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ABSTRACT
Applying machine learning methods can help hospitals deal
with medical resource allocation. Patients' blood characteristics
can be analysed to build prediction models that could signal the
severity of the disease. Given this signal, hospitals can allocate
more medical resources to the patient with high severity of
COVID-19 over the patient with low COVID-19 severity. It
would help hospitals better react to patients who are in extreme
need of more intense care and reduce the mortality rate of
COVID-19 patients. This research paper aims to build a
classification model that could classify patients' with
coronavirus disease as severe or non-severe.

Keywords
COVID-19, Machine Learning, COVID-19 severity, Cytokines,
Logistic Regression, SVM, MissForest, CRISP-DM.

1. INTRODUCTION
When The World Health Organization declared COVID-19 as a
pandemic on 11 March 2020, many hospitals worldwide were
starting to become overwhelmed with the number of patients
they had to take in. The number of people to be hospitalised
was increasing daily in various countries. Coronavirus disease
presented the hospitals with serious medical resource
management problems [5]. Some patients with a severe
COVID-19 illness have to be transferred to the intensive care
unit (further ICU) to maintain their vital body functions like
breathing. For that, an ICU with lung ventilator equipment has
to be available. About 5-15% of COVID-19 patients must be
hospitalised in an ICU and require ventilatory support [3].
Vervoort researched ICU capacity in 182 countries and
territories, and they found out that in 182 countries, ICU bed
capacity ranges between 0 to 59.5 per 100,000 population [4].
Also, their findings showed that at least 96 countries and
territories had a density of less than 5 ICU beds per 100,000
population. Given these numbers, it is possible that hospitals
can run out of beds in intensive care units, so some patients
would have to be prioritised over others to be hospitalised in an
ICU. Incorrectly prioritising certain patients can lead to a higher
mortality rate as some patients who need intensive care are not
selected.
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To tackle this problem, many scientists started to think about
possible ways to help medical personnel select patients for an
ICU more accurately with the help of machine learning.

The research discussed in the related work section based their
studies on the data sample of 485 patients' blood tests collected
in Wuhan, China. We will use the data sample of around 500
patients provided by the hospital whose name will remain
confidential for this research. We want to see which machine
learning methods will give the best results given the selected
features.

In this research paper, we will investigate how blood
biomarkers can help us foresee the severity or the progression
of COVID-19. There is some already conducted research
regarding this problem [1, 2]. As a starting point, we picked out
specific biomarkers that were proven to be important in
predicting the severity or progression of COVID-19. In the
review article written by Roshanravan et al. [1], results showed
that IL-6, which acts as a pro-inflammatory cytokine and an
anti-inflammatory myokine, was elevated in patients with
severe COVID-19 conditions. Results also showed that the level
of IL-6 has a positive correlation with the severity of
COVID-19. In another study conducted by Henry et al. [7],
results showed that IL-10 and IL-10/lymphocyte count is
significantly increased in patients with severe disease. Also,
IL-10/TNF-α, IL-6/lymphocyte and IL-10/lymphocyte count
were significantly elevated in patients with severe coronavirus
disease. Huang et al. [8] reported elevated levels of IL-1b in
severe COVID-19 cases. In their research, Yang et al. [9] have
found that lower levels of lymphocyte count drive negative
prediction. Their findings also showed elevation of CRP and
ferritin in patients infected with COVID-19. Medical experts
advised us to look into the following biomarkers; neutrophils,
BDCA3, PAI1. We add these biomarkers to our selected
features list, which can be found in Appendix B.

This research paper aims to answer the following research
questions:

● RQ1: How to identify the severity of the disease with
a certain level of accuracy?

● RQ2: How to predict COVID-19 disease
progression?

The structure of the paper is as follows. First, we discuss the
related work. Then the methodology described in which
explains data understanding, data preparation, modelling and
evaluation in detail. Lastly, the conclusions are drawn, and
future work is discussed.

2. RELATED WORK
On 14 May 2020, Yan et al.[1] published a research paper in
which they presented their solution to this problem. Their
solution was a mortality prediction model that was developed
using XGBoost machine learning tools. These tools selected
three biomarkers that predict the mortality rate of individual
patients more than ten days in advance with more than 90%



accuracy. The three predictive biomarkers were lactic
dehydrogenase (LDH), lymphocyte and high-sensitivity
C-reactive protein (hs-CRP).

On 8 February 2021, Sun et al. studied different approaches of
computing more accurate predictions and progression states [2].
Based on their study results, they have found out that Deep
learning approaches (T-LSTM, RNN, PNN and BPNN) have
better prediction accuracy than non-deep learning approaches
(Cox, k-NN, SVM and DT). The T-LSTM method showed
predictive accuracy of more than 90% at 12 days and 98, 95 and
93% at 3, 6 and 9 days, respectively.

3. METHODOLOGY
We have chosen the Cross-Industry Standard Process for Data
Mining (CRISP-DM) process model to help us plan, organize,
and implement our data science project. The following
subsections are the corresponding phases of the CRISP-DM
methodology.

3.1 Data Understanding
In this section and its following subsections, we describe
collecting, identifying, and analysing the data.

3.1.1 Collecting initial data
The required data to train a model that could predict the severity
of COVID-19 comes in an XLSX file format. It is loaded using
python with the help of the pandas' package.

3.1.2 Data description
The blood samples are taken between 2020-01-11 and
2020-05-07. The XLSX file contains 3608 rows and 31
columns. All values are numerical. Blood features and their
characteristics can be found in Appendix A. The data is sparse;
17 features have over 94% of zero values.

3.1.3 Data exploration
To visualise the linear correlation between the biomarkers,
Pearson Correlation will be used to plot a heat map found in
figure 1. Heat map represents the data in the form of a map in
which data values are represented as colours.

Figure 1. Pearson correlation heat map of raw data.

According to a medical expert [6], the correlation coefficients
between white blood cells are not as expected. The expected
correlation coefficient between leukocytes and neutrophils is to

be higher than 0.9. In this case, it is 0.178 with a p-value of less
than 0.01, meaning that there is less than a 1% chance that the
resulting correlation coefficient occurred due to chance.
P-value, which is lower than 0.05, indicates that the results are
statistically significant.

Most likely, the results are not as expected because of sparse
data. After we clean our data during the data preparation phase,
we will plot a new correlation heatmap and investigate the
results.

3.2 Data Preparation
In the following subsections, steps taken to prepare the data are
explained.

3.2.1 Data selection
Below are the steps taken for data exclusion.

1. Exclude 728 rows where patients' blood sample data
are missing completely at random (MCAR), meaning
that the missingness has nothing to do with the
patient.

2. Exclude eight features that we have not identified as
significant predictors of COVID-19 severity (MIF,
Gal1, LAP, Leptin, Ang1, Ang2, Adiponectin,
Fibronectin).

3. Exclude 1746 rows that represent patients who tested
negative for COVID-19 polymerase chain reaction
(PCR) test.

We exclude the latter because that data is not relevant for
answering our research question.

3.2.2 Data cleaning
In this section and its following subsections, data cleaning steps
are documented.

3.2.2.1 Missing cytokine measurements
To slightly reduce the sparsity of the dataset, medical expert [6]
gave advice that if there is a cytokine measurement missing
while there is another cytokine measurement present for the
same patient, we can substitute the missing cytokine
measurements with the half lower limit of detection (LLOD) of
that cytokine. In the medical field, this is an acceptable thing to
do with the missing cytokine measurements [6].



Figure 2. Pearson correlation heatmap of selected data.

Now, the correlation coefficient between leukocytes and
neutrophils is 0.665 (0.001>p). The correlations between
cytokines positively increased due to the substitution of zero
values with LLOD.

3.2.2.2 Class imbalance
If a patient is severely ill, he usually has his/her blood sample
taken daily. That is the reason why 87.21% of our selected
dataset consists of class 1.

Figure 4. Class imbalance

To solve this problem, we will use a random downsampling
method. To our selected dataset, we will only include the first
four measurements for each severely ill patient.

Figure 5. Class imbalance after random downsampling.

3.2.2.3 Missing value imputation
Missing value imputation

To impute the missing biomarker measurements, we will use
the MissForest imputation method. MissForest is arguably the
best method of imputation for handling missing laboratory
measurements in medicine [10].

Figure 6. Resulting Pearson correlation after MissForest
imputation.

As expected, there is a positive, 0.969, correlation between the
leukocytes and neutrophils (0.0001>p). This is a good shred of
evidence that the MissForest imputation method is imputing
values correctly.

3.2.3 Constructing data
A new feature indicating a severe illness is derived from the
dataset. Patients who tested positive for COVID-19 and had

either mild or moderate symptoms are labelled as non-severely
ill. Patients with severe COVID-19 symptoms are labelled as
severely ill; -1, and 1, respectively.

3.3 Modelling
Here we will build and assess different models under different
data preparation states.

3.3.1 Selecting modelling techniques
To build our classification model we will test Support Vector
Machine and Logistic Regression methods. The SVM model is
created with a parameter kernel set to "linear". The Logistic
Regression model is created with a parameter solver set to
"liblinear".

3.3.2 Test design
We split our data into training and testing sets. When splitting
the data, we ensure that training and testing sets maintain the
same class balance as the dataset does before splitting it. 80%
of data is used to train the models, and 20% is used to test them.

3.3.3 Building the models
In the following subsection, the models will be built several
times to compare how different data preparation affects their
performance. ROC curves, AUROC scores and confusion
matrices can be found in Appendix C.

3.3.3.1 Initial data preparation
The results in Table 1 signal the overfitting of models. Given
our setting, an accuracy of 97% is not realistic.

Table 1. Metric results after initial data preparation.

Method 10-fold
CV avg.
accuracy

Precision Recall F1 score

SVM 0.975 0.977 1 0.989

Logistic
Regressi

on

0.965 0.955 1 0.977

3.3.3.2 Excluding cytokines
We drop cytokines from the feature list. The new results can be
found in Table 2.

Table 2. Metric results after dropping cytokines.

Method 10-fold
CV avg.
accuracy

Precision Recall F1 score

SVM 0.721 0.775 0.738 0.756

Logistic
Regressi

on

0.711 0.711 0.762 0.736

3.3.3.3 Adjusting class weights
As our training and testing sets have a class imbalance of 41:59,
we build the models using matching class weights.



Table 3. Metric results after adjusting class weights.

Method 10-fold
CV avg.
accuracy

Precision Recall F1 score

SVM 0.727 0.780 0.929 0.848

Logistic
Regressi

on

0.685 0.7 1 0.824

3.4 Evaluation and discussion of results
The models were built under three different cases.
Case 1: Using the data preparation as explained in subsection
3.2.
Case 2: Same as case 1, but excluding cytokines from the
feature list.
Case 3: Same as case 2, but assigning class weights that match
the class imbalance of the training and testing sets.
When training the model according to case one, we ran into
data overfitting. However, by dropping all cytokines from the
features list, we got rid of that problem. A high number of
features introduced models into overfitting. We chose cytokines
to be excluded from the feature list because, initially, over 94%
of their measurements were missing.
After dropping the cytokines from our list of features, our
accuracy dropped significantly. It was a good sign that our
model was not overfitted with data anymore. The precision and
recall scores were similar, meaning that the model could predict
both classes with similar success probability for each class.
We did not stop at case two because the success probabilities
for both classes were similar. This classification model's goal
was to predict if a person has a severe or non-severe case of
COVID-19; it is better if we produce more false positives (type
I errors) than false negatives (type II errors). Since a patient's
health is of utmost importance, we would rather classify the
patient as severely ill and run more thorough checks to confirm
it than classify the patient as non-severely ill and let him heal at
home in critical condition.
Building the models under the conditions of case three yielded
our best results. While SVM achieved higher accuracy because
of making fewer type I errors (false positives), the model of our
choice for the deployment is Logistic Regression because of the
reasons explained in the paragraph above.

4. CONCLUSIONS
Classification techniques are a powerful tool to categorise data.
When applying these techniques in medicine, we can create a
model that could help medical personnel decide on appropriate
medical resource allocation. In some cases, the appropriate
allocation of such resources can save a person's life. We answer
our first research question by training a Logistic Regression
model, predicting the severity of the coronavirus disease with
an average accuracy of 68%. However, due to time constraints
and limited data, the second research question is left
unanswered.

5. FUTURE WORK
Many different directions and experiments have been left for
future work due to this research's limited time and data
constraints. The following ideas could be analysed:

● It should be interesting to see how different
biomarker correlations differ between different age
groups. Our correlation heat maps included patients
aged between 28.33 and 87.24 years. Knowing that
the people aged 50 and older are the most vulnerable
to the infection, it could be interesting to see how
correlation differs for that age group.

● A model could be created to signal the patients if they
are more likely to get acute kidney injury or new
bacterial cultures due to the increased IL-10 and
IL-10/lymphocyte count [7].
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APPENDIX
A. Demographic, and laboratory outcome information of 3608 samples in the provided dataset.

Characteristics Statistics

Age (Q3, Q1, IQR) 73.96, 58.09, 15.87

Gender 2274 male, 1334 female

Variable Zero value count, % Mean

CRP 850, 23.6% 88.11

D_Dimeer 2551, 70.7% 726.53

Ferritin 2618, 72.6% 382.49

Leuco 837, 23.2% 10.49

Lymfo 2298, 63.7% 1.1

Neutro 2297, 63.7% 3.45

IL1a (33) 3568, 98.9% 0.06

IL1b (12) 3566, 98.8% 0.08

IL6 (28) 3465, 96.0% 9.51

IL10 (37) 3446, 95.5% 0.93

TNFa (60) 3598, 99.7% 0.007

IFNa (46) 3553, 98.5% 0.23

IFNg (53) 3518, 97.5% 0.34

MIF (77) 3534, 97.9% 39.82

Gal1 (144) 3422, 94.8% 2,188.76

BDCA3 (152) 3420, 94.8% 282.95

LAP 3423, 94.9% 223.64

Leptin 3420, 94.8% 465.23

PAI1 3581, 99.3% 3,809.92

Ang1 3420, 94.8% 2,454.14

Ang2 3420, 94.8% 190.41

Adiponectin 3422, 94.8% 3,713,367.38

Fibronectin 3606, 99.95% 6,224.22



B. Demographic, and laboratory outcome information of 354 samples in the selected dataset.

Characteristics Statistics

Age, mean (min, max) (years) 64.54 (28.33, 87.24)

Gender Male 241; Female 113

COVID severity Severe 209; Non-Severe 145

Feature Mean (min, max)

CRP 169.49 (8.3, 549)

D-dimer 2494.11 (177, 8819)

Ferritin 2013.36 (128, 10200)

Leukocytes 8.98 (0.5, 36.75)

Lymphocytes 0.87 (0.02, 8.46)

Neutrophils 8.23 (0.51, 32)

IL1-α 2.12 (1.05, 30.67)

IL1-β 2.77 (0.6, 62.52)

IL-6 189.38 (1.4, 1174)

IL-10 20.38 (1.7, 68.81)

TNF-α 1.16 (1.1, 2.62)

IFN-α 6.72 (0.7, 126.03)

IFN-γ 10.41 (0.29, 122.96)

BDCA-3 5140.65 (1074.79, 11687.26)

PAI-1 62281.89 (403.5, 1192100)



C. Receiving Operating Characteristic curve plots and confusion matrices.
C1. Metric results with data prepared as explained in 3.2.

C2. Results of metrics after excluding cytokines from the feature list 3.3.3.2.

C3. Results of metrics with adjusted class weights in model creation 3.3.3.3.


