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Chapter 0

Abstract

There are many people suffering from visual impairments around the world who

still rely on canes and guiding dogs to help them navigate outside. Current

navigation methods are however flawed and don’t take advantage of strides in

technology that could allow for better navigation. In this project a team of three

students of the university of Twente will attempt to develop a navigational aid

for people with visual impairments, using computer vision and haptic feedback.

Unlike many attempts made before the development and design process will be

performed in close collaboration with workers from that sector and potential

end users themselves.
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Chapter 1

Introduction

A 2008 estimate found that in the Netherlands alone an estimated 311 000

people are suffering of some type of visual impairment. Of these about 77 000

are legally blind. Since then these numbers are estimated to have increased

by 18 percent, putting them at 367 000 and 91 000 people respectively. This

disability affects nearly every aspect of these peoples lives, however especially

their navigation ability outdoors is negatively effected. Without their sight

it becomes incredibly difficult to sense obstacles and navigate through them,

especially if the surrounding is new and unknown to them. This situation can

be even worse when there are other pedestrians around them, who might not

pay attention themselves. This all together put anyone with a visual impairment

at serious risk.

While this problem is not new, there have not been many ’new age’ solutions

to it. Still the best walking aid for the visually impaired is either a cane or a

guide dog, but both of these options come with their own problems. While

dogs can be trained very well to assist a visually impaired person and can help

them in much more than just navigation, not everyone can keep a dog. This

can be due to allergies, animals not being allowed in their living space or simply

the fact that a dogs upkeep might be to expensive. Using a guide cane instead

precludes a user from all these problems and is with reason the most popular
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navigation aid used by the visually impaired. While it is a simple and cheap

solution it is far from perfect. A cane can only detect obstacles that are right

in front of its user and only if it is on level with the ground. This means that

a person who is using a cane is more likely to miss an obstacle and walk into

it or be hit from the side. Additionally this person would not be able to sense

farther ahead, leaving them open to sudden surprises.

Currently the best there is to offer, are improved guiding canes and new

special techniques such as echolocation. Echolocation can be very effective at

overcoming the previously mentioned flaws of the other aids, but again not

everybody can use it due to bad hearing and for those that could learn to use it,

it takes years to master, if they are so lucky to find a teacher. Improved guiding

canes often feature a small scanning device at the bottom end of the cane that

can detect obstacles at a greater distance and in multiple directions and give

its user feedback on any obstacles either trough an earpiece or through haptic

feedback incorporated into the canes grip.

1.1 Reserach Questions

Currently existing devices show a trend into the right direction, using small

sensors and smart devices for further assistance, however I believe this can be

taken further. Using RGB and depth cameras and more sophisticated wearable

haptic feedback devices a person who is visually impaired could be made much

more aware of their surroundings, improving their navigation skills and keeping

them safer all without using their sense of hearing. To guide the project the

following question must be asked:

How can a haptic wearable be developed to enhance the navigation capabilities

of people with visual impairment?

To answer this, first another question must be answered though:

What are the shortcomings people with visual impairments face in naviga-
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tion?

To achieve an implementation of this idea, the project will be split up into

four distinct parts. First, there is the sensing part that focuses on the sensors

used to detect the surroundings and process them accurately. Second, there

is the haptic feedback wearable that using small actuators informs its wearer

about their surroundings. Next there is the interface that translates the infor-

mation from the sensing unit to the haptic wearable in a way that the user can

understand the information. Finally various scenarios will be created for virtual

reality that can be used to test the haptic wearable in a safe manor. Each of the

parts will be worked on by a separate student, with some coordination between

them to make the parts work together.

This project and thesis will focus on the sensing part. To help with the design

of the sensor unit, the following question can be used to guide the choices:

How would a wearable computer vision system need to be designed to detect

important features to aid somebody with a visual impairment?

To answer this question, the following question need to first be answered:

What sensory inputs best contribute to a computer vision based navigation

system for people who are visually impaired?

How can a wearable computer vision based navigation system for people who

are visually impaired be designed to encompass comfortable and irritation free

use?

This thesis consists of multiple chapters, first delving deeper into currently

existing devices and solutions that might be helpful in developing a helpful aid.

Next a basic concept for the developed device will be proposed, followed by

a further Ideation chapter, supported by expert interviews and a focus group.

Once a concept has been accepted the thesis will detail the development and

evaluation process. Finally the thesis will end with a conclusion and some

recommendations for further development and research.
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Chapter 2

State of the Art

The following Chapter consists of a literature review on five different topics.

The first is about currently existing ’advanced’ navigational aids for people

with visual impairments, what they focus on and why. This section is followed

by a section on modern sensing technologies, followed by object detection and

classification, followed by Mapping and tracking techniques such as RGB-D

Slam. Finally the last section focuses on wearable sensor units and how they

are best used. This chapter is looking to give some insights and answer some

of the proposed research questions. While the main research question about

the development of a navigational aid for people with a visual impairment, will

be treated throughout the project and the first sub question will be answered

through background research and interviews, sub questions SQ-2, SQ-3 and

SQ-4 should be to some degree answerable through some research on the state

of the art of current hardware, software and methodologies. The questions

respectively concern ”How [...] a wearable computer vision system [would] need

to be designed to detect important features to aid somebody with a visual

impairment?”, ”What sensory inputs best contribute to a computer vision based

navigation system for people who are visually impaired?” and finally ”How can

a wearable computer vision based navigation system for people who are visually

impaired best be designed to encompass comfortable and irritation free use?”.
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Especially when focusing on SQ-3 and SQ-4 some useful information should

be found, that can help answer SQ-2 and later can flow into the design of the

device.

2.1 Existing navigational aids for people with

visual impairments

There are many good reasons that people with visual impairments are looking

towards advanced guidance aids. As mentioned by Ruxandra Tapu et al. [1]

the currently most used obstacle detection tool is the famous white guiding

cane. The cane in combination with memorizing a surrounding, according to

Ruxandra Tapu et al. [1] is the only way of navigating successfully, while in

an unfamiliar surrounding they are completely lost and at the mercy of others

around them to reach their desired destination. While both Ruxandra Tapu

et al. and Darius Plikynas et al [2] agree that GPS can provide invaluable

information on the position of the user, they also agree on the shortcomings

GPS faces in lacking accuracy, especially when inside, and its lack of obstacle

classification ability. To counter this they agree that some type of additional

input is needed to assist the navigation.

Shang Wenqin et al. [3] expands on the shortcomings of both established

and modern navigational aids by classifying 3 problem groups. The first of this

group is mentioned as having a restricted detecting scope. This means that a

device does not have the needed types of sensors or the processing power to

detect and possibly classify an obstacle in a short enough time span to permit

effective mobility. The second group is defined as being unable to fully sense

the spatial environment. This again could be due to missing sensing abilities,

or could be due to poor placement of the sensors. Whatever the reason is this

group of devices will commonly miss obstacles due to their spatial positioning,

such as a hanging object. The final category is lacking a robust orientation

approach. A device in this category will be missing the capability to realize its
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location on a larger scale.

Beginning on the simpler side of devices, there are many attempts to improve

the capabilities of the basic guidance cane. Solutions such as presented by Sung

Jae Kang et al. [4] use additional sensors built into the base of the stick to

trace the movement of the stick and its user and adds additional detection

capabilities for uneven ground using ultrasonic sensors. While this is proven to

improve mobility its issues fall into the second category of devices shortcomings

as mentioned by Ahang Wenqin et al. [3], as the advanced cane still misses the

capacity to detect any obstacles that are raised from the ground. Additionally

the device falls into the third category, as it only provides local information and

also fits into the first category of shortcomings, as it is incapable of helping to

understand abstract situation, such as recognizing stairs or an empty seat.

Slightly more advanced are devices such as the one presented by Ruxandra

Tapu et al. [1]. These devices utilize a basic camera to detect and classify both

static and dynamic obstacles. By using elegant algorithms this device is able

to process an incoming stream of images without much delay, thereby passing

Wenqins second problem. Despite this the device still does not give any non

local information and thereby falls into the third issue group. Additionally

the device does not offer any service but obstacle avoidance, again missing out

on abstract situations, placing it also in the first issue category. While this

approach seems to have a lot of drawbacks it presents some advantages as well

that arise from its simplicity. Due to the system only needing a video stream,

the software can be run on a smartphone, which makes the device extremely

portable and cheap. On this Darius Plikynas et al. [2] expands briefly adding to

the advantages of smartphone based systems, mentioning that they are already

in use as an accessory by most people, especially the youth, and that acceptance

of these devices is especially high compared to other system. Additionally with

the expansion of 5G networks a phone can be used as sensor only and wirelessly

relay the data to another device for improved processing.

The most advanced navigational devices are those combining multiple sen-

sors and providing the system with enough processing power to give real time
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feedback. Devices, such as the one presented by Young Hoon Lee et al. [5],

often use RGB-D cameras in combination with dedicated computers and dif-

ferent types of haptic feedback devices. This type of aid of course collects the

most information and gives a much more complete picture of the surroundings.

Due to the sensing capabilities these devices are able to mostly sidestep the

issues mentioned by Wenquin et al. [3]. With its camera it is able to track

and avoid both stationary and dynamic obstacles, it can be aware of where the

user exactly is and it can be designed to understand abstract situations. Young

Hoon Lee et al. [5] mentions however that these systems can come with some

drawbacks. Due to the amount of data being processed these devices need a

large processing capacity, which makes the device bulkier and more expensive.

Figure 2.1: RGBD Haptics device by Young Hoon Lee et al. [5]

2.2 Sensor Devices

As mentioned before there are many different types of sensors that can be used

to gather the needed data. According to Plikynas et al. [2] the usable solutions

can be classified into two groups: sensor based and video camera based. Both
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the sensor classification and the camera classification have a lot of differences

within them, however the sensor group is broader, giving more options to descide

between.

In the domain of sensors there are many options. On the lower end there are

ultra sonic sensors such as those used in devices such as the one by Kang et al.

[4]. These simple sensors use ultra sonic sound waves to calculate the distance

to the first obstacle that they are pointed at. While these sensors can be very

small and cheap they in many ways are lacking for applications like these, as

they do not monitor a large area making it likely for them to put a device they

are use on into the second issue category brought up by Wenqin et al. [3].

A step up are the more advanced range finding sensors such as radar and

lidar. Both of these sensors can use radio waves to scan a larger area. While

radar has the potential to detect obstacles and calculate the range to them, its

accuracy is lacking, due to which it would not be able to recreate an accurate

surrounding. Lidar however can achieve much higher precision, which can be

used to create a point cloud, effectively a recreation of the sensors surroundings.

This type of sensor has in recent years seen much development and more use

largely in robotics but also in navigational aids, such as the one developed

by Michael Miles et al. [6]. While Lidar sensors can have a great range and

accuracy, they are still very expensive and typically also very large. This of

course makes them much less useful for a wearable navigation solution.

On the other side of Plikynas et al. [2] classification are the camera based

solutions. Cameras can be found in many different forms, but many can be

differentiated as RGB cameras or depth cameras. Regular RGB cameras come

with much less functionality as they only provide a 2D image, however they are

much cheaper and simpler than their counterpart. Additionally, RGB cameras

are already built into nearly every smart phone, which makes them attractive

to use as no new hardware is needed. While RGB cameras struggle with depth

perception they can still be used effectively though, when combined with effec-

tive image recognition software, as has been demonstrated by Ruxandra Tapu

et al. [1] with their smartphone based system.
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Within the group of depth cameras on more separation can be made between

the three processes of 3D calculation.

The first approach is using Time of flight calculations. By lighting up the

surrounding of the sensor with light invisible to the human eye, the camera

can determine for each of its pixels how long it took the light to bounce of an

object and return to the camera sensor. With this information it can calculate

the distance at each pixel. According to Jos´e Gomes da Silva Neto et al. [7],

these cameras are especially effective outside, as sunlight has little to no effect

on the performance. Despite this, ToF is rarely used in combination with depth

cameras and is typically only found in combination with lidar sensors.

The second category of depth cameras is the so called structured light sensor.

It uses a small beamer to place an intricate pattern of invisible light on the

surrounding of the sensor. With the sensor being aware of the pattern it can

detect distortions in the pattern, caused by changes in the surrounding. From

this information it can calculate a point cloud to represent its surroundings. This

method is a favourite for depth cameras as it is precise but computationally still

quite simple. Neto et al [7] warn however that this type of sensing can quickly

have problems when detecting complex structures on which the pattern might

be obstructed to much.

The final category is the active stereo camera sensor. Instead of relying on

its own light source to illuminate the surrounding, it uses two cameras that are

spatially distant from each other. By comparing the two images produced by

the two cameras the system can calculate the depths of the surroundings in a

similar way to how animals use binocular vision. This process is sometimes

improved though by again using invisible light to highlight key points. Neto

et al. [7] mention that this process can collect the most accurate data even at

distance, but it also needs the most processing power.
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2.3 Image Processing

The collection of depth data is of incredible value for the mapping of the terrain

detection of stationary obstacles. However for the detection of objects, whether

moving obstacle or specifics, such as doors or a light switch, an RGB image has

to be processed using an object recognition algorithm. There are some amazing

object detection services by providers such as Google cloud and Microsoft azure.

These services are run on dedicated servers and use machine learning and are

train on massive data sets, leading to high success rates. These services have

two major drawbacks however: The first is, that these services are not free and

with their per use charge are not suitable for a cheap personal navigational

aid. The second reason against these services is, specifically that they are run

on remote dedicated servers. While this centralization of data and processing

improves the efficacy of the service, it also requires any device making use of

it to be permanently connected to the internet. For an indoor application this

might be possible, any outdoor application would suffer under this restriction.

Less powerful object detection methods can however be run successfully on

a local device. In the method presented by Chongyi Li et al. [8] a combination

of RGB images and depth images is successfully used to detect objects within

the frame and rank them on their perceived importance, filtering out any back-

ground noise. The proposed ASIF-NET algorithm proves to accurately detect

the most significant objects in frame versus the ground truth. This of course is

only on step in the process though. To accurately tell what the system sees, the

detected object has to also be classified. As proposed proven in the research of

Imania Ayu Anjani et al. a well trained convolutional neural network (CNN)

is well suited to process limited data input to classify the content into a pre-

set list of options. By first selecting all objects using Li’s et al. ASIF-NET

[8] algorithm and then feeding the output of that to a CNN, objects can be

effectively be detected and subsequently classified with accuracies of up to 96

percent according to Anjani et al. [9].
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2.4 RGB-D Slam

Collecting data from the environment is of course not the only thing a naviga-

tional aid must be able to do. In addition to it, the system must be able to

analyze and process the gathered data. To work effectively the system will not

only need to be able to avoid obstacles, but also localize itself even when there is

no GPS signal for it as is common inside. To help with this process SLAM algo-

rithms can be used. SLAM, as presented by Sylvie Naudet-Collette et al. [10],

is the simultaneous localization and mapping of the systems environment. By

creating 3D point clouds the algorithm recreates the sensors surroundings and

when presented with new data either localizes itself within the already known

map or adds to it. The SLAM algorithms might differ between implementations,

but are all designed around the same central concept.

Algorithms like DP-SLAM, according to Aiwu Sun [11], only work on grid

maps, excluding them from work on 3D surroundings, but it is able to correct its

generated map over time and keeps errors from accumulating. Other algorithms

such as OpenCV RGB-Odometry are specifically build for C++ with OpenCV,

making them very efficient, but in RGB-Odometrys case keeps it from creating

point clouds. RGB-D SLAM brings an additional feature, by allowing to com-

bine a 3D point cloud with a colored image allowing for a colored point cloud

and using all the available data from an RGB-D camera.

In the research by Sylvie Naudet-Collette et al. [10], a further advanced

version of RGB-D SLAM, Constrained RGB-D SLAM is discussed. This method

couples available 3 dimensional data with the standart SLAM algorithm to

reinforce the localization process. Using this improved algorithm can, according

to Naudet-Collette et al. [10], reduce drift from nine percent to only three

percent. While doing this the algorithm is still able to, on a standard CPU,

achieve a frame processing time of only 25ms.
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Figure 2.2: Accuracy improvement of Constrained Slam [10]

2.5 Wearable sensor arrays

A final consideration has to be made to the placement of the sensor unit. While

the cameras can be made quite small, it still is placed on a human and therefore

has to be designed with certain aspects in mind. At the same time technical

aspects have to be considered though to not waste the potential of the sensing

device.

When placing the RGB-D Camera it has to, from a technical standpoint, be

placed to minimize the dead zone to create a well defined point cloud. Accord-

ing to Garen Haddeler et al. [?], in most current applications the sensors are

place intuitively and based on the designers choice. This can however lead to

unintended dead zones. Indeed the best location to place the sensor device is as

high as possible. This might seem intuitive, but also goes against the common

placement on the chest. Specifically when placing the camera on a human the

forehead would present a good placement option as it reduces the chance of

the users hands or arms getting in the way and also at its greater angle to the

ground improves the mapping of it and avoids the risk of having bumps in the

ground obstruct the beamers light from returning as warned by Neto et al. [7].

This purely technological standpoint is not enough though when considering

a wearable device. The most important design requirements, given by Leire
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Francés-Morcillo et al. [12], are found to be in order, comfort ease of use and

simplicity. None of these necessarily exclude the forehead, but must all be

seriously taken into account. A human limit though is how much a human user

can and would be willing to carry on their head. Medically speaking, according

to Moen et al. [13] a healthy human can carry up to 20 percent of their body

weight on their head without extra exertion or medical issues. This of course

exceeds the weight of a small camera by far, however as mentioned by Frances-

Morcillo et al. [12] the wearable must also be comfortable. While the is no clear

consensus on how much weight is still comfortable, an average hat weighs in at

about 150 to 200 grams. Given this any design should not exceed this value

by much. Importantly Francés-Morcillo et al. [12] mentions, that there exist

no clear evaluation tool for wearability, which means that any design has to be

tested thoroughly to be acceptable for the end user.

2.6 Conclusion

While there are clearly many options to design a navigational aid for people

with visual impairments and there have been a lot of attempts at creating a

successful aid, there are currently, according to Young Hoon Lee et al. [5], no

standardized or complete systems on the market that are effective. This could

be due to many reasons, but is likely due to poor design choices, especially in

making it user friendly.

Addressing sub question three ”What sensory inputs best contribute to a

computer vision based navigation system for people who are visually impaired?”,

it has become clear that the best type of sensory input is a combination of

RBG images and depth data collected respectively by an RGB and depth cam-

era. This data can be combined to effectively detect individual obstacles and

if needed the type of the obstacle and on a larger scale can recreate the users

surroundings creating a map for point to point navigation.

Sub question four ”How can a wearable computer vision based navigation

system for people who are visually impaired best be designed to encompass com-
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fortable and irritation free use?”, has disappointingly lead to less information,

giving a limitation of about 150 grams for a comfortable head mounted wear-

able, but not giving any indication on how to specifically design for comfort.

This will have to be overcome with a prolonged human centered design phase

and evaluation, supported by rapid prototyping.
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Chapter 3

Proposed Development

In this project we are proposing to develop a head band or alternatively a type

of smart glasses, each with built in sensors. The sensors would include an RGB

camera and a stereoscopic depth camera as found in that combination in the

Intel Realsense. To achieve this the Realsense D435i has been selected for its

effectiveness and small size. To minimize the devices weight and size on the users

head the device will be further disassembled and powered and supported by a

small computer that will be either back mounted or carried in an additional bag.

The computer will run a Python program implementing Constrained RGBD-

SLAM, the ASIF-NET algorithm and a convectional neural network to process

all collected data. The collected data streaming through these three parts of the

program will need to reveal usable information for both obstacles and objects

of interest on their direction, their distance from the user and their type.
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Figure 3.1: Proposed Head band wearable

The hardware and software components are, based on the research on the

state of the art, decided upon and will not be changed, however the specific use

cases still stand to be picked. This will be done together with a focus group

formed of visually impaired participants. Additionally the design of the wearable

will be decided upon during the ideation phase and rely on some feedback from

potential end users. Final changes to the design may also be made during the

evaluation phase, while testing for comfort and general acceptability with test

subjects.
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Chapter 4

Ideation

During the ideation phase, different options for the development of the final

device, as a whole, were proposed and explored. For this input from interviews

with experts in their field and end users themselves were used.

In this chapter the different proposals and methods will be discussed.

4.1 Usecases

To define what circumstances the device should be used in and therefore be

developed for, the team conducted interviews with experts in the field of navi-

gating while blind from the Visio organisation NL and further interviews with

a range of people suffering from visual impairments themselves.

Firstly, from the interviews, we were able to find that on many occasions

before this, groups and companies have attempted to solve similar problems,

using modern technology. These groups so far have usually failed at delivering

a desirable product. From looking at these products and finding out what

held them back we were able to find and therefore avoid pitfalls these devices

encountered.

An apparently common mistake is to develop the device as an extension

of the users cane. While in theory this is a good idea, the added weight to
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the cane makes it itself harder to use, increasing the likely hood of missing an

obstacle. This leads to the device solving a problem that it creates itself in

the first place. This criticism came up often enough during the interviews to

completely eliminate such development as a possibility.

Another common issue that came up during the interviews was the so called

information overload. That would be, if a device gives the user so much infor-

mation about their surrounding, that the user would not be able to distinguish

between different signals and consequently would miss out on most of the in-

formation given to them. This very quickly can occur when sound is used to

convey information thereby competing for attention with ambient sounds, but

also from haptic feedback if the signals are to complex.

The final issue brought up commonly was the issue of expensive equipment

breaking and or being stolen. Especially the breaking, again mostly affecting

guiding canes as unobservant cyclists or other participants in traffic would hit

the cane and break it, becomes problematic. But also theft seems to be a prob-

lem as the clearly valuable equipment and defenseless user can be a tempting

target.

With the major pitfalls mostly not directly affecting the environment or the

cause for using a navigational aid, focus was shifted to what the most difficult

situations are, that a person with visual impairments would encounter. From

this we found 3 main problems in which some kind of navigational aid could

immensely help its user:

The first case would be a person, who is visually impaired, being ’lost’ in

their surrounding, due to the fact that there are no clear markers around them,

that they would be able to recognize, leading to them being in a sense lost in

an environment that a sighted person would be able to navigate. This use case

can also be extended to include the inability to sense objects of interest at a

larger distance than their cane provides, which can often be a problem when

navigating a lesser known environment. By detecting both obstacles and objects

that the user might be looking for and passing this information on to the user

the person can be given a better sense of their surroundings, improving their
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confidence and effectiveness in navigating.

The second use case would assume that the user is lost in a surrounding

that they don’t know or at least don’t recognize. This again could be a result

of the shortcomings of the guidance cane, but also from the person following

some other sense, such as smell, and getting lost. By implementing a checkpoint

system, the user would be able to while moving around freely place checkpoints

at places they would recognize again if taken there. When they then get lost

the device would lead them back to one of these checkpoints, in the process

avoiding collisions. From there the user could again move freely to where ever

they would want to go.

The final use case, built on the information gathered from the interviews,

would help a visually impaired person in their own home or outside. A common

issue described by the interviewees was that when dropping an item on the

floor or even negligently placing something on a table without noting where

exactly, they might not easily find that item again. When this happens, they

described how they would either need to ask for help finding it or drop to the

floor themselves moving around in increasing circles until they have found the

item. To help with this problem the device could be told what to search for

and once the item is detected, it could guide the user to it, while again avoiding

other obstacles.

After discussing the three use cases with the team, the focus was placed on

the first case, concerning the users awareness of their surroundings. This use

case was mainly chosen as it seemed to be the best addition to the guiding cane

and seemed to fill the most concerning hole in blind navigation that could be

found.

In the next step of defining the use cases, five different specific scenarios,

were designed, based on more specific feedback from the interviewees. The five

scenarios were all designed to fit within the first given use case but all address

different smaller issues that could be regularly encountered.

The first scenario concerns a street crossing. No matter if it is only a cross

walk or a crossing with a traffic light, these situations can be difficult and
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possibly even dangerous for a person without sight. While the person might be

walking down the street being navigated by google maps they would be able to

follow the street, but no navigational service lists where exactly a street crossing

is. Due to this, sometimes it becomes difficult for a visually impaired person to

cross the a street, when they don’t know the area well. By detecting a traffic

light and guiding the user toward it, the system can improve the safety of the

user and remove the time spent searching for it. The desired behaviour can be

seen in figure 4.1.

Figure 4.1: Scenario 1: Street crossing

The second scenario is focused on finding a staircase in a public space, when

desired. While looking for an object of interest this scenario also has a large

focus on accurately detecting walk able areas and keeping the user to these, to

keep them out of harms way. To focus on this we decided to settle on a train

station platform, as it is a common public place typically including stair cases

and also potentially life threatening situations. For a successful navigation of

this scenario the user would have to move along the platform without being
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guided onto the rail tracks and eventually be lead down a set of stairs to remove

them from the station platform as can be seen in figure 4.2.

Figure 4.2: Scenario 1: Train station platform

The next scenario is set around the simpler task of keeping the visually

impaired user on a side walk moving forward. As can be seen in figure 4.3

the side walk would have a small drop off towards the street while having no

easily detectable marker to the other side where it would have a gradual slope

down into a ditch. The path in this scenario would be straight and without any

further obstacles.
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Figure 4.3: Scenario 1: Side walk

The fourth scenario is set in a mall. The idea would be that a visually

impaired person needs to move through the wider than usual space of a malls

main walkway. The user would navigate by themselves towards where they think

the desired store might be, but when close the device would help out in locating

and guiding the user towards the stores entrance. As would be expected in a

mall there are many obstacles, such as benches, plants and kiosks in the middle

of the path. Due to this, the scenario was focus mainly on avoiding obstacles

while moving through the mall space. The desired behaviour can be seen in

figure 4.4.
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Figure 4.4: Scenario 1: Mall

For the final scenario the visually impaired person would be placed in a park.

This park would be made up from grass fields and curved paths through it, as

can be seen in figure 4.5. These paths being dirt or sand paths would have

fading edges to the grass, which in combination with them being curved would

make following them difficult and slow. By informing the user about the slope

of the path they can be kept on track without getting lost on a grass field.

Figure 4.5: Scenario 1: Park paths
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After creating these five scenarios, the scenarios were inspected to see which

would address the worst of the issues, that had been found during the interviews

and were presented to another interviewee. By doing so the scenarios were cut

down to three, to specify the scope more.

The three scenarios determined to be the most relevant, were the first sce-

nario, the street crossing, the second, the train station and the fourth scenario,

the mall.

With this the use cases that the final device would have to be able to suc-

cessfully guide a user through and achieve the specified goals, were defined.

Based on these scenarios we decided to in effect focus on the last five meters,

this becoming the common theme throughout this work.

4.2 Software

With changes in the overall design and usage of the entire system the software

running the the sensing unit had to be adjusted to match as well.

The original idea, as described earlier in chapter 3, saw the software build a

virtual map from what the sensor detects over time. This would be done using a

SLAM algorithm. The second part of the software, the object recognition, was

to built around the ASIF-Net algorithm. The detected object would then be

classified using a simple concurrent neural network. This way the system could

build a map with both obstacles and objects of interest saved in it.

With the specification of the use case however it became clear that a full

SLAM built map would not be necessary as the device is not intended to surpass

what a human would be able to detect. Instead a simple short term memory

saving a set of previous frames would be much more helpful for correctly as-

sessing objects on the edge of the field of view and to help with filtering the

incoming information. By removing the full SLAM process the software would

also be able to run at higher speeds or on a smaller device. To further assist

in classifying objects the choice was also made to incorporate the full suite of

tensorflow, a large machine learning library.
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In a further step a switch was made in how the information about objects

and obstacles was treated. Rather than calculating their positions and passing

a vector on for each of these to the feedback device, a grid map would be created

consisting of columns, going outwards from the user, and rows, rings of certain

radius centered around the user. By using this approach each grid cell would

contain information about whether it is free, occupied or contains an object of

interest.

Due to the desire to in some cases detect an object of interest that might

be partially obscured by an obstacle, a final change was made to the object

recognition. Rather than using the ASIF-Net algorithm which would only be

able to detect a single most important object, a switch was made to use the

Yolo V4 algorithm to detect and classify up to 50 objects. This would come

at a small sacrifice to the systems speed, however it being the fastest object

detection algorithm for multiple objects, as can be seen in figure 4.6, it should

still be able to satisfy.
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Figure 4.6: Speeds of various object detection algorithms

4.3 Hardware

As with the software the hardware, being the headset containing the sensor unit

went through multiple iterations of design.

The first version of the headset was inspired by the head strap of the Mi-

crosoft hololens seen in figure 4.7. This design provides the flexibility in size to

fit all, fits comfortably due to its inner padding and is ideal for mounting any

sensor to its front and holding it tight.
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Figure 4.7: Microsoft hololens head strap

As for the mount of the sensor there were two possible options as presented in

figure 4.8: The first option would mount the sensor at a slightly downwards fac-

ing angle onto the headband. The second option would place the sensor directly

and straight on the headband with a reflector in front of it, redirecting its view

downward. This second method would allow the sensor to be better attached,

placed further into the headband and therefore be less exposed, protecting it

from the weather, but also collisions with other objects. While the first option

would not offer these benefits it would simplify the design and thereby keep the

end product at a lower cost. Due to this the first option was chosen to continue
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with.

Figure 4.8: Sensor mounting positions

Another functionality that was considered, was the addition of a button

to the headset. When pressed the button would deliver information on the

object right in front of the user, while suppressing any other object classification

information while not pressed. The idea behind this would be to prevent the

user from being overloaded with information, as was brought up during the

interviews. While this option was briefly experimented with, it was in the end

removed again as it did not provide enough benefit.

As the headband for Microsoft’s Hololens needs to support a much bigger

weight than the here developed headset, it is way to over engineered for this

purpose. While in concept it checks all boxes to make a good headband it is

for this application simply to big to be justified. Additionally the tightening

mechanism featured on the Hololens headband is more complex than it would

need to be. Both these issues, that were found could be solved with a combined

solution however. By keeping a more robust but padded sensor holder and a

counter part for the back of the head and connecting the two pieces with Velcro

strips as shown in figure 4.9. By doing so a large part of the headsets weight

is eliminated while it can still be easily and effectively adjusted. By removing

the tightening mechanism, another weakpoint is eliminated, removing another

possibility for breaking.
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Figure 4.9: Velcro supported headset

4.4 Ideation results

As becomes evident from this chapter a well functioning comfortable and most

importantly effective sensing headset should be possible to achieve in the real-

ization process. The System, with its changes to the design, should be able to

keep up in all the designed scenarios.
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Chapter 5

Specification

The specification chapter names for both the hardware and software concrete

goals that must be achieved to guarantee a successful headset. If the specified

values are achieved the minimal viable product would be completed. Any per-

formance better than specified would improve the product and thereby exceed

the MVP.

5.1 Software

A consideration for the entire software is how far ahead the device should analyse

the depth data. The maximal sensing range of the D435i sensor is 11 meters,

however based on the use case and its scenarios we can limit the sensing range

to five meters, to also fit with the theme of ’the last five meters’. The software

should also be able to analyse the full image it receives each frame, equating to

a field of view of 89 degrees horizontally and 58 degrees vertically, only reducing

the size of the input itself while filtering. If a smaller field of view is desired it

should be possible to adjust to this, but the software should be able to handle

a full field of view.

The further software can once again be spilt up into Obstacle detection and

object avoidance. These two parts, while being part of the same program, must
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run parallel to each other so that they can each run at different speeds to each

other.

The faster of the two parts is the obstacle avoidance. To protect the user

from walking into an obstacle it has to run at a higher frame rate than the object

detection. An average human walks at about a speed of 1.5 meters per second.

Assuming every 10 centimeters a new measurement should be taken, this would

require a minimal frame rate of 15 FPS. This does not take into account slight

variations in the time each individual frame takes. To ensure that at no point

the moved distance between measurements is longer than 10 centimeters, the

frame rate can be adjusted to a minimum of 20 FPS. The accuracy of the depth

data between the minimal sensing range and the maximum of five meters should

also be at its lowest 95 percent. This means, that in a single frame not more

than five percent of pixels should report significantly incorrect or no data.

As for the object detection, the algorithm should not take more than 100

milliseconds to analyze a single frame. This time limit would translate to a

minimal frame rate of 10 FPS, half that of the obstacle avoidance. This slower

part is allowed as we cannot expect the much more complex object detection to

run at the same speed as the obstacle avoidance. Based on figure 4.6, versions

of the Yolo algorithm can reach latencies of less than 80 milliseconds. As before

though, to avoid occasional slower frames a 100 millisecond latency should be

allowed.

For interfacing the feedback device the software should be able to format all

obstacles and objects of interest into a grid with a width of three columns, each

representing a third of the view and five rows each with a depth of one meter.

The number of rows and columns should be easily adjustable in order to match

variations in the layout of the haptic vest. When a specific column is requested

by the haptic device, by sending an uppercase letter i.e. ’A’, ’B’, ’C’, ’D’ ... ,

the software should return a message in shape of a single string. The format

of the string is a lowercase letter to identify the row followed by a single digit

implying if the cell is empty, full or unknown. Finally, if there is an object, this

is followed by a 3 digit number that represents the object, repeating for every
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object detected in the cell. Once a single cell has been described in full the next

cell in the column is treated in the same way and appended to the string. A

detailed overview of this code can be seen in figure 5.1.

Figure 5.1: Interface code

5.2 Hardware

The hardware, being the headset, has fewer hard limits. The main measurable

specific is that the headset must not weigh more than 150 grams. This is

necessary to keep it light enough to be worn for potentially hours at end without

becoming a nuisance. As discussed before 150 grams is about the weight of a

hat, therefore being a good number to aim for.

To keep the device from becoming to large, thereby standing out to much or

becoming harder to handle, the headband should not exceed a thickness of one

centimeter and should not be wider, from top to bottom, than two centimeters.

To ensure that the device is not to much of a hassle when putting on, it needs

to be able to be put on or removed in a maximum of 30 seconds.

Additionally, the the headset must of course be comfortable to be worn for

longer times, but as discussed earlier this cannot be measured in specific values

and instead has to be evaluated through open feedback by the users. As an
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evaluation metric the testers should fill in a likert scale to give feedback on

different variables. For the headset to be successful no single variable should

score lower than a six out of 10 and combined the score should not be lower

than a seven out of 10.

36



Chapter 6

Realization

The following chapter focuses on the realization of the sensing part of the device.

As before, the development is split up into the software and the hardware part.

Parts of this development phase outline work that was done in parallel to the

ideation phase.

6.1 Software

The entirety of the program is written in the programming language python, the

language being chosen as it provides good general functionality and is common

enough to have wrappers written for any external software that might be needed.

The program running in the background of the device is built up of the two

parts running in parallel. to achieve this the two parts of the program are run

on separate threads.

The first of the two parts, the obstacle avoidance, is entirely self build only

using some basic math libraries and the realsense library to extract data from

the D435i sensor. The data the sensor provides, can be retrieved as two arrays

describing first a grey scale image with values between 0 and 11 and second an

RGB image. The RGB image is simply the direct result of a basic RGB camera

mounted in the sensor. The grey scale image, on the other hand, is a depth
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image with each pixels value being the distance from the camera to that point.

The first step in processing the data, is cutting out the floor. If the software

went on believing the floor it detects was an obstacle it would at all times warn

of an obstacle immediately in front of the user. This of course would make the

device useless, which is why the floor needs to be filtered out. While there are

multiple ways of figuring out whether an area is floor or not, the one chosen in

this project is a purely mathematical approach. As can be seen in figure 6.1,

by setting the users height, the impact angle can be calculated from it and the

depth found by the sensor.

Figure 6.1: Floor detection

Using these values together, it can be determined if a point detected by

the sensor is at the correct height to be part of the floor. Using the built

in inertial measurement unit of the D435i this method also works when the

sensor is rotated. This is done by calculating the downwards axis from gravity

detected by the accelerometer and then based on this, removing or adding the

camera angle to the previous calculations. To avoid false calculations caused by

other motion detected by the accelerometer, the data from it can be filtered to

smoothen its output a bit. The combination of these steps will then result in a

view as shown in the following figure 6.2.
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Figure 6.2: Depth view with floor detection

The same process can’t quite be used in the same way for the ceiling, as

different rooms have different ceiling heights. This thankfully does not matter

to much for us, as first of all the use case for the device is outdoors and second

we can assume that anything 30 centimeters taller than the user can be ignored.

Therefore, the same process can be used in principle, but inverting the calcu-

lations to match an upwards calculation and replacing the users height with a

constant of 30 centimeters. This, if found necessary, is of course still adjustable.

The next step in developing the obstacle avoidance, is detecting the closest

obstacle in each direction. Since the sensor has a horizontal resolution of 640

pixels, that means an equivalent 640 directions have to be calculated. This is

quite simply done by finding the closest point out of the 360 points in a vertical

column of the image. During this, of course, the previous points classified as

floor will be ignored. By repeating this process for each column the 2D image is
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effectively compressed to a 1D array. A big problem using this process however,

is that any noise that is falsely detected close to the sensor will be treated as the

closest obstacle. To avoid any such cases, the input data for each column needs

to first be filtered. In this case, each column is treated for outliers, removing any

if they are found. After these extremes have been removed from the columns

array, the column is run through a Savitzky-Golay filter which smoothens the

array. This can, under some circumstances, omit some detail but also massively

reduces the risk of very wrong data points. The implementation of this filter is

taken from Scipy library. Once this process is performed the resulting data can

be visualized in a similar way as common radar installations, as can be seen in

the resulting figure 6.3.

Figure 6.3: Radar like obstacle detection

The final step to the obstacle avoidance is placing the found data into the

format desired for the haptic feedback device. The agreed upon standard format
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seeks to place all information into a two dimensional array representing a grid

in front of the user. This grid should be, as mentioned before, three cells wide

and five cells deep. The representation of this grid should imitate a smaller scale

version of figure 6.4.

Figure 6.4: Representation of the grid view

To achieve this the 640 values of the 1D depth array have to be split into

thirds. For each third, as before, the closest value is determined, but not before

each third is subjected to the Savitzky-Golay filter again.

With the obstacle avoidance complete, the focus can be shifted to the object

recognition.

Based on the state of the art, the decision was made to use a combination

of the ASIF-Net algorithm developed by Chongyi et al. [8], to detect an object

and following that use a convolutional neural network (CNN) to analyze what
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object it is. The initial implementation of the ASIF-Net algorithm was done

based on the documentation on its dedicated GIT hub page. A big problem with

its implementation however presented itself, due to the algorithm being build

on older infrastructure, requiring outdated packages that in part did not work

with other newer ones. The CNN was built using the tensorflow library with

its prebuilt structures. The setup that worked well with the selected scenarios

was a structure of two layers of two dimensional convolutional neural networks,

each followed by pooling the array. Following the two layers, an additional 5

layers of dense networks are added, but their number of neurons per layer can

be kept at a low number of 64, due to the previous two layers. This results in

a solid network with high speed and accuracy.

Due to changes in the use case, the software needed to be changed to detect

more than one object at a time. The ASIF-Net algorithm is not capable of this

so a change to a completely different object detection method was performed.

The algorithm chosen to replace ASIF was the ’you only look once’ (YOLO)

algorithm version four [14]. As a full object detection algorithm, it is not nec-

essary to first find the object and then classify it, as it does all that on its own.

When presented an RGB image it can detect up to 50 objects classifying them

at high accuracy and noting their bounding boxes, within the object supposedly

is. A visualization of this can be seen in figure 6.5.
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Figure 6.5: Object detection using YOLO V4

The disadvantage of the YOLO algorithm over ASIF is that YOLO does

not consider the depth data and thereby take more computing power to detect

objects with the same accuracy as ASIF. Despite this, it is powerful enough to

return results at high speed and accuracy.

While Yolo4 can be implemented on its own, as demonstrated by Bochkovskiy

et al. [14], there are also options of implementing it while using tensorflow as a

support. This method is demonstrated by [15], with the code basis for it given

on the associated Git hub page. Starting out with code base by TheAiGuy, the

code can be adjusted to further fit the needs of this project. When detecting

an object of interest the software will determine the center of the object and

collect the depth of points within the bounding box. As the bounding box often

includes little bits that are not part of the object (see figure ??), the points

of which the depth is used are weighted with points closer to the center be-
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ing weighted higher. By again removing any outliers and finally averaging the

depth measurement points the distance at which an object is located can be

determined. This process is repeated for every object. With all objects being

assigned X, Y and Z positions they can be added to the previously created two

dimensional grid cell array.

For accurately detecting objects any object detection algorithm first needs

to be trained on a set of example data. For the purposes of this project, a

dataset of 9000 images has been created from the Googles ’Open Images Dataset’

which provides millions of images with predefined bounding boxes. The selected

dataset is a combination of images highlighting the previously selected objects

of interest, such as doors and stairs. Using the dataset of images a model for

the algorithm could be trained.

The final step to developing the software, is implementing the interface to

the haptics device. As descided with the team the sensor side of the project

would only send information upon request. Once requested, the program sends

back a string with the depth information for a single column encoded. The

exact protocol for this can be found in the ideation chapter and in figure 5.1.

The communication runs using basic serial communication, on the side of the

sensor implementing the Pyserial library. When any data is received, the soft-

ware converts the character to an integer with the corresponding Ascii value.

Rather than using checks for every case, the program can directly access the

corresponding column, by using the input character as the array index, thereby

making it more flexible. When the correct column is selected any needed infor-

mation is copied from the two dimensional grid cell array into a return message

string. Iteratively, each row is checked for information and appended to the

string. Once complete, the program returns the message informing the haptic

device about the requested column.
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6.2 Hardware

The largest concern in the design of the hardware was to keep the size small

and the weight low. As mentioned in the specification the band could not be

wider than two centimeters, not thicker than one centimeter and not heavier

than 150 grams. To achieve this the greatest tool at hand is 3D printing. Using

PLA plastic, complex shapes can be designed and quickly prototyped, it has

great strength, a bit of flexibility and is very light. For this project, all parts

were designed by myself in solidworks, based of measurements take of a varied

group of heads.

Based on the concept developed during the Ideation phase, a frontal camera

holder and a back of the head counter piece was needed. The back piece could

be easily designed as a slight curved square with two attachment points on

either side to fasten the Velcro strips. The front part, the sensor holder, was

a bit more complicated. The sensor comes with a standard 6mm threaded

attachment point, which was determined to be the best point to connect to.

However, with the first design there was not enough space to screw the sensor

onto the holder without them colliding. To solve this, an adapter piece was

designed to first screw into the sensor and then be clipped into the main holder

piece, as can be seen in figure 6.6.
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Figure 6.6: Sensor mount version 1

The headset design in concept was good, not to big and easily wearable as

demonstrated in figure 6.7.
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Figure 6.7: Headset version 1 being worn

This design had an additional big advantage, as the sensor could easily be

removed to place it on another mount, making development and testing easier.

However, the repeated movement of the clip produces to much stress, finally

breaking the clip apart.

To prevent such damage in any newer versions, the switch was made to

remove part of the mount in a way that the sensor could be screwed directly

onto it, with the final design shown in figure 6.8.
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Figure 6.8: Sensor mount version 2

This could be done as the sensor with its weight is producing a rotational

force on the headset. The force produced by the sensor is most noticeable at

the bottom edge of the mount, while the force needed to hold the rotation back

needs to be applied at the top edge of the mount. This can be done, since the

cut out part is only in the center of the top edge with the side edges and bottom

completely untouched. That way the Velcro straps pulling backwards, still have

a good grip to hold back the mount.

Additional changes made to the sensor mount are, that the Velcro strips are

tied down to the front piece, rather than relying on tension to hold them in

place. For this, the sensor mount in its latest version comes with small holes on

the sides for string to be threaded through.

The final change to the design came with an additional small fastener wheel

that is placed underneath the sensor to lock it in place when it is screwed in

far enough, reducing the chance of the sensor over or under fitting the printed

screw.

To make the headband wearable for longer times both the front and back
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pieces are padded with half a centimeter of foam taped directly to the plastic.

A second wearability issue concerning the cable coming from the camera getting

in the way, could be solved by printing a small cable holder which threads onto

the Velcro strip and allows the cable to be clipped into it, to lead it behind the

users head without bothering them. These additions to the design can be seen

in figure 6.9.

Figure 6.9: Final headset design

At this point, the main weight of the headset was coming from the sensor

itself. By removing the glass lens, the Mask and the aluminum front and back

seen in figure 6.10, the sensors weight can be massively reduced, in the process

also reducing its size.
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Figure 6.10: Stripdown of the D435i sensor array

The final version of the headset with the cutback sensor mount, cable holder

and stripped sensor can be seen worn in figure 6.11.

Figure 6.11: Final headset design being worn
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Chapter 7

Evaluation

The evaluation phase was split up into three phases. The first phase being the

system testing phase, during which the device was placed in a clean environ-

ment to collect quantitative data from its ideal use case. The second phase

focuses on partial system user tests. During these tests the research focus was

mostly placed on the wearbility of the device. The third and final stage of the

evaluation phase was a full system user test in which the sensing part of the

device was connected with the hapic feedback device. With the two connected,

test participants were then subjected to simulated use case scenarios.

7.1 System testing

During the first phase of testing, the sensing device was placed in a clean envi-

ronment. During this test the device was tested for four different variables: the

speed of the obstacle avoidance, the speed of the object detection, the accuracy

of the object detection and finally, the robustness to movement.

Testing for the speed of the two parts of the software was straight forward

enough. The time it took to run through one cycle could simply be output

by saving the previous cycles system time and subtracting it from the current.

With the delay being measured in milliseconds, 1000 could simply be divided
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by the result to find the corresponding frame rate.

When testing the obstacle avoidance part for a couple of minutes with dif-

ferent numbers of obstacles at various distances, the software does not seem to

slow down. While it varies slightly with every frame, most delays are within

a range of 45 to 50 milliseconds no matter the amount of objects, as can be

seen in figure 7.1. This makes sense as the number of operations performed

by the computer do not change with the number of obstacles. As can be seen,

the frame rate on average does not drop below 20 frames per second, thereby

passing the speed requirement set out in the specifications.

Figure 7.1: Speed data of obstacle avoidance

The speed of the object recognition can be found in the same way as that

of the obstacle avoidance. However, looking at the results in figure 7.2, it can

be seen that the speed of the algorithm slightly drops of with a larger amount

of objects in frame. This makes sense, as the algorithm for every additional

object needs to detect its bounds and classify it. Additionally, the more objects

are in frame the less ’clean’ the environment becomes, making it harder for

the algorithm to differentiate one object from another, further slowing it down.

Despite this, the object recognition algorithm at its worst drops its speed only

to 15 frames per second. This speed is still much higher than the desired 10

frames per second, as laid out in the specification section. Importantly to note,

for the evaluation of the algorithm some of the objects were replaced by smaller

more manageable objects for an inside space, as any outside space would not be

considered clean anymore and it could be difficult finding the required number

of objects next to each other.
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Figure 7.2: Speed data of object detection

As expected, the accuracy with which the objects are detected, drops off

the further away the object is from the sensor. Up close the accuracy reaches

on average 94%, although depending on the type of object and the situation

the accuracy can jump up to 99% or even 100%. As shown in figure 7.3, the

accuracy drops of to 80% at three meters and even 62% at five meters. While

the 62% could be better, the accuracy at this distance is still good enough to

satisfy, especially considering the vastly improved accuracy at shorter distances.

Figure 7.3: Accuracy of YOLO V4

Finally, to measure the devices resistance to movement, the device was

moved back and forth along a 10 centimeter line for 5 minutes, each at varying

frequencies. At the lowest speed of 30 movements per minute, only 4 errors were

detected throughout the span of 5 minutes. Compared to that, at the fastest

speed of 120 movement per minute, 118 errors were detected in 5 minutes. This,

as can be seen in figure 7.4, leads to a frequency of about 20 errors in 1000 mea-

surements, roughly 30 times more, showing the importance of a stable camera

mount.
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Figure 7.4: Resistance to movement

7.2 Usability and wearability testing

The wearability tests were performed in two stages. The first stage consisted of

testing small changes to the design in parallel to the development phase. This

had wide reaching influence on the design of the headset. The second phase was

performed in parallel with the full system user tests. This was done by having

the participants fill in a questionnaire with various choice and open questions.

The first phase of testing mainly brought to light different aspects of the

designs ergonomics. This largely concerned the curvature of the front and back

pieces of the headset. While the PLA plastic used for the parts is not completely

stiff and can flex a little bit, it should still resemble the curvature of an average

head. From the testing it was found that over the eight centimeter wide holder

the ideal curvature was 1.2 centimeters deep. With this curvature it provided

enough contact area for smaller heads and could still flex enough for larger

heads.

One concrete parameter that could be tested for and was defined during the

specification phase, was the time it took to put on the headset. Positively, out

of all attempts the time to put it on was never more than 15 seconds, with the

average being even lower at 7.3 seconds. The speed with which the headset can

be put on was great as it completely crushed the maximum of 30 seconds. This

speed can be mostly attributed to the simplified fastening mechanism of using

Velcro strips, which most people are very familiar with.

The second parameter that could be measured was the weight of the headset.

In the specification the maximum weight was set at 150 grams. The final version
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of the headset however only weighed in at about 60 to 70 grams. With this,

the headsets weight is less than half the permitted weight, making it possible

to add more parts for further functionality in the future, without risking it to

become to heavy. This light weight, as expected before, is due to the use of the

PLA plasic as the weight without the sensor drops to about 15 grams.

In the second phase, connected to the full system test, the feedback was very

positive. The questionnaire tested for four variables and was open for further

input and clarification. The variables tested for were wearablility, weight, sweat

resistance and exerted pressure.

The wearability of the headset was rated at an averaged 9.4 out of a max-

imum of 10. On the provided likert scale from one to seven, out of the five

responses four gave the highest rating with only one participant giving a five.

None of the participants felt any need to further comment on the headsets

wearability.

The second variable tested for, was the weight. By the users it was scored at

an average of 9.1 out of 10. Again, a likert scale from one to seven was provided

with three users scoring a six and two of them scoring a seven. For further

notes, the users only commented on the headsets low weight, which they liked,

as it did not draw much attention from them.

The third variable being tested for, was the amount of sweating induced by

the headset. For the test it was clarified that the highest number would mean no

sweating induced and the lowest score would be heavy sweating. This variable

scored the best out of all the variables at a 9.7 out of 10. On the seven point

likert scale the the users scored it at a seven four times and at a six once. This

resistance is likely due to the effective use of the foam padding. This prevents

the plastic sitting directly on the skin allowing it to continue breathing.

The pressure being exerted by the headset was the final variable tested for.

This resulted in the lowest score at an 8.3 out of 10, which is still a very good

result though. This lower score is mostly caused by one user who scored the

pressure at 3 on the seven point scale, while the others evenly split their votes

between six and seven.
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From these usability test it clearly shows that the headset is well designed to

keep its user comfortable and not cause any nuisances. While there is still some

space for improvements, the design satisfies and even exceeds all expectations.

7.3 Full system test

The final system test were performed with users wearing the full system in-

cluding both the headset and the haptic device. The tests were performed in a

controlled environment to protect the users from injuries. The test space was a

large room of a size of about seven meters length and four meters width. The

participant would be placed on one side of the room, blindfolded and wearing

the navigational aid. Without the user seeing, paper box obstacles were placed

throughout the room. The user would then have to navigate from one side of

the room to the other without hitting any obstacles, as can be seen in figure

7.5. After completing the first task, they were presented with different objects

of interest and were told to find a specific one. Throughout these tests the

software would also record its own performance.

Figure 7.5: Tester moving through an obstacle course

The obstacle avoidance was unsurprisingly not effected in its speed, as it
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already in the previous test, did not get effected by more or less obstacles. The

object detection however, was affected much more. Throughout the tests it

performed at an average speed of about 16 frames per second. This is slightly

slower than in the clean environment, but still fast enough to satisfy the re-

quirements. As with the speed, the average accuracy also decreased from its

ideal environment. The average accuracy throughout the tests dropped to about

60%, while it at times could drop to as low as 35%, which was the cut off limit.

This is unfortunate, as it could lead to mistakes, showing that there is still some

work that could be done to improve the object detection. Despite this, from

evaluating the user, the test still seemed successful.

Throughout all the test, the users typically walked about nine meters from

start to end. They did this in an average of about one minute and 15 seconds.

This leads us to a speed of 0.12 meters per second, or about a tenth of the

average persons walking speed. While this seems slow the system still shows its

potential through the fact that only about half of all testers hit an obstacle and

when they did, only barely strafed it. This issue of hitting boxes can mainly be

attributed to the systems bad vision in the half meter in front of it, something

that a future continuation could work on.

The object recognition test was much more successful with participants being

able to correctly distinguish the searched for object about 80% of the time.

Once correctly identified they could then also usually move towards the object

successfully.

A notable phenomenon to mention is the learning effect, which could clearly

be observed here with participants performing better at both parts of the test

when they had used the device at least once before.
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Chapter 8

Further development

The project has proven its concept and shown a lot of potential at that. Despite

this, there are still many things that would need improvement. The following

final chapter will focus on what can still be done to further build on the device

presented so far.

8.1 Complete device

To improve the device as a whole, there are many things that could be done.

First of all, the final user tests were, out of ethical and security reasons, not

performed with people who actually suffer from visual impairdness themselves.

Testing with the actual target group could bring to light issues that were not

discovered during the test runs with the not visually impaired test users. On

the other hand, because our testers did not know how to use a cane they relied

entirely on the device to guide them. The system of course is not actually de-

signed to fully replace the cane but to add to it, meaning that issues experienced

by the testers might not have been experienced by a visually impaired person.

All in all, testing and evaluating with the actual target group could have given

the project more credibility.

In a similar sense the testing was also performed in a simulated scenario to
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protect the participants. Testing in the true scenario could bring issues to light

that were unknown to us or put noticed issues into perspective.

Furthermore this project focused on a very limited set of use case scenarios.

In the real world there are of course more environments, obstacles, objects of

interests and combinations of all of these. Expanding the dataset of objects to

process and generally expanding the usefulness of the device to more situations

could truly further the development.

One main functionality that might make sense to add as well, would be a

’pointer’. This could be part of the haptic gauntlet, that could be pointed in a

certain direction to get specific information for that direction only, taking the

idea of the button that had been considered during ideation and further building

on it.

A final improvement that could be made on the full device would be to

miniaturize the computing module. Throughout this project the sensor and the

haptic device were connected to a laptop that was running the sensor software

and communicating with the haptic device through serial communication. If the

code could be optimized to run with lower computing power a smaller computer

could be built into the haptic vest as the main controller. Alternatively, it could

also be possible to offload the heavier processing to a mobile device as almost

everyone carries a phone with them anyways. The phone could be connected

to the device through Bluetooth and would decrease the size and weight of the

device and also massively drop the cost.

8.2 Sensing

For the sensing side of the work specifically, there are of course also still many

possible improvements.

Firstly there are some additional functions that could be added to the head-

set itself. The mount for example, could be redesigned to be adjustable in its

angle so that it could change for taller or shorter users. Additionally, the mount

could be stabilized to decrease the amount of smaller movements coming from
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the user walking along.

A second simple but important improvement that could be done would be

waterproofing the sensor. While removing the sensors protective case, removed

weight and made it much smaller, it of course also made it more vulnerable. If

the protective covering could be build directly into the headband it could per-

form the same function while being smaller and lighter. In addition to this, the

sensor could also be disassembled further with its components being distributed

over a larger are of the headband but making it smaller in the front. Alter-

natively, in a simpler way the sensor could be sprayed with a water resistant

coating, leaving it unprotected to other damage but ensuring it to be weather

proof.

Another improvement that could help immensely, would be increasing the

field of view along the vertical axis. The issue here is that the sensor only has a

vertical angle of 58 degrees. Assuming the sensor is worn by a person of a height

of 1.7 meters and the sensor is angled such that its top most view is horizontal

to the ground, the closest point on the ground it could detect would still be

more than a meter away. By using a special lens in front of the sensor, as seen

in figure 8.1, the field of view could be increased at the cost of detail in the

image. The loss of quality on the vertical axis would not be such a big problem

as it would, if at all, make only minor changes to the estimated distances that

objects are at.
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Figure 8.1: Sensor mount with special wide angle lens

Finally, the largest improvement, other than building a better object detec-

tor, would be to improve the filtering of the incoming data. While the filtering

achieved in this project is already quite good, noise passing through the filter is

still the most common issue for false readings. Could this be entirely stopped,

it would improve the device greatly.
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