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Abstract

The Ministry of Defence (MoD) has to be able to ful�l its constitutional duties, and therefore has
to be as agile and reliable as possible. The dependency on fossil fuels, of which the availability and
a�ordability is expected to come under pressure in the coming years, is a threat to the execution of
these tasks. Furthermore, the use of fossil fuels is harmful to the environment.
The technology of methanol fuelled Solid Oxide Fuel Cell (SOFC) is a promising tool to e�ciently
power naval vessels with alternative fuels and without producing pollutants. However, a standalone
SOFC power unit lacks the ability to provide either adequate e�ciency or load-following capabilities.
Therefore, the con�guration of the SOFC system needed to be enhanced to make this power unit suit-
able for naval applicability.
Due to the complexity of the research and the design of a power unit, the systematic approach of
Systems Engineering (SE) has been chosen. By using the tools o�ered by this method, it was possible
to design the system in close cooperation with the relevant stakeholders. The early SE-based decision
to use a Gas Turbine (GT) has been con�rmed by the literature, which concluded that the GT has the
most potential and therefore the enhanced system became a SOFC-GT power unit.

In an iterative process, the functions, requirements, and components of the system are determined, on
which concept con�gurations have been designed. The concepts were assessed and given a score which
allowed a choice table to determine which concept is best suited for naval applicability. The scores,
weighting factors and assessment parameters have been determined in cooperation with stakeholders.
After the chosen concept was known, it was investigated whether bene�ts from the other concepts
could be used and whether the design o�ered integration possibilities with the naval vessel. As a result,
the preliminary design was slightly modi�ed after which it could be simulated.
By means of the Simulink® model it was possible to simulate the behaviour of the power unit and
characteristics could be observed on which adjustments could be made. The results show that it is
possible to meet the requirements of the Royal Netherlands Navy (RNLN). The system, operating at
a pressure of 2 MPa, is able to take a power step with the GT in 15 seconds and to operate with a
high e�ciency, up to 81%. Furthermore, the temperature in the system does not exceed the maximum
temperature and the temperature gradient inside the SOFC is within the safety margin of 10 K/cm.
The �nal con�guration of the power unit, consisting of among other things a multi-stage GT, PHE and
mixing chambers, has a mass of 43 tons and a volume of 81 m3.

In the validation process the relevant stakeholders mention that they are satis�ed with the design of the
power unit. However, there are also some concerns about the feasibility of the system, since the SOFC is
a new development that has not yet been extensively tested and developed for naval applicability. This
creates uncertainties when it comes to the reliability and complexity of the system. In any case, this
research contributes to the maturing of the technology that may enable naval applicability in the future.

The �rst conclusion of this research is that the system can meet the requirements of the RNLN and
therefore is suitable for naval applicability. Despite some concerns, which could be resolved through
follow-up research, the stakeholders are satis�ed with the design and the performance of the system.
It was also concluded that the size of the GT system depends on the power step that the system must
be able to deliver quickly. The bigger the power step, the bigger the GT system will have to be. The
results have also shown that the processes in the system are strongly linked and have a lot of in�uence
on each other, this is also the reason to apply the bypasses for the Plate Heat Exchangers (PHE) in the
system. Finally, it can be concluded, based on a comparison with the literature, that a higher operation
pressure can increase the e�ciency of the power unit.
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Nomenclature

CH3OH Methanol.
CH4 Methane.
CO2 Carbon Dioxide.
CO Carbon Monoxide.
H2O Water.
H2 Hydrogen.
N2 Nitrogen.
NH3 Ammonia.
NOx Nitrous Oxides.
O2 Oxygen.
O2 � Oxide.
SCO2 Supercritical CO2.
SOx Sulphuric Oxides.
TCO2 Transcritical CO2.
e� Electron.

AC Alternating Current.
AOG Anode O� Gas.
AOGRC Anode O� Gas Re-Cycling.
APU Auxiliary Power Unit.

CCHP Combined Cooling, Heating and Power system.
CLC Chemical-Looping Combustion.
CZSK Commando Zeestrijdkrachten.

DC Direct Current.
DEOS Defensie Energie en Omgeving Strategie.
DMI Directie Materiële Instandhouding.
DMO Defensie Materieel Organisatie.

ER External Reforming.

FC Fuel Cell.
FFBD Functional Flow Block Diagram.

G/M Generator/Motor.
GE General Electric.
GHG Green House Gases.
GMM Green Maritime Methanol.
GT Gas Turbine.

HAT Humid Air Turbine.
HE Heat Exchanger.
HOV Hydrogra�sche Opnemingsvaartuigen.
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VIII Nomenclature

HPC High-Pressure Compressor.
HPT High-Pressure Turbine.

ICE Internal Combustion Engine.
IEC Israel Electric Company.
ILS Integrated Logistic Support.
IMCS Integrated Monitoring Control System.
IMO International Maritime Organization.
IR Internal Reforming.

LCF Luchtverdedigings- en Commando Fregat.
LNG Lique�ed Natural Gas.
LPC Low-Pressure Compressor.
LPG Liquid Pressed Gas.
LPT Low-Pressure Turbine.

MCDO Methanation of Carbon Di-Oxide.
MCMO Methanation of Carbon Mono-Oxide.
MDR Methanol Decomposition Reaction.
MLU Mid Life Upgrade.
MoD Ministry of Defence.
MSR Methanol Steam Reforming.

NSC Naval Ship Code.

ORC Organic Rankine Cycle.

PEM Polymer Electrolyte Membrane.
PEN Positive electrode-Electrolyte-Negative electrode.
PHE Plate Heat Exchanger.
PM Particulate Matter.
PtL Power to Liquid.

RAS Requirements Allocation Sheet.
RHIB Rigid Hull In�atable Boat.
RNLA Royal Netherlands Army.
RNLN Royal Netherlands Navy.

S/C Steam-to-Carbon.
SBD Schematic Block Diagram.
SC Supercapacitors.
SE Systems Engineering.
SOFC Solid Oxide Fuel Cell.
SSHS SOFC-SCO2 Brayton cycle Hybrid System.
ST Steam Turbine.

VARS Vapour Absorption Refrigeration System.
VOC Volatile Organic Compounds.

WGS Water Gas Shift.



Nomenclature IX

Roman symbols

A Area [m2]
b Conductor plate width [m]
C Heat capacity rate [W/K]
Ce Capacitance [F]
c Heat capacity [kJ/(kg K)] or [kJ/(kmol K)]
cp Constant pressure speci�c heat [kJ/(kg K)] or [kJ/(kmol K)]
cv Constant volume speci�c heat [kJ/(kg K)] or [kJ/(kmol K)]
d Distance [m]
g Gravitational acceleration [m s� 2]
H Manometric head [m]
h Speci�c enthalpy [kJ/kg] or [kJ/kmol]
h̄C Enthalpy of combustion [kJ/kmol fuel]
h̄f Enthalpy of formation [kJ/kmol]
h̄r Enthalpy of reaction [kJ/kmol]
I Electrical Current Density [A/m2]
I0 Initial current [A]
i Electric current [A]
k Speci�c heat ratio [cp/ cv]
kb Boltzmann constant [J/K]
L Conductor plate length [m]
M Molar mass [kg/kmol]
m Mass [kg]
�m Mass �ow rate [kg/s]

N Number of moles [kmol]
NA Avogadro's number, number of

molecules in one mol
[mol� 1]

n number of conductor plates [-]
np Number of a product [-]
nr Number of a reactant [-]
P Electrical Power [kW]
p Pressure [Pa]
�Q Heat transfer rate [kW]

QB Battery capacity [Ah]
QC Capacitor charge [C]
R Gas constant [kJ/(kg K)]
Re Resistance [
 ]
Ru Universal gas constant [kJ/(kmol K)]
rp Pressure ratio [-]
s Speci�c entropy [kJ/(kg K)]
T Temperature [K] or [°C]
t Time [s]
U Potential Energy [J] or [kWh]
V Volume [m3]
Ve Potential Di�erence [V]
w Work per unit mass [kJ/kg]
�W Power [kW]

Z Compressibility factor [-]



X Nomenclature

Greek symbols

a Convective heat transfer
coe�cient

[W/(m 2 K)]

e0 Electric constant [F/m]
eu Utilization factor [-]
h E�ciency [-]
l Thermal conductivity [J/(m s K)]
n Speci�c volume [m3/kg]
r Density [kg/m3]
t Thickness [m]

Subscripts

a Actual
C Compressor
c Cold
ch Central heating
cr Critical
G Generator
g gas
h Hot
i Substance index
in At the inlet
l liquid
M Melting
net Net
out At the outlet
P Pump
r Reduced
s Isentropic
T Turbine
Th Thermal
w Wall
wws Warm water system
0 Dead state
1 Initial or inlet state
2 Final or exit state

Superscripts

� Standard reference state
- Quantity per unit mole
� Quantity per unit time
� Average value
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1 | Introduction

The research, described in this document, is the thesis to obtain the degree Master of Science. In this
report will be discussed whether it is possible to adequately power naval vessels with a hybrid power
unit consisting of a methanol fuelled Solid Oxide Fuel Cell (SOFC) and a Gas Turbine (GT). This
question is important since the shift away from fossil fuelled engines is a priority in all transport sec-
tors. This is because fossil fuels are running out and the use of fossil fuels is harmful to the environment.

Where the car industry is now making the step towards electric and Hydrogen (H2) driven engines, at
sea fuel oil is still most used. Shipping is therefore subject to a lot of criticism because of the emissions
of soot, carbon dioxide and sulphur. For this reason, and the regulations for air pollution and emissions
from ships of the International Maritime Organization (IMO) and local politics [7, 8], the maritime
sector has to reduce the emission of net Green House Gases (GHG) and other harmful substances.
Also, the Ministry of Defence (MoD) has to be able to ful�l its constitutional duties, and therefore has to
be as agile and reliable as possible. The dependency on fossil fuels, of which the availability and a�ord-
ability is expected to come under pressure in the coming years, is a threat to the execution of these tasks.

These are the main two reasons why it is important to reduce the use fossil fuels and increase the
use of alternative fuels. The Royal Netherlands Navy (RNLN) is committed to this assignment and
therefore provides the opportunity to implement new power units and alternative fuels. In this quest,
the usability of its ships and the safety of personnel has to be assured, which underlines the importance
of the question posed above.[8]
The motivation of this research will be described more extensive in this chapter as well as the problem
identi�cation, the objective and process of the investigation and the structure of the report.

1.1 | Motivation

The motivation for the investigation of these power units has multiple facets. In the �rst place the
climate goals that are set and have to be achieved by the Netherlands government and the MoD. Sec-
ondly, the plans of the MoD to reduce energy dependence, to increase the e�ectiveness and e�ciency
of the armed forces, will also in�uence the development of naval vessels and their power units. Fur-
thermore, the opportunity exists for implementing new technologies in naval vessels since some vessels
will be replaced or upgraded. Lastly, a recently �nished master thesis of a student from the TU Delft,
considering an alternative power unit, provides the promising opportunity to build on its results and
recommendations.
The changes and improvements that have to be executed are serious challenges for the RNLN and the
Defensie Materieel Organisatie (DMO). The combination of these challenges with the recently �nished
research emphasize the importance of this research.

1.1.1 | Climate Goals

Climate change has major consequences for people, nature, and the environment and is mostly caused
by the emission of net GHG. Two examples of these consequences are natural disasters and con�icts,
which require the deployment of armed forces which in turn in�uence climate change with their emis-
sions. For these reasons the MoD should make an e�ort to limit its own contribution to climate change.
The RNLN, part of the MoD, is committed to eliminating net GHG and other harmful emissions.
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2 CHAPTER 1. INTRODUCTION

Since the MoD has the ambition that by 2050 the dependence on fossil fuels will be reduced by at least
70% compared to 2010 [9], the search for alternative fuels is in full swing.
The project Green Maritime Methanol (GMM) is initiated with other stakeholders to investigate the
possibilities into a renewable methanol infrastructure for the maritime sector. They concluded that
methanol would be a suitable fuel for a potentially signi�cant part of the maritime short sea mar-
ket.[10,11]

The use of methanol (CH3OH) as fuel is not completely free of carbon emission but the emission will
be lower due to new technologies. One of these technologies for eliminating net carbon emission is
Power to Liquid (PtL) conversion. Using green electricity, liquid synthetic fuels, such as methanol, can
be made of Carbon Dioxide (CO2) and Hydrogen (H2) [1]. This production of alternative fuels may be
the key to carbon neutral sailing but is outside of the scope of this investigation.

Other harmful emissions are Sulphuric Oxides (SOx ), Nitrous Oxides (NOx ), Volatile Organic Com-
pounds (VOC) and Particulate Matter (PM). Eliminating these emissions virtually can be done with
Fuel Cells (FC) since they do not have moving parts, can operate without sub optimal combustion, and
lack extremely high temperatures. The last is important since NOx formation takes place above 1300
°C. Through these characteristics, the fuel cell prevents the forming of PM, VOC, and Nitrous Oxides,
respectively. Eliminating Sulphuric Oxides can be done by using fuels without Sulphur, for example
methanol or methane (CH4).[5]

1.1.2 | Energy Independence

Energy supply is essential for any military operation. The energy supply of current military operations
is almost completely dependent on fossil fuels [12]. As brie�y stated in section 1.1.1 the MoD has
the ambition to be more independent of fossil fuels, which will increase the e�ectiveness and e�ciency
of the armed forces. In this section the negative e�ects of energy dependency will be explained more
extensive [12].

Firstly, energy independence will in�uence the operational e�ectiveness. The ability to continue an
operation and the speed of maneuver and autonomy of the deployed military units is depending on the
availability of energy carriers.
Moreover, the logistic load to get fuel to the consumer in the deployment area increases when the
size of an operation increases. An increasing logistic loads means an increasing demands on human,
material and �nancial resources.
Lastly, the logistics supply and storage of energy is vulnerable to disruption from enemy attacks or
natural events, such as bad weather or natural disasters. Securing fuel transports requires military
capacity that may be withdrawn from the military operation.

In short, energy independence has a positive in�uence on the e�ectiveness and e�ciency since personnel,
time, materials, and �nancial resources are used more e�ciently. Furthermore, because vulnerability
is removed and agility is improved. The implementation of new technologies will contribute to this
energy independence since systems will be more e�cient and use less energy. Also, new technologies
that produce alternative fuels and allow power units to run on these fuels make a contribution.

1.1.3 | Performance and Safety

As already mentioned in the introduction of this chapter the usability of the vessels and the safety of
personnel are paramount for the RNLN, due to their military role, sometimes in a higher spectrum of
violence. This implies that energy independence and the use of new technologies should never be at
the expense of, e.g., range, reaction speed, Naval Ship Code (NSC) requirements or the use of weapon
and security systems. Adjustments in these areas, as well as in other areas, have to make at least an
equivalent, if not greater, contribution to performance and safety.

For example, the RNLN wants to use methanol as fuel, rather then Hydrogen, since the energy density
is much higher. Therefore, also the usability is better when methanol is used, since less fuel has to
be taken on board. Furthermore, the RNLN does not want to use gaseous fuels, as Hydrogen, on the
combatants in connection with safety.[1]
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