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Abstract—For speed, robustness and safety of the Internet, it is
important that information on name servers in every level of the
hierarchical DNS structure is accurate and consistent. OpenIN-
TEL, designed in 2016, measures about half of the global names-
pace every day, but lacks flexibility in reactive measurement. To
provide an easily scalable framework for performing research
in DNS inconsistencies, we designed and tested a reactive DNS
measurement system compatible with OpenINTEL, supported by
Apache Kafka message broker functionality. The software can
query multiple levels in the DNS hierarchy and supports 10 query
types. Initial high-volume testing of the resolver authoritative
level shows the software is able to handle large volumes of
queries, but only gives a lower bound on the performance of the
software. Testing of more authoritative levels, testing on purpose-
built hardware and implementation of extended decoder logic and
performance optimisation is required to successfully deploy the
software.

I. INTRODUCTION

The Domain Name Service (DNS) is a very important part
of the modern Internet, providing a service that can translate
human readable domain names into the IP address of their
server. DNS uses a hierarchical structure, starting at the Root.
This hierarchical structure of DNS can be seen in figure 1.

Fig. 1. The Hierarchy of DNS

All DNS queries, provided the resource record for that
query is not cached, go to the Root servers first. The Root

will then delegate the query to the appropriate top-level domain
name server dependent on the entered domain (.com, .org, .nl).
Then, the top-level domain name server will in turn delegate
the query to the authoritative name server for the entered
domain, which finally returns the IP address of the domain’s
server to the user, or delegate it to authoritative name servers
for further sub-domains. Section II further elaborates on this
process.

In addition to storing the IP addresses of name servers
and domains, name servers also contain other records about
domains in their zone. For example, MX records contain the
domain names of the servers that handle email traffic for the
domain, and their priority. A lot of records are related to
security. DNSSEC is a system that was implemented to verify
the integrity of DNS traffic and records, and the DNSKEY
record for example contains the public key that can be used
to verify signatures. [1] In total, there are over 45 different
records that can be stored on a name server [2].

Figure 2 shows the response of a query for the IPv4 address
of utwente.nl. We provide a more detailed description of the
form of a DNS resource record and the DNS response in
section II.

Fig. 2. DNS Response for an A Query of utwente.nl

To make sure that the Internet remains fast and secure, it is
important to monitor DNS name servers. Since DNS is such an
important link between users of the Internet and the domains
they want to visit, impact of failure of this system can be huge.
If a name server contains inaccurate information, it is possible
the IP address of a domain becomes unresolvable, or hackers
can take control of a misconfigured name server and lead users
to the wrong domain. Research into the effects and prevalence
of inconsistency between name servers in different levels of the
hierarchy has shown that this is a relevant problem, and while
this research was in part performed by retrieving information



from different levels of the DNS hierarchy, and retrieving and
comparing information form multiple name servers of the same
domain, the measurements were performed in a non-scalable
way. To perform these types of research more easily, a scalable
and flexible reactive DNS measurement system would be ideal.
Reactive measurements in this sense are DNS measurements
performed on demand as a reaction to a trigger. Triggers can
be for example the registration of a new domain, the issuing
of a new certificate of a domain, etc.

Multiple large scale active DNS measurement systems have
already been developed. For example in 2016, researchers at
Georgia University of Technology developed such a system
[3], just like researchers at the University of Vienna in 2015
[4], the latter of which focused on the security of email
systems. Another one of these systems, and the system that we
will be focusing on most in this paper, is the system developed
by researchers at the University of Twente in 2016 [6]. This
system is called OpenINTEL, and it measures around 50% of
the Internet’s Second Level Domain DNS records every day.
OpenINTEL provides the ability and scalability to perform this
task, however it has certain limitations. Mainly, the system
lacks flexibility in being able to perform diverse reactive mea-
surements. OpenINTEL takes a bulk of measurement requests
for second level domains every day, and it requests the same
set of predefined queries every day. It lacks any possibility of
reacting to triggers or performing on-demand measurements.

The main objective of this thesis is to design a system
that can be used in addition to OpenINTEL, sharing the same
data formats and general setup, but that is more flexible in the
types of queries it can perform and is able to query multiple
levels in the DNS hierarchy. The system should be dynamically
scalable and have a performance speed in the same order as
OpenINTEL.

In order for our system to maintain compatibility with
OpenINTEL, it will use the same data structure. The reasoning
behind maintaining compatibility with this data structure is to
allow for the reuse of data analysis code developed for previous
works on OpenINTEL. Section II contains more information
about the OpenINTEL data format.

To accomplish this design, several research questions can
be formulated. The following questions will be discussed in
this report:

1) How can the system query different hierarchical lev-
els?

2) How can a DNS response be converted to the desired
data format?

3) How can dynamic scalability be achieved?
4) Can the performance in terms of measurements per

second be compared to OpenINTEL?

Structure of the Thesis

Section II lists important background concepts for the
design of our software, in section III we list existing work
related to the objective of this thesis, and start to form
design objectives. Section V list the design objectives in a
concise manner, so they can be referred back to. In section
V we list and motivate design decisions, and in section VI
the actual implementation of the design is described. Section

VII describes the setup used to perform high-volume testing
of the software, the results of which are listed in section
VIII. Lastly, section IX contains the general conclusion, and
recommendations for future work.

II. BACKGROUND

DNS Hierarchy Levels

In this thesis, we will frequently discuss the different levels
of DNS hierarchy. In this subsection we will elaborate on the
distinction between a so-called ”parent” name server and a
”child” name server. We define the ”child” name server as an
authoritative name server of a domain. The plural form of this
term, i.e. ”children”, refers to all of the authoritative name
servers of a domain. Conversely, ”parent” name server refers
to the name server of the authoritative level above the domain.
For example, the parent of ewi.utwente.nl is utwente.nl, so
the parent name server is the authoritative name server of
utwente.nl. When the domain is a second-level domain, such
as utwente.nl, its parent is the top level domain, and the parent
name server is this TLD’s name server.

The DNS Resolver

The process by which a domain name is converted to
an IP address is called resolution of a domain name, and
this function, as well as the lookup of other DNS records,
is provided by a recursive resolver. A resolver takes a DNS
query and returns the answer, going through the hierarchical
levels as shown in figure 1. Web browsers mostly use resolver
functionality provided by the ISP, but there are also public
DNS resolvers, such as the Google Public Resolver and the
Cloudflare DNS Resolver. It is also possible to install a
recursive DNS resolver on local hardware, we call this a ”local
resolver”.

DNS Response Format

The format of a DNS resource record is described in
RFC1035 [5]. This format is shared between the answer,
authority and additional sections. Table I shows the fields in
a resource records, with a short description of what the field
contains.

TABLE I. THE FORMAT OF A DNS RESOURCE RECORD

Field Description
NAME The domain name the record belongs to
TYPE The record type, e.g. A, NS, MX etc.
CLASS The class of data in the record
TTL The time that the record may be cached
RDLENGTH The length in octets of the RDATA field

RDATA
This contains the actual information contained
in the record, e.g. the domain’s IP address,
its name servers, or its mail servers

When a name server is queried, it will return the appropri-
ate resource record. It is important to note here that the data
contained within the record is stored in just 1 field, RDATA.
This means we have to implement some sort of decoder logic
in our software to convert this single field into information that
can be stored in the fields of our output data format.

Figure 3 shows the DNS response for an MX query of
utwente.nl. This response contains in order the NAME, TTL,



CLASS, TYPE and RDATA fields from the resource record.
In this case, the RDATA field contains a mail server priority
and domain.

Fig. 3. DNS Response for an MX Query of utwente.nl

DNS responses can be different when the query is directed
at different levels in the hierarchy. For example, figure 4
shows the response from the resolver for a query for the
name servers of utwente.nl. The domains of the name servers
appear in the ANSWER section of the response. However, if
we direct the same query directly at the IP address of the name
server of the .nl TLD (the parent name server of utwente.nl),
we observe a difference in the response. Figure 5 shows the
response from the TLD name server. In this case, we find
the domain names in the AUTHORITY section instead of the
ANSWER section, and their IPv4 and IPv6 addresses appear in
the ADDITIONAL section. Our system must be able to include
this information obtained from different hierarchical levels into
its results, and thus must be set up to retrieve information
from the AUTHORITY and ADDITIONAL sections of a DNS
response.

Fig. 4. Resolver Response for an NS Query of utwente.nl

Fig. 5. TLD Name Server Response for an NS Query of utwente.nl

Dynamic Scalability Through Message Broker Technology

In general, a message broker system is used to link
an information producing source to an information receiver,
while performing some type of action on the information.
This can range from simply routing data to converting data
formats or pre-processing information. Our software needs to
be dynamically scalable, i.e. it needs to be able to handle
worker machines being added or removed, on its own. For
this reason we designed an architecture based on message-
broker functionality, with the main interest being the function
of a message broker to divide workload over multiple workers.
In particular, we choose Apache Kafka. Kafka was developed
in 2011 by Kreps et al. [11] and was originally used for log
data analysis. With Kafka, producers can publish messages
to topics, which are stored on servers called the brokers.
Consumer groups can then subscribe to these topics and receive
the messages the produces publishes in them. The tracking of
which messages were already received is done client-side, so
there is no extra load on the brokers and the client can more
easily re-request messages it had already received by simply
changing the requested offset. Consumer groups consume the
messages of a subscribed topic as a group, the messages are
only received by one consumer in the group, so no duplicate
messages will be in a consumer group. Kafka uses a consensus
service called Zookeeper to keep track of changes in the
brokers and clients, and is able to re-balance the consumer
group if necessary, so messages are evenly distributed among
consumers. Consumers can in this way process data provided
by the producers in an efficient manner. Zookeeper is also the
way in which the dynamic scalability is achieved; whenever
consumers are added or removed from a consumer group,
Zookeeper handles the change.

Data Formats

The data format that we use for the input of the system is
the JSON file format. JSON makes it a straightforward process
to assign values to our input parameters, since it works with
attribute-value pairs. For example, ”domain”:”example.com”



is a line that sets the domain to measure. Together with
lines setting the other relevant parameters required for the
requested measurement, it forms a complete description of the
measurement, readable by our software. One JSON can contain
multiple of these measurement request, which makes it easily
scalable.

The data format that we use for the output of the system
is the Apache AVRO file format. This is the same format used
by OpenINTEL, and we describe it in more detail in section
III.

III. RELATED WORK

OpenINTEL

In 2016 van Rijswijk-Deij et al. [6] designed a system
for large scale DNS measurements called OpenINTEL. This
system was designed to generate large quantities of DNS data
that could be used for follow-up measurements. OpenINTEL is
able to perform measurements on the largest top-level domain,
.com, spanning 123 million domains, but also smaller TLDs.
It measures each domain once per day, and stores at least a
year’s worth of data. The final design of the system uses off-
the-shelf DNS measurement software to query the .com, .net
and .org TLDs, which when put together contain about half of
all second level domains on the Internet. For each name, 14
records are requested, including the IPv4 and if applicable IPv6
address, names of authoritative name server for the domain,
and the names of the hosts that handle the domain’s e-mail. To
ensure speed, a worker cluster is assigned to each TLD to make
sure queries that fail or take a long time to complete do not
impact the progress of other queries. The data is then analysed
using a Hadoop cluster and the Apache Impala engine.

Downsides of OpenINTEL: While this system is capable of
reliably measuring huge amounts of data, it has its downsides.
Mainly, it lacks flexibility in performing reactive measure-
ments. OpenINTEL performs the same measurements on the
same domains every time, and cannot easily be used to perform
diverse and specific DNS queries for each domain. Another
limitation is that the system is unable to directly query name
servers in different authoritative levels. Instead, it uses a local
resolver to get the answer to the queries. The last relevant
limitation of OpenINTEL is that the system is unable to query
multiple name servers of a single domain, it will just use the
name server the resolver points it to. Our system will aim to fill
these gaps in the OpenINTEL capabilities, while maintaining
compatibility with its data formats. It will also use the same
general structure and be dynamically scalable, running the
software on worker VMs alongside a local resolver.

The OpenINTEL Data Format: The OpenINTEL data
structure contains over 100 fields and we will not include it in
its entirety in this thesis, but can be seen in the OpenINTEL
data dictionary [7]. The output format is in Apache AVRO
format, which is a format where data is sorted by rows. Every
relevant field has a column, for example there are columns for
the domain that was queried, the query type, and for every
possible field in a DNS response. For example, there is a field
for the MX address, and another for the MX preference. Since
a DNS response contains the answer in one line instead of
in ordered fields, we will need to implement decoder logic to
convert the DNS response into the OpenINTEL format.

OpenINTEL Performance: To define a desired performance
for our system, it is important to determine the performance
of OpenINTEL. From the paper, it can be determined that
the .com TLD containing 123M domains was processed in 17
hours and 10 minutes (1030 minutes), by 80 worker VMs.
This comes down to about 1500 domains per VM per minute.
Since each domain is queried with 14 different query types, we
multiply 1500 by 14 to get 21000 queries per minute, or 350
queries per second. This is the number we will be comparing
the performance of our software to.

The rest of this section will explain the reasoning behind
wanting to expand the capabilities of OpenINTEL, and the
design challenges this brings with it.

Same-Level Consistency

Usually domains will use multiple name servers for stabil-
ity, redundancy, and to ensure a DNS query can be resolved
quickly, no matter the location of the user. In 2017, Müller
et al. [8] investigated how a recursive DNS resolver selects
an authoritative name server for its query. A test domain was
set up with 7 authoritative name servers all over the world. A
DNS lookup for that test domain was then performed by 9700
Ripe ATLAS probes worldwide to see the behaviour of the
local configured recursive resolver of these points. Their results
show that recursive resolvers prefer to query authoritative name
servers with the lowest round-trip time, also showing that this
preference was stronger the closer these name servers were
located to the user. Since for a recursive resolver only the round
trip time of a query is relevant when selecting an authoritative
name server, it is important that the information present on
these name servers is consistent and accurate. This shows the
need to monitor DNS information from different name servers
of the same domain, and while it may not be possible for
our system to determine the accuracy of such information, it
should be able to determine consistency between name servers
of the same authoritative level.

Parent-Child Consistency

In 2020 Sommese et al. [9] investigated consistency of
DNS records between parent and child zones of the DNS, in
their case the top-level domain and the second-level domain.
Using measurement data of 165 million domains gathered
by OpenINTEL, which will be discussed later in this section,
DNS records of parent and child name servers were compared,
and it was found that while just under 80% of the pairs were
consistent, 8% or about 13 million domains were not.

To determine the consequences of these findings, measure-
ments were performed using a test domain and two sets of
authoritative name servers, one defined in the parent, the other
in the child. The name server sets of the parent and the child
are either completely disjoint, one is a subset of the other, or
they have nonzero overlap but are not subsets. Both have the
name servers pointed to by the child in the so-called ”authority
section”. Resolvers may prefer this information over the data
provided by the parent.

In all cases, the results showed that when normal responses
were given some resolvers preferred the information in the
authority section over the information provided by the parent
name server, reaching the authoritative name servers pointed



to by the child name server, but when minimal responses were
given only the authoritative servers in the parent set were
reached. When parent and child servers are not consistent,
name server capacity can go unused, other servers may have
higher load than necessary, and in worse cases can cause so-
called ”lame delegations” discussed later in this section.

This research shows the need for our system to be able
to query different levels in the DNS hierarchy, to determine
then inter-level consistency of DNS information. Additionally,
it shows the advantage of being able to include additional
sections of a DNS result in the output of the system, instead
of just the answer section. This is another point where our
system improves on OpenINTEL.

“Lame Delegation”

A “lame delegation” occurs when a name server is del-
egated authority for a certain domain but cannot provide
authoritative answers to queries about that domain, for example
because it does not know the relevant IP address. Research
from 2020 by Akiwate et. al. [10] shows that this is a relevant
issue. Their research consisted of 2 stages; in the first stage
data was used from the zone files from the dns.coffee service.
This includes over 499 million domains and nearly 20 million
name servers. Static analysis was performed to get a general
idea of the prevalence of lame delegations, which found a 4%
unresolvability rate. However, this static analysis only gives
a lower bound on the prevalence. In the second stage of the
research this was rectified by performing active measurements
on over 49 million randomly selected domains, which found
that over 14% of these domains was at least partly lame, which
means at least 1 of the authoritative name servers was unable to
provide authoritative info, and that 9,5% of the total domains
was fully lame, meaning no authoritative name server was able
to provide info and the domain was unresolvable. In the best
case, a (partly) lame delegation increases DNS query time,
since the DNS resolver will time out when the authoritative
name server is unable to provide the requested info, after
which it will try a new server. In a slightly worse case, a
domain cannot be resolved at all. In an even worse case where
the authoritative name server does not exits at all, malicious
actors can obtain the domain names of these servers and lead
unsuspecting users to their own websites, instead of the ones
they were trying to reach.

This research shows the need for DNS measurement data
to always be as recent as possible, and to prevent caching of
data by both our system and the local resolver it uses. It also
shows the importance of all the name servers of a domain to
function properly.

Apache Kafka

The Apache Kafka message broker has already been used
to process measurement data in a project similar to ours, from
2016 by Orsini et al. [12] They designed a framework for the
analysis of measurement data for the Border Gateway Protocol.
The actual measurements are performed by a process called
BGPCorsaro, which publishes messages to appropriate topics
containing the measurement data. These are then consumed by
applications that process the data.

While the use of Kafka to handle measurements may not
be completely novel, this study shows that Kafka is a good
candidate for our goals.

IV. DESIGN OBJECTIVES

Now that we have gotten a little more insight into how
OpenINTEL functions, what the gaps are in its capabilities
and why it is important to fill these gaps, we will now list
the design objectives. These design objectives are used as a
method to provide solutions to the research questions posed in
section I.

• The system should be able to retrieve responses for
different DNS query types for specified domains.
While OpenINTEL is able to retrieve different queries
for domains as well, it cannot do specific measure-
ments, rather it does the same measurements every
time.

• The system should be able to query different levels
in the DNS hierarchy. This is something that Open-
INTEL is unable to do, and will be an important
improvement.

• The system should be able to include the ADDI-
TIONAL and AUTHORITY sections of the response
in its results, rather than just the ANSWER section
like OpenINTEL does.

• The system should be used as an extension of Open-
INTEL, and use the same data structure to be fully
compatible.

• The system, like OpenINTEL, should be able to
handle large amounts of measurements, be usable
on different platforms and should be able to handle
multiple queries in tandem as to not have queries hung
up when one of them is taking a longer time than
expected.

• The system should be able to run on virtual machines
on servers and have performance similar to that of
OpenINTEL.

V. DESIGN DECISIONS

Before designing the implementation of the system, some
decisions on the design had to be made first. This is mostly
related to the use of certain plugins.

Extension of OpenINTEL Data Format

Since our system is extending the capabilities of Open-
INTEL, the output format needs to be slightly extended to
accommodate the new functions our system provides. We
extended the format with the fields listed in table II.

TABLE II. EXTENDED FIELDS FOR THE OPENINTEL DATA FORMAT

Name Type Description

nameserver used String
IP address of the name server that answered
the query, for the local resolver
this will be 127.0.0.1.

section level String
Indicates the section level the answer came from,
this will be the ANSWER, AUTHORITY or
ADDITIONAL section.

error message String This field can be used by the program to indicate
an error occuring, such as a timeout.



Since our system is able to query multiple authoritative
levels, and able to query multiple name servers for a sin-
gle domain for comparison, it is important to know what
name server answered the request, creating the need for a
nameserver used field. Since OpenINTEL is unable to query
different authoritative levels, or different name servers of the
same level, it does not need this field.

The section level field is needed because our system is
able to include different sections of the DNS response, so this
field is needed to indicate where exactly the response came
from. OpenINTEL only processes the ANSWER section, so it
does not need this field.

The error message field is needed to find out if a problem
has occured somewhere in the software. OpenINTEL does not
use specific error tracking, except for strictly DNS related
errors such as NXDOMAIN or SERVFAIL, and thus did not
need this field.

For consistency, all of the fields are always present in the
output, but only the relevant fields will be filled in. The rest
of the fields will simply be Null. This is in line with what
OpenINTEL does as well.

Kafka Implementation

We implement the message broker functionality with the
Apache Kafka message broker, through a Java plugin called
Alpakka [13]. This plugin prevents us from having to write the
message broker logic required for Kafka ourselves, and instead
allows us to have a much simpler method of producing and
consuming messages and topics. With Alpakka, the application
can consume messages from the requests topic, and produce
messages containing the correctly formatted data in the results
topic. Alpakka is based on the reactive processing framework
Akka, which allow for asychronous processing. Alternatives
for implementation of the message broker functionality, such
as Spring or the native Kafka plugin, do not allow for
asynchronous processing. Asynchronous processing is desired
because it will lower the required number of threads, in turn
lowering resource requirements, which increases the number of
measurements per second for the same hardware. This solution
aims to provide a solution to Research Question 3.

Local Resolver

We will be using a local recursive resolver for all queries
not directed at a specific name server. This resolver will
be running alongside our software, on the same machine.
We will be using the Unbound resolver [14] to provide this
functionality, for the simple reason that this is the same way
that the worker VMs of OpenINTEL are set up. An important
thing to note here is that while recursive resolvers used by
regular Internet users will use caching to prevent having to look
up recently queried results, we have specifically configured
Unbound to not use caching. Since our system needs to be able
to detect problems such as misconfiguration or highjacking
of a name server as soon as possible, we want to ensure it
is always processing the newest possible data. Since caching
would prevent this, we have disabled caching in our local
resolver.

Kafka Monitoring

In order to monitor the topics and their contents, through-
puts, and consumers, we will be using the Lenses Kafka
Docker Box [15]. This is a complete container solution provid-
ing all the required functionality for testing and development
purposes of Kafka based applications. The reason we chose
this software to test our system is because it is the simplest way
of getting all functionality from a simple source. An alternative
would be to manually deploy the entire stack and to write the
code for the monitoring functionality by ourselves, but this
would require more time and resources.

VI. INTERNAL SYSTEM DESIGN

In general, we have defined the input and output of the
system as AbstractMeasurement and AbstractResult, respec-
tively. These classes are empty by themselves, but can be
extended. This way, the program can use the same message-
broker architecture to perform different types of measurements.
In this thesis, we will be extending AbstractMeasurement with
DNSMeasurement, and AbstractResult with DNSRow. These
extended classes will contain the parameters and functions
to make DNS measurements and format them correctly. The
UML in figure 6 shows this extension to AbstractMeasuremnt,
as well as a (yet unimplemented) different possible function-
ality. Figure 7 shows the same for AbstractResult.

Fig. 6. UML of AbstractMeasurement



Fig. 7. UML of AbstractResult

The DNSMeasurement class defines the parameters for the
measurement, which we describe in more detail in table III.

TABLE III. THE FIELDS IN THE DNSMEASUREMENT CLASS

Parameter Type Description
domain String The domain to measure
query type String The query type to request

class type String
The DNS class to be requested,
this will be left to IN (Internet)
for our purposes

authoritative level String The level in the DNS hierarchy
the request is directed to

authority Boolean Includes the authority section
records in the results

additional Boolean Includes the additional section
records in the results

nameserver String Uses a specific name server for
the request, can be left blank

resolve names v4 Boolean
Resolves the IPv4 address of the
name server or mailserver, if the
query type is NS or MX

resolve names v6 Boolean
Resolves the IPv6 address of the
name server or mailserver, if the
query type is NS or MX

resolve names if additional
not available Boolean

Resolves the IP address of the name
server or mailserver if the name
does not appear in the additional
section

Besides these parameters, DNSMeasurement contains all
of the functions required to select a name server to direct a
query to -or use the local recursive resolver-, get the results
from that server, and create the DNSRow containing the
output of the measurement. From this point on, the software
operates asynchronously, using Java’s Futures-like mechanism
to provide the results.

A. Authoritative Level

The system supports 5 possible authoritative levels to direct
the query at: TLD, Parent, Child, Children, and Resolver. The
paper by Sommese et al. [9] previously referenced in section
III shows the necessity of being able to query different levels. It
is important to be able to verify consistency not only between
name servers on the same hierarchical level, but also between
levels. By implementing the querying of different levels, we
answer Research Question 1 in this section.

TLD: This option sends the DNS query to the name server
of the top level domain. We use Mozilla’s Pubic Suffix List
[16] to determine the domain’s TLD, resolve the name servers
for this TLD and direct the query to these name servers. Since
the TLD name servers only know the domains and IP addresses
of the name servers one level below them, this option can only
handle NS queries. It is important to note that these domains
do not appear in the ANSWER section of the response, but in
the AUTHORITY section. This is why when the TLD option
is used, the authority field in DNSMeasurement must be set to
true for the results to be returned. The ADDITIONAL section
in the response usually contains the IP addresses of these name
servers, which can be included in the results if needed.

Parent: This option sends the DNS query to the name
server of the authoritative level above the domain. First, the
domain is trimmed, all characters in front of the first period are
removed: mail.example.com becomes example.com. The name
server for this new domain is resolved, and the query is sent
to this name server. If the parent is the top level domain, e.g.
example.com is trimmed and the new domain becomes .com,
this option is functionally identical as the TLD option. Like
the TLD option, this option can only handle NS queries and
has to have the AUTHORITY section enabled.

Child: This option sends the DNS query to one of the
name servers of the domain itself. First, the name servers of
the domain are resolved, then one of them is randomly selected
for the query to be directed at. The name server of the domain
should be able to provide all authoritative information of the
domain, which means that this option can handle all DNS
queries. Since the recursive resolver will also end up at this
authoritative level, through the root and top-level domain name
servers, it is likely that using this option will give the same
results as using the resolver.

Children: This option is comparable to the Child option
in that the name servers of the domain itself are first resolved,
but instead of randomly selecting one of the name servers of
the domain, the query is directed to all of them. This makes
this option useful for comparing information in different name
servers of the same domain, making it an effective tool to
verify consistency of records.

Resolver: This option is the only option not to direct a
DNS query directly to one authoritative level, instead using
the local recursive resolver to answer the query. Like the Child
and Children options, this option supports all the DNS query
types. This is also the authoritative level used to resolve the
name servers for the other levels, as well as the authoritative
level used to perform the followup resolution of IP addresses
for the resolve names option in DNSMeasurement.

B. Getting and Parsing Results

In order for the system to use the same data format
as OpenINTEL, the data received from the name server in
response to the query must be parsed into the OpenINTEL
format. We do this through the DNSRow class, the extended
format described in section V. The DNSRow class contains
fields for all DNS query types, as well as functions for all
supported DNS queries. These will first check whether the
answer is the correct length, then splits the answer and inserts
the parts of the answer into the appropriate DNSRow fields. If



the answer is not of the expected length or the query type is
unsupported, the error will be reported with the error message
field. The supported DNS query types can be seen in table IV,
with a short description of the corresponding record.

TABLE IV. SUPPORTED QUERY TYPES

Query Type Description
A IPv4 address of the domain
AAAA IPv6 address of the domain
CDS Child-side copy of DS record
DS Identifies the DNSKEY for its zone
MX Email exchange servers for the domain
NS Name servers of the domain
NSEC Identifies next domain in the zone
RRSIG Holds DNSSEC signature for a record set
SOA Contains administrative information about the zone
TLSA Holds the public key for the domain’s SSL certificate
TXT Contains text information

The system is also able to handle CNAME, DNAME and
PTR query response types. The system can only handle these
responses because they all have a set number of fields which
contain the parts of the response. For example, an MX record
contains a priority and a domain, so the response can always
be split in two, and the mx priority and mx domain fields
can be filled. There are other query types, such as NSEC3
and DNSKEY, that have a different amount of fields in their
answer depending on their algorithm. Future works will focus
on implementing decoding logic for these types of records.
This provides a partial solution to Research Question 2, as
only response types with a consistent number of fields can be
processed this way.

VII. PERFORMANCE TESTING

The setup for the performance testing of the system consists
of 2 virtual machines running on a host machine connected by
an NAT network. This means the machines can communicate
with each other and with the Internet. The specifications of the
two virtual machines are listed in table V.

TABLE V. SPECIFICATIONS OF THE VIRTUAL MACHINES

\ VM1 VM2
Processor 1 core 2 cores
RAM 1 GB 8 GB
Storage 10 GB 20 GB

OS Debian 10
(no GUI)

Ubuntu 21.04
(GUI)

Software Unbound
Our application

Lenses
Kafka Binaries

VM1 runs the application, as well as the Unbound local
recursive resolver. Its specifications make sure that the test
performance is representative for when the software gets de-
ployed on comparable server machines. VM2 is the broker and
monitoring machine, running Lenses and the Kafka message
broker. It is on this machine that the measurement requests
are uploaded to the requests topic. The measurement payloads
consist of JSON files containing the Alexa top 1 million
domains, together with varying parameters. The measurements
will be performed in random order from this list, meaning the
first domain measured will not always be google.com, despite
this domain being number 1 on the Alexa top 1 million. In
table VI, the measurements are listed. For each measurement,

we will determine the average speed at which messages are
produced to the results topic, and compare them.

TABLE VI. THE MEASUREMENTS FOR PERFORMANCE TESTING

Authoritative
Level Query Type Other Parameters

Resolver A
Resolver NS

Resolver NS resolve names v4 = true
resolve names if additional not available = true

Resolver MX

Resolver MX resolve names v4 = true
resolve names if additional not available = true

Resolver SOA

The reason these measurements are chosen is that the
software will most likely not perform all of the possible
measurements in the same timeframe. For the simplest request,
an A or NS record, the software just has to query the resolver,
wait for an answer and put it in the ip4 address or ns adddress
field. For MX and SOA, the software has to additionally split
the answer, check if it’s the right length, and put the results in
the right places. NS and MX queries also have the options
of resolving the names of the domains, which takes more
time still. For this thesis, we did not perform high-volume
measurements on the other authoritative levels.

The performance testing was performed by creating a new
requests topic and a new results topic in Lenses. We then put
the JSON with the payload in the request topic. For a half
hour, the message speed was monitored. After 30 minutes, we
stopped the program and deleted the topics, to set up for the
next measurement.

VIII. RESULTS AND DISCUSSION

Table VII contains an overview of the results from the
performance testing, Figure 8 shows in a more graphical way
the average number of messages per second for the different
query types and their standard deviation. The + behind NS and
MX means that the resolve names v4 field was set to true.

As evidenced by the standard deviation, the message
production speed fluctuates. The system does not reach an
equilibrium speed. This is most likely due to the different in
query response time from different name servers. The payload
contains a million domains, the larger of which have better
DNS infrastructure, the smaller will be significantly slower.
Since query time is the main factor in message speed, this
would explain the fluctuation in speed.

TABLE VII. MESSAGES PER SECOND FOR THE RESOLVER QUERY
TYPES

Messages per Second Standard
Query Type Lowest Average Highest Deviation
A 38 76 100 11
NS 50 78 103 11
NS+ 30 42 48 4
MX 63 81 97 9
MX+ 34 41 51 5
SOA 50 83 107 12



Fig. 8. Average Number of Messages per Second with Standard Deviation

Since an MX record contains 2 fields, and an A record and
NS record only 1, the fact that MX queries produce a higher
average number of messages per second means processing
speed of the decoder logic does not have a noticeable impact
on the message speed.

The results do show a possible correlation between mes-
sage speed and the number of lines in a response. SOA will
always only have 1 line [17] but A, NS and MX records
may contain multiple lines with multiple IP addresses, name
servers or mail servers, respectively. Each line needs a new
DNSRow, and processing speed may be influenced by this.
Note that these measurements are not sufficiently detailed to
conclusively determine this, since the measurement requests
were not selected by the number of lines in their records.

Something that can be determined from these results is
the clear difference in speed of the measurements that also
resolved the names of the NS and MX servers. Since these have
to perform follow-up measurements which take just as much
time as the original query, the speed is significantly lower. In
both cases the average is about half of the original speed of
the non-resolving queries.

Because the performance testing was performed on a per-
sonal laptop using virtual machines, these results only give a
lower bound for the performance of the software. Our software
is also not yet optimized for performance, but for function.
To answer research question 4, so far our software reaches
about 21% to 23% of the performance speed of OpenINTEL.
To make this performance difference more insightful, table
VIII lists the time it would take for each query type in our
system and OpenINTEL to complete all the measurements for
the entire Alexa top 1 million domains. These numbers are
estimated from the number of measurements per second for
both systems, and may not be entirely accurate.

TABLE VIII. ESTIMATED TOTAL TIME TO MEASURE 1 MILLION
DOMAINS

Type Total Time
OpenINTEL 48m
A 3h39m
NS 3h34m
NS+ 6h37m
MX 3h26m
MX+ 6h47m
SOA 3h21m

IX. CONCLUSION AND RECOMMENDATIONS

We designed a reactive system for DNS measurements
based on the message broker Kafka, as an extension for and
compatible with the OpenINTEL system. The system is able to
query a local recursive resolver, the name server of the parent
of a domain, the name server of the TLD of the domain, and
either one or all of the name servers of the domain itself.
The system supports 10 query types, others would require
additional development to implement and were outside the
scope of this thesis. The software was tested and was able
to produce single results for all supported query types and
authoritative levels. Additionally, we tested the performance
of the resolver authoritative level of the system with a high
volume of queries on hardware comparable to the systems
it will be deployed on. When deployed, the system will
provide an easily scalable tool for research into consistency
of DNS records, such as the research discussed in section III.
The system can be expanded to provide the same dynamic
scalability functionality to other types of research. These are
the main contributions to the scientific community.

The next step for the design of the software is to test the
high-volume performance of the other authoritative levels, the
same as what we did for the resolver level. Only then will the
performance of the software be sufficiently known to make
a decision on the merits of deploying the system in a server
environment.

After this comes testing the deployment on a larger scale.
The performance testing done on a single machine shows
promise in terms of scalability, but only testing on a larger
scale on appropriate hardware will show the true relevant
performance of the software. We performed the tests in this
thesis on a personal laptop, which seems to have a huge impact
on the processing speed, seeing as initial testing on server
hardware yielded results close to 600 messages per second, a
huge improvement.

The first possibility for future development of the software
is expanding the decoder logic to be compatible with the query
types that have a varying amount of fields in their response,
such as NSEC3 and DNSKEY.

Another possibility would be to expand the system to be
able to do more than just DNS measurements, for example
ping or traceroute measurements. The AbstractResult class
which DNSMeasurement expands upon makes it possible to
do more types of measurements with the same message broker
infrastructure.
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