
Finishing and Improving of Finger Vein System
Trethyn Trethyn

Electrical Engineering Bachelor Student

Abstract—Finger vein biometrics is a developing field, cur-
rently dominated by commercial research. Since commercial
products and research are kept private, the academic community
wishes to develop their own finger vein biometric systems, in
order to conduct their own research. This report details a
redesign of the finger vein scanner system at the University of
Twente, making the system self contained and more coherent. The
system consists of a strip of individually controllable Near In-
fraRed (NIR) LEDs, an InfraRed (IR) camera, a custom designed
driver board to provide power to the LEDs and a Raspberry
Pi 4 for control. The redesign is done by migrating the user
interaction, signal processing, matching and enrolment systems
from MatLab running on an external computer to a combination
of OpenCV and C++, running directly on the finger vein scanner.
The redesign also includes a new implementation of automatic
LED adjustment, in order that the finger being captured is
correctly exposed and can be properly processed. Furthermore
touchscreen control is implemented for the system, making it
completely standalone. The performance of the migrated system
was evaluated with respect to the original, and vein extraction
and recognition were found to be comparable.

Index Terms—Near InfraRed(NIR), Finger Vein, OpenCV,
C++, LED

I. INTRODUCTION

There are several forms of biometric identification currently
in common use. Fingerprint sensors on phones and computers,
face recognition and retinal scans. There are, however, many
more unique identifiers humans carry as a part of their body,
such as the patterns of veins inside fingers.

Finger vein biometric devices do exist, but much less
commonly than other forms of biometric recognition. There
are a few on the commercial market, such as the Hitachi
VeinID [1], but since these are commercial and hence the
information on their systems private, scientific research into
finger vein biometrics must be done separately. To this end,
the University of Twente currently has a finger vein scanner
device. However, the device’s functionality could be improved.
As of this writing it requires connectivity to a computer in
order to capture images, or display those images, and all
image processing and matching is currently done completely
remotely, via Matlab. This is a nonideal situation, the device is
not exactly easily usable in this state, so this text will describe
an attempt to properly integrate the functionality of the device
all in one physical setup, with the addition of a touchscreen
for control.

II. RELATED WORK

A. Finger Vein Recognition

Finger vein recognition is a member of the larger group
of vascular biometric techniques, which includes hand, finger,

wrist and eye recognition based on the unique patterns of blood
vessels within these body parts [2]. As might be guessed from
the name, finger vein recognition is specifically concerning the
blood vessels in fingers.

The vascular patterns in fingers are measured by means of
Near InfraRed (NIR) light, which is absorbed by haemoglobin
[2]. When the area of interest is illuminated with NIR light,
images captured with an NIR sensitive camera will show areas
containing haemoglobin as dark, and other areas as light,
allowing noninvasive capture of the vascular pattern of the
finger [2] [3] [4].

There are multiple methods which have been used to capture
finger vein images, namely transmission, reflection and side
illumination [4] [2]. In transmission, NIR illumination is
provided above the finger, which then shines through the
finger and to a camera positioned below it [4]. In reflection,
the illumination is provided below the finger along with the
camera. This has an advantage over transmission, in that the
user can see their finger while using the device and thus feels
more comfortable [4], but also the disadvantage that most
of the captured light does not penetrate the skin, leading to
low contrast between veins and surrounding finger [4]. Lastly
comes side illumination, in which light sources are placed
on one or both sides of the finger, with camera below. The
light would scatter inside the finger and the camera would
pick up some of that scattered light [4] [5]. This method has
the psychological advantage of a visible user finger, and the
disadvantage that the side(s) of the user’s finger will be over
exposed [4].

Once the vascular pattern images have been captured, they
then need to be processed and identified. The images are
usually preprocessed, in order to combat factors such as blur
or poor contrast [3] [2]. Then, once the images have been en-
hanced, the region of interest (finger area) must be determined.
There are several different ways to do this, often involving the
detection of some component with known position relative to
the rest of the finger (e.g. edge detection) [3] [2]. Finally, then
the pattern of veins can be extracted. There are many ways this
is done, including Repeated Line Tracking, which tracks dark
lines, the Gabor Filter, which performs texture analysis, or the
use of trained Neural Networks to recognise vein patterns [6].

Finally, now that the vein pattern has been isolated, the
vein images need to be matched and identified. Biometric
comparison is done by use of algorithms which compare the
images to images in a database and look for the best match(es)
in terms of multiple parameters represented as comparison
scores [3] [2].



Fig. 1: Finger vein scanner, University of Twente [5]

B. The University of Twente Finger Vein Recognition Device

In 2012 the Services and Cybersecurity (SCS) group at the
University of Twente designed and built their own finger vein
scanner, in order to do research into what was primarily a
commercial field, with little academically available informa-
tion [5] [4]. This device was large, bulky and required an
external computer in order to run. Therefore in 2017 [5], it
was redesigned into a more compact form. This form, which
is also, with minor physical changes (Currently the system
only includes one LED board instead of the three shown), the
current one, can be seen in figure 1.

The redesigned scanner featured transmission illumination,
with the use of three cameras fitted with IR pass filters and
placed below the finger, and three custom printed PCBs, each
containing an array of IR LEDs placed in a hood above the
finger. The orientation of these components can be seen in
figure 1. Each camera was controlled by a separate Raspberry
Pi, two Raspberry Pi Zeros and one Raspberry Pi 3, with
the Zeros acting as slaves to the 3. The 3 also controls the
LEDs via I2C and an ATMEGA microcontroller. The LED
lighting was custom made, in order to achieve the specific
radiant intensity required, and to use a constant current driver
(desirable to avoid flickering affecting intensity). [5].

In order to optimise the contrast of the images taken for
best finger vein detection, an optimal grey value for finger
tissue was taken as 80, based on the previous device. In order
that this grey value is achieved, the LEDs are individually
controllable by the Raspberry Pi, and can be adjusted until
this optimal grey value is measured in the captured image.
[5].

A problem that the previous design suffered from was over
exposure of the camera, so the new design included an LED
cover to make the light from each LED significantly more
directional. Distortion in the photographs due to the wide angle
camera was compensated for, and algorithms were designed
to control the light intensity of each LED in order to achieve
more optimum grey values. [7].

Further work was then done by the master student Thomas
van Zonneveld, with a redesign of the system using ArduCam
IR cameras, three Raspberry Pi 4s and a C++ based interface
to allow image capture. This redesign is the current state
of the device, with camera control and manual LED control

implemented on the scanner, and image processing, feature
extraction and matching done on a computer via Matlab.

III. DESIGN

In order to improve the system, the Matlab functionality
can be moved to the scanner. This Matlab functionality can
be considered to consist of two parts, namely the interaction
with the user, and the actual image processing.

A. Image Processing

When a vein image is captured, it is sent to Matlab, which
performs one of two operation streams on it.

If the image is to be enrolled as the template for a new user
in the system, it is first cropped to the region of interest (ROI),
and then saved with a unique identifier as a template. If, on
the other hand, the image captured is to be compared to an
already enrolled template to authenticate a returning user, both
it and the template will undergo the same pre-processing and
feature extraction processes, and then be matched. A matching
score can then be found, and this is used to determine whether
or not the user is the person they claim to be.

The pre-processing consists of two processes. First the edges
of the finger are identified and the finger is normalised to a
baseline. Then the actual feature extraction can be performed,
where the positions of the veins themselves are found and
the image binarised. After these stages have been completed,
the binarised vein images can be used to calculate matching
scores.

To implement this on the Raspberry Pi, it needs to be
converted to another form. Matlab cannot run on a Raspberry
Pi, and even if it could the inefficiency and slow speed of
Matlab scripts on such a device would be a severe problem. It
was decided to rewrite the pre-processing, feature extraction
and matching methods in C++, with the help of OpenCV. This
library was chosen because it is a widely used, competent
image processing and computer vision library that is easily
available and has many resources available for support. C++
will be used because it is fast, efficient, and interfaces easily
and well with OpenCV.

B. User Interaction

Ideally, there should be two main ways the user can inter-
act with the system, to enrol as a new user or to attempt
to authenticate themselves as a returning user. So that the
device is completely standalone, user interaction will be via a
touchscreen. This touchscreen will display a GUI that allows
the user to enrol and to perform matching with a pre-enrolled
template. A simple LED control algorithm will be included
with image capturing, so that the images used are optimal.

The design of the system is perhaps easier to understand
with the help of figures 2 and 3, which illustrate the plan for
the redesigned finger vein scanner.



Fig. 2: Hardware Design Diagram (fullsize version in ap-
pendix)

Fig. 3: Software Design Diagram (fullsize version in appendix)

C. Hardware

For the purpose of these improvements, not many physical
changes need to be made, with hardware additions mostly
consisting of the addition of a touchscreen. Of the options
available from the lab, it was decided to use the Adafruit 2.4”
PiTFT Hat [8]. This decision was made because this screen is
of a useful size where the information and options required can
be neatly displayed, and because it does not interfere with the
operation of I2C. The other available screen was both larger
and considerably dirtier, with its signals interfering with the
I2C bus and hence the LED and camera control.

D. Evaluation

It is all very well to design a system, but that design does not
matter very much unless it works. The new integrated finger
vein scanner should perform at least as well as the previous
version, with equivalent or better finger recognition and image
capturing.

Finger recognition performance can be evaluated and com-
pared by performing image processing and matching on the
same images with both implementations, then comparing the
results. There should not be a loss of matching accuracy,
and vein images generated should be of sufficient quality to
provide useful results.

Image capture performance can be evaluated by ensuring
that the finger vein images captured are of a good quality
to be used. Based on previous iterations of the scanner, and
information from previous work, the finger itself should be
uniformly at an acceptable grey value, and the veins should
be reliably extractable [5] [7].

IV. METHOD

Now that plans have been laid, the improvement and inte-
gration of the device can be performed.

A. Pre-processing, Feature Extraction and Matching

In the original Matlab, the finger region identification, image
normalisation, vein extraction, binariasation and matching
were split into separate functions. No reason was seen to
change this, so the titles and usages were carried over to the
C++ implementation.

1) Region identification: Called lee region, this function is
based on the region detection method described in a paper
by Lee et al. [9]. It works by convolving the image with the
4x40 mask shown in equation 1, splitting the image in half
vertically, and then taking the maximum point in each column
of the upper half, and the minimum in each column of the
lower half, to be the edges of the finger. No major changes
were made in the working of this function during its linguistic
migration, and any differences in output between the versions
are expected to be due to differences in filter implementation
between OpenCV’s Filter2D and MatLab’s imfilter.

−1 −1 −1 ... −1
−1 −1 −1 ... −1
1 1 1 ... 1
1 1 1 ... 1

 (1)

2) Image normalisation: This function is called
huang normalise, and is based on the normalisation
method in a paper by Huang et al., though without the elliptic
projection described there [10]. The transform matrix differs
slightly in appearance between the implementations, due to
different conventions for it between Matlab and OpenCV. The
baseline projection is also different, since in Matlab a baseline
is determined using robustfit, in the C++ implementation a
self written implementation of least squares linear regression
is used, named linfit. They produce similar, but not identical
results.

3) Vein extraction: The function used for vein extraction
is called miura max curvature, and is based on a method
described in the paper by Miura et al. [11]. Vein patterns are
identified by filtering the normalised image with five different
kernels, determined according to equations based on an input
parameter sigma. These filtered results are then combined
into four images. Each image shows changes between light
and dark in the original image, though sensitive in different
directions. One shows horizontal changes, one vertical, one
top left to bottom right diagonal, one bottom left to top right
diagonal. These images are multiplied with the binary finger
region mask obtained in lee region, and then each of these
images is then scanned over, each curve being used to mark
one point on the vein image. These points are in the place
of maximum curvature, and weighted by the length of the
curve. Once all points have been found and weighted, veins are
isolated by finding vein centres. The main difference between
the C++ and Matlab implementations of this function is in the
treatment of the bottom left to top right diagonal curvature



extraction. OpenCV has a function which is used to find
diagonals of matrices, so to use this the image in question
is flipped over the vertical axis before diagonal extraction.

4) Binarisation: Once this vein image has been generated,
it is binarised. In both languages this is done by finding the
median value of the non zero parts of the image and using
this as a threshold for binarisation.

5) Matching: The matching function, named miura match
and once again based on the paper by Miura et al. [11].
Matching is performed quite simply by finding the cross
correlation of the template image and the input image, taking
the maximum result and then normalising over a specified at
input search area. The result of this will be a score between 0
and 0.5. This is multiplied by 200 when output to the user, so
it can be represented as a percentage. The main differences
between the two implementations of this function are in
Matlab and OpenCV’s approaches to cross correlation, which
are unlikely to produce exactly the same results. The image
had to be manually zero padded in the C++ implementation,
while Matlab does this implicitly.

B. Touchscreen and User Interaction

Since one of the main ideas of this project is to make the
finger vein scanner standalone, all interaction with the system
will now have to be via the touchscreen that will be installed.

1) Physical implementation of the touchscreen: The touch-
screen used was designed as a Raspberry Pi hat [8]. As such,
although it only makes use of the SPI pins [8], it is provided
with a full header to sit on top of the Raspberry Pi board.
The screen does provide an access point for 26 out of 40 pins
which it does not use. A problem with this is that in the current
design the header of the Pi is already in use, being entirely
connected to the LED driver board. However, in practice only
the I2C, 5 V and GND pins are needed for the connection
to the driver board, so it should be possible to connect all
three devices at once. An attempt was made to run the screen
remotely via jumper cables, but the screen then did not display
any information that was sent to it, so the system was changed
so that the Pi and driver board were connected by jumper
cables and the screen sat on top of the Pi. This did work,
although not well since the jumper cables could not provide
enough power to the Pi.

2) GUI for the touchscreen: As was described in section
III-B, the touchscreen GUI should be able to allow the
enrolment of new users, and to authenticate returning users
again by comparing their finger to a pre-enrolled template.
The GUI that was designed and realised can be seen in figure
4. The capture button allows for a new picture to be taken,
enrolling a user in the system. The arrow buttons allow the list
of saved images to be cycled through (current image will be
shown in the rectangle on the right), and the identify button
will match the currently selected image to a finger presented to
the device, then report the score beneath the rectangle, as well
as display the identified vein pattern for interest. A preview
showing the direct information stream from the camera is
displayed overlaying the GUI. This is done because of the way

Fig. 4: Final version of the finger vein scanner GUI

raw camera footage is handled by the Raspberry Pi - it’s done
low level by the GPU [12], and as such cannot be integrated
with the rest of the GUI, which is made with GTKmm 3 [13].
A quit button is also included, so the user can escape to the
desktop if needed.

C. LED Control

In order that pictures taken with the device can be reliably
usable, a form of LED control was implemented. A simple
control function, adjust leds auto, was written. This function
captures an image with the camera, then runs lee region on
that image to identify the finger area. Then a rectangle one
pixel wide and as long as the image is taken from the image
at the centre of the finger (based on the edge positions returned
by lee region). The mean grey value of this rectangle is then
found, and if it is below the lower acceptable threshold of 70
the lights are brightened by a step, while if it is above the
upper acceptable threshold of 90 the lights are dimmed by a
step. These acceptable thresholds were chosen based on the
mean grey values (as found by the same method as described
above) for several images in the University of Twente’s finger
vein dataset [4].

V. RESULTS

The image processing functions were tested first using vein
images from the University of Twente dataset [4], second with
images captured by the system itself. In order to determine
the quality of the system, tests were performed in which a
selected finger vein image would be compared to a different
image of the same finger, a different finger of the same
user, and a completely unrelated finger. In order to compare
implementations of the system, these tests were performed
with the same images and the same comparisons in Matlab
and in C++. Some of the vein images generated during these
tests can be seen in figure 6 (Matlab) and 7 (C++).



(a) Vein pattern used as tem-
plate for testing

(b) Different image of same
finger as template

(c) Vein pattern from a differ-
ent finger of the same user

(d) Vein pattern of a different
user

Fig. 6: Resulting veins from Matlab finger vein comparison

These test sets were performed ten times, each time with
different sets of images. The results of these tests can be seen
summarised in table I.

Then, in order to test the ability of the system to capture
useful images, a small dataset of three individuals was cap-
tured anonymously, and the same tests were performed using
these images. Due to the smaller size of this dataset, six sets of
tests were performed rather than ten. Some of the vein images
captured can be seen in figures 8 and 9. The results of this
second set of tests can be seen in table II. It would have been
preferable for the sample size to be larger, but the number of
both available and willing participants was somewhat limited.

An example of the images captured by the system can be
seen in figure 5a.

(a) Finger image captured by
the new finger vein system

(b) Finger image captured by
the previous finger vein system

Fig. 5: Comparison of images from the previous and re-
designed finger vein systems

(a) Vein pattern used as tem-
plate for testing

(b) Different image of same
finger as template

(c) Vein pattern from a differ-
ent finger of the same user

(d) Vein pattern of a different
user

Fig. 7: Resulting veins from C++ finger vein comparison

(a) Vein pattern used as tem-
plate for testing

(b) Different image of same
finger as template

(c) Vein pattern from a differ-
ent finger of the same user

(d) Vein pattern of a different
user

Fig. 8: Resulting veins from Matlab finger vein comparison of
images captured with the device

(a) Vein pattern used as tem-
plate for testing

(b) Different image of same
finger as template

(c) Vein pattern from a differ-
ent finger of the same user

(d) Vein pattern of a different
user

Fig. 9: Resulting veins from C++ finger vein comparison of
images captured with the device



TABLE I: Results of implementation comparison performed on dataset images

Matching score self Matching score self, other finger Matching score other
Name Matlab C++ Matlab C++ Matlab C++ Notes

0001 1 1 120509-135315 34.5 % 27.9 % 11.8 % 24.8 % 11.6 % 18.9 %
0002 1 1 120509-140611 38.5 % 54.1 % 10.4 % 21.4 % 11.1 % 19.1 %
0003 1 2 120509-141420 18 % 43 % 13.7 % 22.4 % 13.6 % 31.4 % Matlab

baseline
extrapolation
reached
iteration limit

0004 1 2 120509-141934 24.2 % 30.6 % 10 % 26.9 % 13.4 % 26 % Matlab
baseline
extrapolation
reached
iteration limit

0005 1 1 120509-142157 49 % 74.6 % 11.8 % 21.6 % 14.7 % 19.6 %
0006 1 1 120509-143643 28.9 % 48.4 % 11.1 % 27.9 % 13 % 33 %
0007 1 2 120509-144552 22.6 % 34.6 % 13.7 % 23.8 % 10 % 18.5 %
0008 1 2 120509-145152 22 % 28.9 % 14.1 % 21.1 % 11.5 % 28 %
0009 1 4 120523-144626 36.7 % 53.8 % 16 % 28.6 % 11.9 % 22.2 % Matlab

baseline
extrapolation
reached
iteration limit

0010 1 2 120509-150320 32.7 % 58.1 % 10.7 % 27.7 % 9.8 % 22.4 %

TABLE II: Results of implementation comparison performed on images captured with the new device

Matching score self Matching score self, other finger Matching score other
Name Matlab C++ Matlab C++ Matlab C++ Notes

A 1 1 1 40.3 % 94.2 % 10.6 % 22.7 % 11.8 % 28.4 %
B 1 1 1 22.4 % 57.3 % 12.1 % 19.5 % 11 % 20.7 % Matlab baseline

extrapolation
reached iteration
limit

C 1 1 1 23 % 38.6 % 10.7 % 20.1 % 11.3 % 21.1 %
A 2 2 1 32.2 % 79.2 % 13 % 31.1 % 10.6 % 30.1 %
B 3 1 1 37.3 % 28.9 % 12.1 % 18.8 % 10.4 % 17.9 %
C 2 1 1 24.7 % 39.6 % 11.7 % 20.9 % 10.1 % 24.2 % Matlab baseline

extrapolation
reached iteration
limit



VI. DISCUSSION

A. Vein Extraction

To comparison by the eye, the vein extraction as performed
by C++ is, generally speaking, of slightly lower quality than
the original Matlab. Some smaller veins are not picked up (see
for example figures 6b and 7b), and sometimes the edges of
the fingers are identified as veins (see for example figures 8c
and 9c).

The issues with picking up the edges of the fingers as veins
is due to the region identification. For reasons likely due to the
differences between filter implementations of Matlab and C++,
the region identified by the C++ lee region implementation
tends to be slightly larger than that identified by the Matlab
implementation. This results in the detection of the edges of
the finger as veins. If the algorithm were more optimised for
OpenCV, this issue could likely be improved.

Some of the smaller veins are not picked up by the C++ im-
plementation. This, again, is likely due to differences in filter
implementations. Again, the issue could likely be solved by
further altering the algorithm with the working of OpenCV’s
Filter2D in mind.

B. Image Quality

In figure 5 two images are shown for comparison, figure 5b
from the dataset and figure 5a, which was captured with the
redesigned scanner. Vein data can be seen in both images, and
both are of a sufficient mean grey value. Figure 5a is a little
out of focus. This is due to the camera used, the monochrome
version of the OV9281 from ArduCam. The OV9281 is a
manually focussable camera, but the monochrome version has
had the lens glued in place [14]. This might be rectified with
the proper tools to remove the glue, but as of now it was
decided not to do this, for fear of damaging the camera and
rendering the system unusable.

Despite this, veins in a level of detail comparable to the
dataset images could still be extracted (figures 8, 9). Therefore
this level of blur was considered to be a point to improve, but
currently acceptable.

C. Matching Reliability

The results of the matching tests can be seen in tables I
and II. For most of the image sets tested on, Matlab and C++
were able to provide a noticeable level of distinction between
another image of the same finger, and images of different
fingers. For both implementations, there was not much of a
difference between the matching score of a different finger
belonging to the same user, and the matching score of a
completely unrelated finger. The scores reported by C++ tend
to be higher, but in general proportionally higher than the
Matlab scores. Sometimes Matlab’s normalisation function did
not perform correctly, being unable to find a baseline, and in
those cases the matching score reported is often much lower
than it was expected to be, based on the other test sets.

Since the purpose of the system is to determine whether or
not a finger presented to the scanner matches the template it
is being compared to, once the matching has been performed

TABLE III: Sensitivity and specificity of implementations

Implementation Sensitivity Specificity

Matlab 93.75 % 100 %
C++ 81.25 % 87.5 %

there are essentially two possible outcomes. Either the finger
is considered to match the template, or it is not. Therefore it
makes sense that for each system there should be a threshold
in place, above which fingers match and below which they do
not. Based on the results for Matlab, it makes sense to place
that threshold at around 20% (the correct finger is usually in
the range of 30%, while incorrect fingers are usually around
10 %). For C++ it makes sense to place the threshold higher, at
around 30%, since here correct fingers are usually identified
in the range of 30 - 40%, while incorrect ones are usually
somewhere near 20%.

With these thresholds in mind, there are some cases where
the score reported by OpenCV for a finger being matched with
itself is low enough that it looks more like a finger that would
be rejected. This is also the case in Matlab, sometimes but not
always for the same fingers. Interestingly enough, these are all
cases in which images from the dataset that were captured of
the same finger, but on different days, were compared, making
this the likely reason. None of these cases exist in table II,
since due to the limited availability of willing subjects in
these days of plague, the images captured with the redesigned
scanner were all taken on the same day.

There are also some cases where the score reported by
OpenCV for fingers that are not the same is high enough
that it looks more like a finger that should be accepted. This
is never the case for Matlab. A reason for this might be the
reduced number of smaller veins picked up by OpenCV’s vein
extraction.

To put this in a more quantifiable way, taking both mea-
surement sets into account and using the thresholds of 20%
and 30% for Matlab and C++ respectively, the sensitivities and
specificities of the two implementations can be found (shown
in table III.

It can be seen in table III that while Matlab has a higher
sensitivity and specificity that C++ (and is hence a better
indicator in general), the sensitivity and specificity of C++
are still usefully high. In the majority of cases C++ will give
the correct result.

In general, both systems have their false negatives. The
C++ implementation also has false positives, and results in
higher overall numbers than Matlab. This means that a higher
threshold should be used for deciding whether or not a finger
matches the template. The system could also stand some
improvement to reduce the false positives, but as it stands
it does, in the majority of cases, produce reliable indicative
results.

VII. CONCLUSION

In the beginning, plans were made to redesign the existing
finger vein scanner into a more compact and coherent form.



Those plans included the migration of the image processing
and control from Matlab to C++ on the actual device, the
addition of a touchscreen to allow user interaction, and the
design of a simple GUI for that touchscreen. These things
were accomplished, and a small dataset was collected with
the device. Tests were performed, both with the dataset of
the university and the newly captured dataset, to determine
how well the new version of the system was able to perform.
Images captured by the system were sufficient for use, as was
the vein extraction, although both could stand some further
optimisation before they can be considered equivalent to the
original.

VIII. RECOMMENDATIONS

Further improvements that could be made to the device
include further optimising the code around the filtering of
images, so that the finer veins are picked up and the edges
of the fingers are more reliably ignored. Redesigning the case
and the circuitboard of the system, so that the touchscreen
is stably included in the system. Improving the LED control,
and improving the focus of the camera. Finding a nicer way
to display the camera preview on the screen.

REFERENCES

[1] Hitachi. Veinid, finger vein authentication technology. [Online].
Available: https://www.hitachi.co.jp/products/it/veinid/global/index.html

[2] A. Uhl, “State of the art in vascular biometrics,”
Handbook of Vascular Biometrics, 2020. [Online]. Avail-
able: https://www.springerprofessional.de/en/state-of-the-art-in-vascular-
biometrics/17383680?fulltextView=true

[3] S. Kirchgasser, C. Kauba, and A. Uhl, “Towards understanding
acquisition conditions influencing finger vein recognition,”
Handbook of Vascular Biometrics, 2020. [Online]. Avail-
able: https://www.springerprofessional.de/en/towards-understanding-
acquisition-conditions-influencing-finger-/17383710?fulltextView=true

[4] R. Veldhuis, L. Spreeuwers, B. Ton, and S. Rozendal, “A high-
quality finger vein dataset collected using a custom-designed
capture device,” Handbook of Vascular Biometrics, 2020. [Online].
Available: https://www.springerprofessional.de/en/a-high-quality-finger-
vein-dataset-collected-using-a-custom-desi/17383698?fulltextView=true

[5] S. Rozendal, “Redesign of a finger vein scanner,” University of Twente
Student Theses, 2017.

[6] E. Jalilian and A. Uhl, “Improved cnn-segmentation-based finger
vein recognition using automatically generated and fused training
labels,” Handbook of Vascular Biometrics, 2020. [Online]. Available:
https://www.springerprofessional.de/en/improved-cnn-segmentation-
based-finger-vein-recognition-using-au/17383712?fulltextView=true

[7] B. Peeters, “Finishing and improving of finger vein system,” University
of Twente Student Theses, 2020.

[8] adafruit. Adafruit 2.4” pitft hat with re-
sistive touchscreen mini kit. [Online]. Avail-
able: https://cdn-learn.adafruit.com/downloads/pdf/adafruit-2-4-pitft-hat-
with-resistive-touchscreen-mini-kit.pdf?timestamp=1624277069

[9] E. C. Lee, H. C. Lee, and K. R. Park, “Finger vein recognition
using minutia-based alignment and local binary pattern-based
feature extraction,” International Journal of Imaging Systems and
Technology, vol. 19, no. 3, pp. 179–186, 2009. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/ima.20193

[10] B. Huang, Y. Dai, R. Li, D. Tang, and W. Li, “Finger-vein authentication
based on wide line detector and pattern normalization,” pp. 1269–1272,
2010.

[11] N. Miura, A. Nagasaka, and T. Miyatake, “Extraction of finger-vein
patterns using maximum curvature points in image profiles,” Ieice
Transactions - IEICE, vol. E90D, pp. 347–350, 01 2005.

[12] Arducam. [Online]. Available:
https://www.arducam.com/docs/pi/ov9281/tutorial/

[13] The GNOME Project, “Gtkmm.” [Online]. Available:
https://developer.gnome.org/gtkmm/stable/

[14] Arducam. [Online]. Available:
https://www.arducam.com/product/arducam-ov9281-1mp-mono-global-
shutter-mipi-camera-with-130degree-850nm-only-m12-mount-for-
raspberry-pi/



APPENDIX

Fig. 10: Hardware Design Diagram

Fig. 11: Software Design Diagram


