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Abstract

Multi-party computation (MPC) is a cryptographic tool that enables a number of parties to perform com-

putations with their inputs while keeping their inputs private and ensuring correctness of the outcome.

For many years, these MPC protocols were not yet efficient enough for all relevant scenarios. However, a

large line of research and the increasing power of modern computers made the use of these protocols in

practice feasible. Traditionally, two types of adversaries have been distinguished: passive adversaries who
follow the protocol honestly and active adversarieswho can arbitrarily deviate from the protocol. In general,

passively secure protocols are fast but not very secure while actively secure protocols are very secure, but

typically slow. As a compromise between these two notions, Aumann and Lindell [AL07] presented the no-

tion of covert adversaries in 2007. Covert adversaries cheat like an active adversary but only get caught with
a certain probability, called the deterrence rate. �e idea is that this chance of being caught should be enough

to deter most cheaters in practice. Later in 2012, the additional notion of public verifiabilitywas introduced
by Asharov and Orlandi [AO12]. In this model, an extra mechanism is added that allows the parties to gen-

erate a certificate that proofs the cheating to anyone, including third parties. �is notion should discourage

cheating even further. As the interest in usingMPC for actual use-cases increased, another line of research

to arise is that of MPC compilers, which provide a generic blueprint to transform a protocol with passive

security into a protocol with stronger security.

In this work, we investigate the mechanisms for buildingMPC protocols and compilers with various secu-

rity levels. After that, we present a new design for transforming protocols with passive security into pro-

tocols with covert security and public verifiability. Our compiler is based on a construction called Publicly
verifiable secret sharing. �is compiler treats the passively secure protocol in a black-boxmanner, meaning it
will be applicable to any current or future protocol. Furthermore, our compiler works efficiently for MPC

protocols with an arbitrary number of parties. �e only known works that also achieve these properties

have been presented in 2021 by Faust et al. [Fau+21] and concurrently by Scholl et al. [SSS21].

Compared to the works presented in [Fau+21; SSS21], our design is able to obtain the same (optimal) de-

terrence rates with much simpler building blocks by assuming the existence of an honest majority. With

this assumption, we reduce the complexity of the compiler by multiple orders of magnitude compared to

[Fau+21]. Furthermore, we present a proof-of-concept implementation of our design in the MPyC frame-

work [Sch18]. To thebest of ourknowledge, this is thefirst timesucha compilerhasbeenapplied inpractice.

By benchmarking this implementation, we further demonstrate the power of covert security. Compared to

an actively secure implementation of the framework, our implementation reduces the overhead over a pas-

sively secure version by a factor 3 up to a factor 10 depending on the number of parties and the chosen

deterrence rate.
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Chapter 1

Introduction

1.1 Multi-Party Computation

Suppose multiple parties hold sensitive data they want to combine to extract a shared result. For example,

multiple banks who together want to combat fraud more effectively by combining their respective trans-

action data. Due to regulations, they cannot simply share the data of their customers with each other but

need to keep this sensitive customer information confidential. Hypothetically, this could be solved with

an incorruptible, trusted third party where everyone sends their confidential inputs to. �e trusted third

party computes the desired functionality and gives everyone their outputs, which are guaranteed to be

correct. However, in the real world such a trusted third party might be very costly or even impossible to

find. Secure Multiparty Computation (MPC) is a cryptographic solution for this problem.

In MPC, two or more parties want to compute a joint function on their private inputs while revealing

nothing but the output of the function. �is means that privacy of the inputs as well as correctness of the

output need to be guaranteed, even in the presence of an attacker or adversary. Essentially, MPC is an
umbrella term for a set of techniques which ‘emulate’ the aforementioned trusted third party by means of

a protocol the parties execute among themselves.

�e idea of MPC has been around since the late 80s when Yao published his, now famous, Millionaires’
problem [Yao82]. However for a long period, these protocols remained mainly of theoretical interest due

to their complexity and impracticality. As a result of the increasing attention to the design of practical

protocols and the increasing computational power of modern machines, practical implementations of

MPC have started to see the light. Examples of use-cases which have been solved with MPC include

auctions, anti money laundering, combining healthcare data andmanymore.

1.2 SecurityModels

To reason about the security of these protocols, the capabilities of possible adversaries need to be estab-

lished. Traditionally, a distinction has been made between passive adversaries and active adversaries. A
passive adversary is curious what he can find out about the other users, potentially compromising the

privacy but does follow the protocol honestly. On the other hand, active adversaries try to compromise the

privacy as well as the corectness of the outcome of the protocol by arbitrarily deviating from the protocol

1



2 CHAPTER 1. INTRODUCTION

or even stop sending messages altogether. While safeguarding against active adversaries provides a very

strong degree of security, this comes at a significant cost in terms of complexity of the MPC protocol. On

the other hand, passively secure protocols give rise to efficient protocols but haveweak security guarantees.

As the focus in recent years shifted from theoretical feasibility of MPC protocols towards actual practical

implementations, there came a desire for more practical adversary models. In 2007, Aumann and Lindell

[AL07] proposed a new adversary model called a covert adversary.

�e idea for this type of adversary is to compromise some security compared to active security for more

efficiency. Instead of guaranteeing the detection of an active attack, now it suffices to catch this cheating

behaviour only with a certain probability, called the deterrence rate. �is is thought of to be a more natural

security notion as the chance of being caught cheating and the additional loss of reputation are often

enough to dissuade a possible cheater. �is definition of security did result in more practical protocols,

where the trade-off between security and complexity can often be tweaked bymeans of a parameter which

determines the probability of catching the adversary.

In 2012, Asharov andOrlandi [AO12] observed that despite this natural notion, slightly stronger guarantees

were actually needed in practice. Consider for example a large bank that performs MPC with its clients. If

one client catches the bank cheating, the bank will lose its reputation with this client but if there is no way

for the client to proof to other parties that cheating has happened, the reputation damage is minimised

to only this client. As a solution to this, they introduced the extended notion of covert security with public
verifiability. In this security model, the parties are equipped with an additional mechanism to produce a

certificate which undeniably proves that another party has attempted to cheat in the protocol execution.
�is is a much stronger security guarantee in comparison to the plain covert security model.

Even though this notion looks promising for a wider use of MPC in practice, relatively little research has

been done in this area. �e only concrete protocols in this security model have been presented in [AO12;

KM15; Hon+19].

1.3 Compilers

In the search for practical MPC protocols, another line of interest was the wish for general approaches for
realising secure protocols. �ese approaches aim to provide a generic way to obtain efficient, strongly

secure protocols.

�is is where so-called compilers come in. �ese provide a generic approach or blueprint to transform

protocols with passive security into protocols with stronger security guarantees. For example, a compiler

might take a passively secure protocol as input and output an actively secure protocol that calculates the

same function. Compilers are useful because if in the future a new highly efficient approach for, e.g.,

evaluating neural networkswere to be found in the passive securitymodel, it can automatically be compiled

to obtain a covertly or even actively secure version. Furthermore, these compilers allow programmers with

less expertise to implement MPC for their problems without needing to know all the non-trivial details of

designing strongly secure protocols.

In this work, the techniques to obtain these generic transformations will be investigated. In particular the
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player virtualisation paradigm, which has proven to be effective and applicable to a wide range of concrete
protocols. �is paradigm was introduced by Hirt and Maurer in 2000 [HM00] and includes various

strategies based on simulating a number of virtual parties who will then execute the actual protocol on
behalf of the real parties. �e behaviour of these virtual parties is then verified resulting in various security

guarantees including covert security, the extended notion of public veriability as well as active security.

�e first compilers using this paradigmwere presented by Ishai, Prabhakaran and Sahai in the form of the

IPS Compiler [LPS08; IPS08] and later improved in [LOP11]. �ese compilers transform passively secure

protocols into protocols with active security. In recent years, such compilers for actively secureMPC based

on this paradigm were introduced in [DOS18; Eer+20] which was optimised to be used in the three-party

case and [Abs+21] for an arbitrary number of parties.

For compilers with covert security and public verifiability, little is known. �e first compiler for this was

introduced in 2020 in [DOS20] in the two-party setting. Here a construction is presented which makes no

assumptions of the passively secure protocol, meaning it can be applied to any passively secure protocol.

Furthermore, this work presented ideas on how to efficiently instantiate these compilers in practice.

However, the obtained deterrence rates are fairly low, especially if this were to be extended to multi-party

protocols. �is is due to the fact that each party picks their watchlist individually, likely reducing the size

of the set of executions that can be checked.

In 2021, improvements for arbitrarymulti-party protocols were presented in [Fau+21; SSS21] by construct-

ing a shared set of executions that all the parties check. With an overhead of roughly 2 times the passively

secure protocol, they already obtain a deterrence rate of
1
2 , with an overhead of 3, they reach a deterrence

rate of
2
3 , etc. While these are very promising results, some hard assumptions on the network latency in

which theseprotocols runaremadewhichmake these constructions complex andhard to realise inpractice.

In this work we will use these works and design a new construction for compilers for covert security with

public verifiability in themulti-party setting. Compared to the watchlist approach in [DOS20], we obtain a

muchmore efficient approach to reach higher deterrence rates for a larger number of parties. compared to

theworks of [Fau+21; SSS21], we reach the same optimal deterrence rates with less complex building blocks

with the assumption of an honest majority.

1.4 Contributions

�e goal of this thesis is to shrink the gap between the usability and performance of concrete MPC

protocols and compilers. To this end, we aim to provide insight and present improvements in the design

and implementation of MPC protocols and MPC compilers. Our first contribution is therefore a survey

of the existing literature regarding the choices on security levels, guarantees and other assumptions.

Furthermore, we survey the influence of these choices on the design and implementation of concrete MPC

protocols andwe survey the existingworkon thedesignofMPCcompilerswith various security guarantees.

Our second and main contribution is a new design for two compilers for transforming passively secure

protocols into protocols with covert security and public verifiability. �ese compilers treat the passively

secure protocol in a black-box manner, meaning they will work for any current or future protocol. Our
first compiler can be applied to input-independent protocols while the second compiler also works for
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protocols that do receive private inputs. �ese compilers build on the ideas introduced in [DOS20; Fau+21;

SSS21]. Compared to [DOS20], our compilers yieldmuch higher deterrence rates in themulti-party setting

with less overhead. Compared to [Fau+21; SSS21], our compilers reach the same deterrence rates but by

assuming an honest majority, we can use simpler building-blocks. �ese two works base their security on

a construction which encrypts something in a way that costs an (approximately) fixed amount of time to

unlock. �is time is picked such that it is just long enough such that an adversary can not unlock it within a
number of communication rounds but short enough to not introduce too much overhead when the honest

parties or outsiders have to unlock it. Since the honest parties always have to solve the time-lock puzzle if

a cheating attempt takes place, this time is set as low as possible. �is predicamentmakes it hard to realise

in practice where predefined communication rounds are very hard to realise and the asynchronous nature

of the networks on which these protocols run make it hard to be secure in practice. Furthermore, for

opening the passively secure executions, they require general-purpose MPC protocols with active security

to implement an ideal functionality, which is unrealistic in a setting where we want to use a compiler to

increase the security of a passively secure protocol.

Our approach only requires a small actively secure building block for a shared coin-toss and in general

introduces a simpler construction for such compilers. With the assumption that themajority of the parties

are honest, we reach the same deterrence rates as the aforementioned time-lock constructions with a less

complex and much more practical approach. As we will show in this work, this is a natural assumption

which has lead to some of the most promisingMPC protocols.

To show this even further, our final contribution is a proof-of-concept implementation in which we apply

parts of our compiler to a real-world MPC framework called MPyC [Sch18] which currently only supports

passive security. We show how this design could work for arbitrary MPC protocols and how it is imple-

mented forMPyC.�is should be a good stepping stone for implementing the rest of our compiler toMPyC

as well to obtain a covertly secure version of MPyCwith public verifiability. We also benchmark this imple-

mentation and compare it to implementations with passive and active security.

1.5 �esis Outline

In Chapter 2, the basic primitives used throughout this workwill be introduced aswell as the securitymod-

els relevant for this research. In Chapter 3, an overview of the existing concreteMPCprotocols will be given

and compared to show the considerations regarding efficiency and security that can bemadewhen design-

ing concrete MPC protocols. In Chapter 4, the concepts of MPC compilers and player virtualisation will

be explained. Next, in Chapter 5, our new design for compilers to transform passively security protocols

into protocols with covert security and public verifiability will be demonstrated. In Chapter 6, the proof-

of-concept implementation in MPyC will be elaborated. In Chapter 7, we will analyse both the complexity

of our compiler fromChapter 5 as well as the practical performance of our implementation. Finally, wewill

summarise our conclusions and discuss this research in Chapter 8. Here, we also provide pointers towards

future work.



Chapter 2

Background

In this chapter, we will look at the preliminary knowledge needed to for the rest of this work. First, in

Section 2.1 will explain the cryptograhic primitives on which we will build our protocols. In Section 2.2,

the fundamental techniques and concepts of multi-party computation will be explained. Finally in Section

2.3, the various adversarial models as well as other choices regarding the security of MPC protocols will be

defined.

2.1 Cryptographic Primitives

2.1.1 Commitment Schemes

Commitment schemesare someof themostwell-knownbuildingblocks for a lot of cryptographicprotocols,

including multi-party computation. A commitment scheme allows a party to commit to a message while
keeping it hidden from other parties. Later, for example after executing a protocol, the scheme allows the

party to reveal or open the message. Furthermore, such a scheme allows another party to verify that the
message is indeed the message originally constructed by the party. A commitment schemeΠCOM consists

of three functions and can be defined as follows [Dam98; Sma16]:

Definition 2.1.1 (Commitment scheme). A commitment scheme consists of the following three algorithms:

• (c, d) ←− Com(m): �e commitment algorithm Com generates a commitment c and opening informa-
tion d on a givenmessagem.

• m or⊥ ←− Open(c, d): �e opening algorithm Open yields a message m from a commitment c and
opening information d or⊥ in case the opening information is invalid.

• {accept, reject} ←− Verify(pk, c,m): �e verification algorithm, Verify, algorithm accepts if c
is a valid commitment onmessagem given public key pk.

For a commitment scheme to be considered secure, it needs to be (computational/ information-theoretic)

binding and hiding. �e binding property means that an adversary can not change the message it has com-
mitted to later on. Formally, we can define the binding property as:

Definition 2.1.2 (Binding). A commitment scheme is computational/ information-theoretic binding if a
computationally bounded/ unbounded adversary can not create a commitment c for a messagem and find

5



6 CHAPTER 2. BACKGROUND

another messagem′(m′ , m) such that:

Com(m) = Com(m′)

�e hiding property ensures that given a commitment, an adversary is not able to determine what the un-

derlying message is. Formally, this can be defined as:

Definition 2.1.3 (Hiding). A commitment scheme is computational/ information-theoretic hiding if a
computationally bounded/ unbounded adversary, given two messages m1 andm2 and commitment c =
Com(md), is unable to guess d better than just random guessing.

2.1.2 Signature Schemes

Digital signature schemes are a form of asymmetric encryption to provide an additional layer of security to

messages communicated between parties. �e idea is that a sender S “signs" amessage using some private
key when he sends to a receiver R. R can verify this signature, which provides three things: authenticity,

integrity and non-repudiation. Authenticity ensures that R can validate the identity of S. By signing the
message with a some key that only S could possibly know,R knows that if it received a valid signature, this
message must indeed come from S. Integrity is obtained by knowing that if a message has been signed
by S, any change of the encrypted message after the signature invalidates the signature. �erefore, if the

signature is still valid upon arrival at R, R is convinced that the message is also the original message sent

by S. Finally, non-repudiation is obtained by the fact that only S knows its private key. �erefore, if a valid

signature was made with that private key, S must have sent the message and cannot claim otherwise. In

general, a signature scheme consists of three algorithms:

Definition 2.1.4 (Signature Scheme). A signature scheme consists of the following three algorithms:

• (sk, pk)←− Gen(): �e Generation algorithm Gen generates a public-private key pair.

• σ←− Sign
sk

(m): �e Signature algorithm Sign takes a messagem and returns a signature σ under a
secret key sk.

• {accept,⊥} ←− Verify
pk

(m, σ): �e verification algorithm Verify takes a message m and a sig-

nature σ and returns accept if σ is a valid signature on m given a public key pk. Otherwise, ⊥ is

returned.

Various security notions for these signature schemes can be found in literature. For this work, we will only

consider signature schemes that provide existential unforgeability against chosen message attacks. Existential
unforgeability states that it should be impossible for an adversary to construct (“forge") a valid message-
signature pair (m, σ) that has not been signed by a legitimate signer. Chosen message attackmeans that this
should even hold if the adversary can ask the signer for the signatures of an (unlimited) number of mes-

sages of his choice. Concretely, given a public key pk and a number of message-signatures pairs (m, σ)
signed using the corresponding private key sk, it should be hard for an adversary to construct a new, valid
message-signature pair (m′, σ′) that has nog been seen before, i.e., (m′, σ′) , (m, σ) for every pair (m, σ)
that was already retrieved from the signer.
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2.2 Multi-Party Computation

Secure multi-party computation (MPC) is a tool for several parties to compute a joint function of their inputs
without revealing the actual content of their inputs. �is way a trusted third party can be emulated that

might sometimes be hard or even impossible to find for real. Even though this line of research has been

of interest since the beginning of the 80’s, only recently these protocols have started to become practically

relevant due to more efficient designs as well as increased computation power.

�e first notion of secure multiparty computationwas made in 1982 by Yao [Yao82]. He illustrated the concept
of a 2-party setting in which two millionaires want to determine who of them is the richest without

revealing their actual wealth. More formally, they both have some private input (their wealth) x0 and x1 and

want to compare these by computing a function f (x1, x2) that returns 0 if x0 ≤ x1 and 1 if x0 > x1. After

the protocol execution, neither party should know anything other than their own input and the outcome

of the function. He proposed three specific solutions for Yao’s millionaires problem, as it is often referred
to nowadays. Four years later, he was also first to propose a 2-party MPC solution for arbitrary functions

[Yao86] in which computational security against passive adversaries is guaranteed.

Based on Yao’s 2-party construction, Goldreich, Micali and Wigderson proposed a general solution to the

n-party case in 1987 [GMW87]. �e GMW-protocol (or GMW-compiler) has been an important milestone

in MPC since it was the first protocol to be secure against active adversaries in the computational model.

Similar results were achieved almost simultaneously by Chaum, Damgård and Van de Graaf [CDG87], who

did not rely on Yao’s construction but solved the problem directly using zero-knowledge proofs.

�ese works from 1987 [GMW87; CDG87] served as the main inspiration for another milestone one year

later when Ben-Or, Goldwasser and Wigderson [BGW88] as well as Chaum, Crépeau and Damgård

[CCD88] presented the first unconditionally (or information-theoretic) secure, n-party, MPC protocols.

Since then, a lot of research has been done to make MPC protocols more secure, more efficient and more

suitable to be used in practice. When looking at actual implementations for MPC protocols, an important

design choice is the amount of parties the protocol supports. A distinction is made between two-party

computation andmulti-party computation. �e possibility of having an honestmajority in themulti-party

case proves to have a lot of benefits for obtaining stronger security notions. �e simplest model for this is a

three-party computation with at most one corruption.

Looking at the research done on MPC protocols, three fundamentally different approaches can be identi-

fied: Garbled Circuits, (Fully) Homomorphic Encryption and Secret Sharing.

2.2.1 Garbled Circuits

Garbled Circuits (GC) are the oldest form of MPC techniques, being the underlying idea for the previously

discussed protocols by Yao in the early 1980s and later formalised by Beaver, Micali and Rogaway in

[BMR90].

�e basic idea is the setting of two parties that together want to compute a function f (a, b)where one party
holds a and the other b. �is function f is then represented as a binary circuit consisting only of XOR and
AND gates.
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a b c

0 0 0

0 1 0

1 0 0

1 1 1

Table 2.1: Truth table of an AND-gate

Next, one of the parties gets the role of the generator while the other becomes the evaluator. �e generator

goes first and “encrypts" the binary circuit. Suppose the two partieswant to compute the function c = a∧b,
of which the truth table is depicted in table 2.1.

Now to encrypt (or garble) this gate, the generator assigns two keys to the two input wires and two keys to

the output wire, resulting in: kw,0 and kw,1 where w ∈ a, b, c. �ese correspond to either a 0 or a 1 on the

wire w. Now using a symmetric encryption scheme that takes two keys, encrypt the gate by forming the
four ciphertexts:

c0,0 = Enc((ka,0, kb,0), kc,0)
c0,1 = Enc((ka,0, kb,1), kc,0)
c1,0 = Enc((ka,1, kb,0), kc,0)
c1,1 = Enc((ka,1, kb,1), kc,1)

�ese ciphertexts correspond exactly to 4 rows in the truth table of the AND gate. Finally, the rows of the

truth table are permuted so that the evaluator does not know which ciphertext represents what wire.

Now, all the garbled gates aswell as thewire keys corresponding to their own input are sent to the evaluator.

�e goal of the evaluator is then to obtain the correct wire keys corresponding to its own input. To let the

evaluator obtain the correct wire keys for his input in a privacy-preserving way, the parties use a protocol

called Oblivious Transfer. �is allows the evaluator to obtain the correct wire keys without the generator

learning the input of the evaluator.

In the final step, the evaluator can now use these inputs obtain the outcome of the end gate. For arbitrary

circuits, this requires the evaluator to propagate these inputs through the circuit. For every gate, he

decrypts the four ciphertexts of which (with a very high probability) only one will give a valid decryption.

In the end, the evaluator will end up with the keys for the output wires that he sends to the generator, who

in turn knows the mapping back to the actual output and obtains the result of the function.

�is 2-party approach is similar to the protocol Yaodescribed in 1986 [Yao86] and canbe generalised tomore

than two parties. With certain optimisations that have been proposed this proves to be efficient enough for

a lownumber of parties. �emain advantage of theGC approach is the low round-complexity. Unlike other

approaches, this technique only requires 1 round of communication between the parties. However, this

approach generally scales poorly if we want to evaluate functions for a large number of parties due to the

large communication overhead associated to transferring the encrypted circuit.
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2.2.2 (Fully) Homomorphic Encrypion

Another, more recent technique for performing MPC is the use of homomorphic encryption schemes.

�ese are encryption schemes where the ciphertexts contain some mathematical structure that can be

exploited to perform calculations on the ciphertexts. �is in combination with threshold decryption

constitutes a fundamentally different technique for realising MPC functionality. �reshold decryption

essentially gives every party only a subset of the decryption key, and only by combining their shares they

can jointly decrypt a ciphertext.

Concretely, for a homomorphic encryption scheme there is a functionEnc to encrypt plaintextsmi and two

operators

⊕
and

⊗
which can be equal but do not have to be. Due to the mathematical structure of the

ciphertexts, the following identity now holds: Enc(m1
⊕

m2) = Enc(m1)
⊗

Enc(m2).

�e types of operators and relationships between these operators vary per encryption scheme. Adistinction

can bemade between partially homomorphic encryption and fully homomorphic encryption. In general, partially
homomorphic encryption schemes only support one type of operation such as addition or multiplication

where fully homomorphic encryption schemes allow for arbitrary operations and an arbitrary number

thereof.

�e arguably most famous partially homomorphic encryption schemes are the (textbook) RSA encryption

scheme [RSA78] and the Pailler encryption scheme [Pai99]. In the RSA encryption scheme, multiplying

two ciphertexts results in a multiplication of the underlying plaintexts while with Pailler, multiplying the

ciphertexts corresponds to an addition of the plaintexts.

Several works use partially homomorphic encryption to realise MPC protocols. With additively homo-

morphic ecnryption, Franklin and Haber [FH93; FH96] introduced a passively secure MPC protocol with

complexity O(nkC), where C is the size of the (boolean) circuit and k a security parameter. In the active
security setting, Cramer, Damgård and Nielsen also developed a protocol with the same complexity

[CDN01].

A more powerful class of encryption schemes are the fully homomorphic encryption schemes, which sup-

port anarbitrary amountof arbitraryoperationson the ciphertexts. �efirst encryption schemesupporting

this was introduced by Gentry in 2009 [Gen09]. While there are various works that have been succesful in

using homomorphic encryption for specific use-cases, the computational overhead of such schemes ren-

ders it impractical for many application scenarios.

2.2.3 Secret Sharing

�efinal technique for realising theMPC functionality is secret sharing. �egeneral concept of secret sharing

is to distribute a secret into a set of shares that can later be combined in a certain way to reconstruct the
original secret. Formally, a secret-sharing scheme can be defined as follows [CDN15]:

Definition 2.2.1 (Secret-sharing Scheme). A secret-sharing scheme among a group of parties P =
{P1, . . . ,Pn} consists of the following two protocols:

• Distribution: For a certain party Pi to share a secret s, it is distributed in such a way that each party
P j obtains a share s j, 1 ≤ j ≤ n.
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• Reconstruction A qualified group of participants can combine their individual shares si to success-

fully reconstruct the underlying secret s.

�roughout this work, we will merely consider threshold secret-sharing schemes. �ese are secret-sharing

schemes where any set of participants of size ≥ t is qualified to reconstruct the secret. �e number

of shares needed to correctly reconstruct the secret is called the threshold t. Such a scheme is called a
(n,t)-threshold scheme, where t is the threshold of number of shares needed to successfully reconstruct
the secret out of n secrets in total. A set of shares smaller than the threshold should perfectly hide the
underlying secret.

�e simplest threshold secret-sharing scheme is called additive secret sharing. In this scheme, a secret s is
some element from a finite group G. To secret-share s among n parties, choose n − 1 shares at random
fromG, s1, . . . , sn−1. �e final share sn will be picked such that s = s1 + s2 + · · · + sn. Note that sn does not

reveal any information of s due to the uniform random generation of s1, . . . , sn−1. Finally, to reconstruct

the secret s, all the shares need to be combined. Note that any strict subset of shares does not leak any
information on the secret x. Using additive secret-sharing in this way, we obtain an (n,n)-threshold scheme
since all the secrets are needed to be able to reconstruct the original secret.

2.2.3.1 Shamir’s Secret Sharing Scheme

Another widely used secret sharing scheme for MPC protocols is (variants of) Shamir secret sharing

[Sha79]. �is scheme is more flexible in the sense that an arbitrary reconstruction threshold t ≤ n can
be chosen. �is scheme is based on polynomial interpolation and the intuition that it takes t points to
uniquely define a polynomial of degree t− 1. For example, two points are needed to uniquely reconstruct a
line, three points a parabola and so on.

�is scheme works for a given threshold t ≤ n, the number of players. Let F be a finite field with at
least n + 1 elements. Now, to distribute a secret s ∈ F, choose t − 1 random elements from the field

α1, . . . , αt−1 ∈ F and construct the polynomial f (x) = a0 + a1x + a2x2 + · · · + at−1xt−1
where a0 is the

secret xwe want to share. To distribute the secret, every party receives an arbitrary non-zero point on this
polynomial. Since the degree of this polynomial is at most t − 1, the polynomial (and thus the secret) can
be uniquely reconstructed via Lagrange interpolation if t or more parties combine their shares. On the other
hand, any strict subset of the shares reveal no information on the polynomial nor the secret.

�e secret can then be obtained by simply evaluating the result of f (0) = α0 = s. �is makes the scheme

flexible in the sense that not all the shares need to be combined but only a minimum amount of the chosen

threshold t. �is way, the secret can be recovered even if a subset (size smaller than or equal to n − t) of the
parties do not cooperate.

2.2.3.2 Linear Secret-sharing Schemes

To construct anMPC protocol based on such a secret-sharing scheme, the linearity of this scheme is used.
A linear secret sharing scheme (LSSS) allows parties to compute a secret sharing of an arbitrary linear function
of the underlying secrets without interaction. To see how this linearity can be used to perform arbitrary

computations, let’s look at how this will work with Shamir’s secret sharing scheme.
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Let two secrets s and s′ be hidden by polynomials f (x) = a0 +a1x+a2x2 + · · ·+ak−1xk−1
and g(x) = a′0 +a′1x+

a′2x2 + · · ·+ a′k−1xk−1
and shared to the parties via s = (s1, s2, . . . , sn) and s′ = (s′1, s

′

2, . . . , s
′
n). Furthermore,

let [s] denote a secret sharing of s. Now, arbitrary operations such as addition and multiplication can be
performed as follows:

Addition Adding the two shares can simply be done by letting each party Pi add their shares of s and s′ to
obtain [s]+ [s′] = [s+ s′], which corresponds to s+ s′ = s0 + s′0 + s1 + s′1 + · · ·+ sn + s′n in the plaintexts. �e

reconstructed polynomialwill indeed be of the form f (x)+g(x) = a0+a′0+(a1+a′1)x+. . .+(ak−1+a′k−1)xk−1
,

which hides s + s′. Multiplication with a constant factor (scalar) can be performed in the same, trivial way.

Multiplication Multiplication of two secret-shared values is more complex and often does require com-
munication between the parties. Most of the computational complexity of secret-sharing based schemes

often lies in the number of multiplications that need to be performed. Shamir’s scheme does support

multiplications, making it a multiplicative LSSS. By multiplying two secrets analogous to how addition is

performed, a polynomial of the form f (x) ∗ g(x) is obtained. �is indeed hides the secret s ∗ s′ but has
degree 2t and thus requires 2t + 1 shares to be reconstructed.

To convert back to shares of a polynomial of degree t, after each party Pi computes their share of s ∗ s′ by
calculating xi = si ∗ s′i , they reshare this local result to the other parties. Using all these shares, they can
locally evaluate a linear function to get back to consistent shares on a polynomial sharing the secret s ∗ s′.
A concrete protocol for this approach can be found in Section 3.1.1.1.

2.2.3.3 Share-Compute-Reveal

In 2000, Cramer, Damgård and Maurer [CDM00] have shown that actually any LSSS can be used to per-
form multiplications in a similar fashion as explained for Shamir’s scheme and thus supports non-linear

operations. As a general blueprint for secret-sharing based MPC protocols, evaluating arbitrary functions

is split into three distinct steps:

1. Share: First, each party Pi distributes its private input xi
to all the parties in the protocol.

2. Compute:�en, eachpartyperformsanarbitrary set of operationson its ownshares. Here, aprotocol

can be symmetric, meaning the operations performed by all the parties are identical or asymmetric,
where the operations that are performed vary per party.

3. Reveal: After all the parties performed the required operations, the individual shares are recombined
to reveal the outcome to the correct parties.

Nowadays, most secret-sharing based MPC protocols make use of this so-called share-compute-reveal
paradigm. �e bottleneck of protocols following this blueprint mainly lies in the communication costs

associated with non-linear operations, since each party needs to send n − 1 field elements to the other
parties. �is largely determines the efficiency of MPC protocols based on secret-sharing. However, the

clear distinction between these three phases proves to be convenient for optimising the efficiency of such

MPC protocols.
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2.2.4 Publicly Verifiable Secret Sharing

�eadditive- and Shamir’s secret sharing scheme from the previous sectionworkwith the assumption that

the participants are honest,meaning they follow the protocol as they should. However, the privacy and cor-

rectness of these schemes break in case of a malicious participant. Such a participant may send incorrect

shares to someof theparties or lie about the shares it has received, causingqualified sets of parties to recon-

struct the wrong secret. To accommodate secret sharing with malicious participants the extended notion

of Verifiable Secret Sharing (VSS) was introduced in 1985 by Chor et al.[Cho+85]. A VSS can be constructed
from any secret sharing scheme with the additional properties that:

(i) �e parties can verify that they received consistent shares from an untrusted dealer during the dis-

tribution phase;

(ii) �e parties can verify that they received the correct shares from the other parties during the recon-

struction phase.

On top of that, Stadler [Sta96] introduced Publicly Verifiable Secret Sharing (PVSS). With publicly verifiable
secret sharing, not only the participants in the protocol can verify their shares but anyone can verify (i) and
(ii). Additionally, a non-interactive PVSS provide this property without the need to interact with the parties.
Examples of such schemes can be found in [Sch99; Jan+20].

In general, a PVSS scheme consists of three algorithms for distribution, verification and reconstruction:

Definition 2.2.2 (PVSS Scheme). A PVSS scheme with a set of players P consists of the following three
algorithms:

• (Ei(si)i∈P, proof)←− Distribute(s): �e distribution algorithm takes as input a secret s and gener-
ated and publishes a set of encrypted shares Ei(si)i∈P and some public proof which can be used for
verification later.

• true or⊥ ←− Verify(proof,Ei(si)): �e verification algorithm takes as input a proof and an en-

crypted shareEi(si) and outputs true ifEi(si) is a valid encryption on si according to proof. For ease
of notation, we will let Verify(proof,Ei(si)i∈A) denote the verification of all s′i swith i ∈ A. Now,
truemeans all the verifications succeeded while⊥means at least one verification failed.

• s′ ←− Reconstruct(proof,Ei(si)i∈A): �e reconstruction algorithm takes as input a proof, a set of

encrypted shares Ei(si)i∈A of some subset A ⊂ P and outputs the reconstructed value s′. Note that
s′ = s in caseA is a qualified subset and the verifications of the encrypted shares succeeded according

to the proof.

Here, it is assumed thatwe already have a registered public key of all the participants of someMPCprotocol

and additional system parameters have been generated beforehand. As can be seen, instead of generating

and distributing the secrets directly, a dealer now publishes encrypted shares E j(s j)with the known public
keys of P j, j ∈ P. �is means that if a party Pi wishes to share a secret s, he first generates the shares
s j, encrypts them with the corresponding public keys and publishes those along with a string proofi
which shows that each E j indeed encrypts the share s j. �is proof also commits the dealer to the value of

the secret s and guarantees that no one can wrongly claim to have received a wrong share since anyone

can verify this. �erefore, if the reconstruction succeeds, we are guaranteed that this is the original secret s.
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For the reconstruction phase, the parties first decrypt their shares s j from E j(s j). After that, they compute
a string proof j which shows that they performed the decryption correctly and publish s j and proof j.

Using these proofs for reconstructing the secret, the other parties can now exclude the shares of dishonest

participants or participants who failed the decryption step. If enough decryptions (t + 1) pass the
verification, the parties can reconstruct the original secret successfully.

For a PVSS scheme to be considered secure, we require the scheme to satisfy the correctness, soundness and
privacy properties.

Definition 2.2.3 (Correctness). If a dealer honestly follows the Distribute algorithm to publish the en-

crypted shares Ei(si)i∈P and a public proof proof, then the outcome Verify(proof,Ei(si)) is guaranteed
to be true. Furthermore, if during reconstruction a party Pi honestly decrypts Ei(si), publishes its share si
and honestly generates the proof proofi, then another party receiving the decrypted share si and proofi
accepts this share. Finally, a qualified subsetA ⊆ P is guaranteed to reocnstruct the original secret s if the
dealer and the parties inA honestly follow the Distribute and Reconstruct protocols.

Definition 2.2.4 (Soundness). If Verify(proof,Ei(si)) == true, then for every qualified subsets

A1,A2 ⊂ P, the following holds:

Reconstruct(proof,Ei(si)i∈A1) == Reconstruct(proof,Ei(si)i∈A2)

.

Furthermore, if amalicious party submits a fake share during reconstruction, verification of this share fails

with an overwhelming probability.

Definition 2.2.5 (Privacy). An adversary corrupting a set of participants C such that |C| < t should not be
able to learn anything about the secret s from the shares si with i ∈ C.

2.2.5 Efficiency

Naturally, performing calculations on data in a privacy-preserving way comes at a cost. �ere are three

main properties that influence the efficiency of anMPC protocol:

1. �e round complexity that specifies the number of communication rounds needed to evaluate the func-
tion.

2. �e communication complexity, which is defined as the number of bits that are communicated between
the parties.

3. �e computational complexitywhich is the number of additions andmultiplications that are performed
by all the parties.

Unfortunately, there is no clear-cut solution that performs best in all of these aspects. Some approaches are

naturally very efficient in terms of communication rounds but are very computation- and communication

intensive such as garbled circuits while others require more rounds but demand less computational power

from the parties. Which approach is best depends on the use-case. For example, if the parties consist of

small IoT devices, it is wise to keep the computational load low while a low-bandwidth or high-latency
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environment requires a low number of communication (rounds).

Furthermore, there is a distinction between concrete efficiency and asymptotic efficiency. Asymptotically effi-
cient protocols mainly focus on how certain parts such as round-, communication- or computational com-

plexity scale in factors such as the circuit size, the number of parties or the deterrence rate. On the other

hand, concretely efficient protocols primarily care for actual performance in terms of overall running time

even if the protocol is not optimal in terms of complexity. Asymptotically efficient protocols often provide

techniques that can be used to construct concretely efficient protocols.

2.2.5.1 Pre-processingModel

One important efficiency improvement for a large number of MPC protocols is the so-called pre-processing
model which splits the problem into a pre-processing phase and an online phase. �e pre-processing step

is completely independent from the parties’ inputs and can thus be performed beforehand. During this

phase, the parties can produce correlated randomness that can later be consumedduring themore complex

online phase. By moving the majority of the heavy computations, a lot of state-of-the-art protocols obtain

very efficient solutions in the online phase.

2.3 Defining Security

�e goal of Multi-Party Computation (MPC) protocols is to allow a group of participants P1, . . . ,Pn
to compute a shared function f over their private inputs x1, . . . , xn while keeping their inputs hidden

from each other. �is group of participants can be divided in two sets: honest participants and corrupt
participants. �e honest participants will strictly follow the protocol descriptionwhile corrupt participants

are assumed to be under the influence of a central adversary. What it means to evaluate a protocol securely

in the presence of such an adversary can be defined in the real/ideal world paradigm [BPW04].

In general for an MPC protocol to be considered secure, it needs to satisfy two requirements: privacy and
correctness.

Definition2.3.1 (Privacy). �eonly new information an adversary is able to learn from running the protocol

are the output(s) of the protocol.

�erefore, an MPC protocol should ensure that a possible adversary is not able to derive any information

about the inputs of the other parties in the protocol.

Definition 2.3.2 (Correctness). �eoutcome(s) of the protocol received by the honest parties should be cor-

rect.

�e correctness requirement can change depending on the guarantees that are desired. Sometimes it

suffices to be guarantees that if a party receives an output, it is correct while for other protocols stronger
guarantees are needed. �e possible guarantees will be elaborated later.

�e ideal way for realising a protocol satisfying these requirements is for each participant to send their

input privately to a trusted third party, F , who will compute the function f (x1, . . . , xn) and send this back

to eachparty. F is incorruptible andalways calculates the correct result. However, in the real-world setting,
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such a party might be costly and sometimes even impossible to find. Instead, MPC is an umbrella term for

cryptographic techniqueswhich simulate such a trusted thirdparty in the realworld bymeans of a protocol,

Π, the parties can execute among themselves. An MPC protocol is able to satisfy the above requirements
while the parties do not need to trust anyone. �e trick often used to proof the security of anMPC protocol

is to show that the protocol is indistinguishable from the ideal functionality, which is defined to be secure.

�e assumption being that if a protocolΠ looks like another protocol which is known to be secure,Π should

be secure as well. �is idea is known as the transivity of security and was first formulated by Canetti in the

UC framework [Can01]. Now, we define security in the real/ideal world as follows [Lin17]:

Definition 2.3.3 (Security in the real/ideal world paradigm). Let F be a trusted third party that calculates

the function f in the ideal world and letΠ : ({0, 1}∗)n
−→ ({0, 1}∗)n

be ann-party protocol calculating f in the
realworld.Π takes one input fromeverypartyP1, . . . ,Pn andyields everyparty oneoutcome. Furthermore,

letA be an adversary in the real-world and S a simulator in the ideal world. Now,Π is said to compute f
in a securemanner if for all real-world adversariesA, we can find an ideal-world simulatorS such that the

output distribution ofS and the honest parties is indistinguishable from executingΠ in the presence ofA

in the real world.

�e intuition of this real/ideal world security definition is that for any possible adversary in the real world,

the information it can compute can be simulated in the ideal world and thus it can only perform attacks

which would also be possible in the ideal world. �is way, nomore security can be compromised in the real

world than possible in the ideal world.

2.3.1 Adversaries

To reason about the security against a hypothetical adversary, the capabilities of this adversary are

formalised. First, an adversary is is capable of corrupting a set of participants in the protocol. �is set

of corrupted parties is either known upfront, in which case we speak of a static adversary or can change
during the execution of the protocol, in which case the adversary is said to be adaptive.

An adversary is able to access the views of all the parties it corrupts. Such a view is defined as follows [Lin17]:

Definition 2.3.4 (View). �e view of partyPi during the execution ofΠ is denoted as viewΠ
i and consists of

(xi, ri; mi
1, . . . ,m

i
t). Here, xi is the input of Pi, ri

is the random tape of Pi andmi
j, 1 ≤ j ≤ t the jth message

received by Pi.

Furthermore, the adversary is able to combine the views it receives from all the parties it corrupts. All ad-

versaries are characterised by the computational power they possess. Here, a distinction is made between

adversaries that are bounded to polynomial-time computations and adversaries that have unbounded re-

sources. Protocols allowing only bounded adversaries are said to be cryptographic (or computational) secure
while protocols that protect against the latter are information-theoretic secure. Next, the passive, active and
covert adversary models will be explained.

2.3.1.1 Passive Adversaries

A passive adversary, also called a semi-honest or honest-but-curious adversary, is an adversary which uses

the views of the parties it corrupts to calculate as much information as possible while still following the

protocol honestly. For example, such an adversary might try to combine the views of the corrupt parties
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to break the privacy of the inputs of one of the honest parties. In general, such an adversary is not able to
break the correctness requirement of MPC protocols. In order to give a formal definition of security in the
passive security model, the execution of a protocol in the real world and the ideal functionality need to be

made concrete.

Suppose we want to calculate the function f (x1, . . . xn) = (y1, . . . , yn). In the real world, we can execute an
MPC protocolΠ among parties P1, . . . ,Pn with private inputs x1, . . . , xn. For simplicity, denote the vector

of inputs as x̄ = (x1, . . . , xn). Furthermore, let C be the set of parties that are corrupted by adversaryA.
Now, we define REALk[A,C,Π, x̄] as the output ofA and the outputs of the honest parties in the execution

ofΠ given a security parameter k.

In the ideal world, performing the same calculations is denoted as the functionality FPassive. A formal

description of this ideal functionality can be found in ideal functionalityFPassive.

Ideal Functionality FPassive

1. Inputs: In the ideal world, the environmentZ sends all the inputs x1, . . . , xn toFPassive.

2. Reveal inputs:�e ideal world adversary (simulator) S is able to obtain the inputs of all the corrupt

partiesC by sending get_inputs toFPassive.

3. Output: FPassive computes (y1, . . . , yn) and returns back yi to each Pi. All the honest parties simply

output the result they receivewhile the adversaryS outputs an arbitrary function of the initial inputs

of the corrupted parties and the outputs received fromFPassive.

Now, define IDEALk[S,C,FPassive, x̄] as the joint distribution of the outputs of the honest parties and the

adversaryS. Here,
c

≡ denotes computational indistinguishably.

Definition 2.3.5 (Passive security). A protocolΠ securely computesF with security against passive adver-

saries if for all real-world adversariesA we can find an ideal-world adversary S such that for all security

parameters k ∈N:

{IDEALk[S,C,FPassive, x̄]}x̄∈{0,1}∗
c

≡ {REALk[A,C,Π, x̄]}x̄∈{0,1}∗

Which closely resembles the earlier definition 2.3.3 for general security in the real/ideal world model. In-

tuitively, this definition states that the output distribution in the real world should not be distinguishable

from the output distribution in the ideal world for arbitrary inputs. �is captures the idea that only the

attacks possible in the ideal world are possible in the real world.

2.3.1.2 Active Adversaries

An active adversary or malicious adversary has all the power of a passive adversary in the sense that it gets

access to all the views of the corrupted parties but on top of that can deviate from the standard protocol

execution. For example, this allows him to send incorrect messages or stop sending messages altogether
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in order to violate the correctness of the output for the honest parties. MPC protocols that allow existence

of such adversaries are said to have active security. Furthermore, it might be possible to identify exactly who
did the cheating, for example to be able to remove him from a new attempt at executing the protocol. �is

stronger notion is called cheater detection.

�is security notion can again be defined by formulating an ideal world for calculating a function f in the
presence of an active adversary. In this case, �e adversary S does not only get access to the views of the

corrupted parties, but gets full control over these parties. �e ideal functionality FACTIVE again computes

all the outputs but instead of sending these to the corresponding parties directly, the ideal functionality

sends the output to a hypothetical environmentZ which decides whether the parties should obtain this

output or ⊥. �is corresponds to the adversary prohibiting the honest parties from receiving the correct

outcome.

2.3.1.3 Covert Adversaries

In 2007, Aumann and Lindell [AL07] proposed a new definition called a covert adversary. �e idea is that

this type of adversary is a bit less strict in the sense that he is capable of performing an active attack, but a
certain chance of being caught cheating is enough to refrain him fromdoing so. Even if the chance of being

caught is small, the cons of being caught might still be large enough to stop the adversary from cheating.

�e probability of being caught cheating is called the deterrence rate ε.

�is idea seems more realistic and applicable to real-life scenarios. When looking at traditional security,

even banks are not 100% secure against intruders but the idea of getting caught and sent to jail is most

often enough to stop potential intruders from breaking in.

Aumann and Lindell originally defined three notions for covert security but in later years, the strongest

model of strong explicit cheat (SECF) became the standard when judging covert secure protocols. We

follow this model with one alteration, namely that if the ideal functionality receives (corrupted, i)
as an input from a party, it will only send (corrupted) to the honest parties. �e original notion is

called identifiable abort, which is not achieved by our compiler since this has proven to be a hard guarantee
to achieve inother researchworks onMPC.Our ideal functionality for covert security canbe found inFCovert

�e ideal functionality for calculating a function f in the presence of a covert adversary according to the
SECF notion will be called FCovert, which allows the ideal-world adversary to perform a limited amount

of cheating like an active adversary. He can attempt to cheat by informing the ideal functionality, but the

FCovert will randomly decide whether the attempted cheating was successful or not. With a probability of

ε, the deterrence rate, FCovert will inform all the parties of at least one corrupt party that tried to cheat.

With a probability of 1 − ε, the cheating was successful, meaning the simulator S learns all the parties’
inputs and can decide what their output is. Now, the formal definition of this ideal execution can be found

in ideal functionalityFCovert [DOS20].

Here, the input phase in Step 1 is slightly changed compared to the passive security ideal world in the sense

that not all the correct inputs are given to the ideal functionality directly. Furthermore, steps 2 and 3 corre-

spond to the possible ways for an active adversary to cheat during the computation phase in the protocol.

Here, an adversary can abort the protocol, in which case the honest parties notice this. Furthermore, an



18 CHAPTER 2. BACKGROUND

Ideal Functionality FCovert

1. Inputs: Every honest party Pi sends its input xi to FCovert. �e ideal world adversaryS sends inputs

on behalf of all the corrupted parties.

2. AbortOptions: A corrupt partymay send (abort, i) or (corrupted, i) as input toFCovert. If (abort, i)
was received, FCovert will respond by sending (abort) to all the honest parties and halt. In case
(corrupted, i)was received,FCovert sends (corrupted, i) to all the honest parties and halts. If mul-
tiple parties send corrupted or abort,FCovert informs the honest parties of only one of these events
and halt. Furthermore, (corrupted, i) is ignored in case it receives a combination of both events.

3. Attempted cheat: S can send (cheat, i) as input of a corrupted party Pi to FCovert. Now, FCovert will

respond with detected with a probability of ε to all the parties and undetected with a probability
of 1 − ε to the adversary. In case the cheating attempt was undetected,S gets all the inputs xi of the

honest parties Pi and specifies an output yi for each of themwhichFCovert will output to Pi.

�is is normally the end of the ideal execution. However, if no corrupted party sent

(abort, i), (corrupted, i) or (cheat, i), the ideal execution continues with:

4. Answer adversary:�e ideal functionality computes (y1, . . . , yn) = f (x1, . . . , xn) and sends it toS.

5. Answerhonest parties:S can nowdecide to either continue or (abort, i) for a corruptedPi. In case

the adversary continues, the ideal functionality returns yi to each honestPi. In the case of (abort, i),
the ideal functionality relays this to all honest parties.

6. Output: Honest parties always output the message they receive from FCovert where the corrupted
parties output nothing. �e adversary outputs an arbitrary function of the initial inputs of the cor-

rupted parties and the outputs received fromFCovert.

adversary can be identified as corrupt, which will be seen by the honest parties as well. Finally, an adver-

sary can attempt to make a corrupt party cheat, in which case there is a chance 1 − ε of being successful.
�e last three steps correspond to the case in which the adversary follows the computation phase honestly

but cheats in the reveal phase of the protocol. Similar to the passive security case, the joint distribution of

the outputs of the honest parties andS is now denoted as IDEALεk[S,C,FCovert, x̄]. �e definition for covert

security is now analogous to definition 2.3.5 for passive security:

Definition 2.3.6 (Covert security with deterrence rate ε). A protocolΠ securely computes F with security

against covert adversaries with a deterrence rate of ε if for every real-world adversaryA, we can find an
ideal-world adversaryS such that for all security parameters k ∈N:

{
IDEALεk[S,C,FCovert, x̄]

}
x̄∈{0,1}∗

c

≡ {REALk[k,A,C,Π, x̄]}x̄∈{0,1}∗

2.3.1.4 Publicly Verifiable Covert (PVC) Security

While this notion of covert security described in the previous paragraph has been useful for MPC, it may

still not be fully sufficient to discourage cheating by the adversary. Covert security only guarantees that if
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an adversary is cheating, this is detected by a party with a certain probability. However, it is impossible

for this party to later proof to the other parties or even a third party that cheating actually occurred. �is

becomes especially problematic if there is some asymmetric power relationship between the parties. If, for

example, a bank performs an MPC protocol with its clients and one client detects cheating, the bank can

simply claim it did not cheat and the client has no leg to stand on. As a result, the bank escapes without

any repercussions other than losing its reputation with this single client.

With this in mind, the notion of publicly verifiable covert security (PVC) was proposed by Asharov and
Orlandi in 2012 [AO12]. �is form of security provides the parties with a mechanism to generate a publicly

verifiable certificate which undeniably convinces that a certain party has cheated. Now instead of losing

reputation with only one party, reputation is lost with all the other parties and thus the consequences of

cheating become much higher. Because of this construction, a larger level of dissuasion for cheating may

be obtained.

In terms of the real/ideal world paradigm, we use the simplified notion by [Hon+19] where a Judge algo-
rithm is added to a real-world protocolΠ. If, in the execution ofΠ, cheating is detected, the protocol out-
puts a certificate cert. �e Judge algorithm verifies this certificate and outputs the identity of the cheater,

definedby the correspondingpublic key or nothing in case the certificate is invalid. �evector of public keys

is defined as p̄k = (pk1, . . . , pkn), corresponding to thePis. Furthermore, we have extracted the verification

procedure of the protocol to a separete Blame algorithm. Blame takes the view of a party Pi and returns a

certificate cert and outputs corrupted j in case partyP j is found to be cheating Formally, we define covert

seucurity with public verifiability as:

Definition 2.3.7 (Covert security with deterrence rate ε and public verifiability). A protocol

(Π, Blame, Judge) securely computes F with security against covert adversaries with a deterrence

rate of ε and public verifiability if the following three conditions hold:

1. Covert security:Π is secure against a covert adversary according todefinition 2.3.6 for covert security

with deterrence rate ε. Additionaly,Πmight now output cert in case cheating is detected.

2. Public Verifiability: If an honest party Pi detects cheating by another party P j and outputs cert in

an execution ofΠ, then Judge(p̄k,F , cert) = pk j
except with negligible probability.

3. Defamation-Freeness: If party Pi is honest and executesΠ in the presence of an adversaryA, then

the probability thatA creates cert∗ such that Judge(p̄k,F , cert∗) = pki
is negligible.

�e intuition of this is that the protocol should have all the same functionality as a protocolwith plain covert

security. Furthermore, in case cheating is detected, the public verifiability mechanism should be able to

convince other parties with an overwhelming probability. Finally, the defamation-freeness requirement

states that it should be near impossible for an adversary to trick other parties into believing that an honest

party has cheated during the execution of the protocol.

2.3.2 Security Guarantees

�e level of security of an MPC protocol required or desired is of great influence on the design and

efficiency of the protocol. Here, increasing the guarantees of an MPC protocol often comes at the cost of a

less efficient protocol. �e security of an MPC protocol is defined by the two requirements privacy of the
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inputs and correctness of the output.

As stated earlier, what it means for an output to be ‘correct’ depends on the security guarantees desired for

the protocol. In its weakest form, the correctness requirement states that the honest participants do not

receive incorrect outputs. �erefore, it should be impossible for an adversary to manipulate the protocol

execution in such a way that the honest parties receive an incorrect result.

�is weakest notion of correctness is called security with abort. In this setting, it is only guaranteed that
the honest parties never receive a wrong output. �is means that it is possible for an adversary to obtain

the correct output and prevent the honest parties from receiving the output. While this is a rather weak

notion of correctness, it can be sufficient in certain applications and does allow protocols to tolerate a large

amount of corruptions.

A stronger notion of correctness to prevent an adversary from “stealing" the output is the notion of fairness.
Fairness states that the honest parties should always obtain the output if the adversary does. Note that it

is still possible that no one receives the correct output. Compared to security with abort, lower amounts of

corruptions can be tolerated while ensuring fairness.

An even stronger notion of correctness to prevent the honest parties from receiving no output is the no-

tion of robustness. Robustness ensures that honest parties always obtain the correct output, regardless of
the actions of the adversary. As this is even harder to guarantee than fairness, an even smaller number of

corruptions can be tolerated.

2.3.3 Corruption�resholds

�e amount of corruptions that can be tolerated by a protocol is called the corruption threshold, t. In general,
this threshold can be any number smaller than the total number of players n (note that reasoning about
a protocol execution where all the participants are malicious does not make sense intuitively). However,

to reach certain security guarantees for various adversary models, the amount of corruptions that can be

tolerated are limited. Common bounds are t < n (any number of corruptions), t < n
2 (honest majority) and

t < n
3 .

Tight bounds on the amount of corruptions that can be tolerated for the computational models were

already established in the late 80s. [GMW87; CDG87; BGW88; CCD88] have shown that in the computa-

tional model, any function can be calculated guaranteeing robustness against passive adversaries while

tolerating any number of corruptions, i.e., t < n.

If security against active adversaries is desired, an honestmajority is required to obtain the sameguarantees.

In the information-theoretic model, they have proven that these bounds lower to t < n
2 against passive

adversaries and t < n
3 against active adversaries to guarantee robustness. Relaxing to fairness increases

the latter to t < n
2 .

On the other hand, tolerating a dishonest majority comes at a significant cost. In this case, information-
theoretic security is impossible to achieve and even with computational security, the adversary is able

to abort the protocol after he learns the outcome and thus, fairness is impossible to achieve. In the case
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of 2-party computation, one corruption immediately constitutes a dishonest majority and thus 2-party

protocols only work in the computational setting by tolerating only passive adversaries or settle for weaker

security guarantees.

2.3.4 Interplay Between Properties

All the choices that can be made regarding the adversarial power, guarantees and circumstances in which

the protocol operates have had a large influence on the design of MPC protocols in the literature. A sum-

mary of all these choices can be found in table 2.2. In general, the stronger the desired level of security, the

slower the protocols that can be designed. Furthermore, some combinations of guarantees are impossible

to combine. It is impossible to obtain an MPC protocol satisfying all the strongest security requirements.

Oftentimes it is needed to compromise some security for more efficiency or stronger guarantees. In terms

of adversarial models, covert security (with public verifiability) can be seen as an abstraction of passive and

active security (with cheater detection) where it is often possible to tweak the deterrence rate to go from

passive security with a low ε up to active security as ε approaches 1.

Security Choice Options
Comp. power

• Computional security

• Information-theoretic security

Number of corruptions

• < n/3
• < n/2
• < n

Adversary model

• Passive

• Covert

• Active

Adversary type

• Static

• Adaptive

Security Guarantees

• Security with abort

• Fairness

• Robustness

Additional mechanisms

• Public verifiability (covert)

• Cheater detection (active)

Table 2.2: MPC protocol security choices
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ConcreteMPCProtocols

Based on the three fundamental techniques fromSection 2.2, numerous concreteMPCprotocols have been

developed over time. In this chapter, the most important works for achieving concrete protocols in the

passive-, active- and covert security models will be explained. Furthermore we will look at how the as-

sumption of an honest majority of parties has lead to more efficient protocols.

3.1 Passive Security

Historically, there have been two general approaches for secure 2-party MPC in the passive or semi-honest

adversary setting: Yao’s approach [Yao86] based on garbled circuits and the GMWprotocol [GMW87] based

on secret-sharing.

Both constructions in their most simple form represent the functionalities as Boolean circuits. �e idea of

the GMWprotocol is to first have the parties secret share their input bits, whichmeans that for every input

wire in the circuit, they split their share in two random bits α and β s.t. α
⊕

β is the actual private input
bit of the wire. �en they walk through the circuit and compute the outcome of every gate with their own

shares to obtain random shares of the output of every gate. For linear operations such as the XOR gate this

can be done locally, but for an ANDgate, some communication is needed. In the end, each partywill end up

with shares of the outputwireswhich they can communicate to each other to reconstruct the actual output.

�e difficulty in terms of complexity of this circuit evaluation approach lies in the size of the circuit. For

every AND gate of the circuit, the parties need to run an oblivious transfer. �is communication overhead is

fine for circuits that are not too large, but typically the GC approach by Yao in 1986 [Yao86] is more efficient

for large circuits since oblivious transfer is only required to transfer the input bits after which only linear

operations are needed to compute the gates.

3.1.1 BGWProtocol

To perform computations over arithmetic circuits, one of the most widely used protocols is the passively

secure version of the BGW protocol [BGW88]. �is protocol is based on Shamir’s secret sharing scheme

from Section 2.2.3.1. Recall that this is a threshold secret-sharing scheme, meaning it works with a certain
threshold, t, where t + 1 participants can combine their shares in order to reconstruct the secret while less

22
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than t shares does not reveal any information on the underlying secret.

For n parties, this protocol provides information-theoretic security against t < n/2 passive corruptions
and t < n/3 active corruptions. Furthermore, [BGW88] has proven that these bounds are optimal in
the sense that nothing better than these bounds can be obtained in the information-theoretic setting. A

concrete description of the protocol with passive security can be found in the protocol description ofΠBGW.

Protocol ΠBGW

�is protocol works with an arbitrary number n of parties P = {P1,P2, . . . ,Pn} holding private inputs

x1, x2, . . . , xn. Furthermore, the protocol assumes the parties agreed on a certain threshold t < n/2. Now,
the parties jointly run the protocol in the followingmanner:

1. Input sharing phase: First, partyPi ∈ P uses Shamir’s secret-sharing schemewith threshold t + 1 to
obtain a set of shares x1

i , x
2
i , . . . , x

n
i and sends share x j

i to P j.

2. Circuit evaluationphase:Now, theparties jointly emulate the computationof the circuit gate by gate.
�e parties compute their own share of the output of every gate in the followingmanner:

(a) Addition gate: Suppose the inputs to the gates are a and b, where Pi holds ai and bi. Now, the

parties can compute a secret sharing of the output of the gate by simply calculating ai+bi locally.

(b) Multiplication by a constant gate:Multiplicationwith a constant can also be done locally (i.e., with-
out any interation). Suppose the inputs to the gate are a and some constant c, the output of the
gate c ∗ a can be calculated by letting each Pi calculate c ∗ ai locally.

(c) Multiplication gate: Suppose the parties want to calculate their share of the output of a mul-
tiplication gate with inputs a and b. Simply letting each party Pi compute ai ∗ bi locally does

not work since the resulting polynomial will share a ∗ b as required, but has a degree of
2t instead of t. Furthermore, the polynomial is not truly random anymore, which might

cause information leakage during the reconstruction phase. Instead, the parties use an addi-

tional interactive protocolwhichwill be calledFmult to compute themultiplication functionality.

�is protocol is defined as Fmult(( fa(α1), fb(α1)), . . . , ( fa(αn), fb(αn))) = ( fab(α1), . . . , fab(αn)).

3. Output phase: After the evaluation phase, the parties hold shares of the output wires. �e parties

can reconstruct the actual output by sending their shares to the other parties and use t + 1 shares to
reconstruct the output.

Intuitively, this protocol implements the share-compute-reveal paradigm in the sense that first the private

inputs are secret-shared, then the parties evaluate an arithmetic circuit consisting of addition and mul-

tiplication gates to obtain shares of all the wires. Lastly, the parties reconstruct the output by publishing

their respective shares of the output wire. For a more detailed description of why this works, we refer back

the Section 2.2.3.1 on Shamir’s secret sharing scheme. For an example for a multiplication functionality

FMUL to perform multiplications, see Section 3.1.1.1. Essentially, FMUL is a functionality which takes as

input two secrets a and b, shared via degree-t polynomials fa and fb respectively, and produces a degree-t
polynomial fab which shares the secret a ∗ b as its constant term.
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3.1.1.1 Multiplication by Gennaro et al.

In 1998, Gennaro et al. [GRR98] presented a simple protocol ΠMUL for implementing FMUL compati-

ble with the BGW aproach. Suppose again we have two secrets a and b shared via degree-t polynomials
fa(x) and fb(x). Here, partyPi holds share fa(i) and fb(i) respectively. In order to compute the result of a ∗b,
the parties first compute fab(i) = fa(i) ∗ fb(i), which together will produce the degree-2t polynomial:

fab(x) = fa(x) fb(x) = γ2tx2t + . . . + γ1x + ab

To reduce this back to a degree-t polynomial, the parties engange in a process called resharing. In this pro-
cess, party Pi will reshare its share on the degree-2t polynomial by choosing a random degree-t polynomial

hi(x) such that hi(0) = fab(i). By now sending each partyP j the value hi( j), the parties can obtain consistent
shares on fab(x), which has a ∗ b as its constant term, by locally computing

h( j) =

2t+1∑
i=1

λi ∗ hi(k)

�e constants can be calculated by the parties as

λi =
∏

1≤k≤2t+1,k,i

k
k − i

A concrete description of the protocol by Gennaro et al. can be found in the protocol description ofΠMUL.

3.2 Multiplication Triples

�e GMW and BGW protocols from the previous section can also be optimised by using so-calledmultipli-
cation triples (or Beaver triples) [Bea91] to perform the multiplications. �is construction is not necessarily

better or worse than for example the Gennaro approach, but allows certain computations to be performed

in a pre-processing phase because they are independent of the input values. By moving the most complex

tasks to this pre-processing phase, the actual computations which are done in the online phase of the
protocol becomes a lot faster.

A multiplication triple consists of secret shared values [a], [b] and [c] where a and b are uniformly random
and c = a ∗ b. Given this, two secret-shared values [x], [y] can be multiplied in the following way: first
calculate d = x − a and e = y − b and publicly reveal the result. �is is dependent on their shares of the

secrets, but ismasked by the randomvalues a and b and can thus be revealed safely. Using these, the parties
can locally compute compute:
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Protocol ΠMUL

�is protocol works with an arbitrary number n of parties P = {P1,P2, . . . ,Pn}. Furthermore, each party

Pi holds shares fa(i) and fb(i) for respectively secrets a and b. �ey produce a degree-t polynomial sharing

ab in the followingmanner:

1. Local multiplication: First, the parties locally compute the product fa(i) fb(i), which constitutes a
degree-2t polynomial sharing ab.

2. Resharing:Now,partyPi reshares this shareby choosinganewpolynomialhi(x)ofmaximumdegree-t

(as if it was a new input) such that

hi(0) = fa(i) fb(i)

And gives each party P j a share hi( j).

3. Degree Reduction: Finally, each party P j can compute its share of ab, which is simply the pointH( j)
on the random polynomialH(x) by locally computing the linear combination

H( j) =

2t+1∑
i=1

λihi( j).

[z] = [c] + d ∗ [b] + e ∗ [a] + d ∗ e
= [a ∗ b + (x − a) ∗ b + (y − b) ∗ a + (x − a) ∗ (y − b)]
= [ab + bx − ab + ay − ab + xy − bx − ay + ab]
= [x ∗ y]

With this approach, any MPC protocol based on an LSSS can be cast into the pre-processing model. �e

pre-processing stage simply calculates many of such triples to be consumed during the online phase.

By using this technique, each party must only broadcast two field elements (d and e) in the online phase
compared to n field elements in the multiplication protocol by Gennaro et al.

�e simplest way to calculate beaver-triples is to simply run the BGW multiplication subprotocol on

random inputs but a lot of research has been performed on calculating such triples more efficiently. �e

best efficiency so farwas achieved by Beerliová-Trubíniová andHirt in 2008 [BH08]who amortised the cost

of each triple to a constant number of field elements per party. Furthermore, Schneider and Zohner [SZ13]

have proposed more optimisations that can make GMW outperform the current best implementations of

Yao.

In general there is no clear answer as towhich of these techniques is better. �e computational load is fairly

similar becausemost of the computation involves symmetric operations. Yao’s approach is very efficient in

terms of communication rounds, namely 1, but the communication required to send the GC to the other

party is relatively high.
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3.3 Active Security

In addition to showing how any function can be calculated in a secure manner, Goldreich, Michali and

Wigderson also presented the GMW Compiler [GMW87]. Using this compiler, any function that securely
computes a function in the passive security model can be translated to a protocol with active security.

�e intuition of their compiler is to take a passively secure protocol and “force" the potentially malicious

adversaries to behave in a semi-honest manner.

Roughly speaking, this is achieved by letting each party commit to its inputs and, use zero-knowledge proofs
to proof that the steps they perform in the protocol are correct without revealing anything.

Even though this approach doeswork, the large number of zero-knowledge proofs renders it too inefficient

to be used in practice. Nevertheless, this work did show that any function can be evaluated securely against

active adversaries and sparked the interest formore researchonpractically feasible actively secureprotocols

Looking at work on realising active security in MPC protocols efficiently, there are again two general tech-

niques nowadays. First, there are cut-and-choosemechanisms. �e idea of cut-and-choose is to essentially

run the passively secure protocolmultiple times in parallel with the possibility to open an arbitrary amount

of runs to verify the correctness. Note that here it is important that the executions can be opened without

needing to reveal the private input of a party, since this would cleary violate the privacy requirement. Fi-

nally, the unopened run(s) can then be used to perform the secure evaluation. �e second mechanism is

using (information-theoretic) MACS. Here, each message is associated with a message authentication code
(MAC) that can be checked for validity to check the calculations of the parties. �e cut-and-choose and

information-theoretic MAC approaches will be further elaborated in the next Sections 3.3.1 and 3.3.2 re-

spectively.

3.3.1 Cut-and-choose

�e basic idea is that one party constructs multiple versions of the same message. Other parties can then

check and verify some of them to build trust in the honesty of the creator and use the remaining messages

to safely execute the protocol. �is technique was originally applied to Garbled Circuits but has also

proven to work in secret-sharing based MPC protocols. �e idea is that the generator P1 creates k garbled
circuits of the same Boolean circuit and sends them to the evaluator P2. P2 will then ask P1 to reveal the

randomnesses used to create a fraction (e.g.,
k
2 ) of the circuits and checks whether they are correct or not.

Note that the revealed randomnesses do not reveal anything on the unopened circuits, who can then be

used to perform the secure evaluation. By randomly checking a large enough fraction of the circuits, a

malicious generator can only cheat with negligible probability. Furthermore, if the generator takes the

majority result of the remaining circuits, correctness of the outcome is almost guaranteed. �is is the

approach used to obtain the first properly implemented, actively secure version of Yao’s protocol in [LP07]

and [LPS08].

Even though many improvements and optimisations for specific scenarios have been proposed, using

cut-and-choose in this way is not yet efficient enough for practical purposes due to the high number of

circuits that need to be generated to achieve an adequate level of security. In 2009, Nielsen and Orlandi

introduced LEGO cut-and-choose [NO09] to improve the efficiency of cut-and-choose approaches. �e idea

is to apply cut-and-choose on individual gates instead of the entire circuit.
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�e approach by Nielsen and Orlandi models functions as circuits of only NAND gates. Furthermore, the

output correctness is provided by having a fault-tolerant circuit instead of a majority vote. First, P1 gen-

erates a number of garbled NAND gates on which the two parties perform an (optimised) cut-and-choose

protocol. �eunopenedNANDgates are then randomly assigned into buckets. Gateswithin a single bucket

are combined to act as a fault-tolerant garbled NAND gate that computes the function correctly as long as

the majority of the gates in the bucket are correct. �ese fault-tolerant garbled gates are then connected to

form the desired circuit in a process called soldering. Finally, P2 evaluates this single, fault-tolerant circuit

to obtain the correct output with great probability.

�e main advantage of this idea is its flexibility. �is makes it not only suitable for Garbled Circuits but

has also proven successful in other paradigms aswell as safely setting up correlated randomnesswithmali-

cious adversaries. Furthermore, this approach is relatively easy and cheap to implement on top of existing

protocols.

3.3.2 Information-theoreticMACs

�e second technique for realising active security in MPC protocols is based on information-theoretic

MACS.�e intuition is that such aMACprevents a corrupted party from lying about their share by “authen-

ticating" their shares. Formally, aMessage Authentication Code (MAC) is a value that can be used to confirm a

message has been created by a certain party who knows theMACkey and to detect whether themessage has
been corrupted. Such a scheme consists of three algorithms:

• k←− Gen : Output a randomMAC key k.

• m←−MACk(x) : Output the MACm on x under key k.

• 0/1←− Ver(k,m, x) : Check the MAC on x.

�e security requirement is that the verification algorithm should succeed if and only if m is a valid MAC

on x, except with negligible probability. Furthermore, it should be nearly impossible to “guess" a correct
value given a certain MAC.�e information-theoretic aspect of such a MACmeans that this security holds

even against unbounded adversaries.

�ere are two main approaches for combining MPC with information-theoretic MACs. First, by authen-

ticating every secret-shared value with unique MACs under the keys of every other party, called pairwise
MACs. Secondly, there is the approach called global MACs. �ese use only one single, secret shared, MAC

on each secret shared value instead of one MAC per pair of parties. Note that even though these MACs

are information-theoretically secure, this does not necessarily hold for the protocols that use them for

obtaining active security.

�e first combination of information-theoreticMACswithMPCwas the BDOZ protocol by Bendlin et al. in

2011 [Ben+11]. �is protocol makes use of pairwise MACs and tolerates up to n − 1 active corruptions with
a very efficient online phase over arithmetic circuits in the pre-processing model. When a value is secret

shared among the parties, now every partyPi receives, next to a share for each secret shared value [x], a set
of MACs on his share xi under the keys of the other parties P j as well as his own keys to verify the MACs of

the other parties’ shares. So in the sharing of [x], each party Pi holds:
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(xi, (ki, j,MACk j,i(xi)) j,i)

Here, xi is the share of [x] for Pi. ki, j is the key Pi can use to verify the share x j of P j andMACk j,i(xi) a MAC
on the share xi under the key of P j. �e intuition is now that when Pi reveals xi he can proof to P j that this

share is correct by additionally revealingMACk j,i(xi). P j now knows the corresponding key and can verify

the validity of the MAC. If the providedMAC on xi is invalid, P j knows that Pi tried to lie about his share.

However, recall that when arithmetic circuits are evaluated, the secret sharing scheme needs to be linear in

order to be able to perform arbitrary operations. �ese same operations need to be performed to obtain the

correctMACs on the results of these operations and thus theMAC scheme needs to be linear as well. To see

how this is done in the BDOZ protocol, look at the usedMAC scheme:

• A keyK consists of a random pairK = (α, β) ∈ Z2
p

• AMAC for a value a ∈ Zp is of the formMACK(a) = αa + βmod p

An important property of this MAC scheme is that even if multiple keys with the same α are used, it re-
mains equally hard to guess a correct MAC since the addition of a random β is essentially an (information-
theoretically secure) one-time pad. Because of this property, the key generation can be modified such that

every key ki, j held by Pi is of the form: (αi, βi, j)where αi is fixed for Pi while a fresh βi, j(x j) is used for every
share x j. Now, the MACs of shares x j and y j can be added in the following way:

(αi ∗ x j + βi, j(x j)) + (αi ∗ y j + βi, j(y j)) = αi ∗ (x j + y j) + (βi, j(x j) + βi, j(y j))

Next, the entire protocolwill be illustrated in the two-party setting but this easily generalises to an arbitrary

number of parties. Suppose both parties want to compute a function over their private inputs. To secret

share a private input x, the parties additively secret share x. �is means we obtain x1 and x2 for P1 and P2
such that x1 + x2 = x. Now, each party Pi fixes a certain (public) MAC key αi. Furthermore, in the sharing

of [x], P1 and P2 respectively hold x1, β1 andm1; x2, β2 andm2 such that:

• m1 = α2x1 + β2 = MACα2,β2(x1) (P1 has the MAC of its share x1 under P2’s MAC key), and

• m2 = α1x2 + β1 = MACα1,β1(x2) (P2 has the MAC of its share x2 under P1’s MAC key)

Because the MACs are now homomorphic by keeping αi consistent, the same operations can be per-

formed on the MACs that are performed on the shares. Given sharings of [x] and [x′] such that P1 holds

x1, x′1, β1, β′1,MACα2,β2(x1),MACα2,β′2
(x′1) and analogous for P2. [x + x′] can be calculated in the following

way:

[x + x′] = [x1 + x′1 + x2 + x′2]

where, due to the homomorphism of theMACs, the correct MAC to authenticate x1 + x′1 and x2 + x′2 can be
calculated by simply letting each party add its MACs on its shares:
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MACα2,β2(x1) + MACα2,β′2
(x′1) = MACα2,β2+β′2

(x1 + x′1), and

MACα1,β1(x2) + MACα1,β′1
(x′2) = MACα1,β1+β′1

(x2 + x′2)

Because P1 knows β1 and β′1, he can calculate β1 + β′1 to obtain the correct key for checking the validity of
P2’s MAC and vice versa. Other operations work in a similar way. All the parties can verify the respective

MACs on shares which were formed with their own respective keys when opening a share, for example

when the entire circuit has been evaluated.

�e BDOZ approach generalises to n parties in a straightforward way, for a single sharing [x], the shares of
the parties are authenticated under the MAC key of every other party. �is generalisation does work but is

rather inefficient. Each player needs to have his own key and each of the n shares need to be authenticated
with nMACs, so this scales quadratic in n.

To resolve this efficiency issue, a new approach was proposed by Damgård, Pastro, Smart and Zakarias

in 2012 [Dam+12]. In their work, often referred to as the SPDZ (or “speeds") protocol, they instead

authenticate the secret value itself using a single global key. To prevent forgery of MACs when this key is

known to malicious parties, this key is then secret shared as well. �is approach called Global MACs brings
the storage down to constant-sized shares for each party.

Concretely, there is a global MAC key α, that is secret shared to n parties: α1, α2, . . . , αn such that

α = α1 + α2 + · · ·+ αn. In SPDZ, a sharing of x, [x] yields every party Pi a share of the form (xi, γ(x)i)with∑n
i=1 xi = x and

∑n
i=1 γ(x)i = α ∗x. In other words, the secret x and the MAC on x,MACα(x) = γ(x) = α ∗x

are additively secret shared over the parties. Note that the MAC on x is again a linear representation
just as in BDOZ and thus supports calculations including multiplications based on multiplication triples.

However if parties simply announce their shares, the keyαwould be revealed and forging fraudulentMACs
would become possible.

Instead, the parties only announce their shares of x, x0, . . . , xn−1 to reveal an unauthenticated “candidate"

value for x. Now to check the MAC on x without compromising the secrecy of α, each party Pi commits to

zi = γ(x)i − x ∗ αi. Finally, all parties open their commitments and simply check whether the sum of the

committed values is zero, which works because of the following observation:

n∑
i=1

zi =

n∑
i=1

γ(x)i − x ∗ αi

=

n∑
i=1

γ(x)i − (
n∑

i=1

αi) ∗ x

= γ(x) − α ∗ x
= 0

While global MACs provide a big efficiency improvement over pairwise MACs, the pairwise approach still

has some relevance because it yields slightly stronger security guarantees. Because each party validates the

MACs of every other party, the parties know exactly which parties tried to cheat in the protocol. �ismight
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be (very) desirable, for examplewith the (relativelyweak) securitywith abort setting. With cheater detection

in place, the possibility of being exposed as a cheater creates a stronger deterrence to cheating.

3.4 Triple Generation

An important aspect of the above protocols is that they are designed with an offline (or pre-processing)

phase and an online phase. �e goal of the pre-processing phase is to set up the correlated randomness in

the formofmultiplication triples to speed up the online phasewhere the actual calculations are performed.

Since these triples are independent of the inputs of the parties, they can be generated beforehand. �e

most efficient protocols for MPC nowadays exploit this model by moving the majority of the (expensive)

computations to this pre-processing phase to have a very efficient online phase. As a consequence, triple

generation is an area where major efficiency improvements have beenmade.

3.4.1 Public-key Cryptography

Both BDOZ [Ben+11] and SPDZ [Dam+12] use homomorphic encryption to generate the multiplication triples
in the offline phase. �e original BDOZ protocol uses an arbitrary additively homomorphic encryption

scheme such as Pailler [Pai99] to calculate shares of multiplication triples in an interactive way. Fur-

thermore, zero-knowledge proofs are needed to prevent the parties from lying about their share in the

multiplication triples and to proof the correctness of their computation on the ciphertexts. SPDZ uses a

different encryption scheme called somewhat homomorphic encryption (SHE). �is essentially has the same

properties as fully homomorphic encryption except for the fact that a limited number of computations can

be performed, e.g., only onemultiplication is supported. �is allows the parties to multiply their shares in

the ciphertexts directly and thus requires only proofs of plaintext knowledge.

To generate triples in this way, SPDZ uses SHE with distributed key generation and distributed decryption
properties. �is means there is one single public key for all the parties and an additively secret-shared

private key for all the parties. Furthermore, distributed decryption allows the parties to decrypt their

individual shares of a certain ciphertext. Now, to obtain multiplication triples of the form c = ab, every
party first computes an encryption of randomly generated shares ai and bi. �ey broadcast these shares

and use homomorphic addition to obtain encryptions of a =
∑n

i=1 ai and b =
∑n

i=1 bi. Next, they calculate

the encryption of c by multiplying the two ciphertexts and use distributed decryption to obtain their
individual shares of c, ci. Current state-of-the-art pre-processing protocols based on homomorphic

encryption have been presented in Overdrive by Keller et al. in 2018 [KPR18].

3.4.2 Oblivious Transfer

Already in 2012, Nielsen et al. [Nie+12] proposed a different approach for generating the triples described

above. �eir approach is based on Oblivous Transfer and works in the two-party setting. �is approach is

simpler and less computationally heavy, but does require more communication between the parties. �eir

protocol nicknamed TinyOT has a roughly similar online phase to [Ben+11] but works over Boolean circuits

instead of arithmetic circuits. In general, expressing the functionality as a Boolean circuit has led to faster

protocols because symmetric cryptography can be used whereas arithmetic circuits often require more

expensive public-key cryptography. A couple of the state-of-the-art protocols based on Boolean Circuits
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with active security can be found in [DZ13; LOS14; Dam+17].

On the other hand, arithmetic circuits also have their upsides. �eir key advantage is that they allow a

calculation to be represented more naturally and thus support operations over integers in an easier and

more efficient way. Here, secure linear operations can be performed locally and thus “come for free". In

2016, Keller and Orsini [KOS16] presentedMASCOT, where theymanaged to combine the Oblivious Trans-

fer approach with arithmetic circuits, thus obtaining the benefits of performing calculations over integers

directly as well as the benefits of using the much faster OT technique in the pre-processing phase. Using

extensions of the OT technique for additional efficiency benefits, they outperform the SPDZ protocol by

over 200 times if the network with which the parties communicate with each other is assumed to be rela-

tively fast. Together with the previously mentioned Overdrive protocol [KPR18], this is currently one of the

most efficient solutions for actively secure protocols based on secret sharing in the arithmetic circuitmodel

against a dishonest majority.

3.5 Alternative�reatModels

So far, most the described protocols have assumed the adversaries to be either passive or active and that

every party can be corrupted (for the actively secure protocols). However, these strict assumptions lead to

relatively inefficient protocol designswhile in reality such tight assumptionsmight not always benecessary.

3.5.1 HonestMajority

Most of the previously mentioned secure protocols all assume that up to n − 1 of the parties may be
corrupted. �is makes sense for the two-party case, but for the multi-party case this can often be relaxed.

If instead themajority of the participants are assumed to be honest, a considerable improvement in protocol
performance can be made. Furthermore, it is now possible to achieve fairness and information-theoretic

security, which was proven to be impossible against a dishonest majority.

�e simplest setting for reasoning about honest majorities is the case of three-party computation with at
most one corruption. In this model and with passive security, some of the most efficient work is that of

Araki et al in 2016 [Ara+16] based on a variant of replicated secret sharing. Where the original BGW protocol

required sending 12 bits per AND gate, this work only required 1 bit of communication per AND gate. An

important distinction of this protocol is that each party only has to communicate with one other party and

the correlated randomness can be generated without interaction.

One year later, this work was extended by Furukawa et al. [Fur+17] to be secure against active adversaries

as well. �ey followed the approach of pre-processing multiplication triples and used the cut-and-choose

mechanisms to guarantee correctness of the triples to be consumed. �is approach required 10 bits per

AND gate which was later further improved again by Araki et al. [Ara+17] who brought this down to 7

bits and furthermore showed how to improve its practical efficiency by optimising some computationally

expensive parts. Current state-of-the-art performance in this area is achieved by ASTRA [Cha+19]. �ese

works have as an additional benefit that they are suitable to be run with inputs represented over arbitrary

rings (such as 232
or 264

). �ese rings are easier to implement and yield good performances in general due

to their more natural representation onmodern computers.
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In the honest majority setting for an arbitrary number of parties, state-of-the-art performance for active

security is achieved by Chida et al. [Chi+18]. Here, an optimised 3-party protocol is presented which re-

quires 2 field elements to be communicated per multiplication gate, which increases to 12 field elements

for an arbitrary number of parties. Roughly speaking, their protocol is based on secret sharing and works

by running an extra copy of the circuit with random values. After walking through the entire circuit, the

parties then perform a simple, single check to ensure no cheating attempt took place during the computa-

tion phase. Note that this check can be postponed to after the computation phase only because this phase in

their secret sharing protocol does not leak information on the private inputs of the parties. Similar results

have been achieved by Abspoel et al. [Abs+21] for rings. �emain difference between these works is the way

in which the check is executed since this has proven to be more difficult for rings compared to fields.

3.5.2 Covert Security

As explained in Subsection 2.3 when the notion of Covert security was introduced, the hope was that by

settling for less security,more efficiency could be gained. �e key characteristic of covertly secure protocols

is to compromise a reasonable amount of security in exchange for less complexity and thus, faster protocols

for the real world by introducing a chance of catching an active cheater. �is chance is called the deterrence
rate (e.g., 1

2 ). Naturally, a deterrence rate of 0 would yield the same security as a passively secure protocol

whereas a deterrence rate of 1 results in the security of an actively secure protocol. Furthermore, in most

of the covertly secure protocols that have been presented it is possible to exactly identify who the cheater
is and thus the security guarantees become even stronger than simply active security. In this case, covert

security can be seen as a generalisation of passive security and active security with cheater detection. By
tweaking the deterrence rate, covertly secure protocols are essentially able to cover the entire spectrum

between these two notions.

When this idea was proposed by Aumann and Lindell in 2007 [AL07], they also presented the first idea

for covert security based on garbled circuits, which essentially boils down to a cut-and-choose approach,

where the observation is made that way less circuits need to be checked if it is good enough to catch the

cheater with only 50% chance.

�is blueprint of replicating computations has proven to be successful for obtaining some of the fastest

covertly secure protocols based on garbled circuits in [GMS08; Lin13; AO12; KM15; Hon+19]. �e main

differences between these protocols do not lie in the cut-and-choose approach but in the construction of

the oblivious transfer needed to ensure a party can not abort based on the GC’s that are checked later.

Furthermore, cut-and-choose has also been proven effective in improving the pre-processing phase of

secret sharing based protocols such as SPDZ [Dam+12]. Where normally costly zero-knowledge proofs are

necessary to prevent active cheating, these can be replaced with cheap cut-and-choose methods to obtain

covert security. A direct implementation comparison of this approach was made by Damgård et al. in 2013

[Dam+13] who reported up to a 40x improvement in the offline phase with a deterrence rate of
4
5 . However,

as with most covertly secure protocols, it is possible to dynamically tweak this chance to a certain extent

and choose between either more security or more performance.
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3.5.3 Public Verifiability

Finally there is the notion of public verifiability in covert security (PVC) introduced by Asharov and

Orlandi in 2012 [AO12]. By giving the honest parties a way to prove a certain party has cheated during

the protocol execution, the adversary is even more discouraged from cheating. When caught cheating,

instead of only losing reputation for one honest party, you now lose your reputation for all the honest

parties. Consequently, a lower deterrence rate is sufficient to discourage cheating. Since the value of this

deterrence rate largely determines the efficiency of the protocols, having public verifiability leads to even

more efficiency gains.

After the introduction by Asharov and Orlandi [AO12], Kolesnikov and Malozemoff [KM15] improved on

their work and devised a protocol in which this public verifiability almost comes for free. Both approaches

realise public verifiability by simply signing all the messages sent during the protocol execution. However,

this means that also the oblivious transfers required at the beginning of the protocol need to be signed.

Asharov andOrlandi realised this using signed-OTwhich is based on some expensive public-key operations.
Kolesnikov and Malozemoff eliminated a large part of these public-key operations and reached 9-2000x

more efficiency (highly dependent on the characteristics of the circuit) compared to state-of-the-art

maliciously secure protocols at the time by Lindell [Lin13]. However, the size of the “certificates" for

proving cheating are impractically large.

�e state-of-the-art PVC protocol by Hong et al. [Hon+19] improves on the previous work by avoiding

signed oblivious transfer. With a deterrence rate of
1
2 they manage to keep the overhead in the 2-party

setting down to only 20-40% compapred to state-of-the-art passively secure protocols. Furthermore, their

approach is the first to deliver constant-size certificates of cheating. All in all, this would be the best choice

for many practical applications of secure two-party computation as long as the high communication costs

associated with replicated garbled circuits are manageable for the application.

To obtain covert security in the protocol mentioned above, parties P1 and P2 run k instances of a garbled-
circuit protocol secure in the passive setting. Of these instances, k − 1will be checked by the parties while
the last one is used to obtain the actual output. Now, to verify honest behaviour, the executions are made

deterministic by letting P1 seed all the instances with a certain randomness. Using OT, P2 obtains the ran-

domnesses for k−1 of these instanceswithoutP1 knowingwhich instances are being checked. BecauseP1’s

behaviour is entirely dependent onP2’smessages and the seeds, it is possible forP2 to verify the correctness

of all the messages sent by P1. To generate a publicly verifiable certificate, we let P1 sign the transcript of

each instance as well as the OT protocol. If P1 now cheats in any of the instances of the protocol, P2 can

prove this using the certificate, his own view and the obtained randomness for the execution.

3.6 State-of-the-art

An overview of the protocols that perform best for various scenarios can be found in table 3.1. As we have

seen in this chapter, there are many different protocols who have their own area in which they shine. In

general when looking to reduce the amount of communication rounds, garbled circuit based approaches

such as [BMR90] (passive security) and approaches based on TinyOT[Nie+12] (active security) all achieve a

constant amount of communication rounds. In the multi-party setting the work of Hazay et al. [HSS17]

obtain actively secure MPC with a constant number of rounds based on a combination of TinyOT and
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Reference Technique Parties Adversary (#corr)
[BMR90] Garbled Circuits n Passive (n − 1)
[Bea91] Secret Sharing n Passive (n − 1)
[KPR18] Secret Sharing n Active (n − 1)
[HSS17] Garbled Circuits n Active (n − 1)
[Hon+19] Garbled Circuits 2 Covert (1)
[Dam+13] Secret Sharing n Covert (n − 1)
[Cha+19] (Replicated) SS (Rings) 3 Active (1)
[Chi+18] (Replicated) SS n Active (< n/2)
[Abs+21] (Replicated) SS (Rings) n Active (< n/2)

Table 3.1: Overviewof the state-of-the-artMPCprotocols in terms of number of parties and adversary char-

acteristics.

authenticated garbling. Simply speaking, authenticated garbling is a technique which combines garbled

circuits with information-theoretic MACs to obtain actively secure garbled circuits. In contrast to garbled

circuit approaches, secret-sharing based protocols typically require less bandwidth. For passive security,

good performance for secret sharing was in the landmark paper of [GMW87] in the two-party setting.

In the multi-party setting, Beaver’s circuit evaluation approach [Bea91] is seen as the state-of-the-art

for passive security. Between garbled circuits and secret sharing, there is not much difference in terms

of computation but in secret-sharing based protocols, we have seen the advantage of a pre-processing

phase as demonstrated by Beaver. By moving the majority of the complexity to an input-independent

pre-processing phase, we can very quickly perform the actual computations once the inputs are available.

State-of-the art performance in this category has been achieved in MASCOT [KOS16] and the subsequent

protocols in Overdrive [KPR18] (LowGear andHighGear). Here,most of the improvements have come from

improvements in securely generating multiplication triples. �e two main techniques for this have been

some form of homomorphic encryption and oblivious transfer.

Furthermore, we have seen the alternative notion of covert security. Here, state-of-the-art performance in

this setting was achieved in [Dam+13] for protocols based on secret sharing. In this case, we can optimise

the pre-processing phase using cheaper cut-and-choose approaches while running the same online phase.

For garbled circuits, a state-of-the-art protocol with covert security was presented in [Hon+19] for the

two-party setting, who also achieve public verifiability.

Finally, the advantages of the existence of an honest majority have been shown. In this case, state-of-the-

art performance for the specific three-party casewith one corruption has been achieved by using replicated

secret sharing for both passive and active security with ASTRA [Cha+19], which is based on the two works

of Araki et al. earlier. �ese works have the additional advantage that they support the representation of

inputs as ring elements (such as the ring over 232
or 264

, leading to very fast protocols in practice. In the

generic honest-majority setting over fields, state-of-the-art performance is achieved in [Chi+18]. For the

same setting over rings, their performance is matched by Abspoel et al. [Abs+21].



Chapter 4

MPCCompilers

When looking at the state-of-the-art concrete protocols in Chapter 3, they are based on exploiting the

characteristics of a certain technique. For example it was shown how state-of-the-art performance for

active security and n parties could be realised using secret sharing and pre-processing with OT. Further-
more, for obtaining covert security (with public verifiability), replicating garbled circuits has proven to be

very effective. However, the fact that these protocols get their performance from exploiting the underlying

technique means that if in the future a very efficient way to (e.g.) evaluate neural networks were to be

found in the passive security setting, there is no generic approach to make this active or covert secure.

�is is where the idea of general transformations or compilers comes in. Actually, the first real MPC

compiler has already been explained in the form of the GMW compiler. By letting parties commit to their

inputs and “proving" the correctness of the messages communicated, they transform arbitrary passively

secure protocols into actively secure ones. While this was a fundamental feasibility result, the resulting

protocols are far frompractical. Next to efficiency issues, their approach does notmake black-box use of the
underlying protocol, meaning the semi-honest protocol needs to adhere to a set of properties for the GMW

compiler to work. In contrast, most works on such MPC compilers nowadays make use of replicating

calculations, like the cut-and-choose approach we have seen in the previous Chapter 3. Another related

idea is known as MPC in the head or player virtualisation. �is idea was first introduced by Ishai et al. in

2007 [Ish+07; IPS08] in the context of zero-knowledge proofs and later optimised by Lindell et al. [LOP11].

By treating the passively secure protocols in a black-box manner, they were able to obtain the first generic
transformation in the form of a compiler.

4.1 Player Virtualisation

Even though the player virtualisation paradigm is fairly straightforward, it has led to many promising

insights for the design of generic compilers for increasing the level of security of MPC protocols. �e

basic intuition of this paradigm is to let the parties “imagine" or “simulate" a number of virtual parties.

�ese parties then execute the weakly secure protocol on behalf of the real parties to compute the desired

functionality. As mentioned previously, the first work to introduce this paradigm for constructing a

generic compiler for obtaining active was by Ishai et al. in 2007 [Ish+07; IPS08] and is known as the IPS
Compiler. In this compiler, the real players simulate a set of virtual parties. Now, to achieve active security
from a passive secure protocol, these virtual parties are then checked for honest behaviour by other real

35
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(a) Many-to-one virtualisation (b) One-to-many virtualisation

Figure 4.1: Two player virtualisation strategies

parties via a construction known as watchlists. �e idea is that each party chooses the randomnesses it will

use to execute the semi-honest sub-protocols for each virtual party. Using oblivious transfer, each other

client then obtains a random subset of these random seeds with which they can check the behaviour of

this party for a subset of the virtual parties. �eir protocol is black-box with respect to the passively secure

inner protocol but not yet with respect to an actively secure outer protocol.

Roughly speaking, two fundamentally different approaches for applying player virtualisation to increase

the security level of anMPCprotocol can be distinguished. A schematic illustration of these two approaches

can be found in figure 4.1.

�e first approach in figure 4.1a is to let multiple parties simulate the same virtual party, which we call
many-to-one virtualisation. Increased security in this approach is obtained by the original parties knowing
what the virtual party should be sending and verifying that the other real party, simulating the same

virtual party, follows the protocol honestly (for this virtual party). In figure 4.1a, we can for example see P1
checking the behaviour of P2 in the virtual partyV1. Since P1 simulates the same virtual party, he knows

exactly what P2 should be sending and can detect faulty behaviour. �is approach is generally taken when

aiming for active security since every message communicated by the real party can be verified. However,
letting all the parties check all the messages of all the other parties results in the need for one virtual party

per pair of real players, which incurs a quadratic complexity in terms of virtual parties and leads to a large

computation and communication overhead.

�e second approach is depicted in figure 4.1b, where the idea is to let one real party simulate multiple vir-

tual parties or one-to-many virtualisation. In this approach, increased security is usually obtained by letting
the real parties check a subset of the virtual parties of the other players. �is is amore efficient approach to

the previous one since the number of virtual parties that need to be simulated scales linearly in the number
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of parties. However, this approach does not guarantee to catch malicious behaviour since not all virtual

parties can be checked to maintain privacy of the inputs. �is approach is thus mainly applied when aim-

ing to obtain covert security. �is approach is however rather flexible as the number of virtual parties can

be scaled up or down in order to facilitate more checks and an increase in the deterrence rate. In figure

4.1b, we can see P2 and P3 checking the behaviour of virtual partyV1
1 of P1. If P1 wants to cheat, he must

cheat in at least one of its virtual parties and as a result,P2 andP3 have a 50% probability to detect cheating

behaviour in this example.

4.1.1 Covert Security

�e idea of replicating calculations to obtain a compiler for realising covert security was first introduced by
Damgård, Geisler andNielsen in 2010 [DGN10], in the form of a cut-and-choose approach. �eir approach

works for any secret sharing based protocol by performing the calculations twice, once on the actual shares

and once on a set of dummy shares which can be used to verify correctness later. With an overhead of two
times the passive protocol, they reached a deterrence rate of

1
4 . However, their approach only works for an

honest-majority.

�e previously introduced compiler by Lindell, Oxman and Pinkas [LOP11] (based on the player virtu-

alisation paradigm) does work in the dishonest majority setting for obtaining covertly secure protocols.
However, the communication- and round complexities of the compiler depend on the complexity of both

the inner and the outer protocol. �is means the resulting protocols either have a lot of rounds or a large

communication overhead and do not scale well for a larger number of parties. Furthermore, the resulting

protocols are not publicly verifiable.

4.1.2 Active Security

In 2018, Damgård, Orlandi and Simkin [DOS18] presented one of the first compilers for active security by
using player virtualisation. In their work, they use the many-to-one player virtualisation from figure 4.1a.

If every virtual party is at least emulated by one honest party, this party can detect faulty behaviour by

other parties emulating the same virtual party and abort if necessary to ensure correctness of the output.

Furthermore, if the corrupt parties do not emulate more virtual parties than the corruption threshold of

the original protocolΠ f , privacy is also preserved. A rough overview of the steps in the compiler for active

security, COMPACTIVE can be found in compiler COMPACTIVE. Note that a lot of (non-trivial) details have been
omitted here in order to focus on the core ideas behind the compiler. For example, the way in which the

parties agree on the inputs in a secure manner and the augmented protocol Π f ′ that is actually executed

by the virtual parties. For a full, formal description of the compiler we refer to the original work [DOS18].

Note that ifmore than one active corruptionwould be present this transformationwould notwork anymore

since the adversarymay corrupt two parties executing the same virtual party and get away with cheating in

that virtual party. To support more corruptions, the number of parties executing the same virtual parties

would need to be increased at the cost of efficiency. Concretely, given n parties with t corruptions, each
virtual party would need to be simulated by at least t + 1 parties, meaning each party will participate in the
simulation of t + 1 virtual parties.
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Compiler COMPACTIVE
�is compiler transforms a passively secure protocolΠ f for n parties into an actively secure protocol for n partieswith one
active corruption.

1. Start with a passively secure n-party protocol (n ≥ 3).

2. Instead of letting the real parties execute the passively secure protocol directly, let every pair of real

parties simulate virtual parties that will compute the desired functionality using the passively secure

protocol.

3. For 1 ≤ I ≤ n, real party Pi and Pi+1 will simulate Vi (where wrap-around is assumed, meaning

Pn+1 = P1). To obtain the inputs for the virtual parties, each party Pi uses additive secret sharing

to share its input among all virtual parties. Each virtual party Vi now has as input to the protocol

one share of every original input: (xi
1, . . . , x

i
n). For the random tapes for the virtual parties, the real

parties invoke an ideal functionality that sends to random tape to be used to the corresponding real

parties.

4. �e virtual parties will now execute a related passively secure protocolΠ f ′ in the following way:

• WheneverVi sends a message toV j, this is achieved by letting Pi and Pi+1 both send the same

message to P j and P j+1. Here, observe that if either Pi or Pi+1 would be trying to cheat at this

point, this would result in a mismatch between the twomessages.

• To achieve active security, the receiving party V j which consists of P j and P j+1 locally check

whether the received messages are identical and if not, notify all the parties and abort.

5. Finally, if none of the parties aborted during the protocol execution, each real party outputswhatever

Π f ′ outputs.

�is transformation works well for a small number of parties, but for larger numbers of parties, the linear

computational overhead as a result of every party needing to simulate t + 1 virtual parties becomes large.
Next to that, this approach incurs a multiplicative overhead in terms of communication since each party

simulating a virtual party needs to send a message to every real party simulating another virtual party

whenever amessage needs to be exchanged between these virtual parties. If in the original passively secure

protocol lmessages are sent during the execution, the protocol resulting from this compiler sends roughly

O(l ∗ t2) messages. Finally, their approach is based on sacrificing the number of corruptions the protocol
can tolerate. For a larger number of parties, the amount of corruptions the resulting protocol can tolerate

drops to around

√
n. All in all, this approach is not practical for a large number of parties.

4.1.2.1 Weak Privacy

As a solution to the large amount of redundancy introduced in [DOS18], a followup work was presented

in 2020 by Eerikson et al. [Eer+20] in the specific 3-party setting with at most 1 corruption. By making

slightly stronger assumptions on the passively secure protocols, they are able to produce protocols roughly

twice as efficient in terms of communication overhead compared to [DOS18].
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�eir improvement over the previous compiler comes from the observation that for many concrete

protocols, for example those following the share-compute-reveal paradigm such as [BGW88] and [Bea91],

no information on the private inputs can be learned by an active adversary up until the very last step in the

protocol, the reveal phase. �is slightly stronger assumption is known as active security with “weak privacy"
[Gen+14] or “active privacy" [PL15]. �is means that any misbehaviour during the computational phase of

the protocol execution may break the correctness of the outcome but cannot compromise the privacy of the
inputs.

Because of this observation, not every message needs to be checked during the computation phase and

thus it suffices to only perform one check after the computation phase. Because of this, not every message

needs to be checked immediately anymore, and thus not everymessage needs to be directly communicated

redundantly anymore. �e idea of their compiler is now to elect one real party for each virtual party to

be the “brain" of that virtual party which sends all the messages on behalf of that virtual party to all the

real parties. �e other real parties for that virtual party, the “pinkies" still receive these messages from the

brains and can locally follow the protocol execution. Compared to the compiler of [DOS18], this leads to a

change fromO(l ∗ t2) toO(l ∗ t + t2) in terms of communication complexity.

Now, instead of validating every message separately as soon as they are sent, all the parties perform only

a single check to validate the correctness of all the previous messages before the reveal phase. �is can be

done very efficiently by merely checking the consistency of the hashes of the protocol transcripts. Now, if
any of the brains were be to misbehave during the computation phase of the protocol, at least one of the

messages it has sent during the computation phase must be different from the view of at least one of the

pinkies and thus the hashes must mismatch.

4.2 Covert Security with Public Verifiability

Compilers for covert security with public verifiability were only presented recently. In 2020, Damgård,
Orlandi and Simkin presented the first compiler that transforms arbitrary, passively secure two-party

protocols into two-party covertly secure protocols with public verifiability [DOS20]. Furthermore, their
compiler provides a black-box transformation, meaning that it does not need any assumptions on the
inner workings of the passively secure protocols it transforms. As a result, it will work for any protocol,

regardless of the technique it is based on. �ismeans it provides a generic transformation for any protocol

based on, e.g., secret-sharing, garbled circuits or homomorphic encryption as well as any future insights

that might arise.

While Damgård, Orlandi and Simkin sketched how their two-party compiler works in the multi-party

setting, the first fully described multi-party compilers for covert security with public verifiability were

presented in 2021 by Faust et al. [Fau+21] and concurrently by Scholl, Simkin and Siniscalchi [SSS21],

which is unpublished at the time of writing.

All these three works have made a distinction between compilers for input-independent protocols and a

separate compiler for input-dependent protocols. �e input-independent compilers are all based on the

cut-and-choose strategy, while the input-dependent protocols follow the one-to-many player virtualisation

strategy. �is distinction is made since a lot of state-of-the-art MPC protocols consist of a pre-processing

phase without private inputs followed by an online phase. �e input-independent compilers are conceptu-
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ally simpler andmore efficient since there are no private inputs to be kept secret.

In [DOS20], it is proven that a protocol which constitutes of a covertly secure offline phase with public ver-

ifiability and an actively secure online phase constitutes an overall protocol with covert security and public

verifiability. Since the online phase of a lot of protocols in the pre-processing model such as SPDZ-like

protocols is actually not that complex, the approach to optimize such protocols is not to apply the compilers
to the (input-dependent) online phase of a passively secure version of SPDZ. Instead, the go-to approach is

to combine the actively secure online phase of SPDZwith our compiler applied to a passively secure offline

protocol. Since the offline phase contributes the vast majority of the complexity of such protocols, a lot of

improvement on the overall protocol can be made by applying the input-independent compiler to these

offline protocols.

4.2.1 Input-independent Compilers

As explained earlier, the input-independent compilers all follow the cut-and-choose strategy to transform

passively secure protocols into covertly secure protocols with public verifiability. Roughly speaking, all of

these compilers follow the same blueprint for producing covertly secure two-party and multi-party proto-

cols in respectively [DOS20] and [Fau+21; SSS21]:

1. First, the parties are bound to the randomness seeds they should use for each of the k executions of
the passively secure protocol.

2. Next, the parties engage in kparallel executions of thepassively secure protocolwhere eachparty uses
the agreed randomness from the first step. For each execution, party Pi ends up with the transcript

transi
j of execution j.

3. After the k executions, the parties randomly choose a subset of t of these executions, t < k to verify
the behaviour of the other party/ parties.

4. �e parties announce the randomness they have used in the protocol runs in [t] to the other parties.

5. Knowing these randomnesses, the behaviour of the parties becomes deterministic and thus the par-

ties can simulate the behaviour of all the other parties in the passively secure protocol executions.

Now, they compare the resulting transcript trans’i
j to the actual transcript trans

i
j of the jth execu-

tion for party Pi.

6. If there is amismatch between transi
j and trans’

i
j, the party finds the first party which has sent an

incorrect message and generates a certificate to blame this party. �e resulting deterrence rate is
t
k .

�e idea of “derandomizing" the protocol runs is similar to the concrete protocol by Hong et al. [Hon+19].

However, the resulting protocols are not yet publicly verifiable. To achieve this, the parties sign the (mes-
sages in the) transcript (see Section 2.1.2 for more details). �is way, the parties can be held accountable

for the messages they have sent during the executions. If a party is now found guilty of cheating, the other

parties can publish the signed transcript of the protocol execution of the cheating party, which anyone can

verify.
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It is essential for every protocol with security and public verifiability against covert adversaries that the

adversary is not able to abort and prevent the generation of a certificate after it has learnedwhat executions

are going to be opened. �e intuitive approach described above will therefore not work since the adversary

can simply stop responding after it has learned which executions will be opened in step 3. �e main

differences between the works by [DOS20] and [Fau+21; SSS21] lie in the way how the t executions are
chosen and how this so-called selective abort is prevented. Here, [DOS18] usewatchlistswhile [Fau+21; SSS21]
use time-lock puzzles.

4.2.1.1 Watchlists

In [DOS20], the selective abort is prevented by letting the parties select individually which executions they

want to open and asking the other party in an oblivious way to open these executions by revealing the used
randomness already before the protocol executions. Because the opening information is transferred in an

oblivious way, the adversary does not know which of the executions are being checked and thus the ad-

versarywould need tomake the choice to abort the protocolwithout information of the checked executions.

�is watchlist approach, works well in the two-party case but falls short for multi-party protocols. For the
resulting covert protocol to work, we need to be guaranteed that at least one execution remains unopened,

which can then be used as the output of the protocol. With only two parties, we can guarantee this by

simply letting the parties choose a watchlist of size < k
2 . However, with multiple parties independently

choosing a subset of the protocol runs to open, the size of the watchlist is upper bounded by
t−1
n , which

results in a low deterrence rate. �e other option is to increase the deterrence rate by choosing a larger

watchlist size and running the protocol several times until we get lucky and there is one execution which is

unchecked by all the parties. However, this makes it very easy for an adversary to perform a denial-of-service
attack; by simply choosing a very large watchlist, the adversary can require this protocol to be run many

times.

4.2.1.2 Time-lock Puzzles

Instead of the probablistic approach needed to obtain large deterrence rates with the watchlist approach,

it would be better if we could somehow guarantee one unopened execution by performing a coin-toss to

select one execution which we leave unopened to maximise the deterrence rate by opening the other k − 1
executions. To do this successfully in a compiler, we need to guarantee that if an adversary sees the result

of this coin-toss, it is already too late to abort the protocol. In other words, the honest parties need to have

all the information to produce a certificate before the result of the coin-toss is revealed to all the parties.
�is way, they can create a certificate even if the adversary stops responding.

�e works of [Fau+21] and [SSS21] both solve this problem using so-called time-lock puzzles. Time-lock
puzzles are a technique to encrypt something into the future such that we are guaranteed that themessage
is kept secret at least for some predefined time. �e shared coin as well as the randomness seeds according

to this shared coin are then locked in such a time-lock puzzle. In [Fau+21] �is puzzle is then signed by

all the parties as evidence. If the adversary has to sign the puzzle before it could possibly have opened the

puzzle, the selective abort is prevented. Next, the shared coin is revealed and all the parties announce

their seeds according to this coin. If the adversary stops responding at this point, the honest parties can
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solve the puzzle to reveal the randomness used by the adversary. By leaving the execution corresponding

to the shared coin toss unopened, all but one of the total of k executions can be checked. �is way, a

deterrence rate of
k−1

k can be consistently achieved which greatly decreases the complexity for achieving

high deterrence rates compared to the watchlist approach. A deeper analysis of this behaviour can be

found in Chapter 7.

For creating the time-lock puzzle, the compiler uses a general-purpose MPC protocol with active security

where each party inputs their own coin toss and the seeds to open all the protocol executions. �e ideal

functionality which is implemented by the protocol then calculates the shared coin toss, generates a puzzle

containing the opening information of all the parties for the checked executions according to the shared

coin toss and sends this to all the parties.

�e adversary can now decide to sign the puzzle or abort without knowing which execution will be

checked. After everyone signed the puzle, the shared coin toss is revealed to all the parties. Now, two

cases are distinguished; 1. everyone honestly shares the opening information for the checked executions

to the other parties or 2. the adversary does not share his opening information, in which case the honest

parties can solve the time-lock puzzle and still obtain enough information to produce a certificate prov-

ingmalicious behaviour. �efirst case is referred to as the optimistic casewhile the latter is the pessimistic case.

�e time-lock approach thus needs a general-purpose MPC protocol with active security for the puzzle

generation, which are known to be complex. Furthermore, the time-lock puzzle approach also requires

a trusted setup for producing the public parameters and a base puzzle. �is trusted setup will most likely

also require an actively secure MPC protocol in practice.

4.2.2 Input-dependent Compilers

�e three works from the previous section all follow the one-to-many player virtualisation strategy in a

similar manner for input-dependent protocols as well. Instead of letting the parties directly execute the

passively secure protocol k times in parallel, they all simulate k virtual parties who execute a related kn-
party protocol just once. Intuitively, the input-dependent compilers work in the following steps:

1. Suppose there are parties P1,P2, . . . ,Pn who wish to compute some function f (x1, x2, . . . , xn) =
(y1, y2, . . . , yn). Here, Pi holds private input xi

and receives output yi. Furthermore, they have a

kn-party protocol which calculates a related functionality.

2. Now, party Pi imagines k virtual partiesVi
1,V

i
2, . . . ,V

i
k. �is results in a total of n ∗ k virtual parties

who will execute the nk-party protocol.

3. Pi splits his private input xi
into shares xi

1, x
i
2, . . . , x

i
k using the k-out-of-k additive secret sharing

scheme. �ese shares will be used as the inputs of the virtual parties belonging to Pi. Furthermore,

the parties agree on the k random seeds that will be used by the k virtual parties.

4. �e kn virtual parties now execute a related, passively secure protocol. Each virtual party inputs its
share of the original input and receives an additively secret-shared output. Here, the real parties

communicate on behalf of their virtual parties. Each real party Pi ends up with a transcript trans
i
j

of each virtual partyVi
j and k output shares.
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5. �e parties randomly choose a subset of t < k of the virtual parties which they would like to check.
�is subset of virtual parties will be checked for every real party.

6. �eparties announce the randomness and inputs used by each virtual party in [t] to the other parties.

7. To verify the behaviour of a virtual party, the real parties can simulate the nk-party protocol using the
randomness, input and messages sent/ received by that virtual party to obtain the simulated tran-

script trans’i
j.

8. If there is a mismatch between transi
j and trans’

i
j, the party produces a certificate to blame the

corresponding real party.

9. If no cheating behaviour is detected, the virtual parties end up with an k-out-of-k additive secret
sharing of the outputs of the real parties.

�e structure of this blueprint is similar to the input-independent compilers but the additional need to keep

the inputs private yields some extra challenges. To hide the input of the real party, we use additive secret

sharing to hide the input and use these shares as the inputs of the virtual parties in a related protocol which

takes the t-out-of-t secret sharing of the inputs of all the real parties and outputs a t-out-of-t secret sharing
of each party’s output. Furthermore, to derandomise and verify the behaviour of the virtual parties, we

nowneed to reveal the input used by the virtual party in addition to the randomness seed and the incoming

messages of this virtual party. To be able to correctly simulate the protocol execution of a virtual party, we

therefore require all the messages being sent to all the parties, including messages sent from one virtual

party to another virtual party belonging to the same real party.

4.2.2.1 Watchlists

�e similarities and differences of the watchlist approach and the timelock approaches in the input-

dependent setting are very similar compared to the input-independent compilers. Note that in [DOS20]

only a rough sketch for extending their two-party compiler to the multi-party case is presented. If we

want to tolerate a fraction of c corruptions, this results in a total of cn corrupted parties. In the watchlist
approach, for every pair of real parties (Pi,P j) with i , j, Pi checks exactly one virtual party of P j, chosen

uniformly at random. To guarantee privacy of the inputs of the real parties, every real party simulates

cn + 1 virtual parties, which ensures the corrupted parties together see at most cn out of the cn + 1 views
of the virtual parties of a real party, which is not enough to reconstruct the actual input of the real party.

In total, an adversary has control over cn ∗ (cn + 1) virtual parties and gets the views of (1 − c)n ∗ cn other
virtual parties. To ensure the privacy of the inputs of the real parties is preserved, we thus require the

protocol executed by the virtual parties to tolerate a total number of corruptions:

cn ∗ (cn + 1) + (1 − c)n ∗ cn = cn2 + cn

To calculate the deterrence rate of this approach, observe that a cheating party must cheat in at least one of
its cn+1 virtual parties. �e probability that at least one of the honest parties checks this virtual party can be
calculated as the inverse of the probability that none of the honest parties check this virtual party. As stated
in the original work, this results in a deterrence rate of
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(
1 −

1
cn + 1

)(1−c)n

Using binomial approximation, we get that the deterrence rate of the watchlist approach is ε ≈ 1−c
c .

4.2.2.2 Time-lock Puzzles

Time-lock puzzles are applied in a very similar fashion to the input-independent compiler. Now, instead

of inputting only the seeds and a coinflip to the puzzle generation functionality, the parties also input

the inputs used by their virtual parties. Furthermore, we can reach the same deterrence rates as the

input-independent compiler by simply selecting k − 1 out of the k virtual parties to open. Since the inputs
of the real party are shared using k-out-of-k additive secret sharing, we can safely open all but one of the
virtual parties. �is way, we can dynamically tweak the compiler to be more secure or more efficient by

simply changing the number of virtual parties. With the watchlist approach, the deterrence rate is more

of a consequence of the number of corruptions that need to be tolerated. Finally, since all the parties are

checking the same virtual parties of a real party, the kn-party protocol now needs to tolerate only kn − 1
passive corruptions instead of the cn2 + cn corruptions in the watchlist approach.



Chapter 5

NewDesign for PVCCompilers

While the time-lock solutions from 2021 in [Fau+21; SSS21] have significantly improved the earlier watch-

list approach from 2020 [DOS20], there are still a few shortcomings with respect to the practicality of

these protocols. First of all, these compilers still make use of general-purpose actively secure MPC for

constructing the time-lock puzzles. �e construction and evaluation of known instantiations of such

time-lock puzzles requires a number of public-key operations which are known to be expensive in actively

secureMPC.�ese time-lock puzzles always need to be solved by the parties in case any cheating happened
in order to be able to produce a certificate.

Furthermore, the time-lock based approaches heavily relies on the assumption of synchronous communi-

cation. In the theoretical setting, it is easy to define a timeout for a communication round, but this does

not work on the networks that we can use in practice such as the internet. In the internet, packets sent

from one machine to another machine need to go via a number of hops (such as routers). At each of these

hops, the packets may be delayed or even lost completely, after which the packet has to be retransmitted.

Because of this, it is very hard to predict when a packet should be arriving at the destination and thus it
is very hard to define a timeout after which we can be certain we can proceed to a new communication

round. �erefore, the security of MPC protocols in practice is preferably not reliant on the (unrealistic)

assumption of a synchronous communication network.

However, looking at the asynchronous communication model, it is impossible to distinguish whether a

party or the network is just being slow, or a party is actingmaliciously. Because of this, the adversarymust

not be able to compute additional information and gain an advantage before sending its next message.

However, time-lock constructions can not guarantee this. In the time-lock approaches of [Fau+21; SSS21],

the time needed to solve the puzzles is set rather low because the honest parties must always solve the

time-lock puzzle in case of any malicious behaviour to be able to produce a certificate. As a result, it

seems very much possible for a malicious party to solve this time-lock puzzle in a reasonable amount

of time and see which executions are going to be checked before signing the data. With this power, the

adversary can prevent the creation of a certificate in case he does not like which executions are being

checked. �is completely breaks the definition of publicly verifiable covert security. �e other parties can

notdifferentiate betweenamaliciousparty solvinga time-lockpuzzle or anhonest partywho is simply slow.

In this chapter we present a new solution to prevent the selective abort attack in the shared coin-toss

approach based on publicly verifiable secret sharing. �e compiler treats the passively secure protocol in a

45
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black-box manner and is thus suitable to be applied to a large number of known or future MPC protocols.

Furthermore, the subprotocols introduced by the compiler are suitable to be run in an asynchronous

manner. �erefore, if the passively secure protocol is asynchronous, the resulting covertly secure protocol

will also be asynchronous which makes it very attractive for practical use-cases. By performing more or

fewer k parallel executions, we can dynamically choose between more security or more efficiency. Here, k
repetitions results in a deterrence rate ε of k−1

k .

We will first present a compiler for passively secure protocols without private inputs such as the important
class of pre-processing protocols. We start with a technical overview of our construction, after which we

will look at the building blocks used by our compiler. After that, a compiler for input-independent protocols

COMPPVC = (Πcomp,Πopen,Πreconstruct)will be presented together with the accompanying Blame and Judge
algorithms. Finally, we present a security analysis of this compiler. In the last section of this chapter we ex-

plain howwe can apply player virtualisation to design a compiler that works for input-dependent protocols

as well.

5.1 Technical Overview

As a general blueprint for the previous works on compilers for covert security, some form of cut-and-

choose is used. In general, a passively secure base protocol is executed k times in parallel after which
t < k executions are opened and checked by all the parties. For input-independent protocols such as triple
generation, the unopened execution(s) can then be taken as the output of the protocol.

In thiswork, opening executions is done by committing the parties to k seeds thatwill be used by the parties
to derive their internal randomness in the k parallel executions of the protocol. After the k executions are
finished, the parties derandomise k − 1 of these executions by simply publishing the seed they have used
in these executions. To pick the k − 1 executions to check, the parties engage in a joint coin-toss protocol
to select the one execution that should remain hidden. Using the seeds of all the parties for the selected

executions, the parties can simulate the executions and compare the transcripts to the transcripts obtained
from the actual execution. In case of a mismatch between these transcripts, they can produce a certificate
which proves the cheating to anyone.

To be able to produce a certificate, the parties aremade accountable for theirmessages by letting each party

sign all the messages it is sending in the protocol executions. If it is later detected that a party has cheated
during any of the executions, anyone can verify that the adversary did sign the malicious messages. As

explained before, it is important that the adversary can not prevent the creation of a certificate in case they

do not like the executions that are being checked. �erefore, the naive joint coin-toss approach illustrated

above will not work since there the adversary can simply abort after seeing the outcome of the coin-toss.

Instead, we first let all the parties use a publicly verifiable secret sharing scheme (PVSS) as explained in

Section 2.2.4 to share their opening information to all the parties. After this, the parties run the joint

coin-toss to select which executions are going to be opened. �e parties then simply publish their seeds

according to the coin-toss. If an adversary stops responding at this point, the parties already have the

shares of the adversary and can reconstruct the seed anyways.

�e PVSS scheme guarantees that the shares distributed by the adversary will reconstruct a well-defined

seed, to which the adversary is also bound by the published proof. In case the verification of the shares
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fails for some seed of some party, the parties abort and anyone can verify that the adversary tried to cheat

in the distribution phase. �is verification can be performed without interaction with the distributor or

any of the other parties. �erefore, we can include this in a publicly verifiable certificate. Furthermore, the

proof of correct decryption in the PVSS scheme ensures that an adversary can not ‘incriminate’ an honest

party by publishing a different share of a seed of the honest party in case it needs to be reconstructed.

Finally, since anyone can verify the PVSS scheme, it is not possible for an adversary to somehow claim that

an honest party is malicious.

In thework on publicly verifiable secret sharing, some formof public communication is assumed,meaning

that all the parties see the samemessages that are distributed and decrypted. Hypothetically, one can view

this as some public bulletin board where all the parties post their messages to. For this work, we emulate

this public bulletin board by means of a secure broadcast. To broadcast a message m securely, the sender

sends m to all the other parties first. After that, each party hashes the received message m and sends this

to all the other parties. By pairwise comparing the received hashes, the parties can be guaranteed that they

received the samemessagem.

It is important to keep the seeds locked until after the coin-toss. �is means the adversary should not get

enough information (shares) to reconstruct the seeds on its own but should always require at least one

share of an honest party. �erefore, our approach is based on the assumption that the majority of the

participants are honest.

As explained earlier, the time-lock approach breaks in case of asynchronous communication. Our approach

is expected to be suitable to be ran in the asynchronous model since the seeds are not locked by timing

assumptions but by means of secret sharing. Another important property of asynchronous MPC protocols

is tobeable to continue even if someof theparties stop responding. Ourapproachhas this property sincewe

do not require every party to succeed in decrypting their share but can continue as soon as we have enough

shares according to the chosen threshold. �e adversary still has the possibility to abort the protocol before

distributing the shares of its seed openings, but the choice to abort has to be made without knowing the
outcome of the coin toss. We stress that this is also inherent to any of the previousworks on such compilers.

Looking at the time-lock approach for example, the adversary is able to abort at any point in the actively

secure puzzle generation. �is abort can not be prevented, but it is important to ensure that the decision

to abort has to be made without knowing the outcome of the coin-toss. Since the outcome of the coin-

toss is only revealed after all the parties have already received consistent shares by the adversary, this is

clearly achieved by our construction. Finally, compared to the time-lock approach, we avoid the use of

complex general-purpose actively secure MPC and the required trusted set-up for the time-lock puzzles

while obtaining the same (optimal) deterrence rate.

5.2 Building Blocks

We require several building blocks to obtain a working compiler. �ese are commitment schemes,

signature schemes, joint coin-tossing, publicly verifiable secret-sharing and finally a passively secure base

protocol.

Our construction makes use of a commitment scheme (Com, Open, Verify) (definition 2.1.1). For ease of
notation we assume the commitment scheme to be non-interactive, meaning no additional interaction is



48 CHAPTER 5. NEWDESIGNFORPVCCOMPILERS

required between the partieswhen opening a commitment. With some simplemodifications, our compiler

will work with interactive commitment schemes as well.

Next to that, we use a signature scheme (Gen, Sign, Verify) (definition 2.1.4) with existential unforgeability
against chosen plaintext attacks. Before the start of the protocol, we assume each party Pi has executed Gen
to register a public-private key pair (pki, ski). Finally, we use a publicly verifiable secret sharing scheme
(Distribute, Verify, Reconstruct) (definition 2.2.2).

5.2.1 Joint Coin Tossing

�e adversary should not be able to influence the outcome of the coin-tossing protocol. �erefore, we re-

quire a coin-tossing protocol with security against an active adversaryA. An ideal functionality Fcoin re-

ceives oki from each party Pi, i ∈ [n] and outputs a random k-bit string seed to all the parties:

Ideal Functionality Fcoin

• Consider a number of parties P1,P2, . . . ,Pn

• IfFcoin receives amessage (flip) fromPi, it stores (flip,Pi) inmemory if it is not stored inmemory
yet.

• Once Fcoin has stored all the messages (flip,Pi) for i ∈ [n], Fcoin picks a random value r and sends
(flip, r) to all the parties.

5.2.2 Passively Secure Protocol

Our input-independent compiler takes a passively secure protocol (without private inputs) Πpass for

calculating an arbitrary function (y1, y2, . . . , yn) ←− f () and transform it into a protocolΠPVC with covert

security and public verifiability. Furthermore, we assume the passively secure protocol is secure against

a constant fraction of corruptions 0 ≤ c ≤ n − 1. Furthermore, we require each party engaging in Πpass

to receive a transcript which is consistent with the transcripts of the other parties if everyone behaved

honestly. �is is required in order to be able to compare simulated transcripts and real transcripts later on.

To obtain such transcripts, we require (1) a fixed ordering of the messages and (2) that every party is able

to see all the messages sent in the execution. Every passively secure protocol can be changed such that it

has (1) by, for example, adding a program counter to all the messages. Similar to [Fau+21], we can simply

broadcast everymessage sent during the protocol safely by assuming the passively secure protocol tolerates

n − 1 corruptions since this implies the adversary is allowed to view every message anyways. If we would
want to tolerate passively secure protocols with security against lower numbers of corruptions, we could

use symmetric keys between every pair of parties to encrypt the pairwise communication channels. Similar

to [DOS20], we can then later reveal the keys for the communication channels for the opened executions

alongside the randomness seeds. For ease of notation, we will not include this in our compiler description

but believe adding this would be straightforward.
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5.3 Input-independent PVCCompiler

In this section we will present the construction for our compiler for covert security with public verifiability

COMPPVC = (Πcomp,Πopen,Πreconstruct) for protocols without private inputs. We start by explaining the seed
generation procedure. After that, the mechanism for opening executions is explained followed by the ac-

companying seed reconstruction procedure. Using these, the complete compiler is presented followed by

the additionalBlame- andJudge algorithms. Finally, a security analysis of the input-independent compiler
is presented. For readability, we present our protocols in the synchronous model. To make these run in an

asynchronous fashion, techniques for “emulating" a synchronous protocol on an asynchronous network as

presented in [Dam+09] can be used.

5.3.1 Seed Generation

To obtain covert security for passively secure protocols, we require the ability to verify the behaviour of the

parties in every step of the protocol, including the randomness derivation. To ensure the security of any
passively secure protocol, we therefore need to be able to verify the randomness generation of the parties

to be uniform as well. To this end, the parties first engage in a seed generation protocol Πseed for each of

the k executions. �e seed generation protocol can be found in protocolΠseed. Every partyPi first generates

a private seed seedi
priv

and a public seed share seedi
pub
. Now, each party can reconstruct the (same) public

seed seedpub as:

seedpub =

n⊕
j=0

seed
j
pub

Finally, the parties receive their own private seed, information for opening their own seed and commit-

ments to the private seeds of all the parties and the public seed. �e (private) seed from which they will

actually derive their randomness during the execution of the passively secure protocol is calculated as

seedi = seedi
priv
⊕ seedpub. Because of the XOR, we are guaranteed that the seeds used by the parties

are actually distributed uniformly at random.

Protocol Πseed

�is protocol works with an arbitrary number n of parties P = {P1,P2, . . . ,Pn}. To generate uniformly

random seeds for every party, the parties execute the following steps:

1. Party Pi samples uniformly random a private seed seedi
priv
, generates (ci, di) ←− Com(seedi

priv
) and

sends ci
to the other parties.

2. Pi samples uniformly random a public seed share seedi
pub

and sends seedi
pub

to all the other parties.

3. Each Pi calculates the public seed seedpub as
⊕n

j=0 seed
j
pub
.

4. If the parties have not received all the expected messages before some predefined timeout,

the parties send abort to all the other parties and output abort. Otherwise, Pi outputs(
seedi

priv
, di, seedpub, {c j

} j∈[n]

)
.
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5.3.2 ExecutionOpening

Protocol Πopen

At the start of the protocol, all the parties know the encrypted seed shares {Eh(dh)(i, j)
} of every party

Pi, i ∈ [n] in every execution j ∈ [k] for every party Ph, h ∈ [n]. Furthermore, the corresponding proofs
dproofi

j as well as the signatures σ
i
j are known. Finally, each party Pi holds a set of private seed openings

{di
1, d

i
2, . . . , d

i
k}, a set of outputs {y

i
1, y

i
2, . . . , y

i
k} and a set of transcripts {trans

i
1, trans

i
2, . . . , trans

i
k}. To

open k − 1 protocol executions, do the following:

Share verification:

1. First, the parties use the Verify algorithm of PVSS to check the validity of all the shares to generate

the set:

M =
{
(l,m) ∈ ([n], [k]) : PVSS.Verify

(
dproofl

m,Eh(dh)(l,m)
h∈[n]

)
= ⊥

}
.

If any of the parties obtainM , ∅, choose the tuple (l,m) ∈ M with minimal l andm, calculate the

certificate certinvs =
(
pkl, datam,E j(d j)

(l,m)
j∈[n], σ

l
m

)
and output corruptedl.

Joint coin tossing phase:

2. If all the verifications succeed, each party Ph sends (flip) to Fcoin, receives (flip, r) and calculates
the joint coin toss as coin = r mod k.

3. Now, the parties exchange the set of seeds they have used in the k − 1 executions according to the
coin toss such that each party Pi obtains:

Di =
{
dh

j : h ∈ [n], j ∈ [k] \ coin
}

Optimistic case: Each party Pi generates φi
j ←− Sign(d

i
j) for all of its seed openings {d

i
j} j∈[k]\coin

and sends (φi
j, d

i
j) to all the other parties. Each party Pi verifies the signatures and constructs

Di.

Pessimistic case: If a number of parties P j fails to publish their seed shares and/or valid signa-

tures within a given amount of time, the parties engage in an execution ofΠreconstruct to obtain

Di.

Output:

4. Finally, each party outputs (Di, coin).

After the k executions of the passively secure protocols are finished, the parties will engage in the protocol
Πopen for opening k − 1 of the executions. “Opening" an execution means that the parties get access to the
randomness seeds used by the other parties in the execution to make their behaviour deterministic. �is

way, we can then compare their expected behaviour with their actual behaviour. Instead of choosing k − 1
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executions to be opened, our compiler lets the parties throw a coin jointly to select which execution is going

to remain closed and used as output of the protocol. �e ideal behaviour of this coin toss can be found

in ideal functionality Fcoin. To ensure the adversary can not prevent the honest parties from receiving a

(random) outcome of the coin toss, we require a protocol with active security for this. A description of the

entire opening protocol can be found in the description ofΠopen.

At the start of the protocol, all the parties have access to the encrypted shares of the seed openings of all

the parties. Using the publicly verifiable secret sharing scheme, the parties can verify the sharings of all

the seed openings and in case a cheating attempt is detected, output a certificate containing the published

share encryptions together with the released proof, a signature of the cheater and some additional

information needed by a judge. Since we make use of a publicly verifiable secret sharing scheme, this

information can be checked by anyone to see that indeed a cheating attempt took place. In case multiple
cheating attempts take place, the one with the lowest party and execution id is selected to ensure all the

parties agree on which party cheated, as required by the original definition of covert security. If all the

verifications succeed, the parties are guaranteed that the shares will reconstruct to some well-defined

secret and thus they are guaranteed that the adversary can not prevent the honest parties from creating a

publicly verifiable certificate if cheating is detected later on.

In the coin-tossing phase, the parties interact with the coin-tossing functionalityFcoin to obtain the shared

coin and distribute the correct seed openings according to this coin. Now, two things can happen: (i) �e

parties simply announce the seed openings for those executions or (ii) some parties refuse to announce

(some of) their seed openings or their message is slow to arrive. In (i), the parties obtain all the required

seed openings and are done with the protocol. We call this the optimistic case. In (ii), which we call the

pessimistic case, the parties are still missing some of the seed openings. In this case, the parties engage

in the reconstruction protocolΠreconstruct to reconstruct the missing openings from the shares which were

distributed earlier and still obtain the required openings. Note that we not simply report the parties that

refuse to open seeds as cheaters since we do not have any evidence and thus can not obtain a publicly veri-

fiable certificate. Furthermore, in the asynchronous model a party that does not open a seed might still be

honest but itsmessagemay be lost in the network. �e reconstruction protocol will be explained in the next

section.

5.3.3 Seed Reconstruction

A formal description of the reconstruction protocol can be found in Πreconstruct. Note that this protocol

is only executed in case some of the parties are missing some of the seed openings. If all the parties

behaved honestly, Πreconstruct can be ignored. Before tossing the shared coin in the opening protocol, the

parties have already shared all of their seed openings to the other parties using an arbitrary (n, t)-PVSS.
To guarantee that the honest parties can reconstruct missing seed openings in case an adversary refuses to
distribute them, we require that n > 2t.

If reconstructions are required, the parties start Πreconstruct by announcing to all the parties which seed

openings they are still missing. For everymissingmessage they receive, they decrypt their own share of the

published share encryptions of the corresponding seed opening. �is share together with a publicly verifi-

able proof of correct decryption is then sent to the parties which are still missing the seed opening. Using

these proofs, these parties can thenpool together t+1 shares ofwhich the proofs are valid to reconstruct the
correct seed opening. Sincewe assume an honestmajority, we are guaranteed thatwewill indeed receive at
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Protocol Πreconstruct

At the start of the protocol, the encrypted seed openings shares {Eh(dh)(i, j)
} of every party Pi, i ∈ [n] in

every execution j ∈ [k]meant for every partyPh, h ∈ [n] as well as the corresponding proof strings dproofi
j

are publicly known. �e parties recover the seed openings they are missing in the following way:

Missing seeds announcement:

1. Each party Pi starts with a non-complete set of seed openings Di. Assume Pi did not receive the

seed openings dl
m of some party Pl in some execution Pm. Call the set of tuples (l,m) of missing seed

openings Ei.

2. For every tuple (l,m) ∈ Ei, Pi sends a message missing
i
(l,m) to all the other parties.

Missing seed reconstruction:

3. For every missing
j
(l,m) message received by Pi, Pi performs the following steps:

• Ifm == coin, skip this message.

• Otherwise, Pi decrypts its corresponding share di from Ei(di)(l,m)
, computes the string

rproofi
(l,m) and send (di, rproof

i
(l,m)) to P j.

4. For every tuple (l,m) ∈ Ei, Pi does the following:

• For every received messages of the form (d j, rproof
j
(l,m)), Pi verifies the rproof

j
(l,m).

• Once t + 1 of the received proofs are successfully verified, Pi reconstructs the seed opening dl
m

from the t + 1 shares and adds this toDi.

Output:

5. Finally, Pi outputs the set of seed openingsDi.

least t+1honest shares. �euse of a PVSSallows everyone to verify that the distribution and reconstruction

were done honestly, which prevents an adversary from accusing an honest party of cheating.

5.3.4 Complete Compiler

By piecing all of the aforementioned blocks together, we are ready to present the entire compiler inΠcomp

for transforming an arbitrary n-party MPC protocolΠpass with passive security and no private inputs into

an n-party MPC protocol with covert security and public verifiability. �is compiler takes a commitment

scheme, a signature scheme, a PVSS and an actively secure coin tossing protocol to produce a PVC protocol

in the honest majority setting. Finally, note that before the execution of the protocol, we require that every

party participating has registered a public key.

Roughly speaking, our compiler proceeds in four separate phases: seed generation, protocol execution, blame
information creation and execution opening & verification. During the seed generation phase, the parties set
up the seeds from which they will derive their randomness during the protocol executions. Each party is
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Protocol Πcomp

Before the protocol execution, we assume the parties have agreed on the amount of executions k, protocol
descriptionΠpass and the public keys of all the parties {pki}i∈[n]. Furthermore, each party Pi knows its own

secret key ski. Finally, the compiler assumes a publicly verifiable secret sharing scheme PVSS is available.

Now, the passively secure protocol Πpass is compiled into a protocol ΠPVC with covert security and public

verifiability in the following way:

Seed generation:

1. For each j ∈ [k], party Pi and all the other parties engage in an execution ofΠseed to obtain:(
seed

(i, j)
priv
, di

j, seed
j
pub
, {ci

j}h∈[n]

)
And Pi computes its seeds for all the executions j ∈ [k] as: seedi

j = seed
(i, j)
priv
⊕ seed

j
pub
.

Protocol execution:

2. Next, all the parties engage in k executions ofΠpass where Pi uses the random seed seedi
j and obtains

an output yi
j and transcript trans

i
j in each execution j ∈ [k].

Blame information creation:

3. For each di
j, j ∈ [k], Pi generates and publishes:({

Eh(dh)(i, j)
}
h∈[n]

, dproofi
j

)
←− PVSS.Distribute(di

j).

4. For each j ∈ [k], party Pi creates a signature σi
j ←− Signski

(data j)where data j is defined as:

data j =
(
i, j, seed j

pub
, {cl

j, dproof
l
j}l∈[n], trans j

)
Pi broadcasts all the σi

j’s and verifies the received signatures.

Execution opening& verification:

5. Next, all the parties engage in an execution of the execution opening protocol Πopen such that each

Pi obtains: (resp, coin)←− Πopen.

6. If resp == corrupted j, Pi outputs corrupted j.

7. Otherwise, Pi calculates (m, cert) = Blame(viewi).
8. If cert , ⊥, Pi broadcasts cert and outputs corruptedm. Otherwise, output yi

coin.

bound to these seeds since the commitments are known to everyone. In the next phase, the parties run the

passively secure protocol k times in parallel using the random seeds from the previous phase and obtain

an output and transcript for each of the executions. In the blame information creation phase, the parties
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are required to distribute the opening information for all of their randomness seeds to ensure the other

parties will be able to reconstruct these seeds in case the party fails to publish these seeds later on if they

have cheated in the protocol. Furthermore, every party is required to sign all the data needed to hold

them accountable for a judge later on. Note that all of this is done before the coin-toss, which means the
adversary has to guess whether to cheat or not, independent of the coin toss. Next, k − 1 executions are
opened using the actively secure coin-tossing protocol by distributing the randomness seeds used by all the

parties. At this point, it is too late for an adversary to abort since it’s opening information has already been

distributed in the previous phase. Finally the parties verify the behaviour of all the other parties during

the opened executions, this procedure has been extracted to a separate Blame algorithm. If no cheating is
detected, the parties output their output of the unopened execution. Otherwise, they output the obtained

certificate.

An adversary can try to cheat in a number of ways in the resulting protocol ΠPVC. First, it can do so

by causing the seed openings of its own seeds to fail. �is could be achieved by either (i) distributing

inconsistent shares in step 3 of Πcomp or (ii) sending an incorrect opening in step 3 of Πopen. (i) is easily
detected by the verification algorithm of the PVSS scheme. Since everyone can verify this and a signature

on the proof string has been published, the adversary can not later on deny have done this. Furthermore,

the proofs of correct decryption ensure that the adversary can not announce a wrong share and the honest

parties will always obtain the correct seed openings. Case (ii) is noticed when any of the seed openings fail.

In this case, the adversary has already published a signature on the commitment and on the opening which
means anyone can simply see that the opening fails and the adversary can not deny sending these values

due to the signatures.

Furthermore, an adversary can attempt to cheat by deviating from the protocol description in any of the

parallel executions. Since the protocol is ranwithout private inputs, deviating simplymeansusingdifferent

randomness than what is expected based on the seed. If all of the seed openings succeeded, the parties can

detect this when simulating the protocol executions later on. Since everyone knows the commitment and

the opening, everyone knows the randomness that should have been used. Furthermore, the commitments

to the seeds have been signed and thus an adversary can not deny that he has used the wrong randomness.

In the next section, this verification of the behaviour of the parties using a Blame algorithm is explained.

5.3.5 BlameAlgorithm

In the Blame algorithm, the behaviour of the parties is checked and a certificate is generated in case
cheating was detected. �is algorithm is an integral part of the compiler but for ease of notation, has

been presented here as a separate algorithm. In reality, parts of the algorithm could already be run while

performing other tasks in the compiler as soon as the required information is available to the parties. A

formal description of the blame algorithmcanbe found inBlame(), which takes the viewof a party as input.

First, the Blame algorithm verifies the seed openings of all the parties. If any of the seed openings fail,

depending on the way in which the seed was obtained, a certificate of invalid opening is generated. If any of
the seed openings fail (return ⊥), the one with the lowest party- and execution id is picked to ensure the

parties agree on which party cheated. Based on the way in which the seed opening was obtained, an invalid
opening (1 or 2) is generated. If the seed opening was obtained viaΠreconstruct (case 1), the certificate consists

of the signature on the data of the corresponding execution, the data itself, the encrypted seed shares
and all the seeds and reconstruction proofs from which the seed was obtained. If the seed was obtained
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Algorithm Blame(view)
�e Blame algorithm takes as input the view view of a party, which consists of:

• Public seeds seed
j
pub

and public coin coin

• All the seed commitments and openings {ci
j, d

i
j}i∈[n], j∈[k]\coin

• Encrypted seed shares {Eh(dh)(i, j)
}h,i∈[n], j∈[k]

• PVSS proofs for distribution {dproofi
j}i∈[n], j∈[k] and reconstruction {rproof

j
(l,m)} j∈[n],(l,m)∈E

• Public keys {pk j} j∈[n], signatures {σi
j}i∈[n], j∈[k] and {φ

i
j}i∈[n], j∈[k]

• �e set of tuples of missing seed openings before the pessimistic case E

• Additional information {data j} j∈[k]

To verify the behaviour of the parties, do:

1. Open the private seed of all the parties Pi, i ∈ [n] in each execution j ∈ [k] \ coin as seed(i, j)
priv
←−

Open(ci
j, d

i
j).

2. Construct the set S = {(l,m) ∈ ([n], [k] \ coin) : seed(i, j)
priv

== ⊥}. If S is not empty, pick the tuple
(l,m)with the lowest l,m and produce an invalid opening certificate:

• If (l,m) ∈ E, set certinvo1 =
(
pkl, datam, {d j, rproof

j
(l,m)} j∈[n], {E j(d j)(l,m)

} j∈[n], σl
m

)
• Otherwise, set certinvo2 =

(
pkl, datam, dl

m, φ
l
m, σ

l
m

)
And output (m, certinvo(1/2)).

3. If all the verifications succeeded, set the randomness seeds of each party Pi as seed
i
j = seed

(i, j)
priv
⊕

seed
j
pub

for each execution j ∈ [k] \ coin.

4. Re-run each execution j ofΠpass for j ∈ [k] \ coin by simulating party Pi using random seed seedi
j

to obtain each transcript trans′j.

5. Using data j, construct the set S = {m : transm , trans′m}. If S is not empty, pick the lowest m
and find the party Pl that sends the first message in transm which is inconsistent with the expected

message from trans′m and construct a protocol deviation certificate:

certdev =
(
pkl, datam, {di

j}i∈[n], j∈[k]\coin, σ
l
m

)
And output (m, certdev). Otherwise, output (·,⊥).

from the cheating party directly (case 2), the certificate only has to contain the signatures on the data and

the seed opening, and the data and seed opening itself.

If all the seeds can be opened correctly, the Blame algorithm commences with verifying the behaviour of

the parties during the protocol executions. To this end, the executions are simulated using the randomness

seeds obtained in the previous step, resulting in expected transcripts trans′j for j ∈ [k] \ coin. If for any
execution the actual transcript does not match with the expected transcript, the first party deviating from

theprotocol is identifiedanda deviation certificate is generated. �is certificate consists of thedata signature,
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the data itself and all the seeds for the execution inwhich the cheating took place. �e certificates generated

in the Blame algorithmaswell as the one generated inΠcomp can then be sent to anyonewho can check them
to confirm that a party has cheated during the protocol.

5.3.6 Judge Algorithm

�e Judge algorithm takes a certificate with which a party is accused of cheating. �e Judge algorithm
then checks this certificate to confirm that this party actually cheated. If the party indeed cheated

according to the certificate, its public key is outputted and ⊥ otherwise. Since the certificate contains

all the information required to convince someone that cheating occurred, anyone running the Judge
algorithm can verify the certificate. �is includes third parties who do not have anything to do with the

protocol execution itself, making our compiler is publicly verifiable. In practice, the Judge algorithm could

for example be implemented in a smart contract to automatically punish a cheater.

�e judge starts with a certificate certtype. Regardless of which certificate type it receives, it first verifies
the signature of the accused party on the data. If this signature is invalid, we can never be sure that the
information was actually created and sent by the accused party and thus ⊥ is returned. If the signature

is valid, the judge commences with a certain set of steps, depending on the type of the certificate: invalid
sharing, invalid opening (1), invalid opening (2) or deviation. If the certificate is malformed and does not match
any of the four templates,⊥ is returned.

In case of an invalid sharing, the judge only has to use the PVSS to see that indeed one or more of the

published shares are invalid according to the proof string, which has also been signed indirectly. If the

verification fails, we thus know that the accused party did indeed cheat and its public key is outputted.

If an invalid opening (1) certificate was given, this means that a party accuses another party from dis-

tributing an incorrect seed opening in the pessimistic case. Now first the published shares are verified. Note
that if the verification fails, not the public key of the accused party is outputted but simply ⊥ since if the

verification already failed, the party will have generated an invalid sharing certificate. If the verification

succeeds, this means that the accused party did give valid shares and we verify t + 1 of the decrypted
shares of the other parties. Since we assume the existence of an honest majority, we can guarantee this

by choosing the threshold t such that n > 2t. If enough valid shares are available, these can be used to
reconstruct the seed opening, which is now guaranteed to be the one originally distributed by the accused

party. If opening the seed now fails, this means that the accused party must have distributed the wrong

opening information and thus its public key is returned. If we do succeed in opening something, the party

waswrongly accused and⊥ is returned. �e case for an invalid openingwhichwas retrieved in the optimistic
case is verified in a similar but more straightforward way. Here a judge only needs to verify whether the

signature φ is a valid signature on the seed opening information. If this is the case but the seed opening
fails, the accused party sent the wrong opening information and thus its public key is outputted.

Finally for the deviation certificate, the judge does not have to check the validity of the seed openings but

can immediately use those to calculate the randomness each party should be using for a certain execution.

�e judge then simulates this execution of the passively secure protocol and compares the obtained

transcript to the original transcript. If these indeed mismatch, the judge verifies whether the accused

party was indeed the first party deviating from the protocol description. If this is also the case, its public

key is outputted.
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Algorithm Judge(cert)
We assume the judge knows the functionΠpass to be computed. To check a certificate, do:

• If Verify(datam, σl
m) = ⊥, output⊥.

• Else, interpret datam as

(
l,m, seedm

pub
, {c j

m, dproof
j
m} j∈[n], transm

)
.

Depending on the type of certificate, do:

invs:

– certinvs =
(
pkl, datam,E j(d j)

(l,m)
j∈[n], σ

l
m

)
.

– If PVSS.Verify(dproofl
m,E j(d j)

(l,m)
j∈[n]) = ⊥, output pkl. Otherwise, output⊥.

invo1:

– certinvo1 =
(
pkl, datam, {d j, rproof

j
(l,m)} j∈[n], {E j(d j)(l,m)

} j∈[n], σl
m

)
.

– If PVSS.Verify(dproofl
m,E j(d j)

(l,m)
j∈[n]) = ⊥, output⊥.

– Verify t + 1 of the rproof j
(l,m)’s and use the corresponding d j’s to reconstruct dl

m. If no t + 1 valid
shares are available, output⊥.

– If Open(cl
m, dl

m) , ⊥, output⊥. Otherwise, output pkl.

invo2:

– certinvo2 =
(
pkl, datam, dl

m, φ
l
m, σ

l
m

)
.

– If Verify
pkl

(dl
m, φ

l
m) = ⊥, output⊥.

– If Open(cl
m, dl

m) , ⊥, output⊥. Otherwise, output pkl.

dev:

– certdev =
(
pkl, datam, {di

j}i∈[n], j∈[k]\coin, σ
l
m

)
.

– For every party Pi and execution j ∈ [k] \ coin, open seed(i, j)
priv
←− Open(ci

j, d
i
j) and calculate seed

i
j

as seed
(i, j)
priv
⊕ seed

j
pub
.

– Re-run execution j ofΠpass by simulating each party Pi using random seed seedi
j to obtain tran-

script trans′j.

– If trans′j == trans j, output⊥.

– If the first party that sends an incorrect message in trans′j is indeed Pl, output pkl. Otherwise,

output⊥.

Otherwise:

– If the certificate does not match any of the four formats, output⊥.
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5.4 Security

First of all we have defined an ideal functionality for the coin flipping functionality. As can be seen in the

description of Fcoin, all the parties receive the output from the ideal functionality simultaneously. �is

means that we require the real-world protocol with which this functionality is built to (at least) guarantee

fairness. As explained in Section 2.3.2, it has been proven in [BGW88] that obtaining fairness is always
possible in the case of an honest majority. �erefore we will assume the existence of such a protocolΠcoin

which securely implementsFcoin with fairness in the presence of an honest majority.

Toproof that the compilerpresentedabove satisfies thedefinition for covert securitywithpublic verifiability

(Definition 2.3.7), we first state the guarantees in�eorem 1 and then proof that our compiler satisfies the

requirements of covert security (with deterrence rate ε), public verifiability and defamation-freeness separately.

�eorem 1. Suppose the PVSS (Distribute,Verify, Reconstruct) satisfies the privacy, correctness and sound-
ness properties with a threshold t < n/2. Furthermore, assume the commitment scheme (Com, Open, Verify) is bind-
ing and hiding. Let the signature scheme (Gen , Sign, Verify) be existentially unforgeable under chosen plaintext
attacks. Finally, assume Πcoin implements Fcoin with active security against a dishonest minority. If Πpass provides
passive security against n − 1 corruptions, the compiler COMPPVC = (Πcomp,Πopen,Πreconstruct) with the additional
algorithms Blame and Judge is covertly secure with public verifiability against t < n

2 corruptions with deterrence rate
ε = 1 − 1

k .

Proof.

Covert Security To show that our compiler meets the definition for covert security with deterrence rate

ε = 1 − 1
k , we will construct a simulator S in the ideal world, talking to the trusted party FCovert and the

real-world adversaryA. After that, wewill argue that the joint distribution ofS and the output ofFCovert is

indistinguishable from the views of all the parties in the real-world execution of COMPPVC. Let the adversary
A corrupt all the parties in some setA with |A| < n

2 . Furthermore, let P = [n] \A be the set of honest

parties. �e SimulatorS now looks as follows:

0. For Pi ∈ P, S generates a random pair (ski, pki) and sends all pki
toA for i ∈ P. S receives all pki

for

i ∈ A fromA.

1. S honestly engages in k executions of Πseed withA. For each i ∈ P and execution j ∈ [k], S receives
(seed(i, j)

priv
, di

j, seed
j
pub
, {ch

j }h∈[n]).

2. S engages in k executions ofΠpass withA where for i ∈ P, S uses randomness derived from seedi
j =

seed
(i, j)
priv
⊕seed

j
pub
. Let trans j be the transcript obtained byS for execution j ∈ [k]. Let yi

j be the output

obtained by Pi in execution j.
3. Each party Pi distributes its seed openings di

j for execution j ∈ [k] as ({Eh(dh)(i, j)
}h∈[n], dproof

i
j) ←−

PVSS.Distribute(di
j). S does this honestly for Pi ∈ PwhileA does this for Pi ∈ A.

4. S computes signatures σi
j for each Pi ∈ P and execution j ∈ [k] as an honest party and sends these to

A. For each i ∈ A,S receives σi
j fromA.

5. If any of the received signatures are invalid orS has not received the (expected)messages fromA in any

of the communication rounds, S sends (abort) toFCovert andA and halts.

6. For each set ({Eh(dh)(i, j)
}h∈[n], dproof

i
j) with i ∈ A, S uses PVSS.Verify to check whether the dis-

tributed shares are valid and if not:
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– Send (corrupted, i∗) toFCovert where i∗ is the first party to distribute invalid shares.
– Compute an invalid sharing certificate like an honest party would do and send this toA.

– Output whateverA outputs and stop the simulation.

7. S checks whetherA has cheated in any of the execution in step 2. Let Pl be the first party to cheat in

some executionm. Add all tuples (l,m) to a setM.

8. S decrypts all the shares {Ei(di)
(l, j)
i∈P} to reconstruct di

j for each party Pi ∈ A for each execution j ∈ [k].

For each of the pairs (ci
j, d

i
j), if Open(c

i
j, d

i
j) = ⊥ then add (i, j) to the setM as well if it was not in there

yet.

9. WithM as the set of all executions in whichA cheated in someway, we distinguish three distinct cases:

|M| > 1 : In this case, cheating is guaranteed to be detected andS sets flag == detected.
|M| = 1 : In this case,S sends (cheat, l) toFCovert and receives either detected or undetected.

– In case detectedwas received, set flag = detected.
– In case undetectedwas received, set flag = undetected.

|M| = 0 : In this case, set flag = all_honest.

10. Depending on flag, do the following:

(a) If flag == detected, repeat the following steps:

1∗. All parties send (flip) toFcoin and receive (flip, r).
2∗. All parties calculate coin∗ = r mod k.
3∗. If |M \ coin∗| > 0, set coin = coin∗ and continue. Otherwise, rewindA to before step 1∗

and try again.

(b) If flag == undetected, repeat the following steps:

1∗∗. All parties send (flip) toFcoin and receive (flip, r).
2∗∗. All parties calculate coin∗ = r mod k.
3∗∗. If coin∗ ∈ M, set coin = coin∗ and continue. Otherwise, rewindA to before step 1∗∗ and

try again.

(c) If flag == all_honest, all parties send (flip) toFcoin, receive (flip, r) and calculate coin = r
mod k.

11. For each execution j ∈ [k] \ coin,S computes φi
j ←− Sign(d

i
j) for each Pi ∈ P and sends (φi

j, d
i
j) toA.

S receives (φi
j, d

i
j) for Pi ∈ A fromA.

– For every valid pair (φl
m, dl

m) received, if Open(cl
m, dl

m) , ⊥ and (l,m) is in M only because it was

detected in step 8, remove (l,m) fromM. If nowM = ∅, set flag = all_honest.
– For every invalid pair (φl

m, dl
m) received for some honest party Pi ∈ P, it sends missing

i
(l,m) toA.

If S receives a message missingi
(l,m) from A and m , coin, S sends decryptions of all the shares

{Ei(di)
(l,m)
i∈P } and the corresponding proofs toA.

12. Finally depending on flag,S does the following:

(a) If flag == detected:

– Send (corrupted, l) toFCovert.
– Compute a certificate like an honest party would do and send this toA.

– Output whateverA outputs and stop the simulation.

(b) If flag == undetected: Send yi
coin as the output of each Pi to FCovert, outputs whatever A

outputs and stop the simulation.
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(c) If flag == all_honest: Send continue to FCovert, output whatever A outputs and stop the

simulation.

Public Verifiability First, we proof that COMPPVC prevents a selective abort and after that we proof that
the generated certificates will be accepted by the Judgewith an overwhelming probability.

Note that an adversary is able to abort the protocol and hence the generation of a certificate before the
coin-toss, but should be unable to prevent the generation of a certificate after it has seen the outcome of the
coin-toss. To this end, observe that every party is asked to distribute the opening information for all of its

seeds in Step 3 ofΠcomp and sign the data that is required to create a certificate for every execution in [k]
in Step 4. Both of these happen before the coin-toss is even performed. At this point the adversary can thus

not base it’s decision to cheat on the outcome of the coin toss. Cheating at this point means the adversary

either distributes incorrect shares for (some of) its seed openings or distributes an incorrect signature for

(some of) the datas. If any of these two happens, the other parties can detect it by the verifiability of the
PVSS (Step 1 ofΠopen and the signature scheme (Step 4 ofΠcomp) before the coin toss. If a party distributes

incorrect shares, this can be seen by anyone and thus public verifiability of this cheating attempt is easily
obtained. If any of the signature verifications fail, the parties simply abort, which is accepted as explained

earlier.

On the other hand, if verifications for all the shares for all of the seed openings succeeded, and valid

signatures for all of the datas have been received by all the parties, the honest parties are guaranteed
to be able to generate a certificate if they detect cheating. To see this, observe that Πcoin gives all the

parties the outcome of the coin toss at the same time. After that, the parties either obtain the correct

seed openings from all the other parties (i) directly (optimistic case) or (ii) can reconstruct the secret from

the earlier distributed shares (pessimistic case). To see why (ii) holds, we look at the properties of the

PVSS. Since the PVSS satisfies the correctness property, we are guaranteed that since the verification of the
distributed shares succeeded, any reconstructed seedwill always be the one that was originally distributed,

except with negligible probability. Furthermore, this means that if a party correctly decrypts its share

and publishes the corresponding proof, any honest party will accept this share. Due to the soundness
property, we are also guaranteed that a subset of t + 1 of valid shares is guaranteed be able to reconstruct
the original secret. Since we assume an honest majority, we are guaranteed that at least t + 1 parties
successfully decrypt and publish a proof in Step (3) of Πreconstruct. After that, we are guaranteed that a

party missing a seed opening obtains at least t + 1 valid shares and is thus able to reconstruct the original
seed opening successfully. On the other hand, the adversary is unable to reconstruct the seed openings

belonging tocoin since this requires at least 1 share of an honest participant. A seed opening dl
m and signed

dataσl
m are enough to create a certificate if partyPl, l ∈ [n] is detected to have cheated in executionm ∈ [k].

Now, it remains to show that if an honest party Pi outputs certwhen it detects cheating by another party
P j, then theJudge outputs pk j

exceptwith negligible probability. To proof this, we show it for the four types

of certificate separately:

invs If an honest party outputs an invalid sharing certificate, this is because the PVSS.Verify method
failed for some share for some seedopeningof a partyPl for someexecutionm. Since the correspond-
ing proof dproofl

m has been signed directly in σ
l
m and the PVSS is publicly verifiable, the Judge can

check the validity of the signature and whether the verification indeed fails.
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invo1 If anhonest party outputs an invalid opening (1) certificate, this is because for somepartyPl and some

executionm, the opening information dl
m received indirectly via the shares {E j(d j)(l,m)} j∈[n] is incon-

sistent with the commitment cl
m. �is cl

m has been signed directly in σ
l
m while dl

m has been obtained

via the PVSS. Using the publicly verifiable dproofl
m, the Judge can verify that the distribution was

done correctly and due to the signature, Pl can not claim to have distributed a different seed. Using

the rproof
j
(l,m)

s and the corresponding d j for j ∈ [n], the Judge can find at least t + 1 valid shares,
which are guaranteed to reconstruct the originally distributed dl

m. Now, the Judge can simply verify
that the opening information dl

m is indeed inconsistent with cl
m.

invo2 If anhonest party outputs an invalid opening (2) certificate, this is because for somepartyPl and some

executionm, the opening information dl
m received directly from Pl is inconsistent with the commit-

ment cl
m. �is cl

m has been signeddirectly inσ
l
mwhiledl

m has been signed inφ
l
m. �eJudge can simply

check the validity of the signatures and whether cl
m and dl

m are indeed inconsistent.

dev Finally, if an honest party outputs a deviation certificate, this means that for some execution m ∈
[k] \ coin of Πpass, the honest party has detected cheating. Let Pl be the first party to send an in-

consistent message in trans j. �e Judge can open all the private seed shares for this execution as

seed
( j,m)
priv
←− Open(c j

m, d
j
m) for j ∈ [n] and compute the seeds that should have been used by all the

parties. After that, the Judge can simulate the execution as well to obtain trans′m. Now, trans j

has been signed directly in σl
m and dl

m either directly via φl
m or indirectly via σl

m (optimistic or pes-

simistic respectively). �erefore, if transm == trans′m and Pm is also the first party to send an

inconsistent message in trans′m, the Judge knows Pm must have cheated. Note that cheating in the

input-independent setting simplymeans apartyused randomness thatwas inconsistentwith its ran-

domness seed. Since in σl
m, partyPm signed the public seed seed

m
pub

as well as the commitment to its

own seed opening cl
m, there is no way for Pm to somehow claim to have used a different randomness

seed.

Defamation-freeness Recall that inorder for aprotocol tohave defamation-freeness, it shouldbe impossible
for an adversary to craft a certificate that incriminates an honest party successfully (i.e. such that the Judge
accepts it), except with negligible probability. To proof that our compiler has this, we will show that if an
adversary would be able to craft such a certificate incriminating an honest party Pi, this contradicts the

security of either the commitment scheme, the PVSS or the signature scheme. We do this for the four types

of certificates separately.

invs If the Judge accepts an invalid sharing certificate this means that for some seed opening di
m of an

honest party Pi in executionm ∈ [k], PVSS.Verify(dproofi
m,Eh(dh)(l,m)

h∈[n]) = ⊥. Since Pi would only

honestly publish the proof as well as the encrypted shares, this means that the correctness of the PVSS
should be broken which contradicts the security assumptions from theorem 1.

invo1 If the Judge accepts an invalid opening (1) certificate, this means that for some seed commitment
c′im sent by an honest Pi and opening d′im reconstructed via the PVSS, Open(c′im, d′im) = ⊥. Note that
c′im has been signed in σ′im while d′im has been obtained via the PVSS. An honest party Pi would only

distribute the correct seed opening with the PVSS and a successful reconstruction should therefore

always lead to the correct seed opening unless the soundness of the PVSS is broken. Furthermore, an
honest party Pi only signs the commitment and openings that he received from the seed generation
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protocol. �erefore, either c′im and d′im must be correct or an adversary must be able to break the exis-
tential unforgeability of the signature scheme. Both of these contradict the security assumptions from
theorem 1.

invo2 If the Judge accepts an invalid opening (2) certificate, thismeans that for some seed commitment c′im
and opening d′im sent by an honest Pi, Open(c′im, d′im) = ⊥. Note that c′im has been signed in σ′im while
d′im has been signed inφ′im. Now, an honest party Pi only signs the commitment and openings that he

received from the seed generation protocol. �erefore, in order for an adversary tomake the opening

fail, it must be able to break the existential unforgeability of the signature scheme, contradicting the
security assumptions from theorem 1. Otherwise, c′im and d′im must be correct.

dev Finally if theJudge accepts a deviation certificate, thismeans that the certificatemust contain a tran-
script trans′m for an execution m signed by Pi in σi

m where Pi is the first to send a message that is

inconsistent with its randomness seed seedi
m. However, since Pi is honest, he will follow the pro-

tocol honestly, this means that he will behave honestly in execution m and only sign the transcript

honestly. If the signature σi
m on trans′m is valid but the transcript does blame Pi, this means that

the adversary must be able to break the existential unforgeability of the signature scheme, contradict-
ing the security assumptions. On the other hand, it could be that the transcript and the signature

are valid, but that somehow the adversary can convince the Judge that another randomness seed
seed′im , seed

i
m should have been used by Pi. Recall that the randomness seed for Pi is calculated as

seed
′(i,m)
priv
⊕ seed′m

pub
. Here, the private seed is obtained via the pair (ci

m, di
m). Since this public seed

seedm
pub

as well as ci
m have also been signed in σ

i
m, this again means that the adversary must be able

to forge a signature. Finally, the adversary could find another d′im such that Open(ci
m, d′im) is valid, but

in that case the adversary has found two messages m and m′ such that Com(m) == Com(m′), which
means itmust be able to break the bindingproperty of the commitment scheme. All of this contradicts
with the security assumptions from theorem 1.

�

5.5 Input-dependent Protocols

COMPPVC only works for protocols that do not take any private inputs. �is allowed us to de-randomise k− 1
of the protocol executions since the behaviour of the parties is only dependent on the protocol specification

and the used randomness. However, in the input-dependent setting, the input of a party also influences the
behaviour of that party in the protocol. Since this input is private, we can not simply open this alongside

the randomness seed since this would require us to send it to the other parties. Instead, we follow the

one-to-many player virtualisation strategy as explained in Section 4.2.2. We call the resulting compiler

for transforming passively secure protocols with private inputs into covertly secure protocols with public

verifiability COMP∗PVC = (Π∗
PVC
,Π∗

open
,Π∗

reconstruct
).

COMP∗PVC and COMPPVC work in a very similar fashion. �e main differences lie in the way the passively

secure protocol is executed. Instead of running Πpass k times in parallel, the n real parties now each

simulate k virtual parties who, together, execute a related nk-party protocolΠ∗
pass

only once. To hide their

private inputs for opening later, the real parties use k-out-of-k secret sharing to share their private input
to their virtual parties, who use these as their private inputs inΠ∗

pass
. Since any k− 1 of these shares do not
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reveal anything about the original inputs of the real party, we can safely open k − 1 of the virtual parties by
revealing the inputs and randomnesses used by these virtual parties and obtain the same deterrence rates

of
k−1

k as in the input-independent protocol.

�e function implemented by Π∗
pass

can now be characterised as follows. Suppose we have the function

f : Fn
−→ FN

that takes an input xi
from each party Pi, i ∈ [n] and yields every Pi an output yi. Now,Π

∗
passs

should implement a related functionality f ′ : Fnk
−→ Fnk

such that:

f
(
⊕ jx1

j ,⊕ jx2
j , . . . ,⊕ jxn

j

)
=

k⊕
i=0

f ′i
(
x1

1, x
1
2, . . . , x

n
k

)

for all xi
j with 1 ≤ i ≤ n and 1 ≤ j ≤ k. For now, we assume we can find such a related functionality. In

Chapter 6, a concrete example of a generic way for constructing such a related protocol in a real framework

will be presented.

5.5.1 Opening the Virtual Parties

Checking the behaviour of the virtual parties works in a similar fashion as checking the behaviour of a real

party in the input-independent compiler. Now instead of only revealing the randomness seeds fromwhich

the opened virtual parties will derive their randomness, we also reveal the inputs of these virtual parties.

Important here is the observation that if a real party attempts to cheat, he has to attempt to cheat in at
least one of its virtual parties. During the protocol execution, the real parties communicate on behalf of
their virtual parties. To keep track of the views of the virtual parties, we require every message sent and

received by the virtual parties to be broadcast like in the input-independent compiler. �is means that

also a message sent from one virtual party to another virtual party belonging to the same real party needs

to be broadcast. As stated earlier, the main difference between this compiler and the input-independent

compiler is the fact that instead of executing an n-party protocol k times, we now execute an nk-party
protocol once. For every message sent from a sender to a receiver in the original protocol, the sender now

has to send one message from all of its virtual parties to all of the virtual parties of the receiver. �is thus

scales with a factor of k2
, making computation as well as the communication complexity of this compiler

more costly compared to the input-independent compiler.

5.5.2 �e protocol

Since COMP∗
PVC

, the additional Blame∗ and Judge∗ algorithms as well as the additional protocolsΠ∗
open

and

Π∗
reconstruct

are very similar to the algorithms and protocols presented for the input-independent compiler,

we do not present their formal specifications. Compared to the input-independent protocols, the main

difference is that the repetitions are now not repetitions of the passively secure protocol but virtual parties.

Next to a seed for every repetition, the parties now also need to generate an input for each virtual party

using additive secret sharing. �is input is treated in a similar fashion as the seeds in the original protocol,

meaning a commitment is made on each virtual party input as well. Furthermore, these inputs are also
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distributed using the PVSS in Step 3 and added to the signed data in Step 4. �e final notable difference

is in Step 3, where now only one execution of the passively secure nk-party protocol is executed with
security against nk − 1 corruptions. To verify the behaviour of a virtual party, the parties can simulate the
execution of the passively secure protocol by simulating the opened virtual parties based on their input,

randomness and their incoming messages. Note that to verify the behaviour of a virtual party according

to a protocol specification, we do not need to know whether the incoming messages are correct since they

do not influence the correctness of the response of that virtual party. �e unopened virtual parties can

therefore be simulated by themessages they sent in the original transcript and assuming that those virtual

parties behaved honestly. �is is similar to how we assume the parties behaved honestly in the unopened

execution in the input-independent compiler.



Chapter 6

InstantiationwithMPyC

�e input-dependent and input-independent compilers presented in Chapter 5 are fully generic, mean-

ing they can be applied to any protocol with or without inputs respectively. For concreteness, we have ap-

plied and implemented the input-dependent compiler in an actual framework formulti-party computation

calledMPyC [Sch18]. In this chapter, we will describe the concept of asynchronous computation, the struc-
ture of the MPyC framework with the underlying protocols for performing MPC, the approach for trans-

forming these protocols from passive to covert security using player virtualisation and finally how this was
implemented.

6.1 Asynchronous Computation using asyncio

In this work, wewill be implementing a proof-of-concept in theMPyC framework [Sch18], which performs

all of its computations in an asynchronous manner. In order to understand how this influences the

design of MPC protocols, this section will explain what asynchronous computation is and how this can be

implemented in practice.

To realise asynchronous computation, MPyC makes heavy use of python’s asyncio library.1 �e goal of

asynchronous computations is to utilise the CPU as efficient as possible by constantly performing useful

tasks instead of waiting for another task to finish before proceeding execution. To highlight the impor-

tance of asynchronous programming, lets look at an the example of downloading files from a server via the

internet. Suppose we want to use python to download multiple files from a certain server using a getFile

method:

content = getFile("https://server.com/", file=1)

If we were to fetch multiple files sequentially, the machine will query the first file, block while it waits for

the response to arrive, fetch the second file etc. On the other hand, if we would be able to do this in an

asynchronous fashion, we can already start querying the second file while we are waiting for the first one

to arrive. A schematic overview of the CPU usage with synchronous and asynchronous file querying can

be found in figure 6.1. Here, the green parts represent the CPU doing useful work while the red parts are

downtime while we are waiting for the files to arrive. As can be seen, if we can already start doing useful

1
https://docs.python.org/3/library/asyncio.html
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1
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3

CPU

(a) Synchronous querying

1

2

3

CPU

(b) Asynchronous querying

Figure 6.1: Synchronous vs. asynchronous file querying. �e green parts indicate time where the CPU is

doing useful work while the red parts indicate downtime. As can be seen, the CPU is used much more

efficiently with asynchronous querying.

work while we are waiting for the files to arrive, we can utilise the CPUmuchmore efficiently.

By using asyncio, we can realise this exact behaviour using the two keywords async and await. A method
canbe turned into anasynchronousmethodbyadding the asynckeyword, suchamethod is called a coroutine.
Inside such a coroutine we can use the await keyword to indicate we want to wait for another coroutine to
complete. While waiting for the other coroutine to complete, asyncio knows it can start doing something

else. �e central mechanism to schedule all of this is the event loop. �e event loop is essentially a list of

scheduled tasks which need to be executed asynchronously. �is loop runs a certain task until it reaches an

await statement. While waiting for the awaited coroutine to complete, the event loop will start running the

next task. If we turn the getFile method into an asynchronous method, we can now query the three files in

an asynchronous manner like this:

import asyncio

loop = asyncio.get_event_loop()

async def query_files():
tasks = []
for i in range(1,4):
task = loop.create_task(getFile("https://server.com/", file=i))
tasks.append(task)

for task in tasks:
content = await task
print(content)

loop.run_until_complete(query_files())
loop.close()
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Here we see the asynchronous query_files() method, which creates a new task for every file to be queried.

Next, we await all the tasks, meaning the event loop may pause the query_files() function until the file task

is done and can thus start downloading the file. As downloading the file may take some time, the event

loop can then continue with the next task.

As explained previously, when we normally make a call to amethod such as getFile(), we block the program

execution until this method is done and returns something, such as a file. In order to prevent this blocking

behaviour with asyncio, an asynchronousmethod immediately returns with a future result. Such a future is
essentially a placeholder which will later be filled with the content the method should actually return, such

as the file that was queried. By awaiting the future instead, we indicate we do not want to continue the

execution until the future is filled with the actual content.

6.2 MPyC

MPyC is a python
2
framework for MPC developed in 2018 by Berry Schoenmakers, inspired by some

of the fundamental building blocks of the Virtual Ideal Functionaly Framework (VIFF) [Gei10]. Using

MPyC, arbitrary functionalities can be developed which are then executed in an MPC fashion. �ese

functionalities can be as simple as calculating the average over a number of private inputs but can also

be used to perform more involved tasks such as performing secure AES encryption and decryption and

even training and evaluating complex machine learning tasks such as convolutional neural networks. �e

(open-sourced) source code of MPyC can be found on their GitHub page
3
, where also more examples of

MPyC implementations can be found.

�e goal ofMPyC is to provide its users with a simple python front-end to program arbitrary computations

without dealing with the complex underlying MPC protocols, which are entirely handled by the back-end

of MPyC. A simple program for calculating the average of the inputs of an arbitrary number of parties in

MPyC can be found in listing 6.1. As can be seen, the actual computation which takes places in line 10 does

not really differ from pure python.

from mpyc.runtime import mpc

secint = mpc.SecInt()

private_input = secint(int(input("Private input: ")))

mpc.run(mpc.start()) #required only when run with multiple parties

inputs = mpc.input(private_input)
avg_input = sum(inputs) / len(inputs)
print(’Average input: {}’.format(mpc.run(mpc.output(avg_input))))

mpc.run(mpc.shutdown())

Listing 6.1: Calculation of the average input in MPyC

2https://www.python.org/
3https://github.com/lschoe/mpyc/

https://www.python.org/
https://github.com/lschoe/mpyc/
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MPyC implements the standard BGW protocol [BGW88] with the simplified multiplication protocol by

Gennaro et al. [GRR98] from Section 3.1.1.1 for performing the secure computations with n parties. �is

means thatMPyCworks in the honestmajority setting (t < n/2) andprovides information-theoretic security
against passive adversaries. In terms of communication, MPyC assumes the existence of pair-wise secure

and authenticated channels. �is means that an adversary is not able to eavesdrop on the communication

between two honest parties. Furthermore, an adversary is not able to remove packets or ‘add’ packets by

impersonating an honest party. To realise this, MPyC uses standard cryptographic tools such as SSL to en-

crypt the channels between the involved parties. Finally, all the protocols have been adapted to work in an

asynchronous setting, meaning there are no predefined communication rounds.

6.2.1 Asynchronous Computation inMPyC

MPyC uses the asyncio library to perform asynchronous computations. For more information on

asyncio and asynchronous computing in general, we refer back to Section 6.1. In most MPC protocols,
some form of communication between the parties is required. However, having towait for all themessages

in a communication round before commencing the next round would result in a lot of idling. In fact, this

means that we need to wait for the slowest party in every round. MPyC aims to avoid waiting as much as
possible by executing all the computations asynchronously via specialMPyC coroutines. As normal python
coroutines, an MPyC coroutine responds immediately with a future. However, these futures are now typed
to indicatewhat type is going to be received from the coroutine. �ese can even bemore complex structures

such as a nested list of types. �ese types, called sectypes, are essentially a “wrapper" around a future to
indicate which type of element is expected in the future. By overloading the operators of these sectypes, a

programmer can write regular arithmetic operations in the front-end ofMPyC. Currently, MPyC supports

3 sectypes: finite fields, integers and fixed point numbers.

When programming arithmetic operations in the front-end, the order in which these operations are

performed is only dependent on the underlying dependencies in the program. As as a result, the CPU

can for example continue performing local operations while waiting for the reshares of a multiplication.

To understand what is happening, consider a simple MPyC program and the corresponding expression

tree in figure 6.2. Here, first the secint type is defined, which will be the type of the variables in the
program. Next, all the parties are asked for a (private) input and another secint is instantiated that simply

contains the value two. Next, only parties 1 and 2 get to input their private inputs into the computation.
�is means that they will use Shamir’s secret sharing to distribute their input to the other parties. Here,

b and c are futures of type secint, which will later contain the local Shamir shares of the parties running
the program. Now, three additional secints will be instantiated by MPyC for x, y and z. Only in the last
line the actual computation of z is forced by the output command.

Underwater, an expression tree as depicted in figure 6.2b is implicitly constructed. Here, an arrow denotes

a dependency between two items. In this case, when z is output, the required dependencies are recursively

gathered until the leafs are reached. What is important here is that x and y are mutually independent,
meaning they can be computed in parallel. So if the party is, for example, waiting for its share of b but has
already received c and is in possession of a, he can already start computing y. When both the futures for
x and y are filled with their respective values, the program can compute z.

Since there isnoguaranteedorder inwhich theparties performtheoperations, there isnoguaranteedorder

in which shares are received from the other parties. However, it is important to keep track of which mes-
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#Standard setup omitted

secint = mpc.SecInt()

input = secint(input("input: "))

a = secint(2)

b,c = mpc.input(input, [1,2])

x = a + b
y = a * c
z = x * y

print(mpc.run(mpc.output(z)))

(a) MPyC program

a b c

input

+ *

x y

*

z

(b) Expression tree

Figure 6.2: AnMPyC program and the corresponding expression tree

sages received from the other parties belong towhich futures in the program. To this end,MPyCmakes use

of a so-called program counter (PC).�e idea of this is that every future that is encounteredwill be associated

with a unique PC and a reference to this stored in a buffer. Now, every party accompanies the messages it

is communicating with the correct program counters. When a message with a certain PC is received, it is

added to the corresponding future or stored in the buffer in case the party did not reach that part of the

program yet. To accomplish this, however, it is assumed that all the parties execute the exact same program

on their ownmachines since otherwise the order in which futures are encountered are mixed between the

parties.

6.2.2 Framework& Functionalities

�e MPyC framework consists of a number of core classes which provide the necessities for performing
the MPC, such as secret sharing, sectypes, logic and communication with the other parties. Furthermore,

MPyC has a number of additional modules to provide extra functionality using the primitive operations

from the core. For example, a module mimicking python’s random module in a secure manner. For this
work however, we will only describe the parts of the framework which are necessary to understand howwe

have extended the core ofMPyCwith player virtualisation. A schematic overview of the relevant part of the

MPyC framework can be found in figure 6.3.

Here, an arbitrary MPyC program can be seen, which interacts with one instance of a runtime. �e

runtime is essentially the centre of MPyC and communicates with all the other modules in the framework.

�e runtime is also where all the operations of the sectypes are defined. Furthermore, the methods for

inputting, outputting, resharing and gathering shares can be found. Every party runs one runtime on their

machine. �e asyncoro is responsible for handling all the asynchronous computation and communication
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Figure 6.3: MPyC Framework

with the other parties. To this end, the asyncoro spawns n sub-classes called message exchangers,
which all handle the communication with one message exchanger of another party. Furthermore, the

asyncoro has a message buffer where incoming messages from the peers are stored, which are then added

to the appropriate futures based on their program counter. �e sectypes holding these futures are used

by the runtime to perform the computations. In this case, we can see the sectypes of the shares of x and y
which have already been filled and another sectype, say z, which has not yet been received and is thus still
a future.

In terms of functionalities, the runtime implements a number of fundamental methods which are used by

other methods to provide additional functionality. Let mpc be an instance of such a runtime and x, y and z
instances of a sectype. �emethods will be explained with three parties for comprehensibility. Note that

in reality, MPyC can be run with any number of parties. Furthermore, these parties hold private inputs

v1, v2 and v3 respectively. �e runtime has the following fundamental methods:

Input: the rt.inputmethod is used to provide private input from the parties to the computation. In the

front-end, encountering the line:

x,y,z = mpc.input(v_i)

corresponds to all the parties providing input to the computation, where x, y and z will hold one of the
shares of v1, v2 and v3 respectively. In the runtime, this leads to a Shamir sharing of the values appropriate

with respect to the used sectype. If we let fa(x) be the polynomial sharing a, party Pi receives the point(
i + 1, f (i + 1)

)
In this example, as by default, all the parties provide input but the method can also take a

list of identifiers to specify a selection of parties to provide input. Note that each party needs to call the

input method even if they will not provide input themselves since everyone needs a share of the inputs of
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the other parties (x, y and z in this case).

Output: In the front-end, we can write the following line:

result = mpc.output(x)

�is line corresponds to opening x to all the parties. As with the inputmethod, a list can be specified if only
a subset of the parties should receive the output. To actually reconstruct the output, the parties send their

share of x to all the other parties. Now, an incoming share xi from party Pi is parsed as the point (i + 1, xi)
on the polynomial. To get the correct value of x, the parties simply reconstruct this polynomial.

run: For example in the case of the output above, result will be a future object at first. To ensure the
result contains the actual result of x before the program terminates, one should use the mpc.runmethod,
which runs a given future or coroutine until the actual value is obtained like this:

result = mpc.run(mpc.output(x))

Linear combinations: Linear combinations of private inputs and public constants a, b and c can be pro-
grammed by writing in the front-end:

result = a * x + b * y + c * z

In the back-end, the overloaded operators for sectypes are invoked, which in turn use the runtime to
decide what should be done. For example, the mpc.addmethod corresponds to a + operator in the front-
end.

Multiplication: Finally, one can performmultiplications of shares in the front-end by writing:

result = x * y

In the back-end, this will trigger the mpc.mulmethod, which takes two arguments, say x and y. When the
multiplication method is triggered, the parties perform a number of steps. First, they use mpc.gather to
ensure x and y contain the actual content they should have. Next, they perform the localmultiplication and

reshare as in the multiplication protocol by Gennaro et al from Section 3.1.1.1.

6.3 Player Virtualisation inMPyC

As a stepping stone towards realising a covertly secure version ofMPyCwith public verifiability by applying

the compilers from the previous section to the framework, we have designed and implemented the player

virtualisation strategy inMPyC. One of the goals ofMPC frameworks is to ensure that a programmer using
the framework does not have to deal with the additional complexity of performing the computations in a
secure manner. Performing the computations with a protocol with stronger security guarantees should

thus not be harder to implement. �erefore, it is important that the front-endwith which the programmer
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interacts remains the same. As an additional benefit to this, programs written in MPyC with passive

security in mind can be run with covert security with only minor adjustments.

Furthermore, the covertly secure version of MPyC should provide the same functionalities as the passively

secure version. If we view the core functionalities offered byMPyC such as input, additions etc. as an ideal

functionality FMPyC, the runtime of MPyC can bee seen as a real-world protocol implementing FMPyC.

New protocols such as our covertly secure protocol or even an actively secure version of MPyC in the future

can thus be implemented by constructing a new runtime. Now, a programmer who has programmed the
example program from listing 6.1 can change the level of security by simply changing the line:

from mpyc.runtime import mpc

into

from mpyc.covert_runtime import mpc

to execute the program with our runtime for covert security instead of the standard passively secure

runtime.

In this work, we implemented the one-to-many player virtualisation strategy from Section 4.1 as a stepping

stone towards achieving a covertly secure version of MPyC with public verifiability. With this in place, we

can later apply cut-and-choose techniques on the virtual parties. We can verify the honest behaviour of a

subset of virtual parties by giving the information required to derandomise those virtual parties. To do this

securely, we need to ensure that this information will not give us any information on the inputs of the real

parties.

6.3.1 What Function to Compute?

Suppose we have anMPyC program ran with n parties, which implements a functionality:

f (x1, x2, . . . , xn) = (y1, y2, . . . , yn)

Where party Pi has input xi
and receives output yi. Furthermore, assume we would like to tolerate cn cor-

ruptions for some 0 ≤ c < 1/2. Call this threshold t. Furthermore, name theMPyC protocol implementing
this functionality with passive security against cn corruptions ΠMPyC. In order for our compiler to work,

we need to find a generic way to construct a related functionality f ′ suitable to be run with mn virtual
parties, calculating the same function as f . Here, m depends on the desired deterrence rate ε. Assume a
protocol, ΠCOV implements the related functionality f ′. Recall that in general this functionality takes an
m-out-of-m secret-sharing of the input of each party and produces anmn-out-of-mn secret sharing of the
output.

�e functionΠCOV these parties are computing has the following form:

ΠCOV(x1, x2, . . . , xn) = f ′(x1
1, x

1
2, . . . , x

n
m)

= f (⊕ j∈[m]x1
j ,⊕ j∈[m]x2

j , . . . ,⊕ j∈[m]xn
j )



6.3. PLAYERVIRTUALISATION INMPYC 73

where

xi =

m⊕
j=0

xi
j

Additionally,ΠCOV should protect against t ∗m passive corruptions since one real corruption corresponds

tom corrupt virtual parties.

In this case, we do not necessarily need anmn-out-of-mn secret-sharing of the output and can take a short-
cut, revealing the outputs to the real parties directly instead of secret sharing them first. �is can be done

since MPyC releases the entire output at once and not, e.g., bit-by-bit. �erefore a potential adversary

can not base its decision to abort the protocol on a partial output, breaking covert security as explained in

[DOS20]. Because of this, we can take a shortcut and “undo" the additive secret sharing after the parties

have exchanged the Shamir shares of their inputs. �is way, the virtual parties hold only one share on the

inputs of the real parties instead ofm shares.

6.3.2 Augmented Functionalities

Next,wewill describehowthe functionalities ofMPyChavebeenchanged to construct ageneric augmented

protocol that implements the related functionality Fg. Here we often refer to a “virtual party" performing

a certain operation. Note however, that this essentially means that the real party to which the virtual party

belongs performs the computation using the context that is associated with a certain “virtual party". �is

context simply consists of the input of that virtual party, the shares that aremeant for the virtual party and

the randomness which is being used by this virtual party.

Input: �efirst step to accomplish this is an augmented input protocol. In this augmented input protocol,

first each real partyPi usesadditive secret sharing to split it’s inputxi
into sharesxi

1, x
i
2, . . . , x

i
m. �esewill be

used as the input of virtual partiesVi
1,V

i
2, . . . ,V

i
m. Similar toΠMPyC, the virtual parties now use Shamir’s

secret sharing to generate shares for all the other virtual parties, including the ones belonging to the same

real party. �is means virtual partyVi
j will share it’s input xi

j as:

xi
j =

(
xi

j,(1,1), . . . , x
i
j,(1,m), . . . , x

i
j,(n,1), . . . , x

i
j,(n,m)

)
whereVk

l receives sharexi
j,(k,l). Furthermore, the thresholdused to generate these shares increases from t to

t∗m. If f (x) is apolynomial sharinganarbitrary secret,Vk
l receives thepoint

(
k ∗m + l + 1, f (k ∗m + l + 1)

)
After the sharing phase, each virtual party has received a share of the inputs of all the mn virtual parties.
Concretely, virtual partyVi

j holds the shares x1
1,(i, j), . . . , x

1
m,(i, j), . . . , x

n
1,(i, j), . . . , x

n
m,(i, j). Now, the virtual par-

ties will locally “reconstruct" their shares of the original inputs of the real parties by undoing the additive

secret sharing to reduce the number of shares per virtual party to n shares, corresponding to the inputs of
the n real parties. As an example, virtual partyVi

j can do this by computing:

(
x1

(i, j), x
2
(i, j), . . . , x

n
(i, j)

)
=

 m⊕
k=1

x1
k,(i. j),

m⊕
k=1

x2
k,(i. j), . . . ,

m⊕
k=1

xn
k,(i. j)
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In the original protocol, a real partyPi holds one share x j
i on some private input x j

ofP j. In our augmented

protocol, the real party now holdsm shares, which can be represented as the vector ~x = [x j
(i,1), . . . , x

j
(i,m)].

Linear operations: Recall that if in the original MPyC protocol the following line is executed in the front-

end:

c = a * x

Where a is a public constant andx a share of theprivate input of someparty in theprotocol, theparties could
simply multiply their share on xwith a locally to obtain a correct share on c. In the augmented protocol, it
turns out these operations can still be performed locally. Now, since x is in fact the vector ~x, this operation
corresponds to a scalar multiplication of a and ~x to obtain the share in c = [ax1, ax2, . . . , axm]. Other linear
operators such as addition work in a similar way as well.

Multiplication: In order to perform amultiplication of two shares x and y in the front-end like:

z = x * y

�ismeans that in our augmented protocol, we essentially need to construct the Schur product of ~x and ~y.
However, simply calculating the Schur product results in shares of degree 2 ∗ tm and thus we need to do a

resharing for each virtual party like the original protocol. For this, each virtual party reshares it’s result of

computing z = x ∗ y to all the other virtual parties and received shares from all the other virtual parties.

Now, they can locally compute a correct share on z by reconstructing the polynomial from the first 2 ∗ tm+1
points they receive from the other virtual parties. Note that since the virtual parties are in fact controlled

by one real party, the real party essentially knowsm points up front.

Output: In order to output a certain value to the parties, we can follow a similar procedure as in the

original protocol. Suppose we want to output a certain value y to all the parties. Each real party holds m
shares on y corresponding to their own virtual parties. Now, if we want to output y to all the parties, they
can simply reconstruct the value of y by sharing all of their m shares with each other and reconstruct the

correct value from these points. Here, the share yi
j of virtual partyV

i
j is parsed as the point (i ∗m+ j+1, yi

j)
on the polynomial.

Note that here we take a shortcut and reconstruct the outputs of the real parties directly instead of first

computing anmn-out-of-mn additive secret sharing and reconstructing from those output shares. As ex-

plained earlier, this is secure since MPyC reveals the output at once.

6.3.3 Implementation

As explained before, we implemented a new runtime class for our covertly secure protocol. All of our

changes have been made in the back-end of MPyC which means the front-end of MPyC did not change

at all, which is the only part the vast majority of MPyC users see. An updated overview of our extension of

the MPyC framework with player virtualisation can be found in figure 6.4
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Figure 6.4: Covertly Secure MPyC Framework. Compared to the standard MPyC framework in Figure 6.3,

the asyncoronowcontains a buffer for each virtual party and the sectypes contain slots for eachof the virtual

parties.

6.3.3.1 Communication Complexity

For every time a share is sent fromone partyPi to another partyP j in the original protocol, the newprotocol

needs to send one share from everyVi
k (virtual parties of Pi) to every virtual party of P j: V

j
l , 1 ≤ k, l ≤ m.

In practice, this means the real Pi needs to send m ∗ m shares to P j. Luckily, MPyC already supported

the option to communicate multiple shares in a single packet, which means that the amount of messages
communicated could remain the same, but the size of the packets grows with a factor m2

. However, we

still choose to send m messages containing the m shares with the same virtual party as destination. �at

way, we can make better use of the asynchronous nature of MPyC. Instead of having to wait for the larger

packet to be transmitted, we can already start performing computations with the shares for one virtual

party while waiting for the shares for the other virtual parties. Depending on the CPU power of the parties,

the bandwidth and the latency of the network this can simply be altered where the other option is to send

all them2
messages in one packet and let the other party perform more operations to assign the shares to

their corresponding virtual parties.

�e next challenges lie in the way in which we can keep track of the virtual parties to which the incoming

messages belong. First, because we opt for an asynchronous approach, we can not simply assume that

the first message is meant for the first virtual party. �is has been solved by altering themessage exchanger
such that it not only communicates the program counter to which the shares belong, but also the virtual

party for which the shares are meant. Secondly, all the shares sent for each share in the original protocol

still correspond to the same message in the original protocol. Because of that, we choose to let them be

communicated with the same program counter to avoid confusion. However, the mapping from futures to

program counters in the message buffer of the asyncoro is unique, meaning that we can not simply store
multiple shares with the same program counter in the buffer. Instead, we implemented the asyncoro to
keep track of a message buffer per virtual party.
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6.3.3.2 Types&Computations

As explained previously, MPyC knows a number of secure types or sectypes which form a wrapper around a

future to support arithmetic operations on values that have not yet been received. In the original protocol,

the line

x = mpc.input(v, [1])

would result in the input method returning a future immediately, which will later be filled with the share

to be received from party 1. In the new protocol however, we do not receive one share butm shares of x for
all our virtual parties. To accomodate this, we have implemented a new sectype called a VirtualSecFld.
Instead of havingm separate SecFld elements, a VirtualSecFld holdsm slots to be filled with the shares

of the m virtual parties. �e interaction between the buffers and these VirtualSecFlds can also be seen
in figure 6.4, where the shares for y have all been filled while we are still waiting for the share of x for
the second virtual party to become available. For our proof-of-concept, we only considered finite field

elements but we are certain this approach of representing the virtual parties as vectors will also work for

the other sectypes MPyC knows and similar protocols in other frameworks.

In addition, the actual runtime has been altered in order to work with the new asyncoro and
VirtualSecFld. In general, the runtime performs three important tasks: First, the runtime is re-

sponsible for taking the right values from the sectypes and defining the actions that should be taken when

a certain operation on the sectype is programmed in the front-end. Second, the runtime is responsible for

invoking the functions from, for example, the secret-sharing module, the module for finite field logic, etc.

Lastly, the runtime is responsible for distributing the shares to the correct functions in the asyncoro and

interpreting the messages received from the other parties.

For the first point, the notable difference is in the non-linear operations, wherewe often require some form

of communication between the parties in the protocol. As explained in the communication part, doing this

with player virtualisation results in an overhead ofO(m2). However, we implemented it in such a way that
only the shares from the virtual parties of one real party meant for one of the virtual parties of the receiver
are grouped in one packet. If we would group all the messages for all the virtual parties of a real party

together in a single packet, this would save usm packets but would cause more idle time at the CPU of the

receiver. Due to the asynchronous nature of MPyC, it is very convenient for the overall run-time of our

implementation to sendm packetswithm shares instead of one packetwithm2
shares. With this approach,

we can already start performing computations for a virtual party who has received enough shares while we

wait for the shares of the other virtual parties to arrive. �isway,we cankeep theCPUbusywithusefulwork

and reduce the practical overhead of the non-linear operations of the player virtualisation protocol. For

the linear operations, we simplymap the operations pairwise to all the elements in the vectors of the shares.

With our approach, the second and third task actually did not require significant changes to the runtime

implementation. For the second point, sharing a secret value x nowmeant we did not invoke the splitting
methodwith the number of partiesn and the threshold t anymore. Instead, we now invoke the splitmethod
to split intom∗n shareswith a threshold t∗m. Furthermore, the invocations of the reconstructionmethods
for the resharing and the output phase nowuse the points as described in Section 6.3.2. For the third point,
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the runtime mainly has to perform some extra work in order to structure the messages that are received

from the other parties but we believe the complexity introduced by this is insignificant compared to the

other parts of the protocol.



Chapter 7

Analysis

In this chapter the performance of our compiler will be analysed. To this end, an analysis of the complexity

and functionality of the design presented in Chapter 5 will be done first. After that, we will look at the

practical performance of the implementation we have made in Chapter 6.

7.1 �eory

7.1.1 Deterrence Rate

�e most notable difference between the watchlist approach in [DOS20], and the shared coin toss (SCT)

approach of our work and [Fau+21; SSS21], lies in the way the opened executions are chosen and the

resulting deterrence rates. Recall that in the watchlist approach, each party chooses the executions to

open individually, resulting in each party picking a different, random watchlist. To now ensure that

one execution remains closed, the sizes of these watchlist and the resulting deterrence rates become

relatively low. On the other hand, in the shared coin toss approach the set of opened executions is

shared across all the parties. By now ensuring that one execution is left out of this set, higher deterrence

rates for the samenumberof repetitions canbeobtained. In fact, the resultingdeterrence rates are optimal.

Note that for a number of repetitons k and a number of opened executions t, the deterrence rate equals
ε = t

k . In [DOS20], To ensure (at least) one unopened execution in the watchlist approach, in the case of

two parties, the size t of the watchlist is then chosen as t < k
2 . However, when this approach is extended

to the multi-party setting (n > 2), it follows that the size of these watchlists is bounded by t < k
n . In the

SCT approach, all the parties pick the same executions to check, which results in a guaranteed t = k − 1.
To reach higher deterrence rates in the watchlist approach, in [DOS20] it is argued that the parties can

pick a watchlist of size t > k
n and, with a constant probability, let the protocol run fail in case all executions

have been opened by at least one of the parties. If the protocol run fails, a new run of the entire protocol

is required. �is way, the same deterrence rates can be obtained as in the SCT approach at the cost of the

probability that we require additional runs. A comparison of the deterrence rates ε of the SCT approach
and the standard watchlist approach ε′ is given in Table 7.1. Furthermore, the expected number of runs
in the watchlist approach to reach the same deterrence rates as the SCT approach is given. For a more

detailed overview of how the expected amount of runs can be calculated, we refer to the analysis done by

[Fau+21].

78
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n k SCT Watchlist approach
ε ε′ or runs

2

2 1/2 - 2

3 2/3 1/3 3

10 9/10 4/10 10

3

2 1/2 - 4

4 3/4 1/4 16

10 9/10 3/10 100

5
2 1/2 - 16

6 5/6 1/6 1296

Table 7.1: Maximumdeterrence rateor expectednumberof runsof the time-lockapproachand thewatchlist

approach when ran with n parties and k executions [Fau+21]

Note that this failmechanismonlyworks for the input-independent compilers since allowing aprotocol run

to fail in the input-dependent settings implies that all the virtual parties of a real party would be opened,

leaking the private input of the real party. �erefore, itmust hold that (n−1)∗t < k, and thus the deterrence
rate is bounded by ε < 1

(n−1) if the corruption threshold is maximal, i.e., t = n − 1. As we have shown in
Chapter 4, this upper bound on the deterrence rate can be increased in case we assume a lower amount of

corruptions, but this still does not reach the deterrence rates possible with the SCT approaches. Since the

SCT approach can guarantee that always one virtual party remains hidden, they can reach a guaranteed

deterrence rate of ε = k−1
k .

7.1.2 Complexity

�e main differences in terms of computation- and communication complexity of our compiler and the

works of [Fau+21; SSS21] lie in the steps taken after the passively secure protocol has been executed. �egoal

of these steps is to ensure the parties obtain the randomness seeds used by all the other parties without the

possibility of a detection-dependent abort by the adversary. In our case, this is doneby the seeddistribution

with the publicly verifiable secret sharing scheme, the execution of Πopen and the possible execution of

Πreconstruct. In [Fau+21], the same goal is achieved by the maliciously secure puzzle generation.

Computation complexity �e computation complexity of our approach is largely determined by the

complexity of the underlying PVSS in the distribution of all the seed openings in step (3) of COMPPVC,
the verifications of all the seeds in step (1) of Πopen and the decryption, verification and reconstructions

in Πreconstruct, which is only executed in case any party does not receive all seed decommitments. For

concreteness, we will investigate the amount of group exponentiations required if we instantiate our

compiler with the state-of-the-art PVSS of Janbaz et al. [Jan+20], where the amount of group expo-

nentiations required for each of the aforementioned steps are reported. An overview of the amount of

group exponentiations for our protocol can be found in table 7.2. Distributing a single secret in the PVSS
scheme requires n + 1 exponentiations, while calculating the corresponding proof requires 3 · n + 1
exponentiations. Since each party needs to distribute k seed shares, the total amount of exponentiations is
(4 · n + 2) · k. Verifying all the shares distributed for a single secret requires n · (3 + t + 1) exponentiations.
Here, t is the reconstruction threshold which is n

2 , rounded down to the closest integer. Since each party

needs to verify the seeds used in all the executions by all the parties except for themselves, this becomes
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(n · (3 + n
2 + 1)) · (k · n − k). In the optimistic case, each party now publishes all the seed openings and we

are done. In the pessimistic case, some parties did not receive some of the seed openings, which will be

reconstructed usingΠreconstruct. Saym distinct seed openings aremissing in total, regardless of the parties

that are missing the shares. Each party now has to decrypt its share of each of the m seed openings. A

single decryption costs 1 exponentiation. Together with the 2 exponentiations required for computing the

correct decryption proof, this results in a total of 3 · m exponentiations for each party. Finally, each party

missing some amount of shares e needs to verify the decrypted shares it receives and reconstruct the seed
opening. Verifying a single share costs 4 exponentiations while reconstructing the seed opening requires

t = n
2 exponentiations. In the worst case, all the n shares need to be validated in order to find t + 1 valid

shares for eachmissing seed opening, resulting in a total of (4 · n + n
2 ) · e exponentiations. In the best case,

the first t + 1 verified shares are all valid, in which case only 4 · ( n
2 + 1) + n

2 ) · e exponentiations are required.

Step Exponentiations
Distribution (4 · n + 2) · k
Verification (n · (3 + n

2 ) + 1) · (k · n − k)
Decryption 3 ·m
Reconstruction (4 · n + n

2 ) · e

Table 7.2: Overviewof the amount of group exponentiations required in our protocol. Here,n is the number
of parties and k the amount of repetitions. In the pessimistic case,m is the total number of missing shares

while e is the amount of shares missing by a single party.

Common modular exponentiation algorithms cost O(log(m)1.5
· log(n)) bit operations for a modulus m

and a power n. In the PVSS of [Jan+20], both m and n have a bit length of some security parameter λ.
�erefore, we can say the amount of bit operations per exponentiation is λ2.5

.

For the time-lock puzzle approach, [Fau+21] approximate a total number of AND gates for the maliciously

secure puzzle generation functionality of:

(n − 1) · (11|k| + 22|N| + 12)
+nk · (4|k| + 2λ + 755)

+192|N|3 + 112|N|2 + 22|N|

.

Here |x| denotes the bit length of x andN is the RSAmodulus for the time-lock puzzle. As can be seen, the

asymptotic behaviour in n and k is similar to our construction, but the biggest drawback of their approach
is the cubic and quadratic complexity in the length of the RSA modulus, where typical RSA modulo sizes

nowadays are 1024, 2048 or even 4096 bits. For a typical security parameter of 128 bits, we believe our

construction is thus much simpler compared to the approach of [Fau+21].

Per example, the total number of exponentiations required for n = 5, t = 2, k = 2(ε = 1
2 ) and m = e = 1

in our approach with a security parameter of 128 bits becomes 285. �is results in 285 · 1283
≈ 5 · 107

bit operations. On the other hand, the number of AND gates in [Fau+21] with an RSA modulus of only

1024 bits (which is not very secure nowadays) becomes in the order of 1011
. Furthermore, if all the parties
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behave honestly, our approach has the benefit that the decryption and reconstruction steps can be skipped,

further reducing the complexity. Comparing our work to the time-lock approach of [SSS21] is harder, but

we believe the results will be similar to [Fau+21] due to the similarity of the two works.

Communication complexity Wemeasure the communication complexity of our approach as the amount

of field elements that are communicated between a pair of parties in the protocol. �e total amount of

field elements sent between the parties in each of the step is reported in Table 7.3. Note that normally,

publicly verifiable secret sharing schemes require some form of public bulletin board to ensure that each

of the parties is guaranteed to see the same encrypted shares distributed by a dealer and that all the parties

receive the same decrypted shares. To this end, we use a broadcast like [Dam+13] in which first all the

messages are sent to all the parties and after that pairwise comparisons are performed on the hashes of

the received messages. �is ensures that all the parties receive the samemessages.

Step Field Elements
Distribution (4 · n + 1) · k · (n − 1) · 2
Optimistic case 2 · k · (n − 1)
Pessimistic case 3 ·m · (n − 1) · 2 + e

Table 7.3: Overview of the amount of field elements communicated between the parties in our protocol.

Here, n is the number of parties and k the amount of repetitions. In the pessimistic case, m is the total

number of missing shares.

Distributing a single secret in the PVSS of [Jan+20] requires publishing 3n + 1 field elements for the
proof and n for the encrypted shares themselves. Implementing the public bulletin board using the secure
broadcast, thesemessages are first sent to the other n− 1 parties and then hashes of the receivedmessages
again to all the parties, hence the factor 2. Furthermore, this needs to be done for each of the k seed
openings. After that, in the optimistic case, the party simply sends two seed openings and a signature on

each of these seed openings to the other parties, resulting in 2 · k · (n − 1) field elements communicated
in total. In the pessimistic case, a number of m seed openings are still missing. In this case, e missing
messages are sent by a party missing e seed openings. After that, for a single secret, all the parties need to
broadcast again their decrypted share and 2 elements for the decryption proofs. �is results in a total of

3 ·m · (n − 1) · 2 field elements. Looking at the synchronous communication model, the broadcasts cost 2
communication rounds and hence our protocol requires a constant number of 3 communication rounds in

the optimistic case. In the pessimistic case, this increases to 6 communication rounds.

�e communication costs of the time-lock approach from [Fau+21] can be estimated based on the number

of AND gates in the circuit of the puzzle generation functionality. �ey mention the general-purpose

actively secure MPC protocol of [YWZ20] as a possible protocol for implementing their circuit. Here,

an estimated amount of 193 bytes of bandwidth is needed per party for a single multiplication triple,

resulting in approximately 193 · 1011
bytes required to compute the entire circuit when run with the same

parameters as used in the previous paragraph. Furthermore, this MPC protcol runs in a constant number

of 14 communication rounds. For comparison, ifwe are pessimistic, our approach requires communicating

around 400 field elements per party. Assuming the size of the field elements in our protocol is 32 bits, this

would result in a total number of 1600 bytes communicated in only 6 communication rounds.
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Protocol execution phase As can be seen in the above analysis, the computation- and communication

complexity of the additional protocols for seed generation, execution opening and potential reconstruction

are independentof the sizeof the circuit tobe computedduring theprotocol executionphase. �erefore, the

complexity of these protocols becomes less important if we compile passively secure protocols with a large

circuit sizes. As our input-independent compiler simply executes the passively secure protocol k times, the
computational complexity of the protocol execution phase increases with a factor k. Since each party needs
to receive each message sent during the protocol executions, the communication complexity in a single

repetition of the passively secure protocol increases with a factor n − 1 since each message in the original
protocol now needs to be sent to all the other parties. �ese protocol executions are all independent of each

other, which means we can run them in parallel. �erefore in practice, the running time of the passively

secure protocol does not have to increase if the parties have enough computational power and the network

with which they are connected has enough bandwidth. In the synchronous communication model, one

might say that the round complexity of the passively secure protocol is preserved.

7.2 Practice

To get a better understanding of the performance of covert security compared to passive and active security

in practice, we have benchmarked our implementation of MPyC with player virtualisation and the plain

version of MPyC with passive security. Furthermore, we have compared this to hypothetical executions

times for an actively secure version of MPyC, which we have derived from the predecessor of MPyC called

ViFF [Gei10].

7.2.1 Test Setup

�e benchmarks have been performed by simulating the parties locally on a server with 20 Intel Broadwell

CPUs running at 2.4GHz. Furthermore, this server boasts 63GB of RAM.We have measured the execution

time of a multiplication in all three implementations. �e execution time of a single multiplication is

taken as the average of 100.000 multiplications, where we again took the average time of all the parties.

Since the protocol is asynchronous, it might happen that some of the parties are done slighly earlier, but
in practice this made almost no difference since the latency of the communication between the parties is

so low compared to the time spent on the computations. �e execution time of multiplications is a good

indicator of the overall performance of an MPC protocol since these are non-linear operations, which are

usually the bottleneck of MPC protocols.

Since MPyC itself does not have an implementation of active security, we have looked at the predecessor

of MPyC called ViFF, which does have an actively secure version on top of the standard passive security.

Here, we looked at the reported results in terms of execution times for passive and active security in ViFF

from [Gei10] and applied the same overhead to our measurements of passively secure MPyC. Since the

frameworks are very similar in termsof structure and functionality,webelieve this yields a fair comparison.

In these frameworks,multiplicationswith passive security are performed by a localmultiplication followed

by a reshare, similar to the approach of Gennaro at al. fromSection 3.1.1.1. �e actively secure implementa-

tion uses Beaver’s circuit evaluation approach described in Section 3.2, with an offline phase for generating
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the triples. As explained in the previous chapter, our covertly secure version performs the computations in

a similar fashion to the passive version, but does so with virtual parties. All of these approaches have been

altered to run asynchronously. Note that for our covertly secure version,we only take the online phase of the

protocol into account. However, the other parts of our compiler for covert security with public verifiability

are independent of the circuit size and thus amortise over large circuits.

7.2.2 Results

n t Passive Active Covert
On On On+Off k = 2 k = 5 k = 8

4 1 0.5ms 1.0ms

(x1.9)
1.8ms

(x3.6)
0.6ms

(x1.2)
0.8ms

(x1.6)
1.0ms

(x2.0)
7 2 0.6ms 1.0ms

(x1.7)
2.3ms

(x3.9)
0.8ms

(x1.3)
1.2ms

(x2.0)
1.6ms

(x2.7)
10 3 0.7ms 1.1ms

(x1.6)
5.5ms

(x7.9)
1.0ms

(x1.4)
1.5ms

(x2.1)
2.3ms

(x3.3)
13 4 0.8ms 1.2ms

(x1.5)
7.8ms

(x9.8)
1.1ms

(x1.4)
2.0ms

(x2.5)
3.0ms

(x3.8)
16 5 0.9ms 1.3ms

(x1,4)
8.8ms

(x9.8)
1.3ms

(x1.4)
2.6ms

(x2.9)
3.9ms

(x4.3)
19 6 1.1ms 1.4ms

(x1.3)
11.2ms

(x10.2)
1.6ms

(x1.5)
3.3ms

(x3.0)
5.2ms

(x4.7)

Table 7.4: Execution time of a single multiplication in passively secure MPyC, actively secure MPyC (split

in an offline and online phase) and the online phase of our covertly secure version of MPyC for various

deterrence rates.
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(c) n=10, t=3

Figure 7.1: Benchmarkof the average time for amultiplication (of 100.000 runs) for anumber of repetitions.

�is has been plotted for 4, 7 and 10 parties with thresholds 1,2 and 3 respectively. Note that for n = 10, the
line for active security with pre-processing is at 5.5ms and did not fit in the figure.

�e results of these benchmarks can be found in Table 7.4. Here, the execution times for passive security,

active security and covert security with 2, 5 and 8 repetitions (ε = 1
2 ,

4
5 ,

7
8 ) are presented. Visual represen-

tations for some of these results can also be found in Figure 7.1. Furthermore, the actively secure execution
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times are split in an offline phase which can be ran before the computations take place and an online phase

in which the computations take place. ViFF provided two ways for generating these triples with active

security, where one was significantly faster for lower numbers of parties while the other scaled better. In

Table 7.4, only the fastest of the two for a given number of parties is taken into account.

Because of the split in an off- and online phase, we see that the introduced relative overhead of the online

phase of the actively secure protocol actually goes down as the number of parties increases. �is is due

to the fact that the complex operations can be pushed to the offline pre-processing. However, it can be

observed that both phases of active security combined introduce a lot of overhead. On the other hand,

in the passively secure implementation, all the complexity is in the resharing in the online phase. �is is

similar for covert security, which introduces a lot less overhead compared to the passively secure protocol.

For a deterrence rate of
1
2 , we observe that covert security is even faster than simply the online phase of

active security up until 13 parties. For a larger number of parties, the circuit evaluation approach outshines

the resharing approach. However, looking at the overall overhead of active security, we observe that even

for large deterrence rates, the covertly secure protocol is about 50% faster. Furthermore, the additional

overhead introduced by covert security grows slower for larger numbers of parties compared to to the total

overhead of active security.

For protocols with a large number of parties, the expected execution times of the online phase of active

security are lower than for covert security, even with low deterrence rates. �erefore, we should not focus

on compiling the online phase of the protocol but find a pre-processing protocol with passive security,

apply our input-independent compiler to that and then simply run an actively secure online phase. As

proven in [DOS20], a protocol with a covertly secure pre-processing phase with public verifiability and an

actively secure online phase constitutes an overall protocol with covert security and public verifiability. As

the executions of the passive protocol in our input-independent compiler are completely independent of

each other, we can run all of them in parallel with enough computation power of the parties. �erefore,

the slowdown of this approach is expected to be minimal in practice. For large circuits, the vast majority

of the complexity this strategy is in the pre-processing phase. �erefore, a speedup of, e.g., 30% in the

pre-processing phase results in a speedup of almost 30 % in the overall protocol as well. All in all, our

compiler has the potential to improve the performance of these protocols by a lot in practice.
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Conclusion&Discussion

8.1 Conclusion

In this thesis we have shown the potential of the notion of covert security with public verifiability for MPC

protocols in the context of compilers. To this end, we have illustrated the power of these compilers in

transforming arbitrary protocols to covertly secure protocols with public verifiability.

Furthermore, we have presented a new design for such a compiler, which uses publicly verifiable secret

sharing for transforming a passively secure protocol to a protocol with covert security and public verifia-

bility. Our compiler treats the passively secure protocol in a black-boxmanner, meaning our compiler will
work for new MPC protocols with passive security in the future as well. �is design follows the shared

coin-toss approachwhich yieldsmuch higher deterrence rates compared to earlier ideas and also appeared

in two other works on such compilers in 2021. Compared to these works, we have shown that our compiler

can be instantiated with less assumptions on the network and much simpler building blocks. Both the

computation- and the communication complexity of the opening mechanisms of our protocol are orders

of magnitude lower compared to the work [Fau+21]. We believe our compiler is therefore more practical

and a good step forward in rolling out compilers in practice.

Finally, we have shown the potential compilers in general with covert security and public verifiability by

means of a proof-of-concept implementation inMPyC.�is implementation constructs a related function-

ality for the virtual parties in a generic way. Such a related functionality is required by all such compilers

known at the time of writing this thesis. To the best of our knowledge, the idea of undoing the additive

secret-sharing as a first step of the virtual parties has not been presented before in this context. Bench-

marks of this implementation show that the notion of covert security indeed leads to more efficient proto-

cols compared to active security. In our theoretical construction for a new compiler as well as the imple-

mentation, the deterrence rate of the covertly secure protocol can be chosen arbitrarily, which provides a

useful trade-off between security and efficiency.

8.2 Discussion& FutureWork

�is work has demonstrated the power of publicly verifiable secret sharing schemes in the context of com-

pilers, but did so while makingmultiple assumptions that can be researched. In general, future work boils

down to researching how the assumptions have influenced the design and performance of our compiler

85



86 CHAPTER 8. CONCLUSION&DISCUSSION

and investigate whether our techniques can be applied in situations where these assumptions may not

be applicable. Wewill sketch some of the research directionswe thinkwill be interesting as follow-upwork.

Asynchronous communication. First of all, we think and sketch that our compiler couldwork in the asyn-
chronous communicationmodel, but did not work this out in detail. Especially the possibility of being able

to continue the protocol execution even if some of the parties stop responding could prove difficult for our
design. �ese challengesmight add to the complexity of our approach, but we believe they can be overcome

considering that the asyncronous nature of MPyC and ViFF was already realised using the honest majority

assumption.

Use of PVSS in practice. We sketch how we can implement the PVSS using a secure broadcast, but have

not implemented it in practice. While we are confident this should work since a similar approach has been

used in earlier works onMPC protocols, the actual implementation could prove to be non-trivial.

Honest majority. Perhaps the most important assumption of our compiler is the assumption that the

majority of the participants in the resulting protocol behave honestly. If this is not the case, the security

of our execution opening protocols completely breaks. In this case, an adversary might cause wrong

seeds to be reconstructed and incriminate honest parties at will. Making our compiler secure against a

dishonest majority is not a trivial task is the biggest drawback of our compiler compared to related works.

Researching whether a PVSS can also be used to design a compiler secure against a dishonest majority

would therefore be very interesting as a follow-up work.

Implementation. On the practical side, our proof-of-concept implementation currently only implements

the player virtualisation strategy. To be used with covert security in practice, the PVSS, signature scheme,

opening and reconstruction protocols also need to be implemented. �erefore, obvious future work is

to implement and evaluate the entire compiler design presented in this work. While all the building

blocks and cryptographic protocols introduced in this work have been built and used successfully before,

we do not yet know the practical performance of our solution. Furthermore, our benchmarks have been

performed on a single server, meaning the ‘network latency’ is very low. �erefore, it would be interesting

to see how our solution performs in more realistic LAN or WAN networks. Lastly, the solution for finding

a generic functionality for the virtual parties does not always work since it is not secure in general. While it
works for MPyC because the entire output is released at once, this will prove to be an obstacle when trying

to apply our compiler to more ad-hoc MPC protocols.

Complexity analysis. �ecomplexity of our compiler and the relatedworks should be researched further.

Especially the asymptotic behaviour of our execution opening protocols for a large number of parties or

a large number of missing seed openings need to be investigated since the complexities include some

quadratic relations on these parameters. Compared to the related works, the complexity analysis of our

approach look much better. We believe this is due to the circuit design of these works being rather naive.

We believe their current complexities do not do justice to the potential of their solution, which can be

improved with more thought. An intuition for a more efficient solution has already been sketched in
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[Fau+21]. Here, the idea is to remove a complex portion of the puzzle generation step from the actively

secure part of the circuit, removing the costly cubic dependency on the RSA modulus size. Currently, this

solution is not secure but we believe this can be done in a secure manner in future research.

Combination with blockchain. As another line of future research, we think a combination of our work

with blockchains could be interesting. A blockchain is a way of storing information (like a database) but in

a distributed fashion, removing the need to trust a single party just like MPC. After all the parties agree on

the data, the data is stored and becomes immutable1, meaning it is impossible to change it after it has been
stored. Furthermore, anyone participating in the blockchainmay see the data stored on the blockchain. We
identify twomeaningful ways to combine blockchains with this work.

First, a blockchain could serve as the public bulletin board which is required for the PVSS. Here the parties

can store the encrypted seed shares, decrypted seed shares and the proofs all on the blockchain. �is

guarantees that all the parties agree on the stored values. �is seems like amore robust solution compared

to the secure broadcast while possibly also reducing communication costs.

Secondly, another feature of blockchains is that they are programmable. Via so-called smart contracts, arbi-
trary programs may be stored on the blockchain. Example use cases of this are betting, where it is now

impossible for a participant to withdraw, or for insurance contracts to automatically resolve a dispute. We

believe smart contracts could be useful in combination with our work to automatically punish a detected

cheater by running our Judge algorithm inside a smart contract. A party could then invoke the smart con-

tract with a certificate, which automatically punishes the cheater financially if the certificate indeed proofs

that a party cheated.

1
�is is true in the sense that an attacker can not alter the contents of the blockchain later on. However, if all the parties agree,

the contents could still be changed.
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