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Abstract—Face recognition systems are used in a variety of
applications such as automated border control. Recently, it
was demonstrated that such systems are highly vulnerable to
presentation attacks using a morphed image based on two bona
fide images. This has as consequence that illegitimate sharing of
biometric passports has been made possible. For proper border
security, and many other applications, it is therefore necessary
to find a successful morphing attack detection system which can
classify between bona fide images and morphed images. Some
progress has been made already in several studies. However, a
proper morphing attack detection system which performs well
across different databases of images and morphing pipelines
has not been found yet. In this research, the effect of face
morphing on local stretches and compressions of frequencies is
investigated. The focus of this research is to investigate whether
Affine transformations have a traceable effect on the frequency
domain. This was done in two steps. Firstly, a homogeneous
and a white noise image was used in the morphing pipeline
to inspect distortions made by Affine transformations. A 2-
D continuous wavelet transform was applied to both images.
Secondly, 1-D continuous wavelet transformations have been used
on skin textures to find out whether there is a substantial shift in
scales (frequencies) due to the different Affine transformations.
Experimental results show a remarkable pattern appearing in
the homogeneous, white noise and morphed image. However, it
is found that the 1-D continuous wavelet transforms used in
this research are not able to differentiate bona fide images and
morphed images.

I. INTRODUCTION

Face morphing is the act of seamlessly transforming an
image of a face into another face. Two (bona fide) images
can be used to construct a new face which contains the
features of both contributors, see figure 1. Morphed images
form a threat to automated face recognition systems, which
have a wide range of applications including Automatic Border
Control (ABC) systems. ABC systems compare a live image
of a person’s face with a supplied face image in an electronic
Machine Readable Travel Document (eMRTD). Morphed im-
ages could set an ABC on the wrong foot, as shown by Ferrara
et al. in [2]. More than one person can namely be identified
with a single morphed image. Furthermore, Robertson et al.
showed in [11] a poor performance of human inspectors with
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distinguishing between morphed and bona fide images. This is
problematic because morphed images can be used for passport
or ID card requests unnoticed. This poses a threat for border
security. Ferrara et al. explain this with a nice anecdote [2].
Imagine being a criminal wanting to flee the country, the only
thing you would need is an accomplice for creating a morphed
image based on the criminal’s and accomplice’s faces. The
accomplice can now request eMRTD using the morphed image
and hand it over to the criminal. The ABC compares a live
image from the criminal to the eMRTD and concludes that the
eMRTD belongs to the criminal. The criminal can now pass
through the ABC to another country with a fake identity.
To combat this problem several morphing attack detection
(MAD) algorithms have been investigated already. MAD
algorithms can be roughly divided into two groups: with
a live image reference (D-MAD) or without (S-MAD). So
far, a robust algorithm which performs well across different
databases and morphing pipelines has not been found yet.

Fig. 1. Two bona fide faces can be used to create a morped image (right).

This paper focuses specifically on detecting a successful
morphing strategy which makes use of Delaunay triangulation
and Affine warping, see section III-A. Due to the alterations
in the image created by this morphing strategy, it is expected
that local frequencies within such Affine warped area of
neighbouring Delaunays triangle experience a different mea-
sure of compression or stretching which should be detectable.
Those sudden stretches and compressions should only be
present in morphed images. This research investigates whether
transformed white noise images, on which the exact same
morphing strategy is performed, can be used for characterizing
the frequency domain of morphed images. White noise images
initially contain no information in the frequency spectrum
which makes it a good reference. Next, a simple homogeneous



pattern will be used for illustrating the effect of Affine
transformations and possible interference patterns resulting of
it. The frequency domain will be investigated with a 2-D
continuous wavelet transformation. Furthermore, this research
explores whether the frequency contents of skin textures near
the border of different Affine warped areas in a morphed image
have a more sudden change when compared to a morphed
image. The following sections in this paper will describe
related works (section II) and some theoretical background
knowledge (section III); after which the method (section IV),
results (section V), discussion (section VI) and conclusion
(section VII) will be explored.

II. RELATED WORK

Before moving on to the background theory for this paper,
a short summary is given of previously done work to put
this research into perspective. An early study for S-MAD [9]
investigates the textures in morphed images. The algorithm
uses Binarized Statistical Image Features (BSIF) and a linear
support vector machine to classify the images. This resulted in
a False Acceptance Rate (FAR) of 3.46% and a False Reject
Rate (FRR) of 0%. FAR and FRR describe the percentage of
the morphed images falsely accepted and bona fide images
falsely rejected respectively. It is demonstrated in [12] that
printing and then scanning a morphed image reduces the
performance of the MAD of [9] significantly. To prevent this
problem of printing and scanning, two deep convolutional
neural networks were trained using transfer learning with both
genuine images and morphed printed images. This algorithm
works better than the morphing detection in [9] for printed and
scanned images. Research that uses the 2-D discrete Fourier
transform (DFT) have also been performed. Neubert et al.
used in [7] a 2D-DFT for classifying between morphed and
bona fide images. In their research, the frequency domain was
divided in 25 windows of which the average magnitude was
taken for their classifier. This resulted in an accuracy of 75.2
% for classifying between morphed and bona fide images.For
D-MAD, some significant progression has been made in [3].
Their algorithm is able to ’demorph’ the morphed image, by
subtracting the live image from the subject from the image
and the resulting image is compared to the subject. If the face
is not similar, there is a low similarity score and the image
is classified as a morph. This method requires an assumption
for the value of the so called alpha blending factor which
is used to blend the images of two contributors. None of the
studies so far have resulted in a robust algorithm for morphing
detection. The main focus of this research is demonstrating if
the Affine transformations cause a measurable difference in
the frequency domain for classifying between morphed and
bona fide images.

III. GENERATION OF MORPHED IMAGES AND TRACING
ARTEFACTS

To understand how frequencies are stretched out or com-
pressed, it is helpful to grasp the fundamentals of the face
morphing technique which are used in this research. In this

section, the morphing pipeline will be discussed first. Next,
we will have a glance at frequency alterations due to morphing
transformations and a related theorem is described. Lastly,
prior knowledge of frequency transformations will be dis-
cussed which will be used in this paper.

A. Morphing Pipeline

The initial step in face morphing is to detect facial
landmarks in both (aligned) bona fide faces, see figure 2. This
is realized using the Stasm library in Python. Next, average
coordinates are calculated for each facial landmark of the
morphed image using the corresponding coordinates of the
landmarks of the two contributors. Those points are used for
Delaunay triangulation, see figure 2. Subsequently, the facial
landmarks belonging to each triangle in the morphed image
are found in the contributing faces and the contributing faces
are triangulated based on those points. In order to create a
high quality morph, splicing is used. Splicing only transforms
certain areas of the face, leaving out areas such as your
hair which cause clear ghost artifacts in the morphed image.
Through the use of Affine transformations each triangle
of both contributors is being mapped to its corresponding
triangle in the morphed image, see image 2. Alpha blending
is then used to blend the textures of both contributors. Finally,
the image is post processed such that the colours of the two
contributors are mixed seamlessly.

Fig. 2. Left two images show aligned bona fide faces with dots representing
certain landmarks. Right pictures shows Delaunay triangulation based on the
average coordinates of those points.

B. Affine Theorem

Now you might wonder how this morphing strategy could
leave behind local compressions and stretches of frequencies,
and the answer lies in the previously discussed Affine trans-
formation. Affine transformations are transformations which
preserve parallel lines and it can be described by equation 1
[1]. They map the location of pixels from one space to a new
space.

y = Ax + b (1)

Here the vector y contains the transformed coordinate values
of a pixel from the contributing face; x being the value of
the coordinates of the same pixel in the original face; A
being a transformation matrix and b a translation vector. The



Affine theorem offers a clear description of the effect of Affine
warping on the (Fourier) frequency domain by formula 2 [8].

g(Ax + b)
F−→ 1

|A|
∗ e2ib

TA−TuG(A−Tu) (2)

Here the right-hand side describes the Fourier transform
of the left-hand side. It is visible that frequency domain
is transformed with the transpose of the inverse of the
transformation matrix and scaled by the one over the
determinant of the matrix. This is directly related to the
scaling property of the Fourier transform. Furthermore, the
frequency domain gets modulated which is a result of the
shifting property of the Fourier Transform. You can imagine
that different triangles have different transformation matrices
corresponding to each triangle. Therefore, frequencies can
suddenly jump from amplitude, phase and orientation. This
effect would be more gradual in bona fide images but could
be sudden in face morphs. Note, however, that the face morph
has two contributors. Therefore, the frequency spectrum will
become a combination of compressed frequencies from one
contributor and stretched frequencies from the other. Besides,
an image is not a continuous signal which can cause a small
discrepancy in the expected frequency domain, for example,
due to interpolations when the pixel’s transformed coordinate
falls on the border of two pixels.

C. DFT and Wavelet Transform
The frequency content of a signal can be described using the

discrete Fourier transform (DFT) and the wavelet transform.
For this paper some previous knowledge about those topics is
required. Images consist of pixels and are discrete by nature.
A discrete Fourier transform can be used for transforming an
original finite signal into its complex (normalized) frequency
representation. In this paper the energy of signals will be
investigated. Equation 3 describes the relation between the
energy of the signal x[n] in the spatial domain and frequency
domain. The right-hand side describes the frequency domain
representation of the (total) energy of a signal.

N−1∑
n=0

|x[n]|2 =
1

N

N−1∑
k=0

|X[k]|2 (3)

The wavelet transform can also be used for representing
frequencies in a signal. The main difference between
the DFT and the wavelet transformation is that the
wavelet transformation is a function of both space and
frequency, bounded by Heisenberg’s uncertainty principle.
The continuous wavelet transform used in this research is
described by equation 4 [10] and one can see in figure
3 a shift in frequency of a transformed periodic function.
The wavelet is part of the so called Morlet family. Such
representation of the absolute value of the wavelet coefficients
in terms of scale and position is called a scalogram.

CWT (τ, s) = Ψ(τ, s) =
1√
|s|

∫
x(t)ψ∗

(
t− τ
s

)
dt (4)

ψ(t) =
1√
Πfb

e2iπfcte
t2

fb (5)

Note that the variable ’s’ can be related to the frequency of
the signal. High values of s correspond to low (normalized)
frequencies. Equation 5 [6] describes the wavelet function
of the so called complex Morlet wavelet. Another major

Fig. 3. Wavelet transform of cosine. Function changes from frequency at
position 100.

difference is that the continuous wavelet transform is localized
in space by a Gaussian window. This has as effect that different
frequencies are analyzed with different time resolutions. Al-
though the equations given seem to suggest that the continuous
wavelet transform is a continuous function, this is not true.
The continuous wavelet transform can be implemented as a
convolution using discrete samples. The name continuous is
used to differentiate between the discrete wavelet transform
which has different properties concerning the scale factors for
example.

IV. METHOD

A. Database Face Images

The database for the face images used in the experiments
were acquired from the PUT database [4]. In this database,
around 100 different people were gathered and of each person
100 images of the face in different postures were taken. The
database intends to create reliable data for evaluating the
performance of face recognition systems. The quality of the
images retrieved from the database have a relatively high
resolution of 1511x1943 pixels which is of higher quality
than numerous other databases [4]. High quality is needed for
inspecting local changes in frequency content. For example,
pores, which introduce high frequencies in an image, can
become more or less visible depending on the quality of the
image. All bona fide images of faces in this paper were derived
from this database. All the images were converted first to
grayscale before further experimenting was done.

B. Morphing noise images and homogeneous patterns

1) White Noise and homogeneous pattern: To experiment
what the effect is of the morphing pipeline on the frequency
content of the morphed image, two patterns will be morphed.



Firstly, a white noise pattern will be used. Secondly, an
homogeneous pattern will be used to investigate possible
interference patterns in the spatial domain which might be
traceable in the frequency domain. This pattern will consist
of black and white pixels alternating repetitively. Morphing
such patterns can be implemented fairly easily. A normal
morphing process is performed on two bona fide images.
However, this time pieces of a bona fide face will not be
Affine warped to its corresponding Delaunay triangle, but
the noise pattern will be used. The transformed patterns
can now be compared to a morphed image and a bona fide
image using a frequency representation. In figure 4, the image
of the white noise and the homogeneous pattern can be found.

Fig. 4. Images of pattern and noise used in experiment.

2) 2-D Continuous Wavelet Transform: Next to the one
dimensional wavelet transform, it is possible to perform a 2-
D continuous wavelet transform as well. In this experiment a
2-D continuous Morlet wavelet will be used. An interesting
property of the transform is that it can detect singularities
within an image remarkably well. The local maxima of the
wavelet transform correspond to those singularities which are
in turn created by edges [5]. Because the images consist of
different Delaunay triangles, it is expected that this transform
could make transitions between the different areas visible. The
resulting image in the results will show the absolute value of
the wavelet coefficients at a particular scale, center frequency
and bandwidth frequency which will have been optimized
experimentally. The Morlet wavelet itself is also defined in
the frequency domain and the transformation is also performed
in the (Fourier) frequency domain. Equation 6 [10] illustrates
the Fourier transform of this wavelet which is used for this
experiment.

ψ̂ (ωx, ωy) = e
−σ2

(
(ωx−ω0)

2+
(εωy)2

2

)
(6)

The parameters will be optimized experimentally.

C. 1-D continuous wavelet transform

In this section the method for the experiment with the
1-D continuous wavelet transform will be discussed. This
transform was chosen because it is able to illustrate local

frequencies as opposed to the regular DFT which gives a
frequency representation of the signal in its entirety. A sudden
change in the frequency domain is expected because differ-
ent stretched and compressed images are warped to a new
Delaunay triangle which possibly introduces new frequencies
depending on the triangle as discussed in III-B.

1) Skin texture: For the experiment with the 1-D wavelet
transformation, it is necessary to find a proper position in the
face for extracting skin textures. The decision was made to
use the cheek, because this area is less prone to shadows as
compared to the side of the face. Furthermore, the cheek con-
tains relatively less hair which can have considerable influence
on the frequency spectrum. Lastly, the Delaunay triangles in
the morphed image are big enough here for investigating the
effect of two specific Affine transformations located next to
each other without any (possible) interferences related to the
warps of other triangles. Two skin textures are extracted for
both bona fide and morphed images. In total 200 samples
will be taken over a length of 200. Those skin textures are
extracted from the cheek parallel to the border of two Affine
warped areas, both laying in different Affine warped regions,
see figure 5.

Fig. 5. Skin textures were extracted parallel to the borders of Affine warped
areas (green lines).

2) Interpolation: In order to extract proper data from the
skin texture along a certain line, it is necessary to use interpo-
lations. Pixels are namely discrete and when the skin textures
are extracted from the face, it might be possible that the
location you want to extract falls exactly on the corner of four
pixels. There are various interpolation methods such as nearest
neighbor, bilinear and bicubic. The latter was chosen for
this experiment. It is expected that this strategy returns more
accurate extracted samples as compared to nearest neighbor.

3) Scales, Center Frequency and Bandwidth Frequency: As
explained in section III-C, the continuous wavelet transform is
a function of three adjustable variables: scale, center frequency
and bandwidth frequency. In order to investigate the energy
shift in the scalogram, a proper choice needs be made first
for those parameters. The center frequency will be set to



0.5. Next, a choice for the scales can be made. Because
the affine theorem suggests that all frequencies are changed
with a similar amplitude and frequency, it is expected that
all frequencies will undergo a change. In this experiment a
set of frequencies with scales between 1 and 64 are chosen.
The frequency bandwidth should be wide enough to capture
interesting local spectra, without capturing any noise. It is not
yet known which bandwidth will be most successful. In this
experiment 3 frequency bandwidths are tried out: 5, 10 and
20.

4) Energy Differences: The scalogram has dimensions of
64x200, which is related to the amount of scales used and
the length of the signal. The scalogram is divided up into
windows of 8 by 25 coefficients, creating in total 64 windows.
From those windows the average energy of the coefficients are
calculated. Finally, the difference in energy for is calculated
by comparing the corresponding windows of energy of the
extracted skin features.

V. RESULTS

A. White noise and homogeneous pattern

Firstly, the result of the morphing process on image 4b will
be investigated. In figure 6, the results of the morphing process
is illustrated when image 4b is used, instead of two bona fide
images.

There is a very remarkable interference pattern visible for
the highly oscillating pattern. Furthermore, it can be seen that
the structure of those patterns resemble (Delaunay) triangles. It
must be investigated whether those Delaunay triangle patterns
are also traceable in the white noise image and morphed
images. Therefore, the result of the morphing pipeline on
the white noise pattern will be presented now. In figure 7
the effect of the morphing pipeline on the image is visible.
It is hard to see any significant changes in the white noise
image. If you look closely to figure 7, you can see that a
part of the image has become of darker color. When the
contrast with the background is increased and this image is
darkened, this area is well visible (see figure 7, right). The

Fig. 6. Morphed homogeneous pattern.

area is surrounded with blue lines for clarification. When we
now perform a continuous 2-D wavelet transformation on the
same noise pattern, a pattern appears which which resembles
the Delaunay triangulation of the face. The chosen parameters
for the wavelet are: σ = 0.5, ω0 = 6 and ε = 1. It has
been found that the 2-D Morlet wavelet with a scale of 1 was
most effective in finding traces of the morphing pipeline. In
figure 8, two images are visible. On the left the 2-D continuous
wavelet transform performed on a morphed image can be
found, and on the right the transform of the white noise can
be found. A similar structure of white lines can be found in
both images when observed carefully. The morphing pipeline
therefore leaves behind remarkable traces in both the white
noise and the morphed image. However, a clear pattern is
lacking in the skin content of the morphed image.

Fig. 7. The result of performing the morphing operations on white noise.

Fig. 8. Wavelet transformed noise on the right and wavelet transformed
morphed image on the left.

B. 1-D continuous wavelet

In this section the results of the 1-D continuous wavelet
transform will be discussed. In table I, one can see the
energy differences between a morphed image and the bona
fide image. Note how the energy is not represented with
any physical unit. In the table the energy differences for
each frequency bandwidth fb is given. Although this table
is only a representation of one image, it is found that other



TABLE I
ENERGY DIFFERENCES MORPHED AND BONA FIDE IMAGE.

images behaved in a similar manner. Changing the frequency
bandwidth does not help amplifying energy differences in a
morphed image as compared to a bona fide image. Futhermore,
it can be noted that sometimes the energy difference between
the skin contents of a morphed image is even lower than that
of the a bona fide image.

VI. DISCUSSION

To start off, the results of the 2-D continuous wavelet
transform will be discussed. Affine warping two images had
a more radical effect on the spatial domain than expected,
see figure 6. Especially those features became visible in
the spatial and frequency domain representations. Although
some patterns, which resemble the Delaunay triangulations,
were found after performing the 2-D continuous wavelet
transform, the expectations were that also in the skin content
those structures would have become visible, however, this is
not the case; neither in morphed or morphed noise images.
The patterns might be masked by various other processes
which are solely performed on this part of the face in the
morphing pipeline. When the 1-D wavelet transformations
were taken along a border of an Affine warped area, the
results did not show sudden shifts in frequency and amplitude
as it was expected. Changing the bandwidth frequency did
not cause a (structural) increment or decrement of energy
difference as compared between the morphed image and the
bona fide image. Furthermore, for future experiments another
optimization should be made. Increments in low scales (such
as from scale = 1 to scale = 2) is related to halving the
frequency, however, an increment of a much higher scale
is related to a much lower shift in frequency. To see the
frequency being halved for example, it would be wise to use
scales related to an exponential with a basis of two. Like
this it is expected the scales will represent expected shifts in
frequencies more effectively. Another alternative could be to
use a different frequency representation such as the short-time
Fourier transform.

VII. CONCLUSION

Face morphing, the act of seamlessly transforming two faces
into a new face, has posed a big threat for facial recognition
systems. A proper algorithm for classifying bona fide and
morphed images with a high accuracy has not been found
yet. In this paper a morphing strategy was discussed which

uses Delaunay triangulation and Affine warping. This mor-
phing method created a remarkable interference pattern in the
spatial domain. It was found that those patterns were traceable
using a 2-D continuous wavelet transform. However, further
experiments need to be performed to investigate whether
those traces can also be found using a different morphing
pipeline and databases of faces. Furthermore, processes like
printing and scanning the image can possibly erase those traces
significantly. The experiments were unsuccessful in proving
the expectation that the frequency content would change
from frequency and amplitude significantly near the border
of two Affine warped areas. Future research could perform
different types of frequency transformations such as the Short
Time Fourier Transform for investigating local stretches and
compressions of frequencies.
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