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Abstract

The literature shows that active learning (AL) has great potential in the field of activity recog-
nition. The AL algorithm is potentially much more cost-efficient and less time-consuming when
labelling activities than with supervised learning. However, AL has only been applied to animal
activity recognition (AAR) in a limited fashion. This thesis investigates the potential role active
learning can play in the field of AAR, by finding the AL strategy which is the quickest in con-
verging to the most adept performance for AAR. This is done by applying three uncertainty sam-
pling algorithms and two disagreement based sampling algorithms to a DNN classifier, namely
least certain, margin, uncertainty entropy, consensus entropy, and maximum disagreement.

Comparing these to each other showed favouritism towards using least confident or maximum
disagreement for their respective divisions. Both showed a great advantage over random sampling
and the least confident algorithm was quicker to reach its maximum potential than maximum
disagreement. However, the differences were minor, where a bigger factor was the impact the ini-
tial training set sizes had and how many times the oracle was queried iteratively. For this data
set, the optimal size was at 350 with an additional 18 iterations. This showed the great poten-
tial of AL over supervised learning, as this data set consisted of 81 332 points which were pre-
viously all manually annotated. Using AL, this would have saved a person more than a month

in labelling time when assuming a full working week of 40 hours. However, the performance is
lower, as AL had a MCC of 0.694 and manual annotation has a certainty of 94.3% when allowing
for human error.
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1 Introduction

Currently, there is a lot of data available, more than can be considered manually. The process
of identifying, classifying and labelling this data is tedious, expensive and labour intensive. This
process can be automated using Machinel Learning. Machine learning (ML) has three branches.
Firstly, there is supervised learning, where labelled instances are used to train a classifier. Sec-
ondly, there is unsupervised learning, where an algorithm with parameters finds correlations by
itself without labelled instances. Lastly, there is semi-supervised learning, which uses a combi-
nation of a big amount of unlabelled data and a small amount of labelled data used to train a
classifier. One interesting technique in semi-supervised learning is Active Learning. This tech-
nique only queries the data it is uncertain about, instead of randomly selecting a few data points,
which thereby optimising the process. The querying happens by asking a human oracle for the
correct label and adding this to the small training subset. As a result, classification can become
much quicker and less costly.

This paper focuses on the impact Active Learning has in the field of animal activity recognition,
where insights are given into animals’ environment, health and well-being. Researchers collect
lots of data by tracking animals, whose behaviour can be visualised and changes can be detected,
subsequently potentially indicating other possible factors worth investigating. However, it would
take a long time to manually go through this data. There are already patterns present in the
data, showing correlation between the data and activities, but these are currently unidentified
and just seen as a bunch of numbers. By using Active Learning, data can be more efficiently
classified into activities and their behaviour can be analysed, without investing in too much time
and money.

To reach this goal, Active Learning strategies are applied to an already existing IMU data set of
horses. The aim will be to find the AL strategy with the best performance, by looking at a com-
bination of the highest F1 score and MCC and the lowest number of labelled instances. There-
fore, the main goal of this report is to give insight into: Which Active Learning strategy is the
quickest in converging to the most adept performance for Animal Activity Recognition when ap-
plied to an IMU horse data set? This question is answered by focusing on two subcategories in
Active Learning algorithms which were established by empirical research, namely uncertainty
sampling and disagreement based sampling.

This paper consists of two parts. First empirical research is done. This focuses on existing Ani-
mal Activity Recognition and Human Activity Recognition methods, then a more general overview
of potentially important factors in Activity Recognition and lastly, different AL algorithms are
considered. Secondly, Active Learning strategies are tested on the horse data set. After testing
different approaches with different parameters based on this research, all approaches can be eval-
uated based on its performance. Lastly, a conclusion is drawn on the optimal AL strategy for

this data set.



2 Background

Active Learning is a niche field with many strategies and approaches which are not commonly
or actively used in other methods in Machine Learning. Therefore, they are not well known.
This section includes background information on the general structure of Active Learning, on

approaches to querying data from a data set and some specific algorithms that have been used in
AL.

2.1 Querying Methods

As mentioned, the AL strategy consists of two parts, the first being the querying method. This
is the broader approach on how a data set will have to be used. This can be done by looking into
how instances are selected from a data set, which are to be queried. These instances will later be
decided on by an algorithm and used to train the classifier. There are three approaches that are
mainly discussed in the literature, namely: Pool-Based Sampling, Stream-Based Sampling and
Membership Query Synthesis.

2.1.1 Pool-Based Sampling

In Pool-Based sampling, the entire data pool is considered collectively to assess informative-
ness. This method looks at all unlabelled instances simultaneously and from there, an algorithm
can be developed to decide which instances to query [1]. According to Settles |1}, Wang [2] and
Sabato [3], this is a good approach, as it can consider the full picture and can then make the
most informed decision. However, this is only the case when the entire data set is already avail-
able, otherwise the data set will be biased and categories are misrepresented.

According to Kachites [4], while this method theoretically works well, there is one main disadvan-
tage of using Pool-based sampling. This is, that while it may accurately choose instances that
are best to train the algorithm most of the time, sometimes it can also choose those that are
unimportant. To solve this, a new method was developed by Kachites in Pool-Based Sampling,
called density-weighted Pool-Based sampling. This method looks at similarities in instances and
focuses on those that have a high variance while having many similarities. This prevents query-
ing negligible instances and improves efficiency [4]. Therefore, the Pool-Based sampling method
is extremely useful in Active Learning, but will often have to be used in combination with the
density-weighted method to counter imbalance.

2.1.2 Stream-Based Sampling

Stream-Based Sampling is used less often, but can still be useful in certain circumstances. As the
name suggests, the instances are evaluated on informativeness individually in a stream. One at
the time, they are immediately evaluated and labelled or discarded, based on the current data
set available. As a consequence, every unlabelled instance is drawn [1]. This works well for data
which comes in a live-stream, e.g. a spam filter or twitter feed [3]. Not all data is available be-
forehand, therefore the best way to efficient look at the data is by constantly making a new deci-
sion for every new instance.

This method is seen as weaker than pool-based sampling, due to it not seeing the full picture yet
and subsequently lacking information [3]. Something which both Settles |1] and Sabato [3] agree



on, is that in theory it will not be able to give the best query for the whole data set and it will
take more queries to get the same efficiency. However, according to Sabato [3], there is not al-
ways the option to wait for the full data set to be available in reality. This can be due to time,
storage or retrieval constraints and is the main reason this method is being used in combination
with Active Learning. As a result, Pool-Based sampling might seem better in theory, but Stream-
Based sampling is still used in specific cases, e.g. spam filtering.

2.1.3 Membership Query Synthesis

This method differs greatly from the other two in its approach to selecting a new query, as it is a
type of generative adversarial network [5]. Where Stream-Based and Pool-Based rely on the data
pool or stream for the new queries, this method ”generates artificial Active Learning instances”
[6]. In other words, this is not an existing data instance, but a new fictitious instance which is
created to optimally teach the classifier. This instance can then be used to train the data set effi-
ciently, as the instance will be the most informative due to its creation without the boundaries of
having to pick an existing one.

Membership Query Synthesis (MQS) has some pros and cons and two main strategies have been
developed to advance these positives and circumvent the negatives. The main added value of
MQS is that the predictive error rate is reduced more quickly [2]. This means it is more efficient
and less time consuming than the other two querying methods. However, the most significant
problem that arises when actually putting this method into practice, is that the human oracle
who is queried for the label might not recognise the fictitious instance and will therefore not be
able to categorise it [6]. Firstly, Wang [2] has solved this by combining the MQS approach with
pool-based sampling. This gives the advantages of both. Only a small labelled data set is nec-
essary, which is much more efficient. In reality, this means nearest neighbour search is applied.
In this case, this results in finding the instance which is most similar to the fictitious query, so
this instance can be used. Secondly, Awasthi 7] has found another way of circumventing this
issue, which is by restricting the MQS approach to only producing queries that lie close to ran-
dom original examples. This will help the oracle to recognise the query. This is most useful for
instances that look a lot alike, so the fictitiously developed instance can be related to another ex-
isting instance. These two solutions are quite similar, but even with these complementary meth-
ods, accuracy is not always high. This was the main reason Pool-based and Stream-based sam-
pling was developed, as these do not have such limitations. Therefore, for each non-theoretical
experiment which is performed, either of the other two methods is preferred.

2.2 Algorithm Types

Once it has been decided how a data pool is considered, an algorithm can be chosen to find which
instances to query. There are many algorithms which are all fine-tuned differently, but they can
all be categorised into two categories. These are: Uncertainty sampling and Disagreement-based
sampling.

2.2.1 Uncertainty Sampling

The most frequent and widely used algorithm in Active Learning is the Uncertainty Sampling al-
gorithm. This algorithm focuses on the instances that are ambiguous to the algorithm, so it does



not query those instances that are confidently known. This confidence is based on a prediction of
its correctness when labelling instances. Therefore, the instance with the lowest prediction is cho-
sen. There are variations on this algorithm, as is summed up in Table [1} but they all ultimately
rely on the uncertainty principle, which uses the confidence prediction. Figure [I| shows the ben-
efit of using Uncertainty sampling compared to simply using uniform random sampling on the
same data set.
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Figure 1: Random sampling and Uncertainty Sampling algorithm in AL [1]

2.2.2 Disagreement-based Sampling

Additionally, disagreement-based sampling compares more than two entities with each other, the
most common variations listed in Table [I} This algorithm type most often refers to the compar-
ison of classifiers, called a committee of classifiers [1], [8], [9]. This committee has two or more
classifiers and both run simultaneously. The instances they disagree on the most, are queried.
This means these classifiers give a single result together. It is a good way of combining different
networks, so different experts, into a single output. These usually include a different approach,
e.g. different types of errors or learning methods.

However, Disagreement-based sampling can also refer to a comparison of teachers, or oracles [10].
These teachers have the information on the labelled instances and use this to compare with. The
committee of classifiers is similar to a comparison of teachers, where each teacher, has a differ-
ent expertise with an unknown accuracy of how well the expertise is established. However, the
instances that are most disagreed upon are not queried, but this information is used to establish
a confidence level of the teachers. Here, Dekel [10] wants to ”measure the consistency of the bi-
nary labels provided by each teacher in different regions of the instance space.” This means that
by using this method, it is clearer how accurate the teachers are in labelling instances [10]. There
are two ways to establish this confidence level. This can be accomplished by testing all the teach-
ers at once, to find the confidence level for each teacher. The second way, is by only querying the
teacher of the expert of the instance, to minimise the effort yet still get a result.

2.3 General AL Training

The aim of Active Learning (AL) is to minimise the cost of annotating labels of data sets, often
using the minimisation of the bias in unbalanced data sets. Which way is most efficient and bal-
ancing this with effectiveness, differs greatly per situation and its circumstances. There are many



Table 1: Variations on the algorithms

] Algorithm H Variation \ Description
. Least Confidence Difference between most confident prediction
Uncertainty
Samblin and 100% confidence
ping Margin of Confidence | Difference between top two most confident pre-
dictions
Entropy Difference between all predictions

methods and algorithms within active learning, but the general procedure always stands.

2.3.1 Data Collection

The first step to classification, is the collection of data. Ideally, this should be a good representa-
tion of the actual data, so it is not imbalanced and skewed. However, in practise this is not the
case and AL is a way to help this unbalance. All this data is first unlabeled. Then the data set
will be divided into one large unlabelled data set and a very small labelled data set, called the
seed set. In literature, this labelling process is often referred to as querying the oracle or teacher,
but in practice there is often a seed set available, which is a data set which has labelled data in
it. This seed set will be queried instead of an oracle or teacher.

2.3.2 Training

Before a data instance can be selected, the learner must first be trained. This establishes how
sure it is of this potential label and thereby gives predictions on the label of unlabelled data in-
stances. These predictions will be used in the active learning algorithm. After the learner has
been trained and these predictions are established, unlabelled instances can be chosen.

The active learning algorithm chooses a data instance to query which is most informative. Ac-
tive learning is divided in two main parts, when deliberating on its approach. Any combination
can be used of the two. First, a querying method is decided on. This method looks at how a data
set is considered, by either looking at the data pool, which is a collection of data instances, or a
stream of data coming in. Secondly, the algorithm is decided on. This algorithm looks at an ”un-
certainty region”, which is the region the algorithm has decided it is most uncertain about. This
is based on the predicted accuracy of a label if it was classified. After establishing an uncertainty
region, one data instance is picked from this region. Exactly how this uncertainty region is calcu-
lated and how an instance is picked from this, depends on the algorithm.

After this distinction, the batch size is decided on. This is often a size of one or two. This batch
size is the number of unlabelled instances that are queried per iteration. These instances are de-
cided on by the algorithm and added to the labelled data set each time. This process of iteration
is repeated until some stopping criteria. Often, the stopping point is at a certain number of in-
stances that are queried, at a number of iterations or when performance does not significantly
improve anymore.



2.3.3 Evaluation

To evaluate the performance of the algorithm, there are two metric which are practical to use in
the field of activity recognition. Additionally, there are two metric which are used mostly in ac-
tive learning. Two widely used metrics, which is often used in machine learning algorithms, are
the Fl-score and Matthews Correlation Coefficient (MCC). The Fl-score is a good measure for
the performance of activity recognition with a number between 0 and 1 and MCC gives a good
measure of how good the prediction is, with a measure between -1 and 1, with 0 being as good
as random. Both can be concluded from a confusion matrix. This is a table which shows the per-
formance well, as it shows the concordance between the predicted yes/no values and the actual
correct values per activity. Therefore, the values for the True/False and Negative/Positive are

given.
TP+«TN—-FPxFN

V(TP + FP)(TP + FN)(TN + FP)(TN + FN)
- TP
- TP+ i(FP+FN)

MCC =

Furthermore, two other metrics which are important in Active Learning, but often not in other
ML algorithms, is the time the algorithm takes to run and number of unlabelled data instances
that are used. This shows how efficient the algorithm is, as the aim is to minimise the number of
instances used and thereby minimising the time it takes to label activities.

Therefore, a confusion matrix will be created and the metrics MCC, Fl-score, the number of un-
labelled instances and run time of the algorithm will be determined to illustrate the performance
of the active learning algorithm.
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3 State of the Art

Lots of research has already been done on the topic of both activity recognition and active learn-
ing. This section includes all essential empirical research on them both, including the different
types, strategies and techniques that have already been used and analysed before.

3.1 AL Algorithms’ Assets and Liabilities

Active Learning algorithm has been applied in many situations. There are two main divisions

in AL, namely Uncertainty sampling and Disagreement-based Sampling, which have been thor-
oughly explored in many fields. This chapter will consider applications of all kinds of AL appli-
cations, divided in these two divisions. Both look at the pros and cons. All algorithms which are
considered, make use of pool-based sampling. This was established in the Background section as
the best method for experiments of a similar nature.

3.1.1 Uncertainty Sampling

Many agree Uncertainty sampling is useful for Active Learning [1], [11], [12]. It gives an intuitive
view into how the AL algorithm works and has a low computational complexity [13], where it
still only needs one classifier to train the data with.

From as early as 1994, Uncertainty sampling has achieved better results than random sampling
for 9 out of 10 categories which were considered [14]. Nowadays, Uncertainty sampling in AL is
applied more and more. For instance, many successful applications can be found in natural lan-
guage processing (NLP) tasks. These tasks require a lot of data and costs are consequently high.
Dredze and Crammer |15] use the confidence margin technique of Uncertainty Sampling on four
different NLP tasks and compared the results with random sampling and margin sampling. Ac-
curacy of AL was significantly higher, with 82.5% accuracy for random, 88.06% accuracy for mar-
gin, but 95.5% accuracy for confidence margin active learning. In addition, AL required only 63%
of the labels of random sampling, while margin needed 73% of the labels of random sampling.

However, Zhu [16] has found that Uncertainty sampling does not work if there are many or sig-
nificantly large outliers. This is because these are not useful for the system to learn from, yet is
hard to recognise for the algorithm. It will need many more instances for the classifier to be suc-
cessful in learning from the training set. Therefore, Cohn [17] and Trasarti |[18] both concluded
most variations on this algorithm alone are impractical in real life due to its high computational
cost. Therefore, this method is very useful, but will not work optimally if the data is extremely
noisy. By combining Uncertainty Sampling with some outlier detecting techniques, this problem
can be helped. The research by Zhu and Tsou [16], applied sampling by cluster (SBC) and selec-
tive sampling by uncertainty and density (SUD) techniques. The SBC builds a training set which
is representative for AL. Usually, a training set is built from random samples, assuming this was
representative, but this would then include the outliers. While this worked well, redundancy is-
sues arose. The SUD uses a Nearest-Neighbour-based density measure to determine the outliers.
A combination of both methods showed a higher performance than other methods, including Un-
certainty sampling.
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3.1.2 Disagreement-Based Sampling

Cortes et al. [19] shows the benefits of adding properties of disagreement among hypotheses sets.
There was a big improvement, where it first predicted just 3000 instances correctly, and now
12000 instances of the correctly predicted hypothesis set of functions. Additionally, Copa et al.
[20] have used a type of Disagreement-based sampling called Entropy Query by Bagging on high
resolution imagery. This results showed that especially at the first few iterations the model re-
sults became much better than random sampling, as it converged much quicker with less varia-
tions. This was the case for two types of classifiers, namely SVM and LDA.

The committee of classifiers algorithm is used most often, which has its benefits. It is especially
useful when there are a lot of redundant views within a data set. This is when one instance has
two or more mutually exclusive sets of features. Muslea [21] maximizes its efficiency in finding
the correct label, by introducing co-testing. This is a combination of a committee of classifiers,
while also training the classifiers. This uses several classifiers and uses the points where they dis-
agree on the most, called contention points, to train the classifier. The reason that this works
well, is because "it can identify the rarely occurring cases that are relevant” [21], i.e. these points
will be most efficient to train the classifier with.

However, co-testing can also be unfavourable. Di [9] elaborates on this by saying he found some
circumstances when this way of measuring the contention points is not ideal. This is the case

if future data acquisition gives substantially different data points, e.g. a new activity is intro-
duced. According to Di, one way to solve this is to use the instances that have the highest dis-
agreement in the current committee model on extra samples instead of immediately adding them.
This means that this ”intercommittee distance” can be used to find how far current predictions
are from the actual, target, labels [9].

3.2 Animal Activity Recognition

Currently, very limited research has been done on active learning related to Animal Activity
Recognition (AAR). However, many other methods and algorithms have already been applied
to help the classification process of AAR. This section will analyse these methods and identify
potential limiting factors that are applicable in the case of an AL algorithm with AAR.

3.2.1 AAR Algorithms

Many algorithms and classifiers have been applied to AAR. A few which are used often and dis-
cussed in this part, are the Naive Bayes method, Convolution Neural Networks and Support Vec-
tor Machine techniques. These algorithms are quite different, yet have the same goal and there-
fore will give a good overview of the field and its challenges and results.

Kamminga et al. [22] have already applied a Naive Bayes (NB) classifier on the data set used in
this report. This classifier assumes independence in the features and has a good complexity to
performance ratio for AAR. With the use of tuning and balancing, the data was classified in five
or six activities. The highest accuracy and F-1 score could be found in the smallest number of
activities, so five, with a tuned and balanced data set. The biggest difference can be found in the
tuning process of the data set. This combination gave an accuracy of 90% for the five activities.

12



Many other algorithms have already been applied to other data sets in AAR, including Convolu-
tional Neural Networks (CNNs) and Support Vector Machine (SVM) techniques. Bocaj, Uzunids,
et al. [23] use CNN for the AAR of IMU data of horses and goats, classifying them into 6 and 5
different activities respectively. The CNN has four layers, consisting of input, output and other
operations, and neurons with learnable parameters. This algorithm surpasses the performance

of a Naive Bayes algorithm and its accuracy and F-1 increased with the size of the used labelled
data set. However, it did not increase with the amount of convolutional filters, probably due to
overfitting.

In addition, a completely different algorithm used in AAR, are Support Vector Machine (SVM)
techniques. This technique uses a statistical approach, which is a prediction model which tries
to find patterns [24]. This has been applied widely, using 3D accelerometer data. One research
by Gao, Campbell, Bidder and Hunter [25] used not only 3D accelerometer data, but combined
it with videos. Spatial-domain features, e.g. standard deviation and signal magnitude area, and
frequency-domain features were extracted. Another research by Sturm, Efrosinin, et al [26] used
this technique on IMU data of calves, classifying their activity into six categories. He split the
data in 70/30 for training/validating. However, also other models were applied, e.g. nearest neigh-
bour search, Random Forest and CNN. Eventually, these models were combined, only using the
model with the highest accuracy for each activity. This combination resulted in only 71% accu-
racy.

3.3 Human Activity Recognition

In contrast to AAR, Active Learning has already been applied quite widely in the field of Human
Activity Recognition (HAR). HAR is easier to have control over, as humans can be told what to
do, like carefully moving to minimise noise. This will most likely give cleaner results with less
outliers or imbalance. Additionally, this market is much larger, as more people are leisurely in-
terested in, for example, IMU tracking of humans than horses. However, these fields are rather
similar, where both AAR and HAR are most often based on IMU data and both aim to classify
activities into categories, e.g. sitting and walking. Therefore, analysing the role AL can play in
HAR, can be very helpful in the research about the role AL can play in AAR.

3.3.1 HAR Algorithms

Many other algorithms have also been applied in the classification process of HAR, which reaches
across the machine learning spectrum, including supervised learning and unsupervised learning.
One common approach is an artificial neural network, which is part of supervised learning. As in
AAR, CNNs are often used in the classification process of HAR. The reason this is used often, is
because of its effectiveness in recognition. Cho and Yoon [27] use this method in HAR with 1D
CNN, by first differentiating between dynamic and static movement. From here, they differen-
tiate between activities. This gave a high accuracy of 94.3%. However, 2D CNN has also been
used, as by Jiang and Yin [28]. This creates a ”single image”, which helps the CNN to extract
features.

Furthermore, unsupervised learning has also been applied. Kwon [29] uses Gaussian, hierarchi-
cal clustering and DBSCAN when training and uses the calinski-Harabasz index to identify the

13



number of activities. This combination gives an accuracy of above 90%. Additionally, Li [30] uses
auto-encoders and PCA. The best result came from the sparse auto-encoder, with an accuracy of
92.2%.

3.3.2 AL strategies in HAR

Active Learning has already been applied in several situations in HAR. Different querying meth-
ods and algorithms have been used and all had different findings. The most commonly applied
AL models are most often used in combination, namely Pool-based sampling with Uncertainty
sampling. In Table 2, all papers on AL named are shown in an overview.

A very general research was conducted by Liu [31] on the potential role of Active Learning in
HAR. Both Pool-based sampling and Stream-based sampling are considered, but only pool-based
sampling is applied to find the best algorithm type. However, the two types of algorithm are
both tested on a data set, namely Uncertainty sampling and Disagreement-based sampling. To
find a stopping point for the AL algorithm, the minimum mean squared prediction error (MSE)
was applied. Optimally, the MSE should be small, which is achieved with a low bias and vari-
ance, but this is difficult in practice. To train the classifier, first a small labelled data set of 20%
is used and later a size of 30%. After training and classification, the most informative instances
were added to the training data set and reached up to 40%. When the two algorithms were tested
on the same data sets, it could be concluded that indeed it found the instance which was most
uncertain or disagreeable, was most informative to train the classifier with. Lastly, it was also
concluded that indeed AL outperformed supervised learning or random selection and needed less
samples on those same data sets to achieve this.

Other papers used the same querying methods and algorithms. Stikic [32] used a combination

of Pool-Based sampling with two different algorithms, Uncertainty sampling and Disagreement-
based sampling in HAR. This was applied to categorise ten activities, both on the same data set.
For Uncertainty sampling, two samples are chosen each time iteratively which are reckoned the
most informative, while for disagreement-based sampling, one sample with the highest disagree-
ment is chosen. The results showed that there is little difference in accuracy between the two,
but both did see a large increase when the number of labelled instances increased.

Additionally, Vaith et al. [12] have done research on the role active learning can play within IMU
data of humans, by doing a human gait analysis. The AL approach they used was Pool-based
and used variable strides of the IMU data of one time step. The algorithm is based on itera-
tively feeding new labelled data to the classifier which it is most uncertain on, so by using the
Uncertainty method. These labelled data instances are based on an acquisition function and they
found the Variation Ratio (VR) strategy and Maximum entropy (EM) strategy to be the most
accurate within this Uncertainty method.

Another research, by Adaimi [33], used Uncertainty sampling to compare Pool-based sampling
and Stream-based sampling with supervised sampling. Both were tested on four different data
sets. The taret batch size was 2% and ended op not querying more as this was suffice, for both
strategies. For all four data sets, both AL methods outperformed the supervised algorithm. How-
ever, not a clear comparison can be made, as the AL methods all used different data sets and
parameters.
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Table 2: Paper summary AL applications

’ Paper Problem AL technique ‘ AL advantage
Lewis and Text classification Uncertainty sam- 9/10 categories with
Gale [13] pling Uncertainty sampling

better than random
Dredze and NLP task Uncertainty sam- 82.5% accuracy for

Crammer [15]

pling: margin

random, 88.1 % accu-
racy for margin, 95.5%
for confidence margin
AL

and Entropy

Cortes [19] Incorporate disagree- Disagreement-based | 3000 to 12000 of the
ment into AL correctly predicted set
of hypothesis functions
Copa [20] Testing Entropy Query | Disagreement-based | beginning iterations
by Bagging converge quicker than
random
Liu [31] Find stopping point Uncertainty and AL accuracy was up
AL disagreement to 75.96%, while the
accuracy of supervised
learning was often 4 to
5% lower
Stikic[32] Categorise activities Uncertainty and lowest accuracy was
AL with supervised, disagreement with supervised, then
self-training and co- co-training self-training, the co-
training training. This in-
creased from 0.25, to
0.3 to 0.35 accuracy
Vaith [12] Human gait analysis Uncertainty: Ratio max entropy was the

quickest in convering
and had a F1 score
of 96% with the least
amount of labelled in-
stances. The lowest
was random, with a
F1 score of 95%, but
needed more labelled
instances.

3.4 Activity Recognition

While the type of algorithm plays an important role in Activity Recognition, this is not the only
factor which has an influence on the performance of the algorithm. There are several pre-processing
steps and parameters which can be adjusted to maximise performance for AR, together with

some limitations which will impact the performance of the AL algorithm, which were found in
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Chapter 2.2 and 2.3. These are discussed in this section.

3.4.1 Classification Result Reliability

It is important to understand how well the classification of the data resemble the actual behaviour
of the animals, to know if the results of the experiment are meaningful. In the study on horses’
gait by Casella, Khamesi and Silvestri [34], several factors were established which influenced the
natural activity of the horses and therefore the validity of the data. The two main factors were

on placement and obtrusiveness. With this combination in mind they considered the type of data
which has to be collected. Tracking devices such as cameras have to be deployed in a controlled
environment, which is usually not their natural habitat, while on-body sensors can be used re-
gardless of habitat. However, on-body sensors are loose, can fall off and are potentially noisier.
The latter is solved by preprocessing.

The research by Sturm, Efrosinin, et al [26] found a way to use pre-processing to eliminate noise.
This was by the use of filtering, namely lowpass and bandpass filters, and by finding the outliers.
The research shows the large impact this transformation has on the AL strategy. Furthermore,
Casella, Khamsei and Silvestri [34] also identify and remove outliers. However, this was done dif-
ferently, namely by calculating a ”global” feature, then comparing that to a single feature and
then those that are below a threshold from the average, are named the outliers and removed.

In addition, the sensor may have moved around a lot. This can give unreliable data. This was
also the case for Sturm, Efrosinin, et al [26]. Due to this rotating, individual coordinates cannot
be used, therefore an ”orientation-independent signal has to be evaluated” [26]. A solution their
paper gives, is to use a signal vector magnitude of the data, which will make use of all axis of
movement for more stable results.

3.4.2 Sliding Window

The data which is being processed is continuous time series data. Consequently, the data first
has to be sliced into parts, to be able to extract activities. This approach is called the sliding
window approach. This is a window which is put over part of the data and by sliding it, gives
different parts.

Data instances of continuous AAR data often overlap, because there is not always a clear cut
between different activities, e.g. to go from standing to running, the animal will have to acceler-
ate and set off. Usually, this overlap is either at 25% or 50% as this gives the best results. For
the Naive Bayes classifier which was applied to the horses’ IMU data set |22], each section had
an overlap of 50% and a window length of two-seconds. The maximum length was ten seconds,
as they found this improves the class balance. Additionally, other researches with a similar data
set have done comparable. The researchers Bocaj, Uzenidis et al. [23] also used an overlapping
of 50% and a two second window, based on this work [22]. Furthermore, another study by Gao,
Campbell, Bidder et al. [25], has similar data. They used a window size of three seconds, with a
one-second overlap. This is because of the high accuracy of a window of 50%. An activity can be
captured with a window of two seconds, so this results in a window of three seconds with one sec-
ond overlap. This gave two sampling points for a 1 Hz sampling rate. When calculating a FFT,
this usually works best with a time window length that is a power of two, so this is beneficial too
[25].
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To find the impact of this sliding window, an analysis was conducted [34] on the sliding window
size and frequency rate. The result of using 10-fold cross validation of 75/25 training/testing dis-
tribution was that 5 Hz was not significant in differentiating activities. However, an 8 seconds
sliding window size and 10 Hz frequency rate or more gave a approximate equal result. In the
end, a 6 seconds sliding window size was used with a frequency rate of 20Hz on a smaller data
set, as this would give a higher accuracy. Therefore, the sliding window size and frequency de-
pend on the size of the data set and have a significant effect on the algorithm’s accuracy.

3.4.3 Activity Classification Limitations

Potential application problems of active learning are also important to consider, which can be
recognised and learned from other classification methods. In the Naive Bayes approach on the
horse data set [22], some problems were encountered. The differentiation between walking, stand-
ing and eating was not clear, because often grazing is done while standing or walking. In ad-
dition, galloping and trotting were often confused, because these are similar and the transition
from one to the other is not clear-cut.

Furthermore, the walking class in the horse data set is much larger than the other classes, which
creates a bias for the NB classifier. This means the data set is imbalanced. According to Sturm,
Efrosinin, et al [26], when rare classes have to be found, this can create inaccuracies. They pro-
pose some remedies: to oversample these classes, undersample the other classes which are present
more frequently or a combination of both. However, a direct implementation was not presented.
Kamminga [22] tried solving this with random undersampling. However, this meant that labelled
data is disregarded, even though this could give useful information.

Additionally, Kamminga [22] has not only balanced the data set, but also applied parameter tun-
ing and has measured its affect on accuracy and F1 score. Tuning improved the F1 score by 1.6%
and balancing with 0.5% to 0.6%, dependent on the amount of activities classified. However, for
the lowest increase in F1 score, accuracy went down again after tuning.

Moreover, in the SMV approach of Gao, Campbell, Bidder and Hunter [25], they compared sev-
eral data sets. There was shown that accuracy and precision rapidly declined when classification
was more fine-grained, with harder to distinguish activities, e.g. foraging and climbing. In this
case, accuracy was never above 87% and precision differed greatly per activity. However, for an-
other data set where the categorisations could more easily be established, e.g. walking and stand-
ing, all results of the performance were high. The accuracy was always more than 95% and the
other three were always more than 90%.

Lastly, research was conducted on the effect of the algorithm’ performance of the number of ac-
tivities that are to be classified. This research was conducted by Yang, Ma and Nie [35] and a
KTH action data set was used with either six or eleven activities to classify. The results of his
research can be found in Figure 2] There can be concluded that the amount of activities that are
to be classified have a big influence on the accuracy of the labelled instances and that this effect
differs per AL algorithm strategy. While this is a different type of data, namely video data in-
stead of accelerometer data, this does give insight into classification parameters. This concurs
with other classifiers, e.g. with the NB classifier which was applied to the horse data set [22].
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Figure 2: AL algoriths on action recogition using KTH data set with 6 actions and YouTube
data set with 11 actions

3.4.4 Data Set Size Performance

Adaimi found that both Pool-based and Stream-based sampling outperformed supervised
sampling in HAR. However, for this to always be the case, the unlabelled data set must be suffi-
ciently large. The benchmark which was identified was at a size of at least as large as ”ExtraSen-
sory” data set, which was 10 times bigger than the others. The noisier and more variations the
data instances have, the bigger the data set should be. Therefore, a smaller data set could still
cultivate a good performance, but this decreases with the increases in unclean data.

Furthermore, all research , , showed that when the training set was bigger, there were
better results. This means that the AL strategy is allowed to make more iterations and the accu-
racy goes up. However, a clear stopping point was not often established, as usually this is deter-

mined by estimating and tweaking parameters. This meant that while indeed bigger is better, no
conclusions were drawn as to its optimal size.

3.4.5 Stopping Point Maximisation

The research by Adaimi , focuses on the issue of finding a stopping point in the AL algorithm
applied to HAR. This is important, as this can maximise the performance of the AL, by finding
a balance between labelled instances needed and accuracy. He introduced a way to determine a
stopping point in the AL process which maximises its performance. This stopping point is based
on a Conditional Mutual Information (CMI). It was tested on a Pool-based sampling strategy,

as Stream-based sampling cannot be used, because its mechanism rests on the use of entropy of
a unlabelled instances pool. Using this criterion as stopping point, nearly no information gain is
missed out on, meaning it has maximised its potential. However, while the results were promis-
ing, there was acknowledged that this varies highly per data set and the diversity of the data.
Alternatively, a stopping point based on a target performance was proposed, but this gives differ-
ent issues due to the unreliability and variability of the AL algorithm. The classifier is not con-
stant and sometimes accuracy goes down before going up again, hence stopping too early, or it
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will never reach its potential, which means it would never stop.

3.5 Challenges

In this chapter, some challenges arose which have to be taken into account when designing the
Active Learning strategy, as they could potentially influence the result. These points can be di-
vided into those that are specific for the active learning algorithm and for activity recognition.

3.5.1 AL Challenges

The aim of this paper is to establish the best AL algorithm for the IMU horses data set. There-
fore both Uncertainty sampling and Disagreement based sampling will be applied. However, some
challenges arose during the empirical research in this chapter.

One challenge which was established, was the presence of outliers, as the algorithm is prone to
mistakes. Accuracy can drastically plummet. However, there are many techniques to combat out-
liers with pre-processing. In combination with Uncertainty sampling, SUD and SBC have been
applied and both showed a significant improvement. Therefore, outlier detecting will have to be
investigated if necessary.

Additionally, an imbalanced data set can negatively impact any classifier, as it will favour one
class over the other. While AL already helps enormously with this problem, under or oversam-
pling the data will also help the algorithm consider the data fairly.

Moreover, computational power is also higher for disagreement based sampling and must be con-
sidered when developing the algorithm. This trade off can be substantial in many instances, as
AL is often used to reduce these computational costs.

3.5.2 AR challenges

Also activity recognition in combination with AL will have its challenges. One challenge of ac-
tivity recognition, is the high computational cost. Computational cost will always be an issue
and the aim will always be to minimise it. The fastest way with the least amount of effort is the
ultimate goal of any algorithm, as this means it cannot be improved further. This is something
which AL aims to resolve, as it will minimise the amount of labelled instances used. However,
there are still ways to minimise this cost in AL and this must be considered when developing the
algorithm.

Furthermore, pre-processing can play a big role in the increased performance of the AL algo-
rithm. A challenge which has to be considered, is that of noise. This has a significant impact

on the AL results. Several methods to resolve this problem have already been suggested, includ-
ing: outlier detection and elimination and filtering. Additionally, the imbalance of the data set
will have an effect on the performance of the AL. As was already established, the walking class is
much larger in the horse data.

Also, the choice of activities to be classified is important. Firstly, the number of classes that
are classified affect the performance. The decision on the number of classes must be considered
carefully, to find this balance of performance and classes. Secondly, exactly which activities are
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chosen to distinguish between, will also affect performance. If the activities are harder to distin-
guish, due to e.g. overlapping values, the performance will goes down.

Moreover, the size of the unlabelled data set and that of the end training set affects performance
greatly. The bigger the unlabelled data set, the better the performance. Additionally, the big-
ger the end training set can become, the better the performance. However, the aim of AL is to
minimise both of these. Therefore, the correct balance must be found. To find the latter, a good
definition for the stopping point must be found.
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4 Approach

4.1 Focus

There are many parameters and methods that could be tested. To answer the research ques-
tion, the focus will be on comparing the two different sampling types disagreement based sam-
pling and uncertainty sampling. These will be applied to a deep neural network (DNN) classifier.
There are three algorithm types within uncertainty sampling which will be compared, namely:
least confident, margin uncertainty and entropy. Disagreement based sampling will consider two
types, namely: maximum disagreement and consensus entropy. The difference in performance of
the DNN with and without AL show the benefit of AL. Additionally, all algorithms will be com-
pared to manual annotation, to find the benefit of using AL over labelling all instances manually.

4.2 Design Decisions

Some assumptions and design decisions have been made before application, to efficiently and ac-
curately compare the various algorithms. These include deciding which assumptions can be made
with which baseline variables and which Active Learning variables should be compared.

4.2.1 Baseline Variables

Three querying methods were discussed in the background, with pros and cons and subsequent
concerns. As can be concluded, pool-based and stream-based sampling are the two best options
when used in real experiments. Seeing as the whole data pool is already available beforehand,
Pool-based sampling will be the best method to use. A lot of thorough research has gone into
the differences between the sampling techniques and all research in the field of active learning
supports the decision to use Pool-based sampling in this kind of experiment. Therefore, this con-
clusion can be drawn without further investigation and pool-based sampling will be used.

Additionally, two divisions were made within active learning algorithm types. These were uncer-
tainty sampling and disagreement based sampling. To find the affect AL can have on a classifier,
AL is applied to the CNN and compared to it with and without AL. Both divisions can be con-

sidered and compared.

The amount of activities to classify is another variable which has to be considered beforehand.
The more classes, the higher the inaccuracy and room for confusion there is. However, more
classes also give more information. This AL algorithm will classify six activities. The Naive Bayes
classifier which was applied to the data set before [22], showed sufficiently good results with six
activities, where accuracy was high, yet the results were still of significant gravity.

Moreover, a variable which impacts the performance of the AL algorithms, is that of the size of
the pool set and test set. The pool and test will first be divided by using 1 horse for testing and
the others for testing. This divide of approximately 20/80 for training/testing is most often used
in literature. There is iterated for all four horses and the average of these results is used in the
evaluation.

Furthermore, how the samples for the initial training set are selected is also of importance. This
can be done in several ways, for instance by stratified sampling or random sampling. Stratified
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sampling has the advantage of countering imbalance and to already get a good idea of the re-
sults. However, in this case there is chosen for random sampling. This is because this method
most fairly gets an indication of the effect of AL, as AL is usually applied without prior knowl-
edge of the dataset. Moreover, the affect of AL can be shown, as the baseline of the performance
of the classifier without AL is at this beginning point, seeing as this is random sampling without
AL.

Additionally, the data which will be used has already been collected. However, before this can be
classified, some preprocessing steps must be considered, which will influence the performance of
the AL results too. These basic steps include feature selection, splitting the data, feature scal-
ing, windowing, shuffling, reshaping and encoding labels. Additionally, the data is filtered with a
low pass filter. Furthermore, the data set is unbalanced, as can be seen in Figure 3| This will be
facilitated by preprocessing too.
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5 Methodology

5.1 Dataset

The data used in this Graduation Project was gathered by Kamminga et al. . This dataset
consists of data gathered from 18 different horses and ponies across a period of seven days, dur-
ing which the horses participated in both riding and free roaming activities throughout their pas-
ture. The animals wore an inertial measurement unit (IMU), containing an accelerometer, gyro-
scope and magnetometer, in a collar. These IMUs made use of a 100 Hz sampling rate, recording
a total of 1.2 million data samples, each describing a 2 second segments, by the end of the week.

As the collar containing the IMU sensor can still slightly move and rotate around the animal’s

neck, the dataset also includes 12-norm values for each of the sensors. These values can be used
to compensate for any recorded movement of the collar that does not correspond to movement

related to the horse’s activity.

The dataset consists of labeled and unlabeled data, of which only labeled data will be used. The
used data as a whole is not equally labeled; only data from 11 subjects were labeled, of which
four subjects and six activities were labeled more extensively and gave enough information, which
can be seen in Figure [ and [3] Therefore, these are the activities and subjects that will be used
for this project.

187 Training Examples per Horse

Taining samples

GalowayPatron HappyDriekus Zafir  Viva Bacardi Niro Sense Moortje Pan
Horses

Figure 4: The distribution of labeled samples over the different horses.

The data is contained in CSV files, describing the x, y and z and 3D vector with 12-norm values
of the accelerometer, gyroscope and magnetometer. Next to that, the subject, segment, label and
date and time are denoted.

In Figure [f] [6] and [7] one data sample can be found for the activities eating, running-natural and
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shaking.

eating accelerometer data over time

,:.E
-._:. 0 Ww—’\—r—‘w_v
-4% 5 —— Xaxis
g — Y.Axis
T -10 —— Z-Axis
U
3 Time (s)
W eating gyroscope data over time
=
g D N
= H-axis
z YoAxis
] Z-Axis
3 -100
= Time (s)

Figure 5: An accelerometer and gyroscope measurement of a horse eating.
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5.2

AL Process

The process of developing and evaluating the active learning algorithm for the horse data set can
be summarised in six steps. These steps will take the preprocessing steps and baseline variables
established in the Approach section into consideration.

1.

The data will be divided in a pool subset and test subset, with a split of approximately
80/20. The pool set is divided into a small initial training set (e.g. 50 labelled data points)
and a subset of data which includes the rest of the pool set.

. This data is then preprocessed for optimal use and reshaped to input into the classifier.

. Some initial choices are made. Pool-based sampling is used with a batch size of 1. First,

one type of uncertainty sampling will be applied to a SVM classifier to visualise the power
of AL. Then, for the rest of the experiments, the learner will be trained with a Deep Neural
Network (DNN) each time. Three types of uncertainty sampling and two types of disagree-
ment based sampling are applied to the DNN and compared.

. The model is trained by iteratively letting the AL algorithm choose the most informative

instance, which is the most ambiguous, and then adds this to the training set. An algo-
rithm is chosen to find which instances to query, e.g. marginal uncertainty sampling. This
will differ per experiment and the results will be compared. The model is then trained
again with the newest information.

. A stopping criterion is used to decide when to stop querying for unlabelled instances, in

this case established by trail and error. This will depend on the size of the initial training
set and when the AL stopping giving informative instances. During the experiments, trail
and error will be used to decide which iteration number this will be.

. The evaluation will be conducted by comparing the algorithms applied to the DNN with

each other, to the DNN without AL and manual annotation. Firstly, the different algo-
rithms are compared to each other by plotting the accuracy against the amount of labelled
instances. Then, the best uncertainty sampling and disagreement based sampling will be
compared to each other. Secondly, a comparison between the labelling time and manual
labelling time is made. By comparing these, the advantage of the minimisation of the num-
ber of labelled instances used in AL is clearly highlighted and there can be shown which
AL strategy does this most efficiently. The metrics which will be used, are F1-score, MCC,
labelled instances used in the initial training set, number of instances queried and the run
time.

5.2.1 Active Learning Variables

The first factor to take into consideration is the number of times the AL algorithm has to query
labels of instances, so how many iterations the AL needs. The number of iterations has a great
effect on accuracy, especially since AL is not very consistent. If it is too small, it will never reach
its full potential and will subsequently give a low accuracy. However, if it is too large, the benefit
of AL is wasted, as it has already reached its maximum and would still ask for labels. Further-
more, it could be that this point is different for each algorithm. Therefore, the number of itera-
tions will be a variable, which will be considered.
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Additionally, a variable to consider is that of the size of the initial training set. The data set was
already divided in pool data and test data. However, the next step would be to take out a cer-
tain number of data points and use that as training data. This will be used as initial training
data, where one, most ambiguous, data point will be queried, labelled and added to the training
set per iteration. This is illustrated in Figure |8, where X is the variable which will used to inves-
tigate in this thesis.

Lastly, the algorithm with which the find most ambiguous function works will be investigated.
This way, various strategies can be compared. These algorithms are uncertainty sampling types,
namely least confident, margin and entropy and for disagreement based sampling consensus en-
tropy and maximum disagreement.
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Figure 8: Active Learning application

5.3 Horse activity recognition pipeline

The pipeline is split up into three classes: preprocessing of the data, the database interactions,
and the main class, which also contains the classifier, active learning structure and uncertainty
algorithm.
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5.3.1 Preprocessing data

Before the data can be used for classification purposes, it has to be preprocessed for optimal use.
The data must select sensor features, filter the data, split the data, scale, window, shuffle and
reshape that data and encode the labels.

Dataset usage A sub-selection of horses is first made as for some horses there was compara-
tively little data available to facilitate unbalance. The activities that do not have a lot of data
points were removed and some smaller activities have been combined into one bigger activity.
Additionally, only the best four horses are used, to counter imbalance, but also due to time con-
straints. After this selection, the activities are more evenly distributed, as can be seen in Figure
9)

The selected horses are Galoway, Patron, Happy and Driekus. For the activities, trotting-rider
and trotting-natural are combined, as well as for the running-rider and running-natural activi-
ties, since these are similar activities of which not both activities contain enough samples to be
used in this project. Thus, only data from the horses Galoway, Patron, Happy and Driekus will
be used for the activities walking-rider, trotting (rider and natural), grazing, standing, running
(rider and natural) and walking-natural. The remaining dataset contains 9403903 labeled (un-
windowed) samples. The corresponding data sets are combined into a single dataframe and rows
where values are missing are removed.
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Figure 9: The distribution of labeled activities for selected activities and four horses

Sensor selection The three features describing the various magnetometer and gyroscope axes
are dropped, as this data was found to be too prone to alterations as a result external distur-
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bances, such as magnetic fields, and thus unreliable as a whole. The 3 axes of the accelerometer
combined in a vector are used. Additionally, the 12-norms of the various sensors are also not used
during the study, and as such are removed from the feature set. This results in the following fea-
ture set, seen below in table

Table 3: Overview of the feature set. Adapted from [22, p.4]

Feature Description

A3D Raw data from the accelerometer in a 3D vector

label Label that belongs to each row’s data

segment  Each activity has been segmented with a maximum length
of 10s. Data within one segment is continuous. Segments
have been numbered incrementally.

subject Subject identifier

Data filtering The accelerometer and gyroscope measurements are inherently noisy. Thus, it
is important to filter out high-frequency noise from the measurements. This is done with a low-
pass Butterworth filter with a cut-off frequency of 30 Hertz. Arablouei et al. [36] show that the
most power in the signals ranges from 0 to 25 Hz, making 30Hz a reasonable cut-off frequency for
high-frequency noise.

Splitting the data The dataset is split into a pool data set and testing subset and later the
pool data subset is divided into a training and unknown data subset. This process is visualised in
Figure |8|. This method was also used by Kamminga et al. |[37] for the same dataset, to address
heterogeneity. During the testing phase, one of the four horses is selected as the testing subject
and the other four horses are included in the pool subset. For example, if Galoway is used as a
test subset, then Patron, Happy and Driekus are included in the pool subset. These steps are
performed for all four horses, therefore testing is done four times.

Feature scaling Since some of the values are of a much larger size than others, it is important
to scale them so that they are easily comparable. This is done after the splitting of the data, so
no test data is used for training or vise versa. To do so, the accelerometer and gyroscope sam-
ples are divided by the highest value within the corresponding axis to obtain normalized values
between 0 and 1.

Windowing, Shuffling, Reshaping Windowing is done with a sliding window of two sec-
onds with 50% overlap, so a step distance of one second. These windows can now be used as data
instances for training. All training data is shuffled with the use of the shuffle() method from
sklearn. After shuffling, the training data is reshaped from a array with dimensions [number of
labels, 200] into a one-dimensional array to fit into the classifier.

Encoding labels In order to make the dataset more suited for most machine learning algo-
rithms, the categorical labels should be converted into numerical ones. However, as there is no
ordinal relationship between the original categorical labels, one-hot encoding should be applied to
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any numerical label representation to avoid the algorithm potentially trying to make use of any
non-existent ordinal relationship.

To do so, the various activity labels are first converted into numerical labels using the LabelEncoder ()
function provided within scikit-learn’s preprocessing library. Following this, one-hot encoding is
applied to the integer representation of the labels. The resulting encoded labels are added as an

extra column to the dataframe.

5.3.2 Classification

Active Learning After splitting the data into a pool data set and test set, the initial training
set can be formed from the pool data set, which will be variable DP, e.g. 50, data points. The
rest of the data points from the pool data set will be in an unlabelled data subset, known as the
rest subset. With the initial training data, the pool is trained with the classifier. Then, the most
ambiguous point is selected from the unlabelled rest subset, labelled, and added to the training
set. This is trained again. This is iterated variable I'T, e.g 20, number of times, to finally get a
definite result. These two variables will try to be found optimally in the experiments. Addition-
ally, the way the most ambiguous point is selected is done by three different types of uncertainty
sampling and two types of disagreement based sampling, namely least certain, uncertainty mar-
gin, uncertainty entropy, consensus entropy and maximum disagreement

Algorithms The uncertainty sampling algorithms use a formula to calculate which point to
query from the unknown data subset, so all data from the pool set which is not used in the train-
ing set. This uses just one classifier, the DNN, to train the data. However, in disagreement based
sampling several classifiers are used and compared to each other. After a prediction, they vote on
the one with the most disagreement. These algorithms use two DNN classifiers, but both start
with different samples in the initial training set.

DNN classifier The classifier used is a sequential classifier from Keras, which represents a
neural network with multiple layers, as depicted in Figure The first layer is a Reshape layer,
where the training data is reshaped back into 6 dimensions. Next, three Dense layers are added,
representing three hidden layers in the neural network, each with 100 fully connected nodes. The
activation function used in each of these layers is a rectifier, which is the ReLu activation func-
tion. After the three hidden layers, a Flatten layer is added to flatten the data. The last layer is
the output layer, which is a Dense layer with the same number of nodes as the number of activi-
ties and a softmax activation function. After training and having iterated IT times, an evaluation
is performed and a confusion matrix is constructed from this data.

Hidden Layers

Input > Reshape ——» | Denselayer | —» | Denselayer | —» | Dense layer | —» |Flatten data Dense layer Qutput

shape: shape: shape shape: shape: shape: shape:
[length labels = 200] [length samples. 200, 8]| [length samples. 200, 100] [length samples, 200, 100] [length samples, 200, 100] | [length samples, 20000] [length samples, 6] [length samples. 6]

Figure 10: DNN structure
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5.3.3 Evaluation

As mentioned above, the testing phase is performed four*IT times, once per tested horse per it-
eration. To get the results of the Fl-score and MCC per the iteration, the average of the horses
is taken. The steps are performed in the same order as described above: splitting the data, fea-
ture scaling, windowing, shuffling, reshaping, encoding, training the classifier and lastly, testing.
Firstly, the sensor data in the test data are normalized, after which windowing and reshaping

is performed. The only difference in the preprocessing of the test data and the training data, is
that the test data does not get shuffled. Lastly, the model is tested with the Keras predict ()
method. Per horse, the experiment performance is saved in the database. Also, the performance
of each activity per horse is also saved in the database.

5.4 Tools

In this Graduation Project multiple tools are used, which will be described below.

5.4.1 ITC Geospatial Computing Portal

The ITC Geospatial Computing Portal from the University of Twente is used to run the code
on [38]. This portal allows, among other programming languages, Python 3 code through the
JupyterLab environment [39]. Apart from running the code, the CSV files containing the raw
IMU data can also be stored on this server.

5.4.2 Programming language and packages

For this project Python 3 is used with a couple of packages.

pandas The Pandas package supports data analysis and data manipulation, allowing the user
to retrieve and shape the data [40].

numpy The Numpy package allows mathematical calculations [41]. In this case, these calcu-
lations are used for conversions between number types (integer, float, etc.), retrieving maximum

values and shaping arrays.

scikit-learn The scikit-learn (or sk-learn) library is made for predictive data analysis [42]. In
this project, it is used to define the metrics and for preprocessing.

keras The keras package focuses on Deep Learning, including methods for implementing a Deep
Learning algorithm [43].

peewee The peewee package is used to implement a database to store and retrieve the results
of experiments [44].

seaborn Seaborn is used for data visualization [45]. In this case, seaborn is used to plot a con-
fusion matrix.
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Other packages Other packages used are scipy, glob, matplotlib, uuid, IPython, datetime, re
and ast.

5.5

Database

By the use of the Python package Peewee, a database is created to easily store experimental

data.

This database is connected to a virtual server. There are two tables, one for the experi-

ment results per horse and one for the experiment results for a specific activity per horse.

The experiment table consists of several columns, containing a summary of the results from all
activities:

Key: a unique key is generated per experiment with the uuid Python package.
Username: The name of the person who performed this experiment.

Horse: The name of the horse which is in the test dataset.

Date: The date on which the experiment was conducted.

Accuracy: The overall accuracy of this experiment.

Balanced accuracy: The overall accuracy of this experiment, balanced on the amount of
samples per class.

F-score: The overall weighted F-score of this experiment.
MCC: The overall MCC of this experiment.

Recall: The recall of this experiment.

Confusion matrix: The confusion matrix of this experiment.

Parameters: The parameters used for this experiment, including Time Periods, Step Dis-
tance, Epochs and Batch size.

Description: A description of the specific settings used for this experiment. This can, for
example, entail of the structure of the classifier. The description is added in text-format.

The activity table also has several columns, focusing on each activity within an experiment:

Key: A unique key, corresponding to the experiment.

Horse: The name of the horse which is in the test dataset for this activity.
Activity: The name of this activity.

Accuracy_activity: The accuracy of this activity.

Recall_activity: The recall of this activity.

Specificity: The specificity of this activity.

Precision: The precision of this activity.
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TP: The number of times the system predicted Positive and the actual value was also Posi-
tive (True Positive).

TN: The number of times the system predicted Negative and the actual value was also Neg-
ative (True Negative).

FP: The number of times the system predicted Positive and the actual value was Negative
(False Positive).

FN: The number of times the system predicted Negative and the actual value was Positive
(False Negative).
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6 Results

The experiments have been divided into two parts. The first, is to visualise and consider the po-
tential performance of the AL algorithm. This is done by showing the power of an AL algorithm
step by step with a linear SVM classifier, by depicting the iterative process in a 2D graph. Sec-
ondly, the three uncertainty sampling AL algorithms and the two disagreement based sampling
AL algorithms were evaluated on a DNN pipeline. The uncertainty sampling uses the DNN clas-
sifier once and the disagreement based sampling uses two DNN classifiers, but each with different
samples in the initial training set.

6.1 Linear SVM Classifier with AL

To visualise the power of AL in practice, two features have been chosen to be plotted against
each other, as it is clearer to interpret 2D plotted data. The features chosen are the standard de-
viation and the magnitude. The activities have been divided in two, to depict the boundary more
clearly in a graph, comparing stationary activity to dynamic activity of a 3D vector of accelerom-
eter movement. For clarity’s sake, grazing, standing and eating were chosen for stationary; trot-
ting and running were chosen for dynamic. Walking was not considered, as this overlapped with
grazing and consequently cannot clearly be depicted in the graph. Some other activities, like
fighting and rolling, were also left out because of the large amount of outliers. As the point of
this visualisation is to depict the power of Active Learning in a graph, this scattered depiction of
the activities was not convenient and therefore excluded.

The classifier has been trained on all the data with a Linear SVM classifier and its result can be
found in Figure This Figure does not yet include the AL algorithm. The purple line shows
the subsequent decision boundary, which will be seen as an ”ideal” decision boundary, to com-
pare the performance of the AL algorithm to.

Ideal boundary with linear SVM classifier
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Figure 11: linear SVM on dynamic vs stationary activity
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Now we have a baseline for the optimal performance, the AL algorithm can train. The data set
is split into two, dividing pool data and test data in a 80/20 divide. The training data set is then
created from the first 10 instances of the pool data set and iterated 2 times and then again with
2 instances and iterated 10 times.

To decide which instances to query, a type of uncertainty sampling is used, namely a least cer-
tain algorithm. This instance is shown in the figure with the yellow star, as shown in Figures 77
and This point is found in the rest of the pool data set with unlabelled data and then added
to the training data set. It then trains the boundary again. This process of finding, adding and
training is done iteratively. After each iteration, a new decision boundary is estimated based on
the newest information, which is visualised with the green dotted line. To compare the accuracy
of the AL decision boundary, the purple ideal boundary found by the linear SVM line is still vi-
sualised too.

Firstly, the AL algorithm will do 2 iterations with an initial training set of 10 data points, linked
to a random state of 1 for reproduction for the second experiment, as shown in Figure This
visualises step by step how beneficial asking a specific label can be. This means in total, it will
have used 12 labelled data points to classify. Secondly, the AL algorithm will do 10 iterations
with an initial training set of 2 data points, again using 12 labelled data points. Some iterations
are shown in Figure the rest can be found in Appendix B.

Beginning Iteration 0/2
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Figure 12: AL with 2 iterations and training set of 10 with linear SVM classifier
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While both use the same amount of data points and get good results, there is a clear difference
in how consistently the algorithm works. With more initial samples, it goes to the approximate
correct classification quicker, as it better knows where to look. However, with less initial sam-
ples but more iterations, the correct boundary can be found more accurately, as the specific line
will eventually be found by asking for more of the ambiguous labels. How fast this goes hugely
depends on which initial samples are chosen, as they might include outliers and then the AL al-
gorithm will need many more iterations to establish a boundary.
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Figure 13: AL with 10 iterations and training set of 2 with linear SVM classifier

6.2 DNN without AL

The DNN trains with a set amount of labelled data points, but the amount of epochs can be var-
ied. The training process also stops the epochs once the accuracy goes down again. After trial
and error, there was found that this stop was at a maximum of around 20 epochs. Therefore, 25
epochs were chosen to get the best result from the DNN for every horse. The testing was done
for each horse, so four times, and the average of this was used for the results and confusion ma-
trix.

Results The first horse Galoway only needed 9 epochs, after which it stopped because the ac-
curacy went down again. The horse Patron only needed 7 epochs, horse Happy 14 epochs and
horse Driekus 6 epochs. This gave a Fl-score of 0.774 and a MCC of 0.723. This shows the pre-
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diction is quite good.

Confusion Matrix The resulting confusion matrix shows good results for most activities, as
shown in Figure Walking-rider was identified the best and only walking-natural was predicted
very badly. Grazing and walking-rider was most often confused with each other.
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Figure 14: Confusion Matrix DNN without AL

6.3 AL on DNN

After visualising active learning on a linear SVM classifier with different initial training set sizes
and number of iterations, active learning was applied to the DNN pipeline which was described

in the methodology. First the DNN was tested without AL and then the algorithms least confi-

dent, margin, uncertainty entropy, consensus entropy and maximum disagreement were applied.
The package used for all algorithms was modAL .

6.3.1 AL Variables

To be able to compare the effects the initial training set size has and to find the number of it-
erations needed to get the full potential of AL, trial and error was used at first. This was based
on when AL still has affect, while also considering the aim is to use the least amount of labels
possible. Two experiments are done per algorithm and four graphs have been developed to most
informatively visualise the results. Two use the MCC value and the other two use the Fl-score,
while comparing small and big initial training set sizes. The iterations are the average of the four
horses, each time testing on a different horse and training the others. The initial training set uses
random sampling, therefore the beginning point at iteration 0 can be seen as the performance

of the classifier without AL. Up from there shows the increase in performance by the AL algo-
rithms. Additionally, a confusion matrix is used to depict how well classification works per activ-
ity.

36



The first experiment focuses on the low initial training set sizes. As was found by trial and er-
ror, the best performance was depicted in the first 40 iterations. It differed greatly per algorithm
which iteration should be chosen, but all showed no significant increase in MCC or F1l-score af-
ter 40 iterations. The initial training set sizes were chosen at 10, 20, 30 and 50. This shows the
absolute minimum training set size which can be considered to get meaningful results.

The second experiment focuses on the higher initial training set sizes. As could be concluded
from literature /sources/, the SVM classifier and some trial and error, indeed much less itera-
tions were needed to get to most out of it. The rapid increase stopped at around 8 iterations.
However, while the smaller initial training set sizes did not go up anymore, the bigger ones did.
First gradually, but then also significantly. This was between iteration 30 to 50, dependent on
the algorithm and training set size. Therefore, 50 iterations were chosen to depict the effect. The
initial training set sizes that showed significant differences between each other, yet are still rela-
tively small compared to the data set, were at 80, 150, 250, 350. The highest ones already give
results that are closer together and above 350 it does not give significantly better results.

The confusion matrix was created for all horses at an initial training set size of 50 and 350, using
in total 90 and 400 labelled data points. This shows how well labels were predicted on average
for the horses after iterating.

6.3.2 Least Confident

Description This method looks at the probability (prediction) of each point. Then it sub-
tracts (1 - prediction), to find the lowest prediction and therefore the highest uncertainty. This
was done with the modAL package classifier_uncertainty.

Comparing initial training set sizes The smaller initial set sizes were not very consistent
when reaching more iterations, however, in the end they do go up. The initial F1-score and MCC
were low and they needed many iterations to achieve good results. As can be seen in Figure
consistency becomes higher with a bigger initial training set. Here, they stop learning as rapidly
at iteration 25.

Interestingly, for the smallest three initial training set sizes, the F1l-score starts of at around 0.22,
but they go down until iteration 10, from where it goes up again, even though it does pick the
most informative instance. The MCC also shows a decrease at first, illustrating the prediction
value indeed gets worse and even worse than random. After iteration 10, both Fl-score and MCC
go up again.

Furthermore, there can be seen that the bigger the initial training set, the quicker it learns per
iteration and the higher the total accuracy can become. There is a rapid increase in both F1-
score and MCC up and until iteration 10. From here, the F1-score and MCC continue to increase
with approximately 0.1 for another 20 iterations. The highest two, so 250 and 350 samples, are
much less consistent and increase from iteration 20 on. If they query a convenient informative
one, its values increase, but if it causes confusion, it decreases a bit. This variance between itera-
tion 20 and 50 can make the difference of approximately 0.1 MCC, as can be seen in Figure
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Figure 15: least confident MCC and F1 per iteration, for small and big initial training set sizes of
10, 20, 30, 50 and 80, 150, 250, 350

Confusion matrix The confusion matrices show clear differences, as shown in Figure The
first confusion matrix, using 90 labelled instances, most often predicted the sample to be in the
walking-rider class, which is also the biggest. However, it still confuses this with many other ac-
tivities, mainly grazing and trotting. Trotting was also identified reasonably well, but as men-
tioned was most confused with walking-rider.

The second confusion matrix, using 400 labelled instances, shows it preformed much better. The
activity trotting was identified quite well, with relatively little confusion. The activities grazing
and walking-rider were also classified well, although they were still often confused with others.
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Figure 16: Least Confident confusion matrices using 90 and 400 labelled instances

6.3.3 Margin of Confident

Description This method considers the difference in the probabilities of the two highest pre-
dictions. This margin is then used to establish the smallest margin and this is used to find the
most ambiguous data point. The modAL package which was used was: classifier_margin

Comparing initial training set sizes The results, as shown in Figure show that for the
lower initial training set sizes, MCC and F1l-score are low and inconsistent. The difference per
size is still significant, where even labelling 10 points gives a F1l-score of only 0.15 and 20 already
gives 0.35 after 40 iterations. The F1-score did again decrease for the three smallest, this time
even to a score of almost 0 Fl-score and below 0 MCC till iteration 20, but then goes up again.

The higher training set sizes were as expected, where F1-score and MCC go up rapidly until it-
eration 8. From iteration 8 till iteration 20 it still increases with 0.1. From iteration 20 to 50, it
is less stable again. The biggest initial training set size of 350 gave the best results again, with it
being reasonably consistent around 0.64 for the MCC and 0.68 for the F1-score.
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Figure 17: Margin of Confidence MCC and F1 per iteration, for small and big initial training set
sizes of 10, 20, 30, 50 and 80, 150, 250, 350

Confusion matrix These confusion matrices look similar to those of the least confident, as
shown in Figure Again, for the confusion matrix which used 90 labelled instances, walking-
rider was best predicted, yet also gave the most inaccuracy. Trotting still had some good results,
but was also confused with walking-rider. However, many more activities were seen and consid-
ered and also others beside walking-rider were correctly identified.

The confusion matrix which used 400 labelled instances was again much more accurate in its pre-
dictions. Walking-rider was mostly correct, or confused with grazing. Trotting and grazing were
often classified correctly too.
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Figure 18: Margin of Confidence confusion matrices for 90 and 400 labelled instances

6.3.4 Uncertainty Entropy

Description This method focuses on the entropy of the class probabilities. This is a measure
of how random data is, so the higher the entropy, the more ambiguous the instance. The modAL

package used was: classifier_entropy.

Comparing initial training set sizes The results are again very similar, as shown in Fig-
ure The three smallest initial training set sizes go down to a Fl-score of zero. The smallest
size of 10 even goes below 0 MCC, showing it is worse than random prediction. The other two
lowest, those at 20 and 30, again first go down, but then up again and give a Fl-score of 0.35.
The last of the lowest, that of 50, does not first go down. However, it is very inconsistent with
many peaks up and down. At iteration 20, all 4 go up and at iteration 32 reach a point of stabil-

ity.
The higher training set sizes are also similar. All go up rapidly until iteration 9 and reach stabil-

ity, with more variations, around iteration 20. Again, the biggest initial training size of 350 gives
the best results, with a MCC of 0.64 and a F1l-score of 0.69.
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Figure 19: Entropy MCC and F1 per iteration, for small and big initial training set sizes of 10,
20, 30, 50 and 80, 150, 250, 350

Confusion matrix Both confusion matrices are very similar to the least certain algorithm.
The walking-rider activity was classified correctly the most times, but for the lowest training set
of 90, it was also most confused. The activity trotting was also classified well, but had less confu-
sion with walking-rider than the other algorithms. For the training set of 400, grazing was often
also classified correctly and the other activities were classified right sometimes, although often
poorly.
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Figure 20: Uncertainty entropy confusion matrices for 90 and 400 labelled instances

6.3.5 Consensus Entropy

Description This method is part of disagreement based sampling. It first considers the aver-
ages of the class probabilities per classifier, from which the entropy is calculated. This largest
entropy is selected as having the most disagreement. The method uses the modAL package con-

sensus_entropy_sampling.

Comparing initial training set sizes The results showed something similar to that for un-
certainty sampling. Again, the higher the initial training set, the better the performance. For
the smaller sizes, the F1l-score and MCC did go down a little again and at around iteration 20 it
went up again. At iteration 30, it does not go up as rapidly and is reasonably stable.

The bigger initial training set sizes were quite stable. It went up rapidly till around iteration
9. From iteration 9 to 25, this is quite consistent, but from there it is less stable and has some

peaks and troughs.
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Figure 21: Consensus entropy MCC and F1 per iteration, for small and big initial training set
sizes of 10, 20, 30, 50 and 80, 150, 250, 350

Confusion matrix The confusion matrix with the lowest amount of labelled instances used,
which is 90, had decent results. It could differentiate the trotting quite well from the others and
walking-rider even more often than for the 400 labelled instances used. However, every class did
have more confusion for the lower one and walking-natural and standing was never identified cor-
rectly. The higher one did identify standing sometimes and running and grazing even a lot more
times.
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Figure 22: Consensus entropy confusion matrix for 90 and 400 labelled instances

6.3.6 Maximum Disagreement

Description Unlike the other methods, this method does not just pick the ones all classifiers
disagree on the most, but considers the instances that have the largest disagreement. This method
uses the Kullback-Leibler divergence per classifier, to measure how the probabilities differ per
classifier. The modAL package max_disagreement_sampling is used.

Comparing initial training set sizes The results showed that it took a little longer to get
to a stable point and stay consistent for this algorithm. The lower initial training set sizes went
down again, but after iteration 5 already went up. This increase did take quite long, with a in-
crease till iteration 30. Even from there, it was not very stable.

The higher initial training set sizes look very similar to the consensus entropy. It rapidly goes up
until iteration 9, then finds a stable point and hangs around this til iteration 20. From here there
are more peaks and troughs, which decreased with the higher training set size.
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Figure 23: Maximum disagreement MCC and F1 per iteration, for small and big initial training
set sizes of 10, 20, 30, 50 and 80, 150, 250, 350

Confusion matrix These two confusion matrices show quite good results. The smallest train-
ing set size of 90 could even differentiate walking natural a few times, which was barely done
before. However, it could not find the standing activity and all activities were confused with
walking-rider many times. The training set size of 400 showed good results too. All activities had
some reasonable results, except for walking-natural, which was confused with walking-rider a few
times and only labelled correctly 18 times.
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Figure 24: Maximum disagreement confusion matrix for 90 and 400 labelled instances
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7 Evaluation

To evaluate which algorithm performs best, the algorithms are compared to each other within
their division of uncertainty or disagreement. This is done by showing the differences in the num-
ber of instances that need to be queried for AL to be efficient and the size of the initial training
set. Additionally, the best algorithms are chosen for each sampling type and are compared. Fur-
thermore, the AL algorithms on the DNN are compared to the DNN without AL. Lastly, all algo-
rithms are compared to manual annotation to show how time-efficient AL is.

7.1 Comparing Algorithms Per Sampling Type

The first experiment used an initial training set size of 10, 20, 30 and 50 data instances and it-
erated 40 times. The second experiment used an initial training set of 80, 150, 250 and 350 and
iterated 50 times. All three algorithms were tested and depicted against their F1l-score and MCC.
To visualise a comparison between the algorithms and show the effect of AL, and how it varies
with the initial training size, the initial training set sizes of 50 and 350 are used to compare the
various algorithms, as shown in Figure [25[ and Figure Both are iterated 50 times.

Uncertainty sampling The three uncertainty algorithms overlap hugely and with an increase
in iteration, all become more consistent and overlap more, both for the smaller and bigger initial
training set sizes. The initial training based on 0 iterations is around 0.1 MCC and 0.22 F1l-score
for all algorithms for both sizes. This reaches up to 0.4 MCC for the initial training set size of
50 and an Fl-score of 0.45 after 50 iterations. The initial training set size of 350 goes up to 0.64
MCC and an F1-score of approximately 0.65. The exact results can be found in Table [4] and

For the low initial training set size of 50, when the iterations are low, the algorithms overlap less.
There can be seen in Figure that all algorithms have peaks going up and down at first and
become more consistent around iteration 20. From there on, it reaches stability around iteration
40. The least certain algorithm does have some extra peaks, but on average does give the same
result.

The algorithms of the higher initial training set size of 350 overlap even more. The results are
very similar, where all algorithms go up in Fl-score and MCC. These rapidly increase and are
reasonably consistent until iteration 9. From there on, all algorithms are very inconsistent, but
stays around a MCC score of 0.6 and Fl-score of 0.63. What can be seen, is that the margin
algorithm is the least consistent, as it goes up and down in little peaks, also before iteration 9.
Entropy seems the most consistent at the lower iterations. However, the least certain algorithm
seems to be most consistently stable at the higher iterations.

48



MCC per iteration F1-score per iteration

= Least Certain 050 1
= Margin
04 N
—— Entropy Ve ; 045 4
040
03
g Eé 035 4
= 0
02 1 o 030
0.25 1
01 1 R .
020 | Least. Certain
—— Margin
= Entropy
0 0 1 T T T T T T 0 15 T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
Iteration Iteration
MCC per iteration Fl1-score per iteration
= Least Certain
06 - 07 1 — Margin
= Entropy
05 - 06 { — Random
04 1 v
" 5 05
¥ u
03 o
0.4 1
02
= Least Certain 03
01 1 — Margin
— Entro
niropy 02
0 10 20 30 40 50 0 10 20 30 40 50
Iteration Iteration

Figure 25: Least Certain vs Margin vs Entropy, for small and big initial training set sizes of 50
and 350

Disagreement based sampling The two disagreement based sampling overlapped even more,
especially for the low initial training set size, as shown in Table [l and [5] The differences are
small and the results very comparable. Both got to a MCC of 0.5 and F1-score of 0.55 for the
small training set size and a MCC of 0.65 and F1-score of 0.7 for the big training set size. There
is a small difference which can be found, which is that the maximum disagreement algorithm is
more slightly more consistent. Additionally, both algorithms start at a Fl-score of 0.2 and MCC
of 0.05 for the low initial training set size. However, the bigger initial training set size was at a
F1-score of 0.2 and MCC of 0.1 for consensus entropy and F1l-score of 0.35 and MCC of 0.28 for
maximum disagreement. This also means that the maximum disagreement has to rise much less
per iteration to get to the same performance.

49



MCC per iteration

Fl-score per iteration

06— ——
—— maximum disagreement
05 - Consensus entropy
05 1
04
L D4
g 03 g
= -
e
021 03
01 i i 02
— maximum disagreement . V
= consensus entropy
0 10 20 30 40 0 10 20 30 40 50
Iteration Iteration
MCC per iteration F1-score per iteration
0.7 1
0.6 1
05
o]
2 041
0.3 1
02 03+ = maximum disagreement
—— maximum disagreement = gonsensus entropy
01 - ] — consensus entropy 02 ! —— Random
0 10 2 ) @ 0 0 0 0 © 50
Iteration Iteration

Figure 26: Maximum Disagreement vs Consensus Entropy, for small and big initial training set

sizes of 50 and 350

50




Table 4: F1 of algorithms per iteration with initial training set size 50 and 350

| Algorithm o [2 |4 |6 |8 [10 [15 [20 [25 [30 [40 [49 |50 |
Least Confidence | 0.242] 0.273] 0.193[ 0.152[ 0.214] 0.417] 0.400] 0.376] 0.384] 0.404] 0.443[ 0.450] 0.450
(50)

Margin of Confi- | 0.209] 0.227| 0.243| 0.250] 0.270] 0.262| 0.379] 0.317| 0.400| 0.423| 0.455] 0.439] 0.439
dence (50)

Uncertainty En- | 0.217] 0.311] 0.321] 0.271] 0.237] 0.346] 0.300| 0.334] 0.422| 0.439] 0.436] 0.463| 0.432
tropy (50)

Consensus En- 0.190] 0.202[ 0.298] 0.403| 0.406| 0.470] 0.461| 0.492| 0.510 0.510] 0.540[ 0.526] 0.509
tropy (50)

Maximum Dis- 0.208| 0.237| 0.269| 0.253| 0.322| 0.417] 0.469| 0.494| 0.510| 0.508| 0.544| 0.558| 0.578
agreement (50)

Least Confidence | 0.224| 0.340| 0.508| 0.503| 0.520| 0.519| 0.574| 0.631| 0.672| 0.626| 0.666| 0.696| 0.676
(350)

Margin of Confi- | 0.309| 0.422| 0.383] 0.503| 0.520| 0.513| 0.608| 0.614| 0.630| 0.646| 0.644| 0.678| 0.630
dence (350)

Uncertainty En- 0.177) 0.359| 0.482| 0.510| 0.520] 0.517| 0.531| 0.568| 0.555| 0.669| 0.650| 0.677| 0.699
tropy (350)

Consensus En- 0.207| 0.518| 0.523| 0.539| 0.600| 0.699| 0.722| 0.731| 0.694| 0.693| 0.682| 0.710| 0.698
tropy (350)
Maximum Dis- 0.333| 0.515| 0.524| 0.532] 0.557| 0.580] 0.583| 0.736| 0.685| 0.714| 0.689| 0.697| 0.703

agreement (350)
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Table 5: MCC of algorithms per iteration with initial training set size 50 and 350

| Algorithm o [2 |4 |6 |8 [10 [15 [20 [25 [30 [40 [49 |50 |
Least Confidence | 0.084] 0.144] 0.027] 0.028] 0.095] 0.329] 0.298] 0.293] 0.306] 0.333] 0.388] 0.450] 0.392
(50)

Margin of Confi- | 0.054] 0.041] 0.063| 0.088| 0.150| 0.209] 0.218| 0.350| 0.361] 0.384] 0.372| 0.382 0.381
dence (50)

Uncertainty En- | 0.093] 0.182[ 0.193] 0.121] 0.068| 0.203| 0.204] 0.224| 0.357| 0.384| 0.383 0.402| 0.364
tropy (50)

Consensus En- 0.055| 0.070| 0.203| 0.326] 0.328] 0.436| 0.462| 0.475] 0.503| 0.502| 0.523| 0.514] 0.485
tropy (50)

Maximum Dis- 0.048] 0.088| 0.137| 0.145| 0.221] 0.345| 0.444| 0.477) 0.493| 0.498| 0.502| 0.511| 0.528
agreement (50)

Least Confidence | 0.059| 0.269| 0.501| 0.496| 0.527| 0.525| 0.565| 0.612| 0.642| 0.595| 0.633| 0.659| 0.640
(350)
Margin of Confi- | 0.182| 0.353| 0.339| 0.494| 0.526| 0.511| 0.588| 0.584| 0.590] 0.593| 0.604| 0.634| 0.593
dence (350)
Uncertainty En- 0.038| 0.267| 0.456| 0.505| 0.527| 0.520] 0.536| 0.564| 0.548| 0.641| 0.618| 0.651| 0.655
tropy (350)

Consensus En- 0.100| 0.523| 0.532| 0.549| 0.555| 0.560| 0.644| 0.674| 0.670| 0.649| 0.647| 0.676| 0.668
tropy (350)
Maximum Dis- 0.261| 0.516| 0.532| 0.542| 0.551| 0.578] 0.582| 0.681| 0.679| 0.669| 0.672| 0.648| 0.656

agreement (350)

7.2 Comparing Sampling Types

Additionally, the best uncertainty sampling type is the least certain algorithm, as this is most
consistent throughout the iteration process, and the best disagreement based is maximum dis-
agreement sampling type, as this is slightly more consistent in the higher iterations. A very clear
difference is shown between the two, as shown in Figure where the least confident algorithm
has a substantially higher performance than the maximum disagreement throughout. However,
at the biggest training set size, at around iteration 45, finally there is no difference anymore and
every new iteration even overlaps exactly in MCC and almost exactly in Fl-score.
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Figure 27: Maximum Disagreement vs Consensus Entropy vs Random Sampling, for small and
big initial training set sizes of 50 and 350

7.3 Comparing To DNN Without AL

The results of the uncertainty and disagreement AL algorithm can be compared to the DNN
training without AL. The DNN classifier is a type of supervised learning, where all of the la-
belled data is used to train the DNN. Where the AL algorithm splits the pool data into a la-
belled training subset and a rest unknown subset of unlabelled data, the DNN uses all of the
pool data as training data. These are 81332 data points in this dataset. The AL algorithm can
use variable X amount to train with. The DNN will be compared without and with AL on the
best uncertainty sampling and disagreement based sampling algorithms, namely least confident
and maximum disagreement.

The smaller initial training sets needed more iterations to get the results from AL. This was the
same for all algorithms. For AL to be beneficial, it must reach a high consistency, as otherwise it
could coincidentally be at a trough and subsequently have a low F1l-score and MCC. Addition-
ally, at a given point it reaches a point where the labelled instances are not substantially useful
anymore. Therefore, the point where AL is stable and effective will be chosen to compare the
AL algorithm with the DNN. The uncertainty sampling algorithm uses the DNN once and the
disagreement based sampling twice. This is compared with a low and higher initial training set.
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The first instance where a stability is reached with a sufficient performance will be used. This
differs a bit per algorithm and initial training set size, as shown in Table [6]

Additionally, seeing as the benefit of AL is that is saves labelling time, it is also important to
consider the run time of the algorithms. The run time will again be based on an average of the

horses.

MCC, F1l-score, Run time The MCC and F1 score can be compared with the labelled in-
stances used and the three different uncertainty sampling algorithms and two different disagree-
ment based sampling algorithms, as shown in Figure [6] Clearly, the MCC and F1-score is better

for the DNN without AL. However, the MCC is only 0.062 better and the F1l-score only 0.117 for

the best uncertainty sampling algorithm at the highest number of iterations and a difference of
a MCC of 0.029 and F1-score of 0.041 for the best disagreement based sampling algorithm. The

run time was quite similar for all algorithms.

Table 6: Comparing DNN with(out) AL

Algorithm Initial training | Iterations | MCC F1-score Time (s)
Set

DNN with Least Confident 50 44 0.446 0.439 50.02

DNN with Margin of Confi- 50 29 0.361 0.449 50.76

dence

DNN with Uncertainty En- 50 30 0.384 0.439 46.94

tropy

DNN with Consensus En- 50 18 0.479 0.496 44.60

tropy

DNN with Maximum Dis- 50 18 0.474 0.495 45.20

agreement

DNN with Least Confident 350 43 0.658 0.685 51.59

DNN with Margin of Confi- 350 33 0.661 0.688 50.34

dence

DNN with Entropy 350 42 0.636 0.657 51.43

DNN with Consensus En- 350 18 0.625 0.622 47.63

tropy

DNN with Maximum Dis- 350 18 0.694 0.733 46.81

agreement

DNN without AL 81332 0.723 0.774 56.34

Confusion Matrix Comparison Lastly, there can be considered exactly how classification
works and if this has significant differences in DNN without AL or with AL. As the confusion
matrices were very similar for all five algorithms, only two algorithms were used to compare with
the DNN without AL. The algorithm which was established as slightly more stable and with a
better performance above, were the maximum disagreement and least certain algorithm. There-

fore this confusion matrix, as seen in Figure will be used to compare the DNN without AL to,

as seen in Figure
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Figure 28: Maximum Disagreement and Least Confident confusion matrix using 400 labelled in-

stances
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Figure 29: Confusion Matrix DNN without AL using 81332 labelled instances

The DNN confusion matrix using 81332 labelled instances is very similar to the confusion matrix
of 400 labelled instances. The confusion matrix of the DNN shows that it has classified many
more activities correctly than the AL algorithm. However, with an increase in correct classi-
fication, the confusion in other areas also increased, e.g. grazing was classified much more of-
ten than walking-rider. In general, the three confusion matrices do look rather similar in the
sense of which activities it classified and how well, but the DNN without AL has simply labelled
more. However, here a difference in uncertainty and disagreement based sampling can be found.
The disagreement based sampling, using the maximum disagreement algorithm, differentiated
all activities a little. The least confident was less good, with not once classifying standing and
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walking-natural. However, the DNN without this never even tried to predict the walking-natural
activity. The maximum disagreement therefore had predicted more different activities correctly,
but least certain had less uncertainties across all activities. However, all three types were able to
classify walking-rider, trotting and grazing quite well.

Compare to State of the art In literature, most research compared AL to random sampling
[15], [14], [20]. The MCC shows that indeed, AL is better than random sampling. Active Learn-
ing can indeed be much quicker and show much better results, as was found in this report. This
was the case for both disagreement based sampling and uncertainty sampling, but mainly for dis-
agreement based sampling. For disagreement based sampling, there was found that results were
extremely similar to uncertainty sampling. This was also the case in this report. However, un-
certainty sampling was also compared to supervised sampling in literature, where Liu [31] found
that AL showed a 4% to 5% higher accuracy than just supervised learning. Additionally, Stikic
[32] found that co-training with uncertainty sampling even had an increase of 0.25 to 0.35 in ac-
curacy over just supervised learning. This does not align with what was found in this research,
where AL was slightly less efficient than supervised sampling. However, these compared accuracy,
while the focus of this thesis was on Fl-score and MCC, as this is more telling for activity recog-
nition.

7.4 Manual Annotation vs Active Learning

The main benefit of AL can be found in the number of labelled instances which are used, which
saves lots of time. To find the benefit of labelling with the AL algorithm, a comparison can be
made with manual annotation. The benefits of using AL instead of manual annotation has al-
ready been established for other databases [47]. It depends greatly on the annotation time of a
human, which differs per instance, and the type of data set.

With manual annotation, every instance needs to be labelled by hand. This takes approximately
3 to 10 minutes for sequential annotation tasks like this [48], with an uncertain rejection of 5.7%.
Some research has been done specifically for animal activity recognition and showed that one
minute of video took 3.7 minutes to label on average [48]. The time step of the data points used
in this data set was at 1 second, with a 50% overlap. This gives segments of 2 seconds and the
annotation time would therefore lie around 7.4 seconds on average.

The time it takes to run the algorithm can be found in Table [6] The least confident algorithm
will be used to compare with, as this showed to be most consistent with best results. However,
this does not yet include labelling the initial samples, which has to be added to the time. This

is calculated in Table [l The same annotation time is chosen as was found for a similar data set
with IMU data and video. Therefore, the formula used is 7.4 s * size of total labels used. The
manual annotation time of the data set which is used has been calculated to compare to. It is
also compared to the DNN, which is the same as the manual annotation, yet also includes the
learning process time, so additional similar data can be labelled in the future. The MCC and F1-
score were calculated by averaging the horses, therefore the time the algorithm took will too.
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Table 7: Labelling time

Type Number Labelling Time Algorithm Run | Total Certainty
of labels Time (s) Time (s)
AL Uncer- 94 695.6 s 50.02 745.62 0.446 MCC
tainty
11.58 min
AL Dis- 68 503.2 s 45.20 548.4 0.474 MCC
agreement
8.4 min min
Largest AL | 393 2908.2 s 51.59 2959.79 0.658 MCC
Uncertainty
48.47 min
Largest AL | 368 2723.2 s 46.8 2770 0.694 MCC
Disagree-
ment
45.39 min
DNN 81332 601856.8 s 56.43 601916.23 0.723 MCC
Manual 81332 601856.8 s 0 601856.8 94.3%
10030.95 min
167.18 h
6.97 full days

As can be seen, the smallest AL algorithm, which was at an initial training set size of 50, takes
the least amount of time. However, the Fl-score and MCC is quite low. The second best is the
largest AL algorithm, which has an initial training set size of 350. This size gave much better re-
sults, namely a Fl-score of 0.685 and MCC of 0.658 for uncertainty and 0. F1l-score and MCC

of 0.694 for disagreement. The human error was at 94.3%. This shows humans will still anno-
tate labels better, but, this will save 601856.8 - 2959.79 = 598897.01 seconds compared to the
least certain algorithm of 393 samples and 601856.8 - 2723.2 = 599133.6 seconds compared to the
maximum disagreement algorithm of 368 samples. If this data set is labelled in a working week of
40 hours, this would have saved approximately 4 weeks of work with either of the AL algorithms.

Additionally, the average annotator earns around 3100 euro a month [49]. This data set is not
very difficult, but annotators have to be trained as an accuracy in labelling is needed, so let’s
assume the pay grade will fall within the 25th percentile. This would be at 2231 euro monthly
pay [49]. This algorithm still needed 48 mins to label the queried instances and samples form the
initial training set. This would mean, approximately 2218 euro is already saved by using the AL
algorithm over manual labeling.
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8 Discussion

8.1 Comparing AL Variables

After applying and comparing all algorithms to each other, there could be found that the F1-
score and MCC greatly depend on the size of the initial training set. After how many iterations
the AL algorithm showed potential, also depended on this.

Small initial training set size For all five algorithm types, the three smallest initial training
set sizes of 10, 20 and 30, first dipped in F1-score and MCC. This is because it has so many un-
certainties, that when it takes an ambiguous point which is confusing for the classifier, another
activity can become even more confusing. This is also due to it needing to classify 6 activities
and it only identifies 1 ambiguous point at the time. At approximately 15 iterations, these scores
go up again and become stable without a gain at around 35 iterations. The last smallest initial
training set size which was tested, was at a size of 50. This still had lots of peaks, but didn’t first
dip to zero before climbing up. This algorithm also reached a point where it did not go up any-
more in MCC or Fl-score, which was around iteration 30. The MCC was around 0.39, therefore
giving a result just showing AL has some potential, even when only using 90 labelled instances in
total. This is not great for the 6 activities which were classified, but when classifying for instance
4, this could potentially give much better results.

The classification, as shown in the confusion matrices, showed that walking-rider was guessed
most times during classification. This is due to the imbalance, where walking-rider has many
more samples. If only a few random instances are selected for the training class, probably most,
if not all, are from walking-rider. If the ambiguity sample is queried, most likely this will be from
walking-rider. Therefore, walking-rider is most often correctly, but also incorrectly labelled.

When comparing these results to literature, there was be found that these results were slightly
worse than in literature. However, other research compared accuracy, while this thesis looked at
F1-score and MCC. Additionally, this research was done on a very different data set, not on one
concerning the noisy IMU data with outliers and imbalance. Therefore, this comparison is diffi-
cult to make.

Big initial training set size The bigger initial training set sizes were at 80, 150, 250 and 350.
Both MCC and F1-score for all algorithm types were better for bigger sizes and the bigger, the
better the performance. The highest of 350 reach a maximum F1-score of somewhere between
0.65 and 0.70 and a maximum MCC of approximately 0.63. This shows that the biggest initial
training set size of 350 indeed gives the best results, which was at around 35 iterations. This uses
relatively more labelled instances in total, namely 385, however also shows a potential for AL.
The number of labels is still relatively small, compared to the data set of 81332 number of data
points and give similar results, although a bit lower.

8.2 Algorithm Analysis

After all algorithms were considered individually, they are compared to each other with a low
initial training set size of 50 and a high initial training set size of 350. Both did 50 iterations.
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8.2.1 Uncertainty Analysis

Similarities The similarities of the three algorithms was very big, whereas the results and
comparison showed that they overlap in Fl-score, MCC and the resulting confusion matrices.
Also the general track it takes mostly overlap. This makes sense, as each time one point is taken,
it learns a bit from it and in some way it is the most informative one. The exact data point might
be similar, but the data set is so big that this point might be very similar to the point from the
other algorithm.

The confusion matrices of the higher sampling size of 400, showed much overlap. Therefore, this
means that activities are classified similarly.

Differences There are a few differences. The results of the low initial training set sizes overlap
less for the different algorithms. They query different instances, which will have a bigger impact.
This is due to the relatively big new addition that instance is to the training set. Furthermore,
the margin algorithm is the least consistent and has the most peaks and troughs. The entropy
algorithm is the most consistent at lower iterations and the least confident algorithm is most con-
sistent at higher iterations. The latter is most important in AL, as this reaches the most consis-
tently stable performance.

The confusion matrices showed that for the training set size of 90, there were some differences.
The least confident algorithm, mainly classified all activities as walking-rider and a few as trot-
ting. However, margin of confidence queried instances from all activities. This could be a coinci-
dence, as this is just what the algorithm finds based on the random initial training set samples.
This did mean, at lower initial training set sizes, margin of confidence does seem better at recog-
nising various activities.

8.2.2 Disagreement Analysis

Similarities The algorithms were extremely similar and overlapped mostly. Seeing as both
work with a DNN classifier and the classification is compared, this is a logical result. Both DNN’s
will probably agree, as the only difference would be the difference in the exact samples from the
data set chosen for the initial training set. Additionally, the confusion matrices were very similar,
showing that classification was also not affected massively by the type of algorithm.

Differences While the algorithms lay close together, some minor differences were found. The
stability of maximum disagreement was a bit better than consensus entropy, therefore showing
that in practice this algorithm would be good to use when simply applying it to a data set.

In the classification of specific activities, there is a big difference. The maximum disagreement
algorithm was able to find more different activities for the training set sizes of 90 and 400. Espe-
cially the activity standing was classified much better by the maximum disagreement algorithm.
This could again simply be a coincidence, as certain samples might be chosen which could further
confuse or specifically help classification. However, this does show that maximum disagreement
had the best results concerning classification and stability.
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8.2.3 Uncertainty vs Disagreement Analysis

Overall, both the least confident and maximum disagreement algorithms had the same curve
going up and at the same iteration stopped increasing as rapidly. This shows how big of an im-
pact the size of the training set is compared to the type of algorithm. However, least confident
was consistently much higher in lower iterations and for the lower training set size. This could
be a coincidence, but this was the case for both the lower and higher training set sizes. It could
be that maximum disagreement had a lower performance due to it using the same classifier to
compare with, while least confident could look within the data set to find the most informative
instance. If another classifier was used to compare with, the results of maximum disagreement
could be vastly different, even if in principle the algorithm would work the same. At the end,
both algorithms did come together at the same performance, so this did show that maximum dis-
agreement does learn more per iteration, even if it does starts off lower.

However, it is hard to get to definite results, because all results depend greatly on which instances
are chosen. It could be an unlucky addition or outlier, which throws the algorithm off. This can
especially be seen in the low training set sizes, as the relative affect of an addition is more sub-
stantial. It showed that performance first went down with the first iterations, but later up again,
once it had learned enough.

8.3 DNN without AL vs DNN with AL analysis

After comparing the AL algorithms on the DNN to each other, it was compared to the DNN
without AL. Two initial training set sizes were chosen with different amount of iterations. There
it can be seen that the DNN without AL still majorly outperforms the DNN with AL. The best
AL results came from margin of confidence and maximum disagreement, although this was the
least consistent and in practice works least well. The margin of confidence used 23 iterations and
a total of 383 labels and has a MCC of 0.661 and a F1l-score of 0.688. The maximum disagree-
ment used 18 iterations and a total of368 labels. It has a MCC of 0.694 and F1-score of 0.733.
The DNN has a MCC of 0.723 and Fl-score of 0.774, but used 81332 labels. The difference in
MCC and F1-score was low. However, this difference is still significant.

However, what must not be forgotten is the impact of the number of labels. After only using
approximately 1/212 of the labels, it already got quite close in terms of MCC and F1-score and
gave correct results. Even if this does mean DNN on its own is better, it shows the potential AL
has for application where MCC and F1-score does not have to be high for all activities or if less
activities are used.

8.4 Manual Annotation Results

Finally, the run time of the program was also taken into consideration. There was determined
that the run time of the DNN with the AL only differed a maximum of 6.41 seconds. This is less
time than it takes to manually label 1 sample on average. Therefore, this difference is not very
significant. However, the difference in manually annotating every point and using the algorithm,
was substantial. It was calculated for this very specific data set, which all contained labels, that
it saved approximately a month on work and 2218 euros.

This assumed that one person would label all instances. However, annotators are often checked,
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to ensure reliability. This also takes time. There is not one set way of doing this. The exact way
this is done differs, e.g. depending on the data which has to be annotated. In literature, four
methods are identified for finding the reliability of annotators of activity recognition and the
method Labeling instances of behavior with a frequency-based comparison is most applicable to
this data set and aim [50]. This paper works with a program which would optimise this process.
There is a lot of research done on how long this process would take, all using various approaches
and programs, but no agreement on a standard or minimum amount of time was established.
However, this does mean that annotation would take even long than calculated in Table [7}

The results already seem very positive towards the potential of AL. However, as state of the art
has found, this can even be improved by knowing some variables [47]. What was found, is that
the cost of annotation should be taken into consideration, as this will not be the same for every
data instance. This is found in how long the time instances take to be labelled, but also if the
annotator is an expert or not and what their error is. If the AL algorithm can take this cost into
account, the labelling process would be even quicker and more efficient.
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9 Conclusion

The aim of this thesis was to find which Active Learning strategy is the quickest in converging
to the most adept performance for Animal Activity Recognition when applied to an IMU horse
data set. This was done by first applying AL to a linear SVM classifier and visualising the effect
AL has when classifying two activities. Then, AL was applied to a deep neural network (DNN),
which classified 6 activities. Three AL algorithms using uncertainty sampling were compared to
each other, compared to the DNN without the AL algorithm and lastly, compared to manual an-
notation time.

The SVM classifier showed that the higher initial training set sizes needed less iterations for a
better performance and was quite stable for each iteration. The lower initial training set sizes
needed more iterations and gave less consistent results. However, they did have more potential to
get to a high accuracy.

When comparing the three uncertainty sampling types, namely least confident, margin and en-
tropy, it could be concluded that least confident sampling was the best for the bigger initial train-
ing set size and high number of iterations, while entropy gave the best result for lower itera-
tions. However, all algorithms greatly depend on the exact instances which are used for the ini-
tial training set, because its size is so small. If it contains outliers or it is unlucky in finding the
right instances, the results can be very different. Additionally, the two disagreement based sam-
pling types, namely consensus entropy and maximum disagreement, could also be compared.
While both are very similar, the maximum disagreement seemed better at differentiating between
activities and was more stable in doing so. However, as both use the DNN classifier with different
random sampling points, this could be a coincidence. Similarly for uncertainty sampling, having
a specific instance in the training set can massively influence the results, e.g. by having outliers.
However, the performance of all algorithms were still very similar. What had the most substan-
tial impact for all, was that of the initial training set sizes. The bigger the initial training set, the
less iterations there were needed for a good performance.

Moreover, when comparing the two sampling types, the least confident algorithm performs much
better from the beginning, but after enough iterations, these start overlapping. However, again
this could be a coincidence. Due to this and the results being very close together, no conclusive
judgement can be made on the best algorithm for either sampling type. To take this uncertainty
away, the experiment would need to be run many times with different instances being sampled
each time. However, what was clear, is that both are much better and preferred over random
sampling.

The results of comparing the DNN without and with AL were promising. The DNN without AL
still outperformed the DNN with the AL algorithms, but at the highest initial training set size

of 350, this difference was small. The performance can be helped by preprocessing the data more
thoroughly, which should result in a higher MCC and F1-score. The amount of labelled instances
needed with the AL algorithm was reduced substantially, saving a lot of time. Therefore, there
could be concluded that while DNN without AL does slightly outperform DNN with AL, AL still
has considerable potential. Compared to literature, the results are a little disappointing, but they
cannot properly be compared to reach any definite conclusion.

Lastly, AL clearly showed a huge benefit over manual annotation. How much time annotation
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would take and how much money this would cost, depends on the type of data which has to be
labelled and how reliable this annotation should be. However, what can be concluded is that it
can potentially save months of time and thousands of euros.

9.1 Recommendations

It can be concluded that even though AL shows potential, as it does clearly increase in MCC

with each iteration if the training set is significantly high enough, the MCC was still low, at around
0.65 after using approximately 400 labelled instances in total. There are several factors which
could cause this. Therefore, in further research, I would recommend some improvements. The

most significant factor, is that of the number of activities which are to be classified. When classi-
fying 2 activities, the results showed very positive results. However, when classifying 6 activities,
these results were much lower. This is most likely because if it queries 1 instance at the time, it
might need 20 iterations before it will query an instance from one of the smaller activity classes.
Especially since the data set is imbalanced. Therefore, I would recommend using AL when there
are less activities to be classified.

Additionally, it would be beneficial to further counter the imbalance present in the data set.
Right now, this will give skewed results and a bias towards the activities with more data points.
AL already helps this, but as this is the case for several of the activities, it needs to query quite
a lot of instances before it can get significant results. This is especially useful since research often
needs more information on those smaller activities. The AL will now ask for the bigger activities
much more often and the smaller activities will be classified less well. To get better results, over-
sampling the smaller classes and undersampling the bigger ones is recommended. Additionally,
outliers will be present, which will also potentially skew the results. If an outlier is the instance
the AL queries, it will learn that a rare deviation is normal and will try to compensate all other
classifications. Therefore, compensating for outliers would be beneficial to the results. Further-
more, the sensors attached to the horses were able to move. This means that the data may be
noisy. While a low-pass Butterworth filter was already applied to try and compensate for this,
this did not yield significant results. What can be considered is to use other methods to counter
this.

Lastly, no unequivocal conclusion could be drawn about the type of algorithm which showed the
best performance. This was because the results all lay so close together, yet its performance and
specific instances that were queried, greatly depend on the initial instances that were chosen for
the initial training set. Therefore, I would recommend running all experiments many times, to
find if this impacts the behaviour of the algorithms and to see the effect of what the luck value of
finding a particular value is.

9.2 Future Work

These recommendations should be addressed in future studies to give a more complete picture of
the potential effect of AL. Currently, no definite conclusion could be drawn on the best AL algo-
rithm. Therefore, guidelines should be set up to find the best AL algorithm for their particular
dataset which fully consider all factors. These include the preprocessing steps, but also all limi-
tations in the field which should be addressed in this consideration. This way, a combination of
initial training set size and optimal number of iterations can be linked to the AL algorithms and
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their performance for particular datasets.

Additionally, there are some other aspects within AL which were not applied, but do have po-
tential in this area. The DNN classifier was used to find the potential of AL for AAR. However,
other classifiers also have the potential to work well, e.g. a SVM classifier. To thoroughly find
the best AL strategy on this data set, other classifiers should also be applied and compared. This
is especially the case for disagreement based sampling, where a focus could be on finding the ef-
fect of different combinations of classifiers. The performance of this algorithm can in this way be
optimised fully.

Furthermore, it was established that the number of classes has a big influence on the effectiveness
of AL. To find what affect is has, more thorough research must be done to see how a different
number of classes and the type of instances, e.g. overlapping or clear differences, within these
classes affect the performance. Additionally, again the initial training set size must be considered
here, as these could change for a different data set with different samples.

In addition, there are also other types of algorithms within both uncertainty sampling and dis-
agreement based sampling which can be considered. To fully find the potential of AL, a more in
depth look can be taken into the variations and the affect it has on different datasets.

Lastly, the advantage of AL over manual annotation was considered. However, there was estab-
lished that performance is lower when using AL. More research should be done on how big this
error can be to still have an significant performance and where this error arises. Subsequently,
there can be considered how this error can be helped further.
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11 Appendixes

11.1 Appendix A: SVM classifier vs AL algorithm, 2 iterations
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11.2 Appendix B: SVM classifier
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vs AL algorithm, 10 iterations
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11.3 Appendix C: Code For Database

# import packages

from peewee import x
from datetime import date
import pandas as pd
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import re

from ast import literal_eval

import seaborn as sns

from matplotlib import pyplot as plt

# database credentials
DBNAME = ’HorsingAround’
USER = ’suzannespink’
PASSWORD = ’LBtBuxVfrmqvBufR’
HOST = ’www.jacobkamminga.nl’
PORT = 3306

# FEstablish connection to database
def connect(db_name, username, password, host, port):

db = MySQLDatabase(db_name, user=username, password=password ,

host=host , port=port)
db.connect ()
print (” Connected_to:.” + host + 7:”7 + str(port))
return db

# save experiment in database

def save_experiment (Experiment, uid, horse, acc, balanced.acc,

f_score_avg , mcc_score, recall , matrix, params, desc):
Experiment . create (key=uid ,
username="suzannespink” ,
test _horse=horse ,
date=date .today (),
accuracy_experiment=acc,

balanced_accuracy_experiment=balanced_acc,

fscore=f_score_avg ,
mcc=mcc_score ,
recall=recall ,
confusion_matrix=matrix ,
parameters=params ,
description=desc)

# save each activity in database
def save_activity (Activity , uid, horse, activity , matrix,
index, recall , precision):
TP = matrix [index ][index]
FN = matrix [index |.sum() — TP
FP = 0
for j in range(0, len(matrix)):
FP 4= matrix[j]|[index|
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FP = FP — TP
TN = matrix.sum() — TP — FN — FP

specificity = TN/ (IN+FP)
accuracy = (TP+IN)/(TP+IN+FP+FN)
#save results per activity per horse in the database
Activity . create (key=uid ,
test_horse=horse ,
activity=activity ,
accuracy_activity=accuracy ,
recall_activity=recall ,
specificity=specificity ,
precision=precision ,
TP=TP,
TN=TN,
FP=FP,
FN=FN)

# differentiate classes in database
def get_classes(db):
class Experiment (Model):
key = UUIDField ()
username = TextField ()
test _horse = TextField ()
date = DateField ()
accuracy _experiment = FloatField ()
balanced_accuracy_experiment = FloatField ()
fscore = FloatField ()
mce = FloatField ()
recall = FloatField ()
confusion_matrix = BlobField ()
parameters = TextField ()
description = TextField ()

class Meta:
database = db

# differentiate activity metrics to save in database
class Activity (Model):
key = UUIDField ()
test_horse = TextField ()
activity = TextField ()
accuracy_activity = FloatField ()
recall_activity = FloatField ()
specificity = FloatField ()
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precision = FloatField ()
TP = IntegerField ()
TN = IntegerField ()
FP = IntegerField ()
FN = IntegerField ()

class Meta:
database = db

return Experiment, Activity

11.4 Appendix D: Code comparing Uncertainty AL algorithms

from sklearn.svm import SVC, LinearSVC

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

import numpy as np

import pandas as pd

import glob

from sklearn import preprocessing
from scipy import stats, signal
from keras.utils import np_utils
from sklearn.utils import shuffle

import importlib

import keras

from keras.models import Sequential

from keras.layers import Dense, Dropout, Flatten, Reshape
from sklearn import metrics

from matplotlib import pyplot as plt

import seaborn as sns

import uuid

import glob
import numpy as np

# #
# Pre—Processing Constants:
# #

# Label encoder used to get a numeric representation of a label
le = preprocessing.LabelEncoder ()
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# The activities

LABELS = [’grazing’, ’running’, ’standing’,
"trotting >, ’walking-—mnatural’, ’walking—rider ’]

print (len (LABELS))

# Add columns to drop from dataframe
REMOVECOLUMNS = [’Mx’, 'My’, 'Mz’, 'G3D’, 'M3D’,
’A_X” ?-A-}/77 7AZ7’ ’GX” 7Gy7’ ’GZ’ ]

# Add subjects you want to include
SUBJECTS = [’Galoway’, ’Patron’, ’'Happy’, ’Driekus’]
# SUBJECTS = [’ Galoway ’]

# Amount of features (zyz acc / xyz gyr)
N_FEATURES = 1

# number of iterations
ITNUM = 50

# Name of the column used as output
OUTPUTLABEL = ’ActivityEncoded’

# Sliding windows parameters
TIME_PERIODS = 200
STEP_DISTANCE = 100

# Datasets
PATH = ’horse_data /%’
FILES = sorted(glob.glob (PATH))

# #
# Helper functions:
# #

def create_dataframe(files ):
Simple function to set up dataframe and initial clean—up of the data
files: path to files
returns: dataframe
result = pd.DataFrame /()
# Pick only the files in SUBJECTS
matching = [f for f in files if any(s in f for s in SUBJECTS) ]
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def

def

def

def

RN

for file in matching:

csv = pd.read_csv (file)
csv |’ filename’| = file
result = result.append(csv)

# remove redundant columns

result . drop (REMOVE.COLUMNS, axis=1, inplace=True)

result = select_activities (result)

# create a mew column with a unique integer value for each label

result [OUTPUTLABEL] = le.fit_transform (result[’label’].values.ravel())
print (result)

return result

select_activities (df):

df[’label’] = df[’label’].replace(to_replace=["trotting—natural’],
value="trotting )

df[’label’] = df[’label’].replace(to_replace=["trotting-—rider’],
value="trotting )

df[’label’] = df[’label’].replace(to_replace=["running-—natural’],
value="running’)

df[’label’] = df[’label’].replace(to_replace=["running—rider’],

value="running’)
result = df[df[’label’].isin (LABELS)]
return result

filter (df):

sos = signal.butter (N=3, Wn=30, btype='lowpass’, fs=100, output=’'sos’)
df[’A3D’] = signal.sosfilt (sos, df[’A3D’])

return df

split_by_subject (df, name):

test = df[df[’filename’].str.contains (name)]
pool = df[~df[’filename’].str.contains (name)]
return pool, test

feature_scaling (df):
print(7df=")
print (df)
print ("A3D row=")
print (df[’A3D’])
train_.A3D_max = df[’A3D’|.max()
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def

pd.options.mode. chained_assignment = None
df[’A3D’] = df[’A3D’]/train_A3D_max

return df

create_windows (df, time_steps, step, label name):
windows = |[]
labels = []
for i in range(0, len(df) — time_steps, step):
A3d = df[’A3D’].values[i: i + time_steps]
# Retrieve the most often used label in this segment
label = stats.mode(df[label_name][i: i + time_steps])[0][0]
windows . append (A3d)
labels .append(label)
# Bring the segments into a better shape
reshaped_windows = np.asarray (windows, dtype=np.float32).
reshape(—1, time_steps , NFEATURES)
labels = np.asarray(labels)

return reshaped_windows, labels

# Reshape input into a format compatible with the NN

def

reshape_input (x, shape):
result = x.reshape(x.shape[0], shape)
return result

# Apply one hot coding to output

def

def

encode_output(y, classes):
result = np_utils.to_categorical(y, classes)
return result

preprocess_training (df, input_shape, num_classes):
train = feature_scaling (df)
X_pool, y_pool = create_.windows(train ,
TIME_PERIODS, STEP DISTANCE, OUTPUT LABEL)
X_pool, y_pool = shuffle(np.array(X_pool), np.array(y_pool))
X_pool = X_pool.astype(’'float32’)
y-pool = y_pool.astype(’'float32’)
y-pool = encode_output (y-pool, num_classes)

82



return X _pool, y_pool

def preprocess_test (df, input_shape, num_classes):
test = feature_scaling (df)

x_test , y_test = create_windows(test ,
TIME_PERIODS, STEP_DISTANCE, OUTPUT_LABEL)

x_test = reshape_input(x_test, input_shape)

Xx_test = x_test.astype(’float32’)

y-test = y_test.astype(’float32’)

y_-test = encode_output(y_-test, num_classes)

return x_test, y_test

def preprocess(df, test_subject):
input_shape = (TIME_PERIODS % NFEATURES)
num_classes = len (LABELS)
df = filter (df)
pool, test = split_by_subject (df, test_subject)
X_pool, y_pool = preprocess_training(pool, input_shape, num_classes)
x_test , y_test = preprocess_test(test, input_shape, num_classes)

return X _pool, y_pool, x_test, y_test, input_shape, num_classes

# visualise the MCC and Fl1—score per iteration for the horses
def visualise (F11, F12, F13, MCC1, MCC2, MCC3):

# get iteration length
iteration = list (range(0, ITNUM+1))
# plot Fl—score for each algorithm

plt.plot(iteration, F11, color= ”#009933")
plt.plot(iteration , F12, color= "#0099ff”)
plt.plot(iteration , F13, color= "#9933ff")
plt.title ("Fl-score._per_iteration”)

plt.xlabel (" Iteration”)

plt.ylabel ("Fl-score”)

plt .legend ([ ’Least._.Certain’, ’Margin’, ’'Entropy’])
plt.grid (True)

plt.savefig ("F1”, dpi=600)

plt .show ()

# plot MCC for each algorithm

plt.plot(iteration , MCCl, color= "#009933”)
plt.plot (iteration , MCC2, color= "#0099ff”)
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plt.plot (iteration , MCC3, color= "#9933ff”)
plt.title ("MCCLper_iteration”)
plt.xlabel (" Iteration”)

plt.ylabel ("MCC”)

plt .legend ([ ’Least._.Certain’, ’Margin’, ’'Entropy’])
plt.grid (True)

plt.savefig ("MOC’, dpi=600)

plt .show ()

# import modAL packages

from modAL. uncertainty import classifier_uncertainty as uncer
from modAL.uncertainty import classifier_entropy as entrop
from modAL. uncertainty import classifier_margin as margin

# use various uncertainty algorithm types
def algorithms(clf, X_rest):

UNCERT = uncer (clf , X_rest)

MARGIN = margin(clf, X_rest)

ENTROPY = entrop (clf, X_rest)

return UNCERT, MARGIN, ENTROPY

# find most ambiguous instance using the algorithm
def find_most_ambiguous(clf, X _rest, y_rest, alg):
# mazx uncertainty

uncerta = alg
uncertain = np.amax(uncerta)
# mazr uncertainty index
loc = np.argmax(uncerta, axis=— 1)
loc = np.unravel_index (uncerta.argmax (), uncerta.shape)
# find wvalue of max uncertainty
numbers = X_rest[loc ]

number = np.reshape (numbers, (1, 200, 1))
# find label of mar uncertainty
labellnd = y_rest[loc]

return loc, uncertain, number, labellnd

# least certain AL

def AL_uncert(model, INITIAL):

# initialise training set size
X_train = X_pool [: INITTAL]
y-train = y_pool [: INITIAL]

# initialise rest of training set
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X_rest = X_pool [INITIAL :|
y-rest = y_pool [INITIAL:]

classifier

clf = model
clf .compile(loss="categorical _crossentropy’, optimizer="adam’,
metrics=["accuracy’])

clf . fit (X_train, y_train)

find instance to add
UNCERT, MARIGN, ENTROPY = algorithms (clf , X_rest)
loc, uncertain, number, labellnd = find_-most_ambiguous(clf
X _rest, y_rest , UNCERT)

delete instance from rest
X_rest = np.delete(X_rest, loc, axis = 0)
y_rest = np.delete(y_rest, loc, axis = 0)

prediction on test
test_prediction = clf.predict(xtest)

best test prediction

max_test_prediction = np.argmax(test_prediction , axis=1)
best ytest wvalue

max_y_test = np.argmax(ytest, axis=1)

get evaluation results of the test data
precision_per_class , recall_per_class , f_score_per_class , recall_avg,
f_score_avg , mcc_score, balanced_acc, acc =
metrics_call (max_y_test, max_test_prediction , model)

for the average per iteration for visualisation

F1 = []
MCC = []
calc_F1 = f_score_avg
calc MCC = mcc_score

F1.append(calc_F1)
MCC. append (mcc_score )

iteratively adding most ambiguous instance IT-NUM number of times
for i in range(ITNUM):

add most ambiguous to training set

X_train = np.vstack (( X_train, number))
y_train = np.vstack ((y-train, labellnd))
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# train model again
clf = model
clf . fit (X_train, y_train)

# find new most uncertain
UNCERT, MARIGN, ENTROPY = algorithms(clf, X_rest)
loc, uncertain, number, labellnd = find _most_ambiguous(clf

X_rest, y_rest , UNCERT)

# remove most uncertain from unknown rest set
X_rest = np.delete(X_rest, loc, axis = 0)
y_rest = np.delete(y_rest, loc, axis = 0)

# prediction on test
test_prediction = clf.predict(xtest)
# best test prediction
max_test_prediction = np.argmax(test_prediction , axis=I1)
# best ytest walue
max_y_test = np.argmax(ytest, axis=1)
# get evaluation results of the test data
precision_per_class , recall_per_class , f_score_per_class , recall_avg,
f_score_avg , mcc_score, balanced_acc, acc =
metrics_call (max_y_test, max_test_prediction , model)
# add F1 and MCC values per iteration
calc_F1 = f_score_avg
calc. MCC = mcc_score
F1l.append(calc_F1)
MCC. append (mcc_score)
# print iteration during running
print ("ITERATION:”)
print (i)

return X_rest, y_rest, clf, F1, MCC
# AL margin algorithm
def AL_margin(model, INITIAL):
# initialise training set size

X _train = X_pool [: INITIAL]

y-train = y_pool [: INITIAL]

# initialise rest of training set

X_rest = X_pool [INITIAL:|
y-rest = y_pool [INITIAL :]
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classifier

clf = model
clf .compile(loss=’categorical_crossentropy’, optimizer=’'adam’,
metrics=["accuracy ’])

clf . fit (X_train, y_train)

find instance to add
UNCERT, MARIGN, ENTROPY = algorithms(clf, X_rest)
loc, uncertain, number, labellnd = find_most_ambiguous(clf
X_rest, y-rest, MARGIN)

delete instance from rest
X _rest = np.delete(X_rest, loc, axis = 0)

y-rest = np.delete(y_-rest, loc, axis = 0)

prediction on test
test_prediction = clf.predict(xtest)

best test prediction

max_test_prediction = np.argmax(test_prediction , axis=1)
best ytest wvalue
max_y_test = np.argmax(ytest, axis=1)

get evaluation results of the test data
precision_per_class , recall_per_class , f_score_per_class , recall_avg,
f_score_avg , mcc_score, balanced_acc, acc =
metrics_call (max_y_test, max_test_prediction , model)

for the average per iteration for wvisualisation

F1 = []
MCOC = []
calc_.F1 = f_score_avg
calec. MCC = mcc_score

F1.append(calc_F1)
MCC. append (mecc_score)

iteratively adding most ambiguous instance IT_-NUM number of times
for i in range(ITNUM):

add most ambiguous to training set
X _train = np.vstack (( X_train, number))
y-train = np.vstack ((y_train, labellnd))
tratn model again

clf = model
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clf . fit (X_train, y_-train)

# find new most uncertain
UNCERT, MARIGN, ENTROPY = algorithms (clf , X_rest)
loc, uncertain, number, labellnd = find_-most_ambiguous(clf

X _rest, y_rest, MARGIN)

# remove most uncertain from unknown rest set
X_rest = np.delete (X_rest, loc, axis = 0)
y-rest = np.delete(y-rest, loc, axis = 0)

# prediction on test
test_prediction = clf.predict (xtest)
# best test prediction
max_test_prediction = np.argmax(test_prediction , axis=1)
# best ytest wvalue
max_y_test = np.argmax(ytest, axis=1)
# get evaluation results of the test data
precision_per_class , recall_per_class , f_score_per_class , recall_avg,
f_score_avg , mcc_score, balanced_acc, acc = metrics_call (max_y_test,
# add F1 and MCC values per iteration
calc_F1 = f_score_avg
calec. MCC = mcc_score
F1.append(calc_F1)
MCC. append (mcc_score)
# print iteration during running
print ("ITERATION:”)
print (i)

return X _rest, y_rest, clf, F1, MCOC

# AL entropy algoritm

def AL_entropy(model, INITIAL):

# initialise training set size
X _train = X_pool [: INITTAL]
y_train = y_pool [: INITIAL]

# initialise rest of training set
X_rest = X_pool [INITIAL : |
y_rest = y_pool [INITIAL :]

# classifier

clf = model
clf .compile(loss=’categorical_crossentropy’, optimizer=’"adam’,
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metrics=["accuracy’])
clf . fit (X_train, y_train)

# find instance to add
UNCERT, MARIGN, ENTROPY = algorithms(clf, X_rest)
loc, uncertain, number, labellnd = find _most_ambiguous(clf

X_rest, y_rest , ENTROPY)

# delete instance from rest
X_rest = np.delete(X_rest, loc, axis = 0)
y_rest = np.delete(y_rest, loc, axis = 0)

# prediction on test
test_prediction = clf.predict(xtest)

# best test prediction

max_test_prediction = np.argmax(test_prediction , axis=1)
# best ytest wvalue

max_y_test = np.argmax(ytest, axis=1)
# get evaluation results of the test data

precision_per_class , recall_per_class , f_score_per_class , recall_avg,
f_score_avg , mcc_score, balanced_acc, acc =
metrics_call (max_y_test, max_test_prediction , model)

# for the average per iteration for wvisualisation
F1 = []
MCC = ]
calc_F1 = f_score_avg
calc_ MCC = mcc_score

F1.append(calc_F1)
MCC. append (mcc_score)

# iteratively adding most ambiguous instance I'T-NUM number of times
for i in range(ITNUM):

# add most ambiguous to training set
X _train = np.vstack ((X_train, number))
y_train = np.vstack((y_train, labellnd))
# train model again
clf = model

clf . fit (X_train, y-train)

# find new most uncertain
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UNCERT, MARIGN, ENTROPY = algorithms(clf, X_rest)
loc, uncertain, number, labellnd = find _most_ambiguous(clf
X_rest , y-rest , ENTROPY)

# remove most uncertain from unknown rest set
X _rest = np.delete(X_rest, loc, axis = 0)
y-rest = np.delete(y-rest, loc, axis = 0)

# prediction on test
test_prediction = clf.predict(xtest)
# best test prediction
max_test_prediction = np.argmax(test_prediction , axis=1)
# best ytest wvalue
max_y_test = np.argmax(ytest, axis=1)
# get evaluation results of the test data
precision_per_class , recall_per_class , f_score_per_class , recall_avg,
f_score_avg , mcc_score, balanced_acc, acc =
metrics_call (max_y_test, max_test_prediction , model)
# add F1 and MCC values per iteration
calc_F1 = f_score_avg
calc. MCC = mcc_score
F1.append(calc_F1)
MCC. append (mcc_score)
# print iteration during running
print ("ITERATION:”)
print (i)

return X _rest, y_rest, clf, F1, MCOC

# build classifier
def build_classifier (input_shape, num_classes):
model.m = Sequential ()
# reshape
model_m . add (Reshape ((TIME_.PERIODS, ), input_shape=(input_shape, )))
# hidden layers
model_m.add (Dense (100, activation="relu’))
model_m.add (Dense (100, activation="relu’))
model_m.add (Dense (100, activation="relu’))
# flatten
model_.m.add (Flatten ())
model_m.add (Dense (6, activation='softmax’))
return model.m
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# construct confusion matriz
def show_confusion_matrix(validations , predictions , model.m):
matrix = metrics.confusion_matrix(validations, predictions)
plt.figure (figsize=(6, 4))
sns . heatmap (matrix ,
cmap="coolwarm ’ ,
linecolor="white’,
linewidths=1,
xticklabels=LABELS,
yticklabels=LABELS,
annot=True,
fmt="d")
plt.title (’Confusion_Matrix”)
plt.ylabel (’True_Label ")
plt.xlabel (’Predicted _Label ")
plt .show ()
return matrix

# get metrics
def metrics_call(validations, predictions, model.m):

# per class precision , recall, fl—score
precision_per_class , recall_per_class ,
f_score_per_class , _ = metrics.precision_recall_fscore_support
(validations , predictions, zero_division=0)
# average recall , fl—score
_, recall_avg , f_score_avg, _ = metrics.precision_recall_fscore_support
(validations , predictions, pos_label=None,
average="weighted” , zero_division=0)
# mcc
mcc = metrics. matthews _corrcoef(validations, predictions)
# accuracy balanced
balanced_accuracy = metrics.balanced_accuracy_score(validations, predictions)
# accuracy
accuracy = metrics.accuracy._score(validations, predictions)

print (’\nAccuracy_on_test _data:_.%0.2f" % accuracy)

return precision_per_class , recall_per_class , f_score_per_class ,
recall_avg , f_score_avg, mcc, balanced_accuracy, accuracy

PATH = ’horse_data /%’
FILES = sorted(glob.glob (PATH))

df = create_dataframe (FILES)
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for s in SUBJECTS:
# print name horse
print (" Test_subject: . "+str(s))
# preprocess all inputs
X_pool, y_pool, xtest, ytest, input_shape, num_classes = preprocess(df, s)

build model

model = build_classifier (input_shape, num_classes)
run uncertainty algorithm

X _rest, y.rest, clf, F11, MCCl = AL _uncert(model, 50)
run margin algorithm

X _rest, y.rest, clf, F12, MCC2 = AL _margin(model, 50)
run entropy algorithm

X _rest, y_rest, clf, F13, MCC3 = AL_entropy (model, 50)

R N S T N

# categorise which score belongs to which horse and which algorithm
if (str(s)=="Galoway”):
GalF1 = F11

GalMCC1 = (MCC1)
GalF2 = (F12)
GalMCC2 = (MCC2)
GalF3 = (F13)
GalMCC3 = (MCC3)

if (str(s) = ”Patron”):
PatF1 = (F11)
PatMCC1 = (MCC1)
PatF2 = (F12)
PatMCC2 = (MCC2)
PatF3 = (F13)
PatMCC3 = (MCC3)

if (str(s) = ”Happy”):
HapFl = (F11)
HapMCC1 = (MCC1)
HapF2 = (F12)
HapMCC2 = (MCC2)
HapF3 = (F13)
HapMCC3 = (MOC3)

if (str(s) = ”Driekus”):

DrieF1 = (F11)
DrieMCC1 = (MCC1)
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DrieF2 = (F12)
DrieMCC2 = (MCC2)
DrieF3 = (F13)
DrieMCC3 = (MCC3)

# average of all F1 scores and MCCs for all algorithms
avg F11 = [((i+j+k+1)/4) for i, j, k, 1 in zip(GalF1l, PatFl, HapFl, DrieF1l) |
avg_-F12 = [((i+j+k+1)/4) for i, j, k, 1 in zip(GalF2, PatF2, HapF2, DrieF2) |
avg F13 = [((i+j+k+1)/4) for i, j, k, 1 in zip(GalF3, PatF3, HapF3, DrieF3) |
avg-MCC1 = [((i+j+k+1)/4) for i, j, k, 1 in

zip (GalMCC1, PatMCC1, HapMCC1l, DrieMCC1)]
avg-MCC2 = [((i+]j+k+1)/4) for i, j, k, | in

zip (GalMCC2, PatMCC2, HapMCC2, DrieMCC2)]
avg-MCC3 = [((i+j+k+1)/4) for i, j, k, | in

zip (GalMCC3, PatMCC3, HapMCC3, DrieMCC3)]

# Confusion matriz
test_prediction = clf.predict(xtest)

# best test prediction

max_test_prediction = np.argmax(test_prediction , axis=1)
# best ytest wvalue
max_y_test = np.argmax(ytest, axis=1)

#print confusion matrix and get evaluation results of the test data
matrix = show_confusion_matrix(max_y_test, max_test_prediction , model)

# visualise
visualise (avg_F11, avg F12, avg F13 ,avg MCC1, avgMCC2, avg MCC3)

# get metrics
precision_per_class , recall_per_class , f_score_per_class , recall_avg,
f_score_avg , mcc_score, balanced_acc, acc =
metrics_call (max_y_test, max_test_prediction , model)

11.5 Appendix E: Initial Training Set Size Comparing Uncertainty AL algo-
rithms

Will excluded Preprocessing, importing packages, algorithm types, find most ambiguous function
and metric functions:

# visualise initial training set sizes
def visualise (F11, F12, F13, F14, MCCl, MCC2, MCC3, MCC4):
iteration = list (range(0, ITNUM+1))
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plt.plot (iteration, F11, color= "olive”)
plt.plot(iteration , F12, color= ”"hotpink”)
plt.plot(iteration, F13, color= "skyblue”)
plt.plot (iteration , Fl4, color= "m")
plt.title ("Fl-score._per_iteration”)
plt.xlabel (" Iteration”)

plt.ylabel ("Fl-score”)

plt.legend ([7807, 150", 250", ’350°])
plt.grid (True)

plt .show ()

plt.plot(iteration , MCCl, color= "olive”)
plt.plot (iteration , MCC2, color= "hotpink”)
plt.plot(iteration , MCC3, color= "skyblue”)
plt.plot (iteration , MCC4, color= "m")
plt.title ("MOC_per._iteration”)

plt.xlabel (" Iteration”)

plt.ylabel ("MCOC”)

plt.legend ([7807, 1507, 250", ’350°])
plt.grid (True)

plt .show ()

# AL algorith structure
def AL(model, INITIAL):

#

initialise training set size
X _train = X_pool [: INITIAL]
y-train = y_pool [: INITIAL]

initialise rest of training set
X _rest = X_pool [INITIAL :|
y-rest = y_pool [INITIAL : ]

classifier

clf = model
clf .compile(loss=’categorical _crossentropy’,
optimizer="adam’, metrics=["accuracy’])

clf . fit (X_train, y_train)

find instance to add
loc, uncertain, number, labellnd =
find_most_ambiguous(clf , X_rest, y_rest)

delete instance from rest

X _rest = np.delete(X_rest, loc, axis = 0)
y-rest = np.delete(y-rest, loc, axis = 0)
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prediction on test
test_prediction = clf.predict(xtest)

best test prediction

max_test_prediction = np.argmax(test_prediction , axis=1)
best ytest wvalue

max_y_test = np.argmax(ytest, axis=1)

get evaluation results of the test data
precision_per_class , recall_per_class , f_score_per_class , recall_avg,
f_score_avg , mcc_score, balanced_acc, acc =
metrics_call (max_y_test, max_test_prediction , model)

for the average per iteration for wvisualisation

F1 = []
MCC = []
calc_F1 = f_score_avg
calc MCC = mcc_score

F1.append(calc_F1)
MCC. append (mcc_score)

iteratively adding most ambiguous instance I'T-NUM number of times
for i in range(ITNUM):

add most ambiguous to training set
X _train = np.vstack ((X_train, number))
y_train = np.vstack((y_train, labellnd))

train model again
clf = model
clf . fit (X_train, y-train)

find new most uncertain
loc, uncertain, number, labellnd =
find_most_ambiguous(clf , X_rest, y_rest)

remove most uncertain from unknown rest set
X _rest = np.delete(X_rest, loc, axis = 0)
y-rest = np.delete(y-rest, loc, axis = 0)

prediction on test
test_prediction = clf.predict(xtest)
best test prediction
max_test_prediction = np.argmax(test_prediction , axis=1)
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best ytest wvalue
max_y_test = np.argmax(ytest ,
get evaluation results
precision_per_class ,
f_score_avg , mcc_score,
metrics_call (max_y_test ,
add F1 and MCC values per iteration
calc_F1 = f_score_avg
calc. MCC = mcc_score
F1l.append(calc_F1)
MCC. append (mcc_score)

axis=1)

print iteration during running
print ("ITERATION:” )
print (i)
clf , F1, MCC

return X_rest, y_rest,

PATH = ’horse_data /%’
FILES = sorted(glob.glob (PATH))

df = create_dataframe (FILES)

for s in SUBJECTS:

#

#
#
#

print name horse
print (" Test_subject: ."+str(s))

recall _per_class ,
balanced_acc ,
max_test_prediction , model)

of the test data

f_score_per_class , recall_avg,

acc =

preprocess all inputs

X_pool, y_pool, xtest, ytest, input_shape, num_classes = preprocess(df, s)
build model

model = build_classifier (input_shape, num_classes)
run AL with different initial training set sizes

X_rest, y_rest, clf, F11, MCCl = AL(model, 80)

X_rest, y-rest, clf, F12, MCC2 = AL(model, 150)

X _rest, y_rest, clf, F13, MCC3 = AL(model, 250)

X_rest, y-rest, clf, F14, MCC4 = AL(model, 350)

categorise which score belongs to which horse and which algorithm

if (str(s)=="Galoway”):
GalF1 = F11
print (" Gal”)
print (GalF1)
GalMCC1 = (MCC1)
GalF2 = (F12)
GalMCC2 = (MCC2)
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GalF3 = (F13)
GalMCC3 = (MCC3)
GalF4 = (F14)
GalMCC4 = (MCCA)

if (str(s) = ”Patron”):

PatF1 = (F11)
PatMCC1 = (MCC1)
PatF2 = (F12)
PatMCC2 = (MCC2)
PatF3 = (F13)
PatMCC3 = (MCC3)
PatF4 = (F14)
PatMCC4 = (MCC4)

if (str(s) = "Happy” ):

if (str(s) = ”Driekus”):

# averag

avg_F11
avg _F12
avg_F13
avg_F14
avg MCCl1

zip (

avg MCC2 =

zip (

avg MCC3 =

zip (

HapFl = (F11)
HapMCC1 = (MCC1)
HapF2 = (F12)
HapMCC2 = (MCC2)
HapF3 = (F13)
HapMCC3 = (MCC3)
HapF4 = (F14)
HapMCC4 = (MCC4)
DrieF1 = (F11)
DrieMCC1 = (MCC1)
DrieF2 = (F12)
DrieMCC2 = (MCC2)
DrieF3 = (F13)
DrieMCC3 = (MCC3)
DrieF4 = (F14)
DrieMCC4 = (MCC4)

e of all arrays

i+j+k+1)/4)
i+j+k+1)/4)
i+j+k+1)/4)
i+j+k+1)/4)
= [((it+j+k+1)/4)
GalMCC1, PatMCC1,
[((i+j+k+1)/4)
GalMCC2, PatMCC2,
[((i+j+k+1)/4)
GalMCC3, PatMCC3,

[ ((
[ ((
[ ((
[((

for i, j, k, 1 in zip(GalF1,
for i, j, k, 1 in zip(GalF2,
for i, j, k, 1 in zip(GalF3,
for i, j, k, 1 in zip(GalF4,
for i, j, k, 1 in

HapMCC1, DrieMCC1)]

for i, j, k, 1 in

HapMCC2, DrieMCC2)]

for i, j, k, 1 in

HapMCC3, DrieMCC3) |
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PatF2,

HapF1,
HapF2,
PatF3, HapF3,
PatF4, HapF4,

DrieF2
DrieF3
DrieF4

) ]
) |
) ]
) |



avg-MCC4 = [((i+j+k+1)/4) for i, j, k, 1 in
zip (GalMCC4, PatMCC4, HapMCC4, DrieMCC4)]

# Confusion matrix
test_prediction = clf.predict (xtest)

# best test prediction

max_test_prediction = np.argmax(test_prediction , axis=1)
# best ytest wvalue
max_y_test = np.argmax(ytest, axis=1)

#print confusion matrix and get evaluation results of the test data
matrix = show_confusion_matrix(max_y_test, max_test_prediction , model)

# visualise
visualise (avg_ F11, avg F12, avg F13 avg MCC1, avg MCC2, avg MCC3)

# get metrics
precision_per_class , recall_per_class , f_score_per_class , recall_avg, f_score_avg,
mcc_score, balanced_acc, acc =
metrics_call (max_y_test, max_test_prediction , model)

11.6 Appendix F': Initial Training Set Sizes Comparing Disagreement AL al-
gorithms

from modAL. disagreement import max_disagreement_sampling as max_dis

from modAL. disagreement import consensus_entropy_sampling as consens_entrop
from modAL. disagreement import vote_entropy_sampling as vote

from sklearn.ensemble import RandomForestClassifier as forest

from sklearn.neighbors import KNeighborsClassifier as neigh

from modAL.models import ActiveLearner, Committee

# AL algorith structure
def AL(X_pool, y_pool, xtest, ytest, modell, INITIAL):

# copy pool data
X_pooled = deepcopy (X_pool)
y-pooled = deepcopy(y-_pool)

# learner list
learner_list = list ()
# initiate active learners

for x in range(2):
# initialise model with random instances
clf CNN = modell
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clf CNN.compile(loss=’categorical_crossentropy’, optimizer="adam’, metrics:

initiate training set
train_idx = np.random.choice (range(X_pooled.shape[0]), size=INITIAL, replac
X _train = X_pooled[train_idx]
y_train = y_pooled|[train_idx]

delete training from pool
X_pooled = np.delete(X_pooled, train_idx , axis=0)
y-pooled = np.delete(y_pooled, train_idx , axis=0)

initiate learners
learner = ActiveLearner (
estimator=clf CNN |
X _training=X_train, y_training=y_train

)

learner_list .append(learner)

iteratively find best instances
for i in range(ITNUM):
query committee
query-idx , query_-instance = committee.query(X_pooled)
teach committee
committee . teach (
X=X _pooled [query_idx |.reshape (1, —1),
y=y_pooled [query_idx |.reshape (1, —1)
)
delete new instances from pool
X _pooled = np.delete (X_pooled, query_idx, axis=0)
y-pooled = np.delete(y_pooled, query_idx, axis=0)

return committee
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