𝑂5.	One	interesting	finding	from	the	experimental	
measurements	is	that	the	dynamic	response	of	the	𝐹&q,𝐶𝑂5	consists	of	a	fast	and	a	slow	
exponential	component.	It	was	also	found	that	the	𝐹&q,𝐶𝑂5	reaches	an	equilibrium	state	when	
breathing	with	a	constant	minute	ventilation.	The	value	of	this	equilibrium	state	was	dependent	
on	the	minute	ventilation.	This	complies	with	the	hypothesis	that	followed	from	the	dynamical	
analysis	of	the	model	described	in	section	3.	This	also	indicate	that	the	simple	model	developed	
in	this	study	may	have	the	right	structure	to	describe	the	ventilatory	response	of	the	exchange	of	
𝐶𝑂5.	A	model	of	this	simplicity	that	can	accurately	describe	the	ventilatory	response	of	the	
exchange	of	𝐶𝑂5	has	not	yet	been	presented	in	literature.		
	
These	findings	give	us	new	insights	in	the	dynamic	behavior	of	the	human	breathing	system.	No	
earlier	research	has	been	conducted	to	find	the	time	constants	belonging	to	the	gas	exchange	
after	perturbation.	Studies	have	researched	the	relation	between	the	minute	ventilation	and	the	

Figure 22 The predicted response of the identified model and the measured response belonging 
to the breathing frequency of 16 breaths per minute.    
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equilibrium	value	of	𝑒𝑡𝐶𝑂5	and	𝑒𝑡𝑂5	[63].	However,	these	studies	do	not	describe	the	transient	
response.		
	
For	oxygen,	the	experimental	protocol	proved	not	suitable	for	testing	the	hypothesis.	It	was	not	
possible	to	determine	the	slow	exponential	component	or	the	equilibrium	value	for	𝐹&q,𝑂5	from	
the	experimental	measurements.	This	outcome	is	different	than	expected	from	the	dynamical	
analysis	of	the	model	described	in	section	3.	It	is	possible,	therefore,	that	the	slow	exponential	
component	that	belongs	to	oxygen	is	too	fast	to	be	accurately	determined	from	this	
experimental	protocol.	A	possible	improvement	may	be	a	larger	disruption	of	the	equilibrium	
state.	It	was	difficult	to	determine	for	what	time	period	it	was	safe	to	rebreathe.	It	may	be	
possible	to	safely	rebreathe	for	a	longer	time	period	and	disrupt	the	equilibrium	state	more	in	a	
safe	and	controlled	hospital	environment.	It	may	also	be	useful	to	assess	the		𝐹&q,𝑂5	in	realtime	
during	rebreathing	to	determine	the	amount	of	disruption.		
	
Another	important	finding	is	that	the	found	large	time	constants	and	equilibrium	values	for	
𝐹&q,𝐶𝑂5	could	be	used	for	rough	identification	of	the	aggregated	parameter	groups	of	the	
simplified	model.	The	predictions	made	with	this	identified	model	were	qualitatively	similar	to	
the	experimental	measurements.	However,	they	were	not	quantitatively	similar	to	the	
experimental	measurements.	This	may	indicate	the	experimental	protocol	was	not	optimal	for	
model	identification	and	validation.		
This	may	be	due	to	low	observability	of	certain	respiratory	variables	during	the	experiment,	
which	could	have	resulted	in	suboptimal	adaptation	of	the	model	to	the	subject.	For	example,	it	
would	have	been	useful	to	assess	the	concentrations	of	𝐶𝑂5	and	𝑂5	in	the	blood	to	allow	for	
better	adaptation	of	the	model	to	the	subject.	In	the	ICU,	continuous	transcutaneous	
measurement	of	the	pH	and	partial	pressures	of	𝐶𝑂5	and	𝑂5	in	the	blood	would	make	constant	
assessment	of	these	variables	possible	[50].	
Another	possible	improvement	would	be	to	maintain	consistent	minute	ventilation.	We	have	
tried	to	maintain	consistent	minute	ventilation	but	found	that,	especially	during	the	first	30	
seconds	after	perturbation,	this	proved	difficult.	As	a	result,	it	was	not	possible	to	determine	the	
fast	exponential	component.	During	measurements	on	patients	on	mechanical	ventilation	in	the	
ICU	this	will	be	less	of	a	problem	since	the	minute	ventilation	can	be	set	by	the	clinician.		
	
It	is	important	to	emphasize	that	this	was	an	orientating	experimental	study	that	aimed	to	find	
out	what	insights	can	be	obtained	from	the	experimental	protocol	that	is	based	on	the	dynamical	
analysis	of	the	model.	In	the	future,	a	study	with	more	participants	and	approval	of	the	ethics	
committee	could	be	conducted.	The	validity	of	this	eventual	study	should	be	significantly	higher	
than	the	validity	of	this	orientating	study.		
	
We	have	shown	that	a	simple	model	based	on	the	gas	exchange	and	the	respiratory	drive	could	
provide	insight	into	certain	respiratory	parameter	groups	after	perturbations	and	could	make	
predictions	that	complied	qualitatively	with	experimental	measurements.	In	the	next	section,	it	
will	be	described	how	this	may	be	useful	in	improving	the	treatment	of	in	the	mechanically	
ventilated	patient	on	the	intensive	care.	
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5.	Discussion	
In	this	section,	the	implications,	limitations	and	suggestions	for	further	research	are	described.	
Since	the	interpretations	of	the	results	are	presented	at	the	end	of	each	section,	these	are	not	
included	in	the	discussion.	
 
5.1.	Clinical	implications		
	
This	study	aimed	to	develop	a	simple	but	credible	model	of	the	physiology	of	breathing	based	on	
the	difficulties	encountered	in	current	clinical	practice.	This	model	should	be	the	initial	step	
towards	the	use	of	closed-loop	systems	based	on	the	physiology	of	breathing	in	clinical	practice.	
	
This	research	has	presented	a	first	model	that	is	simple	and	encompasses	a	limited	set	of	well-
chosen	aspects	of	the	physiology	of	breathing.	An	experiment	has	been	performed	and	it	was	
shown	that	model	parameter	groups	could	be	identified.	Predictions	could	be	made	with	this	
first	model	that	did	qualitatively	comply	with	experimental	measurements.	The	results	support	
the	idea	that	the	simple	model	for	carbon	dioxide	may	have	a	credible	structure,	which	may	
make	it	a	possible	basis	for	further	development.		
	
Since	this	is	an	exploratory	study	and	the	model	is	still	in	the	development	phase,	it	is	not	yet	
possible	to	make	strong	claims	about	the	clinical	applicability	of	the	model.	The	experimental	
study	had	low	validity	and	was	mainly	aimed	to	find	out	what	insights	could	be	obtained	from	
the	experimental	protocol.	As	a	result,	no	statements	can	yet	be	made	about	the	accuracy	of	the	
model.	However,	we	do	want	to	present	our	ideas	and	vision	for	the	potential	use	of	the	
developed	model	in	the	ICU	in	the	future.	The	coming	subparagraphs	will	discuss	the	potential	
clinical	applications.	
	
5.1.1.	Identification	of	parameters	after	application	of	perturbations	
	
It	was	shown	that	after	perturbating	the	fraction	of	inspired	carbon	dioxide	(𝐹4'*,𝐶𝑂5)	we	were	
able	to	determine	the	time	constant	belonging	to	the	concentration	of	carbon	dioxide	in	the	
alveolar	air	and	the	blood.	The	hypothesis	that	followed	from	the	dynamical	analysis	was	that	
this	time	constant	is	dependent	on	several	parameters,	one	of	them	being	the	efficiency	of	the	
gas	exchange	of	carbon	dioxide	(𝐷/	;?5).	If	this	is	the	case,	the	combination	of	the	model	and	
perturbations	would	provide	clinicians	with	an	improved	insight	into	the	efficiency	of	the	gas	
exchange.	As	described	in	section	2,	the	current	closed	loop	systems	mainly	focus	on	the	
breathing	mechanics	and	do	not	provide	insight	into	the	gas	exchange.	Low	insight	in	this	
parameter	may	make	it	difficult	for	clinicians	to	determine	the	optimal	ventilator	settings.		
	
It	would	likely	be	possible	to	perform	this	manoeuvre	and	obtain	an	improved	insight	into	the	
efficiency	of	the	gas	exchange	in	the	ICU.	The	variables	that	could	be	perturbated	to	deviate	the	
gas	exchange	system	from	its	equilibrium	state	are	the	fraction	of	inspired	carbon	dioxide	or	the	
minute	ventilation.	After	perturbation,	the	end-tidal	carbon	dioxide	must	be	measured	
constantly	for	several	minutes	to	determine	the	large	time	constant.		
It	may	also	be	possible	to	determine	the	time	constant	from	the	measurement	of	the	carbon	
dioxide	concentration	in	the	blood	using	transcutaneous	sensors.	However,	this	has	yet	to	be	
researched.	It	is	important	to	state	that	if	we	want	to	solely	assess	the	efficiency	of	the	gas	
exchange,	the	ventilatory	control	system	of	the	patient	should	be	impeded,	as	described	in	
section	4.	This	can	be	achieved	by	letting	the	patient	breathe	with	an	imposed	minute	ventilation	
for	several	minutes	after	perturbation.	In	this	way,	the	ventilatory	control	centre	of	the	patient	
cannot	influence	the	minute	ventilation	and	does	not	influence	the	time	constant.	
	
A	model-based	mechanical	ventilation	system	could	automatically	and	periodically	apply	
perturbations	and	determine	the	parameter	that	describes	the	efficiency	of	the	gas	exchange.	
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This	would	be	an	improvement	to	current	clinical	practice,	because	the	clinician	could	have	
better	insight	into	the	state	of	the	patient	without	having	to	perform	time-consuming	
measurements.	Constant	insight	in	the	efficiency	of	the	gas	exchange	may	make	better-
substantiated	ventilator	setting	choices	possible.	
	
This	may	mainly	be	the	case	towards	the	end	of	the	second	stage	described	in	section	2.	In	this	
stage	the	patient	is	on	assisted	ventilation	and	is	preparing	to	wean	of	the	ventilator.	We	have	
described	that	it	is	difficult	to	determine	when	the	patient	is	ready	for	weaning.	Impaired	gas	
exchange	increases	the	work	of	breathing	and	as	such	also	contributes	to	weaning	failure	[64].	
Most	weaning	patients	still	have	considerable	disturbances	in	gas	exchange	at	the	time	of	
weaning	and	may	develop	hypoxemia	or	hypercapnia	or	both	during	a	spontaneous	breathing	
trial.	Better	insight	into	the	efficiency	of	the	gas	exchange	may	therefore	improve	the	clinician’s	
insight	into	the	patient’s	ability	to	breathe	independently	and	successfully	wean	of	the	
ventilator.		
	
Another	important	factor	that	determines	whether	the	patient	is	ready	for	weaning	is	the	
respiratory	drive	of	the	patient.	Since	we	have	performed	an	open-loop	analysis,	the	respiratory	
drive	has	not	yet	been	integrated	in	the	tested	model.	When	the	respiratory	drive	is	integrated,	
the	time	constant	is	expected	to	be	dependent	on	both	the	efficiency	of	the	gas	exchange	and	the	
function	of	the	respiratory	drive	of	the	patient.	The	reason	for	this	is	that	when	the	respiratory	
drive	is	impaired,	the	ventilatory	response	of	the	patient	to	disturbance	of	the	equilibrium	state	
will	be	non-existent	or	low	and	it	will	take	longer	to	reach	a	new	equilibrium	state.	
To	find	out	if	the	time	constant	is	indeed	dependent	on	the	parameters	that	have	been	described,	
an	experiment	should	be	conducted	that	compares	the	time	constants	found	in	healthy	subjects	
with	the	time	constants	found	in	patients	with	an	impaired	gas	exchange	or	respiratory	drive.	
	
For	diagnostic	and	prognostic	purposes,	it	may	be	useful	to	differentiate	between	the	different	
causes	of	impaired	gas	exchange,	e.g.		V/Q	ratio	and	alveolar	dead	space.	The	simple	model	only	
contains	one	lumped	parameter	that	describes	the	whole	gas	exchange	function.	It	is	therefore	
not	expected	that	this	first	model	will	allow	for	the	separation	of	the	causes	of	impaired	gas	
exchange.	In	further	development	of	the	model,	it	may	be	useful	to	also	include	components	that	
describe	the	ventilation	and	the	perfusion.	It	may	then	be	possible	to	differentiate	between	the	
different	causes	of	an	impaired	gas	exchange.		
	
5.1.2.	Observation	of	variables	that	are	not	observable	in	current	clinical	practice	
	
After	we	have	obtained	insight	into	the	patient-specific	model	parameters,	we	can	tune	the	
model	to	the	individual	patient.	Through	the	combination	of	this	tuned	model	and	simple	
measurements,	we	may	also	be	able	to	obtain	information	that	is	currently	not	available	in	the	
ICU.	The	equilibrium	equations	of	the	model	described	in	section	3	contain	parameters	and	two	
variables:	the	concentration	of	carbon	dioxide	in	the	alveolar	air	and	the	concentration	of	carbon	
dioxide	in	the	blood.	It	is	suspected	that	when	one	of	the	two	variables	is	known,	the	other	
variable	could	be	determined	through	model	calculations.	The	parameters	in	these	equations	
can	be	identified	through	perturbation	as	described	in	the	former	section.		
	
This	means	that	when	the	carbon	dioxide	concentration	in	the	blood	is	observable	through	
measurements,	the	carbon	dioxide	concentration	in	the	alveolar	air	is	observable	through	model	
calculations.	The	carbon	dioxide	concentration	in	the	alveolar	air	may	be	useful	for	the	
determination	of	physiological	dead	space.	In	section	2	we	have	described	that	physiological	
dead	space	is	an	important	parameter	to	obtain.	Determination	of	the	dead	space	may	be	
especially	useful	in	patients	with	acute	respiratory	distress	syndrome	(ARDS)	because	it	has	
prognostic	value	and	can	be	used	to	guide	ventilator	settings.	However,	dead	space	is	seldom	
calculated	in	clinical	practice	because	it	required	the	alveolar	carbon	dioxide	concentration,	
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which	is	difficult	to	measure	or	estimate	[38].	Using	the	model	to	calculate	the	alveolar	carbon	
dioxide	concentration	could	therefore	be	a	useful	addition	to	current	clinical	practice.	
	
Since	the	state	of	patients	on	the	ICU	changes	quickly,	it	is	important	to	constantly	perform	
perturbations	and	update	the	model	parameters	to	make	sure	the	model	is	always	adapted	to	
the	current	state	of	the	patient.	
	
5.1.3.	Prediction	of	responses	to	changes	in	ventilator	settings	
	
In	the	former	paragraphs	we	have	described	how	the	model	may	be	able	to	provide	better	
insight	in	some	important	respiratory	parameters	and	variables.	In	section	2	we	have	described	
that	in	current	clinical	practice	choosing	the	optimal	ventilator	settings	on	the	ICU	is	often	
challenging.	Better	insight	in	the	respiratory	parameters	and	variables	may	make	better-
substantiated	ventilator	setting	choices	possible	for	the	clinician.	
	
Another	addition	of	the	model	that	could	be	useful	when	choosing	ventilator	settings	is	the	
ability	to	predict	patient	responses	on	changes	in	ventilator	settings.	When	the	model	is	adapted	
to	the	individual	patient,	simulations	can	be	performed	where	certain	model	inputs	(ventilator	
settings)	are	changed.	The	responses	of	the	model	variables	on	these	changing	ventilator	
settings	are	expectations	of	the	actual	response	in	the	patient.	This	model	may	be	able	to	predict	
the	influence	of	the	fraction	of	inspired	oxygen	(𝐹𝑖𝑂5)	and	the	minute	ventilation	on	the	
concentrations	of	carbon	dioxide	and	oxygen	in	the	alveolar	air	or	the	blood.	In	current	clinical	
practice	there	is	a	trade-off	between	enough	ventilation	and	toxicity	and	nitrogen	washout	when	
choosing	the	optimal	fraction	of	inspired	oxygen.	The	ability	to	predict	patient	response	to	
changes	in	𝐹𝑖𝑂5	or	minute	ventilation	may	therefore	be	a	useful	addition	to	current	clinical	
practice.	The	mechanical	ventilation	systems	that	are	currently	used	do	not	consider	predictions	
when	determining	the	optimal	ventilator	settings.			
	
5.1.4.	Integrating	the	model	in	a	closed-loop	mechanical	ventilation	system	
	
In	the	former	paragraphs	we	have	described	how	the	individual	model	could	be	a	useful	addition	
to	current	clinical	practice.	In	a	future	stadium,	the	further	developed	model	could	be	integrated	
in	a	closed-loop	mechanical	ventilation	system	which	would	impose	more	benefits.		
	
The	model-based	closed-loop	mechanical	ventilation	system	could	then	adjust	ventilation	
automatically	which	is	timesaving	and	may	allow	for	optimized	ventilation.	It	is	important	that	
the	closed-loop	system	is	aware	of	the	different	stages	of	mechanical	ventilation	described	in	
section	2	and	would	know	which	variables	are	important	to	keep	at	their	optimal	value	during	
each	stage.	For	example,	in	the	first	stage	the	system	should	strive	to	keep	the	lung	volumes	and	
pressures	low.	In	later	stages,	the	system	should	prioritize	the	conservation	of	the	breathing	
function	of	the	patient.	This	goes	beyond	the	state-of-the-art	since	the	current	closed-loop	
ventilation	systems	make	no	distinction	in	the	different	stages	and	therefore	are	not	able	to	
provide	optimal	settings	throughout	the	whole	duration	of	mechanical	ventilation.		
	
The	system	could	also	save	the	value	of	important	respiratory	parameters	over	time	to	allow	for	
insight	into	the	development	of	the	important	respiratory	parameters.	This	may	give	the	
clinician	and	the	system	insight	into	the	prognosis	of	the	disease	and	the	right	treatment	choices.	
In	systems	that	contain	and	artificial	intelligence	component,	this	may	even	allow	for	prediction	
of	the	expected	development	of	the	parameters	and	the	corresponding	disease.		
	
5.1.5.	Experimental	findings	and	the	report	
	
Apart	from	the	model,	the	experimental	findings	give	us	new	insights	in	the	dynamic	behavior	of	
the	human	breathing	system.	No	earlier	research	has	been	conducted	to	find	the	time	constants	
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belonging	to	the	gas	exchange	after	perturbation.	The	conducted	experiment	provides	
expectations	for	the	insights	about	the	dynamics	of	the	human	breathing	system	which	can	be	
studied	by	using	a	similar	experimental	design	with	more	participants	to	improve	validity.	These	
insights	in	the	dynamics	of	the	human	breathing	system	should	be	used	when	developing	new	
closed-loop	mechanical	ventilation	systems.	
	
This	report	describes	the	fundamental	concepts	of	model	development	and	validation.	This	may	
give	clinicians	insight	into	the	development	of	the	models	that	underlay	closed-loop	mechanical	
ventilation	systems.	This	helps	to	bridge	the	knowledge-gap	between	clinicians	and	engineers	
and	promote	communications.	Clinicians	may	be	more	acceptant	of	new	closed-loop	mechanical	
ventilation	when	the	underlaying	models	are	transparent	and	understandable	to	them	[65].	
 
In	section	5.3.	the	general	suggestions	for	further	research	are	described.	The	next	step	in	
further	research	solely	related	to	the	development	of	this	model	will	be	specified	here.	The	
presented	expected	improvements	of	current	clinical	practice	by	using	the	model	that	are	
described	in	this	section	should	be	shared	with	clinicians.	It	should	be	discussed	whether	these	
stated	improvements	are	indeed	desirable	in	clinical	practice.		
As	described	in	the	former	paragraphs,	it	is	expected	that	the	further	realization	of	the	addition	
of	the	respiratory	drive	component	may	be	a	first	relevant	step	in	the	development	of	this	
particular	model.	A	closed-loop	analysis	should	be	conducted	to	find	out	what	information	can	
be	obtained	from	the	addition	of	this	component	to	the	model.		
 
5.2.	limitations	
	
The	model	that	was	developed	in	this	thesis	contains	several	simplifications	of	reality	that	may	
have	influenced	the	validity.	In	the	breathing	mechanics	model,	the	dead	space	ventilation	and	
pulmonary	shunt	are	assumed	non-existent.	In	the	gas	exchange	model,	the	𝐶𝑂5	production	and	
cardiac	output	are	assumed	constant.	This	does	not	comply	with	reality	and	may	negatively	
affect	the	validity	of	the	model.	The	acid-base	balance	was	also	not	considered	in	this	first	model	
to	limit	complexity.	Since	the	acid-base	balance	plays	an	important	part	in	respiratory	control	
addition	could	provide	a	more	realistic	model.			
	
It	is	beyond	the	scope	of	this	study	to	examine	the	suitability	of	the	model	structure	for	patients	
on	the	intensive	care.	The	lungs	of	the	subjects	analyzed	in	this	study	were	healthy.	Therefore,	
the	validity	of	our	model	in	subjects	with	respiratory	pathophysiology	has	yet	to	be	evaluated.	
The	model	may	need	to	be	expanded	to	accurately	describe	the	physiology	in	patients	with	lung	
diseases.	
 
The	reader	should	keep	in	mind	that	the	main	aim	of	the	experiment	was	not	to	identify	and	
validate	the	model,	but	mainly	to	find	out	what	insights	could	be	obtained	from	the	experiment	
whose	creation	was	based	on	the	dynamical	analysis	of	the	mode.	As	a	result,	the	validity	of	the	
experiment	was	of	less	importance.	For	this	reason,	the	choice	was	made	to	conduct	the	
experiment	with	one	single	subject	and	use	a	small	number	of	measurements.		
	
Due	to	practical	constraints,	the	observability	of	certain	relevant	state	variables	during	the	
experiment	was	low.	The	partial	pressure	of	carbon	dioxide	and	oxygen	in	the	blood	were	not	
observable	because	the	necessary	measuring	equipment	was	not	available.	As	a	result,	
identification	of	the	separate	model	parameters	was	not	possible.	It	also	proved	difficult	to	keep	
the	minute	ventilation	constant	during	the	30	seconds	after	perturbation.	As	a	result,	the	short	
time	constants	belonging	to	the	gas	exchange	could	not	be	determined.	For	future	studies,	more	
efforts	should	be	exerted	to	increase	the	observability.	
 
5.3.	Suggestions	for	further	research	
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Further	research	should	initially	focus	on	developing	and	comparing	different	first	models	of	the	
physiology	of	breathing	with	different	structures	and	degrees	of	complexity.	These	models	
should	be	compared	on	several	levels:	accuracy,	transparency,	clinical	applicability	etc.	Our	
model	could	also	be	included	in	this	research.	Afterwards,	it	is	possible	to	determine	the	most	
optimal	base	structure	for	further	development	of	a	closed-loop	mechanical	ventilation	system	
based	on	the	physiology	of	breathing.		

Further	research	should	also	be	conducted	to	increase	our	understanding	of	the	dynamics	of	the	
breathing	system.	This	will	result	in	better	substantiated	design	choices	and	model	validation.	
Several	different	first	experiments	may	be	conducted	to	find	out	what	information	can	be	
obtained	from	different	measurement	protocols.	When	these	first	experiments	indicate	that	
useful	information	can	be	obtained,	experiments	with	higher	validity	can	be	conducted.	Since	the	
model	should	eventually	be	applied	on	the	ICU,	it	may	also	be	useful	to	conduct	experiments	on	
the	dynamics	of	the	breathing	system	in	patients	on	mechanical	ventilation.	Advantages	of	these	
experiments	is	that	the	controllability	and	observability	of	variables	is	significantly	higher	on	
the	ICU	compared	to	experimental	studies	in	healthy	subjects.			
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6.	Conclusion	
The	aim	of	this	thesis	was	to	develop	a	simple	but	credible	model	of	the	physiology	of	breathing	
based	on	the	difficulties	encountered	in	current	clinical	practice	that	could	be	the	initial	step	
towards	the	use	of	a	model-based	closed-loop	mechanical	ventilation	system	in	clinical	practice	
and	will	allow	for	insight	in	the	clinical	applicability.	
	
From	the	literary	review	and	conversations	with	clinicians	it	resulted	that	the	closed-loop	
mechanical	ventilation	systems	that	are	used	in	current	clinical	practice	mainly	focus	on	the	
respiratory	mechanics.	A	model	of	the	gas	exchange	and	the	respiratory	drive	with	low	
complexity	could	be	of	an	improvement	to	current	clinical	practice	by	improving	the	insight	in	
the	patient’s	respiratory	parameters	and	predicting	patient	responses	to	changes	in	ventilator	
settings.	
	
A	two-compartment	model	aimed	to	satisfy	these	requirements	was	developed.	The	dynamical	
behaviour	of	the	model	consisted	of	a	slow	and	a	fast	exponential	component	and	the	model	
would	reach	an	equilibrium	state	when	ventilating	with	constant	minute	ventilation.		
	
An	experimental	study	was	conducted	that	presented	relevant	information	about	the	dynamical	
behaviour	of	carbon	dioxide.	This	behaviour	complied	with	the	behaviour	expected	from	the	
dynamical	analysis.	Aggregated	model	parameter	groups	could	be	identified,	and	the	predictions	
of	the	identified	model	were	qualitatively	similar	to	experimental	measurements.	While	the	
limited	observability	and	resources	limit	the	possibilities	for	extensive	model	validation,	this	
may	give	an	indication	that	the	simple	model	for	carbon	dioxide	may	have	the	right	structure	to	
describe	the	ventilatory	response	of	the	exchange	of	carbon	dioxide.		
The	experimental	protocol	did	not	prove	suitable	to	obtain	relevant	information	about	the	
dynamical	behaviour	of	oxygen.			
	
This	research	presents	an	example	of	a	possible	model	structure	for	carbon	dioxide	which	may	
be	the	initial	step	towards	the	use	of	a	simple	model	of	the	full	physiology	of	breathing	in	clinical	
practice.	With	the	developed	model	it	may	be	possible	to	improve	the	clinician’s	insight	into	the	
efficiency	of	the	gas	exchange	of	patients	on	mechanical	ventilation.	This	may	give	the	clinician	
an	improved	insight	into	the	readiness	of	the	patient	for	weaning	and	may	make	better-
substantiated	ventilator	setting	choices	possible.	Before	this	model	will	be	clinically	applicable,	
further	research	is	needed	to	determine	the	optimal	model	structure	and	components	and	
increased	testing	is	necessary.	
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34.	 Centre	de	recherches	et	d'échanges	sur	la	diffusion	et	l'inculturation	du	christianisme	
(France).	Colloque	(35th	:	2014	:	Nantes	France),	Bouron	J-M,	Salvaing	B,	Université	de	Nantes.	
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Appendix	1:	Model	development	
1.1.	Overview	of	the	model	parameters	and	variables		
	
Table 9 Overview of the model variables for carbon dioxide 

	 full	name	 abbr.	 unit	
Input	
variables	

Ventilator	induced	pressure	 𝑃C(𝑡)	 𝑐𝑚𝐻5𝑂	
Velocity	of	blood	flow	 𝑄(𝑡)	 𝐿/𝑠	
𝐶𝑂5-flow	through	airways	 𝜙0<	;?!(𝑡) 𝑔/𝑠	

Metabolic	𝐶𝑂5-flow	 𝜙(&!	;?!(𝑡)	 𝑔/𝑠	
Concentration	of	𝐶𝑂5	in	the	inspired	air	 𝐶#!("#!

(𝑡)	 𝑔/𝐿	

State	
variables	

Alveolar	volume	 𝑉0(𝑡)	 𝑚𝐿	
Alveolar	pressure	 𝑃!(𝑡)	 𝑐𝑚𝐻5𝑂	
Mass	of	𝐶𝑂5	in	alveolar	space	 𝑚0	;?!(𝑡)	 𝑔	
Mass	of	𝐶𝑂5	in	arterial	blood	 𝑚#	;?!(𝑡)	 𝑔	
Mass	of	𝐶𝑂5	in	venous	blood	 𝑚%	;?!(𝑡)	 𝑔	
Mass	of	𝐶𝑂5	in	total	blood	 𝑚F	;?!(𝑡)	 𝑔	

General	
variable	

Intrapleural	pressure	 𝑃6.(𝑡)	 𝑐𝑚𝐻5𝑂	
Transpulmonary	pressure	 𝑃1.(𝑡)	 𝑐𝑚𝐻5𝑂	
Airway	pressure	 𝑃0<(𝑡) 𝑐𝑚𝐻5𝑂	
Partial	pressure	of	𝐶𝑂5	in	alveolar	air	 𝑃0"#!(𝑡)	 𝑚𝑚𝐻𝑔	
Partial	pressure	of	𝐶𝑂5	in	venous	blood	 𝑃%;?!(𝑡)		 𝑚𝑚𝐻𝑔	
Partial	pressure	of	𝐶𝑂5	in	arterial	blood	 𝑃#;?!(𝑡)		 𝑚𝑚𝐻𝑔	
Partial	pressure	of	𝐶𝑂5	in	total	blood	 𝑃F;?!(𝑡)		 𝑚𝑚𝐻𝑔	
Diffusion	flow	of	𝐶𝑂5	between	alveolar	air	and	capillaries	 𝜙@4A	;?!(𝑡)	 𝑔/𝑠	

𝐶𝑂5-flow	from	the	arterial	blood	to	the	venous	blood	 𝜙#%	"#!(𝑡) 
𝑔/𝑠	

𝐶𝑂5-flow	from	the	venous	blood	to	the	arterial	blood	 𝜙%#	"#!(𝑡) 𝑔/𝑠	

Concentration	of	𝐶𝑂5	in	the	alveolar	air	 𝐶0"#!(𝑡)	 𝑔/𝐿 

Activity	of	the	central	chemoreceptors	 𝑎++-(𝑡)	 1/𝑠	
Activity	of	the	central	pattern	generator	 𝑎+,K	 1/𝑠	

 
Table 10 Overview of the model parameters for carbon dioxide 

full	name	 abbr.	 unit	 initial	value	 source	
Respiratory	compliance	 𝐶-*	 𝑚𝐿/𝑐𝑚𝐻5𝑂	 2 ⋅ 105	 [66]	
Respiratory	resistance	 𝑅-*	 (𝑐𝑚𝐻4𝑂 ⋅ 𝑠)/𝑚𝐿		 3.7 ⋅ 10yD	 [67]	
Functional	residual	capacity	 𝑉9:; 	 𝑚𝐿	 2.8 ⋅ 10D	 [68]	
Density	carbon	dioxide	STP	 𝜌;?! 	 𝑔/𝑚𝐿	 2.0 ⋅ 10yD	 [69]	
Molar	volume	at	BTPS	 𝑉z	 𝐿	 22.4	 [69]	
Diffusion	capacity	co2	 𝐷/"#! 	 𝑔/𝑠	 1.66 ⋅ 10yD	 [68]	
Arterial	blood	volume	 𝑉#	 L	 1.11	 [68]	
Venous	blood	volume	 𝑉%	 L	 3.51	 [68]	
Total	blood	volume	 𝑉F	 L	 4.60	 [68]	
Respiratory	quotient	 𝑅𝑄	 -	 0.8	 [70]	
Setpoint	partial	pressure	𝐶𝑂5	 𝑃#"#! 	@*&!,"4'!	 𝑚𝑚𝐻𝑔	 40	 [71]	
Constant	1	 𝑘B	 𝐿/𝑔 ⋅ 𝑚𝑚𝐻𝑔	 -	 -	
Constant	2	 𝑘5	 𝐿/𝑔 ⋅ 𝑚𝑚𝐻𝑔	 -	 -	
Constant	3	 𝑘D 𝐿/𝑔 ⋅ 𝑚𝑚𝐻𝑔	 -	 -	
Constant	4	 𝑘E 𝑚𝑚𝐻𝑔	 -	 -	
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Constant	5	 𝑘C 𝑚𝑚𝐻𝑔	 -	 -	
Constant	6	 𝑘G 𝐿/𝑔 ⋅ 𝑚𝑚𝐻𝑔	 -	 -	
Constant	7	 𝑘H 𝑚𝑚𝐻𝑔	 -	 -	
Constant	8	 𝑘J	 1/𝑚𝑚𝐻𝑔 ⋅ 𝑠	 -	 -	
Constant	9	 𝑘I	 1/𝑠	 -	 -	
Constant	10	 𝑘BL	 1/𝑠	 -	 -	
Constant	10	 𝑘BB	 𝑠/𝑐𝑚𝐻5𝑂	 -	 -	

Table 11 Overview of the model variables for oxygen 

	 full	name	 abbr.	 unit	
input	
variables	

Ventilator	induced	pressure	 𝑃C(𝑡) 𝑐𝑚𝐻5𝑂	
Velocity	of	blood	flow	 𝑄(𝑡)	 𝐿/𝑠	
𝑂5-flow	through	airways	 𝜙0<	?!(𝑡)	 𝑔/𝑠	

Metabolic	𝑂5-flow	 𝜙(&!	?!(𝑡)	 𝑔/𝑠	

Concentration	of	𝑂5	in	the	inspired	air	 𝐶#!(	#!
(𝑡)	 𝑔/𝐿	

State	
variables	

Alveolar	volume	 𝑉0(𝑡)	 𝑚𝐿	
Mass	of	𝑂5	in	alveolar	space	 𝑚0	?!(𝑡)	 𝑔	
Mass	of	𝑂5	in	arterial	blood	 𝑚#	?!(𝑡)	 𝑔	
Mass	of	𝑂5	in	venous	blood	 𝑚%	?!(𝑡)	 𝑔	
Mass	of	𝑂5	in	total	blood	 𝑚F	?!(𝑡)	 𝑔	
Partial	pressure	of	𝑂5	in	alveolar	air	 𝑃0#!(𝑡)	 𝑚𝑚𝐻𝑔	
Partial	pressure	of	𝑂5	in	venous	blood	 𝑃%?!(𝑡)		 𝑚𝑚𝐻𝑔	
Partial	pressure	of	𝑂5	in	arterial	blood	 𝑃#?!(𝑡)		 𝑚𝑚𝐻𝑔	
Partial	pressure	of	𝑂5	in	total	blood	 𝑃F?!(𝑡)		 𝑚𝑚𝐻𝑔	
Diffusion	flow	of	𝑂5	between	alveolar	air	and	capillaries	 𝜙@4A	?!(𝑡)	 𝑔/𝑠	

𝑂5-flow	from	the	arterial	blood	to	the	venous	blood	 𝜙#%	#!(𝑡) 𝑔/𝑠	

𝑂5-flow	from	the	venous	blood	to	the	arterial	blood	 𝜙%#	#!(𝑡) 𝑔/𝑠	

Dissolved	mass	of	𝑂5	in	arterial	blood	 𝐶##!	@4**"$%&@(𝑡) 𝑔/𝐿	

Dissolved	mass	of	𝑂5	in	venous	blood	 𝐶%#!	@4**"$%&@(𝑡) 𝑔/𝐿	

Activity	of	the	central	chemoreceptors	 𝑎++-(𝑡)	 1/𝑠 

Activity	of	the	central	pattern	generator	 𝑎+,K	 1/𝑠 

 
 
Table 12 Overview of the model parameters for oxygen 

full	name	 abbr.	 unit	 initial	value	 source	
Diffusion	capacity	o2	 𝐷/#! 	 𝑔/𝑠	 2 ⋅ 105	 [66]	
Haemoglobin	 𝐻𝑏	 𝑀𝑚𝑜𝑙/𝐿	 10	 [67]	
Saturation	haemoglobin	 𝑆𝑝𝑂5	 %	 99	 [68]	
Arterial	blood	volume	 𝑉#	 L	 1.11	 [68]	
Venous	blood	volume	 𝑉%	 L	 3.51	 [68]	
Respiratory	quotient	 𝑅𝑄	 -	 0.8	 [70]	
Constant	1	 𝑘B	 𝐿/𝑔 ⋅ 𝑚𝑚𝐻𝑔	 -	 -	
Constant	2	 𝑘5	 𝐿/% ⋅ 𝑚𝑚𝑜𝑙	 -	 -	
Constant	3	 𝑘D 𝐿/𝑔 ⋅ 𝑚𝑚𝐻𝑔	 -	 -	
Constant	4	 𝑘E 𝐿/% ⋅ 𝑚𝑚𝑜𝑙	 -	 -	
Constant	5	 𝑘C 𝐿/𝑔 ⋅ 𝑚𝑚𝐻𝑔	 -	 -	
Constant	6	 𝑘G	 𝐿/% ⋅ 𝑚𝑚𝑜𝑙	 -	 -	
Constant	7	 𝑘H	 𝐿/𝑔 ⋅ 𝑚𝑚𝐻𝑔	 -	 -	
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1.2.	Overview	of	the	equations	for	oxygen	
	
Alveolar	air		
	
The	change	in	the	number	of	𝑂5	molecules	in	the	alveolar	air	(𝑚0	?!(𝑡))	depends	on	the	diffusion	
flow	from	the	alveolar	air	to	the	capillaries	(𝜙@4A	?!(𝑡))	and	the	flow	of	𝑂5	in	and	out	of	the	body	
(𝜙0<	?!(𝑡)).		
	

𝑑𝑚0	?!(𝑡)
𝑑𝑡

= 𝜙0<	?!(𝑡) − 𝜙@4A	?!(𝑡)	 (44)	

	
The	partial	pressure	of	𝑂5	(𝑃0	?!)	depends	on	the	mass	of	𝑂5	in	the	alveolar	air,	the	volume	of	the	
alveolar	air	and	the	total	pressure	of	the	alveolar	air.		
	

𝑃0	?!(𝑡) = 𝑘B ⋅
𝑚0	?!(𝑡)
𝑉0(𝑡)

	 (45)	

	
The	flow	of	𝑂5	in	and	out	of	the	lungs	(𝜙0<	?!(𝑡))	is	dependent	on	the	airflow	(𝜙0<(𝑡))	and	
during	exhalation	on	the	concentration	of	𝑂5	in	the	lungs	(𝐶0#!(𝑡))	or	during	inhalation	on	the	
concentration	of	𝑂5	in	the	inspired	air	(𝐶#!(#!

(𝑡)).		
	
Inhalation	

𝜙0<	?!(𝑡) = 𝐶#!(#!
(𝑡) ⋅ 𝜙0<	(𝑡)	 (46)	

	
Exhalation	

𝜙0<	?!(𝑡) = 𝐶0#!(𝑡) ⋅ 𝜙0<	(𝑡)	 (47)	
	
Diffusion	of	oxygen	between	alveolar	air	and	the	pulmonary	capillaries	
	
The	movements	of	both	𝑂5	and	𝐶𝑂5	across	the	alveolar	blood-gas	barrier	occur	by	simple	
diffusion.	Fick	law	describes	that	the	net	flow	is	proportional	to	the	difference	in	partial	
pressures	of	𝑂5	and	𝐶𝑂5	in	the	alveolar	air	and	the	blood.	The	diffusion	coefficient	(𝐷/)	is	
dependent	on	the	properties	of	both	the	barrier	and	the	gas.	If	we	assume	that	the	alveolar	air,	
blood-gas	barrier	and	pulmonary	capillary	blood	are	uniform	in	space	and	time,	then	the	net	
diffusion	of	𝑂5	from	alveolar	air	to	pulmonary	capillary	blood	is	described	by	equation	46.		
	

𝜙@4A	?!(𝑡) = 𝐷/#! F𝑃0#!	(𝑡) 	− 𝑃%#!(𝑡)G	 (48)	
	
	
Arterial	blood	
	
The	flow	of	𝑂5	molecules	in	the	arterial	blood	is	equal	to	the	flow	of	𝑂5		molecules	in	the	venous	
blood	minus	the	diffusion	flow	of	𝑂5		molecules	to	the	alveolar	air.	The	flow	of	𝑂5		molecules	in	
the	blood	is	equal	to	the	change	in	number	of	𝑂5	molecules	in	the	blood.	
	

𝑑𝑚#%!
(𝑡)

𝑑𝑡
= 𝜙%#	#!(𝑡) + 𝜙@4A	#!(𝑡) − 𝜙#%	#!(𝑡)	

(49)	
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The	flow	of	𝑂5	from	the	venous	to	the	arterial	compartment	(𝜙%#	#!(𝑡))	and	the	flow	of	𝑂5		from	
the	arterial	to	the	venous	compartment	(𝜙#%	#!(𝑡))	are	equal	to	the	product	of	the	blood	flow	in	
the	compartment	(𝑄(𝑡))	and	the	concentration	of	𝑂5	in	the	sending	compartment.	
	

𝜙%#	#!(𝑡) = 𝑄(𝑡) ⋅
𝑚%#!

(𝑡)
𝑉%	

	
(50)	
	

	

𝜙#%	#!(𝑡) = 𝑄(𝑡) ⋅
𝑚##!

(𝑡)
𝑉#	

	

	

(51)	
	

The	mass	concentration	of	𝑂5	in	the	arterial	blood	can	be	calculated	by	dividing	the	mass	of	𝑂5	
in	the	blood	(𝑚##!with	the	volume	(𝑉#).	The	dissolved	mass	of	𝑂5	is	dependent	on	the	number	of	
haemoglobin	molecules	(𝐻𝑏)	and	the	fraction	of	haemoglobin	molecule	that	have	bound	oxygen	
(𝑆𝑝𝑂5).	
	
	

𝑚##! 	@4**"$%&@
(𝑡)

𝑉#	
=
𝑚##!

(𝑡)
𝑉#	

⋅ (1 − 𝑘5 ⋅ 𝑆𝑝𝑂5 ⋅ 𝐻𝑏)	 (52)	

	
	
The	partial	pressure	of	oxygen	in	the	arterial	blood	(𝑃##!)	is	linearly	related	to	the	mass	
concentration	of	dissolved	oxygen.	The	constant	𝑘D	is	used	to	describe	the	linear	relation.	

𝑃##! = 𝑘D ⋅
𝑚##! 	@4**"$%&@

(𝑡)
𝑉#	

	

		
(53)	

	
Venous	blood	
	
The	flow	of	𝑂5	molecules	in	the	venous	blood	is	equal	to	the	flow	of	𝑂5		molecules	in	the	arterial	
blood	minus	the	diffusion	flow	of	𝑂5		molecules	to	the	metabolism	(𝜙(&!	#!).	The	flow	of	𝑂5		
molecules	in	and	out	of	the	venous	blood	is	equal	to	the	change	in	number	of	𝑂5	molecules	in	the	
venous	blood.	
	

𝑑𝑚%%!
(𝑡)

𝑑𝑡
= 𝜙#%	#!(𝑡) − 𝜙(&!	#!(𝑡) − 𝜙%#	#!(𝑡)	

(54)	
	

	
	
	
The	mass	concentration	of	𝑂5	in	the	venous	blood	can	be	calculated	by	dividing	the	mass	of	𝑂5	in	
the	blood	(𝑚##!with	the	volume	(𝑉%).	The	dissolved	mass	of	𝑂5	is	dependent	on	the	number	of	
haemoglobin	molecules	(𝐻𝑏)	and	the	fraction	of	haemoglobin	molecule	that	have	bound	oxygen	
(𝑆𝑝𝑂5).	
	
	

𝑚%#! 	@4**"$%&@
(𝑡)

𝑉%	
=
𝑚%#!

(𝑡)
𝑉%	

⋅ (1 − 𝑘E ⋅ 𝑆𝑝𝑂5 ⋅ 𝐻𝑏)	 (55)	

	
The	partial	pressure	of	oxygen	in	the	venous	blood	(𝑃%#!)	is	linearly	related	to	the	mass	
concentration	of	dissolved	oxygen.	The	constant	𝑘C	is	used	to	describe	the	linear	relation.	
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𝑃%#!(𝑡) = 𝑘C ⋅
𝑚%#! 	@4**"$%&@

(𝑡)
𝑉%	

	

			
(56)	

	
A	single	blood	compartment	(simplification)	
	
If	the	dynamical	analysis	of	the	original	model	proves	impossible,	a	simplification	should	be	
applied.	A	simplification	of	the	model	is	described	here	that	turns	the	third	order	model	in	a	
second	order	model.	The	block	for	the	arterial	and	the	venous	blood	are	merged	into	one	single	
block	that	describes	the	total	blood	volume.		
	
The	change	of	the	total	𝑂5	mass	in	the	blood	(𝑚F%!

(𝑡))	is	equal	to	the	sum	of	the	flows	that	carry	
𝑂5	in	and	out	of	the	compartment.	The	outgoing	flow	is	the	flow	of	𝑂5		molecules	that	diffuse	to	
the	lungs	and	the	ingoing	flow	is	the	metabolic	flow	of	𝑂5	molecules.	
	

𝑑𝑚F%!
(𝑡)

𝑑𝑡
= 𝜙@4A	#!(𝑡) − 𝜙(&!	#!(𝑡)	

(57)	
	

	
	
The	mass	concentration	of	𝑂5	in	the	blood	can	be	calculated	by	dividing	the	mass	of	𝑂5	in	the	
blood	(𝑚F#!with	the	volume	(𝑉F).	The	dissolved	mass	of	𝑂5	is	dependent	on	the	number	of	
haemoglobin	molecules	(𝐻𝑏)	and	the	fraction	of	haemoglobin	molecule	that	have	bound	oxygen	
(𝑆𝑝𝑂5).	
	
	

𝑚F#! 	@4**"$%&@
(𝑡)

𝑉F	
=
𝑚F#!

(𝑡)
𝑉F	

⋅ (1 − 𝑘G ⋅ 𝑆𝑝𝑂5 ⋅ 𝐻𝑏)	 (58)	

	
The	partial	pressure	of	𝑂5	in	the	blood	(𝑃F#!(𝑡))	is	dependent	on	the	mass	concentration	of	𝑂5	in	
the	arterial	blood.	The	constant	𝑘H	is	used	to	describe	the	linear	relation.	
	
	
	

𝑃F#!(𝑡) = 𝑘H ⋅
𝑚F#!	M2..%NO/M

(𝑡)
𝑉F	

	

	
(59)	

	
Metabolism	
	
The	metabolism	encompasses	all	the	chemical	processes	involved	in	energy	production,	energy	
release	and	growth.	The	metabolism	requires	a	supply	of	𝑂5	and	produces	𝐶𝑂5.	The	respiratory	
quotient	(RQ)	is	the	ratio	of	moles	of	𝐶𝑂5	produced	per	mole	of	𝑂5		consumed	at	the	tissue	level.	
For	people	eating	a	typical	western	diet	the	RQ	is	approximately	0.8.		
	

𝜙(&!	?!(𝑡) =
𝜙(&!	;?!(𝑡)

𝑅𝑄
	

	
(60)	

For	description	of	‘prefusion’,	‘Central	and	peripheral	chemoreceptors’,	‘central	pattern	
generator’	and	‘breathing	muscles’	see	section	2.	
	
Perfusion	
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Perfusion	(𝑄(𝑡))	is	the	input	variable	for	the	subsystems	‘arterial	blood’	and	‘venous	blood’.	It	
represents	the	convective	movement	of	blood	that	carries	the	dissolved	gasses	to	and	from	the	
lung.		
	
Central	and	peripheral	chemoreceptors	
	
See	section	3.1.2.	
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1.3.	Overview	of	Simulink	model	
	
Full	Simulink	model	
	

	
Breathing	mechanics	
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Arterial	blood		
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alveolar air 	
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Appendix	2:	Dynamical	analysis			
	
2.1.	Dynamical	analysis	of	the	original	third	order	gas	exchange	model	(carbon	dioxide)	
	
The	first	step	in	the	analysis	is	the	determination	of	the	state	equations.	The	state	equations	are	
created	with	the	equations	from	section	3.1	and	
	
𝑑𝑚!!"#

(𝑡)
𝑑𝑡 = 𝐷2	)/@ ⋅ \𝑘I ⋅

𝑚8!"#
(𝑡)

𝑉8	
− 𝑘J − 𝑘5 ⋅

𝑚!	)/#(𝑡)
𝑉𝐴	𝑔𝑒𝑚

^ − 𝜙!7	-86(𝑡) ⋅
𝑚!!"#

(𝑡)

𝑉𝐴	𝑔𝑒𝑚
+ 𝐶)/#	-01 ⋅ 𝜙!7	-86(𝑡)	

	
K1<!"#

(0)

K0
= 𝑄 |𝑚𝑣	𝐶𝑂2

𝑉𝑣
− 𝑚𝑎	𝐶𝑂2

𝑉𝑎
}−𝐷𝐿	𝐶𝑂2 ⋅ \𝑘I ⋅

1=!"#
(0)

$=	
− 𝑘J − 𝑘5 ⋅

11	!"#(0)

𝑉𝐴	𝑔𝑒𝑚
^				

	
𝑑𝑚8!"#

(𝑡)
𝑑𝑡 = 𝑄 ⋅ `

𝑚-	)/#
𝑉-

−
𝑚8	)/#
𝑉8

a + 𝑄1+0	)/# 	

	
The	state	equations	can	be	notated	into	the	state	space	form.	
	

x
𝑚0	;?!	̇
𝑚#	;?!	̇
𝑚%	;?!	̇

	

y = 𝐴 z
𝑚0	;?!	
𝑚#	;?!	
𝑚%	;?!	

	

{	

	
	

	 −𝐷2	)/@ ⋅ 𝑘5 − 𝜙!7	-86(𝑡)
𝑉𝐴	𝑔𝑒𝑚

	 0	
𝐷0	12# ⋅ 𝐾3

𝑉D
	

A=	 𝐷2	)/@ ⋅
𝑘5

𝑉𝐴	𝑔𝑒𝑚
	 −

𝑄
𝑉#
	

𝑄 − 𝐷/	;?5 ⋅ 𝐾3
𝑉%

	

	 0	
𝑄
𝑉#
	 −

𝑄
𝑉%
	

	
The	eigenvalues	of	the	system	are	determined	by	taking	the	determinant	of	the	A-matrix	minus	
the	identity	matrix	with	the	eigenvalues	x	on	the	diagonal	and	setting	it	to	zero.		
	

	 −𝐷2	)/@ ⋅ 𝑘5 − 𝜙!7	-86(𝑡)
𝑉𝐴	𝑔𝑒𝑚

− 𝑥	 0	
𝐷0	12# ⋅ 𝐾3

𝑉D
	

A=	 𝐷2	)/@ ⋅
𝑘5

𝑉𝐴	𝑔𝑒𝑚
	 −

𝑄
𝑉#
− 𝑥		

𝑄 − 𝐷/	;?5 ⋅ 𝐾3
𝑉%

	

	
0	

𝑄
𝑉#
	 −

𝑄
𝑉%
− 𝑥	

	
	

M!"!⋅$"	$%&!%'(	)*+(')
)'	+,-	

− 𝑥P ⋅ RS− +
))
− 𝑥T ⋅ S− +

)*
− 𝑥T − S+!$"	$%&⋅".)*

T ⋅ S+))TU + S
$"	$%&⋅".

)*
T ⋅ S$"	$%&⋅"!)'	(')

T ⋅ S+))T			

M!"!⋅$"	$%&!%'(	)*+(')
)'	+,-	

P ⋅ RS− +
))
− 𝑥T ⋅ S− +

)*
− 𝑥T − S+!$"	$%&⋅".)*

T ⋅ S+))TU − 𝑥 ⋅ RS−
+
))
− 𝑥T ⋅ S− +

)*
− 𝑥T − S+!$"	$%&⋅".)*

T ⋅ S+))TU + S
$"	$%&⋅".

)*
T ⋅ S$"	$%&⋅"!)'	(')

T ⋅ S+))T			

R
−𝑘, ⋅ 𝐷-	./0 − 𝜙12	345(𝑡)

𝑉1	567	
U ⋅ ZM

𝑄
𝑉3
𝑄
𝑉4
+ 𝑥(

𝑄
𝑉3
+
𝑄
𝑉4
) + 𝑥0P − M

𝑄 − 𝐷-	./0 ⋅ 𝑘8
𝑉4

P ⋅ M
𝑄
𝑉3
P\ − 𝑥 ⋅ ZM

𝑄
𝑉3
𝑄
𝑉4
+ 𝑥(

𝑄
𝑉3
+
𝑄
𝑉4
) + 𝑥0P − M

𝑄 − 𝐷-	./0 ⋅ 𝑘8
𝑉4

P ⋅ M
𝑄
𝑉3
P\ + M

𝐷-	./0 ⋅ 𝑘8
𝑉4

P ⋅ M
𝐷-	./0 ⋅ 𝑘,
𝑉1	(𝑡)

P ⋅ M
𝑄
𝑉3
P	

R
−𝑘, ⋅ 𝐷-	./0 − 𝜙12	345(𝑡)

𝑉1	567	
U ⋅ ZM

𝑄
𝑉3
𝑄
𝑉4
+ 𝑥 M

𝑄
𝑉3
+
𝑄
𝑉4
P + 𝑥0P − M

𝑄 − 𝐷-	./0 ⋅ 𝑘8
𝑉4

P ⋅ M
𝑄
𝑉3
P\ + ZM−

𝑄
𝑉3
𝑄
𝑉4
𝑥 − 𝑥0 M

𝑄
𝑉3
+
𝑄
𝑉4
P − 𝑥8P + 𝑥 M

𝑄 − 𝐷-	./0 ⋅ 𝑘8
𝑉4

P ⋅ M
𝑄
𝑉3
P\ + M

𝐷-	./0 ⋅ 𝑘8
𝑉4

P ⋅ M
𝐷-	./0 ⋅ 𝑘,
𝑉1	(𝑡)

P ⋅ M
𝑄
𝑉3
P	

	

R
−𝑘, ⋅ 𝐷-	./0 − 𝜙12	345(𝑡)

𝑉1	567	
U ⋅

𝑄
𝑉3
𝑄
𝑉4
+ 𝑥 R

−𝑘, ⋅ 𝐷-	./0 − 𝜙12	345(𝑡)
𝑉1	567	

U ⋅ M
𝑄
𝑉3
+
𝑄
𝑉4
P + 𝑥0 R

−𝑘, ⋅ 𝐷-	./0 − 𝜙12	345(𝑡)
𝑉1	567	

U − M
𝑄 − 𝐷-	./0 ⋅ 𝑘8

𝑉4
P ⋅ M

𝑄
𝑉3
PR
−𝑘, ⋅ 𝐷-	./0 − 𝜙12	345(𝑡)

𝑉1	567	
U −

𝑄
𝑉3
𝑄
𝑉4
𝑥 − 𝑥0 M

𝑄
𝑉3
+
𝑄
𝑉4
P

− 𝑥8 + 𝑥 M
𝑄 − 𝐷-	./0 ⋅ 𝑘8

𝑉4
P ⋅ M

𝑄
𝑉3
P + M

𝐷-	./0 ⋅ 𝑘8
𝑉4

P ⋅ M
𝐷-	./0 ⋅ 𝑘,
𝑉1	(𝑡)

P ⋅ M
𝑄
𝑉3
P	

	

−𝑥8 + 𝑥0 Z
−𝑘, ⋅ 𝐷-	./0 − 𝜙12	345(𝑡)

𝑉1	567	
− M

𝑄
𝑉3
+
𝑄
𝑉4
P\ + 𝑥 ZR

−𝑘, ⋅ 𝐷-	./0 − 𝜙12	345(𝑡)
𝑉1	567	

U ⋅ M
𝑄
𝑉3
+
𝑄
𝑉4
P −

𝑄
𝑉3
𝑄
𝑉4
+ M

𝑄 − 𝐷-	./0 ⋅ 𝑘8
𝑉4

P ⋅ M
𝑄
𝑉3
P\ + R

−𝑘, ⋅ 𝐷-	./0 − 𝜙12	345(𝑡)
𝑉1	567	

U ⋅
𝑄
𝑉3
𝑄
𝑉4
− M

𝑄 − 𝐷-	./0 ⋅ 𝑘8
𝑉4

P

⋅ M
𝑄
𝑉3
PR
−𝑘, ⋅ 𝐷-	./0 − 𝜙12	345(𝑡)

𝑉1	567	
U + M

𝐷-	./0 ⋅ 𝑘8
𝑉4

P ⋅ R
𝐷-	./0 ⋅ 𝑘,
𝑉1	567

U ⋅ M
𝑄
𝑉3
P	
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−𝑥8 + 𝑥0 Z
−𝑘, ⋅ 𝐷-	./0 − 𝜙12	345(𝑡)

𝑉1	567	
− M

𝑄
𝑉3
+
𝑄
𝑉4
P\ + 𝑥 ZR

−𝑘, ⋅ 𝐷-	./0 − 𝜙12	345(𝑡)
𝑉1	567	

U ⋅ M
𝑄
𝑉3
+
𝑄
𝑉4
P −

𝑄
𝑉3
𝑄
𝑉4
+ M

𝑄 − 𝐷-	./0 ⋅ 𝑘8
𝑉4

P ⋅ M
𝑄
𝑉3
P\ + R

−𝑘, ⋅ 𝐷-	./0 − 𝜙12	345(𝑡)
𝑉1	567	

U ⋅
𝑄
𝑉3
𝑄
𝑉4
− M

𝑄
𝑉4
P

⋅ M
𝑄
𝑉3
PR
−𝑘, ⋅ 𝐷-	./0 − 𝜙12	345(𝑡)

𝑉1	567	
U − M

−𝐷-	./0 ⋅ 𝑘8
𝑉4

P ⋅ M
𝑄
𝑉3
PR
−𝑘, ⋅ 𝐷-	./0 − 𝜙12	345(𝑡)

𝑉1	567	
U + M

𝐷-	./0 ⋅ 𝑘8
𝑉4

P ⋅ R
𝐷-	./0 ⋅ 𝑘,
𝑉1	567

U ⋅ M
𝑄
𝑉3
P	

	

−𝑥8 + 𝑥0 Z
−𝑘, ⋅ 𝐷-	./0 − 𝜙12	345(𝑡)

𝑉1	567	
− M

𝑄
𝑉3
+
𝑄
𝑉4
P\ + 𝑥 ZR

−𝑘, ⋅ 𝐷-	./0 − 𝜙12	345(𝑡)
𝑉1	567	

U ⋅ M
𝑄
𝑉3
+
𝑄
𝑉4
P −

𝑄
𝑉3
𝑄
𝑉4
+ M

𝑄 − 𝐷-	./0 ⋅ 𝑘8
𝑉4

P ⋅ M
𝑄
𝑉3
P\ − M

−𝐷-	./0 ⋅ 𝑘8
𝑉4

P ⋅ M
𝑄
𝑉3
PR
−𝑘, ⋅ 𝐷-	./0 − 𝜙12	345(𝑡)

𝑉1	567	
U

+ M
𝐷-	./0 ⋅ 𝑘8

𝑉4
P ⋅ R

𝐷-	./0 ⋅ 𝑘,
𝑉1	567

U ⋅ M
𝑄
𝑉3
P	

	

−𝑥8 + 𝑥0 Z
−𝑘, ⋅ 𝐷-	./0 − 𝜙12	345(𝑡)

𝑉1	567	
− M

𝑄
𝑉3
+
𝑄
𝑉4
P\ + 𝑥 ZR

−𝑘, ⋅ 𝐷-	./0 − 𝜙12	345(𝑡)
𝑉1	567	

U ⋅ M
𝑄
𝑉3
+
𝑄
𝑉4
P −

𝑄
𝑉3
𝑄
𝑉4
+ M

𝑄 − 𝐷-	./0 ⋅ 𝑘8
𝑉4

P ⋅ M
𝑄
𝑉3
P\ − M

−𝐷-	./0 ⋅ 𝑘8
𝑉4

P ⋅ M
𝑄
𝑉3
PR
−𝜙12	345(𝑡)
𝑉1	567	

U	

	

−𝑥8 + 𝑥0 Z
−𝑘, ⋅ 𝐷-	./0 − 𝜙12	345(𝑡)

𝑉1	567	
− M

𝑄
𝑉3
+
𝑄
𝑉4
P\ + 𝑥 ZR

−𝑘, ⋅ 𝐷-	./0 − 𝜙12	345(𝑡)
𝑉1	567	

U ⋅ M
𝑄
𝑉3
+
𝑄
𝑉4
P + M

−𝐷-	./0 ⋅ 𝑘8
𝑉4

P ⋅ M
𝑄
𝑉3
P\ − M

−𝐷-	./0 ⋅ 𝑘8
𝑉4

P ⋅ M
𝑄
𝑉3
PR
−𝜙12	345(𝑡)
𝑉1	567	

U	

	

−𝑥8 + 𝑥0 R
−𝑘, ⋅ 𝐷-	./0 − 𝜙12	345(𝑡)

𝑉1	567	
−
𝑄
𝑉3
−
𝑄
𝑉4
U + 𝑥Z

−𝑘, ⋅ 𝐷-	./0
𝑉1	567	

𝑄
𝑉3
+
−𝑘, ⋅ 𝐷-	./0
𝑉1	567	

𝑄
𝑉4
+
−𝜙12	345(𝑡)
𝑉1	567	

𝑄
𝑉3
+
−𝜙12	345(𝑡)
𝑉1	567	

𝑄
𝑉4
+ M

−𝐷-	./0 ⋅ 𝑘8
𝑉4

P ⋅ M
𝑄
𝑉3
P\ − M

−𝐷-	./0 ⋅ 𝑘8
𝑉4

P ⋅ M
𝑄
𝑉3
P R
−𝜙12	345(𝑡)
𝑉1	567	

U	

	

−𝑥8 + 𝑥0 R
−𝑘, ⋅ 𝐷-	./0 − 𝜙12	345(𝑡)

𝑉1	567	
−
𝑄
𝑉3
−
𝑄
𝑉4
U + 𝑥R

−𝑘, ⋅ 𝐷-	./0
𝑉1	567	

𝑄
𝑉3
+
−𝑘, ⋅ 𝐷-	./0
𝑉1	567	

𝑄
𝑉4
+
−𝜙12	345(𝑡)
𝑉1	567	

𝑄
𝑉3
+
−𝜙12	345(𝑡)
𝑉1	567	

𝑄
𝑉4
⋅U + M

−𝐷-	./0 ⋅ 𝑘8
𝑉4

P M
𝑄
𝑉3
P Z𝑥 − R

−𝜙12	345(𝑡)
𝑉1	567	

U\	

	
	

𝑥0 R
−𝑘, ⋅ 𝐷-	./0 − 𝜙12	345(𝑡)

𝑉1	567	
−
𝑄
𝑉3
−
𝑄
𝑉4
− 𝑥U + M

𝑄
𝑉4
+
𝑄
𝑉3
P𝑥 ZR

−𝜙12	345(𝑡)
𝑉1	567	

U +
−𝑘, ⋅ 𝐷-	./0
𝑉1	567	

\ + M
−𝐷-	./0 ⋅ 𝑘8

𝑉4
P M
𝑄
𝑉3
P Z𝑥 − R

−𝜙12	345(𝑡)
𝑉1	567	

U\	

	

𝑥0 R
−𝑘, ⋅ 𝐷-	./0 − 𝜙12	345(𝑡)

𝑉1	567	
− 2

𝑄
𝑉3
− 𝑥U + M2

𝑄
𝑉3
P 𝑥 ZR

−𝜙12	345(𝑡)
𝑉1	567	

U +
−𝑘, ⋅ 𝐷-	./0
𝑉1	567	

\ + M
−𝐷-	./0 ⋅ 𝑘8

𝑉4
P M
𝑄
𝑉3
PZ𝑥 − R

−𝜙12	345(𝑡)
𝑉1	567	

U\	

	
Unfortunately,	this	equation	proves	unsolvable.	We	have	tried	solving	the	equation	algebraically	
and	by	using	Matlab.		 	
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2.2.	Dynamical	analysis	of	the	second	order	gas	exchange	model	(carbon	dioxide)	
	
	We	start	with	composing	the	equations	for	the	state	variables.		

	
𝑑𝑚!!"#

(𝑡)
𝑑𝑡 = 𝜙K%^^_#%FG − 𝜙-%"^EF`	F_0 + 𝜙-%"^EF`	%G	 (61)	

	
𝑑𝑚!!"#

(𝑡)
𝑑𝑡 = 𝐷2 ⋅ \𝑘3 ⋅

𝑚.!"#
(𝑡)

𝑉.
+ 𝑘4 − 𝑘5 ⋅

𝑚!!"# 	
(𝑡)

		𝑉!	6+1	
^ −

𝑚!!"#	
(𝑡)

		𝑉!	6+1	
⋅ 𝜙!7	-86(𝑡) + 𝐶)/#	-01 ⋅ 𝜙!7	-86(𝑡)	

	

(62)	

	
𝑑𝑚.!"#

(𝑡)
𝑑𝑡 = −𝜙K%^^_#%FG + 𝜙1+0-.FE%#1	 (63)	

	
𝑑𝑚.!"#

(𝑡)
𝑑𝑡 = −𝐷2	 ⋅ \𝑘3 ⋅

𝑚.!"# 	
(𝑡)

𝑉.
+ 𝑘4 − 𝑘5 ⋅

𝑚!!"# 	
(𝑡)

		𝑉!	6+1	
^ + 𝜙1+0	(𝑡)	 (64)	

	
From	the	state	equations,	the	equilibrium	values	can	be	determined.	When	the	system	is	in	
equilibrium,	the	state	derivatives	are	equal	to	zero.	The	system	is	in	equilibrium,	so		
	
0 = 𝐷2 ⋅ \𝑘3 ⋅

𝑚.!"# 	
(𝑡)

𝑉.
+ 𝑘4 − 𝑘5 ⋅

𝑚!!"# 	
(𝑡)

		𝑉!	6+1	
^ −

𝑚!!"# 	
(𝑡)

		𝑉!	6+1	
⋅ 𝜙!7	-86(𝑡) + 𝐶)/#	-01 ⋅ 𝜙!7	-86(𝑡)	

	
(65)	

	
𝑚!!"# 	

(𝑡)
		𝑉!	6+1	

⋅ (𝐷2 ⋅ 𝑘5 + 𝜙!7	-86(𝑡)) = 𝐷2 ⋅ \𝑘3 ⋅
𝑚.!"# 	

(𝑡)
𝑉.

+ 𝑘4^ + 𝐶)/#	-01 ⋅ 𝜙!7	-86(𝑡)	

	
(66)	

	

𝑚!!"# 	
(𝑡)

		𝑉!	6+1	
=
𝐷2 ⋅ \𝑘3 ⋅

𝑚.!"# 	
(𝑡)

𝑉.
+ 𝑘4^ + 𝐶)/#	-01 ⋅ 𝜙!7	-86(𝑡)

(𝐷2 ⋅ 𝑘5 + 𝜙!7	-86(𝑡))
	

	

(67)	

	
If	we	want	to	express	11!"#	

(0)

		$1	234	
	in	parameters,	we	need	to	find	an	expression	for	16!"#	

(0)

$6
	when	the	

system	is	in	equilibrium.		
	
𝑑𝑚.!"# 	

(𝑡)
𝑑𝑡 = −𝐷2	 ⋅ \𝑘3 ⋅

𝑚.!"# 	
(𝑡)

𝑉.
+ 𝑘4 − 𝑘5 ⋅

𝑚!!"# 	
(𝑡)

		𝑉!	6+1	
+^ + 𝜙1+0	(𝑡)	

	
(68)	

	
0 = −𝐷2	 ⋅ \𝑘3 ⋅

𝑚.!"# 	
(𝑡)

𝑉.
+ 𝑘4 − 𝑘5 ⋅

𝑚!!"# 	
(𝑡)

		𝑉!	6+1	
^ + 𝜙1+0	(𝑡)	

	
(69)	

	
𝐷2	 ⋅ 𝑘3 ⋅

𝑚.!"# 	
(𝑡)

𝑉.
= \−𝐷2	 ⋅ 𝑘4 + 𝐷2	 ⋅ 𝑘5 ⋅

𝑚!!"# 	
(𝑡)

		𝑉!	6+1	
^ + 𝜙1+0	(𝑡)	

	
(70)	

	

𝑚.!"# 	
(𝑡)

𝑉.
=
\−𝐷2	 ⋅ 𝑘4 + 𝐷2	 ⋅ 𝑘5 ⋅

𝑚!!"# 	
(𝑡)

		𝑉!	6+1	
^ + 𝜙1+0	(𝑡)

𝐷2	 ⋅ 𝑘3
	

	

(71)	

	

Now	we	can	fill	in	the	expression	for	16!"#	
(0)

$6
	in	the	equilibrium	equation	for	the	alveolar	air.	
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𝑚!!"# 	
(𝑡)

		𝑉!	6+1	
=

𝐷2 ⋅

⎝

⎜
⎛
𝑘3 ⋅

\−𝐷2	 ⋅ 𝑘4 + 𝐷2	 ⋅ 𝑘5 ⋅
𝑚!!"# 	

(𝑡)
		𝑉!	6+1	

^ + 𝜙1+0	(𝑡)

𝐷2	 ⋅ 𝑘3
+ 𝑘4

⎠

⎟
⎞
+ 𝐶)/#	-01 ⋅ 𝜙!7	-86(𝑡)

(𝐷2 ⋅ 𝑘5 + 𝜙!7	-86(𝑡))
	

	

(72)	

	

𝑚!!"# 	
(𝑡)

		𝑉!	6+1	
=
−𝐷2	 ⋅ 𝑘4 + 𝐷2	 ⋅ 𝑘5 ⋅

𝑚!!"# 	
(𝑡)

		𝑉!	6+1	
+ 𝐷2	 ⋅ 𝑘4 + 𝜙1+0	(𝑡) + 𝐶)/#	-01 ⋅ 𝜙!7	-86(𝑡)

(𝐷2 ⋅ 𝑘5 + 𝜙!7	-86(𝑡))
	

	

(73)	

	

𝑚!!"# 	
(𝑡)

		𝑉!	6+1	
=
𝐷2 ⋅ 𝑘5 ⋅

𝑚!!"# 	
(𝑡)

		𝑉!	6+1	
+ 𝜙1+0	(𝑡) + 𝐶)/#	-01 ⋅ 𝜙!7	-86(𝑡)

(𝐷2 ⋅ 𝑘5 + 𝜙!7	-86(𝑡))
	

	

(74)	

	
𝑚!!"# 	

(𝑡)
		𝑉!	6+1	

⋅ \1 −
𝐷2 ⋅ 𝑘5

𝐷2 ⋅ 𝑘5 + 𝜙!7	-86(𝑡)
^ =

𝜙1+0	(𝑡) + 𝐶)/#	-01 ⋅ 𝜙!7	-86(𝑡)
(𝐷2 ⋅ 𝑘5 + 𝜙!7	-86(𝑡))

	

	
(75)	

	
𝑚!!"# 	

(𝑡)
		𝑉!	6+1	

�−𝐷2 ⋅ 𝑘5 + 𝜙!7	-86(𝑡) + 𝐷2 ⋅ 𝑘5� = 𝜙1+0	(𝑡) + 𝐶)/#	-01 ⋅ 𝜙!7	-86(𝑡)	

	
(76)	

	
𝑚!!"# 	

(𝑡)
		𝑉!	6+1	

=
𝜙1+0	(𝑡) + 𝐶)/#	-01 ⋅ 𝜙!7	-86(𝑡)

𝜙!7	-86(𝑡)
	

	
(77)	

	
𝑚!!"# 	

(𝑡)
		𝑉!	6+1	

=
𝜙1+0	(𝑡)
𝜙!7	-86(𝑡)

+ 𝐶)/#	-01	

	
(78)	

Now	we	can	fill	in	the	expression	for	11!"#	
(0)

		$1	234	
	in	the	equilibrium	equation	for	the	blood.	

	

𝑚.!"# 	
(𝑡)

𝑉.
=
\−𝐷2	 ⋅ 𝑘4 + 𝐷2	 ⋅ 𝑘5 ⋅

𝑚!!"# 	
(𝑡)

		𝑉!	6+1	
^ + 𝜙1+0	(𝑡)

𝐷2	 ⋅ 𝑘3
	

	

(79)	

	

𝑚.!"# 	
(𝑡)

𝑉.
=
\−𝐷2	 ⋅ 𝑘4 + 𝐷2	 ⋅ 𝑘5 ⋅ `

𝜙1+0	(𝑡)
𝜙!7	-86(𝑡)

+ 𝐶)/#	-01a^ + 𝜙1+0	(𝑡)

𝐷2	 ⋅ 𝑘3
	

	

(80)	

	
	
	
Now	can	derive	the	expressions	for	the	eigenvalues.	
	

𝐴 =

⎣
⎢
⎢
⎢
⎡−𝑘< ⋅ 𝐷= − 𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

𝑉>	?+@	
𝐷= ⋅ 𝑘A
𝑉B

𝐷= ⋅ 𝑘<
𝑉>	?+@

−𝐷= ⋅ 𝑘A
𝑉B ⎦

⎥
⎥
⎥
⎤
	

	
For	determination	of	the	eigenvalues,	the	determinant	of	the	A-matrix	minus	the	similar-sized	
identity	matrix	multiplied	by	the	eigenvalues	is	set	to	zero.	
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𝐴 =

⎣
⎢
⎢
⎢
⎡−𝑘< ⋅ 𝐷= − 𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

𝑉>	?+@	
− 𝜆

𝐷= ⋅ 𝑘A
𝑉S

𝐷= ⋅ 𝑘<
𝑉>	?+@

−𝐷= ⋅ 𝑘A
𝑉S

− 𝜆
⎦
⎥
⎥
⎥
⎤
 

 

1
−𝑘< ⋅ 𝐷= − 𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

𝑉>	?+@	
− 𝜆7 ⋅ L

−𝐷= ⋅ 𝑘A
𝑉S

− 𝜆M − L
𝐷= ⋅ 𝑘A
𝑉S

M ⋅ 1
𝐷= ⋅ 𝑘<
𝑉>	?+@

7 = 0	 (81)	
 
−𝑘< ⋅ 𝐷= − 𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

𝑉>	?+@	
⋅
−𝐷= ⋅ 𝑘A
𝑉B

− 𝜆 ⋅
−𝑘< ⋅ 𝐷= − 𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

𝑉>	?+@	
− 𝜆 ⋅

−𝐷= ⋅ 𝑘A
𝑉B

+ 𝜆4 −
𝐷= ⋅ 𝑘A
𝑉B

⋅
𝐷= ⋅ 𝑘<
𝑉>	?+@

= 0	

	
(82)	

 

𝜆4 + 𝜆1
𝑘< ⋅ 𝐷= + 𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

𝑉>	?+@	
+
𝐷= ⋅ 𝑘A
𝑉B

7 +
−𝑘< ⋅ 𝐷= − 𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

𝑉>	?+@	
⋅
−𝐷= ⋅ 𝑘A
𝑉B

−
𝐷= ⋅ 𝑘A
𝑉B

⋅
𝐷= ⋅ 𝑘<
𝑉>	?+@

= 0	 (83)	
 

𝜆4 + 𝜆1
𝑘< ⋅ 𝐷= + 𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

𝑉>	?+@	
+
𝐷= ⋅ 𝑘A
𝑉B

7 +
−𝑘< ⋅ 𝐷=
𝑉>	?+@	

⋅
−𝐷= ⋅ 𝑘A
𝑉B

+
−𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)
𝑉>	?+@	

⋅
−𝐷= ⋅ 𝑘A
𝑉B

−
𝐷= ⋅ 𝑘A
𝑉B

⋅
𝐷= ⋅ 𝑘<
𝑉>	?+@

= 0	
	

(84)	

 

𝜆4 + 𝜆1
𝑘< ⋅ 𝐷= + 𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

𝑉>	?+@	
+
𝐷= ⋅ 𝑘A
𝑉B

7 +
𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)
𝑉>	?+@	

⋅
𝐷= ⋅ 𝑘A
𝑉B

= 0	

	
(85)	

 

𝜆 =
−1

𝑘< ⋅ 𝐷= + 𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)
𝑉>	?+@	

+ 𝐷= ⋅ 𝑘A𝑉B
7 ± 91

𝑘< ⋅ 𝐷= + 𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)
𝑉>	?+@	

+ 𝐷= ⋅ 𝑘A𝑉B
7
4

− 4 ⋅
𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)
𝑉>	?+@	

⋅ 𝐷= ⋅ 𝑘A𝑉B
2 	

	

(86)	

	
Two	different	eigenvalues	are	found.	
	

P𝜆<𝜆4
Q =

⎣
⎢
⎢
⎢
⎢
⎡
− <
4
L
5*⋅7+T𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

8,	-./	
+ 7+⋅55

86
M + <

4
9L

5*⋅7+T𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

8,	-./	
+ 7+⋅55

86
M
4
− 4 ⋅

𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

8,	-./	
⋅ 7+⋅55

86

− <
4 L

5*⋅7+T𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

8,	-./	
+ 7+⋅55

86
M − <

4
9L

5*⋅7+T𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

8,	-./	
+ 7+⋅55

86
M
4
− 4 ⋅

𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

8,	-./	
⋅ 7+⋅55

86 ⎦
⎥
⎥
⎥
⎥
⎤

		

	
The	associated	time	constants	can	be	determined	by	taking	the	absolute	value	of	the	inverse	of	
the	eigenvalues.		
	

)
𝜏<
𝜏4+ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

4

UVW
K*⋅L+M𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

P,	-./	 TL+⋅K5P6
XTYW

K*⋅L+M𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

P,	-./	 TL+⋅K5P6
X
#
VZ⋅

𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

P,	-./	 ⋅
L+⋅K5
P6

U

4

UVW
K*⋅L+M𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

P,	-./	 TL+⋅K5P6
XVYW

K*⋅L+M𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

P,	-./	 TL+⋅K5P6
X
#
VZ⋅

𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

P,	-./	 ⋅
L+⋅K5
P6

U
⎦
⎥
⎥
⎥
⎥
⎥
⎤
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2.3.	Dynamical	analysis	of	the	second	order	gas	exchange	model	(oxygen)	
	
We	start	with	composing	the	equations	for	the	state	variables.		

	
𝑑𝑚!"#

(𝑡)
𝑑𝑡 = −𝜙K%^^_#%FG − 𝜙-%"^EF`	F_0 + 𝜙-%"^EF`	%G	 (87)	

	
𝑑𝑚!"#

(𝑡)
𝑑𝑡 = −𝐷2 ⋅ \𝑘5 ⋅

𝑚!	/#(𝑡)
𝑉!	6+1

− 𝑘4 ⋅
𝑚."#

(𝑡)
𝑉.	

⋅ (1 − 𝑘3 ⋅ 𝑆𝑝𝑂@ ⋅ 𝐻𝑏)^ −
𝑚!"# 	

(𝑡)
		𝑉!	6+1	

⋅ 𝜙!7	-86(𝑡) + 𝐶/#	-01 ⋅ 𝜙!7	-86(𝑡)	 (88)	
	
𝑑𝑚."#

(𝑡)
𝑑𝑡 = 𝜙K%^^_#%FG − 𝜙1+0-.FE%#1	 (89)	

	
𝑑𝑚."#

(𝑡)
𝑑𝑡 = 𝐷2	 ⋅ \𝑘5 ⋅

𝑚!	/#(𝑡)
𝑉!	6+1

− 𝑘4 ⋅
𝑚."#

(𝑡)
𝑉.	

⋅ (1 − 𝑘3 ⋅ 𝑆𝑝𝑂@ ⋅ 𝐻𝑏)^ − 𝜙1+0	(𝑡)	 (90)	
	
	
From	the	state	equations,	the	equilibrium	values	can	be	determined.	When	the	system	is	in	
equilibrium,	the	state	derivatives	are	equal	to	zero.	The	system	is	in	equilibrium,	so		
	
0 = −𝐷2 ⋅ \𝑘5 ⋅

𝑚!	/#(𝑡)
𝑉!	6+1

− 𝑘4 ⋅
𝑚."#

(𝑡)
𝑉.	

⋅ (1 − 𝑘3 ⋅ 𝑆𝑝𝑂@ ⋅ 𝐻𝑏)^ −
𝑚!"# 	

(𝑡)
		𝑉!	6+1	

⋅ 𝜙!7	-86(𝑡) + 𝐶/#	-01 ⋅ 𝜙!7	-86(𝑡)	

	
(91)	

	
𝑚!"# 	

(𝑡)
		𝑉!	6+1	

⋅ (𝐷2 ⋅ 𝑘5 + 𝜙!7	-86(𝑡)) = −𝐷2 ⋅ \−𝑘4 ⋅
𝑚."#

(𝑡)
𝑉.	

⋅ (1 − 𝑘3 ⋅ 𝑆𝑝𝑂@ ⋅ 𝐻𝑏)^ + 𝐶/#	-01 ⋅ 𝜙!7	-86(𝑡)	

	
(92)	

	

𝑚!"# 	
(𝑡)

		𝑉!	6+1	
=
−𝐷2 ⋅ \−𝑘4 ⋅

𝑚."#
(𝑡)

𝑉.	
⋅ (1 − 𝑘3 ⋅ 𝑆𝑝𝑂@ ⋅ 𝐻𝑏)^ + 𝐶/#	-01 ⋅ 𝜙!7	-86(𝑡)

(𝐷2 ⋅ 𝑘5 + 𝜙!7	-86(𝑡))
	

	

(93)	

	
If	we	want	to	express	11!"#	

(0)

		$1	234	
	in	parameters,	we	need	to	find	an	expression	for	16!"#	

(0)

$6
	when	the	

system	is	in	equilibrium.		
	
𝑑𝑚.!"# 	

(𝑡)
𝑑𝑡 = 𝐷2	 ⋅ \𝑘5 ⋅

𝑚!	/#(𝑡)
𝑉!	6+1

− 𝑘4 ⋅
𝑚."#

(𝑡)
𝑉.	

⋅ (1 − 𝑘3 ⋅ 𝑆𝑝𝑂@ ⋅ 𝐻𝑏)^ − 𝜙1+0	(𝑡)	

	
(94)	

	
0 = 𝐷2	 ⋅ \𝑘5 ⋅

𝑚!	/#(𝑡)
𝑉!	6+1

− 𝑘4 ⋅
𝑚."#

(𝑡)
𝑉.	

⋅ (1 − 𝑘3 ⋅ 𝑆𝑝𝑂@ ⋅ 𝐻𝑏)^ − 𝜙1+0	(𝑡)	

	
(95)	

	
𝐷2	 ⋅ 𝑘4 ⋅

𝑚."# 	
(𝑡)

𝑉.
⋅ (1 − 𝑘3 ⋅ 𝑆𝑝𝑂@ ⋅ 𝐻𝑏) = 𝐷2	 ⋅ 𝑘5 ⋅

𝑚!"# 	
(𝑡)

		𝑉!	6+1	
− 𝜙1+0	(𝑡)	

	
(96)	

	

𝑚."# 	
(𝑡)

𝑉.
=
𝐷2	 ⋅ 𝑘5 ⋅

𝑚!"# 	
(𝑡)

		𝑉!	6+1	
− 𝜙1+0	(𝑡)

𝐷2	 ⋅ 𝑘4 ⋅ (1 − 𝑘3 ⋅ 𝑆𝑝𝑂@ ⋅ 𝐻𝑏)
	

	

(97)	

	

Now	we	can	fill	in	the	expression	for	16!"#	
(0)

$6
	in	the	equation		
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𝑚!"# 	
(𝑡)

		𝑉!	6+1	
=

−𝐷2 ⋅

⎝

⎜
⎛
−𝑘4 ⋅

⎝

⎜
⎛𝐷2	 ⋅ 𝑘5 ⋅

𝑚!"# 	
(𝑡)

		𝑉!	6+1	
− 𝜙1+0	(𝑡)

𝐷2	 ⋅ 𝑘4 ⋅ (1 − 𝑘3 ⋅ 𝑆𝑝𝑂@ ⋅ 𝐻𝑏)

⎠

⎟
⎞
⋅ (1 − 𝑘3 ⋅ 𝑆𝑝𝑂@ ⋅ 𝐻𝑏)

⎠

⎟
⎞
+ 𝐶/#	-01 ⋅ 𝜙!7	-86(𝑡)

(𝐷2 ⋅ 𝑘5 + 𝜙!7	-86(𝑡))
	

	

(98)	

	

𝑚!"# 	
(𝑡)

		𝑉!	6+1	
=
𝐷2	 ⋅ 𝑘5 ⋅

𝑚!"# 	
(𝑡)

		𝑉!	6+1	
− 𝜙1+0	(𝑡) + 𝐶/#	-01 ⋅ 𝜙!7	-86(𝑡)

(𝐷2 ⋅ 𝑘5 + 𝜙!7	-86(𝑡))
	

	

(99)	

	
𝑚!"# 	

(𝑡)
		𝑉!	6+1	

(1 −
𝐷2	 ⋅ 𝑘5

𝐷2 ⋅ 𝑘5 + 𝜙!7	-86(𝑡)
) =

−𝜙1+0	(𝑡) + 𝐶/#	-01 ⋅ 𝜙!7	-86(𝑡)
(𝐷2 ⋅ 𝑘5 + 𝜙!7	-86(𝑡))

	

	
(100)	

	

𝑚!"# 	
(𝑡)

		𝑉!	6+1	
=

�
−𝜙1+0	(𝑡) + 𝐶/#	-01 ⋅ 𝜙!7	-86(𝑡)

|𝐷2 ⋅ 𝑘5 + 𝜙!7	-86(𝑡)}
�

`1 − 𝐷2	 ⋅ 𝑘5
𝐷2 ⋅ 𝑘5 + 𝜙!7	-86(𝑡)

a
	

	

(101)	

	
𝑚!"# 	

(𝑡)
		𝑉!	6+1	

=
−𝜙1+0	(𝑡) + 𝐶/#	-01 ⋅ 𝜙!7	-86(𝑡)
𝐷2 ⋅ 𝑘5 + 𝜙!7	-86(𝑡) − 𝐷2	 ⋅ 𝑘5

	

	
(102)	

	
𝑚!"# 	

(𝑡)
		𝑉!	6+1	

=
−𝜙1+0	(𝑡) + 𝐶/#	-01 ⋅ 𝜙!7	-86(𝑡)

𝜙!7	-86(𝑡)
	

	
(103)	

	
𝑚!"# 	

(𝑡)
		𝑉!	6+1	

= −
𝜙1+0	(𝑡)
𝜙!7	-86(𝑡)

+ 𝐶/#	-01	

	
(104)	

	
Determination	of	the	expressions	for	the	eigenvalues		
	

𝐴 =

⎣
⎢
⎢
⎢
⎡−𝑘< ⋅ 𝐷= − 𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

𝑉>	?+@	
𝐷= ⋅ 𝑘[
𝑉B

𝐷= ⋅ 𝑘<
𝑉>	?+@

−𝐷= ⋅ 𝑘[
𝑉B ⎦

⎥
⎥
⎥
⎤
	

	
	

𝐴 =

⎣
⎢
⎢
⎢
⎡−𝑘< ⋅ 𝐷= − 𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

𝑉>	?+@	
− 𝜆

𝐷= ⋅ 𝑘[
𝑉B

𝐷= ⋅ 𝑘<
𝑉>	?+@

−𝐷= ⋅ 𝑘[
𝑉B

− 𝜆
⎦
⎥
⎥
⎥
⎤
	

 
 

1
−𝑘< ⋅ 𝐷= − 𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

𝑉>	?+@	
− 𝜆7 ⋅ L

−𝐷= ⋅ 𝑘[
𝑉S

− 𝜆M − L
𝐷= ⋅ 𝑘[
𝑉S

M ⋅ 1
𝐷= ⋅ 𝑘<
𝑉>	?+@

7 = 0	 (105)	
 
−𝑘< ⋅ 𝐷= − 𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

𝑉>	?+@	
⋅
−𝐷= ⋅ 𝑘[
𝑉B

− 𝜆 ⋅
−𝑘< ⋅ 𝐷= − 𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

𝑉>	?+@	
− 𝜆 ⋅

−𝐷= ⋅ 𝑘[
𝑉B

+ 𝜆4 −
𝐷= ⋅ 𝑘[
𝑉B

⋅
𝐷= ⋅ 𝑘<
𝑉>	?+@

= 0	

	
(106)	

 

𝜆4 + 𝜆1
𝑘< ⋅ 𝐷= + 𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

𝑉>	?+@	
+
𝐷= ⋅ 𝑘[
𝑉B

7 +
−𝑘< ⋅ 𝐷= − 𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

𝑉>	?+@	
⋅
−𝐷= ⋅ 𝑘[
𝑉B

−
𝐷= ⋅ 𝑘[
𝑉B

⋅
𝐷= ⋅ 𝑘<
𝑉>	?+@

= 0	 (107)	
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𝜆4 + 𝜆1
𝑘< ⋅ 𝐷= + 𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

𝑉>	?+@	
+
𝐷= ⋅ 𝑘[
𝑉B

7 +
−𝑘< ⋅ 𝐷=
𝑉>	?+@	

⋅
−𝐷= ⋅ 𝑘[
𝑉B

+
−𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)
𝑉>	?+@	

⋅
−𝐷= ⋅ 𝑘[
𝑉B

−
𝐷= ⋅ 𝑘[
𝑉B

⋅
𝐷= ⋅ 𝑘<
𝑉>	?+@

= 0	
	

(108)	

 

𝜆4 + 𝜆1
𝑘< ⋅ 𝐷= + 𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

𝑉>	?+@	
+
𝐷= ⋅ 𝑘[
𝑉B

7 +
𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)
𝑉>	?+@	

⋅
𝐷= ⋅ 𝑘[
𝑉B

= 0	

	
(109)	

 

𝜆 =
−1

𝑘< ⋅ 𝐷= + 𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)
𝑉>	?+@	

+ 𝐷= ⋅ 𝑘[𝑉B
7 ± 91

𝑘< ⋅ 𝐷= + 𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)
𝑉>	?+@	

+ 𝐷= ⋅ 𝑘[𝑉B
7
4

− 4 ⋅
𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)
𝑉>	?+@	

⋅ 𝐷= ⋅ 𝑘[𝑉B
2 	

	

(110)	

	
Two	different	eigenvalues	are	found.	
	

P𝜆<𝜆4
Q =

⎣
⎢
⎢
⎢
⎢
⎡
− <
4
L
5*⋅7+T𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

8,	-./	
+ 7+⋅5Q

86
M + <

4
9L

5*⋅7+T𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

8,	-./	
+ 7+⋅5Q

86
M
4
− 4 ⋅

𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

8,	-./	
⋅ 7+⋅5Q

86

− <
4 L

5*⋅7+T𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

8,	-./	
+ 7+⋅5Q

86
M − <

4
9L

5*⋅7+T𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

8,	-./	
+ 7+⋅5Q

86
M
4
− 4 ⋅

𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

8,	-./	
⋅ 7+⋅5Q

86 ⎦
⎥
⎥
⎥
⎥
⎤

		

	
The	associated	time	constants	can	be	determined	by	taking	the	absolute	value	of	the	inverse	of	
the	eigenvalues.		
	

)
𝜏<
𝜏4+ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

4

UVW
K*⋅L+M𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

P,	-./	 TL+⋅KQP6
XTYW

K*⋅L+M𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

P,	-./	 TL+⋅KQP6
X
#
VZ⋅

𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

P,	-./	 ⋅
L+⋅KQ
P6

U

4

UVW
K*⋅L+M𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

P,	-./	 TL+⋅KQP6
XVYW

K*⋅L+M𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

P,	-./	 TL+⋅KQP6
X
#
VZ⋅

𝜙𝐴𝑊	𝑎𝑣𝑔(𝑡)

P,	-./	 ⋅
L+⋅KQ
P6

U
⎦
⎥
⎥
⎥
⎥
⎥
⎤
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Appendix	3:	Experimental	figures		
 
Table 13 Squared norm of the residuals 

	 fitting	 Squared	norm	of	
the	residual	

Carbon	dioxide	
	

Measurement	2	fast	fitting	 0.68	
Measurement	2	slow	fitting	 0.56	
Measurement	3	fast	fitting	 0.21	
Measurement	3	slow	fitting	 0.32	

oxygen	 Measurement	2	fast	fitting	 2.23	
Measurement	3	fast	fitting	 1.90	

 
	
	

																																																																																																																																																																																																												
	
	
	

	
	
	 	

Figure 23 minute ventilation during measurement 2 (12 rpm) Figure 24  minute ventilation during measurement 3 (20 rpm)  
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Appendix	4:	Conversations	with	clinicians		
	
-What	are	the	different	stages	of	mechanical	ventilation?	
-What	are	the	variables	that	are	important	to	control	during	each	stage?		
-What	are	the	variables	that	are	important	to	observe	during	each	stage?		
-How	and	how	often	are	these	variables	measured	during	each	stage?	
-What	difficulties	arise	in	measuring	these	variables?	
-What	are	the	parameters	that	are	important	to	identify	during	each	stage?		
-How	and	how	often	are	these	parameters	identified	during	each	stage?	
-What	difficulties	arise	in	identifying	these	parameters?	
-What	are	the	important	ventilator	settings	the	need	to	be	chosen	during	each	stage?	
-What	difficulties	arise	in	choosing	these	ventilator	settings?	
-How	does	the	clinician	determine	when	a	patient	can	move	to	the	next	stage?	
-What	other	difficulties	arise	during	each	stage?	
-What	role	could	a	model	of	the	physiology	of	breathing	play	in	alleviating	these	difficulties?	
-What	part	of	the	physiology	of	breathing	are	important	to	include	in	the	model? 
	


