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Abstract 
Medication at home is novel and expanding service that hospitals offer to bring care closer to the patient. Nurses 

visit patients to administer parenteral medication at the patient’s home. Patients have a specific requirement of 

medication requiring a suitable nurse for visiting and the required frequency of admission should be respected. 

Furthermore, working hour restrictions are considered. Routing and scheduling optimization enables optimal 

usage of resources, avoiding high logistical cost.  

In this thesis, an novel ILP model is introduced to optimize the routes and schedules of nurses visiting the 

patients in medication at home services, where the total travel time over a schedule horizon is minimized. Two 

novel solution methods are proposed: a greedy algorithm, and large neighbourhood search algorithm. Real-life 

experiment data is derived from a large regional hospital in the Netherlands, including real-world travel times 

and medication data. Instances up to 90 visits over a one-week planning horizon are considered. 

A comparison between measured travel time for the oncology department over 2019 and experiment results 

show that a decrease of 30% in average travel time per visit is possible with the optimization model. Experiment 

instances are created to examine the effects of visiting a larger number of patients over a fixed period, increasing 

the maximum allowed travel time from hospital to patients, additional skills and the introduction of 

multidisciplinary nurses, higher care frequency of patients and increasing the planning horizon. The results show 

that increasing the number of patients that are visited significantly lowers the average travel time per visit, while 

allowing patients to be visited that have more travel time from the hospital proves to have a negative effect by 

increasing the average travel time per visit significantly. Furthermore, the results show that increasing care 

frequency, additional skills and an increasing planning horizon have moderate negative effects on the average 

travel time per visit.  

Computational results show that the developed large neighbourhood search method is able to devise results that 

are up to 31% worse compared to CPLEX solver in reasonable time, thereby showing that this method is a more 

time-efficient solving method. The greedy heuristic proves to be time-efficient but results are up to 83% worse 

compared to the large neighbourhood search method. 
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1. Introduction 
The population of the Netherlands is growing to 19.3 million people in 2050 (NIDI & CBS, 2020). The share of 

people that are aged 65 or older in the Netherlands will grow from 3.4 million people now to 4.8 million in 2050 

(NIDI & CBS, 2020). This growing elderly population increases the demand for healthcare and challenges the 

Dutch healthcare system to innovate for controlling cost, quality, and efficiency. One area of innovation is the 

transformation of hospital-based care to organizing care closer to the patient, in the community or at home 

(Deloitte, 2021). Home delivered care can range from monitoring a patient at a distance through digital technology, 

such as monitoring blood conditions, to the admission of medication at patient’s home. Admission of medication 

has been the subject of innovation in Dutch hospitals.  

In this research we focus on the planning and routing decisions involved in administering parenteral medication at 

the home of patients. The medication at home process treated in this research can be simplified to a nurse travelling 

from a hospital to a series of patients to administer parenteral medication to the patient. Parenteral medication 

consists of medication that is not administered orally to the patient. Examples of parenteral medication include 

subcutaneous oncology drugs and antibiotics that are administered intravenously. 

Several decisions are to be made in the process of administering medication to patients at home; the amount of 

patients to treat, the amount of nurses required to treat the patients, the treatment order of patients, the assignment 

of nurses to patient and the time at which a patient is treated by a certain nurse (Isala Hospital, 2021). These 

decisions have many similarities with the decisions in “regular” home healthcare contexts, for example in 

delivering residential home care services, such as washing or bathing, to a patient. Furthermore, similarities with 

other problem types, such as a parcel delivery van delivering parcels to customers can easily be observed. 

Therefore, we classify the medication at home process as a home healthcare routing and scheduling problem 

(HHCRSP).  According to Cissé et al. (2017), the “HHCRSP consists of designing a set of routes used by care 

workers to provide care to patients who live in the same geographical are and who must be treated at home”. 

Hulshof, Kortbeek, Boucherie, Hans, and Bakker (2017) distinguish planning decisions in healthcare by strategic, 

tactical, online operational and offline operational level. In home healthcare the following decisions have to be 

made (Hulshof et al., 2017):  

- Strategical planning 

o Placement policy 

o Service mix 

o Case mix 

o Panel size 

o Districting 

o Capacity dimensioning 

- Tactical planning 

o Capacity allocation 

o Admission control 

o Staff-shift scheduling 

- Offline operational planning 

o Assessment and intake 

o Staff-to-shift assignment 

o Visit Scheduling 

- Online operational planning 

o Visit rescheduling 

o Residential care services 

This research covers both the tactical and the offline operational planning phase, since we focus on optimizing the 

routing and scheduling of appointments in medication at home services in relation to capacity allocation decisions. 

Although home medication is not specifically mentioned in the framework by Hulshof et al. (2017), we classify 

home medication in the healthcare planning and control context as a specific service in home care. 

Isala hospital in Zwolle is a Dutch top-clinical hospital that recently piloted medication at home practices. Isala 

hospital provides parenteral medication for patients at home through various channels, and considers expanding 

the range of medication at home offered at patients’ homes. However, challenges arise in the expanding of 

medication. For example, cost containment and efficiency are areas of concern. To answer these (business) 
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questions of Isala hospital in medication at home, we execute a case study on the medication at home process of 

Isala and we analyse the effect of increasing patient demand for medication at home, the effect of increasing the 

maximum allowed travel time from hospital to patient and the effect of the number of different skills required in 

medication at home as well as several other effects. 

The contribution of our research is as follows: First, we propose a novel ILP model that optimizes routing and 

appointment planning for medication at home. To the best of our knowledge, no research has been done on routing 

and appointment planning in the context of medication at home. Second, we show the impact in practice of our 

proposed approach through a case study in Isala hospital. In this case study we provide insight in the effects of 

maximum allowed travel time from hospital to patient, the effect of the number of different skills present in the 

process and the effects of an increasing amount of patients on the total travel time needed for visiting the patients. 

The remainder of this paper is organized as follows: Section 2 reviews the existing literature on HHCRSP. Section 

3 provides an extensive description and mathematical problem formulation of the problem at hand. Section 4 

introduces the methods for solving and generating a solution, whereafter Section 5 introduces the case study of the 

medication at home process in Isala hospital. In the case study, historical data from Isala hospital is used for 

experimenting and answering strategical and tactical (business) related to resource usage. The case study results 

are provided in Section 6, and we end with conclusions and discussion in Section 7. 

2. Literature Review 
Home healthcare is a promising and growing sector and most home healthcare providers historically did not use 

operations research (OR) tools in their operations before, which offers opportunities for improved design and 

optimization (Cissé et al., 2017). In the last decade however, home healthcare scheduling attracted increasing 

attention, as depicted by the available literature reviews on home healthcare scheduling (Cissé et al., 2017; Fikar 

& Hirsch, 2017). 

While Fikar and Hirsch (2017) focus on the objectives and constraints of models in home healthcare scheduling,  

Cissé et al. (2017) develop an overview of OR models applied to HHCRSP. Various topics in HHCRSP are closely 

related to other research fields (Fikar & Hirsch, 2017), for example the field of home delivery operations and other 

vehicle routing problems. 

To develop an overview of the body of knowledge on home healthcare routing and scheduling, this section 

discusses recent literature on HCCRSP. The literature has been filtered and selected based on predetermined 

criteria. Since the attention to home healthcare scheduling and HHCRSP is growing and to only provide an 

overview of recent literature, only articles published in the past 10 years were considered in the analysis. 

Furthermore, since our research has a strong operations research focus, only literature has been included that 

features an optimization model. Additional inclusion criteria can be found in Appendix 1. In total, 32 articles were 

selected for further analysis. The selected articles have been analysed on several characteristics, which we will 

discuss in the following sections. With these characteristics, we created a taxonomy, featuring model type (Section 

2.1), objective functions used in the models (Section 2.2), planning horizons (Section 2.3), constraints (Section 

2.4), solving methods (Section 2.5) and stochasticity (Section 2.6).  

2.1. Model types 
Many authors acknowledge that HHCRSP models are a development or extension of VRPTW (vehicle routing 

problem with time windows) problems (Ait Haddadene, Labadie, & Prodhon, 2019; An, Kim, Jeong, & Kim, 

2012), with specific (home) healthcare objectives and constraints. Therefore, many similarities exist between fields 

of application of VRPTW models, such as used in service delivery or package delivery routing, and the home 

healthcare situation. Relevant variants of VRPTW introduced by authors include Multi-depot VRPTW 

(MDVRPTW) (Bard, Shao, & Wang, 2013; Liu, Yuan, & Jiang, 2019) and VRPTW with synchronization and 

preference (VRPTW-SP) (Ait Haddadene et al., 2019). 



7 

 

Most HHCRSP literature focuses on assigning a nurse/worker/vehicle/caregiver1 to a patient/client2, and on 

determining an optimal route for the nurse with corresponding patient appointments. However, some extensions 

are available in the literature. Some authors introduce a simultaneous VRP and facility location problem (e.g., 

Shiri, Ahmadizar, Mahmoudzadeh, and Bashiri (2020)). Simultaneous VRP and facility location problems are 

relevant in problems where the starting and ending location of the routes are not yet determined, which is typically 

not applicable to the hospital based medication at home processes. Zhan and Wan (2018) assign patients to a 

specific team and determine optimal routes for each nurse in a specific team, and classify this problem as a routing 

and appointment scheduling with team assignment (RASTA) problem, The RASTA problem differs in the team 

assignment component from “classical” HHCRSP models. Nikzad, Bashiri, and Abbasi (2021) introduce a 

SDDARP (stochastic districting, staff dimensioning assignment routing problem) model, which incorporates 

assigning patients and nurses to a geographical area and creating routes within these geographical areas. 

While most models are of static nature, only the model proposed by Demirbilek, Branke, and Strauss (2019) is of  

dynamic nature. A dynamic model can process new information in each stage of the process and thus can make 

decisions online; at the moment of receiving new information on, for example longer travel time due to traffic or 

cancelling of appointments, routing decisions can be re-evaluated and re-optimized. On the contrary, static models 

only work with information known beforehand and therefore make decisions offline. 

2.2. Objective functions  
Traditionally, VRPs have objective functions that focus on distance or cost. The studied literature reveals that, 

while cost and distance are still frequently occurring, other objective functions are considered, such as waiting 

time (Baumann, 2018), tardiness (Dengiz, Atalay, & Altiparmak, 2019) or combinations of multiple indicators 

(Ait Haddadene et al., 2019; Baumann, 2018; Braekers, Hartl, Parragh, & Tricoire, 2016; Cinar, Salman, & 

Bozkaya, 2021; Doulabi, Pesant, & Rousseau, 2020; Hiermann, Prandtstetter, Rendl, Puchinger, & Raidl, 2015; 

Laesanklang & Landa-Silva, 2017; Nasir & Kuo, 2020; Taieb, Loukil, & Mhamedi, 2019; Wang, He, Li, & Wang, 

2020; Zhang et al., 2019). 

2.3. Planning horizon 
The considered literature features various planning horizons ranging from daily to multiple weeks. Most models 

consider a daily scheduling and routing problem (Ait Haddadene et al., 2019; Baumann & Ieee, 2017; Bazirha, 

Kadrani, & Benmansour, 2020; Belhor, El-Amraoui, Delmotte, & Jemai, 2020; Braekers et al., 2016; Doulabi et 

al., 2020; Euchi, Zidi, & Laouamer, 2020; Hiermann et al., 2015; Laesanklang & Landa-Silva, 2017; Liu et al., 

2019; Nasir & Kuo, 2020; Quintanilla, Ballestin, & Perez, 2020; Riazi, Chehrazi, Wigström, Bengtsson, & 

Lennartson, 2014; Shiri et al., 2020; Taieb et al., 2019; Wang et al., 2020). Patients in home healthcare often have 

recurring care demands (e.g., daily washing and clothing). Furthermore, patients have varying period lengths of 

receiving care. Using a longer planning horizon may therefore better represent the real-world situation, in which 

information on the care that is to be given the next two weeks is already available. An et al. (2012) treat patients 

with different care intervals differently, by assuming that patients with a high care frequency (e.g., every one to 

three days) have more influence on the schedule than patients with a low care frequency. Castaño and Velasco 

(2020) use a multiple-model setup to assign patients to nurses, create optimal routing for the patient-nurse 

combination and optimizing the workload of nurses over multiple days. The model of Castaño and Velasco (2020) 

can also be used to determine the number of workers required to cover expected future patient requests. Hewitt, 

Nowak, and Nataraj (2016) use a consistent-VRP, a VRP with a fixed nurse-patient combination, over a longer 

planning horizon. Shao, J. F. Bard, and A. I. Jarrah (2012) decompose a planning horizon of multiple days into 

subproblems per day and optimize the local subproblems using local neighbourhood search. While longer planning 

horizons may offer efficiency gains (Hewitt et al., 2016), complete information for the whole planning horizon 

may not be available at the moment of planning (and optimizing) and thus uncertainty and/or dynamic updating 

has to be introduced in the data and/or modelling approach. 

 
1 We mention multiple terms for the object that travels from hospital to patient (and consequently patient to 

patient), since literature labels them variously. In the remainder of this report, the term “nurse” will be used, 

while in fact, we mean a nurse with a relevant mode of transport. 
2 We mention multiple terms for the object that is visited by the nurse, since literature labels them variously. In 

the remainder of this report, the term “patient” will be used, while in fact, we mean a location at which a service 

is delivered or a delivery is made. 
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2.4. Constraints 
The models introduced in the literature feature the following constraints, which we group by basic constraints and 

additional constraints. We classify the following constraints as basic constraints, which are featured by all authors 

in the considered literature:  

- Demand: all demand for care should be fulfilled within the available time; 

- Capacity: capacity (either in load or time) cannot be violated. 

Additional constraints that are included by a subset of authors include:  

- Preference: patients have a preference for specific nurse(s) or are assigned to a specific nurse to assure 

continuity of care; 

- Nurse Qualification: Nurses have different skill levels or can only execute certain operations for a patient; 

- Time Windows: Patient have one or more time windows in which they are available to receive care; 

- Synchronization: Two nurses are required to be at one patient at the same time, or delivery of medication 

or other objects and the appointment with the nurse should be scheduled sequentially; 

- Working Regulations: Lunch break and/or other working regulations are considered. 

The additional constraints vary in complexity, and are modelled according to that complexity. Table 1 provides an 

overview of the complexity of the constraints featured in the models. 

Constraint type Simple Average Complex 

Preference No preference Patient has fixed nurse unless 

not available 

Patient has one fixed 

nurse; no other nurse 

can be selected 

Nurse Qualifications No nurse qualifications involved Nurse should have the right skill for 

the involved medication 

Time Windows No time windows Soft time windows, can be 

violated by incurring penalty 

Hard time windows, 

cannot be violated 

Synchronization No synchronization Two or more nurses should be at the 

same location at the same time 

Working Regulations Only working hours 

of nurses 

Working hours and break 

times 

Overtime 

Table 1: Constraint complexity overview 

Figure 1 shows an overview of the model features. Most models have time window constraints, which, as 

mentioned in Section 2.1.1, can be attributed to the fact that most models are an extension of VRPTW models. 

Preference, nurse qualifications, and working regulations are other popular constraints for the models in the 

considered literature. Nurse qualifications and patient preference (and thereby continuity of care) are obviously 

important practical concerns in delivering healthcare to patients. An implementation example of nurse qualification 

is given by Castaño and Velasco (2020) who model different services with various skill-requirements, with more 

expensive services provided by highly qualified nurses. Another example is the implementation given by Ait 

Haddadene et al. (2019), who introduce a set of services for patients and each nurse is able to provide a subset of 

these services. Preference features are modelled in various ways; Heching, Hooker, and Kimura (2019) model 

preference constraints by assigning a fixed nurse to a client, while Shao et al. (2012) modelled preference by using 

hard constraints regarding patient-nurse combinations and nurse working environment preferences. 

All literature considers a maximum working time for nurses. Furthermore, some authors include working 

regulation extensions, such as lunch breaks. As an example, Bard et al. (2013) implement working regulations by 

requiring a 30 minutes break between 11:00 am and 1:00 pm for each nurse. Baumann (2018) subtracts the break 

time from the total waiting time of employees and Di Mascolo, Espinouse, Gruau, and Radureau (2017) require 

each nurse to have a break of 20 minutes on each six hours of working. The nature of the working regulations 

constraints is, in most cases, formed by the local legislation on working hours (Di Mascolo et al., 2017). Bazirha 

et al. (2020) introduce overtime for nurses by incurring a penalty whenever a nurse works in overtime. 
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Figure 1:Overview of model constraint features in the analysed literature 

2.5. Solving Methods 
As mentioned in Section 2.1, most HHCRSP models in the considered literature are an extension of VRPTW 

models. VRPTW models are NP-hard problems (Hiermann et al., 2015) and solving these problems exactly with 

real-life instances is often too time-consuming. Therefore, authors frequently propose heuristic or approximation 

methods for solving the models.  

A popular choice for solving VRPTW and HHCRSP models are metaheuristics: K. Braekers, Ramaekers, and Van 

Nieuwenhuyse (2016) show in their review of VRP (and extensions) models that metaheuristics are a popular 

solving method for VRPTW models: 71% of the considered literature features metaheuristics as solving methods. 

Genetic algorithms are used by Ait Haddadene et al. (2019), Bazirha et al. (2020) and Nasir and Kuo (2020). 

Braekers et al. (2016), Cinar et al. (2021); Hiermann et al. (2015); Shao et al. (2012) and Veenstra, Roodbergen, 

Coelho, and Zhu (2018) use (adaptive) variable neighbourhood search methods. Simulated annealing methods are 

proposed by Zhang et al. (2019) and Hiermann et al. (2015). Zhan and Wan (2018) use Tabu Search as solving 

method. Wang et al. (2020) use a (hybrid) whale optimization algorithm. Euchi et al. (2020) use ant colony system 

optimization. The aforementioned authors all show that metaheuristics can generate solutions close to optimal in 

reasonable time, even with larger or real-life problem instances.  

While exact methods typically feature high computation times, Baumann (2018), Bard et al. (2013), Chen, 

Rubinstein, Smith, and Lau (2017), Dengiz et al. (2019), Hewitt et al. (2016), Moussavi, Mandjoub, and Grunder 

(2019) and Taieb et al. (2019) choose to solve their models exactly by using a computational solver (often CPLEX). 

Castaño and Velasco (2020) and Heching et al. (2019) opt for a Benders-approach by decomposing the main 

problem into multiple subproblems thereby improving the computation time needed for solving, similar to 

Laesanklang and Landa-Silva (2017) that use decomposition based on geographical clusters. Chen et al. (2017) 

use Lagrange relaxation for solving their mathematical model, and Doulabi et al. (2020) use an L-shaped algorithm 

for solving to optimality under stochastic travel times. Liu et al. (2019) use a branch and price algorithm to solve 

their proposed problem stochastic service and travel times. While exact methods generate optimal (or near-optimal 

results when integrality gaps are allowed or decomposition is applied), computation times are high for large 

instances (i.e., more than 100 patients) or even intractable due to the large amount of computer memory required. 

Bard et al. (2013) show that exactly solving their problem with around 500 visits including time windows and 20 

therapists can take up to around 15.000 seconds (4 hours) of computation time, showing that for real-life, large 

problem instances solving to optimality is very time-consuming. 

An et al. (2012) use a problem-specific heuristics for solving, consisting of a construction and insertion component 

for creating schedules. Cinar et al. (2021) propose a heuristic for assigning patients to a day and show that their 

heuristic is competitive with neighbourhood search strategies in terms of computation time. Nikzad et al. (2021) 

use a two-stage stochastic model and solve it by introducing a heuristic that determines an initial solution, fixes 
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the solution in case of infeasibilities, and then improves the obtained solution when possible. Although a complex 

method, Nikzad et al. (2021) show that their method is faster than solving exactly while performance in terms of 

objective function is only slightly reduced. Riazi et al. (2014) propose a gossip algorithm, adapted from 

Franceschelli, Rosa, Seatzu, and Bullo (2012) that uses a decomposition approach and solves subproblems exactly 

using a computational solver (CPLEX), showing that the method is competitive with other common methods.  

2.6. Stochasticity 
Uncertainty in parameters is taken into account by only 25% of the analysed literature. Bazirha et al. (2020) 

introduce a recourse estimation procedure that comes into play when (soft) constraints are not respected. Bazirha 

et al. (2020) use penalty cost for tardiness of the operations and a compensation for the overtime of nurses. Chen 

et al. (2017) model travel times and visit duration as random variables and introduce chance constraints for time 

windows and time budget constraints. To use these chance constraints, Chen et al. (2017) use the Sample Average 

Approximation (SAA) technique to generate a large amount of uncertain parameter samples that are then used in 

the chance constraints. Demirbilek et al. (2019) use a scenario-based approach that suits the dynamic model they 

are using. A collection of scenarios is used as input for the model and hereby the model is evaluated for handling 

uncertainty. Doulabi et al. (2020) model uncertainty using a two-stage model where the second model is used to 

determine optimality under a generated set of instances with uncertain visit duration and travel times. Liu et al. 

(2019) propose a similar approach as Chen et al. (2017), but treat arrival and departure times as random variables 

themselves. Shiri et al. (2020) apply the Mulvey approach; optimizing for a set of scenario’s using a two-phase 

approach. Zhan and Wan (2018) use a scenario-based approach for the unknown parameters, but require that no 

constraints are violated, thereby this is different implementation than chance constraints. 
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3. Problem description 
Section 3.1 describes the routing problem of the medication at home process. Section 3.2 introduces the formal 

representation of the problem. 

3.1. Problem formulation 
The medication at home process is characterized by three important components: patients, nurses, and drug types. 

Each patient features a location, a drug type, and an admission frequency. The admission frequency for the patient 

is determined by the drug type and, in some cases, by the medical state of the patient. For example, a patient with 

low health may have a higher admission frequency for a specific drug then a patient who is in good condition.  

Each drug has a specific skill that is required from the nurse. These skills are mainly based on the type of drugs. 

For example, oncological drugs require a nurse specialized in oncology and cardiology drugs require a nurse 

specialized in cardiology. Each drug has a drug dependent admission time, which is the actual time it takes to 

administer the drugs.  

A nurse always starts a route at the hospital, where medication for all patients in the route is collected and checked 

before travelling to the first patient. When arriving at a patient, the nurse checks the health status of the patient and 

checks the identity of the patient. For some medication, a video/audio connection is established with a nurse at the 

hospital to confirm the identity of the patient and to check the drugs that are to be administered to ensure patient 

safety protocols are followed. The nurse starts administering the patient if no irregularities occur. During the 

admission, the health status of the patient is monitored by the nurse. After admission, the nurse registers the 

admission in the IT-systems of the hospital. After leaving the patient, the nurse travels to the next patient on the 

route (if any left) or travels back to the hospital and finishes the route. 

The routing and appointment planning includes the following constraints:  

- The sum of travelling time and working time on a day should be limited to the working hours of the nurse; 

- A nurse should have the right skill level for medication that is to be administered;  

- Patient appointments cannot overlap or be pre-empted. That is the starting time of appointment B should 

not be earlier than the starting time of appointment A, plus the entire processing time of appointment A, 

plus the travelling time from A to B. 

We consider decentral appointment planning, where all patients and their medication are known at the time of 

scheduling. Since there typically is a preselection of the patients that are admitted to the medication at home 

program, all patients that are scheduled to have an appointment should be visited. We assume that a patient is only 

allowed in the medication at home programme if capacity exists to treat the patient. The preselection criteria 

depend on the hospital settings, and typically include a check on the health status of the patient, the home situation 

of the patient, the type of medication, and the location of the patient. For example, the cast study hospital Isala 

only allows patients that live within 30 kilometres of the hospital to participate in the medication at home program 

for the administration of parenteral medication, and the administering of the medication should not take more than 

30 minutes. 

The process described above represents a situation where a hospital nurse travels to a patient with the medication. 

Other types of medication at home processes are also possible. In our case study hospital, we furthermore identify 

the following variants of medication at home: 

- A patient collecting medication in the hospital at the time of leaving from a previous consultation or 

admission, the administering is done by a nurse of a (local) home care organization; 

- A commercial pharmaceutical company delivers the medication to the patient, the administering is done 

by a nurse of a (local) home care organization; 

- A commercial pharmaceutical company delivers both the medication and the nurse to administer the 

drugs. 
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3.2. Problem formulation (model) 
In this section we translate the problem definition from the previous section to a mathematical problem 

formulation. We opt to approach the model as a classical HHCRSP, where we assign a nurse to a patient and 

determine the optimal route for a nurse on a given day. While the concept of approach is not a new one, to the 

best of the author’s knowledge, no similar models exist in the field of medication at home. We opt for using an 

objective function solely focussing on minimizing travel time. Since cost are mostly derived from time resource 

usage, assuming equal cost factors, having travel time as objective function leads to the same results as 

minimizing on cost. Furthermore, while travel times are optimizable by changing the sequence(s) of patients, 

treatment or visit times are not, as they are mostly fixed by medication restriction or patient characteristics. The 

planning horizon we use in our model is not fixed. However, we note that the operational nature of the schedule 

makes planning horizons of two weeks or more not relevant.  

Qualifications of nurses are modelled by introducing a binary variable that enables (or disables) patient-nurse 

combinations. Working regulation are implemented by introducing constraints for working hours and lunch 

breaks. The reviewed literature shows these constraints are not new and are already used in a significant amount 

of literature.  

Parameters in the model are of deterministic nature in the model. However, by introducing multiple scenarios the 

influence of uncertainty of parameters (for example travel time or visit duration) can be examined.  

We consider a single period model that creates a routing and appointment planning for the nurses and patients in 

medication at home. The planning horizon (in days) is defined as 𝑇 = {0, . . , 𝑡), with 𝑡 being a day in the planning 

horizon. The set of patients is denoted by 𝑃 = {0, … , 𝑝} with 𝑝 the total amount of patients the planning horizon 

and p = 0 representing the hospital. The set of nurses is denoted by 𝐾 = {1, … , 𝑘} with 𝑘 the total number of nurses 

available over the planning horizon. The travel time (in minutes) from patient 𝑖 ∈ 𝑃 to patient 𝑗 ∈ 𝑃 , 𝑖 ≠ 𝑗, is 

denoted by 𝑡𝑖𝑗. The start and end time of the work shifts from nurse 𝑘 ∈ 𝐾 on day 𝑑 ∈ 𝑇 are respectively denoted 

by 𝑤𝑠𝑘
𝑑  and 𝑤𝑒𝑘

𝑑. The required visit duration (in minutes) for patient 𝑖 ∈ 𝑃 receiving medication is defined by 𝑣𝑖. 

A binary and predetermined parameter 𝑐𝑖𝑘 describes whether patient 𝑖 ∈ 𝑃 can be visited by nurse 𝑘 ∈ 𝐾. If 𝑐𝑖𝑘 

has the value 1, nurse 𝑘 can visit patient 𝑖, when 0 nurse 𝑘 cannot. 𝑐𝑖𝑘 can be used for modelling skill requirements 

of nurses as well as continuity of care. We define continuity of care as a condition that a patient is only visited by 

one specific nurse. The required care interval in days of patient 𝑖 is denoted by 𝑒𝑖.   

Two types of decision variables are used in the model. 𝑋𝑖,𝑗,𝑘
𝑑  takes the value of 1 if a nurse 𝑘 directly visits patient 

𝑗 after patient 𝑖 on day 𝑑 ∈ 𝑇, and 0 otherwise.  

Furthermore, three auxiliary variables are used in the model. 𝑌𝑖
𝑑  takes the value of 1 if patient 𝑖 is assigned to day 

𝑑 ∈ 𝑇, 0 otherwise. 𝑆𝑖𝑘
𝑑  is a non-negative variable indicating the starting time (in minutes) of the visit at patient 𝑖. 

𝑊𝑘
𝑑 is a binary value that takes value 1 if nurse 𝑘 is working on day 𝑡 of the planning horizon, 0 otherwise. 

Table 2 provides a summary of the model notation. 

Sets  

𝑇 = {0, . . , 𝑡) Planning horizon 

𝑃 = {0, … , 𝑝} Set of patients and hospital indexed zero 

𝐾 = {1, … , 𝑘} Set of nurses 

  

Parameters  

𝑡𝑖,𝑗 Travel time from patient 𝑖 to patient 𝑗, 𝑖 ≠ 𝑗 

𝑣𝑖 Required visit duration for patient 𝑖 

𝑤𝑠𝑘
𝑑  Work shift start time of nurse 𝑘 on day 𝑑 

𝑤𝑒𝑘
𝑑 Work shift end time of nurse 𝑘 on day 𝑑 

𝑐𝑖𝑘 Binary variable indicating if patient 𝑖 is compatible (1) or not (0) with nurse 𝑘 

𝑒𝑖 Care interval of patient 𝑖 
  

Auxiliary variables  

𝑊𝑘
𝑑 Binary variable indicating whether nurse 𝑘 works on day 𝑑 (1) or not (0) 

𝑌𝑖
𝑑 Binary variable indicating whether patient 𝑖 is treated on day 𝑑 
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𝑆𝑖𝑘
𝑑  Non-negative variable indicating the starting time (in minutes) of visit at patient 𝑖 

  

Decision variables  

𝑋𝑖,𝑗,𝑘
𝑑  Binary variable indicating whether patient 𝑖 is visited after patient 𝑗 by nurse 𝑘 on day 

𝑑 (1) or not (0) 
Table 2: Summary of model notation 

The objective function aims to minimize the total travel time of the nurses during the planning horizon: 

min ∑ ∑ ∑ ∑ 𝑋𝑖,𝑗,𝑘
𝑑 ∗ 𝑡𝑖,𝑗

𝑑𝑘𝑗𝑖

 

The objective function is subject to several constraints. Constraint (1) ensures that each patient that is assigned to 

a day, is also assigned to a route. 

∑ 𝑋𝑖,𝑗,𝑘
𝑑

𝑗  =  𝑌𝑖
𝑑   ∀ 𝑖, 𝑑, 𝑘   𝑖 ≠ 𝑗        (1) 

Constraint (2) ensures patient appointments cannot overlap. Therefore, the starting time of the appointment, 

together with the visit and the travel time to the next patient for a patient is lower than or equal to the starting time 

of the next patient.  

𝑆𝑖𝑘𝑑   +  𝑣𝑖  +  𝑡𝑖𝑗  ≤  𝑆𝑗𝑘𝑑 + 𝑀(1 − 𝑋𝑖,𝑗,𝑘
𝑑 )   ∀ 𝑖, 𝑗 ∈ 𝑃 , 𝑘 ∈ 𝐾, 𝑑 ∈ 𝑇   𝑖 ≠ 𝑗  (2) 

Constraint (3) represent the flow constraints. If a nurse arrives at a patient, the nurse should also leave that same 

patient.  

∑ 𝑋𝑖,𝑗,𝑘
𝑑  𝑖 =  ∑ 𝑋𝑗,𝑖,𝑘

𝑑
𝑖 ∀ 𝑗 ∈ 𝑃, 𝑘 ∈ 𝐾, 𝑑 ∈ 𝑇, 𝑖 ≠ 0, 𝑗 ≠ 0    (3) 

Constraint (4) and (5) ensure that the routes of nurses on a day always start and end at the hospital (recall that the 

hospital has location index zero). 

∑ 𝑋0,𝑖,𝑘
𝑑 =  1𝑖  ∀ 𝑘 ∈ 𝐾, 𝑑 ∈ 𝑇       (4) 

∑ 𝑋𝑖,0,𝑘
𝑑 =  1𝑖  ∀ 𝑘 ∈ 𝐾, 𝑑 ∈ 𝑇       (5) 

Constraint (6) determines that the starting of the first appointment for a nurse on a day is always later than the 

working start time of the nurse and the travel time of the hospital to the first appointment. Note that if a patient is 

not visited, this constraint is always valid by using the big-M.  

𝑤𝑠𝑘
𝑑 + 𝑡0𝑗 − 𝑀(1 − 𝑌𝑗,𝑘

𝑑 ) ≤  𝑆𝑗𝑘𝑑  ∀ 𝑗 ∈ 𝑃, 𝑘 ∈ 𝐾 , 𝑗 ≠ 0    (6) 

Alternatively: Use the fact that S is a non-negative variable 𝑆𝑖𝑘𝑑 + 𝑀(1 − 𝑋0𝑗𝑘
𝑑 ) ≥ 𝑡0,𝑗 

Constraint (7) represents the requirement that the end time of a route is always earlier or equal to the end of the 

work shift time of a nurse. Note that if a patient is not visited, this constraint always valid through use of the big-

M method. 

𝑆𝑖𝑘𝑑 + 𝑣𝑖 +  𝑡𝑖0  ≤  𝑤𝑒𝑘
𝑑 +  𝑀(1 − 𝑌𝑖,𝑘

𝑑 ) ∀ 𝑖 ∈ 𝑃, 𝑘 ∈ 𝐾, 𝑖 ≠ 0    (7) 

Constraint (8) ensures that the care interval of the patient is restricted and that, for example, a patient with a care 

interval of two days is not visited two days in a row.  

𝑌𝑖
𝑑 = 𝑌𝑖

𝑑+𝑒𝑖  ∀ 𝑖, 𝑑 ∈ {0, . . , 𝑇 −  𝑒𝑖}      (8) 

Constraint (9) ensures that the patient is minimally visited the planning horizon divided by the visiting interval 

times in the planning horizon. We round down to prevent that, for example, a patient with an interval of two days 

will be visited four times in a period of seven days, which is not possible considering constraint (8). Since 𝑌𝑖
𝑑 is a 

binary variable, a patient is always visited at least once in the planning horizon, which is a reasonable assumption. 

∑ ∑ 𝑌𝑖
𝑑

𝑘𝑑 =  ⌈
𝑇

𝑒𝑖
⌉ ∀ 𝑖        (9) 
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Note that by rounding down in the right hand side of this constraint, a misalignment can occur when solving two 

sequential schedules since a patient can have too few appointments looking at both schedules. To illustrate this, a 

quick example suffices. Say patient A needs medication every two days. When creating a schedule for one week 

(seven days), the patient would, by rounding down, need three visits. Creating a schedule for one week after the 

week after which we already created a schedule, the patient would again need three visits. The patient then has, on 

a total of 14 days, six appointments while needing seven, assuming the patient needs more than seven appointments 

in total.  

Constraint (10) ensures that a patient is only assigned to one nurse per day, preventing that a patient is visited twice 

per day.  

∑ 𝑌𝑖
𝑑

𝑘 ≤ 1 ∀ 𝑖, 𝑑          (10) 

Constraint (11) makes sure that the variable 𝑊𝑘
𝑑 is set to 1 if a nurse is starting a route at the hospital and thereby 

indicates whether nurse 𝑘 is working on day 𝑑. 

𝑊𝑘
𝑑 ≥  ∑ 𝑋0,𝑗,𝑘

𝑑
𝑗  ∀ 𝑘, 𝑑         (11) 

Constraint (12) makes sure that a patient is only visited by a nurse that is compatible with the patient.  

∑ 𝑋𝑖,𝑗,𝑘
𝑑

𝑗

≥   𝑐𝑖𝑘 ∀ 𝑖, 𝑑, 𝑘   𝑖 ≠ 𝑗   

Constraints (13) – (15) ensure binary value for the variables. Constraint (16) is a non-negativity constraint for the 

starting time variable. 

𝑋𝑖,𝑗,𝑘
𝑑  ∈ [0,1]  ∀ 𝑑, 𝑖, 𝑗, 𝑘        (13) 

𝑌𝑖,𝑘
𝑑     ∈ [0,1]  ∀ 𝑑, 𝑖, 𝑘       (14) 

𝑊𝑘
𝑑    ∈ [0,1]  ∀ 𝑑. 𝑘        (15) 

𝑆𝑖𝑘𝑑  ≥ 0         ∀ 𝑑, 𝑖, 𝑘       (16) 

Note that we do not consider lunch breaks in the model directly, but implement these afterwards by starting the 

lunch break at the start time of an appointment during the lunch break period, for example between 11:00 am and 

1:00 pm. Starting times of the appointments after the lunch break are delayed by the lunch break time. To 

compensate for the added time, the working time is reduced with the required lunch break time.  

Furthermore, weekends are not explicitly considered in the problem formulation. Real-world situations may 

require weekend days to be only used whenever required by medical reasons to avoid many appointments in the 

weekend that may have higher cost than during weekdays. Of course, considering weekends depends on the 

considered planning horizon. A penalty may be introduced for appointments that are scheduled on weekend days, 

thereby minimizing unnecessary costly appointments. This penalty may follow naturally from higher costs during 

weekends, but can also be introduced manually by introducing a daily cost factor 𝑎𝑑 in the objective function of 

the model. The adapted objective function would then be:  

min ∑ ∑ ∑ ∑ 𝑋𝑖,𝑗,𝑘
𝑑 ∗ 𝑡𝑖,𝑗

𝑑𝑘𝑗𝑖

∗ 𝒂𝒅 

In the standard case, we assume that there are always enough nurses available to create a feasible schedule. An 

adaption to the model can be made to minimize the number of nurses needed to execute the schedule by changing 

the objective function of the model to:  

min ∑ ∑ ∑ ∑ 𝑋𝑖,𝑗,𝑘
𝑑 ∗ 𝑡𝑖,𝑗

𝑑𝑘𝑗𝑖

+   ∑ ∑ 𝑊𝑘
𝑑 ∗  𝑓𝑘

𝑘𝑑

 

Where 𝑓𝑘 represents the fixed cost per nurse if a nurse is working on day 𝑡. 

We assume that all input parameters are deterministic, e.g., no stochasticity is incorporated in any parameter of 

the model. 
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The formulated problem can be classified as an NP-hard problem, as already described in Section 2. We therefore, 

reside to heuristics for solving the problem for larger problem instances, as discussed in Section 4. 
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4. Solution methods 
Considering the complexity of HHCRSP’s and the fact that solving exactly is too time-consuming for large 

problem instances, the use of metaheuristics is an attractive alternative to limit computation time while still 

generating solutions that are near-optimal, as we have shown in Section 2.5. We opt for two solution methods: a 

greedy heuristic based on simple rules resembling planning in practice and a metaheuristic in the form of an 

adaptive large neighbourhood search (ALNS). It has been proven by Pisinger and Ropke (2007) that ALNS is a 

suitable and well-performing metaheuristic for VRP problems. As pointed out in Section 2, VRP problems share 

many characteristics with HHCRSP’s. We therefore opt for implementing the ALNS for our specific HHCRSP 

problem. To the best of our knowledge, we are the first to implement ALNS for a HHCRSP problem. Section 4.1 

will introduce the Greedy Heuristic, Section 4.2 will introduce the ALNS heuristic. 

4.1. Greedy Heuristic 
The main core principle driving the greedy heuristic is the pairwise scheduling of patients close to each other. 

Furthermore, nurses with a low number of skills and thus very specialized, are selected first for treating patients, 

while nurses with a higher number of skills are used with lower priority. The selection of patients is based on the 

highest care interval. The higher the care interval the more appointments are to be made on the schedule and 

therefore these will have more influence on the performance of the schedule than patients with low care intervals. 

Patients with highest care interval will therefore be selected first to be scheduled. Figure 2 shows the greedy 

heuristic in flowchart format. 

 

The output of the greedy heuristic can also be used as input for the ALNS heuristic. However, we opt for using the 

aforementioned constructive heuristic based on randomness. 

4.2. Adaptive Large Neighbourhood Search  
A simulated annealing (SA) algorithm forms the core of the ALNS framework. For the simulated annealing 

framework we follow the implementation proposed by Arora (2004).  

In each iteration 𝑘 of the simulated annealing algorithm, a selection of operators is used for exploring 

neighbourhood solutions of the current solution. The adaptivity of the framework is introduced by tracking the 

performance of the used operators and choosing operators according to their relative performance. The 

performance score of each destroy- and insertion operator is tracked by respectively 𝜋𝑖 for the destroy operators 

and 𝜌𝑖 for the insertion operators. 𝜋𝑖 and 𝜌𝑖 are updated by 𝜎 if the used operator leads to a better solution than the 

current one. We differ from the implementation by Pisinger and Ropke (2007) by using only one type of ‘reward’ 

for the operators and not tracking whether a solution has already been found. Due to the solution being a large 

collection of numbers, tracking and storing complete previous solutions is computational and memory-wise too 

demanding.  

As can be derived from Section 3, relevant decisions for the appointments of patients are the day on which they 

are scheduled, the nurse that handles the appointment and the order of the appointments on a single day. A 

neighbourhood solution can therefore be created by changing the day of an appointment, changing the nurse for 

an appointment, changing the order of appointments or a combination of these changes, given not violating any 

constraints. We follow the implementation as proposed by Pisinger and Ropke (2007) and distinguish by a removal 

Figure 2: Greedy Heuristic in flowchart format 



17 

 

and inserting operators. Removal operators select one or multiple appointment(s), depending on the degree of 

destruction, which we remove from the schedule and temporarily store in a pool of unscheduled patients. An 

insertion operator is used to determine the place on the schedule where the one or more of the appointments in the 

pool of unscheduled appointments is placed.  

We use the following removal operators: 

- Random removal: randomly selecting one (or multiple) patients to remove from the schedule. Remove 

all scheduled visits from the schedule 

- Remove biggest gap: select the patient(s) that has the most summed travel time from the preceding 

patient(s) and to the next. Remove all the visits from the selected patient from the schedule. 

The standard degree of destruction (the number of patients we remove per iteration) used in this research is one. 

The following insertion operators are used:  

- Random inserting: randomly select a feasible day, (compatible) nurse, and position on the schedule. If 

multiple visits have to be scheduled, the care frequency is respected by deriving the next day of visit from 

the first day a visit is scheduled while still selecting a random (compatible) nurse and position. 

- Best pairs: searching the nearest candidate on the schedule and scheduling the patient before or after the 

appointment of this nearest candidate to minimize travel time. 

The complete ALNS algorithm: 

Step 1: Initialize the starting temperature 𝑇0, the iteration counter 𝑘 = 0, the integer variable 

representing the maximum iterations (Markov chain length) 𝐿, parameter 𝛼 and starting solution 𝑥0. 

Step 2: Generate a new neighbourhood solution 𝑥 by generating random number 𝛼.  

If 𝛼 ≤  
𝜋1

𝜋1+ 𝜋2
 , select destroy operator 1. Else select destroy operator 2.  

Generate random number 𝛽.  

If 𝛽 ≤  
𝜌1

𝜌1+ 𝜌2
, select insertion operator 1. Else select destroy operator 2. 

 

Compute the difference in performance ∆𝑓 = 𝑓(𝑥) − 𝑓(𝑥0) 

Step 3: If ∆𝑓 < 0 (the new solution performs better), we accept the new solution as the new solution 

𝑥0 = 𝑥, add 𝜎 to the scores of the selected destroy and insertion operators 𝜋𝑖 and 𝜌𝑖 , and proceed to 

Step 4. If the new solution also performs better than all solutions found to this point, we accept the 

solution as new best solution 𝑥𝑏𝑒𝑠𝑡 = 𝑥.   

If the new solution performs worse than the old solution (∆𝑓 ≥ 0), we calculate the probability density 

function: 𝑝(∆𝑓) =  𝑒𝑥𝑝
(

∆𝑓

𝑇𝑘
)
 and we draw a random number 𝑧 uniformly distributed in [0,1]. If 𝑧 <

 𝑝(∆𝑓) we accept the new solution as the new solution 𝑥0 = 𝑥 and proceed to Step 4.  

Step 4: We iterate 𝑘 = 𝑘 + 1 if 𝑘 < 𝐿. If 𝑘 ≥ 𝐿 and the stopping criterion is satisfied (𝑇 ≤ 0.1), we 

terminate the algorithm and return 𝑥𝑏𝑒𝑠𝑡. Otherwise go to Step 5. 

Step 5: Set 𝐾 = 𝐾 + 1, 𝑘 = 1 and set 𝑇𝑘 = (1 − 𝛼) ∗ 𝑇𝑘−1, return to Step 2. 

The ALNS metaheuristic can only be initialized using a feasible starting solution. Without a starting solution, no 

neighbourhoods can be explored, as these are non-existent. We create a feasible solution by scheduling patients 

on a random day with a random feasible nurse and adhering to the constraints introduced in Section 3. After 

randomly selecting a patient, a day and a feasible nurse, the heuristic checks whether possible follow-up 

appointments derived from the care frequency are needed and if they can be planned too on the same nurse, or 

whether a different nurse is needed. Since the constructive heuristic features no optimization components, we 

expect the metaheuristic to quickly explore neighbourhood solutions and improve performance. 

Both the designed ALNS algorithm and the greedy heuristic are implemented using Python 3.8 and the ILP model 

is implemented in AIMMS with CPLEX solver 20.1 and run on a computer with an Intel Core i7-4710HQ CPU.  
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5. Case Study / Experimentation 

5.1. Medication at home at Isala 
The case study is conducted at Isala hospital group. We will refer to Isala 

hospital group with ‘Isala’ in the remainder of this paper. Isala is a large 

regional hospital with around 7000 employees and 5 locations in the 

region of Zwolle, with Zwolle also being the main and largest location of 

the hospital group. Isala has already piloted medication at home processes 

and in some cases medication at home is regularly offered to patients. 

Currently, the care specialisations oncology and cardiology offer 

medication at home. Furthermore, antibiotics and a range of other 

intravenous medication is offered through external parties or 

administered by local (home) care organisations.  

Transferring care from the hospital to patient’s home offers benefits to 

the patient according to Isala. A benefit for patients is that patients receive care in their own safe environment and 

travelling to the hospital, which can be very demanding for sick patients, is reduced. Furthermore, the stress 

patients experience during the treatments is significantly lowered when patients receive medication at home versus 

receiving the medication at the hospital (Isala Oncology Department, 2020). Since Isala is rating these benefits as 

high, Isala has planned to scale up medication at home practices by expanding the group of patients that receive 

care at home and the types of medication that are offered at home.  

Planning of the appointments for medication at home is currently done in a semi-manual and decentral manner. 

That is, the appointments for a day are planned manually by each department involved in medication at home. 

However, in some departments, the routes are planned with a tool freely available on the internet that optimizes 

routes based on input addresses.  

Many actors are involved in medication at home, which causes information and responsibility to be dispersed 

throughout the processes. One goal of the Isala is to place control of the medication at home processes at a central 

point to improve efficiency of- and control on the processes. A consequence of this goal is that the hospital is 

interested in a situation where external organizations are cut out of the process. One objective of the case study is 

therefore to assess the effects of increasing the patients that receive medication at home on the resources needed 

to execute the treatments. Since our research is only focused on Isala, the modalities of planning and routing by 

local (home) care organisations and commercial pharmaceutical company are not considered.  

The selection of patients that are eligible for medication at home from the oncology & cardiology department is 

based on several factors, including the distance from the hospital to the patient. Both departments use a maximum 

driving distance of 30 kilometres, above that a patient is not eligible for receiving medication at home. While 

increasing the distance may lead to higher travel times, the hospital is interested in the effects of increasing or 

decreasing the maximum distance for patients that receive medication at home.  

To guarantee safe administering of the medication, nurses should have the right skills for administering certain 

types of medication. Currently, nurses of the different departments administer the medication at patient’s homes, 

oncology medication is therefore always administered by specialised oncology nurses. External parties, for 

example home care organisations, often have specialised teams for certain types of medication. Isala is interested 

in the effects of combining specialisations such that nurses can treat a wider range of patients in home medication 

and thus nurses being multi-disciplinary. Note that the medical aspects of implementing multi-disciplinary nurses 

in medication at home is not part of this research and may pose restrictions to the possibilities of implementation. 

To summarize, Isala has interest in the following insights: 

- The effect of increasing the number of patients that receive medication at home on resource use. 

- The effect of maximum travel distance or time from hospital to patient on the resource use. 

- The resources needed to handle medication that is currently administered by other care organisations. 

- The performance benefits that might apply by introducing nurses that have multiple skills and can handle 

treatment and medication from multiple disciplines. 

Figure 3: The main building of Isala hospital 

Zwolle. Retrieved from: www.isala.nl 
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To develop insights in the aforementioned topics, we will assess these topics in Section 5.3 by developing 

experiment scenarios that will serve as input for the models that we have developed in Section 3 and 4. Before 

that, we will assess the available data in Section 5.2. 

5.2. Available Data 
In this section, we assess the data of the medication at home operations that is currently available.  

5.2.1. Medication types and characteristics 

There is a wide range of medication administered at patients’ homes. Each treatment with medication features a 

different nursing skill required, which is mostly related to care specialties. For example, oncology medication is 

administered by oncology nurses. Furthermore, visit durations differ per medication. Isala has chosen to only 

administer medication with an administering time of 30 minutes or less to minimize the time that a nurse must be 

present at a patient’s home. However, these 30 minutes do not include the preparation of the medication and the 

identification of both the patient and the medication. Therefore, the available data shows that the duration of a 

nurse visiting a patient is often longer than 30 minutes. The identification of the patient and medication is done by 

the four-eyes principle. A nurse at the patient location has a video or voice connection with a nurse who is at the 

hospital to confirm that the nurse is going to administer the right type of medication to the right patient. These 

steps are very important regarding patient safety.  

Each medication has an interval in which the treatment should be administered. This interval ranges from daily to 

multiple weeks. In current practices, only daily or two-day interval medication is administered in the weekends 

since that is unavoidable. For longer intervals it is not desirable to treat these patients during the weekends, as 

costs for personnel are higher.  

For the two specialisms oncology and cardiology, complete data from the past two years is available. For 

medication from specialism ‘other’ that is administered by other organisations, such as home care and commercial 

care organisations, only the number of patients is available. The characteristics of the medication that is 

administered is not available. Therefore, reasonable assumptions are made about the interval range and visit 

duration. Table 3 provides an overview of the medication per specialism.  

In total, the oncology department visited 669 patients in 2019, with a total travel time of 236 hours (Isala Oncology 

Department, 2020). The average travel time per visit thereby is 21 minutes and 10 seconds. In Section 5, we will 

introduce a base case instance with which we can compare the average travel time per visit measured in 2019 with 

the performance of the developed model and solving methods in Section 6. 

  

Specialism Patients 

per year 

Interval 

range 

(days) 

Visit duration 

range (minutes) 

Average 

admissions/appointments 

per patient 

Oncology 120 3 - 30 25 - 90 6.63 

Cardiology 451 1 - 7 20 – 110  3.46 

Other 295 1 – 14 20 – 40 4 
Table 3: Medication data per care specialism 
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5.2.2. Geographical information 

To model accurate and real-life travel times, information 

about the location of patients is important. Since using street 

addresses is privacy-wise not acceptable, we reside to using 

postal codes. By converting postal codes to coordinates of the 

centre point of the postal code area, we can model travel times 

between postal code areas, and between postal code areas and 

the hospital. Travel times between coordinates are retrieved 

by using an API that is able to calculate driving times (by car) 

between coordinates (Bing Maps, 2021). We are only 

interested in travel times, as travel distances and Euclidian 

distances are too much influenced by traffic and the 

characteristics of the route (city and rural areas feature 

different average driving speeds).  

A drawback of only using postal code areas versus using street 

addresses is that the travel time for two patients in the same 

postal code area is zero. Therefore, a minimum travel time of 

five minutes is set for patients with the same location. 

Figure 4 shows the postal code areas of all patients that 

receive care from Isala over the past two years. As expected, 

the postal code areas are centred around the city of Zwolle, 

the main location of Isala.  

5.3. Experiments 
We experiment with standard base case scenarios to assess the performance of the developed heuristics versus 

solving the problem exactly (if possible). In Sections 5.3.1 to 5.3.6 we will introduce the experiment instances 

derived from the business questions from Section 5.1. 

Experiment instances are executed by using the instances as input for the greedy heuristic and ALNS algorithm 

implemented in Python and the ILP model implemented in AIMMS with CPLEX 20.1. The results of experiments 

will be presented in Section 6. 

To test the performance of the algorithms compared to exact solving, we construct multiple test instances. The 

instances are increasing in complexity; more nurses and patients means that more combinations are possible and 

thereby adding to the complexity of the model. The instances feature a randomly generated treatment and travel 

time picked from a uniform distribution in a predetermined range. Each patient randomly receives a care frequency 

in a uniformly distributed predetermined range. The skills required for a patient is randomly picked from a uniform 

distribution. Each nurse has a shift from 8:00h to 17:00h, with a lunch break of 30 minutes. A nurse has therefore 

480 minutes of working time available per day. Nurses each have one skill, and of each skill has at least one (in 

case of instance 1 and 2) or 2 (in case of instance 3) nurses are available. For the weekends we assume that for 

each skill, one nurse is available from 8:00h to 17:00h.  

Instance 

number 

Number of 

nurses 

Number of 

patients 

Visit 

duration 

range 

Number of 

different 

skills  

Schedule 

length in 

days 

Travel 

time 

range  

Care 

frequency 

range 

1 2 10 20 – 60  2 7 1 – 30 1 – 14 

2 3 15 20 – 60 2 7 1 – 30 1 – 14 

3 3 30 20 – 60 2 7 1 – 30  1 – 14  
Table 4: Standard experiment instances for performance evaluation 

  

Figure 4: Postal code areas of patients that visit Isala hospital. 

Note that the geographical location is based on only the four 

digit postal code, for example postal code 1234 XX will be 

converted to the centre point coordinate of the 1234 area. 



21 

 

To determine the best starting temperature 𝑇, 𝛼 and 𝐿 for the ALNS algorithm, we use instance 3 as this instance 

contains enough patients to form a challenging problem instance. The standard stopping temperature 𝑇𝑠𝑡𝑜𝑝 is set 

at 0.1. 

Starting 

temperature 𝑻𝒔𝒕𝒂𝒓𝒕 

𝜶 𝑳 Performance 

(total travel time) 

Runtime (s) 

50 0.05 500 425 28.2 

50 0.025 399 61.3 

50 0.01 382 166.4 

50 0.005 362 324.7 

25 0.05 429 27.3 

25 0.025 429 49.4 

25 0.01 402 125.8 

25 0.005 399 252.5 

15 0.05 460 21.9 

15 0.025 452 45.4 

15 0.01 461 95.1 

15 0.005 438 202.4 

10 0.05 479 16.9 

10 0.025 492 33.7 

10 0.01 467 85.2 

10 0.005 473 147.2 

50 0.05 750 386 43 

50 0.025 390 99.5 

50 0.01 389 230.4 

50 0.005 371 452.7 

50 0.05 1000 405 56.8 

50 0.025 377 117.2 

50 0.01 370 300.9 

50 0.005 369 558.3 
Table 5: ALNS parameters and results for instance 3  

The experiments in Table 5 show that a starting temperature 𝑇𝑠𝑡𝑎𝑟𝑡 = 50 and 𝛼 =  0.005 yields the best 

performance with a Markov chain length 𝐿 of 500, while not having the longest runtime of all experiments. We 

expect that by running the algorithm longer, results will increase, however as visible in Table 5, that is not the 

case. For example, the experiments with a Markov chain length of 1000 do not perform better than the one with 

Markov chain length 500. A reason for this may be the randomness in both the construction and ALNS heuristic 

causing performance differences in each run of the algorithm. The runtime of around five minutes for the 

experiment with 𝑇𝑠𝑡𝑎𝑟𝑡 = 50, 𝛼 =  0.005 and 𝐿 = 500 is within a reasonable time frame and relatively low 

compared to exactly solving the problem, as shown in Section 6.1. Therefore, we use 𝑇𝑠𝑡𝑎𝑟𝑡 = 50 and 𝛼 = 0.005 

(and Markov chain length  𝐿 = 500) for the remainder of our experiments. 

For the experiments considering the questions from Section 5.1, we first develop a base case on which we will 

base the relevant experiments per topic. The base case is based on the medication and patient data from the 

medication at home patient of the oncology specialty. Furthermore, the location data is based on the location data 

introduced in Section 5.2. 

Instance 

number 

Number of 

nurses 

Number of 

patients 

Visit 

duration 

range 

Number 

of 

different 

skills  

Schedule 

length in 

days 

Travel 

time/distance 

range  

Care 

frequency 

range 

4 2 20 25 - 90 1 7 Max 30 

kilometres 

from hospital 

3-30  

Table 6: Base case data based on oncology specialism 
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5.3.1. Increasing number of patients 

To examine the effect of more patients in the system, we develop three experiments that are based on instance 4, 

but increasingly feature more patients. To make sure there are enough resources available, we introduce an extra 

nurse, thus totalling three nurses. All other parameters are equal to instance 4. The experiments are shown in Table 

7. 

Instance 

number 

Number of 

nurses 

Number of 

patients 

Visit 

duration 

range 

Number 

of 

different 

skills  

Schedule 

length in 

days 

Travel 

distance 

range  

Care 

frequency 

range 

5 3 30 25 - 90 1 7 Max 30 

kilometres 

from hospital 

3-30  

6 3 45 

7 3 60 

Table 7: Experiment Instances for increasing patients 

5.3.2. Higher care frequency 

The care frequency of the instance 4 are very dispersed. Therefore, two experiment instances are developed with 

higher care frequencies. The care frequencies are randomly picked from a uniform distribution in a predetermined 

care frequency range. Obviously, a higher care frequency should lead to more appointments and more intensive 

resource use.  

Instance 

number 

Number of 

nurses 

Number of 

patients 

Visit 

duration 

range 

Number 

of 

different 

skills  

Schedule 

length in 

days 

Travel 

distance 

range  

Care 

frequency 

range 

8 3 30 25 - 90 1 7 Max 30 

kilometres 

from hospital 

1-14  

9 1-7 

Table 8: Overview of experiment instances with higher care frequency 

 

5.3.3. Increasing travel time 

To determine the effects of a higher travel time, 

we develop four experiments. The first of four 

experiments feature a maximum travel time of 20 

minutes, increasing to 30 and 40 minutes in the 

next experiment. The last of four experiment 

instances feature no maximum travel distance. In 

practice, there are not many patients that live on 

more than 40 minutes of travel from the hospital, 

so we do not expect much difference between the 

third and last experiment. Instead of using 

distance, as Isala hospital is currently using, travel 

time is a much more consistent parameter than 

driving distance, as the average speed of travel 

differs per route. Other parameters are based on 

instance 6 (Table 7). Table 9 provides an 

overview of the four experiment instances. Figure 

5 provides an overview of the locations and the 

travel time from the location to the hospital. 

Figure 5: Overview of the patient locations. In red, locations with a travel time of 

more than 40 minutes from the hospital, in orange locations between 30 and 40 

minutes, in yellow between 20 and 30 minutes and in green below 20 minutes. 
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Instance 

number 

Number of 

nurses 

Number of 

patients 

Visit 

duration 

range 

Number 

of 

different 

skills  

Schedule 

length in 

days 

Travel time  Care 

frequency 

range 

10 3 45 25 - 90 1 7 Max 20 min 3-30  

11 Max 30 min 

12 Max 40 min 

13 No maximum 

Table 9: Experiment instances for increased maximum travel time 

5.3.4. Increasing variety of skills 

The instances already presented in this section only feature one type of medication/skill. With more types of 

medication administered, nurses are only specialized in certain types of medication. Therefore, we introduce two 

experiments with multiple skills and nurses with multiple skills.. All other parameters are based on experiment 

instance 6. Instance 14 features two types of skills, with nurse 1 having skill 1, nurse 2 having skill 2 and nurse 3 

having both nurse skill 1 and 2. Instance 15 features three types of skills, with nurse 1 having skill 1, nurse 2 

having skill 2 and nurse 3 having skills 1, 2 and 3. The type of skill required at a patient is picked randomly from 

a uniform distribution. 

Instance 

number 

Number of 

nurses 

Number of 

patients 

Visit 

duration 

range 

Number 

of skills  

Schedule 

length in 

days 

Travel time  Care 

frequency 

range 

14 3 45 25 - 90 2 7 Max 30km 3-30  

15 3 
Table 10: Experiment instances with more different skills 

5.3.5. Longer planning horizon 

The earlier discussed instances all feature a planning horizon of one week (seven days). Since the developed model 

can generate schedules for longer planning horizons too, we are interested in the effects on travel time if a longer 

planning horizon is introduced. We again base our experiments on instance 6 and use a planning horizon of 10 and 

14 days for the experiments. In practice, creating a schedule with the same planning horizon as these instances 

may not be useful, as the access of new patients may require new scheduling.  

Instance 

number 

Number of 

nurses 

Number of 

patients 

Visit 

duration 

range 

Number 

of 

different 

skills  

Schedule 

length in 

days 

Travel time  Care 

frequency 

range 

16 3 45 25 - 90 1 10 Max 30km 3-30  

17 14 
Table 11: Experiment instances with longer planning horizon 

5.3.6. Combined experiments 

The experiment instances from Section 5.3.1 to Section 5.3.5 are only based on the change of one parameter. 

However, combined effects may take place when two or more parameters are changed in a given instance. 

Therefore, five instances are developed where two parameters are changed. The developed instances are shown in 

Table 12 below. We consider an average number of patients (as derived from instance 6) for instances 18, 19 and 

20. Instance 18 features no maximum on the travel time from hospital to patient and three different type of skills. 

Instance 19 has a limit of 20 minutes on the travel time from hospital to patient and features three different type 

of skills. Instance 20 features a longer planning horizon in combination with three types of skills. Instance 21 only 

deals with 30 patients, but these patients feature a care frequency picked from a uniform distribution between one 

and seven days. Instance 21 features a maximum travel time from hospital to patient of 20 minutes, while instance 

22 has the same patient characteristics but without a limit on the travel time from hospital to patient. 
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Instance 

number 

Number of 

nurses 

Number of 

patients 

Visit 

duration 

range 

Number 

of 

different 

skills  

Schedule 

length in 

days 

Travel time  Care 

frequency 

range 

18 3 45 25 - 90 3 7 No maximum 4-30  

19 7 Max 20 min 

20 14 Max 30 km 

21 30 1 7 Max 20 min 1-7 

 22 7 No maximum 
Table 12: Combined experiments  
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6. Results 
In this section, the results of the presented experiments in Section 5.3 are discussed and Section 6.8 will elaborate 

on the behaviour of the ALNS algorithm during execution. Table 13 shows an overview of the results for all 

experiment instances. Due to the varying care frequency of patients causing total visits in the total schedule to be 

varying, we opt for using average travel time per visit as main key performance indicator.  

Instance 

number 

CPLEX 

ILP 

solution 

CPLEX ILP 

computation 

time (s) 

CPLEX 

integrality 

gap 

ALNS 

solution 

ALNS 

computation 

time (s) 

Greedy 

Heuristic 

Solution 

Greedy 

Heuristic 

computati

on time 

(s) 

Total 

visits 

Average 

travel 

time per 

visit (best 

result, 

min:sec) 

Average 

travel 

time per 

nurse 

(best 

result) 

1 194 0.19 0% 198 164.4 344 0.1 15 12:56 97 

2 311 996.2 0% 336 232.1 546 0.1 27 11:31 104 

3 286 2400*  24% 375 291.3 687 0.1 45 6:22 95 

4 280 2400* 29.7% 294 226.2 379 0.1 20 14:00 140 

5 515 2400* 45.5% 462 339.8 654 0.1 30 15:24 154 

6 No sol. 2400* NA 666 372.6 907 0.2 45 14:48 222 

7 No sol. 2400* NA 773 426.1 1123 0.2 60 12:53 258 

8 No sol. 2400* NA 679 285.7 928 0.1 39 17:25 226 

9 No sol. 3600* NA 1204 521 1600 0.2 69 17:27 401 

10 No sol. 3600* NA 532 396.4 711 0.2 45 11:49 177 

11 No sol. 3600* NA 652 328.3 904 0.2 45 14:29 217 

12 No sol. 3600* NA 851 366.1 1028 0.2 45 18:54 284 

13 No sol. 3600* NA 877 298.1 1074 0.1 45 19:29 292 

14 No sol. 3600* NA 886 443.1 1195 0.2 45 19:41 295 

15 No sol. 3600* NA 872 310.7 1235 0.2 45 19:23 294 

16 No sol. 3600* NA 1290 583.1 1537 0.2 66 19:33 430 

17 No sol. 3600* NA 1319 633.6 2198 0.1 80 16:29 440 

18 No sol. 3600* NA 898 244.2 1235 0.2 45 19:58 299 

19 No sol. 3600* NA 522 388.8 732 0.2 45 11:36 174 

20 No sol. 3600* NA 1269 476 2167 0.2 76 16:42 423 

21 No sol. 3600* NA 754 372.5 956 0.2 71 10:37 251 

22 No sol. 3600* NA 1418 366 1852 0.2 65 21:49 473 

Table 13: Overview of results of all experiment instances. * cut-off time specified 

6.1. Standard performance experiments 
Instances 1 to 3 are the standard experiment instances to test the performance of the developed solution algorithms. 

The results show that the ALNS algorithm is capable of providing solutions that perform close to the solutions 

found by solving the ILP model with the CPLEX solver. The increasing complexity, which can be observed from 

the total number of visits, results in higher computational times needed and as can be observed in instance 3 may 

result in an ILP solution with a fairly large integrality gap. Meanwhile, the ALNS algorithm is, in case of instance 

3, still possible to attain reasonable results in a fraction of computation time.  

The performance of the greedy algorithm proves to be significantly higher than the ALNS algorithm (and ILP 

solution), with the benefit of having a very low computation time that does not increase with increased complexity 

of the experiment instances. 

6.2. The base case 
The results of instance 4 show that the average travel time per visit for the base case is 14 minutes and 21 

seconds, which is a large improvement over the 21 minutes and 9 seconds that the oncology department 

measured in 2019. The moderate complexity of the problem enables the CPLEX solver to find a result within the 

specified cut-off time of 2400 seconds. The ALNS algorithm proves again to be attaining close performance in 

less computation time. As concluded in the previous section, the greedy algorithm proves to perform far less than 

the other two solving methods.  

6.3. Increasing patients 
Increasing the amount of patients that have to be visited has a positive effect on the average travel time per visit, 

as the results for instance 5 to 7 show. The average travel time for instance 7 is almost two minutes lower 

compared to instance 5. The decrease in travel time can be explained by the fact that nurses can travel more 
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efficient routes. With more patients to be visited, the probability that another patient is close to a patient, is 

higher than with a lower amount of patients.  

The increase in patients results in an increase in complexity, owing to the extra visits that have to be scheduled. 

As result, the cut-off time of 2400 seconds does not result in a solution by CPLEX for instance 6 and 7. For the 

ALNS and greedy algorithm, the computation time only marginally increases. As discussed in previous sections, 

the ALNS proves to attain reasonable results in a fraction of the computation time compared to the CPLEX 

solver. 

6.4. Care frequency 
An increased care frequency results in a higher average travel time per visit, as can be observed by the results of 

instance 8 and 9. The total visits for instance 8 and 9 increase significantly compared to instance 6. An 

explanation for the increase in average travel time per visit can be that, since patients have to be visited more 

often, the possibilities for creating efficient routes are less. As discussed in the previous section, this effect could 

be decreased by introducing more patients and thereby making the patient group more heterogenous. Of course, 

more patients or visits always increases the total travel time. 

6.5. Travel times 
Experiment instance 10 to 13 show that increasing the maximum allowed travel time from hospital to patient 

causes the average travel time per visit to increase significantly, as well as the total travel time. This effect is 

unsurprising and can be explained by nurses having to travel further and patients being more scattered over the 

service region (as Figure 5 already showed). However, the increases in average travel time are significant 

compared to the previous experiments, with a difference of 7 minutes and 40 seconds between instance 10, with 

patient locations at maximum 20 minutes from the hospital, and instance 13, with patients locations at no 

maximum travel time. Furthermore, the increase of the instance with no maximum travel time compared to the 

instance with 40 minutes maximum travel time, is small, owing to the existence of only a small number of 

locations outside the 40 minutes range (Figure 5). 

6.6. More variety of skills 
Instance 14 and 15 show that increasing skills causes a moderate increase of average travel time per visit. 

Furthermore, in instance 15 the resulting schedule shows that most workload is placed upon nurse 3, which is 

expected as this nurse can serve all types of patients and therefore, in most cases, the most efficient route can be 

created with this nurse. In a real-world situation with nurses that have multiple skills, it may be therefore be 

necessary to introduce workload balancing in similar situations (although these may have a negative effect on the 

average travel time per visit). 

6.7. Longer planning horizons 
Experiment instance 16 and 7 show that a longer planning horizon results in more visits in the resulting schedule. 

Furthermore, the longer planning horizon features a moderate increase in average travel time per visit compared 

to instance 6. This may be due to the fact that only a handful of patients require extra appointments and therefore 

the routes that are created for visiting these patients may prove to be less efficient..  

6.8. Combination of factors 
The results for experiment instance 18 and 19 show that the maximum travel time from patient to hospital has a 

significant effect on the average travel time per visit, in line with the discussed results in Section 6.5. The results 

for instance 20 shows that a longer planning horizon in combination with two skills instead of one, has a 

comparable average travel time per visit as instance 17, which has a longer planning horizon but does only 

feature one type of skill. The results for instance 21 and 22 show that again a high maximum travel time from 

hospital to patient causes high average travel time per visit, however this time also with patients that have a high 

frequency of visits. However, in instance 21, where only patients are considered located within 20 minutes of 

driving from the hospital, the average travel time is lower than instance 10, which featured the same 20 minutes 

maximum but less frequent visits of the same patients. A possible cause maybe that with lower travel times 

between patients, the higher frequency of visiting the same patients does not necessarily influence the optimal 

routes as much as it does when the travel times between patients are higher. Instance 22 shows that having no 

maximum on travel time and high frequency visits of patients results in a considerably higher average travel time 
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per visit compared to instance 13, which featured no maximum on travel time but far less frequent patient visits, 

confirming our previous statement. 

6.9. ALNS performance and operator performance 
To demonstrate how the ALNS heuristic optimizes the solution for experiment instance 6, Figure 6 shows the 

development of the performance per iteration. Figure 6 clearly shows the converging of the heuristic to an 

optimized solution, accepting worse solutions in the beginning and slowly accepting less worse performing 

solutions as the temperature parameter 𝑇 drops.   

 

Figure 6: ALNS performance per iteration for instance 6.  

The selection of insertion and removal operators is executed through a distribution based on scores of the operators. 

In the same experiment as Figure 6, we tracked the score of each insertion and removal operator at each temperature 

change. When a better solution is found than the current solution, the operator score gains the set reward 𝜎 = 100. 

Figure 7 shows the operator scores over time. The random removal operator outperforms the biggest gap removal 

operator over time. A cause may be that removing the visit with the most travel time has been already very 

optimized that it is hard to find a better solution.  The insertion operators’ performances diverges through time, 

with the best pair insertion operator outperforming the random insertion operator. From Figure 7 we would 

conclude that using an operator based on randomness performs worse when the solution is further optimized. 

Furthermore, based on Figure 7, using other operators next to randomness-based operators is useful.  

 

Figure 7: Operator performance during execution of ALNS algorithm for instance 6. 
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7. Conclusions & Further research 

7.1. Conclusions 
This paper proposes an optimization model for medication at home routing and planning in the context of a hospital 

providing parental medication to patients. A case study is conducted at Isala hospital considering the effects of 

changing patient characteristics on the total travel time needed to serve all patients. We develop a ILP model 

capable of constructing and optimizing routing and planning of medication at home patient visiting. To the best of 

the author’s knowledge, no specific research has been done to medication at home practices and routing and 

planning optimization. Furthermore, we introduce an adaptive large neighbourhood search approach which 

provides reasonable solution performance in short computation time by showing that, for small instances, the 

ALNS results range from -10% to 31% compared to solutions generated by CPLEX. Next to this neighbourhood 

search approach, we introduce a greedy heuristic capable of providing solutions in computational time less than 

one second and attaining performance that is 19% to 83% worse compared to optimal solutions found by the ALNS 

algorithm. The complexity of the ILP model with larger instances causes high computational times for CPLEX 

when solving and in most instances no solution can be found within the specified cut-off time. The large 

computational time needed for CPLEX solving makes the ALNS heuristic attractive in practical situations where 

computational time should be limited while still providing decent performance.  

We develop several experiment instances derived from the case study at Isala hospital. The base case instance, 

based on data from the oncology department, shows that the average travel time per visit by using the model 

decreases with more than 30% compared to the measured performance in 2019. The results show that the maximum 

allowed time or distance for the travel time from hospital to patient has the largest effect on the average travel time 

per visit in the schedule of patient visits. Increasing the number of patients to be treated causes a significant 

decrease in the average travel time needed per visit. Furthermore, we show that a higher care frequency, where 

patient receive more visits over a fixed period, has a moderate negative effect on the average travel time per visit. 

Introducing multiple skills and nurses that can handle multiple skills leads to a moderate increase of average travel 

time per visit, with the workload skewed to nurses with multiple skills rather than nurses with only one skill. 

Through experiments with the adjustment of multiple-parameters, we show that a high allowed maximum travel 

time from hospital to patient in combination with frequent visits of patients lead to a significant increase in average 

travel time per visit. On the other hand, high frequent visits of patients living close the hospital results in more 

optimized routes than optimizing planning with patients that do not have to be visited frequently and are located 

close to the hospital. 

 

7.2. Further Research 
Extensions and adaptions to the constructed ILP model might be addressed easily by introducing new constraints 

and/or parameters. In the HHCRSP literature, preference, time windows and synchronization are examples of 

typical constraints in HHCSRP models. Furthermore, stochastic parameters can be introduced to examine the 

robustness of the created schedules. Parameters that could be stochastic include travel time and visit times.  

With the current constructed model, making two sequential schedules may get conflicting results, as constraint 9 

rounds down the number of visits required in the planning horizon. When scheduling sequentially, this may result 

in too few visits for patients over the two planning horizons added together, as shown in Section 3.2. A possible 

solution may be to save the number of visits in one planning horizon and use that information in the construction 

of a new planning.  

In the current model we assume that all information is known beforehand. However, in practice, information 

arrives at separate moments, e.g., new patients arrive each (working) day. A possible research direction may be to 

develop a model that can deal with rolling planning horizons, by ‘feeding’ new patients to the model at the moment 

they are known, or at specific moments in time, for example every day.  

The ALNS heuristic has proven to work well in the experiment instances treated in this research. The analysis of 

the operator scores (Figure 7) showed that the operators show different behaviour during execution of the 

algorithm. The ALNS performance can be increased by adding additional removal and insertion operators that 

provide better performance or comparable performance in less time. An example would be to use geographical 

clustering or removing geographical outliers from existing routes. Another example would be to make a distinction 
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in patients with low or high care frequency, as An et al. (2012) show that patients with a higher care frequency 

have more influence on the schedule performance than patients with a low care frequency. 

In the experiments executed in this research the standard degree of destruction is one. However, further research 

may look into the effects of increasing the degree of destruction and the possible effects on performance and 

computation time. 

The current location data used is based on four digit postal codes. Further research could include a more detailed 

analysis by using full postal codes (four digits + two letters in the Dutch system) or full street addresses. By adding 

more detail to the location data, driving times can be modelled more accurate.  

The constructed model optimizes on total travel time but may be adapted to also include costs. For example, fixed 

costs of nurses/vehicles can be included, as we describe in Section 3.2. While the current model can optimize 

routes and schedules, the model does not support decisions as to whether a patient should be eligible for medication 

at home or not (currently we assume that decision is already made beforehand based on medical/practical criteria). 

A future research direction would be to incorporate decisions whether to treat patients at home or at the hospital 

and the relation with the efficiency of routes. For example, a patient that has negative effects on the efficiency may 

be better treated at the hospital to improve efficiency. Of course, the medical aspect of operations should be 

considered, as can never by the single criterion to decide which patient to treat at home and which patient should 

not be treated at home.   
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Appendix 1. Search strategy literature 
Search keywords used  

Database Keywords/Search terms Results After 

initial 

selection 

After 

reading 

abstract 

Scopus TITLE-ABS-KEY ( home  AND medication )  AND  PUBYEAR  >  2009  

AND  ( LIMIT-TO ( SUBJAREA ,  "BUSI" )  OR  LIMIT-TO ( 

SUBJAREA ,  "ECON" ) ) 

62 2 
 

TITLE-ABS-KEY ( home  AND healthcare  AND medication )  AND  

PUBYEAR  >  2009  AND  ( LIMIT-TO ( SUBJAREA ,  "MULT" )  OR  

LIMIT-TO ( SUBJAREA ,  "BUSI" )  OR  LIMIT-TO ( SUBJAREA ,  

"ECON" ) ) 

43 1 1 

TITLE-ABS-KEY ( home  AND healthcare  AND routing )  AND  

PUBYEAR  >  2009 

115 24 21 

TITLE-ABS-

KEY ( home  AND care  AND scheduling )  AND  PUBYEAR  >  2009 

 AND  ( LIMIT-TO ( SUBJAREA ,  "MATH" )  OR  LIMIT-

TO ( SUBJAREA ,  "DECI" )  OR  LIMIT-

TO ( SUBJAREA ,  "BUSI" )  OR  LIMIT-

TO ( SUBJAREA ,  "MULT" )  OR  LIMIT-

TO ( SUBJAREA ,  "ECON" ) )  

151 28 25 

Web of 

Science 

TOPIC: (home healthcare routing). Refined by: WEB OF SCIENCE 

CATEGORIES: (OPERATIONS RESEARCH MANAGEMENT 

SCIENCE) Timespan: 2010-2012. Indexes: SCI-EXPANDENDED, 

SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI. 

20 17 9 

TOPIC: (home healthcare) Refined by: WEB OF SCIENCE 

CATEGORIES: ( OPERATIONS RESEARCH MANAGEMENT 

SCIENCE )Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-

SSH, ESCI Timespan=2010-2021 

68 25 14 

Total (including duplicates) 459 97 70 

Table 14: Overview of the literature search strategy 

Selection for taxonomy based on articles that have the answer YES on the following questions:  

Is the article NOT a literature review? 

Is the article containing some form of a mathematical model?  

Is the problem containing some sort of traveling to patients (a routing component)?  

Is the article available through the literature databases available at the University of Twente?   

Total selection of articles: 32 in table, selected from a total of 70 articles.
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Appendix 2. Literature Overview 
Article Model type Objective Dynamic 

(D) / Static 

(S) 

PR NQ TW SY WR ST CS Solving method 

(Ait Haddadene 

et al., 2019) 

VRPTW-SP 

(Synchronization 

and precedence) 

TRC + PRF S X  X     Non-Dominated Sorting Genetic Algorithm 

(An et al., 

2012) 

Periodic VRP 

(P-VRP) 

TT S X       Two-phase heuristics 

(Bard et al., 

2013) 

VRPTW 

(MDVRPTW) 

TC S X X X  X   Exact/Heuristics 

(Baumann, 

2018) 

VRPTW PRF + DE + 

TT + TWE 

S X  X  X   Exact 

(Bazirha et al., 

2020) 

HHCRSP  

(Home 

healthcare 

routing and 

scheduling 

problem) 

adapted from 

VRPTW 

TC S X X X   X  Genetic Algorithm 

(Belhor et al., 

2020) 

HHCRSP TWS S X       Exact 

(Braekers et al., 

2016) 

HHCRSP TC + PRF S X X X  X   Metaheuristics (Multi-directional local search and Large 

Neighbourhood Search) 

(Castaño & 

Velasco, 2020) 

HHCRSP TC, D S  X X     Benders approach 

(Chen et al., 

2017) 

Orienteering 

(team) problem 

– Multiperiod 

HHCSP 

TR S 

 

X X X  X X  Exact/Langrage relaxation 

 

(Cinar et al., 

2021) 

Prioritized 

Home 

Healthcare 

Problem 

TT, TR S   X  X   Successive single period heuristic/ALNS/Exact 
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Article Model type Objective Dynamic 

(D) / Static 

(S) 

PR NQ TW SY WR ST CS Solving method / methodology 

(Demirbilek et 

al., 2019) 

Dynamic VRP PV D X X X   X  Scenario based approach / Simulation 

(Dengiz et al., 

2019) 

HHCRSP T+D S  X X     Exact 

(Di Mascolo et 

al., 2017) 

-- TT S  X X  X   Algorithm 

(H. H. H. H. H. 

Doulabi, 2020) 

VRPS 

(synchronized 

visits) 

TC, TRC S    X  X X Two-stage model / L shaped algorithm 

(Euchi et al., 

2020) 

HHCRSP D S  X X X X   Ant Colony System 

(Heching et al., 

2019) 

VRPTW PV S X X X X X   Benders approach 

(Hewitt et al., 

2016) 

Consistent VRP 

(ConVRP) 

 S X  X     Exact 

(Hiermann et 

al., 2015) 

VRPTW Multiple with 

weights(13 

total) 

S X X X  X  X VNS/SA/Memetic Algorithm 

(Laesanklang & 

Landa-Silva, 

2017) 

HHCRSP Multiple (4) 

worker 

balance 

S  X X  X   Decomposition 
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Article Model type Objective Dynamic 

(D) / Static 

(S) 

PR NQ TW SY WR ST CS Solving method 

(Liu et al., 

2019) 

MDVRPTW TC + penalty 

for clients 

not served 

acc. to 

planning 

S   X   X  Branch-and-price algorithm 

(Moussavi et 

al., 2019) 

VRPTW D S X    X   Exact/Heuristic 

(Nasir & Kuo, 

2020) 

HHCRSP RC, TRC S   X X X   Hybrid Genetic Algorithm 

(Nikzad et al., 

2021) 

SDDARP 
(Stochastic 

districting, staff 

dimensioning 

assignment routing 

problem) 

Multiple cost 

factors 

S  X X  X X  Several algorithms 

(Quintanilla et 

al., 2020) 

asymmetric TSP TT S  X  X    GRASP algorithm 

(Riazi et al., 

2014) 

HHCRSP  D S  X X  X   Gossip algorithm 

(Y. F. Shao, J. 

F. Bard, & A. I. 

Jarrah, 2012) 

HHCRSP TC, TT, D S X X X  X   Greedy randomized adaptive search (two-stage 

(Shiri et al., 

2020) 

HHCRSP Multiple cost 

indicators 

S   X  X X  Mulvey approach 

(Taieb et al., 

2019) 

VRPTW TT, PRF S X  X X    Exact (Cplex) 
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Article Model type Objective Dynamic 

(D) / Static 

(S) 

PR NQ TW SY WR ST CS Solving method 

(Veenstra et al., 

2018) 

VRP+FL 

(facility 

location) 

TRC S     X   Hybrid VNS 

(Wang et al., 

2020) 

HHCRSP Multiple 

Satisfaction 

indicators 

S   X  X   (Hybrid) Whale Optimization Algorithm 

(Zhan & Wan, 

2018) 

RASTA( 

Routing and 

appointment 

scheduling with 

team 

assignment) 

TC S   X  X X  Tabu Search 

(Zhang et al., 

2019) 

HHCRSP Multiple 

(combination 

of adhering 

to 

constraints 

and 

feasibility) 

S X X X  X   Simulated Annealing 

Table 15: Overview of the studied literature 

 

Legend:  

PR = Preferences 

Objective functions:  

- TC = Total Cost 

- RC = Route assignment cost 

- TRC = Travel cost 

- D = Distance 

- PRF = Preference 

- DE = Different Employees 



39 

 

- TT = Travel Time 

- TWE = Total Waiting time employees 

- TWS = Total weighted starting Time 

- TR = Total Reward 

- PV = Patients Visited (or served) 

- T= Tardiness 

NQ = Nurse qualification 

TW = Time Windows 

SY = Synchronization 

WR = Work regulations 

ST = Stochastic 

CS = Case study 

HHCRSP = Home Health Care Routing and Scheduling problem 

VRPTW = Vehicle Routing Problem with Time Windows 

VRPS = Vehicle Routing Problem with Synchronization 

Static and Dynamic: We define static as all input information known beforehand and dynamic as not all input information known beforehand. 
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Appendix 3. Overview of experiment instances 
Instance 

number 

Number of 

nurses 

Number 

of 

patients 

Visit duration 

range 

Number of 

different skills  

Schedule length in 

days 

Travel time/distance range  Care frequency range 

1 2 10 20 – 60 2 7 

 

1 – 30 1 – 14 

2 3 15 20 – 60 2 1 – 30 1 – 14 

3 3 30 20 – 60 2 1 – 30 1 – 14 

4 2 20 25 - 90 

 

1 

 

Max 30 kilometres from hospital 3-30 

5 3 

 

30 Max 30 kilometres from hospital 3-30 

6 45 

7 60 

8 30 Max 30 kilometres from hospital 1-14 

9 1-7 

10 45 

 

Max 20 min 3-30 

11 Max 30 min 

12 Max 40 min 

13 No maximum 

14 2 Max 30km 

 

3-30 

15 3 

16 1 10 3-30 

17 14 

18 3 7 

 

No maximum 4-30 

19 Max 20 min 

20 14 Max 30 km 

21 30 1 7 

 

Max 20 min 1-7 

 22 No maximum 

 


