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Executive Summary 

 Nowadays no one can imagine a thriving business without a proper data management 

and governance system for its applications data in place, in order to support the internal and 

external operations. Over the years, databases and their related DBMS (Database Management 

System) have grown in size, capability and performance, together with the development of cutting 

edge technologies and large scale business needs. Databases have become more fragmented 

and shifted towards being stored in the cloud, due to microservices and high tech advancements. 

Choosing the suitable database suite is no easy task for the database specialists team, 

as the choice needs to take into account a multitude of criteria based on the organization’s 

requirements, input from the business processes and the workflow of data, as well as the 

concerns regarding scalability, recovery and security. Furthermore, choosing a database suite is 

not sufficient anymore, as databases alone are not enough to make the information shareable 

and available everywhere it is needed. For this purpose, there should be a data management 

platform in place, that can handle all the steps from gathering, processing and making the 

information accessible. Therefore, a first step would be to analyze the structure of the information 

that will be held in the database, considering all the broad aspects of the business data, and then 

trying to shift towards one of the existing solutions available on the market, while keeping in mind 

the goals of the organization.  

When it comes to an integration platform vendor like eMagiz, storing the data that flows 

through the system comes as an extra feature that can prove to give a strategic advantage in the 

business landscape. This comes of course with its challenges related to what kind of data can be 

stored, for what period of time, security concerns and so on. 

For this Master Thesis, eMagiz, a Dutch IpaaS supplier, is the collaborative organization 

that provides the context for the developed prototype to be implemented and further validated. 

The prototype is mainly based on ElasticSearch as the chosen database storage option, and 

GraphQL as the querying engine. This solution aims to give the possibility of storing business 

data for a later use, while GraphQL provides the option of finding related data easily, while being 

able to visualize the data schema of the information stored.  
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1. Introduction 

For an organisation, one single source of data is critical for being able to easily access the 

information needed and gain insight from it. It also preserves data integrity, and gives fast and 

seamless access to it, without the need of connecting to different suppliers, which would require 

extra time, costs and effort. Without question, a company needs to have direct access and insight 

into its information resources in order to be able to survive in the business environment. 

In general, there is a difference between “available” and “accessible” data that should be 

noted from the beginning. Even though there can be a lot of data available, that is seldom 

accessible. For example, some barriers that can interfere with it are the wrong formats or storage 

types, missing or ambiguous relations between various resources, character encoding or wrong 

headers. Fortunately, availability can be transformed into accessibility through different means 

and the right tools and knowledge. For example, formatting, cleaning and standardizing it to the 

wished format of the client would be one solution. [1] 

The problem context revolving around the fulfilled background research is that, on one 

hand, organisations are uncertain of what database management platform to choose for their data 

storage, and what querying language would be the most suitable, as there are a multitude of 

options available, each coming with their pros and cons. On the other hand, there is a dire need 

for data governance along with data quality and data processing that could help in obtaining a 

proper data catalog for the organisation. Therefore, a dual research is needed to determine an 

overview of the existing data management architecture possibilities and fill in the gap, and that is 

broadly discussed in chapter 2 of this paper.  

One might argue that the background research goal is too broad, but the purpose is to get 

a better understanding of data management platforms and querying in general, and then further 

on deep diving into more specific technology stacks available such as ElasticSearch and 

GraphQL, which show a lot of potential, are fairly new and trendy among tech savvy enthusiasts. 

Therefore, the literature research discusses the approach of NoSQL or Non-relational databases, 

along with examples, categories, different studies and comparison surveys. Additionally, a 

comparison between relational and non-relational databases is presented for an enhanced 

illustration of the differences. Further on, the second part of the research comes in, where data 

quality and data governance are discussed, which give more insight into the business facet. 

1.1 Context 

The company where the research and implementation take place is a Dutch iPaaS 

supplier, eMagiz, that offers a platform with which applications and systems can easily be 

integrated digitally. The company is active in the application and data integration market. The 

founding of the company can be traced back to the concept of Digital Transformation. One of the 

most important aspects of Digital Transformation is that organizations must be flexible in terms of 

integrations in order to adapt to quickly changing circumstances [50]. 

The often long running and phased projects can be managed from the online platform in 

terms of data integration. The flexibility offered allows to implement multiple integration patterns, 

including data & event streaming for high data volumes and messaging for processing individual 
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messages. With support for many protocols and formats, any integration can be built and data 

can be used effectively. The platform offers a detailed overview of the integration landscape using 

the integration lifecycle. The company offers a breadth of features, establishing itself as an 

Enterprise iPaaS. 

An Integration Platform as a Service (iPaaS) offers customers the possibility to develop 

integration processes for data, applications and API’s, whereby end-points can be located both 

on-premises and in the Cloud. The realization of integrations, deployment over environments and 

management of the landscape is all done within the platform. A platform that is aimed at Enterprise 

level, with which complex and demanding projects in terms of security, high-availability and 

disaster recovery can be realized.  

The company makes use of a low-code platform as well. Integrations are modeled in a 

visual manner, as opposed to traditional programming. This makes integration development 

accessible and understandable, allowing the client organization to bridge the gap between 

business and IT. Using the “Integration Lifecycle Management” concept, all specifications and 

definitions are administered within the platform, allowing for quick, efficient and model driven 

development. This offers organizations the opportunity to involve business owners and stimulate 

collaboration with developers who do not require a background in computer science/programming 

more intensively. 

This company description should give a better insight into the context of the existing 

platform that is used, because the prototype developed within the scope of this master project is 

partially integrated in the platform managed by the collaborative company. 

1.2 Problem Statement 

As described in the context section above, the company providing the IPaaS platform is 

already transporting the data for its customers, which means that after the transfer is finished, 

that specific information becomes irretrievable. The proposal of this master project is to create 

the possibility of saving the data while it is being transported and making it available for customers 

to use. For example, giving the option of visualizing the information and its schema, performing 

queries on it, and finding related data easily with the help of GraphQL.  

When the information comes through, it could be stored in the database and later enabling 

an overview or calculating different statistics based on it. Factors that need to be taken into 

consideration include the type of data that is saved, the different formats that it comes through, 

for what period of time it will be desired to have it stored. Consequently, this function depends on 

the needs of the client and the use case that will follow, whether it will be for master data 

management, archiving, reporting, fraud detection or something else.  

The problem at hand comes more as an enhancement to the existing functionality of the 

platform offered by the organisation, an extra feature that could prove beneficial for certain users. 

Gaining more insight into the data is a nice-to-have function, and that could be achieved by storing 

the data with the use of ElasticSearch. Other technologies could have been chosen for this 

purpose, but after an extensive literature research on possible options for storage and querying, 

that is presented in chapter 2 of this paper, ElasticSearch and GraphQL were determined to be 

used as storage and querying engines. 
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First, the reason why ElasticSearch was chosen as the storage solution is due to its 

scalability. ElasticSearch automatically distributes shards of an index across the nodes of a 

cluster and controls that they are loaded equally. Therefore, if more data needs to be added in 

future, Elasticsearch is a good choice as it scales horizontally. Another determinative aspect is 

that Elasticsearch does not impose schema on the documents in indices. If a new document is 

added to an index and there is a new field in this document, Elasticsearch will automatically 

update the mapping, which makes it agile. While scalability and schema-free documents are 

common for NoSQL systems, the combination of all three (scalability, agility, and performance) in 

one system is what makes Elasticsearch stand out from other systems. 

Second, GraphQL was chosen because it provides a complete and understandable 

description of the data in the API and it can be used on top of any storage engine. It retrieves 

many resources in a single request and these queries access not just the properties of one 

resource but also follow references between them, which makes the discovery of related data 

possible. 

 

1.3 Goal 

The focus of this master project is to provide data observability in the context of the Dutch 

IpaaS provider, for the data that flows within the integrations from different systems. In order for 

that to be possible, a first step needs to be taken in the direction of storing the client information 

that is transported in the database layer, so it is not lost after the transfer through the platform is 

finished. Then, the second step of making the data accessible comes into play. In the Literature 

Study, more options are analyzed and detailed, but the chosen technology stack is ElasticSearch 

for the storage purpose and GraphQL for querying of the data. Finally, a React web application is 

used for the User Interface that provides the user with the possibility to query the data, visualize 

the data schema and find related data.  

There is a key trend for analytics and BI platforms, and a focus on being able to make a 

better use of the data available. According to the Gartner Hype Cycle for Analytics and Business 

Intelligence [43], visual data discovery has long been the hallmark of the analytics and BI space. 

The result of more users analyzing more data is a need for organizations to focus equally on 

challenges relating to governance, data literacy, and education about the appropriate and ethical 

use of data. 

An embedded solution in the existing platform is desirable to prevent the need of toggling 

to another application or changing the context. This way, users will be able to explore the data 

with no obstacles ahead, by using the platform that they are already used to.   

 

1.4 Research Questions 

The research questions are described using the design problem template proposed by 

Wieringa et al. [44]. The template is defining the problem context, the artifact that is going to be 

designed, the goal and the requirements, along with the stakeholders involved. The template is 

presented below:  
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How to <(re)design an artifact> 

 that satisfies <requirements> 

so that <stakeholder goals can be achieved> 

in <problem context>? 

 

Applying the template to the research at hand, the main research question is formulated: 

 

“How to design an efficient data management retrieval and reporting solution for client data 

based on ElasticSearch and GraphQL?” 

 

In order to be able to reach a solution (an artifact) for the main research question, there 

are a few sub questions that need to be answered beforehand:  

 

1. “What kind of data management architecture can be used for retrieval and reporting of client 

data?” 

2. “What are the needs of the business users regarding this data management architecture?” 

3. “How to design a data management architecture based on ElasticSearch and GraphQL for 

retrieval and reporting of client data?” 

4. “How to integrate the data management architecture in the business context of a Dutch 

organisation?”  

5. “To what extent is the designed prototype contributing to the goals of the stakeholders?” 

 

 In the interest of showing where the research sub questions have been answered, table 

1.1 provides the correlation with the chapters: 

 

Research Question Chapter from Master Thesis 

RQ 1 Chapter 2 - Background information and Literature Research 

RQ 2 Chapter 3 - Requirements 
RQ 3 Chapter 4 - Architecture Specification Model 

RQ 4 Chapter 5 - Implementation 
RQ 5 Chapter 6 – Validation and Evaluation 

Table 1.1 Reference to what chapter from the Master Thesis answers the Research Questions 

1.5 Research Methodology 

 The research methodology pursued throughout this master thesis is the one of Design 

Science Methodology (DSM) for information systems and software engineering by Wieringa et al. 

[44]. Since by the end of this project, a prototype (artifact) is developed to address a problem in 

the real world, this is an outcome-oriented research. A design science project iterates over the 

activities of designing and investigating. The design task itself is decomposed into three tasks, 

namely, problem investigation, treatment design, and treatment validation. The design cycle is 

part of a larger cycle, in which the result of the design cycle - a validated treatment - is transferred 

to the real world, used, and evaluated. 

 Figure 1.1 presents the design cycle of the Design Science Methodology, with its various 

steps and iterations. 
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Figure 1.1 The design cycle of the Design Science Methodology 

  

 The consisting tasks, explained by Wieringa [44], are carried out in such a way that they 

answer the following questions: 

 

• Problem investigation: What phenomena must be improved? Why? 

• Treatment design: Design one or more artifacts that could treat the problem. 

• Treatment validation: Would these designs treat the problem? 

• Treatment implementation: Treat the problem with one of the designed artifacts. 

• Implementation evaluation: How successful has the treatment been? This may be the start 

of a new iteration through the engineering cycle. 

 

Starting with the problem investigation, the stakeholders involved are the Dutch IPaaS 

provider, its business clients as beneficiaries of the artifact and the author of this master thesis 

as the developer. The goals are broadly discussed in section 1.3 of this paper, and they 

revolve around providing a data management solution in the context of the already existing 

integration platform. During this phase, a literature research is conducted, in order to discover 

the available knowledge on the matter from published scientific resources. 

The treatment design is the step where the artifact is developed, guided by the 

requirements available and taking into consideration the findings from the literature review. 

In the treatment validation, the main question arises whether the treatment design would 

contribute to stakeholder goals if implemented. For this purpose, a single case mechanism 

experiment is done, to test the artifact prototype in the real world implementation.  

The next step is the treatment implementation, that goes hand in hand with the treatment 

validation, and is based on carrying out the implementation within the given context. 

The implementation evaluation is contained in the 5th sub question proposed and has the 

purpose of evaluating and validating the designed prototype. 
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1.6 Report Structure 

 This master project has the following structure: Chapter 2 gives the background 

information on the literature research conducted, introducing the problem context and presenting 

the findings. Chapter 3 expands on the requirements definition by using the means of expert 

surveys with open questions, after identifying the stakeholders and their goals. Chapter 4 provides 

an architecture specification model of the solution prototype proposed. Chapter 5 discusses the 

implementation in the context of the Dutch IPaaS provider as a case study. Chapter 6 shows the 

validation and evaluation of the design and finally, chapter 7 states the conclusions to the research 

questions and discusses the possible further work. 

 Table 1.2 shows the correspondence of the steps from the design cycle of the Design 

Science Methodology (DSM) by Wieringa [44] and the chapters of the Master Thesis: 

 

Design cycle of the DSM by Wieringa Chapter from Master Thesis 

Problem investigation Chapter 1 - Introduction 
Chapter 2 - Literature Study 

Treatment design Chapter 3 - Requirements 
Chapter 4 - Architecture Specification Model 

Treatment validation Chapter 3 - Requirements 

Treatment implementation Chapter 5 - Implementation 
Implementation evaluation Chapter 6 - Validation and Evaluation 

Table 1.2 Correspondence between the steps from the design cycle by Wieringa [44] and the chapters of the Master 
Thesis 
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2. Literature Study 

 Chapter 2 focuses on gathering background information in the field of data management 

platforms and data governance and contains the answer to the first Research Question proposed, 

“What kind of data management architecture can be used for retrieval and reporting of client 

data?”. Additionally, it corresponds to the Problem Investigation step from the Design Cycle 

proposed by Wieringa [44], where the conceptual problem framework is established.   

2.1 Research Method 

 The research method adopted for this background research is the Systematic Literature 

Review (SLR) to discover the previously done development regarding data management 

platforms and querying languages for data extraction. The methodology followed is based on 

Okoli et al. (2010) [8], providing a theoretical background for subsequent research, learning the 

breadth of research on the topic of interest and answering practical questions by understanding 

what existing research has to say on the matter. A rigorous stand-alone literature review must be 

systematic in following a methodological approach, explicit in explaining the procedures by which 

it was conducted, comprehensive in its scope of including all relevant material, and hence 

reproducible by others who would follow the same approach in reviewing the topic. 

 There are 8 steps present in the methodology, which are explained in Table 2.1: 

 

Step Name Description 

1 Purpose of the literature 
review 

Clearly identify the purpose and intended goals of the 
review. 

2 Protocol and training The defined rules the reviewer will follow while 
systematically conducting the review. 

3 Searching for the 
literature 

Describe the details of the literature search and explain 
how the comprehensiveness of the search was assured. 

4 Practical screen Also known as screening for inclusion, this step requires 
that the reviewer be explicit about what studies were 
considered for review, and which ones were eliminated 
without further examination. 

5 Quality appraisal Also known as screening for exclusion, the reviewer 
needs to explicitly spell out the criteria for judging which 
articles are of insufficient quality to be included in the 
review synthesis. 

6 Data extraction Systematically extract the applicable information from 
each study. 

7 Synthesis of studies Also known as analysis, this step involves combining the 
facts extracted from the studies using appropriate 
techniques, whether quantitative, qualitative, or both. 

8 Writing the review The review needs to be reported in sufficient detail that 
the results can be reproduced. 

Table 2.1 The 8 major steps for the Systematic Literature Review 
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 The purpose of the literature review was stated right in the introduction. It comprises two 

parts, the first one researching the available scientific literature with regards to data management 

platforms and suitable querying languages, and then a more specific dive into the ElasticSearch 

and GraphQL solutions, while the second part is focused on data governance and data quality for 

an organisation.  

The defined rules of the review process, as in what inclusion and exclusion criteria were 

used are described further in section 2.3.2. The resources for literature search are explained in 

section 2.3. The data extracting, along with the synthesis of studies is presented in the results of 

the study section. 

2.2 Research Goals 

In order to be able to investigate specific literature on a specific domain, a main research 

question should be determined, as well as sub questions, which will establish and guide the 

direction of the search process. Since the purpose of the study is to find related work previously 

done with regards to data management platforms and querying languages, along with data quality 

and data retrieval, the main research question is formulated as follows: 

 

“What kind of data management architecture should be used for retrieval and dynamic 

reporting of client data?”.  

 

As for sub questions, the proposed ones are:  

a) “What are the advantages and disadvantages of the databases and querying 

languages in use?” 

b) “What key points need to be considered when choosing a database and a query 

language for an organisation?” 

  

 From these research questions, the dual character of the literature review is revealed: on 

one hand, the first part will tackle the data management platforms topics, and will consider 

different kinds of non-relational databases, query languages and then elaborate on ElasticSearch 

and GraphQL. The second part will revolve around the business side of data storage, more 

specifically data governance and data quality in order to be able to realize the dynamic reporting 

goal.  

2.3 Scientific Resources Used 

Google Scholar was the first tool used in order to reach scientific publications that are 

publicly available on the internet. It is a general search engine with a large coverage that provides 

scholarly articles and proved to be a good starting point for the research. I have made use of the 

filtering option, choosing resources that are publicly available and have been published starting 

from 2015 up to the present, so that the source is more relevant and up to date with the latest 

development. 

The second utilized tool was the IEEE (https://ieeexplore.ieee.org), which delivers full text 

access to the world's highest quality technical literature in engineering and technology. 

https://ieeexplore.ieee.org/
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This search approach uses the classic systematic keyword search method, that is based 

upon usage of relevant terms in order to filter the online resources and is explained in the next 

section.  

 

2.3.1 Search Query Keywords 

 For the first part, as the main concern of the literature research is based on what data 

management platforms and data storage solutions are available on the market, along with related 

querying languages and then focusing on more specific technologies such as ElasticSearch and 

GraphQL, the search query keywords used for discovering the helpful literature are presented in 

table 2.2. For the second part of the literature research, keywords like data management platform 

along with data quality, data processing, data catalog and data governance come in handy. They 

are presented in table 2.3.  

 

Keyword Name 

1 Data management platform 

2 Data hub 
3 Non-relational databases 

4 NoSQL 
5 Query language 

6 ElasticSearch 
7 GraphQL 

Table 2.2 Search query keywords used to conduct the first part of the literature research on the scientific databases 

  

Keyword Name 

1 Data management architecture 
2 Data quality  

3 Data processing 
4 Data catalog 

5 Data governance 
6 Observability 

7 Accessibility 
Table 2.3 Search query keywords used to conduct the second part of the literature research on the scientific databases 

In order to make the research traceable, the search method for both scientific resources 

is provided below: 

Google Scholar: for the first part of the research, there was a filter set for publications 

2015-2021 and the following advanced search was used: data management architecture nosql 

"non relational" ElasticSearch OR GraphQL "query language". 

 For the second part of the research, the same year filter remains in place (2015-2021) 

and the advanced search is: data management architecture quality processing catalog 

observability OR accessibility "data governance". The complete process can be seen in figure 

2.1. 
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Figure 2.1 Advanced search on Google Scholar for the first part (left) and the second part (right) of the literature 
research 

IEEE: for the first part of the research, set the filter for open access publications 2015-

2021, and use the advanced search query: 

 

("Full Text & Metadata":data)  

AND  

("Full Text & Metadata":management)  

AND  

("Full Text & Metadata":architecture)  

AND  

("Full Text & Metadata":nosql)  

AND  

("Full Text & Metadata":non-relational)  

AND  

("Full Text & Metadata":ElasticSearch) 

OR  

("Full Text & Metadata":GraphQL) 

 

 For both scientific resources used (Google Scholar and IEEE), the search for keywords is 

done in the full text and title of the articles, so a bigger area can be covered and more results can 

be gained.  
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2.3.2 Inclusion and Exclusion Criteria 

 Defining the selection criteria is crucial for identifying the relevant published literature and 

reducing the bias in the search process. Articles not meeting these specific inclusion criteria will 

not be considered for the literature review. Below, table 2.4 contains the inclusion and exclusion 

criteria used to aid in selecting the suitable resources: 

 

Inclusion Criteria Exclusion Criteria 

Studies that are written in English and 
are peer reviewed 

Articles that have no relevance to the 
keywords searched in their title or abstract 

Studies that were published in 
Conferences or Journals  

Studies unrelated to the main and sub 
questions of the literature review 

Publication date is between 2015-2021 Articles that have duplicate content 

Areas of studies are related to 
Computer Science, Engineering, 
Software, Computer Applications 

Articles that cannot be accessed freely or 
with the UT institutional account  

Table 2.4 Inclusion and Exclusion criteria for the literature review 

2.3.3 Data Extraction 

For the first part of the literature research, while using the above mentioned query search, 

the IEEE xplore yielded 9 results, while also having the filter applied for the published year 

between 2015-2021, among which 8 were Journals and 1 was from an Early Access Article. The 

advanced search from Google Scholar by using the search query mentioned above yielded 183 

results, but it does not have a proper examination of the type of publication (for example, whether 

is a Conference paper or a Journal article).  

For the second part of the literature research, only Google Scholar was used, on the 

grounds that it covers a multitude of resources, and it will yield duplicate results with IEEE.  

In order to have a better understanding of the paper selection process, a flowchart is 

presented below with the steps taken in order to filter the relevant papers for both parts of the 

research: 
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Figure 2.2 Process flow for selecting the relevant articles for the first part of the literature review 

 

For the first part of the research, after the papers have been selected, each of them have 

been analysed on categorized on the basis of Table 2.5. Each paper is presented with a brief 

description, the title and authors, and it is shown why it was chosen as being relevant for the Data 

Management Architecture (DMA), what is the general perspective and whether it contains specific 

Definitions (D) for certain terms in the area that we are interested, Experiments (E) with hands-

on implementations, a Comparison (CO) between the different solutions available on the market, 

or a Classification (CL) among existing types of data storage platforms. 

For the second part of the research, the process flow is exactly the same, based on the 

same filtering criteria, with the difference that Google Scholar returned 1710 results in the first 

phase, and by the end of the filtering process, there were 8 articles selected that are further 

detailed in Table 2.6.    

The next section will present the results with the extracted data, after the articles have 

been assessed by their relevance and the inclusion criteria stated before, for both parts of the 

literature research.  
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Findings from the first part of the literature research: 

*  DMA- Data Management Architecture, D - Definition, E - Experiments, CO - Comparison, CL - Classification  

No Reference Title Research Purpose Perspective DMA concepts 

 D E CO CL 

1 
Čerešňák, Roman, 

and Michal Kvet. 

“Comparison of 

query 

performance in 

relational a non-

relation 

databases” 

This paper deals with the database storage architectures, 

principles and differences. For the evaluation, relational 

databases are consecutively compared in the 

performance section to the non-relational oriented 

databases. 

 

Implementation x x x x 

2 
Venkatraman, 

Sitalakshmi et al. 

“SQL Versus 

NoSQL 

Movement with 

Big Data 

Analytics” 

Two main revolutions in data management have occurred 

recently, namely Big Data analytics and NoSQL 

databases. The aim of this paper is to provide an 

understanding of their contexts and an in-depth study to 

compare the features of four main NoSQL data models 

that have evolved. 

Overview x  x x 

3 

Vokorokos, Liberios, 

Matúš Uchnár, and 

Lubor Leščišin 

“Performance 

optimization of 

applications 

based on non-

relational 

databases” 

This paper is focused on performance optimization of 

applications based on non-relational databases. Firstly 

there will be explained differences between relational and 

non-relational databases and also compared the types of 

non-relational databases. Then the advantages and 

disadvantages between MongoDB and ElasticSearch 

(SQL) database systems will be described and 

compared.  

Implementation x x x x 

4 

Greca, Silvana, 

Anxhela Kosta, and 

Suela Maxhelaku 

“Optimizing Data 

Retrieval by 

Using Mongodb 

with 

Elasticsearch” 

The performance of organizations is directly dependent 

on the efficiency of data access, data processing, and 

data management. The purpose of this paper is to 

demonstrate the combination of using MongoDb with 

Elasticsearch for optimized data. This demonstration is 

focused on creating a “Data warehouse” for Agricultural 

products in Albania. 

Implementation x   x 

5 Bhatt, Preeti 

“Performance 

Comparison 

between Column 

In this paper we describe the column-store NoSQL 

databases and the performance comparison between 

them. 

Overview x  x  
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Store NoSQL 

Databases” 

6 
Khazaei, Hamzeh, 

et al. 

"How do I choose 

the right NoSQL 

solution? A 

comprehensive 

theoretical and 

experimental 

survey." 

We explore popular and commonly used NoSQL 

technologies and elaborate on their documentation, 

existing literature and performance evaluation. we will 

describe the background, characteristics, classification, 

data model and evaluation of NoSQL solutions that aim 

to provide the capabilities for big data analytics. 

Overview x x x x 

7 
Mami, Mohamed 

Nadjib, et al.  

“Squerall: Virtual 

Ontology-Based 

Access to 

Heterogeneous 

and Large Data 

Sources” 

In this study, we present a unified architecture, which 

uses Semantic Web standards to query heterogeneous 

Big Data stored in a Data Lake in a unified manner. 

Implementation x x x  

8 

Bondiombouy, 

Carlyna, and Patrick 

Valduriez 

"Query 

processing in 

multistore 

systems: an 

overview." 

In this paper, we give an overview of query processing 

in multistore systems. We start by introducing the recent 

cloud data management solutions and 

query processing in multidatabase systems. Then, we 

describe and analyze some representative 

multistore systems, based on their architecture, data 

model, query languages and query processing 

techniques. 

Overview x  x x 

9 
Mehmood, Erum, 

and Tayyaba Anees 

“Performance 

Analysis of Not 

Only SQL 

Semi-Stream 

Join Using 

MongoDB 

for Real-Time 

Data 

Warehousing” 

Efficient stream processing for un-structured(NoSQL) 

and structured(SQL) data from various sources is 

required for the successful implementation of real-time 

data warehousing. 

We have done an analysis between un-structured and 

structured semi-stream join processing, using efficient 

database engine MongoDB at Extraction-Transformation-

Loading phase. 

 

Implementation x x x  

10 

Asaad, Chaimae, 

Karim Baïna, and 

Mounir Ghogho 

“Nosql 

Databases: 

 

In this paper, we present a survey of NoSQL databases 

and their classification by data model type. We also 

Overview x  x x 
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Yearning For 

Disambiguation” 

conduct a benchmark in order to compare different 

NoSQL databases and distinguish their characteristics. 

Additionally, we present the major areas of ambiguity and 

confusion around NoSQL databases and their related 

concepts, and attempt to disambiguate them. 

11 
Mami, Mohamed 

Nadjib, et al. 

“The Query 

Translation 

Landscape: a 

Survey” 

 

Methods that can simultaneously interpret different types 

of data available in different data structures and formats 

have been explored. Many query languages have 

been designed to enable users to interact with the data, 

from relational, to object-oriented, to hierarchical, 

to the multitude emerging NoSQL languages. Therefore, 

the interoperability issue could be solved not by 

enforcing physical data transformation, but by looking at 

techniques that are able to query heterogeneous 

sources using one uniform language. In this article, we 

survey more than forty query translation methods and 

tools for popular query languages, and classify them 

according to eight criteria. In particular, we study which 

query language is a most suitable candidate for that 

’universal’ query language. 

 

Overview x x x x 

12 
Mami, Mohamed 

Nadjib, et al. 

“Querying Data 

Lakes using 

Spark and 

Presto” 

We showcase Squerall’s ability to query five different 

data sources, including inter alia the popular Cassandra 

and MongoDB. In particular, we demonstrate how it can 

jointly query heterogeneous data sources, and how 

interested developers can easily extend it to support 

additional data sources. 

 

Implementation x x   

13 
Lu, Wen, Ligu Zhu, 

and Shufeng Duan 

“Research and 

Implementation 

of Big Data 

System of Social 

Media” 

Use the nosql database MongoDB to store the data and 

expand the management in time. Meanwhile, users can 

find important public opinion information from the 

historical database. ElasticSearch distributed full-text 

retrieval technology is adopted to quickly and accurately 

find relevant public opinion information.  

Implementation x x   

Table 2.5 Selected articles for the first part of the study, relevant for data architecture platforms, querying languages, ElasticSearch and GraphQL 
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Findings from the second part of the literature research: 

* DG - Data Governance, D - Definition, F - Framework, M - Methodology, E - Examples of implementations 

No Reference Title Research Purpose Perspective DG concepts 

 D F M E 

1 
Zhang, Ning, and Q. 

Yuan 

"An overview of 

data governance." 

We first review how the people understand the data, 

and various definitions of data governance, then 

examine the literature relating to framework, DQM, data 

lifecycle, privacy and security, compliance of data 

governance, next we explore the types of application 

areas of data governance based on the literature. The 

objective of this article is to provide an overview for data 

governance that can be used by researchers to focus 

on important data governance issues. 

Overview x x x x 

2 
Priebe, Torsten, and 

Stefan Markus. 

“Business 

Information 

Modeling: A 

Methodology for 

Data-Intensive 

Projects, Data 

Science and Big 

Data Governance” 

This paper discusses an integrated methodology to 

structure and formalize business requirements in large 

data intensive projects, e.g. data warehouses 

implementations, turning them into precise and 

unambiguous data definitions suitable to facilitate 

harmonization and assignment of data governance 

responsibilities. We place a business information model 

in the center – used end-to-end from analysis, design, 

development, testing to data quality checks by data 

stewards. 

 

Implementation x  x x 

3 Foster, Kyle, et al 

“Business 

Intelligence 

Competency 

Center: Improving 

Data and 

Decisions” 

This article describes the development of a business 

intelligence competency center at a multi-line insurance 

company in the Midwest. It outlines the organization’s 

problems which led to the creation of the business 

intelligence competency center and the steps taken to 

ensure a successful implementation. Resulting from this 

experience is a set of best practices for business 

intelligence competency center implementation that, if 

followed, can lead to success for any company. 

 

Use case x   x 
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4 
Attard, Judie, and 

Rob Brennan. 

“Challenges in 

Value-Driven Data 

Governance” 

This paper has the purpose of creating awareness and 

further understanding of challenges that result in 

untapped data value. We identify niches in related work, 

and through our experience with businesses who use 

data assets, we here analyse four main context-

independent challenges that hinder entities from 

achieving the full benefits of using their data. This will 

aid in the advancement of the field of value-driven data 

governance and therefore directly affect data asset 

exploitation. 

 

Use case x   x 

5 
Nargesian, 

Fatemeh, et al 

“Data Lake 

Management: 

Challenges and 

Opportunities” 

The ubiquity of data lakes has created fascinating new 

challenges for data management research. In this 

tutorial, we review the state-of-the-art in data 

management for data lakes. We consider how data 

lakes are introducing new problems including dataset 

discovery and how they are changing the requirements 

for classic problems including data extraction, data 

cleaning, data integration, data versioning, and meta- 

data management. 

 

Overview x   x 

6 Dai, Wei, et al. 

“Data Profiling 

Technology of 

Data Governance 

Regarding Big 

Data: Review and 

Rethinking” 

Data profiling technology is very valuable for data 

governance and data quality control because people 

need it to verify and review the quality of structured, 

semi-structured, and unstructured data. In this paper, 

we first review relevant works and discuss their 

definitions of data profiling.  

Overview x x  x 

7 

Kachaoui, Jabrane, 

and Abdessamad 

Belangour 

“From single 

architectural  

design to a 

reference 

conceptual meta-

model: an 

intelligent data lake 

This paper describes a new architecture implementation 

for DL systems with optimal management of metadata. 

This process treats data from heterogeneous data 

sources and with a combination of Data Warehouse 

(DW) for better management of structured data. This 

new approach offers companies an answer to data 

management problems and information availability. 

Implementation x x  x 
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for new data 

insights”  

8 

DeStefano, R. J., 

Lixin Tao, and Keke 

Gai 

 "Improving data 

governance in 

large organizations 

through ontology 

and linked data." 

In the past decade, the role of data has increased 

exponentially from something that is queried or reported 

on, to becoming a true corporate asset. While there are 

many tools and methods to increase a companies’ 

ability to govern data, this research is based on the 

premise that you can not govern what you do not know. 

This lack of awareness of the corporate data landscape 

impacts the ability to govern data, which in turn impacts 

overall data quality within organizations. 

 

Overview x x  x 

Table 2.6 Selected articles for the second part of the study, relevant for data governance, data quality and data accessibility and observability 
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2.4 Results for the First Part of the Literature Research 

2.4.1 Non-Relational Databases 

 Non-relational databases do not use the Relational Database Management System 

principles (RDBMS) and data is not stored in tables, having a schema-less approach to data 

storage. A schema definition is not required before inserting data, and there is no need to adjust 

the schema if things evolve and change. [4] Among the advantages of Non-Relational databases 

it is worth mentioning the improvement of programmer productivity by using a database that better 

matches an application's needs and increasing data access performance via some combination 

of handling larger data volumes, reducing latency, and improving throughput. Another plus is that 

most NoSQL databases are open source and they can better deal with the increasing amount of 

complex data (big data) and distributed architecture.  

 

 A categorization of NoSQL databases contains the following 4 main types described by 

paper [5]: 

1) Key-Value databases - which are the simplest NoSQL data stores to use, from an API 

perspective. The data consists of a key which is represented by a string and the actual data which 

is the value in the key-value pair. The data can be any primitive of programming language, which 

may be a string, an integer or an array or it can be an object. The most popular examples for such 

databases are Redis, Riak, etc. They are generally useful for storing session information, user 

profiles, preferences, shopping cart data. It should be avoided using Key-value databases when 

there is a need to query by data, having relationships between the data being stored or the need 

to operate on multiple keys at the same time. 

 

2) Document databases - which store and retrieve documents as XML, JSON, BSON and so on. 

The most popular document database is MongoDB, which provides a rich query language. They 

are generally useful for content management systems, blogging platforms, web analytics, real-

time analytics, e-commerce applications. It should be avoided using document databases for 

systems that need complex transactions spanning multiple operations or queries against varying 

aggregate structures. 

 

3) Column family stores - these databases store data in column families as rows that have many 

columns associated with a row key. One of the most popular is Cassandra. They are useful for 

content management systems, blogging platforms, maintaining counters, expiring usage, heavy 

write volume such as log aggregation. It should be avoided using column family databases for 

systems that are in early development and have changing query patterns. 

 

4) Graph Databases - schema-less databases which use graph data structures along with nodes, 

edges and certain properties to represent data. Nodes may represent entities like people, 

business or any other item similar to what objects represent in any programming language. 

Properties designate any pertinent information related to nodes. On the other hand; edges relate 

a node to another node or to some property. One can obtain some meaningful pattern or behavior 
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after studying the interconnection between all three vizited nodes, properties and edges. There 

are many graph databases, but the most popular ones are OrientDB, FlockDB, Neo4j, etc. They 

are very well suited to problem spaces where there is connected data, such as social networks, 

spatial data, routing information for goods and money, recommendation engines. 

 There are a few more types of non-relational databases that are brought up in the paper 

by Nishtha Jatana and al [7]. Therefore, continuing the classification from above: 

 

5) Object Oriented Databases - commonly known as OODBMS, is a database system. It stores 

its data in the form of objects. This feature supports inheritance and hence reusability similar as 

in object oriented programming. 

  

6) Grid and Cloud Databases - they make use of grid and cloud computing collectively. Grid 

computing is exploited to manage heterogeneous and geographically distributed databases while 

Cloud Computing provides easy access to remote hardware and storage resources. 

 

7) XML Databases - a database management system that is used to store XML data. In all native 

XML databases, XML documents are the fundamental storage format. However, in some XML 

enabled databases, data of the XML document is divided into parts and these parts are stored 

within tables using another XML mapping layer. Some hybrid XML databases also exist which are 

a combination of native and XED’s. 

 

8) Multidimensional Databases - store the data as a n-dimensional matrix. All the useful 

aggregates are also precompiled and stored, allowing roll-ups and drill-downs to be answered 

interactively. Many products use this approach, like, Arbor Essbase [Arb] and IRI Express [IRI]. 

Multidimensional databases may use a relational database as a backend in which 

multidimensional queries are mapped onto equivalent relational queries. Products which use this 

concept are Redbrick and Microstrategy. 

 

9) Multivalue Databases - earlier known as PICK database is such a database which understands 

three dimension data directly i.e. fields, values and subvalues. In this, value is a breakdown of 

field and subvalue is further breakdown of value. The tables in this database are extremely flexible 

such that if any of the changes are made in the database, there is no need to shutdown the 

database or rebuild the database. Also, multivalue databases have calculated columns as they 

can contain small programs for calculations. 

 

10) Multimodel Databases - a blend of various other non-relational databases that provides a mix 

of advantages offered by various other types mentioned above.  

 

Nonetheless, this is just one of the multitude of divisions that have been done for non-

relational databases. The paper by Asaad [20] offers an extensive classification of NoSql 

databases as well, along with examples for each type, hoping to achieve a disambiguation among 

them.  

 After the classification of NoSql databases is discussed, the advantages and 

disadvantages of this approach are explained.  
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Starting with the benefits, one of the advantages of non-relational databases is their 

scalability and the fact that they provide superior performance while their data model addresses 

several issues that the relational model is not designed to address, for example large volumes of 

structured, semistructured and unstructured data, agile sprints, quick iteration, frequent code 

pushes, object-oriented programming, efficiency, monolithic architecture. [4] 

 Among disadvantages of non-relational databases, a few have been covered by paper [7]. 

Most of the Non-Relational databases are open source software and though well appreciated, it 

compromises in reliability as nobody is responsible in times of failures. Many of the Non-Relational 

databases are diskbased which implement buffer pool and multithreading hence require buffer 

management and locking features which add on to performance overhead. Many Non-relational 

databases provide BASE properties and sacrifice conventional ACID properties as a step to 

increase performance. This could mean that non-relational databases compromise on 

consistency within the database. Because of flouting ACID properties, the degree of reliability 

provided by non-relational databases is lower than what is provided by the relational databases. 

Developers have to rope in programming to apply ACID restraints which could have been 

provided easily in relational databases.  

 

 Diving deeply into specific types of NoSQL databases, there is a plethora of scientific 

literature that explains specific use cases. The next section will present these findings. 

 An analysis regarding the column databases (NoSQL) is presented in the paper by Bhatt, 

Preeti [15]. It shows what are the possible use cases for them: 

 

● Content management systems; 

● Blogging platforms; 

● Systems that maintain counters; 

● Services that have expiring usage; 

● Systems that require heavy write requests (like log aggregators); 

 

The same paper discusses the situations when this kind of column databases should be 

used: for semi-structured data, because it requires scalability and high performance; queries that 

involve only a few columns, aggregation queries against vast amounts of data and column-wise 

compression. 

The situations when this type of database should be avoided are the following: for complex 

querying, if the querying patterns frequently change, if there is not an established database 

requirement, for incremental data loading, for Online Transaction Processing (OLTP) usage or if 

there are queries against only a few rows. 

After the comparative analysis of various column-store databases, the study underlines 

that Cassandra and DynamoDB give high availability and partition tolerance but HBase, BigTable 

and HyperTable give consistency and partition tolerance. BigTable doesn’t support concurrency 

control. Cassandra supports Master-Slave Architecture and HBase supports Hadoop Distributive 

Architecture. Today Facebook and other social networking websites prefer Cassandra over 

HBase because of its availability, open source, minimal administration, no SPoF (Single Point of 

Failure) and the fact that it provides security in every financial transaction. Companies like 

Bloomberg, Bank of America, Verizon and much more using HBas. HBase is good at intensive 
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reads, whereas Cassandra is good at writes. Cassandra lacks data consistency while HBase 

lacks data availability. Therefore, each database comes with its own advantages and 

disadvantages. 

An innovative approach is presented in the paper by Mami [17], presenting semantic Web 

standards for heterogeneous data integration. For almost two decades, semantic technologies 

have been developed to facilitate the integration of heterogeneous data coming from multiple 

sources following the local-as-view paradigm. Local data schemata are mapped to global ontology 

terms, using mapping languages that have been standardized for a number of popular data 

representations, such as relational data, JSON, CSV or XML. Data of multiple sources and forms 

can then be accessed in a uniform manner by means of queries using a unique query language: 

SPARQL, employing terms from the ontology. Such data access, commonly referred to as 

OntologyBased Data Access (OBDA), can either be physical or virtual. In a physical data access, 

the whole data is exhaustively transformed into RDF, based on the mappings. In a virtual data 

access, data remains in its original format and form; it is only after the user issues a query that 

relevant data is retrieved, by mapping the terms from the query to the schemata of the data. 

The pool of heterogeneous data residing in its original format and form is commonly 

referred to as Data Lake. It can contain databases (e.g. NoSQL stores) or scale-out file/block 

storage infrastructure (e.g. HDFS distributed file system). The goal is to facilitate accessing large 

amounts of original data stored in a Data Lake, i.e., without preprocessing or physical data 

transformation. Therefore, the result is building a virtual OBDA on top of the Data Lake, and calling 

the resulting concept a Semantic Data Lake.  

 An overview of three available NoSQL databases (Cassandra, MongoDB and Couchbase) 

is discussed in the paper by Băzăr, Cristina, and Cosmin Sebastian Iosif [6]. Cassandra is a 

distributed columnar key value database that uses the eventual consistency model. Cassandra 

is optimized for write operations and has no central node: data can be read from or written to any 

node in a cluster. It provides a continuous horizontal scalability and has 

no single point of failure: if a node in a cluster fails, then another node comes and replaces it.  

MongoDB is a NoSQL database, document-oriented, schema-free, which stores data in BSON 

format. A document based on a JSON, BSON is a binary format that allows quick and easy 

integration of data with certain types of applications. MongoDB also provides horizontal scalability 

and has no single point of failure. A MongoDB cluster is different from a Cassandra cluster or 

CouchBase cluster, because it includes an arbiter, a master node and multiple slave nodes. 

Couchbase is a NoSQL database, open source, document-oriented, designed for interactive web 

applications and mobile applications. Couchbase Server documents are stored as JSON. With 

integrated caching, Couchbase offers low latency read and write operations, providing linearly 

scalable throughput. Architecture has no single point of failure. The cluster is 

easy to be scaled horizontally and live cluster topology changes are supported. This means that 

there is no application downtime when updating the database, the software or the hardware using 

rolling upgrades. 

 This paper also discusses some key criteria when choosing among the NoSQL databases 

described above, and it includes scalability, latency, performance, availability, and ease of 

deployment. Couchbase had the lowest latencies in the scenarios created for interactive 

applications because of cache objects built. 
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 The extensive study accomplished by Khazaei, Hamzeh, et al. [16] aims to help users, 

individuals or organizations, to obtain a clear view of the strengths and weaknesses of well-known 

NoSQL data stores and select the right technology for their applications and use cases. NoSQL 

data stores can accommodate the large volume of data and users by partitioning the data in many 

storage nodes and virtual structures, thus overcoming infrastructure constraints and ensuring 

basic availability. Additionally, NoSQL data stores relax the transactional properties of user 

queries by abandoning the ACID system for the BASE (Basic availability, Soft state, Eventual 

consistency) system. In this paper, they survey the domain of NoSQL in order to present an 

overview of the relevant technologies to store and process big data. They present these 

technologies according to their features and characteristics. For each category it is shown a 

historical overview of how they came to be, a review of their key features and competitive 

characteristics, and a discussion about some of their most popular implementations. Big data has 

been forcing businesses to leverage new types of datastores that are more performant, 

economical, reliable and scalable compared to traditional RDBMS solutions. Selecting the right 

datastore is not a trivial task due to diversity and lack of standard benchmarks in this domain. 

There are research works and experiments to compare and contrast various solutions but none 

of them are truly generalizable and applicable for other interested parties. Therefore, this paper 

comes in to fill in the gap and present their findings and experiments.  

2.4.2 Data Warehousing 

Data warehousing is becoming increasingly useful for enterprises. Based on the specific 

needs of the organization, infrequently updated data warehouse environments do not support 

quicker business decisions and faster data recovery in case of transformation or load issue. 

Implementation of a real-time data warehouse provides a solution for this kind of problem. The 

paper by Mehmood [19] carries out a performance analysis to measure CPU and memory usage 

for real-time semi-stream join processing through two types of tests, unstructured and structured 

data streams using synthetic and real datasets. Their experimental results showed that under the 

given configuration, a fixed sized memory and constant CPU time is required for stream join 

processing for a given stream size, irrespective of the nature of data stream, which however 

increases for growing stream size. Stream processing with larger datasets need more disk I/O 

therefore increasing execution time and memory used.  

For deriving intelligence out of data, the need of data warehouse (DW) is increasing 

nowadays. Rather than having multiple decision-support environments operating independently, 

which may lead to conflicting information, a DW unifies all sources of information. Decision 

support system architecture is composed of three important phases: DW building, exportation and 

Extracting, Transforming and Loading (ETL) processes which are responsible for extracting, 

transforming and loading data into a multidimensional DW. The basic purpose of ETL is to filter 

redundant data not required for analytical reports and to converge data for fast report generation.  

Today’s most common DW implementation is based on the relational model using SQL as 

its query language. However, Not Only SQL (NoSQL) DW solutions are being proposed by many 

researchers as they are more scalable and have better performance in comparison to relational 

databases. Typical RDBMS are inefficient for handling unstructured big data generated by Web, 

in contrast NoSQL has the capabilities of handling such kind of data. 
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 2.4.3 ElasticSearch 

 One of the focuses of this literature research review was to gain more insight into 

previously done advancements regarding the ElasticSearch technology. This section will further 

discuss the findings.  

 Recently, new “big data” technologies and architectures have evolved to better support 

the needs of organizations analyzing data that is fast-moving and voluminous. In particular, 

Elasticsearch, a distributed full-text search engine, explicitly addresses issues of scalability, big 

data search, and performance that relational databases were simply never designed to support. 

In the paper by Kononenko, Oleksii, et al. "Mining modern repositories with elasticsearch." [9], a 

reflection upon its strengths and weaknesses is revealed, along with an in-depth explanation of 

what the capabilities of ElasticSearch are. 

 Elasticsearch is an open source full-text search engine written in Java that is designed to 

be distributive, scalable, and near real-time capable. While Elasticsearch and traditional RDBMSs 

differ in many ways, at the higher-level many of the core concepts of Elasticsearch have 

analogues in the RDBMS world. All data in Elasticsearch is stored in indices. An index in 

Elasticsearch is like a database in a RDBMS: it can store different types of documents, update 

them, and search for them. Each document in Elasticsearch is a JSON object, analogous to a row 

in a table in a RDBMS. A document consists of zero or more fields, where each field is either a 

primitive type or a more complex structure. A document has a Document type associated with it; 

however, all documents in Elasticsearch are schema-free, which means that two documents of 

the same type can have different sets of fields. Document type here is similar to the RDBMS 

notion of a table: it defines the set of fields that can be specified for a particular document. 

 Elasticsearch is based on Apache Lucene; each Elasticsearch index consists of one or 

more Lucene indices, called shards. The number of shards that each index has is a fixed value 

that is defined before the index can be created. When a document is added to an index, the 

Elasticsearch server defines the shard that will be responsible for storing and indexing that 

document. By doing this, Elasticsearch balances the loads between available shards and also 

improves overall performance, since all shards can be used simultaneously. While such automatic 

sharding is only one key part of the distributed nature of Elasticsearch, the other part of it is 

automatic distribution of shards among the nodes in a cluster. 

 Elasticsearch is a RESTful server, so the main way of communication with it is through its 

REST API. Communication between the Elasticsearch server and a client is straightforward. In 

the majority of cases, a client opens a connection and submits a request, which is a JSON object, 

and receives a response, which is also a JSON object. The simplicity of this mode of 

communication places no restrictions on the programming language used to implement clients or 

the platforms that they operate on; if a client can send HTTP requests, it can communicate with 

the Elasticsearch server. 

 Elasticsearch provides its own query language based on JSON called Query DSL. A given 

search can be performed in Elasticsearch in two ways: in a form of a query or in a form of a filter. 

The main difference between them is that a query calculates and assigns each returned document 

with the relevance score, while a filter does not. For this reason, searching via filters is faster than 

via queries. The official documentation recommends using queries only in two situations: for full 

text searches or when the relevance of each result in the search is important. 
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 Regarding the strengths, first one to be mentioned by the paper is the Scalability.  

Elasticsearch automatically distributes shards of an index across the nodes of a cluster and 

controls that they are loaded equally. So if one expects to add more data in future and to 

accommodate the growth in data, Elasticsearch is a good choice as it scales horizontally. 

 The second positive aspect touched by the paper is agility. Data can be agile in terms of 

the number of updates or new records, in terms of constantly changing structure of a logical piece 

of information or document, or a combination of both of them. Relational databases are good at 

changing/adding data as long as the amount of data in a database is not too large. The time 

needed to perform a database maintenance (mainly recalculating indices) increases with its size. 

Elasticsearch can better handle agile data because of: a) each of the shards is being 

indexed/refreshed independently, and b) indices are constantly refreshed with fixed time interval, 

which means that it is unlikely that a shard has accumulated a lot of unrefreshed data. In the 

RDBMS world, a database schema is fixed and known before the first record arrives. If any 

updates might take place, the schema must be changed and this must be propagated to the 

records that are already in the database. If the database stores big data, this process can be very 

slow. Additionally, if the database is used in a domain where documents can have a lot of optional 

fields, the database can end up having large sparse tables that waste disk space for storing 

NULLs. Elasticsearch does not impose schema on the documents in indices. If a new document 

is added to an index and there is a new field in this document, Elasticsearch will automatically 

update the mapping. There is no need to change already stored documents since they do not 

have such a field. In addition, Elasticsearch can automatically alter the data type of a field if a 

value in a new document requires a “wider” type (e.g., changing integer to long). 

 The third and last advantage discussed is the performance. Best practises of the relational 

databases world dictate that each relational database must go through the normalization process 

during the design phase. By converting a database to a particular normal form bulk data is 

decoupled into several tables and the amount of redundant information is minimized. While the 

normalization benefits the create, update, and remove operations, it is likely to complicate the 

read operations. Most SELECT statements hit more than one table and they must be joined before 

the filtering conditions are applied. Although every RDBMS handles this operation as efficiently 

as it can, it is a time-consuming process if the query involves complex schemas. But since 

Elasticsearch is document-oriented it does not need to spend time on this preliminary step (i.e., 

gathering the data). Moreover, all shards within an index are searching for the documents 

satisfying some filter criteria concurrently, and after that results from all them are combined and 

returned. While scalability and schema-free documents are common for NoSQL systems, the 

combination of all three (scalability, agility, and performance) in one system is what makes 

Elasticsearch stand out from other systems. 

 When it comes to disadvantages, Security is the first one mentioned. By the time the paper 

was published (2014), ElasticSearch lacked security features such as authentication and access 

control, but nowadays it is not the case anymore.  

 The second and last disadvantage mentioned is the learning curve for the technology. The 

JSON origin of the Elasticsearch query language makes it really easy to start writing simple 

queries. However, query writing becomes more complicated if it involves nested objects. There is 

a special type of queries, nested queries, in Elasticsearch that must be used when one of the filter 

conditions is a condition on a field from a nested object. The use of such queries requires the 
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understanding of how particular documents are stored and analyzed by Elasticsearch (i.e., the 

mapping that is currently in use). Finally, Elasticsearch inherits some weaknesses of being a 

NoSQL system — lack of transactions, lack of JOIN operation, possible inconsistencies in data, 

etc. 

 Elasticsearch is best suited for the applications that are built to handle real time data that 

needs to be processed and analyzed in a rapid manner. Such applications include software 

analytics. Thousands of organizations worldwide including Netflix, Facebook, GitHub and Stack 

Overflow, have adopted Elasticsearch to help them overcome limitations of their old approaches 

in handling new demands of agile data processing and storage. 

 It quickly gained popularity and is one of the most favorite databases intended for 

searching. These main points sum up its main characteristics [13]: 

 

● Default database setup suits most people even without any user adjustments.  

● It is working in distributed mode by default.  

● Peer to peer architecture without a single point of failure. Nodes are automatically 

connected to the distributed system for data interchange and state monitoring. 

● Simple scalability of data capacity by adding nodes.  

● Data lookup and analysis almost in real time. 

  

 Text analysis is a process which handles human language or complex data. ElasticSearch 

has tools which can dissect and edit words to make the search more effective. After adding text, 

it will split the text to appropriate expressions which are used in the invested index. The analyzer 

does three basic functions:  

 

● Symbol filter – string of text is filtered to remove or substitute special symbols and 

HTML tags.   

● Tokenizer – it splits the text into expressions and words based on spaces and 

periods.  

● Token filter – it can change words based on current filter, for example uppercase 

or lowercase them, remove joins or add synonyms. 

 

ElasticSearch has lots of in-build filters but allows to create custom ones and use them in 

the analyzer. The text is processed by the analyzer before adding into documents. The searched 

request is also processed by analyzer and only then is searched in the database. 

Another paper that shows a successful implementation of the ElasticSearch full-text 

functionality is the one by Lu [29], in the context of social Big Data gathered from different 

messaging systems. With the rapid growth of the system data, the traditional search engine 

method has not been able to solve the index problem of massive data. With the increase of single 

index files, the search efficiency of index engines on index files is slower and slower. Distributed 

indexing technology can effectively solve such problems. The distributed index module of this 

paper is mainly based on ElasticSearch distributed search engine framework to design, Its main 

function is to set up the distributed inverted index for the mass data in the vertical field. Since the 

index method used in this paper is distributed index mode, each index data needs to be assigned 

to the corresponding index sharding according to the ID of the data. By default, ElasticSearch 
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adopts the shared-slice routing algorithm, which is the djb2 hash algorithm, which performs 

hashing calculation on the ID of the index document and the result of the hash calculation. When 

the index document is distributed, the index document needs to be analyzed in text. The sharding 

process is used to distribute the index steadily, and the text analysis process analyzes the index 

document and converts it into a Token flow. This article designs different text parsers for different 

types of index documents, including letter filtering programs, word segmentation programs, and 

word filtering programs. 

In an inverted index file, an index object is a word in a document or a collection of 

documents. It is used to store the location of these words in a document or a set of documents 

and is the most commonly used index mechanism for the collection of documents. The key step 

in the search engine is to create an inverted sort index. The inverted sort index is generally 

expressed as a keyword, frequency, location, etc. It's equivalent to an index of the Internet's 

hundreds of billions of web pages, just like a book's catalog or label. The reader wants to see 

which theme is relevant to the topic, and can find the relevant page directly according to the 

directory. ElasticSearch uses an inverted sort file index structure. 

  

 2.4.4 Cloud Data Management Solutions 

An overview of the cloud data management solutions is provided in the study by 

Bondiombouy [18]. A major trend in data management for the cloud is the understanding that 

there is “no one size fits all” solution. Thus, there has been a blooming of different cloud data 

management solutions, specialized for different kinds of data and tasks and able to perform orders 

of magnitude better than traditional relational DBMS (RDBMS). Examples of new data 

management technologies include distributed file systems (e.g. GFS and HDFS), NoSQL data 

stores (e.g. Dynamo, Bigtable, Hbase, Mongodb, Neo4j), and data processing frameworks (e.g. 

MapReduce, Spark). The problem of accessing heterogeneous data sources, i.e. managed by 

different data management systems such as RDBMS or XML DBMS, has long been studied in 

the context of multidatabase systems (also called federated database systems, or more recently 

data integration systems).  Most of the work on multidatabase query processing has been done 

in the context of the mediator-wrapper architecture, using a declarative, SQL-like language. The 

mediator-wrapper architecture allows dealing with three major properties of the data sources: 

distribution (i.e. located at different sites), heterogeneity (i.e. with different data models and 

languages) and autonomy (i.e. under local control). 

 The state-of-the-art solutions for multidatabase query processing can be useful to 

transparently access multiple data stores in the cloud. However, operating in the cloud makes it 

quite different from accessing data sources on a wide-area network or the Internet. First, the kinds 

of queries are different. For instance, a web data integration query, e.g. from a price comparator, 

could access lots of similar web data sources, whereas a cloud query should be on a few but 

quite different cloud data stores and the user needs to have access rights to each data store. 

Second, both mediator and data source wrappers can only be installed at one or more servers 

that communicate with the data sources through the network. However, operating in a cloud, 

where data stores are typically distributed over the nodes of a computer cluster, provides more 

control over where the system components can be installed and thus, more opportunities to 

design an efficient architecture. 



34 

 These differences have motivated the design of more specialized multistore systems (also 

called polystores) that provide integrated access to a number of cloud data stores through one or 

more query languages. Several multistore systems are being built, with different objectives, 

architectures and query processing approaches, which makes it hard to compare them. To ease 

comparison, the authors divide multistore systems based on the level of coupling with the 

underlying data stores, i.e. loosely-coupled, tightly-coupled and hybrid. Loosely-coupled systems 

are reminiscent of multidatabase systems in that they can deal with autonomous data stores, 

which can then be accessed through the multistore system common language as well as 

separately through their local language. Tightly-coupled systems trade autonomy for 

performance, typically in a shared-nothing cluster, so that data stores can only be accessed 

through the multistore system, directly through their local language. Hybrid systems tightly-couple 

some data stores, typically an RDBMS, and loosely-coupled some others, typically HDFS through 

a data processing framework like MapReduce or Spark.  

 A cloud architecture typically consists of multiple sites, i.e. data centers at different 

geographic locations, each one providing computing and storage resources as well as various 

services such as application (AaaS), infrastructure (IaaS), platform (PaaS), etc. To provide 

reliability and availability, there is always some form of data replication between sites. Although 

useful, the solutions devised for multidatabase systems (also called federated database systems) 

or Web data integration systems need to be extended in major ways to deal with the specific 

context of the cloud. This has motivated the design of multistore systems (also called polystores) 

that provide integrated or transparent access to a number of cloud data stores through one or 

more query languages. As NoSQL and related technologies such as Hadoop and Spark, 

multistore systems is a recent, important topic in data management, and we can expect much 

evolution in the coming years. 

 

2.4.5 Comparison between Relational and Non-relational Databases 

A comparison between relational databases and non-relational databases is covered in 

the paper by Vicknair [3]. It focuses on the underlying technology for the development of a data 

provenance system. It takes into account different objective and subjective measures for MySQL 

(relational) and Neo4j (NoSQL-Graph) databases. The objective tests include processing speed 

based on a predefined set of queries, disk space requirements, and scalability. Subjective tests 

include maturity/level of support, ease of programming, flexibility, and security. The conclusion of 

the paper is that using the graph storage for a production environment seemed premature due to 

lack of support back then (2010). Nevertheless, this might not be the case now, as these 

technologies broadly evolved in the later years and they gained more support and feedback from 

the user community.   

 Another comparative study of relational and non-relational database models in a web- 

based application analyzes MongoDB (non-relational) and MSSQL (relational) [4]. The operations 

that were undertaken are the standard ones: insert, update, delete and select. For inserting, 

updating and deleting records, MongoDB proved to perform better in terms of speed, especially 

when it comes to working with thousands of records at once. For selecting records, it is the other 

way around, so MSSQL proved to be faster. The conclusion of the study is that relational 



35 

databases are suitable for small scale applications, when they need to handle a limited amount 

of data.  

 The survey by Nishtha Jatana and al [7] affirms that the relational model is beneficial when 

it comes to reliability, flexibility, robustness, scalability requirements but in order to cater to 

the needs of modern applications where the data is huge and generally unstructured, non-

relational databases show true signs of usability. The reliability of the database model is checked 

with the help of ACID properties. Atomicity stands for ‘everything or nothing’. If any 

part of the transaction is left incomplete then the entire transaction is considered failed. 

Consistency ensures that a database before and after any transaction is stable at a valid state. 

Isolation ensures that multiple transactions executing at the same time do not affect one another's 

execution. Thus, requiring the concurrent transactions to be serialized. Durability ensures that 

once a transaction has been committed it will remain in the same state i.e. stored permanently 

even if there are some errors, or even if the system crash or power loss occurs. 

 The paper by Venkatraman [11] underlines the advantages for the NoSQL databases 

movement related to the Big Data development, compared to the SQL approach: NoSQL 

databases are a better option for the information systems that require high performance and 

dynamic scalability more than the requirements of reliability, highly distributed nature of the three-

tier Internet architecture systems and cloud computing. 

 The Big Data advancements are also discussed in the paper by Acharya [12], mentioning 

the new era of NoSQL databases. The rapid growth in the digital world in the form of 

exponentiation to accommodate huge amounts of structured, semi-structured, unstructured and 

hybrid data received from different sources. By using the conventional data management tools, it 

is quite impossible to manage this semi-structured and unstructured data for which a non-

relational database management system such as NoSQL and NewSQL are used to handle such 

types of data. 

 Presenting the advantages of non-relational databases, the paper of Vokorokos [13] 

indicates the ability to distribute them amongst servers and thus lowering the load on each 

individual server. It is better to divide the data amongst servers in the way that the single request 

will be processed only on one node.  

 In order to guarantee the integrity of data, most of the classical database systems are 

based on transactions [20]. This ensures consistency of data in all situations of data management. 

These transactional characteristics are also known as ACID (Atomicity, Consistency, Isolation 

and Durability). However, scaling out (i.e., scaling horizontally or adding more nodes to a system) 

of ACID-compliant systems has proven to be a problem. Conflicts are arising between the different 

aspects of high availability in distributed systems that are not fully solvable – known as the CAP-

theorem. The CAP acronym stands for: 

● Consistency: meaning if and how a system is in a consistent state after the execution of 

an operation. A distributed system is typically considered to be consistent if after an update 

operation of some writer all readers see his updates in some shared data source. There 

are nevertheless several alternatives towards this strict notion of consistency.  

● Availability: and especially high availability, meaning that a system is designed and 

implemented in a way that allows it to continue operation (i.e., allowing read and write 

operations) if for instance nodes in a cluster crash or some hardware or software parts are 

down due to upgrades.  
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● Partition tolerance: understood as the ability of the system to continue operation in the 

presence of network partitions. These occur if two or more "islands" of network nodes 

arise, temporarily or permanently, which cannot connect to each other. Some also 

understand partition tolerance as the ability of a system to cope with the dynamic addition 

and removal of nodes (e.g. maintenance purposes).  

  

The CAP theorem postulates that in a "shared-data system", only two of the three CAP 

characteristics can be achieved fully at the same time. For a growing number of applications and 

use-cases (including web applications, especially in large and ultra-large scale, and even in the 

e-commerce sector), availability and partition tolerance are more important than strict 

consistency. These applications have to be reliable which implicates availability and redundancy 

(consequently distribution among two or more nodes, which is necessary as many systems run 

on cheap, commoditized and unreliable machines and also provides scalability). These properties 

are difficult to achieve with ACID properties, therefore approaches like BASE are applied. Other 

properties relating to NoSQL technologies include, among others, sharding (i.e., Horizontal 

partitioning by some key and storing records on different servers in order to improve 

performance), Horizontal scalability (i.e., Distributing both data and load over many servers) and 

Vertical scaling (i.e., Use of multiple cores and/or CPUs by a DBMS).  

The BASE approach according to Brewer [21] forfeits the ACID properties of consistency 

and isolation in favor of “availability, graceful degradation and performance”. The acronym BASE 

is composed of the following characteristics: Basically available; Soft-state; Eventually consistent. 

With regards to databases, Brewer [21] concludes that current databases are better at 

consistency than availability, and that wide-area databases can’t have both–a notion that is widely 

adopted in the NoSQL community and has influenced the design of non-relational data stores. 

Systems that can be characterized by the BASE properties include Amazon’s Dynamo, which is 

available and partition-tolerant but not strictly consistent, i.e writes of one client are not seen 

immediately after being committed to all readers. Google’s BigTable chooses neither ACID nor 

BASE but the third CAP-alternative being a consistent and available system and consequently 

not able to fully operate in the presence of network partitions. The CAP theorem was formulated 

to describe a major characteristic of distributed systems. In an era where scalability out of ACID 

properties was deemed inefficient, the CAP theorem was used as an argument in favor of 

adopting NoSQL databases. A rising number of database specialists have seeked to debunk this 

argument based on the fact that it is now possible for scalability to be maintained along with a 

strong consistency (e.g. NewSQL systems). 

  For NoSQL Databases, the argument holds still. The scalability provided by NoSQL comes 

at the ’small’ cost of having to prioritize availability over consistency in the existence of a network 

partition. Evidently, when the system is functioning in its normal state, the database can and 

should be able to provide both characteristics. 

 

2.4.6 Query Languages 

 Generally speaking, a query language is a specialized programming language for 

searching and changing the contents of a database. Even though the term originally refers to a 

sublanguage for only searching (querying) the contents of a database, modern query languages 
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are general languages for interacting with the DBMS, including statements for defining and 

changing the database schema (if there is one), populating, searching or updating the contents 

of the database, defining integrity constraints over the database, defining stored procedures, 

defining authorization rules, defining triggers, etc.  

 Query languages have come a long way during the last few decades. The first database 

query language, SQL, was formally introduced in the early seventies following the earlier 

proposed and well-received relational model. SQL has influenced the design of dozens query 

languages, from several SQL dialects, to object oriented, graph, columnar, and the various 

NoSQL languages. These query languages are implemented and used in an unprecedented 

variety of storage and data management systems. In order to leverage the advantages of these 

solutions, companies and institutions are choosing to store their data in different representations, 

a phenomenon known as Polyglot Persistence. As a result, large data repositories with 

heterogeneous data sources are being generated (also known as Data Lakes), exposing various 

query interfaces to the user. Integrating this heterogeneous data (Big Data Variety) into a unified 

format and system, as has historically been the case with e.g., data warehouses, is nowadays 

becoming irrelevant. This is because (1) data is very large in size (Big Data Volume), (2) 

companies are less likely to sacrifice data freshness especially with the advances in streaming 

and IoT technologies (Big Data Velocity) [21]. While SQL, for example, comprises a sophisticated 

data structuring and very expressive query language, NoSQL trades schema and query 

expressivity for scalability. As a result, since no optimal representation exists, different storage 

and query paradigms have their right to exist based on the requirements of various use cases. 

 The paper by Mami [21] provides an extensive overview of the most popular querying 

languages in four database categories (relational, graph, hierarchical and document-oriented 

databases) and a review of the translation methods that exist between them. One of the 

conclusions is that, looking at the language scope coverage, there seems to still be a lack in 

covering the more sophisticated operations of query languages, e.g., more join types and 

temporal functions in SQL; blank nodes, grouping and binding in SPARQL. Such functions are 

motivated by and are at the core of many modern analytical and real-time applications. Indeed, 

some of those features are newly-introduced and some of the needs are only recently exposed, 

in which case the authors make the call to both update the existing works and build new solutions 

to embrace the new features and address the new needs. After discovering and exploring the 

various query translation methods, it appears that SQL and SPARQL are the most suitable 

languages to act as a ’universal’ language for realizing the heterogeneous data integration. SQL 

is the oldest query language with ever-continued development cycles and adoption. SPARQL is 

the stable query language of the so-called ontology-based data integration and access, which 

specializes specifically in integrating data coming from heterogeneous sources. 

 Squerall is a tool that allows the querying of heterogeneous, large-scale data sources by 

leveraging state-of-the-art Big Data processing engines: Spark and Presto. Queries are posed 

on-demand against a Data Lake, i.e., directly on the original data sources without requiring prior 

data transformation. The paper by Mami [22] showcases Squerall’s ability to query five different 

data sources, including inter alia the popular Cassandra and MongoDB. In particular, it 

demonstrates how it can jointly query heterogeneous data sources, and how interested 

developers can easily extend it to support additional data sources. During the last four decades, 

a variety of data storage and management techniques have been developed in both research and 
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industry. Today, we benefit from a multitude of storage solutions, varying in their data model (e.g. 

tabular, document, graph) or their ability to scale storage and querying. There are dozens of 

continuously evolving storage and data management solutions; for the NoSQL family Cassandra, 

MongoDB, Couchbase, HBase, Neo4j, DynamoDB, are just a few examples. However, those 

systems do not inter-operate, every stored data is locked in the respective system. For example, 

an ecommerce company might store Product information in a Cassandra database, Offers 

information in MongoDB, to benefit from its capability to store hierarchical multi-level values, and 

information about Producers obtained from an external source in a relational format. Without 

transforming and moving the data into a unified (scalable) data management solution, the data 

can hardly be explored and business insights be extracted using ad hoc uniform querying. The 

authors have taken on the mission of bridging this gap and developed Squerall, a software that 

allows to query heterogeneous data directly in its original form and source. They have used 

standardized and time-proven Semantic Web techniques to enable the uniform querying of 

heterogeneous data and support the mapping of terms in the original data to terms in higher-level 

ontologies, and the querying of the resulting uniform view using SPARQL. 

 Similar efforts to integrate and query large data sources exist in the literature. For instance, 

[24] defines a mapping language to express access links to NoSQL databases. [25] allows to run 

CRUD operations over NoSQL databases. [26] proposes a unifying programming model to 

directly access databases using get, put and delete primitives. [27] proposes a SQL-like language 

containing invocations to the native query interface of relational and NoSQL databases. [28] is a 

hybrid platform with consideration for both heterogeneous and dynamic data sources (streams). 

However, Squerall offers the highest number of supported data sources while providing the richest 

query capability, including joining, aggregation and ordering. The authors demonstrate Squerall’s 

ability and efficiency in querying five different data sources (namely: CSV, Parquet, Cassandra, 

MongoDB and MySQL), and how it can be easily extended to support additional data sources, 

through several application scenarios.  

 Squerall addresses the Variety challenge of Big Data, which remains poorly addressed, 

by making use of Semantic Web standards and best practices. Squerall can conveniently be 

(pragmatically) extended to embrace new data sources, by making use of the query engines’ own 

wrappers. This approach solves one of the most tedious tasks acknowledged across the literature, 

i.e., handcrafting wrappers. For example, in addition to the five sources evaluated in the paper, 

other sources like Couchbase or Elasticsearch can also be easily supported. As a result, Squerall 

is both innovative and unique in its capability to support a high number of data source types. 

Additionally, Squerall has been integrated into SANSA, a framework for scalable processing and 

analysis of large-scale RDF data, widening its scope to also access non-RDF data sources. 

2.5. Results for the Second Part of the Literature Research 

 

Data and information affect the decision-making process on the various activities of an 

organization, as data-intensive decision-making is being increasingly adopted by businesses, 

governments, and other agencies around the world, many leaders are aware of the importance 

of the data, while these organizations devise various ways to deal with the challenges such data 

brings, data processing, data quality and governance programs should not be underestimated 
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[30]. Therefore, an insight into how data governance is seen in the academic world will be 

presented in the following section. 

Today’s competitive business environment requires companies to collect, analyze, and 

interpret enormous quantities of data to enable better, more informed decision-making. 

Fortunately, there is an abundance of data available for most companies. However, without proper 

data quality and governance guidelines, these data might prove useless. Data quality is a 

necessity when extracting meaningful information. For, without it, a company may be left guessing 

at a direction or making skewed decisions based on flawed data. So, in order to achieve high 

quality, the data needs to be accurate, available, understandable, and relevant to the problem 

being solved. Ultimately, impactful, data-driven decisions are necessary for organizational 

survival. Unfortunately, the decision-making capabilities of a company are made significantly 

more complicated when there is a lack of data confidence. This lack of confidence adversely 

affects organizational performance. (IBM, 2008). 

The data landscape of large, multinational corporations is often historically grown and 

characterized by isolated stand-alone solutions. This results in inconsistent data definitions and 

reports. There is a lack of understanding what data exists and where it comes from. 

Communication problems lead to increased development costs and long project cycles. In this 

context, often data consolidation (e.g. data warehouse) initiatives are launched to facilitate 

harmonization [31]. 

Recent big data environments, also called “data lakes” tend to be built in a less structured 

way than traditional ones like data warehouses (DWH). The strength of file- or document-based 

data stores like Hadoop or MongoDB is that data models do not need to be defined upfront (so-

called “late binding” or “schema on read”), but that does not mean that requirements analysis and 

modeling should be neglected. In fact, the need of an information catalog to organize the data in 

a data lake has frequently been raised.  

As Attard and Brennan mention [34], data is quite popularly considered to be the new oil 

since it has become a valuable commodity. This has resulted in many entities and businesses 

that hoard data with the aim of exploiting it. Yet, the `simple' exploitation of data results in entities 

who are not obtaining the highest benefits from the data, which as yet is not considered to be a 

fully-edged enterprise asset. Such data can exist in a duplicated, fragmented, and isolated form, 

and the sheer volume of available data further complicates the situation. Issues such as the latter 

highlight the need for value-based data governance, where the management of data assets is 

based on the quantification of the data value. This quantification will provide an opportunity for 

evidence-based approaches to data governance.  

Organisations and companies are increasingly relying on their data to become more 

competitive, for example, by having greater knowledge of their customers, by taking more 

informed decisions, by finding new innovative uses for the data, by controlling risks and cutting 

costs, and also by innovating upon this data. Such use of data assets enables companies to not 

only better achieve their goals, but also to improve their financial performance [34]. 
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2.5.1 Data Governance 

 In the study by Zhang, Ning, and Q. Yuan [30], it is mentioned that In the last century, still 

some organizations do not know what data they have, how critical that data is, the sources that 

exist for critical data, or the degree of redundancy of their data assets, however, data governance 

is an important topic for any organization that acknowledges the importance of their business data 

as a foundation to their success in recent years. It is an area of corporate management that looks 

at decision-making and authority for data-related matters. 

 At present, more and more organizations realize the importance of the data, they believe 

that data can improve performance, create value, enhance competitiveness as well as cut cost. 

So many surveys conducted by the institution or the conferences conveyed the idea. 

 Recently, nearly two-thirds of respondents in the 2012 Big Data study confirm that the use 

and the analysis of information (including Big Data) is creating a competitive advantage for their 

organizations (M. Schroeck, et al 2012). Another recent survey conducted by the (E. Pierce, et al 

2012) showed International Association for Information and Data Quality (IAIDQ) also that more 

than 70% respondents considered data a strategic asset. According to the 2012 IBM CEO study, 

the ability of an organization to obtain value from data is strongly related with performance, where 

outperforming organizations are twice as good as underperformers at accessing and drawing 

insights from data. 

 Clearly, with the rapid growth of digitized data inside and outside the organization, and 

with the increase of possibilities to access this data, organizations have become aware of the 

need for right use of their data, there is a great emphasis on data and deriving its value through 

effective governance. 

 Since data governance and management efforts and investments are on the rise, it is 

becoming increasingly relevant to identify the economic value of data and the return on 

investment. Data value has been used as a basis for organisational decision making on quality, 

but also as a part of automated control systems for data lifecycles and file retention. Failing to 

value data will result in a number of consequences such as retaining information that has little to 

no value, reduction in data usage, and leaving data investments vulnerable to budget cuts. Hence, 

data value is an aspect that plays a very important role in data governance. The issue is that 

although gaining recognition as a valuable asset, data has as yet resisted quantitative 

measurement, and data value is as yet mostly limited to be a notional value [34]. 

 Realistically, it is quite doubtful to have a one size fits all data governance solution, as any 

data governance efforts must fit the specific organisation in question and cater for the needs of 

the business. That being said, current approaches lack the link between data assets and 

organisational value. Such a strategy is essential in exploiting data assets to achieve competitive 

advantage that provides both short and long term value, therefore ensuring business success and 

sustainability [34].  

 Examples of data governance processes that can be optimised include: 

● Data storage: for example more valuable data can be stored in more reliable, more secure 

storage, whilst less valuable data can be stored using cheaper options; 

● Data access: more valuable data, for example sensitive data, can be restricted to be used 

by employees with a higher user grade; 

● Data acquisition: Data can be acquired depending on whether its value for the enterprise 

is worth its cost; 
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● Data standards: Data standards can be defined based on the existing data specifications, 

with the aim of achieving the data specifications that are required by the context of use; 

● Data maintenance: Data curation or maintenance processes can be prioritised according 

to data value. For example, either prioritising data assets that are very valuable to the 

business, and therefore will result in the highest impact, or otherwise prioritising data 

assets that will benefit most from being maintained. 

2.5.1.1 Definitions of Data Governance 

 Data governance (DG) refers to the overall management of the availability, usability, 

integrity, and security of the data used in an organization. Since the initial emergence of data 

governance as an important and fundamental issue to organizations, the data governance 

community and researchers have published several definitions of the data governance. Although 

the definition of data governance is still evolving, current usage describes this discipline as being 

a facilitator for managers to take control over all aspects of their data resource. 

 Weber, K (Weber, K et al 2009) said that data governance specifies the framework for 

decision rights and accountabilities to encourage desirable behavior in the use of data, to promote 

desirable behavior, data governance develops and implements corporate-wide data policies, 

guidelines, and standards that are consistent with the organization’s object, strategy, values, and 

culture. From the above, we can find data governance contains many aspects, which formed from 

a convergence of procedures, technologies, processes, policies, responsibilities and decision 

making rights for the use of data in organizations. 

 Data governance is an ongoing process of monitoring, evaluating, and assessing data, its 

users, and database activity to better understand and control data risk (Neera Bhansali 2013), in 

addition to compliance with legal requirements of information security, most of the data 

governance also propose the security requirements, related to how personally identifiable 

information is secured and protected, and establish the role of information or data security officer 

to guarantee the secure activities such as data access. 

 Data governance initiatives may be aimed at achieving a number of objectives including 

offering better visibility to internal and external customers and compliance with regulatory laws. 

 In the paper by Attard and Brennan [34], DAMA International defines data governance to 

be the “exercise of authority and control (planning, monitoring, and enforcement) over the 

management of data assets". Data governance is therefore the management of data architecture, 

data quality, data security, data operations, etc. Tasks include the setting, monitoring and 

enforcing of policies, standards, and procedures; the coordination, maintenance, and 

implementation of data architecture; the acquisition of data assets and the monitoring of their 

costs, quality and security, and the creation of data ownership rights. Data governance therefore 

enables the effective use of data assets. 

2.5.1.2 The Framework of Data Governance 

 Firstly, almost all published frameworks recommend that data governance should 

undertake the maturity assessment, to establish the current state of data management and 

control, such as Gartner, IBM, MDM Institute, ARMA International, and CMMI Institute’s Data 

Management Maturity Model (Neera Bhansali 2013). For example, Supplier Kalido (Data 

Governance Institute 2011) offers consultancy services and data management software, 
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encouraging customers to first do a self- assessment of their data governance maturity with online 

tool, the criteria that cover three potential aspects (organization, process and technology) of data 

governance implementation, based on the results of the assessment, an enterprise then fall into 

one of four data governance maturity stages: Application-Centric, Enterprise Repository-Centric, 

Policy-Centric, and Fully Governed. 

 Learned from the previous published IT governance framework by Weill & Ross (Weill & 

Ross 2004), Khatri & Brown (Khatri & Brown 2010) propose a data governance framework using 

five interrelated data decision domains: data principles, data quality, metadata, data access and 

data lifecycle, this framework become the important reference for the latter research. Both 

academic and practical sources provide data governance as a universal approach – one that fits 

all enterprises alike, however, Weber (Weber et al 2009) states that there should not one 

approach to data governance because of the distribution of accountabilities, so he proposes a 

flexible data governance model made up of several roles (executive sponsor, chief steward, 

business data steward, and technical data steward), decision areas (or tasks) and assignment of 

responsibilities, which stress data quality roles and their interaction with DQM (Data Quality 

Management) activities. 

 DeStefano [42] believes that in order to mitigate the cost and risk of poor data quality and 

information leakage while maximizing the opportunities that data can provide, it is imperative that 

organizations establish a data governance framework. The importance of data quality is well 

established. Data quality is a key prerequisite in many key business operations and objectives 

across many industries. Examples of such are: global supply chain management, customer 

relationship management, strategic decision making, business intelligence, and compliance with 

regulations. 

2.5.1.3 Data Quality Management 

In the above mentioned framework, data quality is an important element. Data quality 

management (DQM) focuses on the collection, organization, storage, processing, and 

presentation of high-quality data (Wende 2007). Data Quality Management specifies planning and 

implementation of techniques and processes to cleanse and purify existing data, and to ensure 

that whatever data is entered in the organizational information systems conforms to quality 

specifications (Abrar Haider 2012).  

 Data quality is seen as the most important aspect influencing usability of data for business 

processes and reporting (Friedman and Smith 2011). Data quality in turn largely determines the 

effectiveness of the business processes, and also influences the reporting quality (Eppler and 

Helfert 2004). 

 Data governance is not just about improving quality of data alone. It is about managing 

the asset of the organization so as to enable a continuous improvement-based learning 

progression (Abrar Haider 2012). 

 By understanding how data is used, and how long it must be retained, organizations can 

develop ways to make usage patterns fit to the optimal storage media, thereby minimizing the 

total cost of storing data over its life cycle (Khatri & Brown 2010). By placing data according to 

the life cycle, complying with business needs, data can be used more effectively distributed across 

multiple resources, thus leading to improved storage utilization and reduced storage acquisition 

costs. 
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  Dai [40] underlines that data quality plays an important role in data governance. Data is 

a valuable asset for customers, companies, and governments. Data profiling technology can 

improve data quality. Data profiling tools discover the pattern of datasets, including data cleaning, 

data integration, and data analysis. 

2.5.1.4 Metadata Architecture 

Metadata describes what the data is about and provides a mechanism for a concise and 

consistent description of the representation of data, it is needed to be addressed in data 

governance, in order to assure the data is interpretable, standardizing metadata provides the 

ability to effectively use and track information, helping interpret the meaning or “semantics” of 

data. Different kinds of metadata play different roles in the discovery, retrieval, collection, 

management and analysis of data. 

Nargesian [39] argues that, unlike data warehouses or DBMS, data lakes may not be 

accompanied with descriptive and complete data catalogs. Without explicit metadata information, 

a data lake can easily become a data swamp. Data catalogs are essential to on-demand discovery 

and integration in data lakes as well as raw data cleaning. In addition to extracting metadata from 

sources and enriching data with meaningful metadata (such as detailed data description and 

integrity constraints), metadata management systems need to support efficient storage of 

metadata (specifically when it becomes large) and query answering over metadata. 

An example of a metadata management system is Google Dataset Search (GOODS) that 

extracts and collects metadata for datasets generated and used internally by Google. The 

collected metadata ranges from dataset-specific information such as owners, timestamps, and 

schema to relationships among multiple datasets such as their similarity and provenance. 

GOODS makes datasets accessible and searchable by exposing their collected metadata in 

dataset proles. 

Metadata discovery provides the data abstraction that is crucial to data understanding and 

discovery, yet opportunities remain in better extracting and connecting knowledge from lakes and 

incorporating this knowledge into existing (general or domain-specific) knowledge bases. 

Schema mapping permits the exchange of information between data sets using different 

schemas and recent work permits mapping discovery over incomplete (or inconsistent) schemas 

and examples. In sample-driven schema mapping, users describe the schema using a set of 

tuples. To give users flexibility in describing a schema, in multiresolution schema mapping, the 

user can describe schemas using a set of constraints of various resolutions, such as incomplete 

tuples, value ranges, and data types. 

2.5.1.5 Methodologies 

 The paper by Priebe and Markus [31] discusses the Business Information Modeling (BIM) 

methodology that addresses two challenges – agile, business-driven, stepwise design and 

development of data intensive IT solutions as well as governing data within and beyond those 

solutions – by introducing a semantic business information model as a central point of reference.  

 Unlike BIM and Accurity Glossary, the existing available tools are rather limited in 

combining mapping specifications with business models (glossaries) and data requirements 

(specification lineage). Furthermore, they are agnostic to a particular modeling approach and 
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hence based on generic terms and categories rather than providing modeling guidance through 

functionality like attribute definitions, explicit inheritance or composite attributes.  

 A logical or physical data model alone is not suitable to enable harmonization and reuse 

in data-intensive environments. In order to address those goals adequately, the technical data 

models have to be accompanied by a semantic business information model, capturing the 

definitions and business rules plus the mappings to the different representations of the 

corresponding data artifacts. As an answer to that need, the authors have developed a 

methodology called Business Information Modeling (BIM). The business information model 

represents unambiguous, robust definitions of business concepts and the linking of data to these 

concepts. The model is an organization-wide and unique catalog of information pieces that 

represent the requirements of all relevant user communities. 

 Besides the elements of the business model Subject Areas, Entities, Attribute Definitions 

and Attributes it is core of the methodology to also maintain business requirements (usually more 

coarse grained and less formalized than attributes) and map them to elements of the business 

model. The BIM can be seen in Figure 2.3.  

 In this methodology, the business information model acts as the central anchor point for 

mappings to various data layers (e.g. sources in DWH projects). In order to facilitate a model-

driven development approach, more detailed mapping information is needed than just tagging an 

attribute to a certain source data field. Joins or selection criteria may be needed. The authors use 

the initial assignment (“tagging”) of attributes to source systems or tables as an indication for the 

mapper, which detailed mappings he needs to add. 

 

 

 
Figure 2.3 The Business Information Modeling (BIM) wheel proposed by Priebe and Markus [31] 

 

 If various layers in a data architecture are tagged with (or mapped to) elements of the 

business model, this information can be used to perform pragmatic data lineage queries. The 
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business information model is defined in a way that the attributes represent the most granular 

atomic pieces of relevant information. If the physical data representations are linked on this level 

of granularity, the lineage information is quite precise. 

 Now, how can a business information model be created? Unlike logical and physical data 

models, which can be acquired as pre-built industry reference models, a business information 

model is always organization specific, as the terminology and KPIs used will differ from 

organization to organization. Nevertheless, there are a number of sources that can help to define 

the organization-specific model. Depending on the setting, one source may be a reference data 

model of the respective industry (e.g. Teradata FSDM or IBM BDW). Further inputs that add 

content specific to the organization are corporate standards like a product catalog and existing 

legacy data models. 

 The authors base their business information model on the Entity-Relationship (ER) 

approach. As depicted by the four colored symbols in the center of the BIM wheel in figure 2.3, 

the main elements of their modeling approach are Subject Areas, Entities, Attribute Definitions 

and Attributes. 

 In organizations, where BIM has been applied within DWH project cycles, it has proven 

also very useful for governance. Data stewards and owners have been assigned on subject area, 

entity or even attribute level and stored as additional metadata. The tagging of data layers within 

the DWH environment is used not only during development, but also in production, e.g. to perform 

data lineage and impact analyses. 

 With the emergence of the big data hype, an old problem of IT, the integration of structured 

and unstructured information, is experiencing a renaissance. The “variety” aspect extends this to 

various data formats and stores, sometimes referred to as a “data lake”.  

Ferguson [32] takes up on this and coins the term “data reservoir” arguing that data needs 

to be “refined” to be of business value. In particular, he argues that an “information catalog” is 

needed in order to: 

● Document where data resides and came from; 

● View data lineage; 

● Name and describe data; 

● Define shared business vocabulary terms; 

● Classify data; 

Picking up on this idea of an information catalog, the authors have developed the big data 

landscape scheme shown in Figure 2.4. 
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Figure 2.4 Big data landscape with BIM as information catalog 

 

2.5.1.6 Use Case Examples 

An implementation use case at an insurance company for a business intelligence 

competency center (BICC) as discussed by paper [32] shows that the underlying mission of the 

BICC was to empower strategic decision makers to accomplish important business objectives 

through a structure with strict data governance and information delivery. The BICC was to act as 

a liaison between analysts in the lines of business and the IT Data Management group. In order 

for it to work, the BICC needed to be business centric, rather than IT centric. This allowed it to 

better meet the needs of the lines of business it supports. 

Prior to the creation of the BICC, no enterprise wide data governance policy existed. So, 

data analysts and business users experienced less than satisfactory results when analyzing data. 

Often, the development of reports and information processing were delayed by the lack of 

consistent, well-defined data. The BICC put forth a strong governance process to aid in the 

creation of impactful enterprise decisions. As such, the BICC sets-up and maintains definitions 

for data collected from the company’s business insurance operations. It schedules and facilitates 

periodic meetings for its oversight committee, the Enterprise Data Governance Council. 

A Data Governance Manager, who works in the BICC, was charged with chairing a data 

stewardship committee which is responsible for: 

●  Defining data across the enterprise; 

●  Improving data quality; 

●  Resolving data integration issues; 

●  Providing data usage policy and quality standards; 

●  Determining data security; 

●  Maintaining business rules applied to data and data retention criteria. 
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 Now, the BICC provides support to data creation areas based on the knowledge gained 

through data quality issue resolution. It also prepares and publishes a data quality scorecard 

which enables the organization to gauge its progress on improving data quality. The BICC also 

works with the data stewards to help maintain data validation rules which enforce enterprise data 

standards, achieve key quality goals, and ensure root causes are addressed. 

 Finally, the BICC addressed analytical process sharing. Prior to the BICC, analysis 

performed throughout the organization was segregated by departmental units. By creating 

analytical silos, the company increased the amount of conflicting measures, redundant efforts, 

and decision making based on inaccurate information. The BICC catalogs the analytics dispersed 

throughout the company, validates the accuracy of the methods and results, and posts the 

analyses to an online repository which is available to all appropriate employees broadly. 

 Another use case example is covered by Attard and Brennan [34] for MyVolts, a company 

that uses data assets in order to obtain a competitive edge, as a use case with the aim of providing 

a first overview of challenges in value-driven data governance. 

 The first challenge is the quantification of the value of data as it is being acquired. MyVolts 

need to be able to measure the value of this data in order to identify whether this data is worth 

their effort and/or money. This quantification will not only enable MyVolts to reduce the risk of 

investing poorly in the data acquisition process, but also help target company efforts and aid 

decision making in the data exploitation and data curation processes. The first challenge is directly 

related to the second challenge; what makes data valuable? In this use case, in order to be 

valuable, data needs to be reliable, timely, relevant, accurate, with good potential for impact once 

its used, and preferably even unique (not available to other competitors). A further aspect of this 

challenge is the context of use; what might be valuable data for one use might be irrelevant for 

another. Therefore, different contexts of use will have different requirements as to what makes 

data valuable. 

 A successful effort to exploit data assets and achieve competitive advantage requires 

various data governance tasks, including the definition of roles; data policies, standards, and 

procedures; the definition of an interoperable data architecture; and data storage and 

organisation. Therefore, the authors here identify the need of implementing a value-driven data 

governance model. Such an evidence-based model would need to allow data assets to allow 

within the business or organisation, provide insight into what are the inputs and outputs of the 

existing processes, and also identify how these processes provide value to the business with 

regard to achieving the company goals. 

2.5.1.7 Defining and Measuring Data Value 

 The paper by Attard and Brennan [34] discusses the data value concept. Data value is 

recognised as a “key issue in information systems management". Yet, while most research on 

information or data value seeks to identify dimensions that characterise it, there is still no 

consensus on the definition of data value. In fact, the multi-dimensional nature of value, as well 

as the role context plays in data value quantifying efforts, make the definition of data value quite 

challenging. The interdisciplinary nature of this field also adds to the complexity of this task. 

 Laney explores the applicability to the business and the availability to competitors as 

dimensions of data value [35]. Chen, on the other hand, presents an information valuation 
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approach that quantifies the value of a given piece of information based on its usage over time 

[36]. 

 The measurement of data value in an unbiased manner allows for better data 

characterisation and classification, which then enable data exploitation optimisation. This requires 

monitoring data value dimensions within data value chains. Despite the growing literature on data 

as a valuable asset and on data exploitation, there is little to no work on how to directly assess or 

quantify the value of specific datasets held or used by an organisation within an information 

system. Moreover, existing methods for measuring the value of data often require intensive 

human e ort and are also case-specific. 

 Usage, cost, and quality are three recurring data value dimensions that are measured in 

existing literature. Chen, for example, devises an approach to measure data value based on 

usage-over-time [36]. This valuation method is derived from two measurable and observable 

metrics; usage and time. The author here infers the value of information based on a number of 

usage statistics that include usage count, usage time, the source of usage, and the purpose of 

the usage. Wijnhoven et al. extended Chen's usage-based data valuation approach with a utility-

based estimation based on le metadata [37]. Through case studies in a consulting practice, they 

found that the frequency of use and the grade of user accessing the file were the most important 

predictors of value. 

 Various cost metrics are used in literature to measure data value. Stander breaks `cost' 

into two categories, namely: (i) the purchase price of the data asset, and (ii) the direct costs 

attributed to preparing the data for use [38]. Stander also mentions some approaches for 

measuring data value, including the cost approach, where data value is measured as the 

expenditure required to reproduce or obtain a data asset; the market approach, where data value 

is the price that organizations in the market are willing to pay for a data asset; and the income 

approach, which relies on the estimation of future income based on the exploitation of a data 

asset. 

 The existing literature therefore not only highlights the lack of existing metrics to quantify 

value, but also points out the need for more efforts in defining data value. Moreover, the literature 

also makes evident the complexity of quantifying data value, also due to its dependence on the 

context of use and its subjectivity. Yet, the subjective nature of some dimensions that characterize 

data value certainly does not rule out their quantification. Similar to some data quality aspects 

such as timeliness, such dimensions can still be accurately quantified in an objective manner, if 

only relevant for a specific context of use. 

 

2.5.1.8 Data Profiling 

 Different authors give different definitions of data profiling.In the paper by Dai [40], it is 

described as “the set of activities and processes to determine the metadata about a given 

dataset.” or “data profiling is a process whereby one examines the data available in an existing 

database or flat file and collects statistics and information about that data. These statistics 

become the real or true metadata.” Data profiling can be utilized at different stages of data 

governance. Dai [40] believes that profiling is the process of verifying users’ structured data, semi-

structured data, and unstructured data, gathering data structure, data pattern, statistical 
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information, distribution messages, and reviewing data attributes for data governance, data 

management, data migration, and data quality control. 

 Data profiling is included in multiple tasks for data governance. Scholars argue that people 

need to profile data only when cleaning, managing, analyzing, or integrating it; evaluating its 

quality; performing data archaeology; optimizing queries; or engaging in Extract, Transform and 

Load (ETL) projects. However, data profiling could also be used for compressing, verifying, 

masking, auditing, migrating, archiving, and recovering data as well as for generating testing data 

and data health reports. 

 Dai [40] argues that qualitative indicators are the best way to measure data quality and 

they present the following table: 

 
Table 2.7 Indicators of data quality 

 

 DeStefano [42] argues that data is deemed high quality if it is fit for its intended use. While 

there are different definitions for “fitness”, it is commonly implied to span the following 4 

categories. It can be seen that some of the indicators presented in table 2.7 are also considered 

here: 

● Accuracy: Determines the correctness of the data as it was recorded, against its actual 

value, based on the context of its usage. 

● Timeliness: The recorded data must be current for its intended use. 

● Completeness: The data values are persistent and it is adequate for depth and breadth. 

For example, this could mean having all the history for a given account, or all of the data 

values for a particular product. 

● Credibility: Pertains to the trustworthiness of the data source. 

  

 In the paper by Dai [40], the authors come up with an example for a data profiling 

framework, that can be seen in table 2.8. It provides an overview of the layers that need to be 

considered, combined with the possible applications that could fulfill certain tasks.  
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Layer Application 

Web-UI Layer User interface for ER model, business rules, 
KPI dashboard, batch or real-time job 
maintenance, input/output data source 
configuration. 

Function Layer Scores of data profiling missions (Section III). 

Algorithm Layer Utilize data mining, machine learning, and 
statistics, or other algorithms. 
 

Parallelism Layer Apache Spark for static data and full volume 
data; 
Apache Storm for real-time data. 
 

Data Layer Business rules, configuration data, metadata 
store in Hadoop, traditional databases. 
 

Hardware Layer Integrate CPU and GPU clusters for 
improving performance, especially real-time 
or machine learning tasks. 

Table 2.8 An example of data profiling framework 

 

2.5.2 The Accessibility of Data Lakes 

 The paper by Nargesian [39] gives a bit of context regarding data lakes and their 

accessibility. A data lake is a massive collection of datasets that: (1) may be hosted in different 

storage systems; (2) may vary in their formats; (3) may not be accompanied by any useful 

metadata or may use different formats to describe their metadata; and (4) may change 

autonomously over time. Enterprises have embraced data lakes for a variety of reasons. First, 

data lakes decouple data producers (for example, operational systems) from data consumers 

(such as, reporting and predictive analytics systems). This is important, especially when the 

operational systems are legacy mainframes which may not even be owned by the enterprise (as 

is common in many enterprises such as banking and finance). For data science, data lakes 

provide a convenient storage layer for experimental data, both the input and output of data 

analysis and learning tasks. The creation and use of data can be done autonomously without 

coordination with other programs or analysts. But the shared storage of a data lake coupled with 

a (typically distributed) computational framework, provides the rudimentary infrastructure required 

for sharing and reuse of massive datasets. 

 While some of the data in a lake is extracted, transformed, and loaded into existing 

database management systems (DBMS) or data warehouses, some of it may be exclusively 

consumed on-demand by programming environments to perform specific data analysis tasks. 

Moreover, the value of some of this data is transient, meaning additional analysis is required to 

create information with sufficient value to load into a data warehouse. Even though some of this 

data is not destined for traditional DBMS, there are still many open and fascinating data 

management research problems. 
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 Current data lakes provide reliable storage for datasets together with computational 

frameworks (such as Hadoop or Apache Spark), along with a suite of tools for doing data 

governance (including identity management, authentication and access control), data discovery, 

extraction, cleaning, and integration. These tools help individual teams, data owners and 

consumers alike, to create and use data in a data lake using a self-serve model. Systems like 

IBM's LabBook proposes using the collective effort of data scientists to recommend new data 

visualization or analysis actions over new datasets or for new users. A grand challenge for data 

lake management systems is to support on-demand query answering meaning data discovery, 

extraction, cleaning, and integration done at query time over massive collections of datasets that 

may have unknown structure, content, and data quality. Only then would the data in data lakes 

become actionable. 

 An example of a data lake management architecture is shown in Figure 2.5 and is 

discussed in Nargesian [39]. The data sources may include legacy operational systems (operating 

in Cobol or other formats), information scraped from the Web and social media, or information 

from for profit data brokers. Operational systems often export all data as strings to avoid having 

to deal with type mismatches. The actual type information and metadata may be represented in 

numerous different formats. Other data may be pure documents, semi-structured logs, or social 

media information. 

 

 
Figure 2.5 Example data lake management system 

 

Kachaoui [41] believes that data lakes are merely means to an end. To achieve the end 

goal of delivering accurate and consistent business insights repeatedly, the aid of DW and data-

driven management will be needed. DL’s capability of storing and processing data at a low cost 
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has made it a perfect place for ETL; it is a data preparation process for business use. Data Lakes 

ingest all kinds of data by using a robust programming framework and low level coding language. 

All of these characteristics make DL a natural fit for ETL. It is considered as a new approach of 

analytical insights creation for businesses, from the acceleration of traditional enterprise reporting 

through new analytics driven by data science. It especially aims to bridge the gap between the 

rigidity of Data Warehouses/ data marts and the velocity and business needs. 

This paper also presents an example of an Architecture for a Hybrid System that can be 

seen in Figure 2.6: 

 
Figure 2.6 An example of architecture for a Hybrid System 

 

2.5.2.1 Data Cleaning 

Nargesian [39] mentions that while cleaning enterprise data has received significant 

attention over the years, little work has been done on cleaning within the context of a data lake. 

Logical and relational data cleaning typically requires correct schema information including 

integrity constraints. However, in data lakes the data may be stored in schema-less 

heterogeneous formats or using schemas that are only specified at application level. Although 

enriching data with schema information is one of the main goals of metadata management 

systems, postponing cleaning to the later stages of data processing may result in the propagation 

of errors through operations such as discovery and integration. 
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2.5.2.2 Dataset Discovery 

 Nargesian [39] discusses that, due to the sheer size of data in data lakes and the absence 

or incompleteness of a comprehensive schema or data catalog, data discovery has become an 

important problem in data lakes. To address the data discovery problem, some solutions focus 

on generating and enriching data catalogs as well as facilitating search on them. The authors 

consider these below with other data lake metadata management techniques. Other solutions 

operate on raw data (and existing metadata) to perform discovery. In query-driven discovery, a 

user starts a search with a query (dataset or keywords) and the goal is to find similar datasets to 

the query or datasets that can be integrated (joined or unioned) with the query. 
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3. Requirements  

 After completing the background research by conducting the literature study, enough 

expertise information was found in order to be able to start with the process of implementing a 

data management platform as a prototype, called “Data Observability prototype”. Before any 

development activities can take place, the requirements need to be determined, which are a 

description of features and functionalities of the target system to be developed. This step is part 

of the “Treatment design” and “Treatment validation” from the engineering cycle proposed by 

Wieringa [44], and it will answer the research question 2 mentioned in this Master thesis, “What 

are the needs of the business users regarding this data management architecture?”. 

 Firstly, an overview of the stakeholders and their goals should be known. There are two 

parties involved, the platform provider and the platform consumer. Within each category, there 

are more roles that can be identified with the help of the model provided by Alexander [45]:  

 

• normal operators (also called “end users”, from the consumer side); 

• functional beneficiaries (from the consumer side); 

• maintenance operators (keeping the system running, from the provider side); 

• operational support (from the provider side); 

• interfacing system (from the provider side); 

• developers (from the provider side); 

• threat agent (a possible hacker); 

   

In order to define the requirements for the “Data Observability prototype”, a survey was shared 

with a number of experts within the Dutch collaborative company. Their input is of high importance 

for being able to define a solution design that will reach the goal of the project. 

The questions and full answers can be found in Appendix A. After analyzing the responses, 

the following section describes different personas (business users) applicable for the prototype, 

along with user stories suitable for each of them. 

 

The entire requirements identification process is based on the Agile methodology. The Agile 

methodology for developing software evolved in the 90s as part of a reaction against traditional 

approaches that were considered heavy, bureaucratic and not adequately supported the activities 

of developers [48]. Agile is based on self-organization rather than rigid management practices, 

and the ability to manage to constant change rather than being blocked by rigid waterfall 

development process. 

Agile processes always begin with the user or customer in mind. Nowadays, they are defined 

with user personas to illustrate different roles in a workflow the software is supporting or different 

types of customer needs and behaviors. 
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According to Williams, Clay, et al [49], the key stakeholders include not only those typically 

responsible for software development, but also stakeholders not typically involved in software 

engineering discussions. There are several stakeholder categories defined, and they can be seen 

in the figure below:  

 
Figure 3.1 Enterprise stakeholders and their concerns 
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3.1 Personas, Scenarios and Expectations 

In our case, after analyzing the results from the survey, and considering the small scale of the 

prototype that is developed, three different personas can be identified that are part of the 

Customer and Developer category described in the figure 3.1. They come with specific goals that 

they want to achieve, and the artifact will be designed while keeping these goals in mind. To get 

a better understanding on the background of the personas, some possible scenarios, 

expectations and phases that they go through, these details were added as well in the below 

section: 

 

• Business user from a logistics company: an end user being able to visualize the 

data on the IPaaS platform in the last phase of the cycle. They could be someone 

responsible for order management, or someone from customer support that needs to 

be able to check details of orders/customers; 

 

Scenario: Alex from the Customer Support department within the 
logistics company wants to be able to view orders that were delivered last week, and 
look for a specific customer that left an unsatisfactory review on the 
company because he did not receive his products ordered.   
 
Expectations: have a search input where he can look for the name of the customer 
and retrieve the relevant order data, including the address, the items ordered, and 
customer details.  
 
Phases  
 
Data storage: Alex knows that order data is stored for 1 year for this logistics 
company.   
 
Problem: A customer encountered a problem with his order that went missing and 
left a negative review for the company.  
 
Search: Alex can look up this specific customer to see the details of his delivery and 
see what went wrong with it.  
 
Solution: Alex finds the customer and his order and can get in contact with the 
customer to settle the disagreement, because the customer provided a wrong 
delivery address.  
 

 

• Architect: keeps close contact with the business user to be up to date with their needs; 

accesses the IPaaS platform in order to decide what data is stored (message type), 

the type of metadata stored (timestamp, last changed, source system, target system) 

and for how long it is going to be stored from the available options (retention time can 

be 1-7 days/ 30 days/ 1 year/ permanent). This persona is configuring these settings 

based on the desires of the business user; 
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Scenario: Arthur from the Expert Services department from a Consultancy company 

has weekly meetings with their business client from a logistics company to be up to 

date with the changes that need to be done regarding their IPaaS platform that they 

are using.   

 

Expectations: Arthur expects that the IPaas platform has a specific user interface 

where he can change the settings needed to store data for a specific retention time.  

 

Phases  

 

Data storage: Arthur finds out about the need of the logistics company to store their 

order data for 1 year. Along with it, extra metadata is wanted to be saved, like the 

timestamp, the time when data was last changed, source system that initiated to data 

transfer, the target system that is going to receive the data.  

 

Changes on the platform: Arthur updates the settings on the IPaaS platform for the 

logistics company, to reflect their wishes regarding storing the data and metadata 

associated.  

 

Confirmation: Arthur receives confirmation from the logistics company that their data 

was stored and can be accessed from the IPaaS platform. 

 

• Data Scientist: technical person that can use the collected data for reporting purposes 

and further analysis, like data patterns, trends, graphs and different statistics; 

 

Scenario: Laura is hired as a data scientist to analyze the data collected, generate 

graphs and reports with statistics about the orders, regarding who is the most valuable 

client, what is the most sold product, etc.  

 

Expectations: Laura expects that data is stored in a database from where it can be 

easily accessed and extracted, so she can use different tools to generate the graphs 

and statistics.  

 

Phases  

 

Data storage: Laura accesses the database where data is stored and writes a script 

to extract the data.  

 

Data cleaning and processing: Laura processes the collected data and keeps only the 

relevant information that will help her generate the graphs and statistics.  

 

Generate statistics and graphs: Laura wants to find out who is the most valuable client 

based on who ordered products with the highest value. She extracts this knowledge 

by aggregating all the order amounts, grouped by customer. 
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3.2 User Stories 

From the customer side, there are some Agile user stories that are taken into account before 

the implementation phase. These are mainly describing the functional requirements that need to 

be considered when developing the “Data Observability prototype”. 

A user story is an informal, general explanation of a software feature written from the 

perspective of the end user. Its purpose is to articulate how a software feature will provide value 

to the customer. 

These user stories are formulated based on this format: As <persona> I want to 

<requirement> so that <goal>. 

 

No Title User story 

1  Store data  As a Business user, I want to be able to store the business 
data, so that I can access it later.  

2  Query data  As a Business user, I want to have the possibility to query my data, so 
that I can find specific information easily.  

3  Visualize data  As a Business user, I want to be able to visualize the data that was 
stored, so that I can view its details.  

4  See relations and 
navigate  

As a Business user, I want to be able to see what relations are 
between the stored data and navigate through them so that I can 
better understand the connections.  

5  Select message type 
saved  

As an Architect, I want to be able to choose what message type is 
stored so that only relevant data is saved.  

6  Select metadata saved  As an Architect, I want to be able to choose to store specific 
metadata besides the business data (timestamp, last changed, source 
system, target system) so that more context is added to it.  

7  Select retention time  As an Architect, I want to be able to select for how long the data is 
stored so that the appropriate retention time is used.  

8  Specify permission  As an Architect, I want to be able to specify who can access the data 
so that only authorized persons can use the functionality.  

9  Query and analyze 
data  

As a Data scientist, I want to have the possibility to query my data, so 
that I can find specific information easily, and further analyze it.  

10  Visualize and generate 
statistics  

As a Data scientist, I want to be able to visualize the data that was 
stored, so that I can view its details and further generate graphs with 
statistics.  

11  See 
relations, navigate, and 
determine data 
patterns and trends  

As a Data scientist, I want to be able to see what relations are 
between the stored data and navigate through them so that I can 
better understand the connections and determine the data patterns 
and trends.  

Table 3.1 User stories 

 

 The user stories from 9-11, related to the Data scientist role, focused more on analyzing 

the data, providing statistics and reporting are out of scope for this assignment, due to the limited 

amount of time provided, but it is kept as reference for future work.  
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3.3 Non-functional Requirements 

 Some of the non-functional requirements are extracted from the survey shown in Appendix 

A, distributed among experts from eMagiz. They are split into several categories: 

 

• Speed (latency) for the search performance: the speed at which the results are 

delivered to users should take maximum 1 second; this is achieved by using 

ElasticSearch as storage and search engine; 

• Security: due to the fact that the eMagiz platform is used as starting point to store the 

data that is flowing within, the security is achieved by having a login system in place 

by enforcing the correct data access privileges to their users;  

• Reliability, which is the quality of being trustworthy or of performing consistently well; 

• Maintainability: the source code is easily maintainable due to the fact that control 

versioning is used and software development practices were followed. There are 

comments throughout the code for a better understanding of the logic. There have 

been several “Knowledge sharing and transfer” sessions within the company, to 

ensure the functionalities of the prototype are understood by the development 

company so maintainability can be achieved;  

 

 A prototype will be developed, saving the data that flows through the Dutch IPaaS platform 

eMagiz as starting point. The prototype is demonstrating a fictional use case based on Orders-

Customers-Addresses, specific for a logistics company. If the solution will arise interest from 

potential business clients, it will be fully integrated in the platform by the development team at a 

later point. In Chapter 5: Implementation, it is explained how the whole prototype functions. 
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4. Architecture Specification Model 

 To be able to answer the third Research Question proposed in this Master project, “How 

to design a data management architecture based on ElasticSearch and GraphQL for retrieval and 

reporting of client data?”, an architecture specification model was created. This corresponds to the 

Treatment Design phase from the Design Cycle proposed by Wieringa [44]. 

In order to design the architecture specification model, the Archi modelling toolkit for 

creating ArchiMate models was used. The ArchiMate modelling language is an open and 

independent Enterprise Architecture standard that supports the description, analysis and 

visualization of architecture within and across business domains. ArchiMate is one of the open 

standards hosted by The Open Group and is fully aligned with TOGAF [46]. 

The TOGAF Standard, a standard of The Open Group, is a proven Enterprise Architecture 

methodology and framework used by the world’s leading organizations to improve business 

efficiency. It is the most prominent and reliable Enterprise Architecture standard, ensuring 

consistent standards, methods, and communication among Enterprise Architecture professionals. 

Those professionals who are fluent in the TOGAF approach enjoy greater industry credibility, job 

effectiveness, and career opportunities. This approach helps practitioners avoid being locked into 

proprietary methods, utilize resources more efficiently and effectively, and realize a greater return 

on investment [47]. 

Below, the representation of the proposed system architecture is provided. It contains 

elements from the business, application and technology layers, to give a better overview of all the 

specific features involved. Each element is explained, along with the documentation that is 

provided by Archi. To be noted that the elements with blue font are newly added to achieve the 

purpose of this assignment and can be differentiated from the already existing elements of the 

Dutch provider IPaaS’s platform, eMagiz.  
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Figure 4.1 Architecture design by using Archimate 

 

 As a standard approach from Archimate, the business layer elements are colored in 

yellow, the application layer elements are turquoise and the technology layer elements are 

represented with green.  

4.1 Business Layer 

For the business elements represented with yellow, there can be 4 business roles that can 

be identified: the Architect, the Customer, the Business user from logistics company and the Data 

scientist. A Business Role represents the responsibility for performing specific behavior. A 
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Business Event represents an organizational state change and is most commonly used to model 

something that triggers behavior. In this model, the business event Request for integration is 

triggered by The Customer, who provides a Specification document to the Architect, on which the 

Handle Integration process will be based upon. This process contains 5 constituent processes, 

starting with Create integration, that triggers the Define settings for storing data and metadata, 

which triggers the Deploy integration, followed by Manage integration, Extract and process data 

and finally Explore results for taking decisions. A Business Process describes the internal 

behavior performed by a Business Role that is required to produce a set of products and services.   

 4.2 Application Layer 

Going further into the application side represented with turquoise, the Modelling portal UI 

application component contains 4 application services: the Integration service, the Deploy service, 

the Manage service and the Process data service. There is also a Modelling interface that is part 

of this component. An Application Component represents an encapsulation of application 

functionality aligned to implementation structure, which is modular and replaceable. An 

Application Component is a self-contained unit. As such, it is independently deployable, re-usable, 

and replaceable. 

An Application Service exposes the functionality of components to their environment. 

Another application component is the IpaaS Backend that contains the Integration manager 

component, the Deployment, Management and Data processing functions, and the Integration 

development component including the Validation and Code generation processes.  

An Application Process represents a sequence of application behaviors that achieves a specific 

result and describes the internal behavior performed by an Application Component that is required 

to realize a set of services. 

 The Schema is an application object that results after the integration was created by the 

Architect, and it includes the Integration executable that is being accessed by the Deployment, 

Management and Data processing functions. A Data Object represents data structured for 

automated processing. A Data Object should be a self-contained piece of information with a clear 

meaning to the business, not just to the application level. The Runtime application is the last 

component from this section, and it accesses the Integration executable.  

 4.3 Technology Layer 

 Onto the technology layer depicted with green, there are three interfaces: the Schema 

interface, the Kafka interface, and the Runtime interface. A Technology Interface represents a 

point of access where technology services offered by a Node can be accessed. A Technology 

Interface specifies how the technology services of a Node can be accessed by other Nodes. A 

Technology Interface exposes a Technology Service to the environment. 

There are 4 nodes that contain system software: the Schema cloud with Schema registry, 

the Streaming cloud with Kafka, the Client runtime with the runtime environment and the IpaaS 

cloud that has the ElasticSearch database and the GraphQL server. A Node represents a 

computational or physical resource that hosts, manipulates, or interacts with other computational 

or physical resources. Nodes are elements that perform technology behavior and execute, store, 
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and process technology objects. System Software represents software that provides or 

contributes to an environment for storing, executing, and using software or data deployed within 

it. 

Figure 4.2 below illustrates the architecture proposed from a technology provider point of 

view. The Customer Bus is the integration pattern chosen for the prototype, which is explained 

further in chapter 5. The ElasticSearch database can be hosted on the cloud, while the GraphQL 

server and the IPaas gateway are backed by the AWS service. The personas defined (Architect, 

Business user and Data scientist) interact with the portal emagiz.com. 

 
Figure 4.2 Technology provider architecture proposed 
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5. Implementation  

 As an answer to the fourth Research Question proposed by this Master project, “How to 

integrate the data management architecture in the business context of a Dutch organisation?”, the 

Implementation chapter discusses broadly how the “Data Observability prototype” was developed 

and how it can be integrated into the eMagiz environment. This step corresponds to the 

“Treatment implementation” step from the Design Cycle proposed by Wieringa [44].   

As it can be seen in the architecture model from the previous chapter, the existing 

integration platform from eMagiz can be enhanced with new features proposed in this Master 

project. These features mainly address the collection of data transported between various 

systems within the eMagiz platform on ElasticSearch, that acts as a database storage. Further 

on, GraphQL provides the schema visualization and navigation properties, that make 

understanding the data structure easier to accomplish. These enhancements can have various 

advantages for the final users: being able to visualize the data that is flowing within the platform 

for debugging and tracing purposes, having a search function to look through the set of data and 

find something specific, archiving or just utilizing the solution as a data management platform.  

 The prototype developed acts as a proof of concept for the technology merge of 

ElasticSearch and GraphQL and is not yet fully integrated into the eMagiz platform. The main 

reason for this decision is that during the timespan of the assignment at the company, a clear 

business client could not be found to adopt the solution stack. One of the causes for this stands 

behind the security and privacy concerns. Up to now, eMagiz acts as an integration platform that 

enables the transportation of messages between applications and systems, and the storage 

functionality falls under the responsibility of the source and destination parties. If this responsibility 

is taken over by eMagiz, as a database storage provider, then new regulations are in place that 

need to be considered. 

The contents of this chapter will further explain how the artifact was implemented and what 

are its functionalities. The prototype is based on an Orders-Customers-Addresses business case, 

that resembles the application for a logistics company. The visualization part of the prototype is 

completed with React, which is a front-end JavaScript library for building user interfaces and UI 

components, represents a standalone solution. One of the advantages of this approach is that it 

can be integrated into eMagiz by the development team at a later point, as the web application is 

based on JavaScript. 

 

5.1 eMagiz as IPaaS 

 Some background information about the eMagiz platform is needed for a better 

understanding of the solution design. As an Integration Platform as a Service, eMagiz is mainly 

used for integrating systems and applications with each other and playing the role of a broker 

between systems that produce and consume data of each other. eMagiz offers three main 

integration types with many supported integration patterns, that can solve any use-case as one 

firm technical fundament. These integration patterns are Messaging, API gateway and Event 

Streaming. Every integration pattern has its own scope, therefore supporting different use cases. 
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eMagiz offers the flexibility to deploy these patterns from just one platform. However, the power 

of an integration platform does not only lie in the technical component, but it also lies in the way 

in which the functionality is offered to the user. eMagiz offers its users rich management 

functionality that is aimed on documenting data, simplifying integration development and 

management by using a low-code visual platform, maintaining architecture and cloud 

environments and managing data. These features enable users to easily integrate robust 

applications that deliver value to the organization over a long period of time [50].  

 eMagiz approaches integrations from a lifecycle perspective, which consists of several 

phases, each with its own focus: 

• Capture: Visualize the integration landscape and collect and document integration 

information; 

• Design: Create a solution design, including a choice out of different integration patterns. 

Develop a Canonical Data Model and deployment architecture; 

• Create: Realization of the solution design & modelling of integrations; 

• Deploy: Establish the test, acceptance and production environment & deploy, test and 

accept integrations; 

• Manage: monitoring of environments, transactions, performance, central error handling 

and notifications to administrators; 

• Improve: Conduct trend analysis based on statistics and adjust environmental 

configurations; 

 

Back to the implementation of the artifact, called “Data Observability prototype”, there are 

several areas that need to be completed for having a functional solution: 

 

• Data storage in ElasticSearch from eMagiz; 

• Schema visualization and navigation with GraphQL; 

• Entity insight with GraphQL; 

• Discovering related products with GraphQL; 

• Data querying and results browsing; 

• Integration of ElasticSearch and GraphQL into one web application: React; 

  

 5.2 Data Storage in ElasticSearch from eMagiz 

The first step in the process revolves around storing the data. For this purpose, the eMagiz 

platform was used to create a local message bus that sends order data from System A to System 

B, that will automatically get saved in the ElasticSearch database, along with metadata. The 

metadata consists of the timestamp when the message was sent, the last changed timestamp of 

the message, the source and destination systems. Section 2.4.3 from this document extensively 

explains what ElasticSearch is and how it can be configured.  

Using the local message bus is the preferred approach for implementing the “Data 

Observability prototype” because this is one of the most popular choices and the pick-up file 

function is well suited for the case. Nevertheless, the prototype could be used on multiple use 

cases, where data is intercepted and synchronized to the data storage.  
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The messaging pattern is used to exchange messages and data packages reliable, 

(as)synchronous and flexible between applications. With the help of a messaging integration, a 

message (= a data package to be sent between two applications) can be transformed and 

enriched in terms of content, format and protocol. This allows organizations to effectively integrate 

any application, regardless of the underlying technology. 

  While keeping in mind the CREATE phase from the integration lifecycle of eMagiz, the 

Archimate model from figure 5.1 depicts the process of storing messages and metadata in 

ElasticSearch while using the IPaaS platform. GraphQL is stacked on top of the database layer, 

and is used to provide the schema visualization and querying possibilities. React, which is a front-

end JavaScript library for building user interfaces and UI components, is used to make the solution 

available to the user, who can interact with it by doing queries and visualizing the data. 

 

 
Figure 5.1 Overview of solution architecture 

 

 The application components of Entry, Onramp, Routing, Offramp and Exit are part of the 

CREATE step from the eMagiz platform. The User represents a generic actor that desires to query 

the data and visualize the data after it was saved in ElasticSearch.  

 The ElasticSearch endpoint is running on localhost, hosted in a Docker container and it 

saves records as JSON documents.  An “emagiz_orders” index was created with the mapping 

structure shown in Figure 5.2, because the data structure of the message was previously known. 

Nevertheless, this is not a requirement for ElasticSearch, as the mapping is automatically created 
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when a new document is added to the storage. The name of the index needs to be defined 

because this is how the ElasticSearch endpoint is accessed by the eMagiz platform in order to 

save the data.  

 

"Order" : { 

    "Customer" : { 

        "Email" : {"type" : "text"}, 

        "Name" : {"type" : "text"} 

      }, 

    "Date" : {"type" : "date"}, 

    "DeliveryAddress" : { 

        "City" : {"type" : "text"}, 

        "Country" : {"type" : "text"}, 

        "Name" : {"type" : "text"}, 

        "PostalCode" : {"type" : "text"}, 

        "Street" : {"type" : "text"}, 

        "StreetNumber" : {"type" : "text"}, 

        "Type" : {"type" : "text"} 

      }, 

    "PickupAddress" : { 

        "City" : {"type" : "text"}, 

        "Country" : {"type" : "text"}, 

        "Name" : {"type" : "text"}, 

        "PostalCode" : {"type" : "text"}, 

        "Street" : {"type" : "text"}, 

        "StreetNumber" : {"type" : "text"}, 

        "Type" : {"type" : "text"} 

      },  

    "OrderId" : {"type" : "text"}, 

    "OrderLine" : { 

        "Description" : {"type" : "text"}, 

        "PackageUnit" : {"type" : "text"}, 

        "Quantity" : {"type" : "text"}, 

        "Weight" : {"type" : "text"} 

      }, 

"creationDate" : {"type" : "date"}, 

"destination" : {"type" : "text"}, 

"lastChanged" : {"type" : "date"}, 

"sender" : {"type" : "text"} 

} 

Figure 5.2 ElasticSearch mapping structure 

 

 The official definition for an ElasticSearch index is: “An index is like a ‘database’ in a 

relational database. It has a mapping which defines multiple types. An index is a logical 
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namespace which maps to one or more primary shards and can have zero or more replica 

shards.”   

The last fields from the mapping (creationDate, lastChanged, destination and sender) are 

part of the metadata that gets added along the original message transported from System A to 

System B. This makes the sorting of data easier, based on the creationDate, which is a timestamp 

of when the message was transported through eMagiz. 

To make a comparison between a relational database and ElasticSearch, the structure 

behind them can be represented like below, where DBMS is Database Management System: 

 

Relational DBMS => Databases => Tables => Columns/Rows 

Elasticsearch => Indices => Types => Documents with Properties 

 

 As part of the research, the wireframe design below was created with the intent to 

demonstrate how this new feature could be embedded in the design phase of eMagiz, where 

users are making design decisions on their data and integration.  

 

 
Figure 5.3 Wireframe design for saving a specific message type in ElasticSearch within eMagiz 
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 This configuration of what messages get stored, what is the retention period and what kind 

of metadata gets generated is part of the Architect role described in Chapter 3: Requirements. All 

these features can be seen on the right side of the wireframe and are part of the proposition on 

how to integrate the functionalities into the existing eMagiz platform. This answers the 4th 

Research question, “How to integrate the data management architecture in the business context 

of a Dutch organisation?” 

 

5.3 Schema Visualization and Navigation with GraphQL 

A GraphQL server was set up by using the Express back-end web application framework 

for Node.js. It uses the same schema mapping as the one defined previously in the ElasticSearch 

index, to make sure that data can be successfully retrieved from the database layer. Then the 

connection to the ElasticSearch was added. This schema mapping is also known in eMagiz, as 

the platform holds the feature to specify domain models of the customer data landscapes. 

One extremely useful tool that is open source and was incorporated in the React solution 

prototype is GraphQL-voyager [51]. It provides interactive visualization of the graph data model 

and exploration of the API and is represented in figure 5.4. 

 

 
Figure 5.4 Schema visualization with GraphQL-voyager 

   

 This powerful tool provides an insight into how the data is structured, what entities exist 

and how they are related, what fields they contain and their data type. From the schema above, 

we can identify the Order entity as the root, and Customer, DeliveryAddress, PickupAddress and 

OrderLine as children entities. 
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 The tool provides an interactive functionality, in the sense that if one entity is clicked, all 

the related entities will be highlighted. This tool has been further modified and enhanced to provide 

better insight into the data and the functionalities are explained in the further sections. 

 5.4 Entity Insight with GraphQL 

 One extension to the functionality of visualizing the entities from the schema mapping is 

being able to click on a specific one and explore the data stored in the fields belonging to it. This 

provides a table with all the results from that specific entity and the corresponding fields, as it can 

be seen in Figure 5.5.  

 
Figure 5.5 Entity insight for the Order entity, with all the corresponding fields 

 

 By being able to see the data structure from the visualization and retrieving the data stored 

in the entities is a strong combination for providing a good reporting solution, without the user 

needing to execute database queries.  

 

 5.5 Discovering Related Products with GraphQL 

 One of the strengths of GraphQL resides in the fact that the business domain is structured 

as a graph, which makes traversing the data straightforward. In the figure below, the data schema 

that is used for the prototype can be seen. It is based on Order as a root node, having the 

Customer, PickupAddress, DeliveryAddress and OrderLine as children: 

 

 
Figure 5.6 Data schema as a graph 
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To demonstrate the capability of retrieving related data, a GraphQL query is triggered to 

retrieve the OrderIds and Descriptions of related products when clicking on a product description 

field from the OrderLine entity. An example can be seen in the figure below, belonging to the 

scenario when a user clicks on the product description of a laptop, and all the related items are 

retrieved and presented in a popup: 

  

 
Figure 5.7 Results from the related products query 

 Being able to discover similar products at the click of a button provides powerful potential 

for a data management platform. The similar products are retrieved based on the text of the 

description. If there is a match with other orders, then they will get retrieved by the query.  

 The GraphQL query used to fetch the data saved in ElasticSearch is the following: 

 

 
Figure 5.8 GraphQL query to retrieve similar products 

 

 The above query makes use of the “productDescription” variable that contains the text of 

the specific product description clicked by the user on the front end. The only fields retrieved are 

OrderId and Description. This request demonstrates the straightforward way of running a query 

with GraphQL, where only the required fields are retrieved. 
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5.6 Data Querying and Results Browsing 

When it comes to data querying and results browsing, ElasticSearch represents the 

database where the Orders information is stored. React was used to build a user interface that 

provides a text search input, based on which a query is executed on the backend, and results are 

shown back to the user. The fields that are shown are considered the most relevant from all the 

entities, to be able to have a complete overview over the data. React was an advantageous choice 

due to the fact that other widgets in eMagiz are also based on React, and this will make the 

integration of the prototype into the platform easier.  

All these orders have been transported within the integration platform, eMagiz, while using 

the messaging bus type of integration. What all the examples from figure 5.9 have in common is 

the “book” term that is part of the description of the product and was used to do the search. The 

search is performed on all the fields from all the entities saved. 

 

 
Figure 5.9 Query the term “book” on the ElasticSearch database 

 

 

 The query that is done on the backend server is a “match” query. There are several types 

of queries that operate in ElasticSearch. The overview [52] from the figure below provides an 

explanation on what functions and what kind of text would be selected according to each specific 

query name, along with examples for each case. 
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Figure 5.10 ElasticSearch Queries overview 

 

 Depending on the type of results that need to be retrieved and how strict the search should 

be, these different querying possibilities come in handy. While “phrase match” is the most rigorous 

one, “match” is a better fit for the purpose of this prototype, while the user only needs to type in a 

term to get the wanted results back. 

5.7 Integration of ElasticSearch and GraphQL into one Web 

Application: React 

Since the separate parts of the solution have been discussed in the previous sections, this 

section describes how the ElasticSearch storage and GraphQL querying are integrated. This 

takes place by using the React web app that brings together 2 separate components and links 

them depending on what field from the results table is clicked. Following the previous example, 

where the text search input was “book”, the query yields 6 results. If the user clicks on the Product 

description result, for example “Novelty book”, then the correspondent field, “Description”, from 

the OrderLine entity is highlighted. 
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Figure 5.11 React app containing ElasticSearch results and schema visualization provided by GraphQL 

 

 The advantage provided by this powerful technology stack is that the correlation between 

the result and the schema can be clearly seen in one web application. Furthermore, an overview 

picture of the entities and their relations will make it clear where the entity is located within the 

whole schema. By clicking a specific result, its data type can also be identified. In our example, 

the Description field from the OrderLine entity has the data type “String”. 

 The example schema used for the prototype has a limited number of entities, but even if 

the schema will incorporate numerous entities, the visualization will not be hindered, because 

there is a Zoom in – Zoom out option to help focus on what is important.  

 

 The final solution for the prototype incorporates multiple functions that enable the user to 

browse through data, search for a specific order, visualize how the information is stored with the 

help of the data visualization tool and discover similar orders based on the description of a 

product.  
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6. Validation and Evaluation 

 Chapter 6 is meant to evaluate the implementation of the initial requirements, the 

perceived usefulness, ease of use and completeness of the developed prototype by the means 

of a survey distributed among experts within the collaborative company and discuss the results. 

The chapter addresses research question 5, “To what extent is the designed prototype 

contributing to the goals of the stakeholders?” and corresponds to the Implementation evaluation 

from the design cycle of Wieringa [44].  

 

 6.1 Technique: Single-case Mechanism Experiment 

 The single-case mechanism experiment technique was used for the validation step. It 

represents a test of a mechanism in a single object of study with a known architecture, which is 

presented in chapter 4. The research goal is to describe and explain the cause-effect behavior of 

the object of study. This can be used in implementation evaluation and problem investigation, 

where real-world research is done. It can also be used in validation research, where the validation 

models are tested. [44] 

 

After the implementation of the proposed artifact, which is in fact a validation model, the 

next step is to evaluate it by using the questionnaire added as Appendix B to this document. The 

survey has 10 questions in total, both open and closed, and aims to evaluate the perceived 

usefulness, ease of use and completeness of the developed prototype, as determinants of user 

acceptance. Davis [53] defines the perceived usefulness as “the degree to which a person 

believes that using a particular system would enhance his or her job performance” and the 

perceived ease of use as “the degree to which a person believes that using a particular system 

would be free of effort.” Taking this into consideration, the survey includes questions to 

incorporate both measures.  

After the study executed by Davis [53], it turns out that users are driven to adopt an 

application primarily because of the functions it performs for them, and secondarily for how easy 

or hard it is to get the system to perform those functions. Furthermore, it should be emphasized 

that perceived usefulness and ease of use are people’s subjective appraisal of performance and 

effort, respectively, and do not necessarily reflect objective reality. 

When comparing two theoretical models for user acceptance, Davis [54] asked 

interviewees to list separately advantages, disadvantages and anything else related to the system 

evaluated. This approach was adopted as well with the survey for the “Data Observability 

prototype”. From the same study [54], it turns out that designers believe that the key barrier to 

user acceptance is the lack of user friendliness, and that adding user interfaces that increase 

usability is the key to success. Data indicates that, although ease of use is clearly important, the 

usefulness of the system is even more important and should not be overlooked. Therefore, the 

questions in the survey aim to evaluate specific features of the prototype, based on the initial 

requirements, in order to establish their usefulness for users. 
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A full demo of the Orders use case was given to the development team of eMagiz and 

business consultants of CAPE Groep, in the role of experts. The functionalities that were 

explained and displayed are: 

• the eMagiz messaging bus running locally and transporting Order messages from System 

A to System B;  

• the data is stored in the ElasticSearch database, while the GraphQL server is up and 

running; 

• the React app provides the UI for querying the results and schema visualization features, 

broadly explained in chapter 5; 

 

The demo was followed by a Q&A session, where the participants got the chance to clarify 

any uncertainties surrounding the functionalities of the prototype. Afterwards, they were asked to 

fill in the evaluation survey, where an assortment of open and closed questions was used to better 

determine the perceived usability and completeness of the artifact.  

6.2 Results Analysis  

There are a total 8 answers registered and the mutual feeling received from the open 

questions regarding the prototype is a positive one, the functionalities presented being perceived 

as innovative for eMagiz and holding a lot of potential. The majority of respondents would consider 

using the solution as part of their work, because it seems intuitive and simple from a user 

perspective. There is also room for improvement, which will be discussed in chapter 7 with 

conclusions and future work.  

The main purpose of the prototype is to create a data management solution by using the 

combined technologies of ElasticSearch and GraphQL, while using the eMagiz platform as 

starting point for saving information flowing in the integration IPaaS. For this purpose, the proof-

of-concept prototype is demonstrated, covering the business case for a potential Transport 

Company, where Orders, Addresses and Customers are stored.  

 On one hand, the main positive aspects of the prototype, identified by the respondents, 

revolve around seeing the relation between the search results and the position of the specific 

fields in the visual data model which contributes to easily understanding the data, along with fast 

and easy searching across all fields.  

 On the other hand, among the negative aspects related to the prototype are the increased 

complexity if the visual model is too large and the fact that the prototype could be more dynamic 

and generic.  

 For the questions that used the linear scale from 1 (Not at all) and 5 (Completely), the 

table below presents the average and standard deviation per question: 

 

No. Question Average Standard Deviation 

1 To which extent do you think the storing of metadata 
functionality was achieved? Currently, the creation date, last 
changed date, source and destination systems are saved. 

 

4.125 0.64 

2 To which extent do you think the text search option achieves 
the querying functionality? 

3.75 1.03 
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3 To which extent do you think the schema visualizer achieves 
the navigation and visualization functionality? 

 

4.25 0.46 

4 To which extent do you think the connection between 
visualizing the data and its schema has been achieved? 
(keeping in mind the highlighting of the fields) 

 

4.25 0.7 
 

5 To which extend do you think the prototype is easy to use? 

 
3.875 0.64 

6 To which extend do you think the prototype is complete? 

 
3.375 0.74 

7 Please provide a general score for the whole solution. 4 0.63 

Table 4.1 Analysis of linear scale survey questions with average and standard deviation 

   

 To start with the general score for the whole solution (question 7 from the above table), 

an average 4 out of 5 is a positive feedback. For questions 4 and 3, an average score of 4.25 was 

returned, which means the schema visualizer and the connection between the search results and 

the schema by highlighting the fields successfully achieved the navigation and data connection 

features. Question 1, with the average score of 4.125, shows that storing the metadata was 

favorably implemented.  

 Shifting towards the lower rated aspects (below a score a 4), question 5 has an average 

of 3.875, which shows that the prototype does not seem to be easy to use from the perspective 

of some experts. To tackle that, the prototype incorporates tooltips for the various sections, to 

describe the features. Question 2, with the average of 3.75, shows that the text search option did 

not reach its full potential for the query functionality, in the eyes of some respondents. Finally, 

question 6 holds the lowest average score at 3.375, regarding the completeness of the prototype. 

As an add-on for this, when the survey was distributed among the respondents, the prototype was 

still undergoing changes and some more features were added afterwards, such as the related 

products functionality.  
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7. Conclusion 

 This final chapter discusses the findings of the research by firstly answering each research 

question proposed, then showing the scientific as well as the practical contributions brought. The 

limitations, future work and recommendations for practice are addressed likewise.  

 7.1 Research Questions 

 This master project proposed one main research question: 

“How to design an efficient data management retrieval and reporting solution for client data 

based on ElasticSearch and GraphQL?” 

 

This was split into 5 sub-questions which will be discussed and answered in this section. 

 

RQ1 “What kind of data management architecture can be used for retrieval and 

reporting of client data?” 

In order to be able to respond to this inquiry, a systematic literature review was conducted 

to investigate the scientific publications on existing data management architectures for retrieval 

and reporting of client data, broadly discussed in Chapter 2. The literature review is split into 2 

parts. In the first part, several non-relational databases were analyzed and classified, while 

discussing their advantages and disadvantages. ElasticSearch represents our point of interest 

because of its search engine performance and its ability to store unstructured data, therefore the 

architecture proposed by this master project is built while using it for data storage. A comparison 

between relational and non-relational databases is shown, in order to determine which system 

would be suitable considering the needs of the company that adopts it. The second part of the 

literature review focuses more on data governance and data quality, providing several 

frameworks, methodologies and metadata architectures, along with use case examples. Data 

lakes are explained, including data cleaning and dataset discovery that are linked to them. 

 

RQ2 “What are the needs of the business users regarding this data management 

architecture?”   

This question is broadly answered in Chapter 3, Requirements. A business user was not 

identified to implement the prototype within the business clients of the collaborative company, 

eMagiz. Therefore, a survey was distributed among the Chief Technology Officer, the Software 

Delivery Manager, the Product Owner, a Software Developer, and a Business Consultant in the 

role of experts, in order to find the requirements base for the prototype developed as a proof of 

concept. There are 3 personas identified that will interact with the artifact and that have different 

use case scenarios and expectations: the business user from a logistics company, the architect 

within eMagiz and a data scientist that can be hired for further analysis of the gathered data. 

There are 11 user stories focusing on functional and non-functional requirements. The first 

category of requirements (functional) mainly addresses the storing, querying, visualizing and 

navigating through the data saved while using the eMagiz platform. The second category of 

requirements (non-functional) are targeting the speed (latency), security, reliability and 
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maintainability of the solution. The prototype might be used by the development team for internal 

purposes as well, such as testing different flows and analyzing the data and metadata saved with 

different integrations. 

 

RQ3 “How to design a data management architecture based on ElasticSearch and 

GraphQL for retrieval and reporting of client data?” 

 This question is broadly discussed in chapter 4, that proposes an architecture 

specification model constructed by using the Archimate modelling language. The architecture is 

built upon the existing infrastructure from eMagiz and proposes an extension on the technical 

layer with the ElasticSearch and GraphQL servers, the first one being used for storing the data 

and the latter for building up queries and visualizing the data schema. Additionally, there are 

specific components that are added in the application layer, such as the “Process data service” 

and the “Data processing function” to support the new functionalities proposed by the “Data 

Observability prototype”, such as storing the data and making it available for the user to visualize 

it. On the business layer, the addition is the appended business processes for “Defining settings 

for storing data and metadata” that corresponds to the architect role, the “Extract and process 

data” related to the data scientist role and the “Explore results for taking decisions” linked to the 

customer role. The newly added elements have a blue font, so they can be easily identified. The 

architecture specification model gives an overview on the entire design for the prototype and 

shows how the components are operating as a whole, as part of the eMagiz existing architecture.  

 

RQ4 “How to integrate the data management architecture in the business context 

of a Dutch organisation?” 

The integration of the data management architecture in the context of eMagiz is widely 

explained in chapter 5, showing the implementation of the prototype, based on a use case for a 

logistics company, saving information about Orders. eMagiz is the starting point, having the 

integration platform that facilitates the transport of messages between systems and applications. 

Before, the messages would either reside at the source or at the destination system and were not 

saved in between. The prototype proposes to intercept the original message sent, enhance it with 

metadata (such as timestamp), and store it in the ElasticSearch database. The User Interface is 

provided by a web application developed in React, where data can be searched and analyzed. 

By using GraphQL, the data schema can be visualized along with the associations between 

entities and the information residing in them can be browsed.  GraphQL also supports a feature 

of finding related data based on text search, which gives the data management architecture a 

new specialty.  

A wireframe is created to present a possible configuration that could be integrated into the 

eMagiz platform for saving a specific type of message that is used for an integration. Due to the 

fact that the User Interface is built with React, which is based on javascript, it could be easily 

incorporated in eMagiz as an extra page in the last lifecycle step, “Manage”. 

 

RQ5 “To what extent is the designed prototype contributing to the goals of the 

stakeholders?”   

Chapter 6 projects the validation and evaluation step after the implementation of the 

prototype. A survey is distributed among various experts in the field from eMagiz and CAPE 
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Groep, having the role of software developers and business consultants. They were shown a 

demonstration of the functionalities of the prototype before being asked to fill in their answers. 

The survey consists of several open and closed questions that aim to evaluate the perceived ease 

of use and completeness with regards to the initial requirements and whether there would be 

further interest for the company in using the prototype. The models of Davis [53], [54] and 

Venkatesh [55] were used as guidance when setting up the survey questions. There are 8 

answers gathered and the general score provided by the respondents is 4 out of 5, which shows 

an optimistic future for the prototype. The highlighting between the search results and the data 

schema for a specific field is the most valuable feature in the eyes of the respondents.  

7.2 Contributions 

 This Master project presents the findings of a systematic literature review for data 

management platforms, proposes an architecture specification model based on ElasticSearch 

and GraphQL and discusses the implementation of the prototype within the collaborative company 

eMagiz. In the following sections, the scientific as well as the practical contributions are shown. 

 7.2.1 Scientific Contributions 

 The scientific contributions brought by this master project revolve around the exhaustive 

systematic literature review on data management platforms, which provides an overview for 

researchers interested in data governance and its applications. The master project also includes 

a design of a new architectural approach including the technologies of ElasticSearch and 

GraphQL within the collaborative organization eMagiz (Chapter 4), along with the implementation 

part of the designed prototype (Chapter 5). No scientific publications were found during the 

literature review to include the above-mentioned technology stack; therefore, this knowledge gap 

was filled and contributes to the novelty brought by the project.  

 During the problem treatment design phase, a survey was shared among experts in the 

field of application integrations to discover the requirements for a data management tool that could 

store data, search and visualize the data schema. This can be viewed as a starting point when 

designing a data management architecture.    

 7.2.2 Practical Contributions 

 The major practical contribution resides in the design and implementation of the prototype 

that has a use case for saving Orders and represents a data management platform. The prototype 

has as starting point the eMagiz integration platform, where messages that are sent between 

systems and applications are stored, with ElasticSearch playring the role of the database. A user 

can interact with the data by using the React web application, which provides searching and 

schema visualization features, supported by a GraphQL server. Being able to visualize the data 

that is flowing within the platform helps for debugging and tracing purposes. The prototype is a 

data management platform which stores information and includes a search function to look 

through the set of data and find a specific record.  



81 

 This master project provides a guide on the design and implementation of a data 

management platform as a tangible example and opens new research business possibilities for 

the collaborative company.  

7.3 Limitations 

 As for any short-term projects, there were some limitations that occurred regarding the 

master assignment and are shown in the section below. The most noticeable one is the scarcity 

of existing research on the topic for data management platforms by using the specific technology 

stack of ElasticSearch and GraphQL. Another limitation was the absence of a business client to 

provide a real-life case for the implementation part. Another downside, related to the previous 

one, is that validation could not take place with end-users. Last but not least, the time restriction 

made the project to be developed up to a certain level, in accordance with the time that was 

available. 

 Firstly, the scarcity of existing research for the specific topic chosen with regards to the 

preferred technology will be discussed. As presented in chapter 2, which provides the systematic 

literature review to aid with background information for data management architectures and 

platforms, there is no existing solution to include the technology stack of ElasticSearch and 

GraphQL, because this is highly specific and tightly connected to the implementation segment. 

On the other hand, there are frameworks and architectures presented that come as guidance and 

provide theoretical concepts for implementing such a platform and different solutions are reviewed 

and explained.  

 The second limitation mentioned is the absence of a business client to provide a real-life 

case for implementing the prototype. To combat this restraint, the solution is developed to use a 

scenario typical for a logistics company, to process mock order data. This can prove convenient 

for eMagiz, as most of the clients are related to this business segment and the example can 

appeal to them, being easy to understand and to relate to. The prototype is therefore static and 

build around the instance mentioned, but it provides a functional solution example for a data 

management platform. The prototype can act as a standalone project, not being necessarily 

connected to eMagiz, as long as another source that provides data is taken into account.  

 The last limitation identified regards the impossibility of validating the prototype with end 

users due to missing a business client. Therefore, the validation and evaluation take place with 

experts from the application integration field within eMagiz and CAPE Groep, both software 

developers and business consultants, and they deem the prototype as holding a lot of potential. 

This represents a qualitative validation, but it might seem incomplete as the experts are part of 

the same organization and bias could occur in this case.   

 7.4 Future Research 

 Once this research project was completed, new possibilities were discovered that could 

be suitable for future research. First, to tackle the limitation of narrow validation within one 

company, this step could be extended with several different parties to make sure the results are 

not biased and to analyze the opinion of more experts on the matter. Additionally, more 

dimensions can be investigated, and the survey can be improved to assess more aspects of the 
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prototype in different setups. The UTAUT method by Venkatesh [55] can be used to extend the 

questionnaire. For example, questions regarding the decrease of time needed for the important 

job responsibilities or questions that asses the increase of effectiveness of performing job tasks 

can be included in the survey. Regarding outcome expectations, questions related to increasing 

the quality of the output of the job can be considered. The negative impact on users can also be 

evaluated, such as the complexity of the prototype, or if users perceive it as too complicated. 

Another aspect to consider is the compatibility, whether users think the system into their work 

style or not. Nevertheless, a major value addition would be brought to the solution if a real-life 

case would be found and implemented for the data management platform, as currently the 

prototype is in an experimental form.  

Second, besides validating the functionalities of the solution proposed, the architecture 

model solution could also be exposed to validation for external validity, and the model could be 

changed so that it is not embedded into one particular platform, such as eMagiz, making it more 

valuable and generic for other use cases as well. Nevertheless, the architecture model provides 

a good starting point for researchers interested in the topic discussed and adds to the general 

knowledge base.  

 

 7.5 Recommendations for Practice 

 As a series of limitations and future research possibilities were identified during this master 

project, naturally the recommendations for practice will include them as well. One downside 

discussed is the fact that the prototype is static, therefore more work will have to be devoted to 

turn it into a general solution that could adapt to the specific needs of a client. An important 

advantage is that eMagiz uses the CDM (Canonical Data Model) that contains the data schema, 

therefore it could be used for setting up the GraphQL server, which needs a clear definition of the 

data structure. Nevertheless, the prototype developed provides a starting point and an example 

of how a data management platform can function based on ElasticSearch and GraphQL, while 

being linked to the eMagiz IPaaS.   

 Further development is also needed for incorporating the prototype into the eMagiz 

platform, so that users do not have to use a different application (React) to search through the 

data. This can be achieved since the web application is based on javascript, which makes the 

functionalities to be easily transferrable into the eMagiz solution as widgets. If the data 

management platform will be part of the last lifecycle step, “Manage”, then users will have a 

complete experience, where they can interact with the information that is flowing from the 

integrations, being able to browse it and find related data. The most difficult part will be to find a 

business client that is interested in such a product and have an applicable business case, backed 

by a user journey that reflects the user scenarios where pain points are addressed.   

 The “Data Observability prototype” has features that can be further extended and 

improved with regards to security and user experience to accommodate more elaborate needs, 

and to become a unified eMagiz solution. For example, with regards to the user interface, the 

prototype is built into one single web page that includes all the functionalities. This could be broken 

down into separate sections or tabs, for a focused experience. Regarding the security, there is no 
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login function in place for the prototype, apart from the eMagiz login used when transporting the 

data with the messaging bus, since the solution is meant to be integrated into the platform.  

The metadata (timestamp, last changed, source and destination) that is saved along with 

the original message can be explored further, because currently only the timestamp is used for 

sorting the results starting with the most recent one after a search is done.  
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Appendix A 

Expert opinion on requirements definition 
 

The survey was distributed in the collaborative company, eMagiz, among the Chief Technology 

Officer, the Software Delivery Manager, the Product Owner, a Software Developer for the 

platform, and a Business Consultant.  

 

Question 1: The main intended functional features of this solution are to store business data 

while it is being transported between systems/applications, and then query it inside the eMagiz 

platform. Do you think such a functionality would raise interest among eMagiz business users 

and would prove to be useful? Can you think of a business case example for it? 

 

Responses: 

• Yes it would be useful and valuable, because users have the ability to search and find 

their business data. It could be useful when you quickly want to know the values of 

your master data (CRM information or Employee information). It could also be useful 

when you need urgently and dynamically need data from your business critical 

processes. 

• Querying it inside the platform like that would mainly benefit eMagiz users during 

testing, debugging or doing a root cause analysis. Particularly in cases where data 

went "missing" somewhere in their landscape, this could help customers to more 

quickly find the cause and fix the issue. 

• Depends on why and what you want to store. If it is making the work of customers 

more efficient during setting up these solutions because querying data is easy....YES. 

However there is a risk in storing data, you need to know exactly what you want to 

store, what you may store, how long you want or must store it and of course what is 

not of interest for the solution to store to make querying even possible. A good 

business case I would say something that we currently are doing with metrics data 

from a integration pattern... Having a layer between source and customer to create 

even more specific overviews of their metrics in their own landscape with using this 

graphQL api would be really nice. Extra set of endpoints in our api gateway :) 

• I think the best way to find this out would be to ask the business users. I think this 

would have value, given that the dataset is complete. As a business user, I would want 

a data hub where I can query my data with some guarantees, and not just hope that 

the data is there because it crossed some integration for some reason. One possible 

use case could be: Find all users that have placed an order in the last month. One 

possible use case that you maybe couldn't support is: Find all users (because they 

must be known by eMagiz, which is maybe not always the case if the system already 

exists before integration, etc). 

• One case I can think of where business users could be interested in this is the case of 

an insurance company. In an application and integration landscape for insurance 



85 

companies based on a microservices architecture multiple systems are responsible 

for different parts of the process. These systems are therefor also the owners of 

different parts of the data used for the process. When using an integration platform to 

store the different data bits of the different processes, this platform can be a suitable 

solution for visualizing this data from different systems and processes to be able to get 

fast insights in your data. A concrete example for this could to quickly find related 

insurance cases based on the characteristics of a claim / case. 

 

Question 2: If a business client would express their desire to have this storing and querying 

functionality enabled, how do you think this should be integrated into the eMagiz platform? (on 

what step from the lifecycle, create extra screens or reuse of the existing ones?) 

Responses: 

• I would like to see the data in Manage, because this is the place where I can see my 

environments. I would expect to see a visual representation of the data and its 

structure, so reusing one of the already built widgets (CDM and schema widgets) 

would be advised. 

• Definitely in the Design phase, because other decisions that have an impact on 

hosting/licensing costs and information security are also taken there. And this needs 

to be decided before you start building/deploying anything (Create/Deploy phases). 

And we probably want the user to select which integrations (or message types?) to 

store or not store. 

• When its development related querying the complete CDM would be a improvement. 

When its testing related in the create phase as addition to the "flow testing" when it’s 

an additional feature thing it should be in deploy as additional endpoints in the gateway 

that can be visualized/used in the manage monitoring overview. 

• Storing could be simple, like a checkmark in Design on the integration edit screen, and 

then optionally provide extra fields like the schema, retention, etc. Querying would be 

something for the manage phase (or perhaps a new "insight" phase later). Could be 

one screen in the beginning for querying and analytics, but add more later. 

• The manage phase would probably be the best phase to add this new functionality. 

Otherwise a new phase called "Vizualize" could also be an idea. I would think that 

partly reusing some of the screens that are already there could be a good idea. A 

visual model could be created based on the CDM data model from design and perhaps 

it could be a good idea to add "tags" to entities to illustrate to the business user from 

which system the data originates. 

 

Question 3: If metadata will also be stored along with business data, what kind of metadata do 

you think should be considered? 

 

Responses: 

• Time, originating system, target system, any user data available (i.e. for API gateway), 

message type, whether it's an error or not. 

• I want to query attributes, related entities (relations) and also related metadata (like 

last changed and timestamp). 
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• Timing (when did the data go through eMagiz) and routing (where did the data come 

from and where did it end up). 

• Sizes, amounts, dates, versions, permissions. 

• At least the latest update datetime for an entity, also from which system the data 

originates and if possible to which system(s) the data flows. 

 

Question 4: Besides the storing and querying functional requirements described above, do you 

think there are other prerequisites(functionalities) worth considering to be included, while being 

related to the scope of the assignment? 

 

Responses: 

• I'd say keep the scope absolutely minimal and think about fully functional store and 

query before thinking about more things. Then, you could make graphs with statistics 

about the stored data, nice widgets for showing the data, etc. At some time, if we really 

want this to be a data hub, perhaps we also need functions to import data that's not 

already flowing through eMagiz to get complete view of data. 

• Not clear what you mean but a playground around the graphQL would be the bomb. 

as in GraphQL playground is an external interactive editor for your GraphQL queries. 

It is based on GraphQL and accessible through the web browser. see Example Saleor 

Commerce. 

• Giving users access to the data directly (through GraphQL) and not only with a UI in 

our platform could add a big business case: reporting on their own data using whatever 

BI tooling (that supports GraphQL) they prefer. 

• Exporting the data in another format Building quickly an API on it and make it 

accessible for others Show relations between entities, showing the graph view. 

• Add security to the data entities because not all users will probably be allowed to view 

all the data that is being stored. 

 

Question 5: Switching to the non-functional category of requirements, what should definitely be 

taken into account for this assignment? For example security concerns, accessibility, efficiency. 

 

Responses:  

• Both the performance and costs are directly related to the amount of data stored. In a 

messaging solution where we constantly receive new messages, this would probably 

mean having a relatively short retention policy. But the shorter it is, the less value the 

feature offers... Security is also an attention point: normally eMagiz delivers data to 

connected applications and those applications are responsible for enforcing the 

correct data access privileges to their users. If eMagiz starts storing data and making 

it available to users, we also get that responsibility. 

• Search should take maximum 1 second (performance) Language of the data should 

also be known. 

• Security, speed (latency), reliability. 

• Data security. 



87 

• I think that security is definitely something to consider, but not as a non-functional. If 

you're going to store business critical data, some security should be in place. Another 

non functional could be that business users should be able to only use the data 

visualization part of the platform and not be "bothered" with the other phases in the 

platform. 

 

Question 6: Following a typical eMagiz approach, what would be the gains(benefits) for 

implementing the features described in the assignment? 

 

Responses: 

• Attract new users and retain existing users by being the 'platform' that can do 

everything integration related. Reduce dependency, and complexity, of using and 

setting up other tools for seeing what flows through your integration. 

• Make it small as possible, pick a pattern, talk to customers to feel their pain and give 

them something as this which is than making their daily routine so much better. 

• Users can explicitly see the data they store, normally they could never see the data in 

eMagiz, but only in source or destination systems. 

• See business case questions. 

• It could help to close a part of the gap between consultants/developers and the 

business with regards to data. Data is often shown in a user friendly format, but by 

exposing the underlying data to business users it could be possible to create a better 

understanding for the business users and speed up the development process for new 

functionality. 

 

Question 7: What would be the pain points(difficulties) of implementing the features described in 

the assignment? 

 

Responses: 

• I'm not sure about technical details, but I think schema conformance of the data that's 

passed through. I think GraphQL is highly schema dependent so this should work 

smoothly, with schema and field detection, etc, so you can query all data without 

having the user specify in detail the structure and schema of his messages. 

• Data syncing (how do you know this data is not outdated) How long do you store it 

How to make it secure How to give easy access. 

• Too many angles on what data is of importance for businesses that are operating and 

storing/retrieving this with eMagiz. 

• As mentioned two questions up, performance and security. 

• Probably the security of the data. You should be able to ensure to users that the data 

that are being stored are stored securely. Also I'm not sure how easy it is to develop 

custom queries based on business user need, but I think it should be easy for them to 

create new queries at wish. 

 

 

 



88 

Appendix B 

Expert opinion on the prototype validation 
 

A full demo has been given to the eMagiz team on the functionalities of the prototype developed, 

following the workflow:  

• the eMagiz messaging bus running locally and transporting Order messages from System 

A to System B;  

• the data is stored in the ElasticSearch database, while the GraphQL server is running; 

• the React app provides the UI for the querying and schema visualization features; 

  

After the demo took place, the software developers, business consultants and the Development 

Manager were asked to fill in anonymously the survey below: 

 

Question 1: Would you consider using this prototype for your own work? 

 

Responses:  

• Yes. 

• Yes, I would like to use it during development to check how my data is changed during 

the workflow. 

• Yes. 

• I don't build integration solutions in eMagiz myself, so for my "own work" the answer 

would be no. 

• Yes, we are currently working on enterprise archiving functionality using Amazon S3. 

This has strong limitations with regard to search (you can only search by file name) 

and explorability, also from a performance perspective. I see strong relations between 

the prototoype and archiving (wiretapping flows to send it to a data storage and then 

querying this to get results) and I think the design presented could be a future proof, 

and more dynamic replacement for the S3 archiving functionality that is currently 

offered in eMagiz. 

• I think we do have to overcome some obstacles with this prototype, like automatically 

inferring the schema from the CDM to make this work in any customer environment, 

to prevent manual creation of schema's. But this is a great PoC to demonstrate the 

capabilities of GraphQL and Elastic for Archiving and with clear next research steps 

for going from a PoC to a MVP used in enterprise production, I would certainly consider 

implementing this in eMagiz. 

• Yes, after developing something with elastic search, I think it could be of use to 

visualise how I used elastic search data. 

• I believe it holds value for larger customers that want the ability to derive more context 

from the data models that are captured within eMagiz. For myself in my role as Expert 

Services I don't directly see how this prototype will help me with my daily work since a 
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big chunck of the prototype revolves around informing an end user on the data content 

(and I as an outside user should not be able to see that with ease). 

 

Question 2: To which extent do you think the storing of metadata functionality was achieved? 

Currently, the creation date, last changed date, source and destination systems are saved. 

 

Responses: 

 
Figure B1 Results to Validation Survey question 2 

Question 3: To which extent do you think the text search option achieves the querying 

functionality? 

 

Responses: 

 
Figure B2 Results to Validation Survey question 3 



90 

 

Question 4: To which extent do you think the schema visualizer achieves the navigation and 

visualization functionality? 

 

Responses: 

 
Figure B3 Results to Validation Survey question 4 

 

Question 5: To which extent do you think the connection between visualizing the data and its 

schema has been achieved? (keeping in mind the highlighting of the fields) 

 

Responses: 

 
Figure B4 Results to Validation Survey question 5 
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Question 6: To which extend do you think the prototype is easy to use? 

 

Responses: 

 
Figure B5 Results to Validation Survey question 6 

 

Question 7: To which extend do you think the prototype is complete? 

 

Responses: 

 
Figure B6 Results to Validation Survey question 7 
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Question 8: What are the positive aspects that you see in the prototype? 

 

Responses:  

• See the relation and position of data in the schema; 

• Prototype result is innovative and new, we never had this functionality. 

• Easy searching, clear highlighting of the selected data. 

• Easy to see how this would "automagically" (from a user perspective) work for any 

data model in eMagiz. Nice visualization of the data structure in Elasticsearch that is 

very recognizable for eMagiz users. 

• As far as I can see it has a lot of complexity going on with several systems that are 

dependent on each other yet it feels intuitive and simple from a user perspective. 

• easy to navigate the structure of data. 

• The prototype appears to be lightning fast in searching, and I would also expect this 

to scale well based on the architecture presented. Also, search can happen visually 

and search happens over all fields. I think this is very desired functionality (given that 

we would also offer filter options in the future). The ability to see search results in the 

context of the visual model and show the relations between them is great for 

understandability. 

 

Question 9: What are the negative aspects that you see in the prototype? 

 

Responses: 

• Too many things if the schema is complex; 

• You need a lot of context before you can use it probably; 

• Not really "negative", but perhaps it could be possible to also visualize (highlight) which 

result you have selected to be visualized in the schema; 

• While the data structure is shown very nicely, I'm not sure how the table-based search 

results would work in a complex data model with a lot of data. Also, while the demo 

showed how to store metadata, it's unclear to me you'd effectively use this metadata 

in practice. 

• needs more polish; 

• This prototype has been built for a specific schema, effort would need to be made to 

make this generic and apply it to any customer environment. Naturally, this can't be 

expected within the scope of the current research (I think already a lot is done within 

limited time) but nevertheless its an obstacle to overcome in the future during 

implementation in production. 

• I think the tool could use some more documentation or tooltips for the user, so that the 

user truly knows the strengths and relevance of the tool! 

• You need a lot of context before you can use it probably; 

 

 

 

 



93 

 

Question 10: Please provide a general score for the whole solution. 

 

Responses: 

 
Figure B7 Results to Validation Survey question 10 
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