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Summary

Since the mid-1970s, when the first papers about harmonic radars were published, the
theory behind nonlinear radars has been extensively studied. New ways to measure
the distance to targets of interest were proposed, new nonlinear elements for harmonic
tags and different transmissions configurations were implemented. Despite this, one thing
which still represents the bottleneck of the harmonic radars is their low range. The primary
reason for the low range is the low power conversion efficiency of the passive nonlinear
tag. There are many ways to improve the capacity of harmonic radars. In this paper, we
focus on using additional transmitters.
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Chapter 1

Introduction

1.1 Introduction

Harmonic radars are commonly used in situations where linear radar techniques fail due
to the limited size of the object to be tracked, the necessity for high rejection of the environ-
mental clutter, or where the weight plays an important role. There are multiple examples
of these situations. For instance, in entomology, where tracking insects [1], [2] plays an
essential role. Other examples are detecting RF equipment [3], sensing temperature re-
motely [4], monitoring vital human signs [5], alerting a vehicle driver of the presence of
vulnerable road users [6]. In a typical harmonic radar configuration, a transceiver sends a
modulated signal at some frequency f and some power P . And a nonlinear tag reflects a
sum of of harmonics of frequency f of the modulated signal, which is then used to detect
the location of the tag [3] [7] [8]. The bottleneck of such a system is its low range. The
primary reasons for this are the low conversion efficiency of the nonlinear tag and high
power free path loss due to high frequency resulting from a necessity for small tags. An
easy solution for this is to increase the transmission power, which will increase the range
according to range equation of the harmonic radar. However there are several problems
with this approach. First of all high concentration of power in one location is dangerous.
For high power, the transmitter gets complex [7], the equipment is expensive, and in ex-
treme cases, the system can cause non-linearities. An extreme example of non-linearities
due to a high concentration of power is the Luxembourg effect. Based on the nonlinear
range equation of the harmonic radars [3] it can be observed that there are other methods
to increase the range. By increasing the gain of antennas for instance. For this however,
you need more antennas as it limits the area of detectability. Another method is to in-
crease the power conversion efficiency of the nonlinear element. But this is usually out of
control as it depends on the material and its properties.

4



1.2 Problem description

The previous section mentioned that although increasing the transmitter’s power is a sim-
ple way to improve the range, it has some flaws. Instead of increasing the power directly,
the power can be increased by adding additional transmitters [9]. These auxiliary trans-
mitters will be approximately at the same distance as the main transmitter from the tag.It
should be pointed out that in contrasts to main transmitter, which from now on will be
called ranging transmitter, additional transmitters emit an unmodulated signal. The feasi-
bility of this method can be tested using the power series model of the nonlinear elements.
The power series model can be derived from the IV characteristic of the diode. The ex-
ponential function which relates voltage over diode to the current through the diode can
be represented as a Taylor series [9]. For high-range application (which we are trying to
research), only up to second power is needed, as the model very closely fits the actual
data (if the input voltage is on the order of several thermal voltages of the Schottky diode,
the second-order power model has a deviation of less than 10 percent [9]). It is essential
to point out that the method used to measure the distance relies on the cross-correlation
between the ranging signal used for transmission and the reflected signal from the tag af-
ter being demodulated by the local oscillator, tuned to the second harmonic of the ranging
signal.

Influence of the auxiliary transmitters is described by the superposition of the original
modulated signal from the ranging transceiver and a carrier signal characterized by an
amplitude and a phase (this represents the influence of all auxiliary transmitters). Be-
cause the component of interest is the second harmonic, using the power series model
the final expression for the tag output contains the signal from the ranging transceiver,
intermodulation and carrier signals. So three different baseband signals can be used for
cross-correlation. In general, only one of the baseband components is used, but all three
components contain power which can potentially offer a better signal to noise ratio (SNR).

1.3 Research question

The problem stated above raises the question, is there something that can be done to
increase the range? Most of the things mentioned in the introduction suggested that the
biggest problem with harmonic radar comes from the design of the tag. Clearly, a more
efficient tag design can improve system performance. Nonetheless the question still re-
mains, is there something that can be done it terms of signal form and signal processing
that can also result in an increase in efficiency? Is there any optimal solution in terms of
ranging signal considering everything else is equal that can increase range/range resolu-
tion? Is this optimal solution feasible? What are the drawbacks of this solution?
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Chapter 2

System Model

2.1 Principle of operation of harmonic radar

2.1.1 General description

The goal of this paper is to investigate the ranging capabilities of harmonic radar in the
presence of auxiliary transmitters. In order to do this a model of the system has to be
derived. Usually a power series model [10] is used to describe the behaviour of the
harmonic radar. The power series model can be derived taking into account the behaviour
of the nonlinear transponder. The transponder is commonly made of antenna used to
intercept and send back the EM waves coming from the transceiver, a Schottky diode [3]
which acts as the nonlinear element, and an inductor which helps with antenna matching.
The general principle of operation is shown in figure 2.1 and the simplified model of the tag
is shown in figure 2.2. Taking into account the model shown in figure 2.2 the input-output
relationship of the tag can be derived. It should be pointed out that usually the tag is made
so that it is resonant at the frequency of interest so that inductor impedance cancels the
imaginary part of the antenna impedance. Without losing any analytical insight the model
can be further simplified considering idRA � Vin which is justifiable for long distances,
where id is the current through the diode and RA is the real part of antenna impedance.
As a result only the diode affects the current so

id = IS(e
VD
nVT − 1) (2.1)

where IS is the saturation current of the diode, VD is the voltage across the diode, n and
VT being respectively ideality factor and thermal voltage of the diode. Applying Taylor
series approximation on the diode current in the form of Maclaurin series and making the
change of variable α = 1

nVT
, the diode current becomes

id = IS

+∞∑
n=1

(α ∗ VD)n

n!
(2.2)
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where VD ≈ Vin. From 2.2 at the maximum range when idRA << Vin, the tag output
current can be related to the input voltage via a power series.

Figure 2.1: Operation principle of harmonic radar

Figure 2.2: Simplified model of the tag
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2.1.2 Ranging principle

General description

Consider stx = A<(x(t)ej(ω0t+θ0)) as the signal transmitted by the ranging transmitter,
where A is the amplitude of the signal, x(t) is a complex envelope used for ranging, θ0 is
the phase of the local oscillator, and < denotes the real part of a complex number.

For line of sight (LOS) path, the power of the signal at the transmitter Pt and received
power Pr are related through Friis equation [11]

Pr =
PtGT (ω0)GR(ω0)c

2

(2dω0)2
(2.3)

where GT (ω0) is the gain of the transmitting antenna at ω0, GR(ω0) is the gain of the
receiving antenna of the tag at ω0, d is the distance between them and ω0 is the frequency
of operation. In addition to this, there is also a multiplicative factor k which represents
the effectiveness of power delivery to the diode and it is mostly the result of matching the
antenna impedance to that of the diode. Taking this into account the final formula is

Pr =
kPtGT (ω0)GR(ω0)c

2

(2dω0)2
(2.4)

In a noise-free environment, the signal at the tag is given by

s(t) = Ar<(x(t− td)ej(ω0(t−td)+θ0)) (2.5)

where Ar is the amplitude of the received signal that can be obtained from equation 2.4,
td = d

c
is the time EM waves need to travel to the tag located at distance d from the

transceiver, and c is the speed of light in vacuum.
Focusing only on the second power in equation 2.2 (second harmonic is the typical

signal used in harmonic radars [10]), current through the diode at the second harmonic
due to voltage s(t) is

id(t|2ω0) = IS
α2

4
A2<(x2(t− td)e2j(ω0(t−td)). (2.6)

This current is then converted to EM waves through the load of the antenna which rep-
resents its power conversion factor. The power received back is again related to the one
sent through equation 2.4 and the signal is delayed by the time td = d

c
. From here, the

signal that arrives at the ranging receiver is

srx(t) = γid(t− td) (2.7)

where γ takes into account the effect of power conversion of the tag plus the decay due
to square law. Taking into account 2.6, the signal 2.7 can be written as

8



srx(t) = γIS
α2

4
(A2<(x2(t− 2td)e

2j(ω0(t−2td)))). (2.8)

If we substitute β = γIS
α2

4
, then the signal after quadrature down-conversion becomes

srx(t) = βA2<(x2(t− 2td)e
2j(ω0(t−2td)+θ0)). (2.9)

The phase component e−4jω0td+2θ0 can be removed by using a Costas loop, and βA2 can
be written as Ar so the signal after quadrature down-conversion becomes

srx(t) = Arx
2(t− 2td). (2.10)

Complex envelope x(t) is deterministic so crosscorrelation can be used to find the time
shift 2td. From here, it results that the function used for crosscorrelation should have the
propriety that y(t) = x2(t). Taking this into account the crosscorrelation can be written as

Rsy(τ) =

∫ T

0

srx(t)y
∗(t− τ)dt

where T is the integration time. This can be further simplified to autocorrelation of y(t)

Rsy(τ) =

∫ T

0

Ary(t− 2td)y
∗(t− τ)dt = ArRy(τ − 2td) (2.11)

where Ry(t) is the autocorrelation of y(t). Finally the peak value of the Ry(t) is at t = 0 so
for Ry(t− 2td) the peak will be at t = 2td. Thus, the distance to the tag is equal to

d = 0.5c arg maxRsy(τ). (2.12)

Target detection

Equation 2.6 presents an idealized version of the ranging principle. It is very easy to see
that in this configuration, as long as you received a signal, you can find the range to the
target. In reality, like any physical system, the harmonic radar is prompted to noise. As
srx(t) represents a complex envelope, the noise is presented on both real and imaginary
part of the complex signal and can be characterized by complex additive white Gaussian
noise (AWGN) with power spectral density (PSD) equal to N0.

Consider now a noisy crosscorrelation

Rnoisy(τ) =

∫ T

0

(srx(t) + n(t))y∗(t− τ)dt = Rsy(τ) +

∫ T

0

n(t)y∗(t− τ)dt (2.13)

where Rsy(τ) =
∫ T
0

(srx(t)y
∗(t − τ)dt and n(t) is complex AWGN with PSD N0. It is easy

to prove that the SNR at the peak cross-correlation is equal to

SNR =
max|Rsy(τ)|2

N0T
∫ T
0
y(t)y∗(t)dt

. (2.14)
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Taking equation 2.7 into account, it is easy to observe that for small value of the srx(t),
or its total absence, the peak of Rnoisy(τ) can be the peak of the noise. So to solve
this problem a threshold is usually set where the value of the peak is compared against
this threshold. While the threshold might be set in different ways, potentially yielding
different values for the minimum detectable SNR, it is generally true that a higher SNR will
lead to a better estimation performance. This suggests that an increase in system SNR

defined by 2.8, directly corresponds to an increase in range. Therefore, for simplicity, the
optimality problem will be from now on defined in terms of the increase in SNR.

2.1.3 Range resolution

To be able to solve or even define the problem of optimality in terms of range resolution
you need a definition for it. Throughout the paper two definitions will be used interchange-
ably. It should be stated that these two definitions are the same in nature, they are just
defined in two different domains.

Time domain definition

Consider the time domain representation of the signal after applying the crosscorrelation
and consider two situations presented in figures 2.3 and 2.4. It is clear from the figures
that if T is defined as the time duration of the pulses presented in figures 2.3/2.4, then
the pulses have to be at least T apart from each other so that they can be clearly distin-
guished. Define Tr as the time between two closes points around the peak of the signal
with the amplitude at least −20dB1 lower than the peak value. Then the range resolution
is given by

σR =
cTr
2
. (2.15)

Frequency domain definition

Consider a rectangular function in frequency domain with bandwidth BW . The time do-
main representation of the signal is a sinc function with period 1

BW
. A sinc function follows

the definition of the Tr in time domain for Tr = 1
BW

. The range resolution, defined in terms
of bandwidth, is then

σR =
c

2BW
(2.16)

where BW is the bandwidth of the rectangular signal in frequency domain equivalent to
the frequency representation of the output of the matched filter.

1The −20dB may be seen as an arbitrary value and in some sense it is. The reason this value was
chosen is because of more general definition in frequency domain where bandwidth dictates the values of
the range resolution.
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Figure 2.3: Targets easily separable after
applying crosscorrelation

Figure 2.4: Targets inseparable after ap-
plying crosscorrelation

2.2 Operation with auxiliary (helper) transmitters

2.2.1 Model derivation

Now that the power series model was derived, equation (2.2) can be used to model the
behaviour of the system with auxiliary transmitters which is illustrated in figure 2.5.

Figure 2.5: Operation with auxiliary transmitters

For auxiliary transmitters, the signal emitted by the antenna can be defined as mtxi =

Ai<(ej(ω0t+θi)), where i is the number of the auxiliary transmitter (e.g., for N auxiliary
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transmitters i ∈ [1, N ]), Ai and θi being respectively the amplitude of the signal and the
phase of the local oscillator of the auxiliary transmitter i.

Because EM waves obey the superposition principle, VD in the equation 2.2 can be
thought as the superposition of all EM waves incident on the tag. Taking this into account,
the signal arriving at the transponder will have the following form

s(t) = A<(x(t− td)ej(ω0(t−td)+θ0)) +
N∑
i=1

Ai<(ej(ω0(t−tdi)+θi)). (2.17)

Note that for simplicity, the notation for signal amplitudes remains the same here but
their values now follow from the received signal power given in equation 2.4. The term∑N

i=1Ai<(ej(ω0(t−tdi)+θi)) can be further simplified to Av<(ej(ω0t+θh)), where

Av = |
N∑
i=1

Aie
j(θi−ω0tdi)| (2.18)

θh = arccos (

∑N
i=1Ai<(ej(θi−ω0tdi))

Av
). (2.19)

With 2.18/2.19, equation 2.17 can be rewritten as

s(t) = A<(x(t− td)ej(ω0(t−td)+θ0)) + Av<(ej(ω0t+θh)). (2.20)

This equation can be now substituted in equation 2.2.
One thing to notice is that coefficients of the powers in the power series decay expo-

nentially in form of αn. In addition to this, from Friis equation it is easy to see that for an
increase in frequency the received power decreases. This suggests that a better option
is to focus only on the second harmonic whose amplitude is given by all the components
from power of 2 and up. For s(t) << 1 only the contribution from power two can be taken
into account, so for 2ω0 we obtain

id(t|2ω0) = IS
α2

4

(
A2<(x2(t− td)e2j(ω0(t−td)+θ0))+2AAV<(x(t− td)ej(ω0(t−td)+θ0+θh)) (2.21)

+ A2
V<(e2j(ω0t+θh))

)
.

For diode current defined by 2.21, the signal that arrives at the receiver is given according
to equation 2.9 by

srx(t) = β
(
A2<(x2(t− 2td)e

2j(ω0(t−2td)+θ0))+2AAV<(x(t− 2td)e
j(ω0(t−2td)+θ0+θh)) (2.22)

+ A2
v<(e2j(ω0t+θh))

)
.

2.2.2 Overview of constellation of helper transmitters

One thing that comes to mind when using additional transmitters is if their relative position
to each other matters. There are three reasons why their relative position would matter.

12



First is the difference in the phase of the local oscillator which influences the superposition
of the waves. Second, they have different distance to the tag, so that adds a new random
phase difference. Finally, because of different distances to the tag their power near the tag
is also different, although they may start with the same power. The reason for the last one
being LoS path loss due to the inverse square law. For small enough relative distances
δd << d, where δd is the distance to the ranging transmitter from auxiliary transmitter, the
influence is insignificant. Nonetheless, for big enough transmit power AV > A the power
loss due to δd is equal to 10log( 1

1+ δd
d

).
The intuitive answer based on the analysis above is to put the auxiliary transmitters

as close to the ranging transmitter as possible. However an analytical proof based on a
mathematical model would be more suggestive.

As pointed out earlier there are three reasons why the relative distance would matter.
And although the phase of the local oscillator does not depend on the position of the
transmitter, the maximum achievable power depends (it should be made clear that there
is also a phase component depending on the relative position of the transmitter to the
tag but that one is considered random). There are two main factors associated with ideal
relative position: uniform power distribution around an imaginary circle with the center
at the receiver and maximization of power on this circle. To solve the problem we can
define a Cartesian coordinate system with the center at the ranging transmitter/receiver
as shown in figure 2.4. One thing to take into account is that it is considered that δh << d

where δh is the relative height between the transmitters. Now, we assign vectors ~ri to
the auxiliary transmitters in Cartesian system defined in figure 2.4. In addition to this, ~R
corresponds to the position of the tag. In such a system, the distance between the helper
transmitter and transponder is defined as |~R − ~ri|. Then the problem mentioned above
can be stated mathematically as{

∂L
∂θ

= 0, R = |R|ejθ, θ ∈ [0, 2π] ∧ |R| = const

|∇rL = 0, |R| = const ∧ ∀θ ∈ [0, 2π] ∧ |ri| < |R|
(2.23)

where L =
∑N

i=1
Ai

||~R−~ri||
and Ai is the amplitude of the unmodulated signal coming from the

auxiliary transmitters. It has to be pointed out that this presents a simplified model since
not all the waves will add constructively. Moreover, the signal strength will also depend on
the path taken, frequency, temperature, etc. Nonetheless, this is the maximal achievable
signal strength.

To find the solution one does not actually need to solve 2.23. For constant amplitude,
there is a trivial solution which in fact provides most of the insights. Based on the form of
the first equation in 2.23 a trivial solution will be a geometrical form which has a symmetry
around rotation with some random angle θ. This geometrical form is a circle. For such a
form the second equation in 2.23 is true for |ri| → 0. So the best arrangement of auxiliary
transmitters are on a circle around the ranging transmitter/receiver with as small radius of
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the circle as possible.

Figure 2.6: Coordinate space with center at ranging transmitter (RT) and auxiliary trans-
mitters (AT) distributed around

14



Chapter 3

Proposed Solution

3.1 Statement of problem to be solved

Chapter 2 provided a full description of the system model to be used. Taking this model
into account, we can start our description by focusing on equation 2.22

srx(t) = β(A2x2(t− 2td)e
2j(−2ω0td+θ0)) + 2AAvx(t− 2td)e

j(−2ω0td+θ0+θh)) + A2
ve

2j(−2ω0td+θh))

(rep. 2.22)
Investigating this equation we can observe that there are four components (AV , td, θ0, θh)
which for most of the purposes can be considered random. One thing to notice is that
for slow enough targets (slow as defined by Tv < σR, where T is the pulse duration, v
average velocity of the target and σR range resolution) these components are wide sense
stationary random processes for the duration of measurements. So two situations can
be considered: Av, td, θ0, θh are treated as some deterministic constants and their random
behaviour is studied after a full solution is derived, or their random nature is taken into
account in designing optimal solution. For AV , td, θ0, θh being deterministic, this corre-
sponds to the situation of an estimator which moves the randomness from AV , td, θ0, θh to
that of the estimators of these values. For simplicity, in the following analysis, the solu-
tion will be presented considering an ideal situation when A2

V e
2j(−2ω0td+θh) ,e2j(−2ω0td+θ0)),

ej(−2ω0td+θ0+θh)) can be perfectly removed and AV is deterministic. The solution where the
environment is stochastic is presented in the appendix.

As pointed out in the introduction, the goal is to find a complex envelope and a cor-
responding match filter which offer an optimality in terms of range/range resolution for a
configuration described by 2.22. Consider following conditions for optimality:

1. The amplitude of the complex envelope x(t) can be maximum 1. Increasing the
amplitude of the complex envelope will increase the SNR, which will give unfair
advantage to some signals.

2. The energy of the complex envelope can be maximum the energy of the rectangular
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signal with amplitude 1 with the same pulse duration as the complex envelope x(t).
Providing more energy will also result in higher SNR.

3. The pulse duration of the complex envelope should be the same for all candidate
signals. Increasing the pulse duration of the complex envelope will increase the
energy of the envelope, which will again result in higher SNR.

4. There are some signals which for the same pulse duration have higher bandwidth.
An example of this is a linear frequency modulated signal .While their bandwidth
is a fair advantage, in general the whole system is bandwidth-limited. So in order
to make the comparison fair, it is considered that the bandwidth of the complex
envelope can not be higher than that of the Barker code of length 11 of the same
time duration. The Barker code was chosen arbitrarily, the bandwidth can be limited
to any reasonable value.

These conditions can be translated mathematically to

|x(t)| ≤ 1 (3.1)

∫ T

0

|x(t)|2dt ≤ T (3.2)

T = const (3.3)

BW (x(t)) ≤ BW (Br(t, 11)) (3.4)

where Br(t, 11) is the time domain representation of a Barker code of length 11. Given
the constraints 3.1 – 3.4 the problem of finding an optimal solution can be formulated as

|∇SNR| = 0 (3.5)

|∇BW (Rsµ(τ))| = 0 (3.6)

where

SNR (x(t), µ(t)) =
max|Rsµ(τ)|2

N0T
∫ T
0
µ(t)µ∗(t)dt

(3.7)

srx(t) = β(A2x2(t− 2td) + 2AAV x(t− 2td)) (3.8)

Rsµ(τ) =

∫ T

0

srx(t)µ
∗(t− τ)dt (3.9)
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Here, x(t) is the complex envelope used for ranging, T is the pulse duration of the ranging
signal,BW (∗) is the bandwidth of the signal (the definition used does not matter as long
as it is the same for every signal used).

Before moving to the actual solution, several things have to be pointed out. First of
all, it is easy to see that the conditions mentioned above limit the form of the complex
envelope to |x(t)| = 1. While having a unit magnitude complex envelope restricts the
space of possible solutions, in general it is assumed as fact that the solution should be on
a unit circle. Second, it is very unlikely that a solution to this system of equations exits.
The goal in this case is finding a solution as close to optimality as possible.

3.2 Problem analysis

The optimal problem stated above represents a system of equations of two variables
(x(t), µ(t)). This suggests dividing the problem in steps and building the solution by con-
sidering one of the functions as known and solving for the other one.

3.2.1 Optimal filter

Lets examine the problem of finding the optimal function µ(t), which gives the highest
SNR when SNR is defined by equation 3.7 and x(t) is known. Because the noise is
modeled as complex AWGN while x(t) represents an analytic form of a real physical
signal, the solution for this problem is well known and it is given by the match filter [11].
As a result, the maximum SNR as a function of µ(t) for a given complex envelope x(t) is
equal to

µ(t) = gsrx(t), c ∈ C (3.10)

where g is some complex constant.
Using the proprieties of the matched filter, equation 3.7 can by simplified to

SNR(x(t)) =
max(

∫ T
0
srx(t)(srx(t))

∗dt)

N0T
. (3.11)

Recognizing that T and N0 do not depend on the complex envelope x(t) and srx(t) can
be shifted by 2td without affecting the result, equation 3.11 can be written as

maxx(t)[β
2

∫ T

0

(A2x2(t) + 2AAV x(t))(A2x2(t) + 2AAV x(t))∗dt]. (3.12)

Because |x(t)| = 1 and β, A, AV are considered constants, moreover x(t) can be written
as ejφx(t), equation 3.12 translates to

maxx(t)[

∫ T

0

x2(t)x∗(t)dt+

∫ T

0

((x2(t))∗x(t)dt] = maxx(t)[2

∫ T

0

cos(φx(t))dt] (3.13)
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where

maxx(t)[

∫ T

0

cos(φx(t))dt] = T, φx(t) = 2nπrect(
t− T

2

T
) n ∈ N. (3.14)

Equation 3.14 suggests that the maximum SNR for srx(t) is given by x(t) = rect(
t−T

2

T
).

One thing worth mentioning here is that for x(t) = rect(
t−T

2

T
) the DC term in equation 2.22

can not be removed anymore, so it contributes to the SNR. In this case, SNR approaches
that of the system without auxiliary transmitters where the amplitude is equal to A + AV .
For the general case of using match filter

SNR(x(t)) =
A4T + 4A2A2

vT + 4A3Av
∫ T
0
cos(φx(t))dt

N0T
. (3.15)

Inspecting equation 3.15 it is easy to notice that the maximum SNR is obtained for x2(t) =

x(t). In more rigorous terms, if < x2(t), x(t) > is defined as the inner product between
x2(t) and x(t), then SNR is directly proportional to the value of the real part of the inner
product. The reason for this is the fact that <(< x2(t), x(t) >) =

∫ T
0
cos(φxt)dt.

3.2.2 Bandwidth

The optimal solution for SNR as derived above is obtained when x(t) = rect(
t−T

2

T
)). The

bandwidth of srx(t) for x(t) = rect(
t−T

2

T
)) is equal to 1

T
. For matched filter, the crosscor-

relation preserves the bandwidth so BW (Rsµ(τ)) = BW (srx(t)), which results in a range
resolution σR = c

2BW (Rsµ(τ))
= cT

2
. This is the worse bandwidth you can obtain for a signal

with pulse duration T . A better solution has to be obtained which can give a better range
resolution while still having a high SNR. The solution can be derived by starting with the
form of the crosscorrelation in 3.9

Rsµ(τ) =

∫ T

0

β2(A2x2(t− 2td) + 2AAvx(t− 2td))(A
2x2(t− τ) + 2AAvx(t− τ))∗dt

It is easy to see that this equation can be simplified to

Rsµ(τ) = β2Rµ(τ − 2td). (3.16)

Taking this into account, the range resolution of Rsµ(τ) is exactly the same as of Rµ(τ). It
is also important to point out that because after quadrature down-conversion the complex
envelope is obtained directly, the cross correlation is also going to be complex. So for
ranging, the magnitude of the cross correlation is used:

|Rµ(τ)| =|A4

∫ T

0

ej(2φx(t)−2φx(t−τ))dt+ 4A3Av

∫ T

0

cos(2φx(t)− φx(t− τ))dt

+ 4A2A2
v

∫ T

0

ej(φx(t)−φx(t−τ))dt|.
(3.17)
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Section 2.1.3 proposed two definitions for the range resolution of the harmonic radar.
Focusing on the time domain definition, it is not difficult to see that high range resolution
translates to |Rµ(τ)||Rµ(0)| << 1 for τ close to 0. Applying this to equation 3.17, results in

d2φx(t)

dt2
>>

2π

T
. (3.18)

In general, focusing on equation 3.17, the highest range resolution, as defined by the time
domain definition, is given by a signal which has a high value for the second derivative of
the instantaneous phase of x(t). In more rigorous terms

d2φx(t)

dt2
=

2π

Tτ
(3.19)

where τ is the width of the main lob. A thing to notice is that for such a signal x2(t) and
x(t) are orthogonal or have a very small inner product. As a general rule, investigating
equation 3.17 it can be declared that to increase the bandwidth of the system defined
by srx(t), the inner product between x2(t) and x(t) has to be as small as possible(for
small inner product x2(t) and x(t) do not overlap in frequency domain,because x(t) has
to have bandwidth of atleast Barker code for the case of A ≈ AV and x2(t) and x(t) not
overlapping in frequency domain —Rµ(τ)— should have higher bandwidth). The opposite
statement is generally not true, a small SNR system does not guarantee a high range
resolution. The reason for this is while range depends on the absolute value of the inner
product, SNR is proportional to the real part of the inner product. An example of such
a signal is x(t) = ej

π
2 rect(

(t−T
2
)

T
), for which the real part of inner product between x2(t)

and x(t) equal to 0 but the absolute value is maximum. The relationship between inner
product and range resolution can be proven as follows. According to power theorem
< x2(t), x(t) >=< Y (ω), X(ω) >, where < ∗, ∗ > is the inner product and Y (ω), X(ω)

are the Fourier transforms of x2(t) and x(t). For AV >> A, cross-correlation in 3.17
approaches |Rµ(τ)| = |4A2A2

V

∫ T
0
ej(φx(t)−φx(t−τ))dt|, that means that x(t) has to have the

bandwidth of the Barker code to fulfil the requirement for range resolution. Moreover for
A >> AV , the opposite happens and x2(t) has to have the bandwidth at least of the
Barker code. Because for x(t) = ejφx(t) both x(t) and x2(t) have the same energy ,results
that < Y (ω), Y (ω) >=< X(ω), X(ω) >. The highest bandwidth for A and AV close in
value to each other is given for Y (ω) and X(ω) not overlapping in frequency domain. For
this situation < Y (ω), X(ω) >= 0. Because of < Y (ω), Y (ω) >=< X(ω), X(ω) >,in case
X(ω) and Y (ω) overlap in frequency domain, increasing the bandwidth of Y (ω) results in
lowering the energy in the frequency band of X(ω) ,which results in lowering the value of
< Y (ω), X(ω) >. Finally for X(ω) and Y (ω) occupying the same frequency band, because
of < Y (ω), Y (ω) >=< X(ω), X(ω) > results x2(t) = x(t). While the highest bandwidth is
given by equation 3.18 there are multiple signals which follows the equation. Because the
goal is to find an optimal both in SNR and range resolution,results that a maximum SNR
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for equation 2.18 has to be found

ejφx(t) = ej(At
2+Bt+C) (3.20)

SNR is proportional the the real part of the inner product between x(t) and x2(t),so max-
imum SNR is given by

maxA,B,C<(

∫ T

0

ej(At
2+Bt+C)dt) (3.21)

A is dictated by the range resolution so it is considered a constant, because C is the
phase component which has a value between [−1, 1] and B is a frequency which lowers
the average of ej(At2+Bt+C). Results that for maximum real part of inner product B,C = 0.

3.3 Proposed solution

The solution analysis can be summarized as follows.

1. To increase the SNR of the system as defined by srx(t), the inner product between
x2(t) and x(t) has to also maximized. The highest SNR is obtained when x2(t) and
x(t) are collinear.

2. To increase the range resolution of the system defined by srx(t), the inner product of
the x2(t) and x(t) has to minimized. The highest bandwidth is obtained when x2(t)

and x(t) are orthogonal and instantaneous derivative of the phase of x(t) is as high
as possible.

3. It is not possible to come up with a complex envelope x(t) for srx(t) that has both
a peak in SNR and in range resolution. Although such a signal exists when no
auxiliary transmitters are used.

4. The best solution when A
AV

>> 1 or AV
A
>> 1 is to focus only on the terms x2(t) or

x(t), which one has the highest power contribution.

Taking into account everything mentioned above, plus the strict condition of a range
resolution higher that of that of the Barker code of length 11, two possible solutions are
proposed. It should be pointed out that the main region of operation of these two solutions
are for AV

A
∈ [0.1, 10]. As stated above when AV >> A or A >> AV , it is more optimal to

focus only on one of the terms.

Linear frequency modulation

Consider a complex envelope of form

x(t) = ej(F0+fn)trect(
t− T

2

T
) (3.22)
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where T is the duration of the pulse, F0 is a constant frequency used as an offset and
fn = nf for (n − 1)Tf ≤ t ≤ nTf , n ∈ [0, Nf − 1] and Tf = T

Nf
. It is easy to see that for

a frequency modulation scheme, x2(t) will have double the bandwidth of x(t). You can
observe this in figure 3.1 where this increase is shown.

Figure 3.1: Frequency domain representation of the complex envelop sent and signal
received

It has to be pointed out that figure 3.1 shows only one of the many situations that can
happen. In reality, x2(t) and x(t) can overlap in frequency domain or be far apart; they can
have different amplitude or can be a the same level. Nonetheless, this suggests that for
a frequency modulation technique the output bandwidth of the system has a bandwidth
in the range1 (BW, 3BW) where BW is the bandwidth of x(t). The highest SNR for x(t) =

ej(F0+fn)trect(
t−T

2

T
) is obtained when

µ(t) = x2(t) +
2AV
A

x(t). (3.23)

The SNR for equation 3.23 is equal to

SNR =
(A4T + 4A2A2

vT )

N0T
. (3.24)

Equation 3.23 suggests that the optimal filter requires knowledge of A and AV , which
generally are not known in advance. Moreover, the signal at the receiver also contains
phase components which were disregarded earlier in the analysis. Note that in contrast
to 3.8, the full received signal is defined by 2.22. Their effect on the SNR and range

1You can actually ensure that the bandwidth is always 3BW. Analysing figure 3.1 it can be seen that you
can insure three times bandwidth for (F0 + (Nf − 1)f) ≤ 2F0 when µ(t) = 4Av

A x2(t) + x(t) while for digital
domain we have that 2(F0 + (Nf − 1)f) < Fs

2 where Fs is the sampling frequency.
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resolution should be studied. The starting point for this is the srx(t) as received in a
realistic scenario.

srx(t) = β(A2x2(t− 2td)e
2j(−2ω0td+θ0)) + 2AAvx(t− 2td)e

j(−2ω0td+θ0+θh)) + A2
ve

2j(−2ω0td+θh)).

(rep. 2.22)
Here, A2

ve
2j(−2ω0td+θh) can be easily removed for x(t) being a frequency modulated sig-

nal because it is a DC term. Since x(t) and x2(t) are orthogonal, e2j(−2ω0td+θ0)) and
ej(−2ω0td+θ0+θh) cab be removed by considering the sum of magnitudes of cross-correlation
of srx(t) and the individual terms x(t) and x2(t). Therefore, the only term that has to be
estimated is 2AV

A
. Then, µ(t) takes the form of

µ(t) = x2(t) + αx(t). (3.25)

The SNR for µ(t) described by 3.25 and x(t) described by 3.22 is given by

SNR =
(A2T + 2AAvαT )2

N0T (T + α2T )
. (3.26)

Figure 3.2 shows 3.26 as a function of α for different values of 2Av
A

. From the figure, it can
be concluded that for an α in the region of [0.2Av

A
, 20Av

A
] the maximum deviation from the

optimal value is −3dB; for Av ≈ A the maximum deviation from the optimal is also −3dB,
while the optimal solution for Av > A is to increase the value of α and the best solution for
A < Av is to decrease α.
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Figure 3.2: Normalized SNR to the optimal SNR for frequency modulation as a function
of α.

As can be observed in figure 3.2, for optimal SNR, the value of the 2AV
A

has to be
known. For the case of A ≈ AV the value of the SNR does not fall below −3dB. For
A > 10AV or A < 10AV the best option is to increase the value of the component x2(t)
or x(t), whichever holds most of the power. This will insure that the SNR decrease is
minimized. Besides this, figure 3.2 strengths the idea that for A >> AV or AV << A it is
more optimal to focus only on one of the components rather than a combination of them.
In worse case scenario as suggested by the data in figure 3.2 µ(t) = x2(t) + 2x(t) can be
used. This will assure SNR as close to maximum as possible for situation when A ≈ Av

,which is the main region of operation. For the case of AV > A the decrease in SNR

is minimized in detriment to the situation when A > AV . But because the reason why
auxiliary transmitter are used in the first is that the can provide more power without

Quasi-Barker code

Consider a complex envelope of form

x(t) = ej
π
2
l(t)rect(

t− T
2

T
) (3.27)
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where l(t) = Qb(i), Qb(i) is a quasi-Barker bit vector of length N , while (i−1)Tr ≤ t ≤ iTr,
i ∈ [1, N ] and Tr = T

N
. It should be mentioned here that the goal of this paper is not in

presenting the numerical values of these signals. They are easily derivable, for example
by using least square method. The aim is to provide a general form of the signal which
has the ability to have range resolution close to Barker for srx(t) = A2x2(t) + 2AAvx(t).
An example of such a signal is presented in figure 3.3 and it has a numerical value of
[0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0]. As can be seen from the figure, quasi-Barker code has a 9.8dB

increase in peak value compared to the regular Barker code. It should be mentioned
that the result was obtained for the situation when A = 2AV . To get the highest SNR
for quasi-Barker code as for the linear frequency modulated signal, a filter of form µ(t) =

x2(t)+ 2AV
A
x(t) has to be used. Again this represents the optimal case ,because the value

of 2AV
A

is usually unknown a filter of form µ(t) = x2(t) + αx(t) is the practical approach.
For α = 2AV

A
the filter will approach optimal value ,in worse case scenario the filter can

be changed to µ(t) = x2(t) + 2x(t). The results obtained with this filter will be shown in
numerical simulation section.

Figure 3.3: Normalized autocorrelation of Barker and Quasi-Barker code of length
11.Normalized to the peak of Barker autocorrelation
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3.4 Numerical simulation

For numerical simulation the following assumptions are used. For range/range resolution
comparison a Barker code of length 11 will be used as the state of art. The primary
reason for this is that while rectangular function has the highest SNR it has a bad range
resolution. For the complex envelope of the same energy/power and time duration as a
rectangular function, Barker code will have a higher range resolution. For digital domain
representation we set Fs = 1000

Tpulse
, F0 = Fs

10
, N = 11, (Nf − 2)f = BW (barker), θh =

U(0, 2π), and θ0 = U(0, 2π). For the diode, a zero-bias Schottky diode SMS7630-040 is
used, so that Is = 5mV , ni = 1.05 and VT = 25mV . Finally, RA = 73Ω which corresponds
to the impedance of a half wavelength resonant frequency of a dipole antenna.

In order to prove the points mentioned in the analysis, figures 3.4-3.9 are presented.
One of these points was that both linear frequency modulated signal and Quasi-Barker
can provide a higher SNR than a regular Barker code, while having the same bandwidth
or higher in comparison to Barker code of length 11. It should be stated that for regular
Barker srx(t) = 2AAV x(t),the reason for this is that for the case of srx(t) = 2AAV x(t) +

A2x2(t) Barker code will lose in resolution and the comparison will be unfair. The proof
of potential SNR increase can be seen in figures 3.4 and 3.7. So for optimal filter as
described by equation 3.10, both linear frequency modulated signal and Quasi-Barker
code have a strictly higher SNR that a similar Barker code. For non-optimal case when
µ(t) = x2(t) + 2x(t), the SNR falls to −0.6dB for AV >> A in case of linear frequency
modulated signal and to −0.1dB for Qausi-Barker. These values can be made smaller by
increasing the value of α. It should also be pointed out that the graphs show a significant
increase for A >> AV . This happens because both linear frequency modulated signal
and quasi-barker code rely on both x2(t) and x(t) for SNR improvement. In addition to
SNR increase, figures 3.5 and 3.6 show that there is a possibility that linear frequency
modulated signal provides 3 times increase in bandwidth which translated to 3 times
increase in range resolution. It has to be mentioned that this only happens for A = 4AV

or µ(t) = 4AV
A
x2(t) + x(t), in general bandwidth is between [BW (x(t)), 3BW (x(t))]. For

the case of µ(t) = 4AV
A
x2(t) + x(t),x(t) and x2(t) not overlapping in frequency domain

bandwidth of linear frequency modulated signal is independent of the value of A and AV
and it is always equal to 3BW (x(t)). The drawback of such a configuration is that you
lose in SNR, to estimate this lost compared to the optimal filter equation 3.26 can be
used. One of the results during problem analysis was that orthogonality between x2(t)

and x(t) represents the major factor which dictates the trade off between SNR and range
resolution. While indirectly this can be observed in figures 3.4,3.7,3.5 and 3.3 where the
SNR and bandwidth of these signals are presented. A comparison between figures 3.4
and 3.7 puts forward the idea that quasi-Barker has the potential to provide higher SNR.
The reason for this increase in SNR is a smaller bandwidth of the qusi-barker code. This
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can also be noticed by investigation equation 3.27 which idicates that for different vectors
l(t) both bandwidth and orthogonality between x2(t) and x(t) changes. This as a direct
result affects the SNR, explaining the higher SNR for quasi-Barker code. Finally, while
both linear frequency modulated signal and quasi-Barker code show an increase in SNR
for A > AV (again this happens because for regular Barker code only component x(t) was
used, you can easily choose the component x2(t) and you will get the graphs mirrored
on around A = AV ) for the case of AV < A they approach the one of only using x(t).
This suggest the idea that for big difference in the value of A and AV it is more optimal
to focus only on one of the components. The primary reason for this is while for a single
component the value of α is not needed this is still the case for the situation of using both
components. For a non optimal value of α the value of SNR will decrease.

Figure 3.4: SNR difference between Barker code of length 11 and linear frequency mod-
ulated signal, both having the same bandwidth
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Figure 3.5: Autocorrealtion of barker code
of length 11 and linear fre-
quency modulated signal of
the same bandwidth for T =

1µs

Figure 3.6: Frequency domain represen-
tation of the barker code of
length 11 and the 3 times
bandwidth of the signal x2(t)
and x(t)

Figure 3.7: SNR difference between Quasi-Barker code of length 11 and Barker code of
length 11
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To evaluate the range improvement due to increase in SNR, a formula has to be
derived which relates the increase in SNR to the increase in range. Consider some
amplitudesArang andAaux which are the amplitudes of the signals near ranging transmitter
and auxiliary transmitter. The amplitudes arriving at the receiver are proportional to Arang

d

and Aaux
d

(assuming that the distance between ranging and auxiliary transmitter is way
smaller than the distance to the tag). Both x2(t) and x(t) amplitudes are proportional to
1
d2 , because of A2 and 2AAv. Finally the signal arriving at the receiver is decreased by 1

d

due to inverse square law. This translates to a total 1
d3 decay in amplitude.Taking this into

account suppose we have two methods to estimate the range, method 1 and method 2.
Then the ration between their maximum measurable distance for these two methods can
be related to the difference in their SNR as follows

dmax1
dmax2

= 10
∆SNR

60 (3.28)

where ∆SNR = SNR1−SNR2 is the difference of SNR in dB between methods 1 and 2,
while dmax1 and dmax2 are estimate of the maximum measurable range for method 1 and
respectively 2.

Using equation 3.28 on the graphs 3.4 and 3.7 estimate of the potential range increase
can be determined. This potential increase is shown in figures 3.8 and 3.9. In general
they just reinforce the points mentioned above, specifically that both linear frequency
modulated signal and quasi-Barker code have the potential to increase the detectable
range of the harmonic radar.

Figure 3.8: Expected range increase for
optimal matched filter

Figure 3.9: Expected range increased for
alpha equal 2
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Chapter 4

Conclusion and Recommendation

4.1 Conclusion

The problem of increasing the range/range resolution in harmonic radar system was con-
sidered. The starting point was a harmonic radar working in an environment with helper
transmitters that emit unmodulated carrier signals. The goal was to find a complex enve-
lope used for ranging which provides an optimality in terms of range and range resolution.
The analysis showed that in the case of using helper transmitter there is no general com-
plex envelope which has a peak in both SNR and range resolution. Nonetheless, the
paper presents two signals which have the potential to have higher SNR than a Barker
code while having the same bandwidth. It should be pointed out that for the same band-
width, average power, energy and time duration of the ranging signal, it is possible to
come up with signals that provide higher SNR than the two signals shown in this paper.
The problem then becomes how much you want to lose in range resolution. The real ben-
efit of these signals is that they rely on both x2(t) and x(t) for range increase, while at the
same time having a range resolution not lower than that of the single term x(t). The latter
point is proven by the analysis and numerical simulation that show that these signals have
the potential to provide a higher SNR than only using x(t) or x2(t) while having the same
bandwidth as autocorrelation of x(t).

4.2 Recommendations

Before mentioning any recommendations it should be stated that all the recommendations
are for the region where A

AV
∈ [0.1, 10]. For the case when A

AV
is out of that region, the

best solution is to focus on the components which provides most of the power. For the
two solutions proposed one major drawback is that the value of the 2AV

A
has to be known.

First of all while value of AV is random ,the value of A is deterministic. Moreover for small
number of auxiliary transmitter the value of AV is easy to estimate. As the number of aux-
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iliary transmitter increases the value of AV decreases, because adding a high number of
amplitude with different phase decrease the average value of the total amplitude. So then
the designer is imposed to put auxiliary transmitter in such configuration that maximizes
the average amplitude. This in exchange makes the estimation of AV easier. Another
approach is to apply and adaptive system to the problem. The value of α can be made
adjustable so it maximises the SNR. Because the environment is noisy, there is a possi-
bility that the system will maximize the noise or maybe the wrong component. To deal with
this, a threshold can be designed that limits the probability of this situation. This threshold
can be easily derived by arguing about the statistic of the ranging signal arriving at the
receiver. Finally, the conditions imposed during the analysis of the problem are strict and
can be actually loosen. Equation 3.15 shows the possibility to generate signals which can
potentially offer higher SNR, this then translates into how much range resolution are you
willing to lose.
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Appendix A

Appendix chapter

A.1 Solution analysis for random variables

The optimal problem stated above represents a system of equations of two variables
(x(t), µ(t)).This suggest dividing the problem in steps and building the solution by con-
sidering one the functions as known and solving for the other one.It was mentioned be-
fore that the nature of SNR is random.One thing to notice is that for a nonmoving tar-
get(or at least a one that moves really slow) the SNR is random in spacial space not
temporal(temporal space is considered the time of measurement).As these spaces can
be considered independent,Av, td, θ0, θh can be treated as constants without affecting the
optimality given by the expectation value.

So lets examine the problem of finding the optimal function µ(t),which gives the highest
expected SNR,when SNR is described by equation 3.6 and x(t) known.Because the
noise is modeled as complex AWGN.Moreover x(t) represents the analytic form of the
real physical signal ,the solution for this problem is well known and it is given by the
match filter.From here results that the maximum SNR as a function of µ(t),for a given
complex envelope x(t) is equal to

µ(t) = cs(t), c ∈ C (A.1)

where c is a complex constant.
It should be clearly stated at this point that by analysing the form of the equation 3.9

and equation 2.4 it is very easy to notice that unless x2(t) = x(t) the solution clearly
requires knowledge of Av, td, θ0, θh.And while they are treated as constant during the
measurements,they are still random as in if their value is unknown.Because there is a
possibility that the maximum is of form x2(t) = x(t),we will consider a hypothetical sce-
nario where these values are known.In case the optimal solution is x2(t) = x(t) these
values are not needed,as if Av, td, θ0, θh are known.In case the solution is different from
x2(t) = x(t),µ(t) is deterministic by nature so hypothetical scenario is clearly not realis-
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tic.Nonetheless in such a situation typically estimator will be used,this will move the ran-
dom nature of Av, td, θ0, θh to that of the estimators.So hypothetical scenario corresponds
with situation of ideal estimators.This in principle makes the problem the one of designing
a good estimator.

Using the proprieties of the matched filter for the hypothetical scenario,equation 3.6
can by simplified to

SNR(x(t)) =
max(

∫ T
0
s(t)s ∗ (t)dt)

N0T
(A.2)

Recognizing that A2
ve

2j(−2ω0td+θh) in s(t) is a DC term so it can be easily removed,T and N0

does not depend on complex envelope x(t) and s(t) can be shifted by 2td without affecting
the result.Equation 3.10 can be written as

maxx(t)[β
2

∫ T

0

(A2x2(t)aq + 2AAV x(t)al)(A
2x2(t)aq + 2AAV x(t)al)

∗dt] (A.3)

where αq = e2j(−2ω0td+θ0) and al = ej(−2ω0td+θ0+θh).Because |x(t)| = 1 and β,A,Av(this is
considered only spatially random) are considered constant,moreover x(t) can be written
as ejφx(t),the maximum problem translates to

maxx(t)[

∫ T

0

x2(t)x∗(t)aqa
∗
l dt+

∫ T

0

((x2(t))∗x(t)a∗qaldt] = maxx(t)[2

∫ T

0

cos(φx(t)+θ0−θh−2ω0td)dt]

(A.4)
θ = θ0−θh−2ω0td is a uniform random variable on interval [0, 2π] so two possible situations
are considered:

1.For x2(t) and x(t) being orthogonal (all of this considering that DC component can
be efficiently removed)

∫ T
0
cos(φx(t) + θ0− θh−2ω0td)dt = 0 by the definition of the orthog-

onality.Hence for x2(t) and x(t) being orthogonal and hypothetical situation being true the
value of the x(t) does not influence SNR,which on average is given by

SNRaverage =
β2(A4T + 4 ∗ A2AaT )

N0T
(A.5)

where Aa is the mean of the random variable A2
v.It should be stated that this solution

corresponds with the hypothetical scenario where the values of the Av, td, θ0, θh can be
estimated exactly.Because of the orthogonality for a non hypothetical scenario only the
value of Av has to be estimated.So for a realistic scenario SNR is given by

SNR =
β2(A4T + 4 ∗ A2A2

vαT )(A4T + 4 ∗ A2A2
vαT ))

N0T (A4T + 4 ∗ A2A2
vα

2T )
(A.6)

where α is dependant on the estimator of Av.
2.For x2(t) and x(t) not being orthogonal there is no possible way to get rid of the

random variable θ unless x2(t) = x(t).Even if one component is eliminated,because x2(t)
and x(t) are not orthogonal removing one signal will decrease the power of the signal
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remaining,which will decrease the SNR.In the case matching filter is applied directly for θ
uniformly distributed on [0, 2π] on average 2

∫ T
0
cos(φx(t)+θ0−θh−2ω0td)dt is equal to 0.On

thing worth mentioning is that for x2(t) and x(t) not being orthogonal to DC term,removing
the DC becomes inefficient and decreases the SNR.In case DC term is kept and the
matching filter is applied directly on the s(t) as defined by equation 2.4,moreover φx(t) =

2nπ where n is a natural number,the SNR is maximum and on average is given by

SNRaverage =
β2(A4T + 4A2AaT + AbT )

N0T
(A.7)

where Aa is the mean of the random variable A2
v and Ab the mean of the random variable

A4
v.When DC is perfectly removable Ab becomes 0.

As for the case of orthogonality this scenario corresponds with the hypothetical situa-
tion where the estimator is ideal.For the realistic scenario and considering only the Av is
estimated the SNR is given by

SNR =
β2l(t)l∗(t)

N0T
∫ T
0

(A2x2(t) + 2AAvαx(t))(A2x2(t) + 2AAvαx(t))∗dt
(A.8)

where l(t) = (A4Tαq + 4A2α2A2
vαlT +

∫ T
0

(2A3Avx
2(t)x∗(t)a∗l + 2A3Av(x

2(t))∗x(t)a∗q)dt) and
α depends on the estimator of Av.
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