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Management summary 
The facility of Euroma in Zwolle, which produces dry products such as seasonings, herbs, spices, and dry 
sauces, is at its limits as almost every square meter is occupied. Still, this facility cannot satisfy customer 
demand. An analysis showed that the mixing department, which consists of three consecutive production 
stages, is the bottleneck. An OEE analysis identified that the mixers need cleaning 15% of the time and are 
idle 30% of the time. As a result, the production throughput is less than 300 mixtures per week, whereas 
400 mixtures per week are required to satisfy the demand. Therefore, the main research question is: 
 

“How to optimize the multi-stage production schedule to achieve the desired throughput?” 
 
An analysis of the current situation identified the scheduling problem. In essence, the scheduling problem 
consists of four decisions: (i) allocate an eligible production route to every production job, (ii) allocate an 
eligible machine to every operation of the job, (iii) determine the sequence of operations on the machines, 
and (iv) determine the start- and finish times of every operation. Moreover, the problem has many 
constraints related to, e.g., release dates for jobs, sequence-dependent cleaning times, restricted job 
sequences, transportation times between stages, a limited number of shared resources, machine 
maintenance, and production stops.  
 
We conducted a literature review to obtain modeling techniques for this scheduling problem. Based on 
this review and our insights, we proposed 12 model configurations that each consists of (i) a construction 
heuristic, (ii) an improvement heuristic, and (iii) a neighborhood structure. Moreover, we proposed a 
decoding- and a corrective backtracking algorithm to determine the start- and finish times of the 
operations and cleanings. 
 
We performed experiments to set the weights in the objective function and to obtain the most promising 
model configuration according to this objective function. Subsequently, we evaluated the following 
scenarios: 
 

1. Optimize the schedules of the production stages simultaneously instead of separately; 
2. Consider all eligible production routes instead of only the default production routes; 
3. Optimize the schedules of the production stages simultaneously and consider all eligible 

production routes instead of optimizing the schedules of the stages separately and only 
considering the default production routes. 

 
To evaluate these scenarios, we consider 6 problem instances for each scenario from the company data 
with low-, normal-, and high demand levels. We conducted 25 replications per scenario and problem 
instance (i.e., solving every scenario and instance 25 times with the same parameter settings to provide 
statistically significant results). We perform these replications due to the randomness of the heuristics and 
to obtain the variability of the single objective values in the weighted objective function. We evaluate the 
KPIs makespan, total tardiness, total cleaning time, average buffer time per job (i.e., the average time that 
a job waits between the production stages), the number of IBCs needed for the solution, and the 
percentage of solutions that satisfies the IBC-capacity. 
 
Table 1 provides the average difference per KPI of the three scenarios. The symbols (↑) and (↓) indicate 
a significant increase or decrease of the KPI with an alpha of 0.01, respectively. The absence of these 
symbols indicates no significant difference. The colors green and red represent a better and worse 
performance, respectively. 
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Table 1 | Average performance difference per scenario 

Scenario Makespan Tardiness Cleaning time Buffer time IBCs needed Feasibility 

(1) Simultaneous versus separate 
optimization of production stages 

-3.2% ↓   -99.4% -13.0% 15.9% 6.5% 3.3% 

(2) Allowing eligible routes versus 
only allowing default routes 

↓ -16.3% ↓   -33.3% ↑   9.4% ↓ -35.0% ↓ -15.9% ↑ 32.7% 

(3) Proposed model versus current 
situation 

↓ -19.9% ↓ -100.0% -1.1% ↓ -37.6% ↓ -12.7% ↑ 36.0% 

 
We conclude that optimizing the production stages simultaneously instead of separately significantly 
reduces the total tardiness. Allowing the model to allocate an eligible production route to a job instead of 
only considering the default jobs, results in a significant performance improvement for all KPIs, except for 
the cleaning time; the performance of the cleaning time worsens significantly. This is reasonable since 
allowing more changeovers results in more flexibility to improve the other KPIs. Improving the other KPIs 
outweighs the increase in the cleaning time. 
 
Table 2 provides the 99% ─ confidence intervals (CI) of the KPIs to compare the performance of the current 
situation with the performance of the proposed model per demand level. The timestamps have the format 
“d:hh:mm:ss”. 
 
Table 2 | 99% ─ confidence intervals of the current situation and the proposed model 

Demand Model Current situation Proposed model Difference 

Low  
(± 200 jobs) 
 

Makespan [4:07:04:46 - 4:14:47:38] [3:15:48:53 - 3:19:28:31] ↓ -16.2% 

Tardiness [0:01:58:44 - 0:13:21:57] 0:00:00:00 ↓ -100.0% 

Cleaning time [4:08:45:02 - 4:16:10:58] [3:09:14:33 - 3:17:31:15] ↓ -21.3% 

Buffer time [0:01:51:14 - 0:02:18:29] [0:01:58:56 - 0:02:16:41]  2.4% 

IBCs needed [38.9 – 42.5] [40.8 – 43.7]  3.7% 

Feasibility 100% 100%  0.0% 

Normal 
(± 300 jobs) 

Makespan [6:05:58:34 - 6:10:54:02] [4:23:02:47 - 5:02:36:35] ↓ -20.7% 

Tardiness [0:09:38:30 - 1:09:07:22] 0:00:00:00 ↓ -100.0% 

Cleaning time [6:08:55:16 - 6:14:05:44] [5:19:28:38 - 6:08:29:10] ↓ -6.1% 

Buffer time [0:04:16:04 - 0:05:31:53] [0:03:19:33 - 0:03:52:20] ↓ -26.5% 

IBCs needed [51.4 – 57.7] [47.6 – 51.1] ↓ -9.5% 

Feasibility 74% 98% ↑ 24.0% 

High 
(± 400 jobs) 

Makespan [8:03:59:24 - 8:05:56:00] [6:09:52:02 - 6:12:33:42] ↓ -21.2% 

Tardiness [2:15:17:31 - 6:10:21:32] 0:00:00:00 ↓ -100.0% 

Cleaning time [8:01:40:44 - 8:06:04:16] [9:04:39:10 - 9:10:14:02] ↑ 14.1% 

Buffer time [0:07:41:56 - 0:08:33:41] [0:04:03:01 - 0:04:26:44] ↓ -47.8% 

IBCs needed [67.8 – 72.5] [50.9 – 54.7] ↓ -24.7% 

Feasibility 8% 92% ↑ 84.0% 

 
We conclude that, compared to the current situation, the proposed model significantly improves almost 
every KPI on every demand level, except for the cleaning time at the high demand level; the cleaning time 
increases significantly. This is reasonable since allowing more changeovers results in more flexibility to 
improve the other KPIs. However, having more changeovers may result in a higher cleaning time. 
Nevertheless, the improvements on the other KPIs outweighs the increase in the cleaning time. An 
increase in the cleaning time is not a concern since we considered the number of operators that are 
available for cleaning. Therefore, the capacity of the operators is always satisfied. 
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All in all, the weekly production throughput, which is the main KPI of Euroma, increases from 300 jobs for 
the current situation to 400 jobs per week for the proposed model, which meets the desired level of 
Euroma. 
 
Furthermore, we implemented our model in practice to optimize the mixing schedules by minimizing the 
total cleaning time and total tardiness. Based on the results, we conclude from the 99% ─ CIs that the 
cleaning time reduction is between [26.3% ─ 49.1%] compared to the situation before implementing the 
model. This results in a weekly cleaning time saving of the mixers between [0:13:21:14 ─ 1:00:55:50]. 
 
Finally, we recommend Euroma to: 
 

• Implement the scheduling model that can optimize the schedules of the production stages 
simultaneously and that can allocate production routes to jobs; 

• Enrich the input data by logging the processing times of the key production steps to enhance the 
quality of the solutions of the model; 

• Define and monitor a set of KPIs that represent the whole production system, e.g., the IBC flow 
through the system, the OEE per machine, and the production plan adherence; 

• Investigate the costs and consequences for stakeholders and IT systems concerning the 
implementation of the proposed model.  
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1 UNIVERSITY OF TWENTE. 

1. Introduction 
Section 1.1 introduces the company Euroma and Section 1.2 describes the mixing and packaging 
departments that form the subject of this study. Section 1.3 identifies the core problem of this research. 
Sections 1.4 and 1.5 introduce the research approach and the research methodology, respectively. Finally, 
Section 1.6 outlines the structure of this report. 
 

1.1  Introduction to Euroma 
Euroma was established in 1899 and started producing herbs and spices in Zwolle. The name Euroma was 
first used in 1966 and kept on being used from that point in time. In 2001, Euroma was granted the Royal 
predicate ─ an acknowledgment of national significance that Euroma occupies an important place in its 
field (Euroma, History, 2019).  
 
To improve Euroma’s market position, Euroma acquired Intertaste in 2018. At that time, Euroma started 
building her new state-of-the-art production facility in Zwolle. Figure 1 shows the new facility in Zwolle 
where we conduct our research. This facility has, among others, a robotized high-rise warehouse, 
automated production lines, automatic guided vehicles (AGVs), and silos that rapidly and automatically 
supply large volumes of raw materials.  
  

After the acquisition, Euroma had six production facilities 
and decided to close and merge three of these facilities 
into the facility in Zwolle. In 2019, the facilities in Utrecht 
and Puttershoek were closed after the production lines 
were moved to Zwolle. In 2021, the location in Wapenveld 
will close, after the production lines have been moved to 
Zwolle. Figure 2 provides an overview of the facilities. 
 
After the merger, Euroma has the following three production facilities: (i) Zwolle, for the production and 
packaging of dry products such as seasonings, herbs, spices, and dry sauces, (ii) Schijndel, for the 
production and packaging of ambient liquids, such as mayonnaise and satay sauces, and (iii) Nijkerk, for 
the production and packaging of fresh liquids, such as dressings and sauces (Euroma, Portfolio, 2019).  
 
At the moment, Euroma has a top 3 position in the European herbs and spices market and a number one 
position in the Dutch herbs and spices market. Euroma has more than 500 employees and turned over 220 
million euros in 2019. Euroma’s main mission is to retain a top 3 position in the European herbs and spices 
market and to deliver her products to all the leading food companies (Euroma, About, 2019).  
  

Figure 2 | Production facilities overview 

Figure 1 | New production facility in Zwolle 
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1.2  Introduction to mixing & packaging 
In this section, we introduce the mixing and packaging departments of the production facility in Zwolle.  
 
The new production facility in Zwolle operates twenty-four-seven to produce dry products, e.g., herbal 
blends, seasonings, coatings, dry (noodle) soups, dry sauces, and instant food. Furthermore, it packages 
these products for industry and consumer purposes. This facility is highly automized and it produces more 
than 3000 different end-products. Figure 3 outlines the main processes that are executed in this facility. 
We briefly explain the replenishing, mixing, and packaging processes.  
 
 
 
 
 
 
 
 
Replenishing 
The mixing department has a replenishment system consisting of several silos and different replenishment 
stations. Here, AGVs transport intermediate bulk containers (IBCs) to collect the ingredients of recipes. 
Figure 4 shows an example of AGVs, loaded with a 1,500L IBC, driving across different silos to collect pre-
weighted ingredients for a recipe. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mixing 
After collecting the ingredients, the AGVs and the IBC-elevator (i.e., an elevator that is dedicated to IBCs) 
transport the IBCs to the mixing department. Figure 5 gives an overview of the five-floors mixing 
department, which consists of different mixers with varying capacities and characteristics. The mixing 
department produces more than 300 mixtures weekly, each containing tens of ingredients. 
 
  

Figure 4 | AGVs with IBCs collecting ingredients at day silos 

Figure 3 | Overview of the processes in the mixing and packaging departments 
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Packaging 
After mixing the ingredients, the mixer discharges the mixture into big bags or into the same IBCs that 
were used to fill the mixer. Figure 6 shows the discharging of a mixture into two big bags. AGVs transport 
these big bags and IBCs to the packaging department. Here, packaging lines package the mixtures for 
industry and consumer purposes. After discharging the IBCs into the packaging lines, the AGVs transport 
the dirty IBCs to the two manual IBC-cleaning stations. These IBC-cleaning stations can each clean one IBC 
at a time. Figure 7 shows an example of an AGV that transports an IBC to the IBC-elevator. After finishing 
the packaging, manual forklift trucks transport the products to the automated high-rise warehouse.  
 
  

Figure 5 | CAD of the mixing 
department in Zwolle 

Figure 6 | Load mixtures into big bags Figure 7 | AGV transporting an 
IBC into the IBC-elevator 
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1.3  Problem identification 
In this section, we first introduce the problems and illustrate these problems with examples. After that, 
we create a problem cluster to identify the relationship between these problems. We then select the core 
problem to solve in our research. 
 

1.3.1 Problem background 

After the acquisition, the demand from the facilities in Utrecht and Puttershoek moved to Zwolle to obtain 
economies of scale. The demand increased significantly and more complex recipes with longer processing 
times needed to be produced. Initially, only four different liquids were needed, whereas after the 
acquisition, there are more than 120 different liquids to produce the recipes. 
 
Nowadays in 2021, demand has tripled since 2018 due to the increase in customer demand and the 
acquisition of Intertaste. To satisfy the demand, 3 more mixers and 10 more IBCs were installed. As a result, 
the facility in Zwolle is at its limits as almost every square meter is occupied. Figure 8 shows that the facility 
in Zwolle still cannot satisfy the production requirement to satisfy the customer demand. Therefore, the 
facility in Wapenveld is still operational, resulting in high additional costs. Note that in week 34, the facility 
started producing twenty-four-seven. Furthermore, in the weeks 43 and 47 of 2020 new mixers were 
installed. 
 
 

 

 

 

 

 

 

 

 

 

 
Figure 9 shows that the mixers in the facility in Zwolle currently have an overall equipment effectiveness 
(OEE) of about 50%. As a result, the production throughput is less than 300 mixtures per week, whereas 
400 mixtures per week are required to satisfy the demand. 
 
The mixers have a low OEE since these are often idle due to: (i) changes in the schedule resulting in idle 
time or extra cleaning time, and (ii) idle time due to waiting on shared resources (e.g., IBCs, AGVs and 
operators). We illustrate these two situations with examples. 
  

Figure 8 | Production requirement compared to the production throughput per week in Zwolle in 2020 
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First, the production system is subject to 
uncertain events that can impact the schedule. 
Consequently, there are changes in the 
schedule that frequently result in waiting times. 
Figure 10 illustrates an example. Consider a 
scenario where the mixer with a volume of 
10,000L, which we refer to as the “10K mixer”, 
is available in one hour. The red job in the 
schedule needs one hour of replenishment 
time. Replenishing the raw materials of a new 
job can be done parallel to the mixing of 
another job. Thus, the red job gets activated for 
preparation. However, one of the ingredients of 
this job suddenly needs inspection. Therefore, 
it is not possible to produce this mixture at the 
scheduled time. The yellow job is second-next 
in the schedule and takes two hours to prepare. 
Therefore, the mixer is idle for one hour as the 
mixer must wait for the job to finish 
replenishing. One possible solution to reduce the idle time would be to sort the jobs on the preparation 
time. In case the next job only needs one hour and ten minutes to prepare, then the mixer would be idle 
for only ten minutes. 
 
 
 
 
 
 
 
 
 
 
 
 
Second, we provide two examples of situations where machines are idle due to waiting for shared 
resources. For the first example, consider a situation where multiple mixers need cleaning at the same 
time. In this situation, multiple operators who are classified to clean mixers are required. The number of 
operators who are classified for this job is limited. Therefore, mixers become idle due to waiting for 
operators. 
 
Further, mixing and packaging schedules are currently created manually and separately. First, the mixing 
schedule is created. Second, based on the mixing schedule, the packaging schedule is created. Often, 
multiple mixtures that need packaging on the same line finish at the same time. In this case, all IBCs may 
get occupied. If so, it is not possible to replenish new jobs and fill or discharge mixers. Therefore, the 
mixers become idle. Also, the other packaging lines can become idle as all the work-in-progress is 
dedicated to one packaging line.  
 

Figure 10 | Robust planning problem example 
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Figure 9 | Mixer OEE analysis (week 35-50 in 2020) 
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1.3.2 Problem cluster 

To illustrate the relations between the problems that are in the scope of our research, as introduced in 
Section 1.3.1, we structure the problems in a problem cluster (see Figure 11).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Euroma observes the problem at the end of the causal chain in Figure 11. This problem is also referred to 
as the action problem, which is defined as the discrepancy between the reality and the norm, as perceived 
by the problem owner (Heerkens & Winden, 2017). The action problem is: 
 

“Less than 300 jobs per week are produced instead of the desired 400 jobs.” 
 
To find the causes of the action problem, we investigate and observe the processes. We also interview 
stakeholders to iteratively discuss and improve the problem cluster until it represents the relations 
between the problems and their causes. One of these causes, the significant demand increase, is a cause 
that we do not want to influence. The goal of Euroma is to retain the top-3 position in the European 
market. To achieve this, demand growth is required. 
  

The multi-stage production 

schedules are not jointly optimized 

Shared resources in the multi-stage 

production system are not 

considered while scheduling 

Mixers and packaging lines are 

often idle due to delays and waiting 

on shared resources 

The OEE of the mixers and 

packaging lines is too low 

Increasing production 

demand due to the 

acquisition of Intertaste 

Less than 300 jobs per week are 

produced instead of the desired 

400 jobs 

The mixing and packaging 

departments cannot satisfy the 

demand 

Changes in the 

production schedule 

often result in delays 

Figure 11 | Problem cluster 
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1.3.3 Core problem selection 

Next, we select the core problem from the problem cluster in Figure 11. It is useful to select the core 
problem, as solving the core problem helps to resolve the action problem (Heerkens & Winden, 2017). 
 
We select the core problem by following the causal chain upstream, starting from the action problem of 
Euroma. The problems that we cannot influence are not considered to be core problems. The core problem 
at the end of the causal chain that we can influence is: 
 

“The multi-stage production schedules are not jointly optimized.” 

 
We study and solve the core problem in this research. Consequently, we solve the related downstream 
problems to increase the production throughput. 
 

1.4  Research approach 
In this section, we introduce our approach to solve the core problem that we identified in Section 1.3. First, 
we provide the research objective and we outline the practical- and scientific contribution. Next, we define 
the scope of the research and then define the research questions of which the answers are required to 
solve the core problem. Moreover, we also describe the approach to find the answers to the research 
questions. 
 

1.4.1 Research objective 

The main objective of the project is to increase the production throughput. To achieve this, we identified 
the core problem. Therefore, the objective of the research is to find a method to jointly optimize the multi-
stage production scheduling. For this research, we need to take into account the future needs of Euroma, 
e.g., the increasing customer demand and the additional demand that will be moved from the facility in 
Wapenveld to the facility in Zwolle. 
 
The research objective regarding the scientific contribution is to investigate whether and to what extent 
multi-stage production scheduling with practical constraints from the food industry can be jointly 
optimized. We illustrate the findings using the case study of Euroma.  
 
Regarding the practical contribution, we systematically identify possible improvement points. Further, the 
objective is to find a method to jointly optimize the multi-stage production scheduling to contribute to the 
operational performance of Euroma. Therefore, this research aims to contribute to Euroma’s mission ─ 
retaining a top 3 position in the European herbs and spices market. 
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1.4.2 Research scope 

For this research, we cover relevant and known areas that can be influenced. We consider several crucial 
production processes of the facility in Zwolle, of which Figure 12 depicts a rough overview. 
 

  
 
 
 
 
 
 
 
 
 
 
Figure 12 shows in green that the replenishing, mixing, and packaging processes are in the scope of this 
research. Note that the automated storage process, consisting of the high-rise warehouse and the 
automated outdoor silos, is not in the scope of this research. These systems simply execute the jobs of the 
mixing and packaging departments and are not experienced as bottlenecks. Also, these systems operate 
on confidential third-party software and can therefore not be changed easily. 
 

1.4.3 Research questions & approach 

To meet the research objective in a structured manner, we first formulate the main research question. 
After that, we formulate sub-research questions and describe our approach to find the answers to these 
questions. The main research question is: 
 

“How to optimize the multi-stage production schedule to achieve the desired throughput?” 
 
The sub-research questions are partitioned into five sections according to the Managerial Problem-Solving 
Method (MPSM) from Heerkens and Winden (Heerkens & Winden, 2017). Table 1 provides an overview of 
the MPSM and its application in this research. The structure of the report reflects the structure of the 
MPSM. Next, we describe the sub-research questions and elaborate on the main content of the report 
chapters. 
 
Table 1 | Research methodology and application 

MPSM methodology MPSM application 
Phase Description Question Section Chapter 

1 Define the problem - 1.3 Introduction 

2 Formulate the approach - 1.4 Introduction 

3 Analyze the problem 1 2 Current situation 

4 Develop alternative models 2 3 Literature review 
3 4 Model alternatives 

5 
Select model & evaluate the 
performance 

4 5 Experiments 

6 Implement the model 5 6 Model implementation 

Figure 12 | Research scope process overview 
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The first set of sub-research questions aims to analyze the current situation of the multi-stage production 
processes of Euroma and their performance. We need this information to understand the current situation 
and to identify improvement opportunities. The sub-research questions are: 
 
 

1. What are the current scheduling and production processes in the multi-stage production system? 
Production processes  
- What are the current production processes and how are these connected? 
- Which machines are in the system and what are the specifications of these machines? 
- Which software systems are used in the processes and how do these interact? 
- Which data regarding the mixing and packaging processes is available? 
 
Planning and scheduling processes 
- What is the process flow from planning to scheduling? 
- How are the production schedules currently created? 
- What are the objectives and restrictions of the production schedules? 
 
Performance 
- How does Euroma currently measure the production performance? 
- What is the current production performance? 
- What are the possible improvement opportunities? 

 
 
For answering the sub-research questions regarding the current situation, we use our insights based on 
the observations, insights from stakeholders, and available data regarding the processes. In case the 
available data is not sufficient or lacking, we collect the data ourselves. In Chapter 2, we answer these sub-
research questions by providing process flow charts, machine specification tables, an overview of the 
performance, insight into bottlenecks, and possible improvements. 
 
After we have analyzed the current situation, we classify and translate our scheduling problem to 
theoretical problems available in the scientific literature. We compare our problem to known problems to 
identify gaps and similarities. Further, we identify suitable models to solve our scheduling problem. 
Chapter 3 provides a literature review to answer the following sub-research questions: 
 
 

2. “Which methods are available in literature for our scheduling problem to increase throughput?” 

Scheduling problem classification and positioning 
- Which theoretical scheduling problems are available in the literature? 
- How to translate the scheduling problem of Euroma into theoretical problems? 
- What are the gaps and similarities between our scheduling problem and problems in literature? 
 
Modeling methods 
- How to model complex sequencing- and capacitated resource constraints? 
- Which objective functions are often used to increase the production throughput? 
- Which neighborhood structures are suitable and what is their connectedness? 
- What is the performance of the models available in the literature?  
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Next, we develop methods to solve the multi-stage production scheduling problem of Euroma. We do this 
based on literature that we collect from scientific databases and based on the knowledge obtained during 
the master's in Industrial Engineering and Management. In Chapter 4, we answer the following sub-
research questions: 
 
 

3. Which alternative solution approaches are suitable to solve the scheduling problem of Euroma? 

- Which approaches can deal with complex sequence-dependent constraints? 
- Which approaches take into account limited resources that are used by multiple stages? 
- Which objective is most suitable for the situation of Euroma? 
- Which approaches can solve the problem instances of Euroma in limited computational time? 

 
 
When we have developed and selected alternative solution approaches, we test these approaches in 
different experimental settings to analyze the performance. Chapter 5 provides the experimental design 
including a description of the problem instances, model settings, and experimental results. We analyze the 
performance and robustness of the solution approaches compared to the current situation. The 
corresponding sub-research questions are: 
 
 

4. Which alternative solution approach performs best compared to the current situation under 

different experimental settings? 

- What production performance can be expected? 
- What is the effect of an increase or a decrease in demand? 
- Which machines are the bottleneck? 

 
 
Chapter 6 provides information regarding the implementation of the solution approach in practice and 
highlights the consequences and requirements of the proposed changes. The corresponding research 
questions are: 
 
 

5. What are the consequences and requirements of the redesigned processes on the system? 

- What are the IT system requirements? 
- What are the consequences for stakeholders (e.g., production planners and operators)? 

 
 
Finally, Chapter 7 provides conclusions, recommendations, a discussion, and suggestions for further 
research.   
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2. Current situation 
The main goal of this chapter is to better understand the current situation and thus the core problem. To 
achieve this, Section 2.1 provides an overview of the production processes that are in the scope of this 
research. Accordingly, Section 2.2 describes the planning and scheduling processes that are related to 
these production processes. Moreover, Section 2.3 describes and illustrates several problems that we 
observe that are related to the core problem. Besides that, Section 2.4 provides an overview of the IT 
systems and their main tasks to manage the production processes in this study. Furthermore, as there are 
many stakeholders involved in this study, Section 2.5 briefly mentions the stakeholders and their 
perspectives. Finally, Section 2.6 provides a summary of our problem.  
 

2.1  Process overviews 
Sections 2.1.1, 2.1.2, and 2.1.3 describe the replenishing, mixing, and packaging processes, respectively. 
For further reference, Appendix 1 provides the position of these three processes in the general process 
overview of the facility in Zwolle.  
 

2.1.1 Replenishment process 

This section explains the replenishment process according to the process flow in Figure 13. The yellow 
boxes indicate the replenishment processes. The arrows illustrate the material flows and the colors 
represent the transportation medium. The dark grey boxes indicate the replenishment processes of small, 
medium, and large raw material quantities. The remainder of this section explains these three 
replenishment processes. 
 
 
  

Figure 13 | Replenishing and mixing process flow 
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First, operators weigh small quantities of raw materials into totes at the miniload stations a few days prior 
to the mixing process. Small quantities are typically less than 20 kilograms per raw material. The miniload 
warehouse stores these totes until they are requested by the medium quantity replenishment process.  
 
Second, the medium quantity replenishment process requests the totes with the pre-dosed raw materials 
from the miniload warehouse, and it also requests pallets holding multiple bags of the same raw material 
in the range of 10kg – 20kg per bag from the high-rise warehouse. Conveyor belts transport these totes 
and pallets to four IBC-filling stations. Here, operators discharge a pre-set number of bags into the IBCs 
manually. Furthermore, operators empty the totes into the IBCs. Note that an IBC-filling station can only 
replenish the IBCs of one job at a time and a job cannot be split over stations. 
 
Both the IBC-filling stations as well as the miniload stations operate according to the goods-to-man-
concept, i.e., all goods come to the operators; the AGVs deliver the IBCs, and the conveyor systems deliver 
the pallets with bags as well as the totes. 
 
Third, trucks supply the twelve most common raw materials 
(e.g., wheat flour, salt, or starch) to the twelve outdoor 
silos, see Figure 14. A pneumatic vacuum piping system 
automatically transports four of these raw materials from the 
outdoor silos to four indoor silos (marked in green in Figure 15). The 
outdoor silos also connect to weighing hoppers (marked in blue in Figure 
15). These hoppers weigh the amount needed for a mixture and discharge 
the weighted raw materials directly into the two 10K mixers. 
 
Each of the 32 indoor silos has a weighing hopper and stores a dedicated 
raw material to avoid cross-contamination of allergens. These indoor silos 
supply large quantities of raw materials into the IBCs. AGVs, each loaded 
with a 1,500L IBC, drive to the weighing hoppers to collect the pre-dosed raw materials. After collecting 
the raw material, the weighing hopper weighs the batch for the next IBC immediately. IBCs that collected 
all raw materials are placed on a buffer location until they are requested to be discharged into a mixer. 
 
  

29m 

Figure 14 | Outdoor silos 
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2.1.2 Mixing process 

This section describes the mixing process according to the green process stages of the process flow in 
Figure 13. Moreover, this section explains the filling process of the mixers and the mixer characteristics. 
 
Once all raw materials of a recipe are replenished and the dedicated mixer is ready, i.e., the mixer is idle 
and clean, the mixing process can start. First, the mixers are filled by the weighing hoppers of the outdoor 
silos, the IBCs, or by manual replenishment. A combination of the three aforementioned mixer filling 
methods is also possible. Table 2 provides an overview of the available mixers including their capacity and 
filling options, where X indicates the possible filling options. Figure 15 displays the 4.5K mixer and Figure 
16 shows the mixing blades of the 4.5K mixer. 
 
The weighing hoppers of the outdoor silos can only fill the 10K mixers. This filling process is completely 
automated by using the vacuum piping system. In case an IBC is required to fill a mixer, the AGVs and the 
IBC-elevator transport the IBC to the mixer filling station, which is one floor above the mixer. A mixer filling 
station discharges a single IBC at a time to fill the mixer. This is a sequential process, thus, in case multiple 
IBCs are required, an AGV puts the IBCs one-by-one on the mixer filling station until all IBCs are empty. 
The filling of the 0.2K mixer is a manual process in which an operator empties the totes from the miniload 
warehouse into the mixer. There is one exception, the Tumbler mixer does not need the filling and 
discharging processes as this mixer can rotate one single IBC, see Figure 17. 
 

Table 2 | Mixer overview and mixer filling options 

Mixer Mixer filling 
Code Name Capacity Outdoor silo IBC Manual 
Z408 10K 10000L X X Liquid 
Z407 10K 10000L X X Liquid 
Z404 4.5K 4500L - X Liquid 
Z405 3.0K 3000L - X Liquid 
Z403 3.0K 3000L - X Liquid 
Z402 1.5K 1500L - X Liquid 
Z409 Tumbler 1500L - X Liquid 
Z401 0.2K 200L - -  X / Liquid 

 
Within the mixing department, there is a warehouse that stores about 150 different liquids. In case a liquid 
is needed for a recipe, an operator weighs the liquid and fills the liquid in the mixer manually. 
  

Figure 17 | Tumbler mixer Figure 16 | Inside of the 4.5K mixer 
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2.1.3 Packaging process 

This section briefly describes the discharging of the mixers and the packaging process. More details 
regarding the discharging of the mixers and the packaging process are in Appendix 2. 
 
After the mixing process, the mixers discharge the mixtures via discharging stations that are one floor 
below the dedicated mixer. Mixers can discharge the mixtures into big-bags, IBCs, or bags. The number of 
IBCs needed for discharging is less than or equal to the number of IBCs needed for filling the mixer. Most 
discharging stations have a sieve to filter chunks. In case no sieve is present, the mixtures are for internal 
use only. Table 3 provides per mixer which discharging station is available. 
 
 
 
 
 
 
 
 
 
 
 
 
 
After discharging, AGVs or operators transport the mixture to the high-rise warehouse or to a packaging 
line. Table 4 provides an overview of the input and output of each packaging line. Table 4 also provides 
the transportation medium to the packaging line. Note that not all mixtures need packaging on a packaging 
line, e.g., discharging into big-bags is often sufficient when packaging for industry purposes.  
 

Table 4 | Packaging line input and output 

 
 
 
 
 
A sequence of suitable production machines for a job is referred to as a production route. Note that 
machines can only process one job at a time and preemption of jobs on machines is not allowed. For an 
example of a set of production routes, consider a job that is suitable for mixing on the 1.5K and both 3.0K 
mixers. This job needs final packaging in bags. Table 5 lists five suitable routes for this job. Note that route 
5 does not need a packaging line as the 1.5K mixer discharges in bags and has a sieve. For further reference, 
Appendix 3 provides technical information regarding production routes. 
 

Table 5 | An example of suitable production routes 

Route Mixer Discharging station Packaging line Packaging unit 
1 Z403 (3.0K) IBC Votech Bag 
2 Z403 (3.0K) Big-bag BTH Bag 
3 Z405 (3.0K) IBC Votech Bag 
4 Z405 (3.0K) Big-bag BTH Bag 
5 Z402 (1.5K) Bag - Bag 

Mixers Mixer discharging stations 
Code Name Capacity Big-bag IBC Bag Sieve 
Z408 10K 10000L X 

  Yes 
Z407 10K 10000L X   Yes 
Z404 4.5K 4500L X X 

 No 
Z405 3.0K 3000L X X  No 
Z403 3.0K 3000L X X  No 
Z402 1.5K 1500L   X Yes 
Z409 Tumbler 1500L  X  No 
Z401 0.2K 200L   X Yes 

Code Name Transport Input Output 
Z410 Votech AGV IBC Bag 
Z412 BTH Operator Big-bag Bag 
Z420 Dinnissen AGV IBC Big-bag 

Table 3 | Mixer discharging stations 
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2.2  Planning and scheduling overview 
This section describes the production planning and scheduling processes of the mixing and packaging 
departments. These processes can be partitioned into three levels. Table 6 outlines per level who is 
responsible, the horizon, and the corresponding tasks. Figure 18 provides a schematic overview of the 
planning and scheduling process. 
 

  

Level Who Horizon Task Job status 

Tactical MRP planners Monthly / 
Weekly 

Demand planning 
Batching 

Plan 

    Allocate routes to jobs  

Offline 
operational 

Operations 
manager 

Weekly / 
Daily 

Re-assign routes to jobs 
Sequencing  

Release 

Online 
operational 

Control room 
operators 

Continuous Determine job release time Activate 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
At the tactical level, the Material Requirements Planning (MRP) planners construct week-plans by dividing 
demand over weeks. Unfortunately, there is little similarity between demand patterns over the weeks. 
Therefore, the MRP planners divide the demand into production batches. These batches are referred to 
as jobs. The planners allocate the jobs to production routes and set the job status to “planned”. Based on 
this week-plan, the operations manager sequences a daily offline operational production schedule for the 
mixers and sets the job status to “released”. Once a job is released, the allocated production route is fixed. 
The control room operators execute the production sequence and set the job status to “active”. Once the 
status of a job is active, production starts and resequencing is not possible anymore for this job. The control 
room operators manage the online operational interventions that affect the schedule. Based on the status 
of the system, they determine when to activate jobs. The aforementioned levels are not standalone as 
there are upstream and downstream interactions. For example, the operations manager can suggest 
changing the route of a job, which affects both the tactical as well as the online operational levels. 
 
Next, Sections 2.2.1, 2.2.2, and 2.2.3 describe the planning and scheduling processes on the tactical-, 
offline operational- and online operational levels, respectively. 

Figure 18 | Schematic overview of the planning and scheduling process 

Table 6 | Planning and scheduling levels 
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2.2.1 Tactical week plan 

At the tactical level, the MRP planners manually divide all demand over the weeks. To achieve this, the 
MRP planners use the information provided by the Enterprise Resource Planning (ERP) system. For 
constructing the week-plans, the planners consider the job release- and due dates and the eligible 
production routes. Release dates are necessary to ensure that jobs only start production when all raw 
materials are available. The due dates are required to ensure that customers receive their jobs in time. 
 
The default production route of a job is the route that the ERP system suggests according to the input of 
a process engineer. These routes include, amongst others, the allocation of jobs to mixers and packaging 
lines. Generally, the MRP planners allocate jobs to the default production routes. Next, the planners 
determine the workload per mixer. However, the processing times of the products on the machines are 
currently unknown. Therefore, the planners estimate the workload per mixer based on the number of 
allocated jobs and the average achieved number of jobs per shift over the last six weeks. In case this 
workload exceeds the capacity of a mixer, the planners re-allocate jobs to non-default routes. As the 
planners only consider the allocated workload and capacities of the mixers, the workloads of the packaging 
lines are neglected. 
 
The MRP planners present the tactical week-plan to the operations manager every Thursday. During this 
meeting, the operations manager estimates whether it is possible to realize the new week-plan. The 
planners need to reconsider the week-plan in case the operations manager foresees problems. 
 

2.2.2 Offline operational schedule 

This section first explains some scheduling constraints. After that, this section describes how the 
operations manager constructs an offline operational production schedule. 
 
On IBC-filling stations, mixers, and packaging lines, cleaning between two consecutive jobs on the same 
machine is required when at least one of the following three conditions is applicable: (i) when producing 
a non-allergen product after an allergen product (containing, e.g., gluten, eggs, or sesame), (ii) when colors 
of two consecutive products can blend into another color, and (iii) when the raw materials of two products 
have different physical characteristics (e.g., aroma, particles structure, or stickiness). 
 
There are two cleaning types: dry-cleaning and wet-cleaning. Wet-cleaning takes longer than dry-cleaning, 
as this cleaning type is more intensive. The cleaning durations also depend on the machines. However, the 
cleaning durations are currently unknown. Wet-cleaning is always required when producing a non-allergen 
product after an allergen product. Wet-cleaning is in some cases also required based on the colors and 
physical characteristics of the products. For example, wet-cleaning is necessary when producing a white 
product after a red product, as the white product can blend into pink in case some red product remains in 
the machine. Dry-cleaning is only suitable between two consecutive jobs on the same machine in case 
there is no cleaning required based on allergens. For example, dry-cleaning is sufficient when mixing a 
yellow product after an orange product, as these colors are somewhat similar.  
 
Moreover, products can have certain claims, e.g., halal, kosher, vegan, or bio. The claims of a product 
always belong to one of the following three categories: non-suitable, suitable, or certified. For example, 
consider the halal claim. In this case, a product can be haram (i.e., non-suitable according to Islamic dietary 
laws), halal-suitable (i.e., suitable according to Islamic dietary laws), or halal (i.e., certified according to 
Islamic dietary laws). When scheduling a product that is certified for a claim, the two preceding products 
on the same machine should be suitable or certified for that claim. This constraint is necessary to ensure 
that the remaining raw materials are flushed out of the piping system before producing a certified product. 
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Based on the week-plan, the operations manager manually constructs daily mixing schedules in Excel. The 
operations manager determines the production sequence of the jobs on the mixers. To achieve this, the 
cleaning requirements and the claims of the products are taken into account. Besides that, release dates 
and due dates of jobs are considered. The objective of these daily schedules is twofold: (i) minimizing the 
number of cleanings and (ii) minimizing the job tardiness. These objectives can conflict; in that case, the 
operations manager decides based on experience which schedule is most suitable. 
 
Next, as the facility is producing continuously, the operations manager takes into account the last jobs per 
machine of the previous production schedule. The finish times of the machines of the previous schedule 
are referred to as the machine release times of the new schedule. The first operation of the new 
production schedule cannot start earlier than the machine release time, otherwise the new schedule 
conflicts with the previous schedule. Besides that, some machines may have production-stops, e.g., during 
holidays or audits. Moreover, the operations manager occasionally needs to schedule maintenance 
activities for machines. Often, the start of these maintenance activities is somewhat flexible, as Euroma 
has an in-house maintenance service team. 
 
After scheduling, the operations manager estimates whether it is possible to realize the production 
schedule. At this stage, the operations manager estimates the workload compared to the capacity per 
mixer and packaging line. This is necessary since the MRP planners do not consider cleaning time. In case 
there are foreseen capacity problems, rescheduling is needed. The operations manager reschedules 
iteratively until all foreseen problems are managed. 
 

2.2.3 Online operational scheduling 

The control room operators execute the daily production schedule provided by the operations manager. 
To achieve this, the control room operators manually decide, based on experience, when to release 
process steps of a job by taking into account the current status of the system (e.g., production progress, 
or IBC availability). Moreover, they manage interventions in the system (e.g., breakdowns). In case the 
production schedule cannot be met, the operations manager reschedules the jobs accordingly. 
 

2.3  Current scheduling problems 
This section describes and illustrates several problems of Euroma regarding scheduling that we solve in 
this study. At first, Section 2.3.1 describes the problem of the current scheduling objective. Section 2.3.2 
describes the allocation logic of jobs to IBC-filling stations and the problem thereof. Moreover, Section 
2.3.3 explains why it is important to take into account the effect of the different production routes. Finally, 
Section 2.3.4 describes the importance of considering the limited number of IBCs while scheduling. 
 

2.3.1 Current objective 

There are two cleaning types: dry-cleaning and wet-cleaning. Wet-cleaning takes longer than dry-cleaning, 
as this cleaning type is more intensive, see Section 2.2.2. The operations manager does not take into 
account the cleaning time; the objective is simply to minimize the number of cleanings. The problem with 
this objective is that the total cleaning time is not minimized. For example, Table 7 provides a scenario 
where dry-cleaning takes 30 minutes and wet-cleaning takes 60 minutes. In this scenario, there are two 
feasible schedules: (1) with 3 cleanings and 150 minutes of total cleaning time, and (2) with 4 cleanings 
and 120 minutes of total cleaning time. When minimizing the number of cleanings, one would opt for 
schedule 1. However, schedule 2 requires less total cleaning time. 
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Table 7 | Cleaning objective scenario 

Schedule Type Count Time Total time 

1 

Dry 1 30 30 

Wet 2 60 120 

Total 3  150 

2 
Dry 4 30 120 
Wet 0 60 0 

Total 4  120 
 
Moreover, we question whether the current objective (i.e., minimizing the number of cleanings and the 
job tardiness) ensures that production finishes as soon as possible. This is necessary such that capacity 
remains available for future jobs, as the facility is producing twenty-four-seven.  
 

2.3.2 IBC-filling stations allocation 

Furthermore, the control room operators experience IBC-filling stations as a bottleneck. They state that 
mixers are often idle due to waiting for IBCs to replenish at the IBC-filling stations. When analyzing the 
OEE data of the IBC-filling stations over 2020 (see Figure 19), we notice that a significant amount of time 
is due to idleness and cleaning. 
 
When observing the IBC-filling stations, we notice a 
queue of jobs at some stations, whereas other 
stations are idle. This phenomenon results from the 
logic of allocating jobs to IBC-filling stations. When 
executing the offline operational production 
schedule, the process control system ESA (see 
Section 2.4.1) automatically allocates jobs for 
replenishment to the four IBC-filling stations. ESA 
assigns a job to the station that has the least 
number of jobs in the queue. In case there are 
multiple stations with the least number of jobs in 
the queue, ESA assigns jobs to stations in ascending 
order. ESA does not consider the expected 
processing time of the jobs. For example, consider 
a scenario where every station has one job in the 
queue. The jobs of the first three stations need one 
hour of processing time and the job of the last 
station needs ten minutes of processing time. In this 
scenario, ESA assigns the next job sequentially to the first station. Thus, the last station becomes idle after 
ten minutes, whereas there is a queue at the first station.  
 
Another consequence of this allocation logic is that the sequence of jobs on an IBC-filling station is 
independent of the product characteristics (e.g., color and allergens). Therefore, cleaning the IBC-filling 
stations is necessary after processing every job to avoid cross-contamination. When assigning jobs with 
the same product characteristics to the same IBC-filling station, less cleaning is required. 
  

Figure 19 | OEE analysis of the IBC-filling stations in 2020 
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2.3.3 Production route allocation 

Section 2.2.1, describes that the MRP planners generally only consider the default production route. As a 
result, the planners do not consider the allocated workload to the packaging lines. A similar principle holds 
for the allocated workload to the IBC-filling stations, as this also results from the allocation of jobs to 
production routes. For example, consider a scenario where it is possible to assign a job to a production 
route with the 10K mixer or the 4.5K mixer. The 10K mixer can replenish directly via the outdoor silos as 
well as via IBCs, whereas the 4.5K mixer can only replenish via IBCs. When assigning the job to the 10K 
mixer, replenishing one IBC is required for this job; the outdoor silos replenish the remaining raw materials. 
The 4.5k mixer, however, needs four IBCs for replenishment. Replenishing one IBC takes on average 40 
minutes. Thus, when allocating the job to the 10K mixer, the IBC-filling station needs 40 minutes of 
processing time, whereas the 4.5K mixer needs 2 hours and 40 minutes of processing time. Therefore, the 
workload of the IBC-filling stations is dependent on the allocation of jobs to production routes. As the MRP 
planners generally do not consider other production routes than the default option, the workload of the 
IBC-filling stations is not considered. Therefore, considering other production routes is important, 
especially since the IBC-filling stations are experienced as bottlenecks, see Section 2.3.2. 
 

2.3.4 Limited IBCs 

When observing the manufacturing process, we notice that mixers are often idle as there are no IBCs to 
replenish the mixers. We develop a dashboard to analyze this phenomenon. Figure 20 shows the 
dashboard where the Gantt chart visualizes the jobs on the machines and the stacked bar chart visualizes 
the status of the IBCs over time. In this scenario, we notice from the bar chart that there are no clean IBCs 
available (green bars) between 00:00 and 03:00. Consequently, the mixers become idle as there are no 
clean IBCs to replenish the mixers. Between 03:00 and 04:00, the operators start cleaning the dirty IBCs, 
and at 04:30, the mixers become operational. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The phenomenon of having idle mixers as there are no IBCs to replenish the mixers also occurs when all 
IBCs are waiting on buffer locations to be discharged into packaging lines. This happens when all jobs need 
to be discharged at the same packaging line. Therefore, it is crucial to take into account the limited number 
of IBCs while scheduling. Moreover, as the facility is producing continuously, there can be dirty IBCs at the 
cleaning station at the start of a new production schedule.  

Figure 20 | IBC-status dashboard 
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2.4  IT systems overview 
Sections 2.4.1 and 2.4.2 explain the IT systems involved in the mixing and packaging and the 
communication between these systems, respectively.  
 

2.4.1 IT systems 

Infor LN is the ERP system of the facility in Zwolle. This system contains the material resource planning, 
job information, and some product information (e.g., product claims, colors, and production routes). The 
ERP system also stores the week-plans of the mixing department. The MRP planners manually store the 
offline operational schedules from the Excel files of the operations manager into the ERP system. This 
process is time-consuming as every job takes about one minute to import, and there are more than 300 
jobs per week.  
 
The product development and the food specification departments mainly use the software PLS Pro. PLS 
Pro stores, amongst others, the allergen information of the products. 
 
ESA is the process control system of the mixing department. ESA manages, creates, and tracks all the 
processes in the mixing department (e.g., dosing, IBC transport, mixing, or discharging). The operators in 
the control room mainly work with ESA, as this system has the most control over all the automated 
processes. Objective is the manufacturing execution system (MES) of the packaging department. Objective 
manages and tracks all the processes in the packing department. Furthermore, the software DS 
Automation manages the AGV transport. 
 

2.4.2 IT systems communication 

Figure 21 provides a rough overview of the communication between the IT systems. From top to bottom, 
the ERP system extracts allergen information from PLS Pro. The MRP planners manually trigger the 
communication of the mixing jobs from the ERP system to ESA by setting the job status from “planned” to 
“released”. The     planners also manuall  trigger the communication of the packaging job to Objective. 
ESA and Objective both communicate transport jobs for the AGVs to DS Automation. Both ESA and MES 
communicate with the programmable logic controllers (PLCs). Lastly, IQBS is a reporting tool that combines 
data from the ERP, ESA, and MES. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  

Figure 21 | IT systems communication overview 
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2.5  Stakeholders 
There are many stakeholders involved in the production scheduling process of the mixing and packaging 
departments. We briefly mention their interests and perspectives. Note that the research perspectives of 
this study are based on the viewpoints of the stakeholders. We adopt these viewpoints as the angles of 
view from which we observe phenomena and set objectives during the conduct of this research.  
 
First, Euroma aims to retain its top-3 position in the European herbs and spices market. Currently, the 
facility in Wapenveld is still operational due to limited production throughput in Zwolle. In case the 
production throughput in Zwolle increases to the desired level, the facility in Wapenveld can close. The 
(operations) management aims to close the facility in Wapenveld as soon as possible. Therefore, they need 
to increase the production throughput in Zwolle. 
 
Next, the MRP planners determine which jobs to produce in the coming weeks, taking into account the 
production capacity and customer requirements. For the near future, it is determined that the MRP 
planners should create the production schedules instead of the operations manager. Thus, the MRP 
planners need to obtain knowledge about production scheduling. 
 
The control room operators execute the production schedules. In case of any unforeseen events that could 
disrupt the schedule, the control room operators need to be able to reconstruct a good schedule in a 
limited time, as the MRP planners are not available at any time. 
 
Next, adding more functionality and workload to an IT system often requires more maintenance, so the IT 
department and the IT software suppliers are crucial stakeholders as these departments need to embed 
the production scheduling logic in the IT environment. It also requires a lot of data (e.g., job- and product 
information, processing times, and production routes). Such large datasets often require maintenance, so 
the data management department should embed these data flows into their systems. 
 

2.6  Summary of the problem 
This section summarizes the scheduling problem that Chapter 1 identifies and Chapter 2 analyzes.  
 
The production process has multiple stages: IBC-filling, mixing, and packaging. Jobs can have multiple 
operations that need processing in a predetermined order (e.g., IBC-filling, mixing, or packaging). To solve 
the multi-stage scheduling problem, the model needs to (i) allocate jobs to production routes, (ii) allocate 
operations of production routes to machines, and (iii) sequence the operations of jobs on the allocated 
machines. 
 
Currently, the scheduling objective is twofold: (i) minimizing the number of cleanings and (ii) minimizing 
the job tardiness. However, Section 2.3.1 describes why this objective is not suitable for Euroma. 
Moreover, we question whether this objective ensures that production finishes as soon as possible such 
that capacity remains available for future jobs, as the facility is producing twenty-four-seven. Therefore, 
the model needs to have an objective that is most suitable to increase the production throughput while 
satisfying customer needs. 
 
The scheduling problem is restricted by several constraints. We classify these constraints into the 
categories scheduling-, sequencing-, and additional shared resource constraints. The constraints of these 
three categories are listed, respectively. 
  



 

22 UNIVERSITY OF TWENTE. 

Scheduling constraints 

• The operations of a job can only be processed on one machine at a time (see Section 2.1). 

• Machines can only produce one operation at a time (see Section 2.1.3). 

• Preemption of operations on machines is not allowed (see Section 2.1.3). 

• The production route is fi ed for “released” jobs  see Section 2.2). 

• The production schedule is fixed for “active” operations of jobs (see Section 2.2). 

• Machines cannot produce during production-stops, e.g., during a holiday (see Section 2.2.2). 

• Machines cannot produce during maintenance (see Section 2.2.2). 
 
Sequencing constraints 

• The operations of a job have a predetermined sequence (see Section 2.1.3). 

• Cleaning times are sequence-dependent (see Section 2.2.2). 

• There are fixed transportation times between consecutive operations of a job (see Section 2.1). 

• Jobs and maintenance can only start after the release date. Jobs and maintenance should finish 
before the due date, which is a soft constraint (see Section 2.2.2). 

• The job sequence on a machine is constrained (e.g., the claims as Section 2.2.2 describes). 

• The new schedule should comply with the previous schedule (see Section 2.2.2). 

• Operations on a machine cannot start earlier than the machine release time (see Section 2.2.2). 
 
Additional shared resource constraints 

• There is a limited number of certified operators to clean machines (see Section 1.3.1). 

• The number of IBCs is constrained (see Section 2.3.4). 

• The total number of IBCs needed for a job depends on the production route (see Section 2.3.3). 

• The number of IBCs needed can vary during an operation, e.g., more IBCs can be needed for filling 
than for discharging a machine (see Section 2.1.3). 

• IBCs are available for production when they are clean (see Section 2.3.4). 

• IBCs have transportation times from and to the cleaning station (see Section 1.2). 

• The cleaning stations can clean two IBCs at a time (see Section 1.2). 

• There can be an initial number of IBCs at the cleaning station at the start of the schedule (see 
Section 2.3.4). 

 
Further, suitable production routes of jobs depend on the job quantity, product characteristics, and the 
final packaging unit. Moreover, the processing time of an operation depends on the production route, see 
Section 2.3.3. 
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3. Literature review 
The main goal of the literature review is to answer the second research question: 
 
“Wh ch   tho s      v    b    n the literature for o   sch     n  p ob    to  nc   s  p o  ct on?” 

 
To answer this research question, Section 3.1 provides an overview of typical scheduling classes to broaden 
the view on the scheduling research field. Subsequently, we translate our problem into a theoretical 
problem. This forms the basis to position our scheduling problem in the research field. To achieve this, 
Section 3.2 reviews and combines several taxonomic frameworks from the literature to classify a broader 
scope of scheduling problems. In Section 3.3, we use this taxonomy to classify our scheduling problem, as 
described in Section 2.6. We also classify similar scheduling problems from the literature from the same 
class according to the taxonomy to position our problem in the research field. Subsequently, we identify 
gaps and similarities between our scheduling problem and problems in the literature. 
 
After identifying the gaps and similarities, the remainder of the literature review describes modeling 
techniques for our scheduling problem. Accordingly, Section 3.4 outlines common objective functions and 
methods to deal with multiple objectives. Section 3.5 identifies and structures solution approaches that 
might be relevant for our research. This section also reviews the advantages and disadvantages of these 
methods. Section 3.6 provides a collection of neighborhood structures for our problem. Sections 3.7 and 
3.8 describe modeling techniques available in the literature to model sequencing- and resource 
constraints, respectively. Finally, Section 3.9 summarizes the literature review and provides an overview 
of suitable models available in the literature that are relevant for our research. We also summarize the 
gaps in the literature such that we can define our contribution to the scientific body of knowledge. 
 

3.1  Scheduling problems 
This section first describes some scheduling terminology. After that, this section provides an overview of 
typical scheduling classes to broaden the view on the scheduling research field. Broadening the view 
enhances to identify literature from other scheduling fields that might be relevant for our problem. 
Subsequently, we translate our problem into a theoretical problem that is well-known in the literature.  
 
Regarding the scheduling terminology, there is a distinction between a schedule and a sequence. A 
schedule generally corresponds to the allocation of operations to eligible resources over time (Pinto & 
Grossmann, 1998, p. 433). A sequence usually refers to a job or a permutation of operations on the 
allocated resources (Pinedo, 2016, p. 23). 
 
To classify scheduling problems, Graham et al. (1979) introduce a triplet notation that consists of the 
machine environment  α-field , job characteristics and constraints  β , and objective functions  γ . The α-
field specifies the scheduling class regarding the machine environment. According to Pinedo (2016) and 
Ruiz and Vázquez-Rodríguez (2010), typical machine environments are: 
 
Single machine ─ All jobs need to be processed on a single machine. This case is the simplest of all possible 
machine environments.  
 
Parallel machines ─ There are several machines in parallel. Each job has a single operation that needs 
processing on any one of the machines or a subset thereof. Special versions of this case are parallel 
machines with different speeds and unrelated parallel machines. Regarding the former, each machine has 
its speed, independent of the job. For the latter, the machine speed also depends on the job. 
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Flow shop ─ There is a series of multiple machines and each job needs processing on every machine. As 
the machines are in series, all jobs need processing in the same order, i.e., jobs first go to machine 1, then 
to machine 2, and so forth. 
 
Flexible flow shop ─ This class is a combination of the flow shop and the parallel machines classes. There 
is a series of multiple stages. Each stage has several parallel machines. Every job needs processing at every 
stage on any one of the parallel machines in that stage. As the stages are in series, all jobs need processing 
in the same order, i.e., jobs first go to stage 1, then to stage 2, and so forth. 
 
Hybrid flow shop ─ Similar to the flexible flow shop, this class also has a series of multiple stages with each 
stage consisting of several parallel machines. A job may skip any number of stages, provided that it needs 
processing in at least one stage. Within these stages, a job needs processing by any one of the parallel 
machines that are eligible for that job in that stage. 
 
Job shop ─ There are multiple machines. Each job needs processing on every machine and each job has its 
order in which it needs processing on the machines. 
 
Flexible job shop ─ This class is a combination of the job shop and the parallel machines classes. There are 
work centers that each consist of parallel machines. Jobs need processing at every work center on any one 
of the machines within that work center. Moreover, each job has its order in which it needs processing at 
the work centers. 
 
Open shop ─ Similar to the job shop, there are multiple machines and each job needs processing on a set 
of machines. Moreover, the order in which a job needs processing on the machines is unrestricted. 
 
Altogether, our scheduling problem belongs to the hybrid flow shop (HFS) class as our problem consists of 
multiple stages (e.g., IBC-filling mixing, and packaging), of which some stages consist of multiple parallel 
machines. Moreover, a job may skip any number of stages, provided that it needs processing in at least 
one stage (Ruiz & Vázquez-Rodríguez, 2010).  
 
Regarding the job characteristics β-field and the objectives γ-field, Section 3.2 identifies these fields by 
reviewing several taxonomic frameworks from the literature. Subsequently, we combine these 
frameworks to a taxonomy to classify a broader scope of scheduling problems. 
 

3.2  Taxonomy of scheduling problems 
Section 3.1 outlines a variety of scheduling classes regarding the machine environment (α-field). The job 
characteristics (β-field) and the objectives (γ-field) also have a wide variety of attributes, i.e., 
characteristics (e.g., release times or changeovers) (Ribas, Leisten, & Framiñan, 2010). To provide some 
unification of the diverse attributes, this section reviews several studies that propose taxonomic 
frameworks for scheduling problems to identify common scheduling problem attributes. We combine 
these attributes from several studies to create a taxonomic framework that covers a broader scope of 
scheduling problems. 
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Reisman et al. (1997) develop an attribute vector 
description-based taxonomy method. This method 
classifies, amongst others, vehicle routing problems 
(Eksioglu, Vural, & Reisman, 2009), data envelopment 
analyses (Gattoufi, Oral, & Reisman, 2004), and 
scheduling problems (Cinar, Topcu, & Oliveira, 2015). For 
the latter, Reisman et al. (1997) review and classify 170 
flow shop scheduling studies in the period between 1952 
and 1994 based on their type of study (e.g., theoretical or 
application). Cinar et al. (2015) extend this work by 
developing a framework to specifically classify studies of 
flexible job shop problems. They classify 65 studies from 
the period between 1990 and 2014. Their taxonomy 
consists of six attribute vectors (e.g., job release time, 
machine maintenance, and objective functions). Pinto 
and Grossman (1998) propose a roadmap to classify 
scheduling problems in manufacturing systems. Their 
classification method consists of seven attribute vectors 
(e.g., plant typology and resource constraints). Framiñan 
et al. (2010) review and classify scheduling problem 
studies in the period between 1995 and 2010 from a 
production system point of view.  
 
The studies that propose taxonomic frameworks for 
scheduling problems each lack attributes; for instance, 
Pinto and Grossman (1998) do not consider job release 
times and objective functions, whereas Cinar et al. (2015) 
do not consider resource constraints. To classify a broader 
scope of scheduling problems, we combine the 
classification attributes of Pinto and Grossman (1998), 
Framiñan et al. (2010), and Cinar et al. (2015).  
 
We use the attribute vector description-based taxonomy 
method of Reisman et al. (1997) with three branching 
levels. We group the attribute vectors into the three fields 
α|β|γ according to the work of Graham et al. (1979). 
Table 8 provides the resulting taxonomy to classify 
scheduling problems based on their attributes. For further 
reference, Appendix 4 elaborates upon the attributes in 
the taxonomy.  

Table 8 | Scheduling problem classification framework 
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Changeovers Sequence-dependent 

Machine-dependent 

Time-dependent 
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None 

Tr
an

sp
o

rt
 Transportation times Variable 

Fixed 

None 

Inventory policy Unlimited 

Finite 

O
th

e
r 

ch
ar

ac
te

ri
st

ic
s 

Demand pattern Variable 

Fixed (cyclic) 

Time representation Continuous 

Discrete (fixed slots) 

Resource constraints Continuous 

Discrete 

None (only machines) 

Lot splitting Over machines 

None 
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Objective Makespan 

Flowtime 

Tardiness 

Earliness 

Costs 

Other 
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3.3  Positioning our research 
This section applies the taxonomy in Table 8 to classify our scheduling problem and similar hybrid flow 
shop (HFS) scheduling problems in the literature to position our problem in the research field. To achieve 
this, Section 3.3.1 classifies our scheduling problem and Section 3.3.2 classifies similar hybrid flow shop 
(HFS) scheduling problems in the literature. Subsequently, we identify gaps and similarities between our 
scheduling problem and problems in the literature. 
 

3.3.1 Classify our scheduling problem 

First, we classify our scheduling problem by using the taxonomy framework in Table 8. Regarding the 
machine environment (α -field), our scheduling problem belongs to the HFS class as Section 3.1 identifies. 
Furthermore, the maintenance policy is variable since the starting times of maintenance activities are 
flexible as Section 2.2.2 discusses. 
 
Regarding job characteristics and constraints (β-field) of our scheduling problem, the processing times 
depend on the product quantity, the stage, and the machine, as Section 2.3.2 discusses. Both the jobs and 
machines may have release times. When a machine has a release time, this can be modeled by allocating 
release times to all the operations that need processing on these machines. Moreover, only jobs may have 
due dates as Section 2.2.2 explains. 
 
Changeovers depend on the job sequence and the machine as Section 2.2.2 describes. Additionally, there 
are sequencing constraints between the operations of a job (e.g., first mixing, then packaging). Also, jobs 
have sequencing constraints since certain job sequences are not allowed due to restrictions on the product 
claims as Section 2.2.2 describes. 
 
The transportation times between the stages are variable since these depend on the machine allocation. 
Besides that, intermediate storage capacity is finite since a limited number of IBCs store the products 
between the stages. Products that are stored in big-bags can be stored in the high-rise warehouse, which 
has sufficient capacity. 
 
The demand pattern is variable since most jobs are order-based as there is little similarity between 
demand patterns in different scheduling periods as Section 2.2.1 describes. Besides that, the plant is 
producing continuously and there are no time slots. Nevertheless, this does not restrict modeling with 
time slots. Moreover, operations of different jobs may require additional resources (e.g., operators or 
IBCs) in different stages simultaneously. These resources have a finite capacity. Moreover, the required 
resources may vary while processing an operation, e.g., more IBCs can be needed to fill a mixer than to 
discharge a mixer as Section 2.1.3 describes. Besides that, lot splitting is not possible. 
 
Finally, the objective function (γ-field) of the scheduling problem is twofold: (i) minimizing the number of 
cleanings and (ii) minimizing the tardiness of jobs. 
 

3.3.2 Classify and compare related scheduling problems 

Next, we classify similar HFS scheduling problems in the literature such that we can position our problem 
in the research field. Subsequently, we identify gaps and similarities between our scheduling problem and 
HFS problems in the literature. 
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There are several reviews of HFS problems in the literature, like those of, Linn and Zhang (1999), Wang 
(2005), Quadt and Kuhn (2007), Ribas et al. (2010), or more recently, Cinar et al. (2015) and Li et al. (2020). 
These studies thoroughly review HFS problems in the literature over the last 20 years. Therefore, we use 
their work as a starting point to identify HFS problems in the literature that are similar to our problem. 
However, most studies that the aforementioned authors review are theoretical with synthetic instances 
that are not verified in practice (Cinar, Topcu, & Oliveira, 2015, pp. 22-23). Therefore, we extend our search 
to similar scheduling problems by using the backward- and forward snowballing technique, i.e., using the 
references of papers to identify additional papers. Table 9 provides an overview of the classification of our 
scheduling problem as discussed in Section 3.3.1. Moreover, Table 9 classifies 10 scheduling problems 
from the literature that, to the best of our knowledge, are most similar to our problem. 
 
We note from Table 9 that almost every characteristic of our problem appears in at least one study in the 
literature of HFS. We note that the HFS problems in the literature each cover only a small variety of 
practical constraints (e.g., release times, transportation times, or resource capacity constraints), which 
Cinar et al. (2015, p. 34), and Li et al. (2020, p. 73) also experience, since most studies do not focus on 
practical problems. Moreover, there appears to be no scheduling problem with a similar set of 
characteristics as our problem.  
 
Furthermore, most of the problems that Table 9 classifies have the objective to minimize the makespan, 
tardiness, or both. Cinar et al. (2015, p. 33) and Li et al. (2020, p. 73) highlight that the makespan is the 
most common objective. Currently, Euroma minimizes the number of cleanings and the tardiness of jobs, 
as Section 2.2.2 describes. Nevertheless, we question whether these objectives are most suitable to 
increase the production throughput, which is the goal of Euroma, as Section 1.3.1 describes. For instance, 
minimizing the makespan may be relevant as it optimizes the use of limited resources (Ruiz & Vázquez-
Rodríguez, 2010, p. 22). Moreover, minimizing the makespan increases machine utilization and throughput 
(Minella & Ruiz, 2008), which corresponds with the goal of Euroma. 
 
After identifying the gaps and similarities, the remainder of the literature review describes modeling 
techniques that are suitable for our scheduling problem. Each section elaborates upon the techniques and 
methods that HFS studies from the literature apply. Nevertheless, we broaden the scope by reviewing 
other scheduling fields and even other research fields if applicable. 
 
The remainder of this chapter is organized as follows. We question whether the current objective of 
Euroma is most suitable to increase the production throughput, which is the main goal of Euroma. 
Therefore, Section 3.4 provides a more in-depth review of objective functions that might be suitable to 
improve, amongst others, the production throughput. Besides, this section outlines several methods to 
deal with multiple objectives. Section 3.5 provides an overview of solution approaches and elaborates 
upon the approaches that are relevant to our research. Accordingly, Section 3.6 explains several 
neighborhood structures and touches upon their connectedness. Sections 3.7 and 3.8 describe modeling 
techniques available in the literature to model sequencing- and resource constraints, respectively. Finally, 
we summarize the literature review in Section 3.9.  
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 Machine environment  Single machine            

 Parallel machines            

 Flow shop            

 Flexible flow shop            

 Hybrid flow shop X X X X X X X X X X X 

 Job shop            

 Flexible job shop            

 Open shop            

 Maintenance  Variable X      X    X 

 Fixed            

 None  X X X X X  X X X  

J b   ara   r       &      ra     (β)            
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 Processing time  Operation-dependent X X X X X X X X X  X 

 Stage-dependent X X X X      X  

 Machine-dependent X  X  X  X X X   

 Fixed            

 Release dates  For jobs X           

 For operations X  X         

 None  X  X X X X X X X X 

 Due dates  For jobs X X    X  X X  X 

 None   X X X  X   X  
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 Changeovers  Sequence-dependent X X X   X     X 

 Machine-dependent X  X         

 Time-dependent            

 Frequency-dependent            

 Fixed         X X  

 None    X X  X X    

 Sequencing constraints  Between jobs X  X         

 Between operations X  X X     X   

 None  X   X X X X  X X 
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  Transportation times  Variable X  X  X X   X  X 

 Fixed            

 None  X  X   X X  X  

 Inventory policy  Finite X       X  X X 

 Unlimited  X X X X X X  X   
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 Demand pattern  Variable X X X X X X X X X X X 

 Fixed (cyclic)            

 Time representation  Continuous X X X X X X X X X X X 

 Discrete (fixed slots)            

 Resource constraints  Continuous X           

 Discrete    X      X  

 None (only machines)  X X  X X X X X  X 

 Lot splitting  Over machines            

 None X X X X X X X X X X X 

Obj    v  fu       (γ)            

O
b
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 Objective  Makespan  X X X X X X   X  

 Flowtime            

 Tardiness X X    X  X X  X 

 Earliness            

 Costs            

 Other X   X   X     

 

Table 9 | Problem classification 
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3.4  Objective functions 
We question whether the current objective of Euroma (i.e., minimizing the number of cleanings and the 
tardiness) is most suitable to improve, amongst others, the production throughput, which is the main goal 
of Euroma. Therefore, this section provides a more in-depth review of objective functions that might be 
suitable for our problem. Besides, as our problem has multiple objectives, this section elaborates upon 
several methods to deal with multiple objectives. 
 
At first, the following objectives are suitable for our problem. Minimizing the makespan increases machine 
utilization and throughput (Yenisey & Yagmahan, 2014), which is in line with the main goal of Euroma. 
Moreover, earliness and tardiness objectives provide a customer-centric approach (Tahmasbi & 
Moghaddam, 2011), which corresponds with the current objective of Euroma. Besides that, minimizing 
the flowtime enhances a stable usage of resources and less work-in-progress (Yenisey & Yagmahan, 2014). 
Minimizing the flowtime might be promising for our problem to create a stable flow of IBCs through the 
process. Nevertheless, note that a combination of the aforementioned methods might conflict. 
 
The majority of the literature concentrates on single objectives. However, Yenisey and Yagmahan (2014, 
p. 119) and Li et al. (2020, p. 73) address that single-objective criteria are insufficient for practical 
applications as these are multi-objective by nature. There are several ways to formulate an objective 
function 𝑓. Table 10 provides different formulations for this function, similar to the work of T'Kindt and 
Billaut (2006), and Yenisey and Yagmahan (2014). 
 
Table 10 | Objective function formulation 

 
There are three approaches to deal with multi-objective functions (T'Kindt & Billaut, 2006; Minella & Ruiz, 
2008; Yenisey & Yagmahan, 2014). These three approaches, including examples of how to deal with multi-
objective formulations such as in Table 12 are:  
 

1. In the a priori approach, a decision-maker needs to provide input to the objective function before 
generating a solution. This approach is possible for, amongst others, 𝑓𝑤(𝑍1, 𝑍2, … , 𝑍𝑘) and 
𝑓𝐻(𝑍1, 𝑍2, … , 𝑍𝑘). Regarding the former, the decision-maker determines the weights of the single 
objectives a priori, e.g., 𝑓𝑤 = 𝑤𝑍1 + (1 − 𝑤)𝑍2, where 0 ≤ 𝑤 ≤ 1. For the latter, the decision-
maker determines the hierarchical order of the objectives a priori. For instance, for 
𝑓𝐻(𝑍1, 𝑍2, … , 𝑍𝑘), find the optimal solution of 𝑍1 first, then optimize 𝑍2 subject to 𝑍1, and so on. 
This process continues until 𝑍𝑘  is optimal subject to 𝑍𝑘−1. 

2. In the a posteriori approach, a set of Pareto-optimal solutions is developed. The decision-maker 
selects a solution from this set, i.e., 𝑓𝑝(𝑍1, 𝑍2, … , 𝑍𝑘). 

3. During the interactive approach, the decision-maker interactively provides the preferences of the 
weights of the objectives during the solution process. The weights are iteratively calibrated until 
there is a suitable compromise between the objectives.  

Formulations 

Z Single objective; minimize Z 
𝑓𝑤(𝑍1, 𝑍2, … , 𝑍𝑘) Minimize weighted k objectives (utility approach) 

𝑓𝑝(𝑍1, 𝑍2, … , 𝑍𝑘) Minimize all objectives (Pareto-optimal approach) 

𝑓𝑛𝑝(𝑍1, 𝑍2, … , 𝑍𝑘) Minimize all objectives, each objective is evaluated separately 

𝑓𝐻(𝑍1, 𝑍2, … , 𝑍𝑘) Minimize the objectives in hierarchical order (hierarchical approach) 

𝑓ε(𝑍𝑝 | 𝑍1, 𝑍2, … , 𝑍𝑘) Minimize 𝑍𝑝, and the other 𝑘 objectives are subject to constraints (ε─constraint  

𝑓𝑔𝑝(𝑍1, 𝑍2, … , 𝑍𝑘) Minimize each objective until their individual goal is reached (goal-seeking) 
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3.5  Solution approaches 
In this section, the aim is to identify suitable solution approaches for our scheduling problem. To achieve 
this, this section first categorizes and elaborates upon the different solution approaches available in the 
literature regarding HFS problems. After that, the remainder of this section concentrates on promising 
solution approaches for our problem. 
 
Regarding solution approaches for HFS problems, we concentrate on studies from 1995 or later due to the 
significant development of new approaches starting from 2000 (Cinar, Topcu, & Oliveira, 2015). A review 
of solution approaches before 1995 is available in the work of Linn and Zhang (1999). Ribas et al. (2010) 
provide a comprehensive review of proposed solution approaches for HFS problems. Moreover, Ruiz and 
Vázquez-Rodríguez (Ruiz & Vázquez-Rodríguez, 2010) present a literature review of exact, heuristic, and 
metaheuristic methods that have been proposed for HFS problems. Figure 22 provides a classification of 
solution approaches for HFS problems based on the classifications of Ribas et al. (2010) and Ruiz and 
Vázquez-Rodríguez (2010).  
 
Since HFS problems are generally strongly NP-hard, 
exact approaches can generally only solve instances 
up to 15 to 20 jobs with 5 stages to optimality 
(Ribas, Leisten, & Framiñan, 2010). Despite the 
relative success, exact approaches are still 
incapable to solve medium and large problem 
instances for real-world problems (Ruiz & Vázquez-
Rodríguez, 2010). 
 
Nevertheless, there is a variety of non-exact and 
efficient heuristics that can obtain good solutions 
for large problem instances in reasonable computational time. These heuristics can be partitioned into 
construction-, improvement-, and hybrid heuristics. Construction heuristics construct solutions from 
scratch and improvement heuristics improve these solutions. Hybrid approaches combine several 
modeling methods. For instance, a hybrid approach can use an improvement heuristic to allocate jobs to 
machines and an exact approach to find the best sequence on each machine (Ribas, Leisten, & Framiñan, 
2010).  
 
Our problem consists of instances of up to 400 jobs, as described in Section 1.2. Therefore, exact 
approaches seem to be not suitable. Therefore, the remainder of this section concentrates on promising 
heuristics for our problem. Accordingly, Section 3.5.1 describes several construction heuristics and Section 
3.5.2 elaborates upon improvement heuristics. 
 

3.5.1 Construction heuristics 

There are several construction heuristics for HFS problems in the literature, mostly concerning the 2-stage 
HFS problem (Ribas, Leisten, & Framiñan, 2010). This section reviews and describes some construction 
heuristics that are suitable for k-stage HFS problems. 
 
At first, Nawaz et al. (1983) propose a construction heuristic (NEH) that is commonly used in the literature 
  uiz, Sivrika a Şerifoğlu,   Urlings, 200  . In essence, the NEH is applicable to scheduling problems where 
every job 𝑗 ∈ 𝐽 can process on any one of the eligible machines of the subset 𝑀𝑗 ⊆ 𝑀 with a processing 

time of 𝑝𝑗,𝑘, where 𝑘 ∈ 𝑀𝑗,𝑖.  

Figure 22 | Solution approach classification 
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The NEH consists of the following steps. First, list all jobs in a descending order based on their average 

processing time, 𝐴𝑃𝑇𝑗 =
∑ 𝑝𝑗,𝑘 𝑘∈𝑀𝑗

|𝑀𝑗|
 . Second, take the first job of the list with the highest 𝐴𝑃𝑇𝑗 and define 

every possible schedule. Select the schedule with the best objective value. Next, insert the third job of the 
list on the position into the schedule that results in the best objective value, without changing the relative 
positions of the already scheduled jobs. This process continues until all jobs are in the schedule. 
 
Ruiz et al. (2008) compare several construction heuristics, amongst others, the NEH heuristic. They modify 
the NEH heuristic such that it can deal with sequencing relations between the operations of a job, i.e., 
operations cannot process before any of its predecessors and no later than any of its successors. To 
achieve this, Ruiz et al. (2008) consider a problem where every job 𝑗 ∈ 𝐽 consists of consecutive operations 

𝑂𝑗 = {1,2, . . , 𝑛𝑗}, where the 𝑖𝑡ℎ operation of job j is denoted by 𝑜𝑗,𝑖. An operation 𝑜𝑗,𝑖 can process on any 

one of the eligible machines of the subset 𝑀𝑗,𝑖 ⊆ 𝑀. Each operation 𝑜𝑗,𝑖 requires a processing time of 𝑝𝑗,𝑖,𝑘 

on machine k ∈ 𝑀𝑗,𝑖. They extend the list sorting rule such that the total average processing time is 

𝑇𝐴𝑃𝑇𝑗 = ∑
∑ 𝑝𝑗,𝑖,𝑘 𝑘∈𝑀𝑗,𝑖

|𝑀𝑗,𝑖|
𝑖∈𝑂𝑗

. When inserting the next job of the list into the schedule, they consider the 

positions in the schedule that do not violate the sequencing relations. Ruiz et al. (2008) found that the 
NEH heuristic is vastly superior to the other construction heuristics that they consider for HFS problems. 
Liu, Yan, and Price (2017) extend the NEH heuristic by adding a tie-breaking rule. They show that their 
extension can find slightly better solutions for some problem instances. 
 
Moreover, Guinet and Solomon (1996) propose a two-phase construction heuristic to schedule jobs to 
minimize the tardiness or makespan. They first sort the jobs based on priority rules, i.e., a measure that 
defines the sorting (e.g., 𝐴𝑃𝑇𝑗). Then, they schedule the jobs based on this order. Their results show that 

the NEH heuristic outperforms all other approaches. Besides that, Ruiz and Marato (2006) propose an 
effective heuristic that considers changeover times and release dates for machines. Their heuristic assigns 
an operation to the machine that can finish it at the earliest possible time. 
 

3.5.2 Improvement heuristics 

There is a large variety of improvement heuristics available. In essence, improvement heuristics start with 
an initial solution 𝑆. Neighborhood operators (see Section 3.6) try to improve 𝑆 by making changes to it 
(e.g., swapping two jobs in the sequence) to get a neighbor solution 𝑆′. Improvement heuristics each 
handle and accept neighbor solutions differently. Nevertheless, each improvement heuristic returns at the 
end the best solution found 𝑆∗. This section reviews a variety of improvement heuristics that have been 
applied in the HFS field. Moreover, this section elaborates upon promising improvement heuristics for our 
problem to identify their strengths and weaknesses. 
 
For HFS problems, commonly applied improvement heuristics are simulated annealing (SA), tabu search 
(TS), and genetic algorithms (GA). Less frequently used heuristics are artificial immunes (AIS), neural 
networks (NN), and ant colony optimization (ACO) (Ruiz & Vázquez-Rodríguez, 2010; Cinar et al., 2015). 
 
Kirkpatrick (1983) introduces simulated annealing (SA). This method always accepts the neighbor solution 
𝑆′ when it is better than the current solution 𝑆. When the neighbor solution 𝑆′ is worse than the current 
solution 𝑆, SA includes randomness in the acceptance criterion to be able to escape local optima (Ruiz & 
Vázquez-Rodríguez, 2010). In this case, the neighbor solution 𝑆′ is accepted with a probability that 
depends on the difference between the objective values 𝐹(𝑆) and 𝐹(𝑆′), and the progression of the 
heuristic, which is often denoted by the temperature 𝑇. The latter decreases over time with a factor α, 
which is referred to as the cooling factor. Therefore, the acceptance probability decreases over time such 
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that it is less likely that SA accepts worse solutions over time. The heuristic stops when 𝑇 < 𝑇𝑠𝑡𝑜𝑝. Finally, 

SA returns the best solution found 𝑆∗. Figure 23 provides pseudo code of SA with a minimization objective. 
Low (2005) applies SA to minimize the total flow time of an HFS problem with sequence-dependent 
changeover times. Naderi et al. (2009) also use SA to solve an HFS problem with sequence-dependent 
changeovers. In similar work, SA is the improvement heuristic to solve an HFS problem with both 
sequence-dependent changeovers and transportation times between stages (Naderi, Zandieh, Khaleghei, 
& Roshanaei, 2009). Jin et al. (2006) propose two SA heuristics that differ in their neighborhood structures. 
They conduct an extensive computational study and show the efficiency of these heuristics. They compare 
their SA heuristic with the tabu search (TS) heuristic of Riane et al. (2002) and show similar results. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Genetic Algorithms (GA) are inspired by the natural selection process. There are many variations of GAs. 
In essence, GAs use biologically inspired operators (e.g., crossover, selection, and mutation) to generate a 
population of neighbor solutions with a better fitness value. As there are many variations of GAs, we do 
not provide pseudo code, instead, we refer to the work of Gen and Cheng (1999). Regarding the application 
of GA, Ruiz and Marato (2006) propose a GA for an HFS problem with sequence-dependent changeover 
times to minimize the makespan. Their GA outperforms several other GA heuristics available in the 
literature. Moreover, their GA obtains schedules that are better than the ones generated manually by the 
personnel of a real-world production shop. Yaurima et al. (2009) propose a similar GA with the extension 
to deal with limited buffers between stages. 
 
The improvement heuristic TS has a tabu memory list that stores the last neighbor solutions visited. The 
idea of this tabu list is to avoid going back and forth between neighbors. In essence, TS generates a set of 
neighbor solutions that are not in the tabu memory list. The neighbor 𝑆′ with the best objective value gets 
accepted. This way, TS might accept a neighbor 𝑆′ with a worse objective value 𝐹(𝑆′) than the objective 
value of the current solution 𝐹(𝑆) to avoid getting stuck in local optima. In the case that the neighbor 𝑆′ 
is in the tabu list, an aspiration criterion needs to be satisfied to override the tabu state of that neighbor. 
The heuristic stops based on a stopping criterion, e.g., maximum computational time reached (Glover & 
Laguna, 1998). Figure 24 provides a pseudo-code of TS with a minimization objective.  

Simulated annealing 

1 Construct the initial solution 𝑆 
2 Initialize: 𝑆∗ ← 𝑆, 𝑇 ← 𝑇𝑠𝑡𝑎𝑟𝑡, 𝑇𝑠𝑡𝑜𝑝, 𝐿𝑒𝑛, 𝛼 

3 While 𝑇 > 𝑇𝑠𝑡𝑜𝑝 do 

4      For 𝑘 = 1 to 𝐿𝑒𝑛 do 
5   𝑆′ ← GenerateNeighbor(𝑆) 
6   If 𝐹(𝑆′) < 𝐹(𝑆∗) then 
7    𝑆∗ ← 𝑆′  
8   End 

9   If 𝐹(𝑆′) ≤ 𝐹(𝑆) or exp (−
𝐹(𝑆)−𝐹(𝑆′)

𝑇
) < random(0,1) then 

10    𝑆 ← 𝑆′  
11   End 
12  End 
13  𝑇 ← 𝛼𝑇  
14 End 
15 Return 𝑆∗ 

Figure 23 | Simulated annealing pseudo-code 
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Regarding the application of TS, Jin et al. (2006) use TS for circuit printing production scheduling and Chen 
et al. (2007) apply TS for a container handling system problem. Wang and Tang (2009) propose a TS 
application to minimize the weighted completion times objective subject to a finite buffer capacity 
between stages. 
 
Some studies apply less frequently used heuristics, e.g., Alisantoso et al. (2003) and Engin and Doyen 
(2004) apply an artificial immunes system (AIS) heuristic to solve HFS problems. Moreover, Wang et al. 
(2003) and Tang et al. (2005) apply Neural Networks (NN) to minimize the makespan. Tang et al. (2005) 
extend the NN method by considering sequence-dependent changeover times. However, the NN 
approaches are complex and seem to result in relatively poor solutions compared to other heuristics in 
the field (Ruiz & Vázquez-Rodríguez, 2010). Ying and Lin (2009) propose an ant colony optimization (ACO) 
heuristic and outperform Janiak et al. (2004). Tseng et al. (2008) propose a particle swarm optimization 
(PSO) heuristic which in turn was superior to the PSO that Ying and Lin (2009) propose. 
 
In this section, we touch upon many heuristics that different studies propose. Comparing these heuristics 
based on their performance would be interesting. However, due to the diversity of the HFS problems and 
their instances (e.g., Table 9), a literature-based comparison seems to be almost impossible. Despite a few 
papers that compare different heuristics in similar settings, an overall superior approach is hard to identify.  
  

Tabu search 

1 Construct the initial solution 𝑆 
2 Initialize: 𝑆∗ = 𝑆, maxTabuCount 
3 While not stopping condition do 
4  neighborList ← getNeighbors(𝑆) 
5  For 𝑆′ in neighborList do 
6   If not tabuList.hold(𝑆′) and  𝐹(𝑆′) < 𝐹(𝑆) then 
7    𝑆 ← 𝑆′  
8   Elseif aspirationCriterion(𝑆′)  
9    𝑆 ← 𝑆′  
10   End 
11  End 
12  If  𝐹(𝑆) < 𝐹(𝑆∗) then 
13   𝑆∗ ← 𝑆′  
14  End 
15  tabuList.add(𝑆) 
16  If tabuList.count > maxTabuCount then 
17   tabuList.removeLast 
18  End 
19 End 
20 Return 𝑆∗ 

Figure 24 | Tabu search pseudo-code 
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3.6  Neighborhood structures 
This section elaborates upon neighborhood structures available in the literature of HFS problems. A 
neighborhood search technique (also referred to as a neighborhood operator) mutates a solution to find 
a better solution according to the objective function. The set of neighborhood operators (i.e., the 
neighborhood structure) defines the size of the neighborhood. Moreover, a neighborhood is connected 
when the neighborhood structure can transform any solution into any other solution in a finite set of 
iterations. Concerning optimality, a neighborhood is opt-connected if any initial solution can transform 
into an optimal solution in a finite set of iterations (Kupfahl & Bierwirth, 2016). 
 
At first, Table 11 describes common neighborhood operators in the HFS field. Moreover, Table 12 provides 
a small selection of papers that consider these operators. The remainder of this section reviews different 
configurations of neighborhood structures regarding their size and connectedness. 
 
 

Nr Neighborhood operator 
1 Swap two operations on the same machine 
2 Swap two operations between alternative machines 
3 Move one operation to another position on the same machine 
4 Move one operation to a position on an alternative machine 
5 Move one operation to the same position on an alternative machine 
6 Move the operations between two positions to another position on the same machine 
7 Move the operations between two positions to an alternative machine 
8 Inverse the sequence of the operations between two positions on the same machine 

 

 

  Neighborhood operator Nr 

Papers 1 2 3 4 5 6 7 8 

(Al-harkan & Qamhan, 2019) X X X X     

(Karimi, Ardalan, Naderi, & Mohammadi, 2017) X    X X X  

(Kupfahl & Bierwirth, 2016) X X      X 

(Naderi, Zandieh, Khaleghei, & Roshanaei, 2009)  X      X 

(Naderi, Zandieh, & Roshanaei, 2009) X X X X    X 

(Wang & Tang, 2009) X X      X 

(Zhang, Zhang, Song, Wang, & Zhou, 2019) X  X X     

 
 
The operators in Table 11 require selecting operations, machines, positions in a sequence, or a 
combination of these. There are several strategies to make these selections to focus on promising 
neighbors. For instance, Jun and Park (2015) use a rule to allocate a machine to a job to minimize the total 
tardiness. This allocation rule considers the processing time of the job on the alternative machines and 
assigns the job to the machine that will complete the process soonest. Nevertheless, most papers make 
these selections randomly, e.g., the work of Naderi et al. (2009), Karimi et al. (2017), or Al-harkan and 
Qamhan (2019). 
  

Table 11 | Neighborhood operators 

Table 12 | Neighborhood operators in HFS problems 
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Furthermore, there are several strategies to select neighborhood operators. For instance, Naderi, Zandieh, 
and Roshanaei (2009) make a tradeoff between small neighbors, e.g., operators (1) and (2), to intensify 
the search space and conversely large neighborhoods, e.g., operator (8) or three consecutive operations 
of (1) or (2), to diversify the search space. They first intensively search the current search space by using 
the small neighborhood operators. After having searched the current space, they use large neighborhood 
operators to identify new search spaces. Wang and Tang (2009) use a TS heuristic with the operators (1) 
and (2). When the TS heuristic rejects the solutions provided by these operators, an inversion operator (8) 
is used. Moreover, Dauzère-Pérès (2018) conduct preliminary neighbor evaluations to identify promising 
neighbors. These evaluations are based on the calculation of the lower bounds on the new makespan. 
When there are no improvements for a predefined number of iterations, their neighborhood diversifies 
by swapping operations arbitrarily. Nevertheless, many studies select neighborhood operators randomly, 
e.g., the work of Karimi et al. (2017) or Zhang et al. (2019). 
 
Besides that, neighborhood operators can result in infeasible schedules (Dauzère-Pérès, Shen, & Neufeld, 
2018). For example, in HFS problems, jobs can only move to eligible machines (Zhang, Zhang, Song, Wang, 
& Zhou, 2019). Moreover, in more complex HFS problems with sequencing constraints between jobs, some 
sequences are not allowed. Therefore, verifying the feasibility of the neighborhood operation is important.  
 

3.7  Sequencing constraints 
In HFS problems, there are sequencing constraints (also referred to as precedence constraints) between 
the consecutive operations of a job (Ruiz & Vázquez-Rodríguez, 2010). For instance, regarding our 
problem, mixing is required before packaging. Section 3.7.1 reviews techniques to model these sequencing 
constraints. This section also describes techniques to extend these sequencing constraints to model 
transportation times between operations and sequence-dependent changeovers between two 
consecutive jobs on the same machine. Moreover, this section provides a technique to model release 
times of operations. Besides that, Section 3.7.2 reviews several techniques to model sequencing 
constraints between different jobs. 
 

3.7.1 Sequencing relations between operations of a job 

Recall that in HFS problems every job 𝑗 ∈ 𝐽 consists of a sequence of consecutive operations 𝑂𝑗 =

{1,2, . . , 𝑛𝑗}, where the 𝑖𝑡ℎ operation of job j is denoted by 𝑜𝑗,𝑖. An operation 𝑜𝑗,𝑖 can process on any one of 

the eligible machines of the subset 𝑀𝑗,𝑖 ⊆ 𝑀. Each operation 𝑜𝑗,𝑖 requires a processing time of 𝑝𝑗,𝑖,𝑘 on 

machine 𝑘 ∈ 𝑀𝑗,𝑖. The start- and finish times of an operation 𝑜𝑗,𝑖 are denoted by 𝑠𝑗,𝑖 and 𝑓𝑗,𝑖 ≥ 𝑠𝑗,𝑖 + 𝑝𝑗,𝑖,𝑘, 

respectively. Note that when 𝑓𝑗,𝑖 > 𝑠𝑗,𝑖 + 𝑝𝑗,𝑖,𝑘, preemption on machine 𝑘 is allowed. There are common 

sequencing constraints in HFS problems (Ruiz & Vázquez-Rodríguez, 2010). These constraints are also 
applicable to our problem. At first, the operations 𝑂𝑗  of a job 𝑗 should not overlap, thus, 𝑜𝑗,𝑖 cannot start 

earlier than 𝑜𝑗,𝑖−1 is finished, i.e., 

 
𝑠𝑗,𝑖 ≥ 𝑓𝑗,𝑖−1     ∀𝑗 ∈ 𝐽,   𝑖 ∈ 𝑂𝑗 ,   s. t.   𝑖 > 1.    (1a) 

 
Note that constraint (1a) assumes that consecutive operations 𝑂𝑗 of a job 𝑗 have no time legs in between 

them (e.g., transportation times). Karimi et al. (2017) extend constraint (1a) to model time lags between 
consecutive operations 𝑂𝑗 of a job 𝑗. To achieve this, denote the time lag between a pair of consecutive 

operations (𝑜𝑗,𝑖−1; 𝑜𝑗,𝑖) of a job j by 𝑙𝑎𝑔𝑗,𝑖−1,𝑖 and modify constraint (1a) such that 

 
𝑠𝑗,𝑖 ≥ 𝑓𝑗,𝑖−1 + 𝑙𝑎𝑔𝑗,𝑖−1,𝑖    ∀𝑗 ∈ 𝐽,   𝑖 ∈ 𝑂𝑗 ,   𝑠. 𝑡.   𝑖 > 1.    (1b) 
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Besides that, a machine 𝑘 can only process one job at a time. To achieve this, let (𝑜𝑗′,𝑖′; 𝑜𝑗,𝑖) ∈ Πk be a set 

of consecutive operation pairs in the sequence of machine 𝑘, then 
 

𝑠𝑗,𝑖 ≥ 𝑓𝑗′,𝑖′      ∀(𝑜𝑗′,𝑖′′; 𝑜𝑗,𝑖) ∈ Πk,   𝑘 ∈ 𝑀𝑗,𝑖 ∩ 𝑀𝑗′,𝑖′′,   𝑠. 𝑡.   𝑜𝑗,𝑖 ≠ 𝑜𝑗′,𝑖′ .(2a) 

 
Constraint (2a) assumes that the consecutive operations in the sequence of machine k have no time legs 
in between them (e.g., setup times). Nevertheless, Dauzère-Pérès et al. (2018) extend constraint (2a) to 
include setup times. To achieve this, denote the setup time between a pair of consecutive operations on 

the same machine (𝑜𝑗′,𝑖′; 𝑜𝑗,𝑖) ∈ Πk by 𝑠𝑒𝑡𝑢𝑝(𝑗′,𝑖′),(𝑗,𝑖),(𝑘) and modify constraint (2a) such that 

 

𝑠𝑗,𝑖 ≥ 𝑓𝑗′,𝑖′ + 𝑠𝑒𝑡𝑢𝑝(𝑗′,𝑖′),(𝑗,𝑖),(𝑘)  ∀(𝑜𝑗′,𝑖′; 𝑜𝑗,𝑖) ∈ Πk,   𝑘 ∈ 𝑀𝑗,𝑖 ∩ 𝑀𝑗′,𝑖′ ,   𝑠. 𝑡.   𝑜𝑗,𝑖 ≠ 𝑜𝑗′,𝑖′ . (2b) 

 
Furthermore, the operation 𝑜𝑗𝑖  of a job 𝑗 may require a release time, which is denoted by 𝑟𝑗𝑖. In this case, 

an operation 𝑜𝑗𝑖  cannot start earlier than 𝑟𝑗𝑖. Ruiz et al. (2008) model this as follows 

 
𝑠𝑗,𝑖 ≥ 𝑟𝑗,𝑖     ∀𝑗 ∈ 𝐽,   𝑖 ∈ 𝑂𝑗.      (3) 

 
Regarding our problem, the constraints (1b), (2b), and (3) are applicable as our problem has, respectively, 
transportation times between two consecutive operations of the same job, changeover times between 
two consecutive operations on the same machine, and operations of jobs mays have release times. To 
achieve this, the starting time 𝑠𝑗𝑖  of every operation 𝑜𝑗𝑖  should satisfy the following three constraints 

 
𝑠𝑗,𝑖 ≥ 𝑓𝑗,𝑖−1 + 𝑙𝑎𝑔𝑗,𝑖−1,𝑖    ∀𝑗 ∈ 𝐽,   𝑖 ∈ 𝑂𝑗,   𝑠. 𝑡.   𝑖 > 1    (1b) 

𝑠𝑗,𝑖 ≥ 𝑓𝑗′,𝑖′ + 𝑠𝑒𝑡𝑢𝑝(𝑗′,𝑖′),(𝑗,𝑖),(𝑘) ∀(𝑜𝑗′,𝑖′ ; 𝑜𝑗,𝑖) ∈ Πk,   𝑘 ∈ 𝑀𝑗,𝑖 ∩ 𝑀𝑗′,𝑖′ ,   𝑠. 𝑡.   𝑜𝑗,𝑖 ≠ 𝑜𝑗′,𝑖′  (2b) 

𝑠𝑗,𝑖 ≥ 𝑟𝑗,𝑖    ∀𝑗 ∈ 𝐽,   𝑖 ∈ 𝑂𝑗.      (3) 

 

3.7.2 Sequencing relations between jobs 

In scheduling problems, there may be sequencing constraints between jobs. For instance, regarding our 
problem, a solution is infeasible when sequencing a halal-certified job after a haram job as described in 
Section 2.2.2. However, despite the interest in scheduling problems over the past years, the literature on 
sequencing constraints between jobs in scheduling problems is limited (Afzalirad & Rezaeian, 2017).  
 
Nevertheless, according to Sun et al. (2010), there are three options to attain feasibility when considering 
sequencing constraints: (i) reject an infeasible solution without consideration, (ii) repair the infeasible 
solutions such that they become feasible, or (iii) allow infeasibility and add a penalty to worsen the 
objective function. Regarding the first option, Driessel and Mönch (2011) consider a scheduling problem 
with an arbitrary set C of paired jobs with sequencing constraints, i.e., job 𝑗′ must precede job 𝑗 if (𝑗′, 𝑗) ∈
𝐶. For each job, Driessel and Mönch determine feasible positions in the schedule and do not consider the 
infeasible solution space. The drawback of this method is that it can be very time-consuming to find a good 
solution, especially when the search space contains many infeasible solutions (Sun, Cheng, & Liang, 2010). 
 
Besides that, Afzalirad and Rezaeian (2017) consider the same sequencing constraints as (Driessel & 
Mönch, 2011). However, they allow infeasibility and use a corrective algorithm to attain feasible solutions. 
Moreover, Sun et al. (2010) expand their search space to the infeasible regions. Once a solution violates a 
constraint, a penalty worsens the objective. This penalty can increase as the algorithm progresses such 
that it is more likely to end up with a feasible solution.  
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3.8  Additional shared resource constraints 
Regarding our problem, an operation may require several IBCs to fill and discharge machines, and to store 
products between stages (e.g., mixing and packaging). Moreover, a cleaning may require several certified 
operators. These resources are limited and may be required by different stages (e.g., IBC-filling, mixing, 
and packaging) simultaneously, as described in Sections 1.3.1 and 2.3.4. Costa et al. (2020) refer to limited 
resources that may be required in different stages simultaneously as additional resources. Concerning our 
problem, the IBCs and the certified operators are additional resources.  
 
According to Blazewicz et al. (2007), additional resources can be renewable, non-renewable, or both. 
Renewable resources are limited and are reusable, e.g., AGVs, operators, or equipment. Non-renewable 
resources are consumed during operations, e.g., raw materials or energy. Moreover, resources can be 
considered discrete when they are consumed at a constant level during the process, or continuous, in 
which the resource consumption differs during the process (Pinto & Grossmann, 1998).  
 
Regarding our problem, the number of certified operators required during cleaning is constant, as 
described in Section 1.3.1. However, the number of IBC required while processing an operation on a 
machine may be variable. For instance, there may be more IBCs required to fill a mixer than to discharge 
a mixer, as described in Section 2.1.3. In this case, IBCs that are not required to discharge a mixer go to 
the IBC-cleaning station immediately after they have filled the mixer, while the other IBCs wait to discharge 
the product from the mixer. For these reasons, we are interested in techniques to model limited renewable 
additional resources with constant- and continuous consumption, since these are present in our problem. 
 
As additional resources are limited, it is necessary to consider feasible combinations of simultaneously 
processed operations that use the same limited resources at each point in time (Edis, Oguz, & Ozkarahan, 
2013). To achieve this, the overall resource capacity needs to be sufficient to ensure feasibility (Brucker & 
Krämer, 1996).  
 
Costa et al. (2020) state that their work is the first study in which additional renewable resources in an HFS 
scheduling problem are considered. They consider a critical workforce capacity (i.e., at each stage, the 
number of operators is lower than the number of machines) for performing changeovers. Moreover, they 
assume that exactly one operator is required during every changeover process. They propose a discrete 
backtracking search algorithm to solve this problem. In essence, this algorithm calculates at every point in 
time how many operators are required. If the critical workforce capacity is exceeded, a changeover 
postpones to the first point in time an operator is available. Therefore, feasibility regarding the resource 
constraint is assured (Costa, Fernandez-Viagas, & Framiñan, 2020). 
 
Shortly after the work of Costa et al. (2020), Tao et al. (2020) consider an HFS problem with different 
resources (e.g., tools). A job may require multiple different resources depending on the machine. These 
resources may be required by several jobs in different stages simultaneously. Moreover, the resource 
usage is constant while processing a job. Tao et al. (2020) model these resource constraints similar to Costa 
et al. (2020); if the required resources are not available, the job postpones until the required resources 
are available. 
 
To the best of our knowledge, the work of Costa et al. (2020) and Tao et al. (2020) are the only studies that 
consider resource constraints in an HFS environment. Nevertheless, there are some studies in other 
scheduling domains that consider resource constraints. Blazewicz et al. (2007) review the general area of 
resource-constrained scheduling problems. Edis et al. (2013) extend this work with a more in-depth review 
of studies on parallel machine scheduling problems with resource constraints. Both Edis et al. (2013) and 
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Costa et al. (2020) find gaps in the literature regarding resource constraints in scheduling. They state that 
most studies focus on a single resource type, thus, versions with multiple resource types are potential 
research areas. Moreover, there are almost no studies where the same additional resources can be used 
in multiple different stages, as most studies only focus on shared resources within one stage (Edis, Oguz, 
& Ozkarahan, 2013). Furthermore, future research may focus on resource constraints in HFS scheduling 
problems (Costa, Fernandez-Viagas, & Framiñan, 2020). 
 

3.9  Summary of the literature review 
The main goal of the literature review is to answer the second research question: Which methods are 
available in the literature to solve our scheduling problem to increase the production throughput? To 
answer this question, Section 3.1 outlines several scheduling classes to broaden the view on the scheduling 
research field. Accordingly, we identify our scheduling problem as a hybrid flow shop (HFS) problem.  
 
In Section 3.2, we combine several taxonomic frameworks in the literature to cover a broader scope of 
scheduling problems. Subsequently, Section 3.3 classifies our problem and similar HFS problems in the 
literature by using the combined taxonomy (see Table 9) such that we can position our problem in the 
research field. Consequently, we identify from the classification that almost every characteristic of our 
problem appears in at least one study in the literature of HFS. However, HFS problems in the literature 
each cover only a small variety of practical characteristics (e.g., release times, transportation times, or 
resource capacity constraints), which Cinar et al. (2015, p. 34), and Li et al. (2020, p. 73) also experience. 
Moreover, there appears to be no scheduling problem with a similar set of characteristics as our problem.  
Section 3.4 identifies that the majority of the literature concentrates on single objectives. However, single-
objectives are insufficient for practical applications as Minella and Ruiz (2008), Lei (2009), and Yenisey and 
Yagmahan (2014) address. Moreover, there is a gap in the literature regarding suitable objectives for HFS 
scheduling problems with practical characteristics (e.g., sequence-dependent changeovers or resource 
constraints) (Li, Gao, & Peng, 2020, p. 73). As our problem has multiple objectives, Section 3.4 identifies 
methods to formulate and solve multi-objective functions. Finally, promising objectives for our problem 
are minimizing the makespan and flowtime. The former increases machine utilization and the latter 
enhances a stable usage of resources and less work-in-progress, which both correspond with the 
objectives of our scheduling problem. 
 
Section 3.5 highlights that HFS problems are generally strong NP-hard (Ribas, Leisten, & Framiñan, 2010). 
Therefore, exact approaches are incapable to solve medium and large problem instances for real-world 
problems (Ruiz & Vázquez-Rodríguez, 2010). Nevertheless, this section describes a variety of non-exact 
and efficient heuristics that can obtain good solutions for large problem instances in a reasonable time. 
Section 3.5.1 elaborates upon a promising construction heuristic of Nawaz et al. (1983) and Section 3.5.2 
describes several promising improvement heuristics that studies propose. There is a large diversity of HFS 
problems and their instances. Therefore, a literature-based comparison seems to be almost impossible to 
identify an overall superior approach. Nevertheless, commonly applied and promising heuristics for HFS 
problems seem to be simulated annealing, tabu search, and genetic algorithms. 
 
Section 3.6 outlines and reviews commonly applied neighborhood structures available in the literature of 
HFS problems. Moreover, this section describes several rules to select neighborhood operators and 
elaborates upon the feasibility of neighborhoods. 
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Besides that, Section 3.7 provides methods to deal with sequencing relations between the operations of a 
job. This section also describes techniques to extend these sequencing constraints to model, e.g., 
transportation times between operations, sequence-dependent changeovers between two consecutive 
jobs on the same machine, and release times for operations. Moreover, this section reviews several 
techniques to model sequencing constraints between different jobs. There are appears to be a gap in the 
literature regarding sequencing constraints between jobs in scheduling problems, which Afzalirad & 
Rezaeian (2017) also experience. Nevertheless, Section 3.7 outlines three methods to deal with feasibility 
regarding sequencing constraints, each with its benefits and drawbacks. 
 
Finally, Section 3.8 reviews techniques to model limited additional resources (e.g., IBCs and operators). To 
the best of our knowledge, the work of Costa et al. (2020) and Tao et al. (2020) are the only studies that 
consider additional resources in an HFS environment. They propose a discrete backtracking search 
algorithm to solve this problem. In essence, this backtracking algorithm postpones jobs until the required 
resources are available. Nevertheless, there are some studies in other scheduling domains that consider 
additional resources. In other scheduling domains, most studies focus on a single resource type, thus, 
versions with multiple resource types are potential research areas (Costa, Fernandez-Viagas, & Framiñan, 
2020). Moreover, there are almost no studies where the same additional resources can be shared over 
multiple different stages (e.g., IBC-filling, mixing, and packaging) simultaneously, as most studies only 
focus on shared resources within one stage (Edis, Oguz, & Ozkarahan, 2013). 
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4. Model alternatives 
The main goal of this chapter is to answer the third research question: 
 

“Which alternative models are suitable to solve the scheduling problem of Euroma?” 
 
To achieve this, this chapter describes several modeling alternatives that we consider to solve our 
scheduling problem (see Section 2.6). We base these modeling alternatives on the findings of the literature 
review in Chapter 3 and our insights.  
 
This chapter is organized as follows. Section 4.1 describes the assumptions and simplifications that we 
make. Section 4.2 describes the decisions of the problem that the model needs to consider. Section 4.3 
describes the decoding algorithm that calculates the start- and finish times of operations in a schedule. 
Section 4.4 describes a corrective backtracking algorithm that ensures a maximum number of machine 
cleanings at the same time. Section 4.5 elaborates upon alternative objectives for our problem. Section 
4.6 provides two alternative construction heuristics for our problem that we extend to ensure feasibility 
regarding the claim constraints. Subsequently, Section 4.7 elaborates upon two alternative neighborhood 
structures, their size, and connectedness. Moreover, this section describes two alternative improvement 
heuristics for our problem. Finally, Section 4.8 provides a summary of this chapter. 
 

4.1 Model assumptions & simplifications 
To simplify the modeling of the problem, we assume the following: 
 

• All input data is deterministic, e.g., processing times, transportation times, and cleaning times. 

• Jobs are always ready for production (e.g., all ingredients are available). 

• Operators are always ready to assist. 

• Machines do not have breakdowns. 

• There is infinite storage capacity in the high-rise warehouse, which is located before the first stage 
and after the last stage. 

 

4.2  Scheduling problem decisions 
This section describes the decisions of the problem that the model needs to consider. Moreover, this 
section provides formal notations regarding the problem that the remaining sections in this chapter recall. 
 
In essence, the scheduling model needs to make the following four decisions: 
 

1. Allocate an eligible production route to every job; 
2. Allocate an eligible machine to every operation of the allocated production route of a job; 
3. Determine the sequence of the operations on the allocated machines; 
4. Determine the start time of every operation. 

 
Regarding the first decision, to be able to allocate an eligible production route to a job, we extend the 
general notation of the HFS problem as introduced in Section 3.7.1. The extension ensures that every job 

𝑗 ∈ 𝐽 needs processing according to any one of the eligible production routes in the set 𝑅𝑗, where the 𝑟𝑡ℎ 

route is denoted by 𝑟𝑜𝑢𝑡𝑒𝑗,𝑟.  
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Regarding the second decision, every 𝑟𝑜𝑢𝑡𝑒𝑗,𝑟 of job 𝑗 consists of a sequence of consecutive operations 

𝑂𝑗,𝑟 = {1,2, . . , 𝑛𝑗,𝑟}, where the 𝑖𝑡ℎ operation of job 𝑗 on 𝑟𝑜𝑢𝑡𝑒𝑗,𝑟 is denoted by 𝑜𝑗,𝑟,𝑖. Operation 𝑜𝑗,𝑟,𝑖 needs 

processing on any one of the eligible machines of the subset 𝑀𝑗,𝑟,𝑖 ⊆ 𝑀. 

  
Furthermore, recall from Section 2.2.2 that machines need maintenance occasionally. Often, the start of 
these jobs is somewhat flexible since Euroma has an in-house maintenance team. To be able to schedule 
maintenance, we let every maintenance job 𝑤 ∈ 𝑊 have one 𝑟𝑜𝑢𝑡𝑒𝑤,1 and one operation 𝑜𝑤,1,1 with one 
eligible machine 𝑘 = 𝑀𝑤,1,1. This resembles that maintenance job 𝑤 is required on machine 𝑘. This way, 

it is possible to schedule maintenance jobs and regular jobs simultaneously; 𝐽𝑎𝑙𝑙 = 𝐽 ∪ 𝑊. 
 
Regarding the sequence of the allocated operations on a machine, the sequence must satisfy the claim 
constraints, as described in Section 2.2.2. Every job 𝑗 contains a set of claims; 𝐶𝑙𝑎𝑖𝑚𝑠 =
{𝐻𝑎𝑙𝑎𝑙,  𝐾𝑜𝑠ℎ𝑒𝑟,… , 𝑉𝑒𝑔𝑎𝑛}, where 𝑐𝑗,𝑙 ∈ {𝑛𝑜𝑛 − 𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒, 𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒, 𝑐𝑒𝑟𝑡𝑖𝑓𝑖𝑒𝑑} ∀𝑙 ∈ 𝐶𝑙𝑎𝑖𝑚𝑠. It is 

not allowed to sequence an operation 𝑜𝑗,𝑟,𝑖 of which claim 𝑙 is 𝑐𝑗,𝑙 = 𝑐𝑒𝑟𝑡𝑖𝑓𝑖𝑒𝑑 within two positions after 

an operation 𝑜𝑗′,𝑟′,𝑖′  of which claim 𝑙 is 𝑐𝑗′,𝑙 = 𝑛𝑜𝑛 − 𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒 on the same machine 𝑘 ∈ 𝑀𝑗,𝑟,𝑖 ∩ 𝑀𝑗′,𝑟′,𝑖′ . 

Moreover, since Euroma is producing continuously, the new schedule should comply with the previous 
schedule. Thus, regarding the claim constraints, the first two operations in the sequence of machine 𝑘 
should comply with the last two operations of the previous sequence of machine 𝑘. 
 
Regarding the fourth decision, we develop a decoding algorithm that determines the start time of every 
operation on the allocated machines. Section 4.3 describes the decoding algorithm. 
 

4.3  Solution decoding algorithm 
Once the sequences of operations on the machines are known and feasible regarding the claim constraints, 
it is possible to calculate the start- and finish times of every operation 𝑜𝑗,𝑟,𝑖. The start- and finish times of 

an operation 𝑜𝑗,𝑟,𝑖  are denoted by 𝑠𝑗,𝑟,𝑖 and 𝑓𝑗,𝑟,𝑖, respectively. This section describes the solution decoding 

algorithm that determines the start time of every operation by taking into account several constraints. 
 
At first, recall that the operations of job 𝑗 on route 𝑟 have a predetermined sequence 𝑂𝑗,𝑟. The operations 

𝑂𝑗,𝑟 should not overlap, i.e., 𝑜𝑗,𝑟,𝑖  cannot start earlier than 𝑜𝑗,𝑟,𝑖−1 is finished. Also, recall that a pair of 

consecutive operations (𝑜𝑗,𝑟,𝑖−1; 𝑜𝑗,𝑟,𝑖) of a job 𝑗 incurs a transportation time when transporting between 

two machines. Let 𝑠𝑗,𝑟,𝑖
𝑗𝑜𝑏

 be the minimum start time of the operation 𝑜𝑗,𝑟,𝑖  that is constrained by its 

operation sequence 𝑂𝑗,𝑟. 

 
Moreover, machines can only produce one operation at a time and there might be a sequence-dependent 
cleaning time between a pair of consecutive operations on the same machine. Therefore, denote 𝑠𝑗,𝑟,𝑖

𝑚𝑎𝑐 as 

the starting time of an operation constrained by its machine sequence. Note that every machine sequence 
should include the last operation of the previous schedule to avoid overlapping between the previous- and 

the new schedule. Besides, let 𝑠𝑗,𝑟,𝑖
𝑟𝑒𝑙  denote the minimum start time of the operation 𝑜𝑗,𝑟,𝑖 constrained by 

its release time. Also, recall that a machine cannot produce during one of its production-stops, as described 
in Section 2.2.2. Therefore, operations that are allocated to this machine cannot start or finish during one 
of the production-stops. To achieve this, we first calculate the minimum start time of operation 𝑜𝑗,𝑟,𝑖  as 

follows: 𝑠𝑗,𝑟,𝑖 ≥ 𝑚𝑎𝑥{𝑠𝑗,𝑟,𝑖
𝑗𝑜𝑏

; 𝑠𝑗,𝑟,𝑖
𝑚𝑎𝑐; 𝑠𝑗,𝑟,𝑖

𝑟𝑒𝑙 }.  
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Calculating the start times of the operations requires 
the allocation of operations to machines and the 
sequence of operations on the machines. The former is 

often represented by a machine-allocation-vector 𝑉𝑚⃑⃑ ⃑⃑ ⃑⃑  

and the latter is provided by a sequence-vector 𝑉𝑠⃑⃑ ⃑⃑  (Li, 
et al., 2018). The sequence-vector consists of ∑ 𝑛𝑗𝑗∈𝐽  

items, where 𝑛𝑗 is the number of operations of job 𝑗, 

and each item stores one job number 𝑗 ∈ 𝐽. Each job 𝑗 

appears 𝑛𝑗 times in 𝑉𝑠⃑⃑ ⃑⃑ , where the first appearance of 𝑗 

resembles 𝑜𝑗,1, the second appearance of 𝑗 resembles 

𝑜𝑗,2, and so on. The machine- allocation-vector 𝑉𝑚⃑⃑ ⃑⃑ ⃑⃑  has 

the same length as 𝑉𝑠⃑⃑ ⃑⃑ . In 𝑉𝑚⃑⃑ ⃑⃑ ⃑⃑ , each item stores one 
eligible machine number 𝑘 ∈ 𝑀𝑗,𝑖 of the operation 𝑜𝑗,𝑖 

that corresponds with the same item number in 𝑉𝑠⃑⃑ ⃑⃑  (Li, 
et al., 2018).  
 
For an example to calculate the start- and finish times 
of the operations, consider the operations in Table 13 
that each need processing on one eligible machine 𝑘 ∈
𝑀𝑗,𝑖 with a processing time 𝑝𝑗,𝑖,𝑘. Note that this instance 

considers no routes, cleaning-, transportation-, and 
release times. 
 

Figure 25 provides a configuration of 𝑉𝑠⃑⃑ ⃑⃑  and 𝑉𝑚⃑⃑ ⃑⃑ ⃑⃑  for the 
instance in Table 13. We refer to this solution 
representation as encoded. To decode the solution, and 
thus, calculate the start- and finish times of the 

operations, follow the sequences in 𝑉𝑠⃑⃑ ⃑⃑  and 𝑉𝑚⃑⃑ ⃑⃑ ⃑⃑ .  
 

By following the sequence in 𝑉𝑠⃑⃑ ⃑⃑  and 𝑉𝑚⃑⃑ ⃑⃑ ⃑⃑ , observe that machine 1 produces 𝑜1,1 at 𝑠1,1 = 0, machine 2 
produces 𝑜3,1 at 𝑠3,1 = 0, and machine 3 produces 𝑜2,1 at 𝑠2,1 = 0. At this point, every machine has one 
allocated operation. Continuing the sequence, machine 3 produces 𝑜1,2 at 𝑠1,2 = 2, as 𝑠1,2 ≥

𝑚𝑎𝑥{𝑠1,2
𝑗𝑜𝑏

= 1; 𝑠1,2
𝑚𝑎𝑐 = 2; 𝑠1,2

𝑟𝑒𝑙 = 0}. Next, machine 1 produces 𝑜2,2 at 𝑠2,2 = 2, since 𝑠2,2 ≥ 𝑚𝑎𝑥{𝑠2,2
𝑗𝑜𝑏

=

2; 𝑠2,2
𝑚𝑎𝑐 = 1; 𝑠2,2

𝑟𝑒𝑙 = 0}. This process continues until all the start- and finish times of the operations are 

calculated. Figure 26 illustrates a Gantt chart of the decoded solution. 
 
Recall that preemption of operations on machines is not allowed. Consequently, the finish time 𝑜𝑗,𝑖 on 

machine 𝑘 can be calculated by 𝑓𝑗,𝑖 = 𝑠𝑗,𝑖 + 𝑝𝑗,𝑖,𝑘. After calculating 𝑠𝑗,𝑖  and 𝑓𝑗,𝑖 of 𝑜𝑗,𝑖, it is possible to verify 

whether 𝑜𝑗,𝑖 starts or finishes during a production-stop. In such a case, we postpone the start time such 

that 𝑜𝑗,𝑖 is not scheduled during a production-stop.  

 
Note from Figure 26 that 𝑜1,1 can postpone 𝑠1,1 from 0 to 1 without delaying other operations. Similarly, 
𝑜3,1 can postpone 𝑠3,1 from 0 to 2. This way, the flowtime of these jobs decreases, which enhances a stable 
usage of resources and less work-in-progress (Yenisey & Yagmahan, 2014). Therefore, we postpone the 
start time of an operation when it does not delay the finish time of any other operation.  
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Table 13 | Processing times of the operations on 
eligible machines 

 

Figure 25 | Encoded solution representation 

Figure 26 | Decoded solution representation 
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4.4  Corrective backtracking algorithm 
This section describes a corrective backtracking algorithm that ensures a maximum number of machine 
cleanings at the same time due to limited operator availability. To model this restriction, we use the idea 
of Afzalirad and Rezaeian (2017) to allow infeasibility and use a corrective backtracking algorithm to attain 
feasible solutions. We choose not to accept infeasible solutions by using a penalty to worsen the objective 
once a solution violates the constraint, as this might result in an infeasible final solution. 
 

In essence, while computing the start times of the operations by iterating through the vectors 𝑉𝑠⃑⃑ ⃑⃑  and 𝑉𝑚⃑⃑⃑⃑ ⃑⃑ , 
we list the start- and finish times for every cleaning in a list and sort this list in ascending order. This list 
refers to the value +1 for every start time, and -1 for every finish time. By iterating through this list, we 

enumerate the number of machine cleanings at every time a cleaning starts and finishes. Denote 𝑚𝑎𝑥𝑡
𝑐𝑙𝑒𝑎𝑛 

as the maximum number of allowed machine cleanings at time 𝑡 ∈ 𝑇 due to limited operator availability. 

Once the number of machine cleanings at time 𝑡 ∈ 𝑇 exceeds 𝑚𝑎𝑥𝑡
𝑐𝑙𝑒𝑎𝑛, the cleaning that was last added 

to the list gets postponed to the first feasible time such that 𝑚𝑎𝑥𝑡
𝑐𝑙𝑒𝑎𝑛 is not exceeded.  

 
Figure 27 illustrates a schedule where every pair of consecutive operations on the same machine requires 

a cleaning time of 3. Moreover, 𝑚𝑎𝑥𝑡
𝑐𝑙𝑒𝑎𝑛 = 1 for 𝑡 ≤ 10, and 𝑚𝑎𝑥𝑡

𝑐𝑙𝑒𝑎𝑛 = 2 otherwise. Note that a black 
bar indicates a cleaning and a colored bar indicates an operation 𝑜𝑗,𝑟,𝑖. 

 
 
 
 
 
 
 
 
 
 
Besides that, recall from Section 2.3.4 that the number of IBCs needed (i.e., in production and cleaning) 
cannot be more than the number of available IBCs, which is denoted by 𝑚𝑎𝑥𝐼𝐵𝐶. A corrective algorithm 
that modifies the start- and finish times of operations as we use to satisfy the maximum number of 

cleanings is insufficient to guarantee feasibility for the IBC-capacity constraint, as some sequences of 𝑉𝑠⃑⃑ ⃑⃑  

exceed 𝑚𝑎𝑥𝐼𝐵𝐶  regardless of the start- and finish time of the operations. Hence, an algorithm is needed 

that can change 𝑉𝑠⃑⃑ ⃑⃑  and determine the start- and finish times of the operations while still satisfying all 
remaining constraints. Such an algorithm is very computationally expensive. Therefore, we allow 

infeasibility and add a significant penalty (𝐼𝐵𝐶𝑝𝑒𝑛𝑎𝑙𝑡𝑦) to worsen the objective once 𝑚𝑎𝑥𝐼𝐵𝐶  is violated. 

To achieve this, let 𝑢𝑠𝑎𝑔𝑒𝑡
𝐼𝐵𝐶  be the number of IBCs in use at 𝑡 ∈ 𝑇. Appendix 5 describes how we calculate 

the 𝑢𝑠𝑎𝑔𝑒𝑡
𝐼𝐵𝐶at any time 𝑡 ∈ 𝑇 based on the schedule. Finally, calculate the 𝐼𝐵𝐶𝑝𝑒𝑛𝑎𝑙𝑡𝑦 as follows: 

 
𝐼𝐵𝐶𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = ∑ 𝑀𝑎𝑥(0, 𝑢𝑠𝑎𝑔𝑒𝑡

𝐼𝐵𝐶  ─ 𝑚𝑎𝑥𝐼𝐵𝐶)𝑡∈𝑇 . 

 

Note that when the 𝑢𝑠𝑎𝑔𝑒𝑡
𝐼𝐵𝐶  increases at 𝑡 ∈ 𝑇, the 𝐼𝐵𝐶𝑝𝑒𝑛𝑎𝑙𝑡𝑦 also increases. Moreover, the 𝐼𝐵𝐶𝑝𝑒𝑛𝑎𝑙𝑡𝑦 

increases when 𝑚𝑎𝑥𝐼𝐵𝐶  is violated for a longer time. Therefore, this objective increases the 𝐼𝐵𝐶𝑝𝑒𝑛𝑎𝑙𝑡𝑦 

depending on the degree of violation such that it is more likely to guide the search into the feasible region. 

Figure 27 | Illustration of a schedule with a maximum number of machine cleanings allowed  
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4.5  Objective function 
This section elaborates upon suitable alternative objectives for our problem. These objectives are based 
on the knowledge obtained from the literature review and our insights. Moreover, as our problem has 
multiple objectives, this section describes which method we consider to deal with multiple objectives. 
 
Euroma currently minimizes the total machine cleaning time 𝐶𝑇𝑡𝑜𝑡, since cleaning requires operators that 
cannot be assigned elsewhere when they are cleaning. Therefore, we include the 𝐶𝑇𝑡𝑜𝑡 in the objective 

function. To achieve this, let (𝑜𝑗′,𝑟′,𝑖′ ; 𝑜𝑗,𝑟,𝑖) ∈ Πk be a set of consecutive operation pairs in the sequence 

of machine 𝑘. The cleaning time between a pair of consecutive operations is denoted by 
𝑐𝑙𝑒𝑎𝑛(𝑗′,𝑟′,𝑖′),(𝑗,𝑟,𝑖),(𝑘) , where 𝑘 ∈ 𝑀𝑗′,𝑟′,𝑖′ ∩ 𝑀𝑗,𝑟,𝑖  and 𝑜𝑗′,𝑟′,𝑖′ ≠ 𝑜𝑗,𝑟,𝑖. Note that cleaning can be required 

between the last operation of the previous sequence of machine 𝑘 and the first operation of the new 

sequence of machine 𝑘. Therefore, (𝑜𝑗′,𝑟′,𝑖′ ; 𝑜𝑗,𝑟,𝑖) ∈ Πk should also include the consecutive operation 

pairs, where 𝑜𝑗′,𝑟′,𝑖′  is the last operation of the previous sequence of machine 𝑘. 

 
Additionally, according to the literature review in Section 3.4, there are three other suitable objectives for 
our problem. At first, minimizing the makespan 𝐶𝑚𝑎𝑥 increases machine utilization and throughput 
(Yenisey & Yagmahan, 2014), which is in line with the main goal of Euroma. Second, minimizing the total 
tardiness 𝑇𝑡𝑜𝑡 provides a customer-centric approach (Tahmasbi & Moghaddam, 2011), which corresponds 
with the current objective of Euroma. In essence, 𝑇𝑡𝑜𝑡 calculates the total time that jobs are past their due-
date 𝑑𝑗. Third, minimizing the total flowtime 𝐹𝑇𝑡𝑜𝑡 enhances a stable usage of resources and less work-in-

progress (Yenisey & Yagmahan, 2014). When the work-in-progress is low, mixtures stay less long in the 
IBCs, which favors the quality of the product. Moreover, minimizing the 𝐹𝑇𝑡𝑜𝑡 might enhance a stable flow 
of IBCs through the process, which might help to satisfy the IBC-capacity constraint. Therefore, we also 
include the 𝐶𝑚𝑎𝑥, 𝑇𝑡𝑜𝑡, and 𝐹𝑇𝑡𝑜𝑡 in the objective function. 
 
Recall that 𝑠𝑗,𝑟,1 and 𝑓𝑗,𝑟,𝑛𝑗,𝑟

 are, respectively, the start time of the first operation and the finish time of the 

last operation of job 𝑗 on 𝑟𝑜𝑢𝑡𝑒𝑗,𝑟. Note that 𝑠𝑗,𝑟,𝑖 = 0 and 𝑓𝑗,𝑟,𝑖 = 0 when job 𝑗 is not allocated to 𝑟𝑜𝑢𝑡𝑒𝑗,𝑟. 

The formulations of the five aforementioned objectives are: 
 

Maximum makespan: 𝐶𝑚𝑎𝑥            = 𝑚𝑎𝑥𝑗∈𝐽𝑎𝑙𝑙,𝑟∈𝑅𝑗
{𝑓𝑗,𝑟,𝑛𝑗,𝑟

}; 

Total tardiness:   𝑇𝑡𝑜𝑡             = ∑ 𝑀𝑎𝑥 (0, 𝑓𝑗,𝑟,𝑛𝑗,𝑟
 ─ 𝑑𝑗)𝑗∈𝐽𝑎𝑙𝑙,𝑟∈𝑅𝑗

 ; 

Total flowtime:  𝐹𝑇𝑡𝑜𝑡           = ∑ (𝑓𝑗,𝑟,𝑛𝑗,𝑟𝑗∈𝐽𝑎𝑙𝑙,𝑟∈𝑅𝑗
− 𝑠𝑗,𝑟,1); 

Total cleaning time: 𝐶𝑇𝑡𝑜𝑡           = ∑  (𝑐𝑙𝑒𝑎𝑛𝑖𝑛𝑔(𝑗′,𝑟′,𝑖′),(𝑗,𝑟,𝑖),(𝑘))𝑘∈𝑀,(𝑜𝑗′,𝑟′,𝑖′ ;𝑜𝑗,𝑟,𝑖)∈Π𝑘
; 

IBC violation penalty: 𝐼𝐵𝐶𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = ∑ 𝑀𝑎𝑥(0, 𝑢𝑠𝑎𝑔𝑒𝑡
𝐼𝐵𝐶  ─ 𝑚𝑎𝑥𝐼𝐵𝐶)𝑡∈𝑇 . 

 
According to the literature review in Section 3.4, there are several multi-objective functions 𝑓. Minimizing 
the weighted sum of objectives (𝑓𝑤) and the Pareto-optimal approach (𝑓𝑝) are very common for multi 

objective scheduling problems according to the literature review of Yenisey and Yagmahan (2014, p. 132).  
We favor 𝑓𝑤 over 𝑓𝑝 since the latter requires selecting a good solution from a set of Pareto-optimal 

solutions every time a new schedule is required, as this might be necessary when the planners are not 
available. Moreover, 𝑓𝑝 requires multiple solutions, which can be computationally expensive. Therefore, 

we select the objective function 𝑀𝑖𝑛 𝑓𝑤(𝑍1, 𝑍2, … , 𝑍𝑘), which minimizes the sum of the 𝑘 weighted 
objectives. However, the drawback of this method is that it is difficult to determine the weights. 
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4.6  Construction heuristics 
This section describes two alternative construction heuristics for our problem. At first, Section 4.6.1 
describes a construction heuristic that randomly generates an initial solution for the purpose to 
benchmark the performance of the improvement heuristics. Second, Section 4.6.2 elaborates upon the 
NEH construction heuristic that Nawaz et al. (1983) propose and that Ruiz et al. (2008) extend for the HFS 
problem. We extend both construction heuristics such that they generate feasible solutions regarding the 
sequencing constraints (e.g., the claim constraints as described in Section 2.2.2). Only the limited IBC-
capacity might not be satisfied, as exceeding the IBC-capacity is penalized in the objective function. 
 

4.6.1 Random construction heuristic 

The random construction heuristic (RCH) randomly generates initial solutions for the purpose to 
benchmark the improvement ability of the improvement heuristics. In essence, the RCH randomly selects 
a job that has at least one operation that still needs to be scheduled. For this job, the heuristic randomly 
selects an eligible production route. After that, the RCH selects the next operation of this route and 

randomly selects an eligible machine and a random position in the sequencing vector 𝑉𝑠⃑⃑ ⃑⃑ . The main 
challenge with generating an initial solution is to satisfy the claim constraints. The RHC verifies whether 
the claim constraints are satisfied. In the case that the claim constraints are not satisfied, the heuristic 
randomly selects another job, route, machine, and position. The heuristic may not find a feasible solution 
regarding the claim constraints after a certain number of iterations. In that case, the heuristic schedules 

two dummy operations at the end of the sequencing vector 𝑉𝑠⃑⃑ ⃑⃑  and then it schedules the main operation 
after the dummy operations. The dummy operations resemble simple raw materials such as salt that can 
clean the pipes of the machines. Therefore, the heuristic always finds a feasible solution regarding the 
claim constraints. Appendix 6 provides a pseudo-code of the RCH. 
 

4.6.2 Extended NEH construction heuristic 

Ruiz et al. (2008) extend the NEH heuristic of Nawaz et al. (1983) for the HFS problem. Ruiz et al. (2008) 
show that the NEH heuristic is vastly superior to the other available construction heuristics. Liu, Yan, and 
Price (2017) extend the NEH heuristic by adding a tie-breaking rule. They show that their extension can 
find slightly better solutions for some problem instances.  
 
We extend the work of Ruiz et al. (2008) such that the NEH heuristic always finds feasible solutions 
regarding the claim constraints. We choose not to focus on tie-breaking rules, as this might only result in 
a minor performance increase as reported in the literature (Liu, Jin, & Price, 2017). Instead, we choose to 
focus on obtaining a good improvement heuristic. In essence, the NEH heuristic consists of the following 
steps. First, list all jobs in a descending order based on their total average processing time (𝑇𝐴𝑃𝑇𝑗). 

However, as jobs may have different production routes, it is not possible to calculate the 𝑇𝐴𝑃𝑇𝑗  by using 

the formula of Ruiz et al. (2008), as this formula ignores the production routes. Therefore, we extend the 
𝑇𝐴𝑃𝑇𝑗 formulation such that it takes into account the production routes. In essence, this formula 

calculates the average processing time to produce job 𝑗 as follows: 
 

𝑇𝐴𝑃𝑇𝑗 =
∑

∑ 𝑝𝑗,𝑟,𝑖,𝑘 𝑘∈𝑀𝑗,𝑟,𝑖

|𝑀𝑗,𝑟,𝑖|
𝑟∈𝑅𝑗,𝑖∈𝑂𝑗,𝑟

|𝑅𝑗|
 .  

 
Second, take the first job of the list with the highest 𝑇𝐴𝑃𝑇𝑗. Select a random route for this job and select 

the first operation that still needs scheduling. Place this operation into every feasible position in the 

sequencing vector 𝑉𝑠⃑⃑ ⃑⃑  that does not violate the claim constraints and calculate the corresponding objective 
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values. Select the feasible schedule with the best objective value. Subsequently, select the next operation 

of this jobs’ route.  lace this operation into every feasible position in the sequencing vector 𝑉𝑠⃑⃑ ⃑⃑ , without 

changing the relative positions of the already scheduled operations. Select the 𝑉𝑠⃑⃑ ⃑⃑  with the best objective 
value. In the case that the claim constraints cannot be satisfied for a certain operation, the heuristic selects 
the next job on the list that still needs scheduling. When a feasible position is found, the search starts again 
with the first job on the list. Once all operations of a job are in the schedule, this job gets removed from 
the list. This is an iterative process that stops when there are no more jobs to schedule in the list. 
 
In the case that there is no feasible position for the last job on the list, the heuristic schedules two dummy 

operations that are “suitable” for ever  claim at the end of the sequencing vector 𝑉𝑠⃑⃑ ⃑⃑  and then it schedules 
the main operation after the dummy operations. The dummy operations resemble simple raw materials 
such as salt that can clean the pipes of the machines. Therefore, the heuristic always finds a feasible 
solution regarding the claim constraints. We do not consider scheduling dummy operations for operations 
other than the last job on the list that contains the jobs that still need to be scheduled, as there might be 
a feasible position for an operation of a job on the list that was not yet evaluated. Appendix 7 provides a 
pseudo-code of the extended NEH heuristic. 
 

4.7  Improvement heuristics 
Section 4.7.1 elaborates upon two alternative neighborhood structures that we consider as part of the 
improvement heuristics. Besides that, we consider three alternative improvement heuristics for our 
problem. Section 4.7.2 describes a simple improvement heuristic that does not accept worse solutions for 
the purpose to benchmark the performance of other more advanced improvement heuristics. 
Furthermore, following from the literature review in Section 3.5.2, we choose to select simulated 
annealing as a solution alternative as this heuristic shows promising results for HFS problems with 
sequence-dependent changeovers and transportation times between stages (Naderi, Zandieh, Khaleghei, 
& Roshanaei, 2009). Section 4.7.3 elaborates upon the simulated annealing heuristic. 
 
Moreover, Section 4.7.4 describes an extension of the simulated annealing heuristic with tabu lists. We 
consider tabu lists as these can avoid going back and forth between neighbors. This characteristic might 
be beneficial for our problem since the claim constraints can limit the number of possible neighbor 
solutions, which increases the chance of evaluating a neighbor twice. 
 

4.7.1 Neighborhood structures 

This section elaborates upon the neighborhood structures that we consider for our problem. We select 
the following three neighborhood operators from the literature review in Section 3.6: 
 
N1. Swap the operations 𝑜𝑗,𝑟,𝑖 and 𝑜𝑗′,𝑟′,𝑖′  on the same machine 𝑘; 

N2. Move operation 𝑜𝑗,𝑟,𝑖 from position 𝑢 to 𝑣 on the same machine 𝑘; 

N3. Move operation 𝑜𝑗,𝑟,𝑖 from position 𝑢 to 𝑣 from machine 𝑘 to 𝑘′, s.t. 𝑘′ ∈ 𝑀𝑗,𝑟,𝑖, 𝑘′ ≠ 𝑘. 

 
The operators (N1─N3) are commonly used for HFS problems and seem promising. Regarding their 
connectedness, N1 and N2 allow changing an initial sequence of a machine into any other sequence with 
the same operations in a finite number of iterations. Besides that, N3 allows moving operations between 
eligible machines.   



 

47 UNIVERSITY OF TWENTE. 

Nevertheless, these neighborhood operators (N1─N3) cannot change the production route of a job. 
Therefore, we introduce the following neighborhood operator: 
 
N4. Change the production route of job 𝑗 from 𝑟 to 𝑟′, s.t. 𝑟′ ∈ 𝑅𝑗, 𝑟′ ≠ 𝑟. 

 
The operators (N1─N4) require selecting jobs, routes, operations, machines, positions in a sequence, or a 
combination of these. Most papers in the HFS field make these selections randomly and show promising 
results, e.g., the work of Naderi et al. (2009), Karimi et al. (2017), or Al-harkan and Qamhan (2019). We 
also choose to make all selections randomly. 
 
Besides that, we consider two strategies to select neighborhood operators. The first strategy randomly 
selects any of the operators with equal probability. This strategy is commonly applied in the literature, 
e.g., the work of Karimi et al. (2017) or Zhang et al. (2019). The second strategy is inspired by the work of 
Naderi, Zandieh, and Roshanaei (2009) and makes a tradeoff between small operators (N1─N3) to intensify 
the search space, and conversely, a large operator (N4) to diversify the search space. In essence, we first 
intensively search the current search space by using the small neighborhood operators. After having 
searched the current space and the limit on the number of attempts for finding a better solution 
(𝑐𝑜𝑢𝑛𝑡𝑠𝑡𝑜𝑝) is reached, we use the operator N4 to identify a new search space. Appendix 8 describes the 

tuning process of the 𝑐𝑜𝑢𝑛𝑡𝑠𝑡𝑜𝑝 parameter. Based on the results of this tuning process, we choose to set 

𝑐𝑜𝑢𝑛𝑡𝑠𝑡𝑜𝑝 = 5. 

 
All in all, the neighborhood operators (N1─N4) can (i) change for any job its production route, (ii) move 
any operation to any other eligible machine, and (iii) change any initial sequence of operations of a 
machine into any other sequence of operations. Moreover, the strategies for selecting a neighborhood 
operator may only exclude operators for a finite set of iterations. Thus, the neighborhood operator 
selection strategies can select every operator. Therefore, the neighborhood structure is connected as it 
can transform any initial solution into any other solution in a finite set of iterations. 
 

4.7.2 Simple improvement heuristic 

The simple improvement heuristic (SIH) is a basic solution alternative that only accepts better solutions 
than the current solution. Therefore, SIH is not able to escape from local optima. The performance of this 
heuristic allows benchmarking the performance of more advanced improvement heuristics that can 
escape from local optima.  
 
The SIH heuristic starts with an initial solution 𝑆 and sets this solution as the best solution 𝑆∗. SIH generates 
a neighbor solution 𝑆′ from 𝑆∗ and accepts 𝑆′ if 𝐹(𝑆′) < 𝐹(𝑆∗). This process continues until either the 
time limit 𝑡𝑖𝑚𝑒𝑠𝑡𝑜𝑝 is reached or the limit on the number of attempts for finding a better solution 

𝑐𝑜𝑢𝑛𝑡𝑠𝑡𝑜𝑝 is reached. Figure 28 provides a pseudo-code of the SIF heuristic. We set the following values 

for the SIH parameters: 𝑡𝑖𝑚𝑒𝑠𝑡𝑜𝑝 = 150 seconds and 𝑐𝑜𝑢𝑛𝑡𝑠𝑡𝑜𝑝 = 105. 
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4.7.3 Simulated annealing 

Following from the literature review in Section 3.5.2, simulated annealing (SA) always accepts the neighbor 
solution 𝑆′ when it is better than the current solution 𝑆. When the neighbor solution 𝑆′ is worse than the 
current solution 𝑆, SA includes randomness in the acceptance criterion to be able to escape local optima 
(Ruiz & Vázquez-Rodríguez, 2010). In this case, the neighbor solution 𝑆′ is accepted with a probability that 
depends on the difference between the objective values 𝐹(𝑆) and 𝐹(𝑆′), and the progression of the 
heuristic, which is often denoted by the temperature 𝑇. The latter decreases over time with a factor α, 
which is referred to as the cooling factor. Therefore, the acceptance probability decreases over time such 
that it is less likely that SA accepts worse solutions over time. The heuristic stops when 𝑇 ≤ 𝑇𝑠𝑡𝑜𝑝. Finally, 

SA returns the best solution found 𝑆∗. Figure 29 provides pseudo code of SA.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix 9 describes the tuning process of the SA parameters. Based on the results of this tuning process, 
we choose to set the following SA parameter values: 𝑇𝑠𝑡𝑎𝑟𝑡 = 100, 𝑇𝑠𝑡𝑜𝑝 = 0.1, 𝑀𝑎𝑟𝑘𝑜𝑣𝐿𝑒𝑛 = 750, and 

𝛼 = 0.99. 

Simple improvement heuristic (SIH) 

1 Initialize 𝑆∗ ← 𝑆, 𝑐𝑜𝑢𝑛𝑡 ← 0 

2 While Not 𝑡𝑖𝑚𝑒𝑠𝑡𝑜𝑝 and 𝑐𝑜𝑢𝑛𝑡 < 𝑐𝑜𝑢𝑛𝑡𝑠𝑡𝑜𝑝 do 

3      𝑆′ ← GenerateNeighbor(𝑆∗) 
4  If 𝐹(𝑆′) < 𝐹(𝑆∗) then 
5   𝑆∗ ← 𝑆′  
6   𝑐𝑜𝑢𝑛𝑡 ← 0  
7  Else 
8   Increment(𝑐𝑜𝑢𝑛𝑡) 
9  EndIf 

11 End 
12 Return 𝑆∗ 

Simulate annealing 

1 Initialize: 𝑆∗ ← 𝑆, 𝑇 ← 𝑇𝑠𝑡𝑎𝑟𝑡, 𝑇𝑠𝑡𝑜𝑝, 𝑀𝑎𝑟𝑘𝑜𝑣𝐿𝑒𝑛, 𝛼 

2 While 𝑇 > 𝑇𝑠𝑡𝑜𝑝 do 

3      For 𝑘 = 1 to 𝑀𝑎𝑟𝑘𝑜𝑣𝐿𝑒𝑛 do 
4   𝑆′ ← GenerateNeighbor(𝑆) 
5   If 𝐹(𝑆′) < 𝐹(𝑆∗) then 
6    𝑆∗ ← 𝑆′  
7   EndIf 

8   If 𝐹(𝑆′) ≤ 𝐹(𝑆) or exp (−
𝐹(𝑆)−𝐹(𝑆′)

𝑇
) < random(0,1) then 

9    𝑆 ← 𝑆′  
10   EndIf 
11  End 
12  𝑇 ← 𝛼𝑇  
13 End 
14 Return 𝑆∗ 

Figure 28 | Pseudo code simple improvement heuristic  

 

Figure 29 | Simulated annealing pseudo code 
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4.7.4 Simulated annealing with a tabu list 

Following from the literature review in Section 3.5.2, tabu lists have the advantage to avoid going back 
and forth between neighbors. This characteristic might be beneficial for our problem since the claim 
constraints can limit the number of possible neighbor solutions, which increases the chance of evaluating 
a neighbor twice. Moreover, decoding a neighbor solution to obtain the objective value is computationally 
expensive for our problem, so evaluating a neighbor twice can be considered computational waste. 
Therefore, we extend the simulated annealing heuristic as described in Section 4.7.3 with a tabu list. 
 
There are several possible tabu lists, e.g., storing the complete neighbor solutions visited, the objective 
values of the visited solutions, or the neighborhood operations performed. Dauzère-Pérès et al. (2018) 
show the efficiency of a tabu list that stores the recent neighborhood operations performed. Suggesting a 
neighborhood operation occurs before decoding a solution and calculating the objective value, which 
might enhance the computational performance. Moreover, verifying whether a neighborhood operation 
is in the tabu list is less computationally expensive than verifying whether a complete solution is in the 
tabu list. Furthermore, storing the recent neighborhood operations performed can be done efficiently per 
neighborhood operator. Therefore, we opt for a tabu list that stores the recent neighborhood operations 
performed. However, a possible drawback of this might be that a neighbor solution that has never been 
visited gets rejected by the tabu list since the neighborhood operator is in the tabu list. We choose not to 
use aspiration criteria to avoid this issue, since such aspiration criteria require storing the complete 
neighbor solution, which increases the computational time.  
 
We choose to have a tabu list for each neighborhood operator since this allows to set the length of the 
tabu list per operator and it is computationally more efficient since it is possible to immediately select the 
list of tabu neighborhood operators that are applicable. The tabu lists that we consider are as follows: 
 
N1. Swap 𝑜𝑗,𝑟,𝑖 with 𝑜𝑗′,𝑟′,𝑖′  on the same machine:     Swap.Add(𝑜𝑗′,𝑟′,𝑖′ ; 𝑜𝑗,𝑟,𝑖); 

N2. Move 𝑜𝑗,𝑟,𝑖 on the same machine 𝑘 from position 𝑢 to 𝑣:   Move.Add(𝑜𝑗,𝑟,𝑖;  𝑘;  𝑢); 

N3. Move 𝑜𝑗,𝑟,𝑖 from machine 𝑘 to 𝑘′ from position 𝑢 to 𝑣, s.t. 𝑘′ ∈ 𝑀𝑗,𝑟,𝑖 , 𝑘′ ≠ 𝑘: Move.Add(𝑜𝑗,𝑟,𝑖;  𝑘;  𝑢 ); 

N4. Change the production route of job 𝑗 from 𝑟 to 𝑟′, s.t. 𝑟′ ∈ 𝑅𝑗, 𝑟′ ≠ 𝑟: Change.Add(𝑗; 𝑟). 

 
Note that three tabu lists are sufficient, as the move operations can be stored in one tabu list. Besides 
that, note that the stored operations are the reversal of the executed operations. 
 
Appendix 10 describes the tuning process of the length for each tabu list. Based on the results of this tuning 
process, we choose to set the length of the swap and move tabu lists at 75 and the length of the change 
production route tabu list at 50. Note that the length of the change production route tabu list is lower than 
the length of the swap and move tabu lists. This might be due to the limited number of neighbors for the 
change route operator compared to the other operators. 
 

4.8  Summary of the model alternatives 
The main goal of this chapter is to answer the third research question: Which alternative models are 
suitable to solve the scheduling problem of Euroma? To answer this question, we describe the assumptions 
in Section 4.1. Section 4.2 first outlines the decisions of the problem that the model needs to consider. The 
main difference between our problem and HFS problems in the literature is that our problem considers 
multiple eligible production routes per job, whereas problems in the literature generally consider a single 
production route per job. Besides that, this section describes how we combine the maintenance jobs with 
the regular production jobs during scheduling. Moreover, this section explains the claim constraints. 
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Section 4.3 explains a decoding algorithm that determines the start- and finish time of every operation. 
This decoding algorithm takes into account the following characteristics and constraints: 
 

• Operations of a job cannot overlap and need to produce in a predetermined sequence; 

• A pair of consecutive operations of a job incurs a transportation time between two machines; 

• Jobs should not start earlier than their release time; 

• Machines can only produce one operation at a time and there might be a sequence-dependent 
cleaning time between a pair of consecutive operations on the same machine; 

• Preemption of operations on machines is not allowed; 

• A machine cannot produce during one of its production-stops; 

• The new schedule should comply with the previous schedule. 
 
Section 4.4 describes a corrective backtracking algorithm that ensures a maximum number of machine 
cleanings at the same time due to limited operator availability. In essence, this algorithm computes the 
number of machine cleanings at any time a cleaning starts and finishes. In the case that the number of 
allowed machine cleanings is exceeded, the algorithm postpones the machine cleaning that was last added 
to the list such that this constraint is satisfied. 
 

Section 4.5 explains why we select the objective function 𝑀𝑖𝑛 𝑓𝑤(𝐶𝑚𝑎𝑥, 𝐶𝑇𝑡𝑜𝑡, 𝑇𝑡𝑜𝑡, 𝐹𝑇𝑡𝑜𝑡 , 𝐼𝐵𝐶𝑝𝑒𝑛𝑎𝑙𝑡𝑦), 

which minimizes the sum of the five weighted objectives. The drawback of this method is that it is difficult 
to determine the weights. 
 
Section 4.6 describes two alternative construction heuristics for our problem. At first, this section 
describes a construction heuristic that randomly generates an initial solution for the purpose to 
benchmark the performance of the improvement heuristics. Second, this section elaborates upon the NEH 
construction heuristic that Nawaz et al. (1983) propose and that Ruiz et al. (2008) extend for the HFS 
problem. We extend both construction heuristics such that they always generate feasible solutions 
regarding the sequencing constraints (e.g., the claim constraints). Only the limited IBC-capacity might not 
be satisfied, as exceeding the IBC-capacity is a soft constraint that is penalized in the objective function. 
 
Section 4.7 first describes three common neighborhood operators for HFS problems. We introduce a new 
neighborhood operator that can change the production route of a job. Moreover, this section describes 
two alternative neighborhood structures. The first neighborhood structure randomly selects any of the 
operators with equal probability. The second neighborhood structure makes a tradeoff between small 
operators to intensify the search space, and conversely a large operator to diversify the search space. 
 
Besides that, this section describes three alternative improvement heuristics for our problem. At first, a 
simple improvement heuristic that does not accept worse solutions for the purpose to benchmark the 
performance of other more advanced improvement heuristics. Furthermore, we choose to select 
simulated annealing as a solution alternative as this heuristic shows promising results for HFS problems 
with sequence-dependent changeovers and transportation times between stages (Naderi, Zandieh, 
Khaleghei, & Roshanaei, 2009). Furthermore, following from the literature review, tabu lists have the 
advantage to avoid going back and forth between neighbors. This characteristic might be beneficial for our 
problem since the claim constraints can limit the number of possible neighbor solutions, which increases 
the chance of evaluating a neighbor twice. Moreover, decoding a neighbor solution to obtain the objective 
value is very computationally expensive for our problem, so evaluating a neighbor twice can be considered 
computational waste. Therefore, we extend the simulated annealing heuristic with the tabu list property.  



 

51 UNIVERSITY OF TWENTE. 

5. Experiments 
The main goal of this chapter is to answer the third research question: 
 
“Which alternative solution approach performs best compared to the current situation under different 

experimental settings?” 
 
To achieve this, Section 5.1 describes the problem instances of the company data that we use for the 
experiments. At first, we aim to identify the most promising model configuration (i.e., the construction- 
and improvement heuristics including the corresponding parameter sets that result in the best solutions 
according to the objective function). Section 5.2 describes the experimental design to identify the most 
promising model configuration among the possible model configuration alternatives (see Chapter 4). 
Second, Section 5.2 describes the experimental design to compare the performance of the selected model 
with the simulated performance of the current situation. 
 
Regarding the experimental results, Section 5.3 provides the results of the different model configurations 
and Section 5.4 provides the results of the comparison between the performance of the selected model 
with the simulated performance of the current situation. Finally, Section 5.4 evaluates the performance of 
a simple version of the model after implementation in practice. 
 

5.1  Problem instances 
This section provides a summary of the problem instances that are extracted from the company data in 
2021 that we use for the experiments. At first, the data of Euroma currently lacks the eligible production 
routes per job. Therefore, Appendix 12 explains how we obtain the eligible production routes per job 
based on historical data. Appendix 13 describes how we obtain the processing times of jobs on machines. 
Furthermore, Euroma currently lacks a contamination matrix. Hence, Appendix 14 describes the 
configuration of the contamination matrix based on data and results from the laboratory.  
 
As Euroma aims to grow its production demand, the model should be able to cope with different demand 
volumes. Therefore, we consider problem instances with low, normal, and high demand. Table 14 provides 
the instance-specific job information, of which the standard deviation is reported between brackets.  
 
Table 14 | Instance-specific job information 

Instance Demand Jobs 
Routes 
per job 

Operations 
per route 

Machines per 
operation 

Processing 
time 

IBCs 
replenish 

IBCs 
discharge 

Release 
dates 

Due 
dates 

1  Low 207 3.4 (1.9) 2.5 (0.6) 2.2 (1.5) 90.0 (44.1) 2.2 (1.2) 1.7 (1.4) 6 10 

2 Low 197 3.6 (2.0) 2.6 (0.6) 2.1 (1.5) 87.1 (46.2) 2.2 (1.3) 1.8 (1.5) 8 8 

3 Normal 305 3.8 (2.0) 2.6 (0.5) 2.1 (1.5) 85.6 (43.6) 2.1 (1.2) 1.7 (1.3) 9 8 

4 Normal 302 3.3 (2.0) 2.6 (0.6) 2.1 (1.5) 85.0 (47.3) 2.1 (1.2) 1.7 (1.4) 16 10 

5 High 403 3.6 (2.0) 2.6 (0.6) 2.1 (1.5) 86.1 (46.4) 2.1 (1.2) 1.7 (1.4) 10 11 

6 High 404 3.6 (2.0) 2.6 (0.5) 2.1 (1.5) 84.3 (45.5) 2.0 (1.2) 1.6 (1.3) 14 15 

 
The low demand instances 1 and 2 are based on 70% of randomly selected production jobs of the company 
data from weeks 16 and 17, respectively. The normal demand instances 3 and 4 are extracted from the 
company data from weeks 18 and 19, respectively. The high demand instance 5 includes all production 
jobs of week 20 and 30% of randomly selected jobs of week 19. Instance 6 includes all production jobs of 
week 21 and 30% of randomly selected jobs of week 20.  
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Furthermore, Table 16 provides the cleaning time distribution per instance. Moreover, Table 15 provides 
the percentages of jobs that are certified, suitable, and non-suitable for a claim. 
 
 

  Cleaning duration (minutes) 

Instance 0 10 30 45 75 150 

1 32.7% 3.8% 45.9% 0.5% 11.6% 5.5% 

2 38.4% 6.1% 39.7% 0.8% 11.4% 3.6% 

3 38.2% 7.5% 37.0% 1.0% 13.2% 3.2% 

4 35.5% 6.7% 42.1% 0.8% 12.1% 2.8% 

5 34.9% 5.3% 41.9% 0.7% 14.5% 2.9% 

6 37.1% 8.2% 38.1% 0.7% 13.3% 2.6% 

 
Recall that the new schedule must comply with the previous schedule as the factory is producing 

continuously (see Section 2.2.2). Also, recall that we denote Π𝑘
𝑃𝑟𝑒𝑣 as the previous sequence of jobs on 

machine 𝑘 and 𝑓𝑘
𝑃𝑟𝑒𝑣 as the finish time of Π𝑘

𝑃𝑟𝑒𝑣. The claim constraints require that the first two jobs in 

the sequence of machine 𝑘 should comply with the last two jobs of the previous sequence Π𝑘
𝑃𝑟𝑒𝑣 of 

machine 𝑘. Therefore, we set the last two jobs of machine 𝑘 of the previous week of the data instance as 

Π𝑘
𝑃𝑟𝑒𝑣, and 𝑓𝑘

𝑃𝑟𝑒𝑣 as the finish time of the last job on machine 𝑘. Moreover, we set 𝐼𝐵𝐶𝑝𝑟𝑒𝑣 = 10, which 

is the average number of IBCs in cleaning at the time 𝑚𝑎𝑥𝑘∈𝑀{𝑓𝑘
𝑃𝑟𝑒𝑣}, which is extracted from the ESA 

IBC-log over the period 05-01-2020 until 30-04-2021. 
 

Recall that 𝑚𝑎𝑥𝑡
𝑐𝑙𝑒𝑎𝑛 is the maximum allowed number of mixer cleanings at time 𝑡 ∈ 𝑇. For every problem 

instance, we set 𝑚𝑎𝑥𝑡
𝑐𝑙𝑒𝑎𝑛 at 4 for all 𝑡 ∈ 𝑇. Moreover, we set 𝑚𝑎𝑥𝐼𝐵𝐶  at 60, which is the maximum 

allowed number of IBCs needed (i.e., in production and cleaning) at any time. 
 
As there was no maintenance on the machines in the weeks 16-21 of 2021, we do not add extra 
maintenance jobs. Moreover, as there currently is a production backlog, there were no production-stops 
on any of the machines in weeks 16-21. Therefore, we also do not consider production-stops. 
 
We set 𝑡𝑟𝑎𝑛𝑠𝑝𝑘,𝑘′, which is the time to transport an IBC or a big bag between any two machines 𝑘 ∈ 𝑀𝑗,𝑟,𝑖 

and 𝑘′ ∈ 𝑀𝑗,𝑟,𝑖+1 at 15 minutes. Furthermore, we set the time to fill a machine with one IBC at 

𝑓𝑖𝑙𝑙𝑡𝑖𝑚𝑒𝑘
𝐼𝐵𝐶 = 15 minutes for all 𝑘 ∈ 𝑀. Moreover, we set for each of the two IBC-cleaning stations a 

cleaning time of 𝑐𝑙𝑒𝑎𝑛𝑖𝑛𝑔𝐼𝐵𝐶 = 16 minutes per IBC. The data instances are validated by the process 
engineer, production manager, and the business analyst of Euroma. According to these experts, the data 
instances provide a good representation of reality. 
 

5.2  Experimental design 
This section describes the experimental design, experimental settings, and the KPIs to evaluate the 
performance of the models. At first, we aim to identify the most promising model configuration (i.e., the 
construction- and improvement heuristics including the corresponding parameter sets that result in the 
best solutions according to the objective function). Section 5.2.1 describes the experimental design to 
identify the most promising model configuration. Section 5.2.2 describes the experimental design to 
compare the performance of the selected model with the simulated performance of the current situation. 
This section also describes the experiment to evaluate a simple version of the model in practice.  
  

 

 % Of jobs with claim values 

Instance Certified Suitable Non-suitable 

1 9.2% 71.0% 19.8% 

2 8.4% 76.6% 15.0% 

3 5.1% 73.3% 21.6% 

4 8.6% 73.8% 17.5% 

5 8.1% 69.6% 22.3% 

6 6.2% 72.0% 21.8% 

Table 16 | Instance-specific cleaning duration information Table 15 | Instance-specific claim information 
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We implement all experiments in Delphi 10.3 on a Windows machine equipped with an Intel Hexa-Core 
4.1GHz processor and 16GB of RAM. 
 

5.2.1 Experiments on the alternative model configurations 

This section provides the experimental design to identify the most promising model configuration. Recall 
that Section 4.5 describes why we consider the five objectives 𝐶𝑚𝑎𝑥, 𝑇𝑡𝑜𝑡, 𝐶𝑇𝑡𝑜𝑡, 𝐹𝑇𝑡𝑜𝑡 and 𝐼𝐵𝐶𝑝𝑒𝑛𝑎𝑙𝑡𝑦. 

Also, recall that we select the objective function 𝑀𝑖𝑛 𝑓𝑤, which minimizes the sum of the five weighted 
objectives. Experiment 1, which we refer to as Exp1, describes how we obtain the weight set of 𝑓𝑤. Exp2 
evaluates the performance of the alternative model configurations. 
 
Experiment 1 | Objective weight tuning 
This experiment tunes the weights of the five objectives to identify which weight set is most suitable for 
Euroma. We use the Pareto-optimal method with an a posteriori approach (as described in Section 3.4) in 
which we iteratively tune the weight set with experts from Euroma.  
 
In this experiment, we select the heuristics NEH and simulated annealing (SA) to solve problem instance 
3. This instance has 305 jobs, which corresponds with the current demand of Euroma, as described in 
Section 1.2. The neighborhood structure of SA in these experiments consists of the four neighborhood 
operators (N1─N4) which are selected randomly, as described in Section 4.7.1. Appendix 9 describes the 
tuning process of the SA parameters. Based on the results of this tuning process, we choose to set the 
following SA parameter values: 𝑇𝑠𝑡𝑎𝑟𝑡 = 100, 𝑇𝑠𝑡𝑜𝑝 = 0.1, 𝑀𝑎𝑟𝑘𝑜𝑣𝐿𝑒𝑛 = 750, and 𝛼 = 0.99. 

 
To tune the weight sets, we start with a set that results in decent quality solutions. We use a dashboard 
(see Section 6.2) to evaluate the quality of the solutions by reviewing the KPIs 𝐶𝑚𝑎𝑥, 𝑇𝑡𝑜𝑡, 𝐶𝑇𝑡𝑜𝑡, the 
average buffer time of a job (𝐵𝑇𝑎𝑣𝑔), and the maximum number of IBCs needed (𝐼𝐵𝐶𝑚𝑎𝑥). We also report 

the number of feasible solutions regarding the IBC-capacity constraint. Based on these results, we 
determine together with Euroma the next weight set to evaluate. For each set, we conduct 10 replications 
(i.e., solving every scenario 10 times with the same parameter settings to provide statistically significant 
results). We choose to perform 10 replications as this results in a total CPU time of 6 hours for this 
experiment, which fits in a regular working day. We perform these replications for two reasons (i) due to 
the randomness of the heuristics and (ii) to obtain the variability of the single objective values in the 
weighted objective function.  
 
We select a suitable weight set and evaluate this set for all problem instances. Subsequently, we fix this 
set for the remaining experiments. Fixing the weight set is necessary to be able to construct good solutions 
without human interaction, since the planners are not available continuously to run and tune the model.  
 
Experiment 2 | Evaluating the alternative model configurations 
This experiment evaluates the performance of the alternative model configurations that each consist of (i) 
a construction heuristic, (ii) a neighborhood structure, and (iii) an improvement heuristic. Regarding the 
construction heuristics, we consider the random construction heuristic (RCH) for the purpose to 
benchmark the performance of the improvement heuristics, and the NEH construction heuristic (NEH).  
We consider two neighborhood structures, as described in Section 4.7.1. One neighborhood structure 
selects the four neighborhood operators (N1 ─ N4) randomly, whereas the other neighborhood structure 
uses a strategy to select neighborhood operators. Section 4.7.1 describes the parameter values of the 
neighborhood structures. We refer to the random neighborhood structure as RN and to the neighborhood 
structure that uses a strategy as SN. 
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Regarding the improvement heuristics, we consider the simple improvement heuristic (SIH), simulated 
annealing (SA), and SA with tabu lists (SATL), as described in Section 4.7. Recall that the SIH heuristic only 
accepts better solutions than the current solution. Therefore, SIH is not able to escape from local optima. 
The performance of this heuristic allows benchmarking the performance of SA and SATL, which can escape 
from local optima. The parameter values of the improvement heuristics are described in Section 4.7.  
 
For each model configuration that consist of (i) a construction heuristic, (ii) a neighborhood structure, and 
(iii) an improvement heuristic, this experiment conducts 10 replications for each problem instance and 
reports the KPIs. We also report the objective values, the number of feasible solutions regarding the IBC-
capacity constraint, and the computational time in seconds (CPU). After evaluating the performance of the 
model configurations, we select the configuration that provides good quality solutions regarding the 
objective function in short computational times for the remaining experiments.  
 

5.2.2 Experiments to evaluate the impact of the model 

This section provides the experimental design of the experiments Exp3 ─ Exp6 to evaluate the performance 
of the model compared to the current situation.  
 
Experiment 3 | Evaluate the effect of optimizing the schedules of the stages simultaneously 
This experiment evaluates the effect of optimizing all stages simultaneously compared to the current 
situation of Euroma, which optimizes the schedules separately. Recall that Euroma currently first optimizes 
the mixing schedule to minimize both 𝐶𝑇𝑡𝑜𝑡 and 𝑇𝑡𝑜𝑡, as described in Section 1.3.1. Subsequently, ESA 
allocates the IBC-filling operations to the first IBC-filling station that becomes available, without changing 
the relative order of operations in the mixing schedule, as described in Section 2.3.2. In essence, ESA 
minimizes the flowtime 𝐹𝑇𝑡𝑜𝑡. After that, the discharging schedule is optimized by minimizing the 𝐶𝑇𝑡𝑜𝑡, 
𝑇𝑡𝑜𝑡, and 𝐹𝑇𝑡𝑜𝑡, without changing the mixing schedule. During this process, the production routes of the 
jobs remain unchanged. 
 
We simulate the current scheduling process of Euroma by only considering the default production routes 
and by scheduling in the following order: 
 

1. Optimize the mixing schedule by minimizing 𝐶𝑇𝑡𝑜𝑡, 𝑇𝑡𝑜𝑡; 
2. Optimize the IBC-filling schedule by minimizing 𝐹𝑇𝑡𝑜𝑡, without changing the relative order of 

operations in the mixing schedule; 
3. Optimize the discharging schedule by minimizing 𝐶𝑇𝑡𝑜𝑡, 𝑇𝑡𝑜𝑡, and 𝐹𝑇𝑡𝑜𝑡, without changing the 

relative order of operations in the IBC-filling- and mixing schedules. 
 
For each scheduling step, we use the selected model configuration to generate the schedule that 
corresponds to that step. We simulate the simultaneous optimization of all three stages by using the 
selected model configuration, without changing the default production routes. For each problem instance, 
this experiment conducts 25 replications and reports the KPIs for both the separate- and the simultaneous 
optimization of the stages. For the remaining experiments, we choose to perform 25 replications instead 
of the 10 replications as performed in Exp1 and Exp2, since we aim to obtain more statistically significant 
results to evaluate the impact of the model. 
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Experiment 4 | Evaluate the effect of changing the production routes 
The model allows changing the production routes of jobs. This experiment evaluates the effect of the 
ability to change the production routes compared to the current situation of Euroma, which only considers 
the default production routes. We consider two scenarios that allow (i) only the default production route 
and (ii) changing the production route to any other eligible route. For both scenarios and each problem 
instance, this experiment conducts 25 replications and reports the KPIs. 
 
Experiment 5 | Compare the performance of the current situation to the performance of the model 
This experiment compares the performance of the current situation of Euroma to the performance of the 
selected model. To achieve this, we first simulate the current scheduling process of Euroma, as described 
in EXP3. We compare this performance to the performance of the model that can optimize all stages 
simultaneously and can change the production routes of the jobs. For both scenarios and each problem 
instance, this experiment conducts 25 replications and reports the KPIs. 
 
Experiment 6 | Evaluate the performance of a simple version of the model in practice 
To evaluate the performance of the model in practice, we implement a simple version of the model in 
practice to optimize the mixing schedule by minimizing 𝐶𝑇𝑡𝑜𝑡 and 𝑇𝑡𝑜𝑡. This model only considers the 
default production routes. The model uses the NEH and SA heuristics with only the move and swap 
operators (N1 and N2), which are selected randomly. The parameters of SA are described in Appendix 9. 
Essentially, this model replaces the need for the production manager to create the mixing schedules. 
 
This experiment evaluates the performance in practice of the model that only optimizes the mixing 
schedule compared to the current situation. To achieve this, the model generates a mixing schedule for 
each week for 20 consecutive weeks. The mixing department produces according to these mixing 
schedules. Unfortunately, the 𝐶𝑇𝑡𝑜𝑡 and 𝑇𝑡𝑜𝑡 are not registered in practice. Therefore, it is only possible to 
report the 𝑇𝑡𝑜𝑡 of the model solutions and the 𝐶𝑇𝑡𝑜𝑡 based on the contamination matrix. We compare 
these results to the period before implementing the model. 
 

5.3  Results of the alternative model configurations 
This section provides the experimental results of the different model configurations, as described in 
Section 5.2.1. Regarding the experimental results, Section 5.3.1 provides the results of Exp1 on the 
objective weight tuning and Section 5.3.2 provides the results of Exp2 on the alternative model 
configurations.  egarding the results, the timestamps have the format “d:hh:mm:ss”. 
 

5.3.1 Results of the objective weight tuning 

This section provides the results of the objective weight tuning, as described in Section 5.2.1. At first, Exp1 
tunes the weight set of the objective function by using problem instance 3. Based on these results, we 
select a suitable weight set. Subsequently, we evaluate this weight set for all problem instances. 
 
Experiment 1 | Objective weight tuning 

This experiment tunes the weights of the objective function 𝑀𝑖𝑛 𝑓𝑤(𝐶𝑚𝑎𝑥, 𝑇𝑡𝑜𝑡, 𝐶𝑇𝑡𝑜𝑡 , 𝐹𝑇𝑡𝑜𝑡 , 𝐼𝐵𝐶𝑝𝑒𝑛𝑎𝑙𝑡𝑦) 

to identify which weight set is most suitable for Euroma. We use the Pareto-optimal method with an a 
posteriori approach in which we iteratively tune the weight set with experts from Euroma, as described in 

Section 5.2.1. Table 17 provides the weight sets {𝑤𝐶𝑚𝑎𝑥
, 𝑤𝑇𝑡𝑜𝑡

, 𝑤𝐶𝑇𝑡𝑜𝑡
, 𝑤𝐹𝑇𝑡𝑜𝑡

, 𝑤𝐼𝐵𝐶𝑝𝑒𝑛𝑎𝑙𝑡𝑦
} per scenario 

including the resulting KPIs of instance 3, of which the standard deviation is reported between brackets. 
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Table 17 | Objective weight set tuning results 

Scn 𝒘𝑪𝒎𝒂𝒙
 𝒘𝑻𝒕𝒐𝒕

 𝒘𝑪𝑻𝒕𝒐𝒕
 𝒘𝑭𝑻𝒕𝒐𝒕

 𝒘𝑰𝑩𝑪 𝑪𝒎𝒂𝒙 𝑻𝒕𝒐𝒕 𝑪𝑻𝒕𝒐𝒕 𝑩𝑻𝒂𝒗𝒈 𝑰𝑩𝑪𝒎𝒂𝒙 Feasible CPU 

1 13% 14% 13% 30% 30% 5:05:17:00 
(2:44:27) 

0 7:01:41:00 
(2:42:08) 

3:13:36 
(18:05) 

45.6 
(2.9) 

100% 146.9 
(0.8) 

2 12% 14% 14% 30% 30% 5:04:18:00 
(4:33:16) 

0 6:16:43:00 
(3:57:47) 

3:34:34 
(22:18) 

47.8 
(4.0) 

100% 152.7 
(11.6) 

3 11% 14% 15% 30% 30% 5:08:25:00 
(3:14:07) 

0 6:18:41:00 
(2:59:04) 

3:34:29 
(8:20) 

50.4 
(5.5) 

100% 142.6 
(1.0) 

4 14% 14% 12% 30% 30% 5:05:09:00 
(2:12:09) 

0 7:02:16:00 
(6:46:09) 

3:10:16 
(26:29) 

47.2 
(4.3) 

100% 146.6 
(8.0) 

5 15% 14% 11% 30% 30% 5:03:39:00 
(2:59:54) 

0 7:07:02:00 
(5:58:28) 

3:28:46 
(33:16) 

44.8 
(2.3) 

100% 143.1 
(3.6) 

6 16% 14% 10% 30% 30% 5:04:42:00 
(2:36:28) 

0 7:08:41:00 
(4:54:04) 

2:58:16 
(19:06) 

48.2 
(2.8) 

100% 158.9 
(6.6) 

7 12% 14% 12% 32% 30% 5:07:27:00 
(3:23:40) 

0 6:23:47:00 
(6:05:47) 

3:00:20 
(27:43) 

45.8 
(5.6) 

100% 147.1 
(6.7) 

8 14% 14% 14% 28% 30% 5:03:15:00 
(2:28:27) 

0 6:15:19:00 
(4:46:55) 

3:28:15 
(17:53) 

48.4 
(2.2) 

100% 154.1 
(1.1) 

9 15% 14% 15% 26% 30% 5:03:37:00 
(2:07:33) 

0 6:18:54:00 
(4:41:06) 

4:04:58 
(30:15) 

53.2 
(3.6) 

100% 155.1 
(6.8) 

10 12% 14% 12% 30% 32% 5:05:48:00 
(2:37:24) 

0 6:23:38:00 
(3:04:17) 

3:24:14 
(14:15) 

46.5 
(2.1) 

100% 145.5 
(1.1) 

11 14% 14% 14% 30% 28% 5:05:25:00 
(2:43:55) 

0 7:01:13:00 
(2:56:48) 

3:15:52 
(15:35) 

45.9 
(1.6) 

100% 148.2 
(2.5) 

12 15% 14% 15% 30% 26% 5:05:56:00 
(2:14:12) 

0 7:00:18:00 
(2:45:51) 

3:33:26 
(19:13) 

47.2 
(3.1) 

100% 147.4 
(1.6) 

 

Following from Table 17, the results of the weight set scenarios are as follows: 
 

• Scenarios 1-3 shift the weight from 𝑤𝐶𝑚𝑎𝑥
 to 𝑤𝐶𝑇𝑡𝑜𝑡

, resulting in a higher 𝐶𝑚𝑎𝑥 and a lower 𝐶𝑇𝑡𝑜𝑡; 

• Scenarios 4-6 shift the weight from 𝑤𝐶𝑇𝑡𝑜𝑡
 to 𝑤𝐶𝑚𝑎𝑥

, resulting in a higher 𝐶𝑇𝑡𝑜𝑡 and a lower 𝐶𝑚𝑎𝑥; 

• Scenarios 7-9 shift the weight from 𝑤𝐹𝑇𝑡𝑜𝑡
 to both 𝑤𝐶𝑚𝑎𝑥

 and 𝑤𝐶𝑇𝑡𝑜𝑡
, resulting in a higher 𝐵𝑇𝑎𝑣𝑔 

and a lower 𝐶𝑚𝑎𝑥 and 𝐶𝑇𝑡𝑜𝑡; 

• Scenarios 10-12 shift the weight from 𝑤𝐼𝐵𝐶  to both 𝑤𝐶𝑚𝑎𝑥
 and 𝑤𝐶𝑇𝑡𝑜𝑡

, resulting in similar results 

as scenario 1. This is logical since the 𝐼𝐵𝐶𝑝𝑒𝑛𝑎𝑙𝑡𝑦 only gets a value once the IBC-capacity is 

exceeded. For this instance, the IBC-capacity is not exceeded as all solutions are feasible. 
Therefore, scenarios 1 and 10-12 show similar results. 

 
From the results in Table 17, we choose to select the weight set {14%, 14%, 14%, 28%, 30%} of scenario 
8. This weight set results in a low 𝐶𝑚𝑎𝑥 and 𝐶𝑇𝑡𝑜𝑡, while still having an 𝐼𝐵𝐶𝑚𝑎𝑥 that does not get too close 
to the IBC-capacity. An 𝐼𝐵𝐶𝑚𝑎𝑥 that is close to the IBC-capacity might result in infeasible solutions for 
other problem instances. 
 
Next, we evaluate whether the selected weight set is appropriate for all other problem instances. Appendix 
15 provides the results of 10 replications per problem instance. These results show that the selected 
weight set provides feasible solutions for all problem instances over all replications. Therefore, we select 
this weight set for the remaining experiments. 
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5.3.2 Evaluating the alternative model configurations  

This section provides the experimental results of the alternative model configurations, as described in 
Section 5.2.1. Based on these results, we select the configuration that provides good quality solutions 
regarding the objective function in short computational times for the remaining experiments.  
 
Experiment 2 | Results of the alternative model configurations 
Recall that a model configuration consists of (i) a construction heuristic, (ii) a neighborhood structure, and 
(iii) an improvement heuristic. Table 18 provides the experimental results of the KPIs for each model 
configuration over all problem instances, sorted based on the average improvement heuristic objective 
value in ascending order. In the column that reports the objective values (Obj), the first value corresponds 
with the construction heuristic and the second value with the improvement heuristic. The standard 
deviations are reported between brackets. Note that the standard deviations are relatively high due to the 
variability in the demand of the problem instances. Appendix 16 contains the detailed results per instance. 
 
Table 18 | Model configuration performance results 

Configuration Obj 𝑪𝒎𝒂𝒙 𝑻𝒕𝒐𝒕 𝑪𝑻𝒕𝒐𝒕 𝑩𝑻𝒂𝒗𝒈 𝑰𝑩𝑪𝒎𝒂𝒙 Feasible CPU 

NEH, SA, RN 21843 
7064 

5:01:50:48 
(1:03:50:54) 

0 6:08:17:25 
(2:11:27:40) 

3:28:18 
(1:00:25) 

47.8  
(5.6) 

100% 135.5 
(42.7) 

RCH, SA, RN 69658 
7076 

5:02:36:04 
(1:04:11:25) 

0 6:08:34:20 
(2:11:08:05) 

3:29:12 
(56:35) 

47.8  
(5.9) 

97% 131.2 
(40.3) 

NEH, SA, SN 21709 
7076 

5:02:38:37 
(1:03:33:46) 

0 6:08:24:20 
(2:10:36:16) 

3:29:29 
(57:31) 

47.7  
(6.1) 

97% 145.0 
(42.1) 

RCH, SA, SN 69872 
7079 

5:02:10:54 
(1:03:52:54) 

0 6:09:13:00 
(2:10:43:07) 

3:30:36 
(54:32) 

48.5  
(5.7) 

97% 146.4 
(41.6) 

RCH, SATL, RN 71334 
7209 

5:03:36:23 
(1:03:46:33) 

0 6:12:36:50 
(2:12:17:49) 

3:43:43 
(1:03:19) 

49.0  
(7.3) 

95% 115.3 
(35.9) 

NEH, SATL, RN 22012 
7284 

5:04:36:00 
(1:03:51:45) 

0 6:14:36:05 
(2:12:56:10) 

3:47:47 
(1:01:27) 

49.6  
(6.8) 

92% 120.6 
(37.9) 

RCH, SATL, SN 70845 
7468 

5:01:48:20 
(1:02:56:57) 

0 6:17:03:55 
(2:12:32:23) 

5:04:38 
(1:11:07) 

57.5  
(7.0) 

68% 116.0 
(44.4) 

NEH, SATL, SN 21991 
7505 

5:02:17:42 
(1:03:22:22) 

0 6:18:52:00 
(2:12:25:57) 

5:04:03 
(1:12:51) 

57.3  
(8.1) 

63% 131.4 
(29.1) 

NEH, SIH, RN 21388 
21385 

7:07:22:42 
(1:18:58:20) 

21:09:51:27 
(8:17:14:05) 

9:09:30:55 
(2:06:18:36) 

1:02:10:23 
(6:20:18) 

175.5 
(47.8) 

0% 15.7 
(6.6) 

NEH, SIH, SN 21530 
21528 

7:10:27:03 
(1:21:51:27) 

21:10:04:51 
(8:01:01:03) 

9:07:22:55 
(2:02:54:38) 

1:03:10:00 
(6:41:29) 

173.3 
(50.3) 

0% 17.3 
(7.5) 

RCH, SIH, SN 69669 
65892 

16:17:34:47 
(5:06:52:10) 

69:16:33:10 
(43:07:52:55) 

17:22:09:10 
(4:21:08:18) 

6:09:06:19 
(1:22:25:29) 

508.3 
(134.6) 

0% 150.0 
(0.0) 

RCH, SIH, RN 70166 
68069 

16:22:29:33 
(5:11:25:39) 

75:02:47:50 
(46:16:45:08) 

18:02:09:20 
(4:20:08:22) 

6:10:49:50 
(1:23:16:23) 

513.0 
(138.3) 

0% 146.9 
(18.8) 

 
Following from the results in Table 18, we observe the following: 
 

• The NEH construction heuristic outperforms the RCH. Nevertheless, the initial solution seems to 
have no influence on the final objective value for the improvement heuristics SA and SATL. This 
indicates that SA and SATL both have a good improvement ability, regardless of the initial solution.  

• Recall that both SA and SATL can escape from local optima and SIH cannot escape from local 
optima. The results show that both SA and SATL outperform SIH. This indicates that the 
improvement heuristic should be able to escape from local optima to obtain good solutions. 
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• The results show that SA obtains more feasible 
solutions than SATL regarding the IBC-capacity 
constraint. The SIH heuristic is not able to obtain 
feasible solutions. 

• The results indicate that SA outperforms SATL 
regarding the objective. A possible explanation of this 
might be that SATL could reject neighbors that have 
never been visited since the neighborhood operator is 
in the tabu list. Therefore, SATL might not be able to 
escape its local optimum. 

• The results indicate that selecting neighborhood 
operators randomly results in better solutions for the 
SATL heuristic than using a strategy to select 
neighborhood operators. 

 
The results indicate that the configuration (NEH, SA, RN) results 
in the best average objective value while still obtaining 100% 
feasibility. Moreover, we observe from Figure 30 that there is 
relatively low variation in the objective value per problem 
instance over the 25 replications. This indicates that the model 
consistently generates good solutions. Therefore, we select this 
configuration for the remaining experiments. 
 

5.4  Results on the impact of the model 
This section provides the results on the impact of the model on the current situation, as described in the 
experimental design in Section 5.2.2. Section 5.4.1 provides the simulated results of (Exp3 – Exp5) on the 
impact of the model compared to the current situation. Section 5.4.2 provides the results of Exp6 on the 
impact of a simple version of the model in practice after implementation. Regarding the results, the 
timestamps have the format “d:hh:mm:ss”. 
 

5.4.1 Simulated results on the impact of the model 

This section provides the simulated results of (Exp3 – Exp5) on the impact of the model compared to the 
current situation. The symbols (↑) and (↓) indicate a significant increase or decrease of the KPI with an 
alpha of 0.01, respectively. The absence of these symbols indicates no significant difference. The colors 
green and red represent a better and worse performance, respectively. 
 
Experiment 3 | Evaluating the effect of optimizing the schedules of the stages simultaneously 
Recall that Exp3 evaluates the effect of (i) optimizing the schedules of the stages simultaneously compared 
to (ii) the current situation, which optimizes the stages separately. We refer to the former as 
“Simultaneous optimization” and to the latter as “Current situation”. For both scenarios, the production 
routes of the jobs remain at the default route. Table 19 provides the experimental results of the KPIs per 
demand level for both scenarios. The standard deviation of the KPIs is reported between brackets. The 
detailed results per problem instance are in Appendix 17. 
  

Figure 30 | Objective value per 
problem instance over 25 
replications (NEH, SA, RN) 
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Table 19 | Results of the comparison between scheduling the stages separately and simultaneously 

Demand Scenario 𝑪𝒎𝒂𝒙 𝑻𝒕𝒐𝒕 𝑪𝑻𝒕𝒐𝒕 𝑩𝑻𝒂𝒗𝒈 𝑰𝑩𝑪𝒎𝒂𝒙 Feasible 

Low Current situation  4:10:56:12 
(10:35:18) 

7:40:20 
(15:37:45) 

4:12:28:00 
(10:12:04) 

2:04:51 
(37:24) 

40.7  
(5.0) 

100% 

Simultaneous 
optimization 

3:23:26:03 
(8:40:25) 

0 3:08:31:42 
(9:40:19) 

3:10:18 
(33:16) 

48.9  
(4.3) 

100% 

Normal Current situation  6:08:26:18 
(6:45:32) 

21:22:56 
(1:08:13:46) 

6:11:30:30 
(7:06:07) 

0:04:53:58 
(1:44:03) 

54.5  
(8.7) 

74% 

Simultaneous 
optimization 

6:07:32:24 
(7:37:12) 

0 5:17:09:24 
(10:52:21) 

5:15:34 
(48:45) 

57.4  
(5.4) 

70% 

High Current situation  8:04:57:42 
(2:40:03) 

4:12:49:31 
(5:04:59:48) 

8:03:52:30 
(6:01:44) 

8:07:48 
(1:11:02) 

70.1  
(6.5) 

8% 

Simultaneous 
optimization 

8:08:41:13 
(5:07:42) 

0:01:51:24 
(7:32:08) 

8:01:13:24 
(8:08:25) 

7:09:28 
(56:56) 

66.0  
(6.4) 

22% 

 
Furthermore, Table 20 provides the average performance difference between optimizing the stages 
simultaneously compared to optimizing the stages separately. 
 
Table 20 | Performance difference between optimizing stages simultaneously compared to separately 

Demand 𝑪𝒎𝒂𝒙 𝑻𝒕𝒐𝒕 𝑪𝑻𝒕𝒐𝒕 𝑩𝑻𝒂𝒗𝒈 𝑰𝑩𝑪𝒎𝒂𝒙 Feasibility 

Low  ↓ -10.8% ↓ -100.0% ↓ -25.8% ↑  52.4% ↑ 20.2% 0.0% 

Normal -0.6% ↓ -100.0% ↓ -11.8% 7.3% 5.2% -4.0% 

High ↑    1.9% ↓   -98.3% -1.4% -12.0% ↓  -5.8% ↑ 14.0% 

Average difference -3.2% ↓   -99.4% -13.0% 15.9% 6.5% 3.3% 

 
Based on the results in Table 19 and Table 20, we observe that simultaneous optimization of the stages 
results in a significant performance increase for the 𝑇𝑡𝑜𝑡 and 𝐶𝑇𝑡𝑜𝑡 compared to the current situation. 
Moreover, for the low demand instances, the 𝐶𝑚𝑎𝑥 and 𝐶𝑇𝑡𝑜𝑡 significantly improve at the expense of the 
𝐵𝑇𝑎𝑣𝑔 and 𝐼𝐵𝐶𝑚𝑎𝑥, whereas this is the other way around for the high demand instances. This is logical 

since for the low demand scenarios there are fewer IBCs needed than for the high demand scenarios. 
Therefore, it is possible to let the IBCs wait longer in the buffers (i.e., increasing 𝐵𝑇𝑎𝑣𝑔) to be able to create 

a more efficient sequence of products on the machines in the next production stage, which results in a 
decrease in the 𝐶𝑚𝑎𝑥 and 𝐶𝑇𝑡𝑜𝑡. This is the other way around for the high demand scenarios; the high 
demand scenarios need to decrease the 𝐼𝐵𝐶𝑚𝑎𝑥 to increase the feasibility. This results in less efficient 
sequences of jobs on the machines, resulting in a slightly higher 𝐶𝑚𝑎𝑥. 
 
Furthermore, Table 21 provides an overview of the scheduled cleaning time per stage for both scenarios. 
We observe that the current situation has very little cleaning time at the mixing stage, whereas the IBC-
filling stage has a lot of cleaning time. This is logical since the current situation first optimizes the mixing 
schedule based on the 𝐶𝑇𝑡𝑜𝑡 and 𝑇𝑡𝑜𝑡. After that, ESA creates the IBC-filling schedule by minimizing the 
flowtime 𝐹𝑇𝑡𝑜𝑡, without changing the mixing schedule.  
 
Table 21 | Cleaning time per production stage 

Scenario IBC-filling Mixing Discharging Total 

Current situation  2:20:37:00 
(19:26:49) 

2:00:34:06  
(9:30:00) 

1:12:05:54 
(9:30:58) 

6:09:17:00 
(1:12:42:13) 

Simultaneous optimization  1:13:32:40 
(19:41:48) 

2:21:24:00 
(21:13:44) 

1:06:01:30 
(11:12:53) 

5:16:58:10 
(1:23:08:30) 
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Experiment 4 | Evaluating the effect of changing the production routes 
Recall that Exp4 evaluates the effect of the ability to allow (i) only the default production route and (ii) 
changing the production route to any other eligible production route. We refer to the first scenario as 
“ odel  default routes)” and to the second scenario as “ odel  eligible routes ”. Table 22 provides the 
experimental results of the KPIs for both scenarios, of which the standard deviation is reported between 
brackets. The detailed results per problem instance are in Appendix 18. 
 
Table 22 | Results of the comparison between allowing the default routes and all eligible routes 

Demand Scenario 𝑪𝒎𝒂𝒙 𝑻𝒕𝒐𝒕 𝑪𝑻𝒕𝒐𝒕 𝑩𝑻𝒂𝒗𝒈 𝑰𝑩𝑪𝒎𝒂𝒙 Feasible 

Low Model  
(default route) 

3:23:26:03 
(8:40:25) 

0 3:08:31:42 
(9:40:19) 

3:10:18 
(33:16) 

48.9 (4.3) 100% 

Model  
(eligible routes) 

3:17:38:42 
(5:01:26) 

0 3:13:22:54 
(11:21:46) 

2:07:48 
(24:21) 

42.2 (4.0) 100% 

Normal Model  
(default route) 

6:07:32:24 
(7:37:12) 

0 5:17:09:24 
(10:52:21) 

5:15:34 
(48:45) 

57.4 (5.4) 70% 

Model  
(eligible routes) 

5:00:49:40 
(4:53:28) 

0 6:01:58:54 
(17:51:21) 

3:35:56 
(45:00) 

49.4 (4.9) 98% 

High Model  
(default route) 

8:08:41:13 
(5:07:42) 

1:51:24 
(7:32:08) 

8:01:13:24 
(8:08:25) 

7:09:28 
(56:56) 

66.0 (6.4) 22% 

Model  
(eligible routes) 

6:11:12:51 
(3:41:53) 

0 9:07:26:36 
(7:39:36) 

4:14:52 
(32:32) 

52.8 (5.2) 92% 

 
 
Table 23 | Average performance difference between allowing eligible routes instead of default routes 

Demand 𝑪𝒎𝒂𝒙 𝑻𝒕𝒐𝒕 𝑪𝑻𝒕𝒐𝒕 𝑩𝑻𝒂𝒗𝒈 𝑰𝑩𝑪𝒎𝒂𝒙 Feasibility 

Low ↓   -6.1% 0.0% 6.0% ↓ -32.8% ↓ -13.7% 0.0% 

Normal ↓ -20.3% 0.0% 6.4% ↓ -31.6% ↓ -14.0% ↑ 28.0% 

High ↓ -22.7% ↓ -100.0% ↑ 15.6% ↓ -40.7% ↓ -20.0% ↑ 70.0% 

Average difference ↓ -16.3% ↓   -33.3% ↑   9.4% ↓ -35.0% ↓ -15.9% ↑ 32.7% 

 
Furthermore, Table 23 provides the average performance difference when considering the eligible routes 
compared to only considering the default routes. Based on the results in Table 22 and Table 23, we observe 
that allowing changing the production routes results in a significant performance improvement for the 
𝐶𝑚𝑎𝑥, 𝑇𝑡𝑜𝑡, 𝐵𝑇𝑎𝑣𝑔, and 𝐼𝐵𝐶𝑚𝑎𝑥 for all demand levels. Moreover, the feasibility increases. However, the 

𝐶𝑇𝑡𝑜𝑡 increases significantly as well for the high demand instances and on average over all instances. This 
is logical since allowing more changeovers results in more flexibility to reduce the 𝐶𝑚𝑎𝑥, 𝑇𝑡𝑜𝑡, 𝐵𝑇𝑎𝑣𝑔, and 

𝐼𝐵𝐶𝑚𝑎𝑥, and also increase the feasibility. However, having more changeovers may result in a higher 𝐶𝑇𝑡𝑜𝑡. 
Nevertheless, the improvement on the other KPIs outweighs the increase of the 𝐶𝑇𝑡𝑜𝑡. 
 
Table 24 provides an overview of the number of operations and the total processing- and cleaning time 
per machine for both scenarios.  
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Table 24 | The impact of considering eligible routes instead of default routes 

    Number of operations Processing and cleaning time 

Stage / 
Machine 

Model 
(default route) 

Model 
(eligible routes) 

Model 
(default route) 

Model 
(eligible routes) 

M
ix

in
g 

Z401 (200L) 32.2 (11.5) 34.0 (12.3) 2:01:56:20 (0:17:10:39) 2:04:58:16 (0:18:39:49) 

Z402 (1.5K) 23.8 (7.4) ↑ 40.2 (12.8) 2:08:47:48 (0:18:44:21) ↑ 4:02:15:42 (1:09:45:22) 

Z403 (3.0K) 42.5 (11.0) 38.7 (11.8) 3:21:48:56 (1:02:00:08) 3:14:34:06 (1:03:01:17) 

Z404 (4.5K) 38.2 (11.2) 38.6 (10.6) 4:18:51:46 (1:09:42:47) 4:10:07:10 (1:05:45:02) 

Z405 (3.0K) 40.0 (12.0) 38.3 (11.4) 3:17:36:00 (1:01:56:23) 3:14:46:02 (1:02:26:04) 

Z407 (10K) 23.3 (3.4) ↑ 46.0 (10.1) 3:08:11:00 (0:10:46:40) ↑ 4:21:13:54 (1:02:52:34) 

Z408 (10K) 59.7 (12.4) ↓ 45.8 (10.3) 5:00:30:30 (1:02:04:06) 4:21:18:06 (1:03:17:14) 

Z409 (Tumbler) 43.3 (22.1) ↓ 21.4 (11.7) 1:08:30:00 (0:16:34:13) ↓ 0:16:01:30 (0:08:48:06) 

D
is

ch
ar

ge
 Z410 (Votech) 79.5 (27.8) ↓ 41.9 (13.0) 5:20:20:30 (2:00:15:20) ↓ 3:10:30:32 (1:03:56:21) 

Z412 (BTH) 8.7 (2.7) ↑   27.8 (8.4) 1:07:39:18 (0:10:53:29) ↑ 4:03:07:06 (1:07:50:29) 

Z420 (Dinnissen) 34.5 (17.2) 31.1 (15.0) 1:18:55:12 (0:21:43:56) ↓ 1:08:44:18 (0:14:21:12) 

 
From Table 24, we observe that the model that allows changing the production routes allocates jobs from 
the route Z409 – Z410 to the Z402. This is logical since the Z410 seems to be the bottleneck when looking 
at the total processing- and cleaning time. Moreover, the Z402 has its discharging line. Therefore, the Z402 
route does not require to buffer IBCs between the mixing and discharging stage, resulting in fewer IBCs 
needed, which enhances satisfying the IBC-capacity constraint. Furthermore, the model that allows 
changing the production routes allocates jobs from the Z408 mixer to the Z407 mixer. 
 
Experiment 5 | Comparing the performance of the current situation to the performance of the model 
This section compares the performance of the current situation to the performance of the model. Table 
25 provides an overview of the results per instance for both scenarios. The standard deviation of the KPIs 
is reported between brackets. For every instance and scenario, this experiment performs 25 replications. 
Furthermore, Table 26 provides the average performance difference between the selected model and the 
current situation for each problem instance.  
 
Table 25 | Results of the comparison between the current situation and the proposed model 

Instance Scenario 𝑪𝒎𝒂𝒙 𝑻𝒕𝒐𝒕 𝑪𝑻𝒕𝒐𝒕 𝑩𝑻𝒂𝒗𝒈 𝑰𝑩𝑪𝒎𝒂𝒙 Feasible 

1 Current situation 4:19:28:09 
(5:50:28) 

0 4:21:23:48 
(5:28:53) 

1:45:41 
(32:11) 

38.9  
(4.5) 

100% 

Proposed model 3:22:08:00 
(2:28:58) 

0 3:23:49:00 
(4:21:03) 

2:09:02 
(24:04) 

41.2  
(3.9) 

100% 

2 Current situation 4:02:24:14 
(6:33:56) 

15:20:40 
(19:23:35) 

4:03:32:12 
(4:02:06) 

2:24:59 
(31:51) 

42.5  
(4.9) 

100% 

Proposed model 3:13:09:24 
(1:50:37) 

0 3:02:56:48 
(4:13:17) 

2:06:30 
(25:04) 

43.3  
(3.9) 

100% 

3 Current situation 6:14:34:19 
(2:16:29) 

1:17:43:57 
(1:11:05:27) 

6:17:29:12 
(3:44:30) 

6:17:28 
(1:13:58) 

59.7 
(8.4) 

48% 

Proposed model 5:05:05:48 
(2:24:30) 

0 6:18:23:24 
(6:40:45) 

3:59:05 
(45:07) 

49.7  
(4.8) 

100% 

4 Current situation 6:02:18:16 
(3:07:05) 

1:01:55 
(5:09:36) 

6:05:31:48 
(3:48:40) 

3:29:39 
(44:22) 

49.4  
(5.3) 

100% 

Proposed model 4:20:33:33 
(2:15:14) 

0 5:09:34:24 
(6:44:27) 

3:12:33 
(31:11) 

49.0  
(5.1) 

96% 
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Instance Scenario 𝑪𝒎𝒂𝒙 𝑻𝒕𝒐𝒕 𝑪𝑻𝒕𝒐𝒕 𝑩𝑻𝒂𝒗𝒈 𝑰𝑩𝑪𝒎𝒂𝒙 Feasible 

5 Current situation 8:03:59:12 
(2:44:52) 

3:55:00 
(10:51:49) 

8:03:59:24 
(6:17:01) 

7:55:15 
(1:01:03) 

71.0  
(6.5) 

4% 

Proposed model 6:08:44:38 
(2:50:49) 

0 9:07:49:48 
(8:59:09) 

4:11:00 
(33:01) 

52.1  
(5.4) 

92% 

6 Current situation 8:05:56:12 
(2:14:07) 

8:21:44:02 
(3:22:05:17) 

8:03:45:36 
(5:53:26) 

8:20:20 
(1:19:03) 

69.2  
(6.4) 

12% 

Proposed model 6:13:41:04 
(2:39:55) 

0 9:07:03:24 
(6:13:28) 

4:18:43 
(32:15) 

53.6  
(5.1) 

92% 

 
 
Table 26 | Average performance difference between the proposed model and the current situation 

Demand Instance 𝑪𝒎𝒂𝒙 𝑻𝒕𝒐𝒕 𝑪𝑻𝒕𝒐𝒕 𝑩𝑻𝒂𝒗𝒈 𝑰𝑩𝑪𝒎𝒂𝒙 Feasibility 

Low 1 ↓ -18.5% 0.0% ↓  -18.4% 22.1% 5.8% 0.0% 

2 ↓ -13.5% ↓ -100.0% ↓  -24.7% -12.8% 1.9% 0.0% 

Normal 3 ↓ -21.1% ↓ -100.0% -0.6% ↓ -36.7% ↓ -16.8% ↑ 52.0% 

4 ↓ -20.3% ↓ -100.0% ↓  -13.3% -8.2% -0.6% -4.0% 

High 5 ↓ -22.1% ↓ -100.0% ↑   14.2% ↓ -47.2% ↓ -26.6% ↑ 88.0% 

6 ↓ -20.3% ↓ -100.0% ↑   13.9% ↓ -48.3% ↓ -22.6% ↑ 80.0% 

Average difference ↓ -19.9% ↓ -100.0% -1.1% ↓ -37.6% ↓ -12.7% ↑ 36.0% 

 
 
Based on the results in Table 25 and Table 26, we observe a significant performance increase for all 
problem instances for the 𝐶𝑚𝑎𝑥 and 𝑇𝑡𝑜𝑡. Moreover, the feasibility increases significantly for most 
instances. However, the performance of the 𝐶𝑇𝑡𝑜𝑡 decreases significantly for the high demand instances. 
This is logical since the performance on the 𝐵𝑇𝑎𝑣𝑔 and 𝐼𝐵𝐶𝑚𝑎𝑥 increases for these high demand instances 

to enhance finding feasible solutions. Therefore, this results in more cleaning time. Nevertheless, we still 
observe an average performance increase on all KPIs. All in all, the weekly production throughput, which 
is the main KPI of Euroma, increases from 300 jobs for the current situation to 400 jobs per week for the 
proposed model, which meets the desired level of Euroma. 
 

5.4.2 Results of the implementation in practice 

This section provides the results of Exp6, which evaluates the performance of a simple version of the model 
after implementation in practice. 
 
Experiment 6 | Evaluate the performance of the simple version of the model in practice 
Recall that this experiment evaluates the performance in practice of the model that only optimizes the 
mixing schedule compared to the current situation. In Figure 31, the red- and blue lines indicate the 
scheduled- and realized average cleaning time per job per year-week, respectively. These cleaning times 
are obtained from the contamination matrix. Note that we started creating the production schedules in 
week 3 of 2021. The difference between the scheduled and realized cleaning times occurred due to priority 
jobs that were not scheduled that caused extra cleaning time. The scheduled 𝑇𝑡𝑜𝑡 was zero for all instances.  
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Furthermore, Figure 32 provides boxplots of the average realized cleaning time per job per year-week 
before- and after implementation of the model in practice. To test if there is a significant reduction in the 
cleaning time after implementation, we perform a two-sample t-test in which we assume unequal 
variances. Moreover, we assume that all samples are independent identically distributed. This is 
reasonable to assume since there seems to be no dependence between the weeks, since Euroma 
schedules a new set of jobs every week. We set alpha at 0.005, resulting in a p-value of 5.2E-14. Therefore, 
we reject the null hypotheses of equal average cleaning times per job before- and after implementation. 
Figure 33 provides the corresponding 99%─CI, of which the statistical results are in Appendix 19. Following 
from the 99%─  , the total cleaning time is reduced between 26.3% and 49.1%. This results in a weekly 
cleaning time saving of the mixers between [0:13:21:14 ─ 1:00:55:50]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 32 | Average realized cleaning time per 
job before- and after implementation 
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Figure 33 | 99%-CI of the average cleaning time per 
job before- and after implementation 

Figure 31 | Comparison between the scheduled and realized average cleaning time per job over time 
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5.5  Summary of the experiments 
The main goal of this chapter is to answer the fourth research question: Which alternative model performs 
best compared to the current situation under different experimental settings? To answer this question, 
Section 5.1 provides a summary of six problem instances that are extracted from the company data that 
we use for the experiments. These problem instances consider low, normal, and high demand. 
 
Section 5.2 first describes the experimental design to identify a suitable weight set for the objective 
function and the most promising model configuration among the possible configurations (i.e., the 
construction- and improvement heuristics including the corresponding parameter sets that result in the 
best solutions according to the objective function). This section also describes the experimental design to 
evaluate the effect of (i) optimizing the schedules of the production stages simultaneously instead of 
separately, (ii) considering all eligible production routes instead of the default production routes, and (iii) 
the performance of the proposed model compared to the current situation. Finally, this section describes 
the experimental design to evaluate the performance in practice of a model that only optimizes the mixing 
schedule compared to the current situation. 
 
Section 5.3 provides the experimental results of the objective weight tuning and the different model 
configurations. Based on these results, we select the objective weight set {14%, 14%, 14%, 28%, 30%}, 
which corresponds with the weights {𝑤𝐶𝑚𝑎𝑥

, 𝑤𝑇𝑡𝑜𝑡
, 𝑤𝐶𝑇𝑡𝑜𝑡

, 𝑤𝐹𝑇𝑡𝑜𝑡
, 𝑤𝐼𝐵𝐶𝑝𝑒𝑛𝑎𝑙𝑡𝑦

}, respectively. Besides that, 

the results indicate that the model configuration with the NEH construction heuristic, simulated annealing 
improvement heuristic, and a random neighborhood structure results in the best objective values while 
still obtaining high feasibility. Therefore, we select this configuration for the remaining experiments. 
 
Section 5.4 first provides the experimental results on the effect of optimizing the schedules of the 
production stages simultaneously instead of separately. These results show that simultaneously optimizing 
the stages results in a significant performance increase for the 𝑇𝑡𝑜𝑡 and 𝐶𝑇𝑡𝑜𝑡 compared to the current 
situation. Moreover, for the low demand instances, the 𝐶𝑚𝑎𝑥 significantly improves at the expense of the 
𝐵𝑇𝑎𝑣𝑔 and 𝐼𝐵𝐶𝑚𝑎𝑥, whereas this is the other way around for the high demand instances. Moreover, 

Section 5.4 provides the experimental results on the effect of considering all eligible production routes 
instead of the default production routes. These results show that allowing changing the production routes 
results in a significant performance improvement for the 𝐶𝑚𝑎𝑥, 𝑇𝑡𝑜𝑡, 𝐵𝑇𝑎𝑣𝑔, and 𝐼𝐵𝐶𝑚𝑎𝑥 for all demand 

levels. Moreover, the feasibility increases. However, the 𝐶𝑇𝑡𝑜𝑡 increases significantly as well for the high- 
demand instances and on average over all instances  
 
Furthermore, Section 5.4 compares the performance of the proposed model with the current situation. 
The results show that the proposed model significantly reduces the 𝐶𝑚𝑎𝑥 and 𝑇𝑡𝑜𝑡 for all problem instances 
compared to the current situation. Moreover, the feasibility increases significantly for most instances. 
However, the 𝐶𝑇𝑡𝑜𝑡 increases significantly for the high demand instances. This is logical since the 𝐵𝑇𝑎𝑣𝑔 

and 𝐼𝐵𝐶𝑚𝑎𝑥 decrease significantly for these high demand instances to enhance finding feasible solutions, 
which results in more cleaning time. All in all, the weekly production throughput, which is the main KPI of 
Euroma, increases from 300 jobs for the current situation to 400 jobs per week for the proposed model, 
which meets the desired level of Euroma. 
 
Finally, Section 5.4 evaluates the performance in practice of the model that only optimizes the mixing 
schedule compared to the current situation. The results show that the total cleaning time was reduced 
between 26.3% and 49.1% after implementing the model in practice. This results in a weekly cleaning time 
saving of the mixers between [0:13:21:14 ─ 1:00:55:50].  
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6. Model implementation  
This chapter describes how the model that we propose can be implemented in practice. Section 6.1 
explains the implementation architecture of the model. Section 6.2 describes the output of the model and 
then explains the dashboard that visualizes the data. Finally, Section 6.3 elaborates upon the techniques 
to verify the input of the model, the model itself, and the output of the model. 
 

6.1  Implementation architecture 
This section explains the implementation architecture of the model by using the data flow in Figure 34. 
 
 
 
 
 
 
 
 
 
 
 
 
 
The model needs data from five databases. The IT systems of these sources (e.g., LN, ESA, or IQBS) and the 
data that each source manages are described in Section 2.4. The server stores the extracted data in 
dedicated folders. The SQL scripts preprocess these extracted files into input data tables for the model. 
The SQL scripts apply techniques for creating, e.g., compact memory representations of complex keys. For 
example, an order number of Euroma consists of a string of nine characters and the scripts transform these 
strings into job numbers consisting of unique integer values. This way, large tables such as the 
contamination matrix are more efficient in memory usage as integers use fewer bytes than characters. 
Moreover, integers have faster CPU times than characters (Aliyu & Zirra, 2013). 
 
We use the programming language Delphi to implement the model. Delphi allows compiling the code into 
an executable application that allows communication with scripts, databases, and the Windows API. The 
SQL scripts post-process the output data of the model to (i) a file containing the schedule that can be 
imported manually into the ERP system LN, and (ii) a set of files that a dashboard visualizes for the user. 
Regarding the latter, Section 6.2 explains the output of the model and the dashboard. 
 

6.2  Model output & dashboard 
This section first explains the output of the model and then explains the dashboard that visualizes the 
data. The output data of the model consists of two tables: (i) the production schedule (see Table 27) and 
(ii) the IBC status of the orders at every minute (see Table 28).  
  

Figure 34 | Data flow of model implementation 
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Table 27 | Production schedule model output 

Machine  Nr Task OrderNr  Article  Route Start Stop 
IBC Filling 1 1 IBC Fill J00019978 59883 13 5-3-21 0:15 5-3-21 0:55 
IBC Filling 1 2 Cleaning - - - 5-3-21 0:55 5-3-21 1:05 
IBC Filling 1 3 IBC Fill J00017891 56832 16 5-3-21 1:05 5-3-21 3:05 
IBC Filling 1 4 Cleaning - - - 5-3-21 3:05 5-3-21 3:35 
IBC Filling 1 5 IBC Fill J00020210 64739 7 5-3-21 3:35 5-3-21 4:55 
IBC Filling 1 6 IBC Fill J00019181 62260 15 5-3-21 4:55 5-3-21 6:15 
IBC Filling 1 7 IBC Fill J00019433 35672 12 5-3-21 6:15 5-3-21 8:55 
IBC Filling 1 8 IBC Fill J00019047 57098 4 5-3-21 8:55 5-3-21 10:15 
IBC Filling 1 9 IBC Fill J00019980 59883 8 5-3-21 10:15 5-3-21 10:55 

  
 
Table 28 | IBC pool status model output 

 
 
The output of the model gets loaded into a data 
model that also consists of article information 
tables with, e.g., the article descriptions, article 
colors, claims, and allergens. Figure 35 provides 
the data model of the dashboards. 
 
The data model gets visualized by a dashboard 
(see Figure 36). The top of the dashboard 
visualizes the key performance indicators (KPIs), e.g., the makespan, total cleaning time, total tardiness, 
and the total buffer time. The Gantt chart visualizes the schedule. Each row in the Gantt chart shows the 
sequence of jobs on a machine including important KPIs (e.g., the number of cleanings and the total 
cleaning time of that machine). The blocks in the sequence represent operations and the color of a block 
corresponds with the color of the article of the operation, whereas the black blocks indicate cleanings. The 
label on a block corresponds with the article number. Moreover, a pop-up with detailed information of 
the operation (e.g., the order number, color, claims, start- and finish times, and the IBC information) 
appears when hovering over a block.  
 
The stacked line chart shows the status of the IBCs over time, where the blue area indicates the number 
of IBCs in production and the red area indicates the number of IBCs in cleaning, as described in Appendix 
5. The dashed line in the line chart indicates the number of IBCs needed. The stacked line chart aligns with 
the Gantt chart regarding the time dimension. 

OrderNr Timestamp IBC Status IBCs 
- 5-4-21 13:05 Cleaning 6 
J00009243 5-4-21 13:05 Production 2 
J00017499 5-4-21 13:05 Production 1 
J00018145 5-4-21 13:05 Production 4 
J00018620 5-4-21 13:05 Production 2 
J00019563 5-4-21 13:05 Production 5 
J00020097 5-4-21 13:05 Production 3 
J00020156 5-4-21 13:05 Production 2 
J00020160 5-4-21 13:05 Production 6 

Figure 35 | Dashboard data model 
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The table in Figure 36 (marked with the numbers 1 and 2) provides detailed information regarding the 
production schedule. Each row in the table corresponds with a task, which is either processing an 
operation (e.g., IBC-filling, mixing, or packaging), cleaning, or a maintenance activity. The table provides 
the order information of the operations, including optional release- and due dates. For the latter, the table 
highlights the due dates in red that are not met. The table also highlights the colors and allergens of the 
articles.  

Figure 36 | Dashboards of the model 
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6.3  Model verification 
This section elaborates upon the techniques to verify the input of the model, the model itself, and the 
output of the model. These verification methods are necessary to enhance the model's credibility and to 
ensure food safety by preventing incorrect schedules that might lead to cross-contamination of allergens. 
 
At first, several procedures verify the input data. For instance, these procedures verify whether the input 
has the right data format and whether the input contains null values. Moreover, these procedures verify 
whether the colors in the input data match with the colors in the contamination matrix. Besides that, 
procedures check whether the number of IBCs that discharge the last operation of a job equals zero, 
otherwise, there might be a mistake in the production route or the IBC-usage calculation. Regarding the 
latter, the procedures also verify whether the number of IBCs that replenish the Tumbler mixer (Z409) is 
equal to one, as this mixer can only rotate one IBC at a time, as described in Section 2.1.2. Once the 
verification procedures flag an error, the scripts stop and the error is logged in a file. 
 
The model consists of small procedures that each have a clear purpose. Each procedure is extensively 
tested by varying the input values and verifying whether the output is as expected. Besides that, the output 
of the model is extensively verified. Separate procedures verify whether the scheduling constraints are 
met for the output solution, e.g., whether jobs with release times start after the release time, or if there 
are no activities during production-stops of machines. Moreover, separate procedures verify specific food 
safety constraints such as the claim constraints and whether there are cleanings scheduled that 
correspond with the contamination matrix. Appendix 11 provides a pseudo-code of the verification 
procedure that checks whether the claim constraints are satisfied. 
 
Finally, experts (e.g., the planners, production manager, food quality officers, and control room operators) 
extensively verify and review the output of the model by using the dashboard (see Section 6.2). 
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7. Conclusion & recommendations 
In this chapter, Section 7.1 summarizes the main findings and answers the main research question. 
Subsequently, Section 7.2 provides recommendations to Euroma. Section 7.3 discusses the limitations of 
this research and provides direction for future research. Finally, Section 7.4 describes the contribution of 
this research to science. 
 

7.1  Conclusion 
The facility of Euroma in Zwolle is at its limits as almost every square meter is occupied. Still, this facility 
cannot satisfy customer demand. An analysis showed that the mixers need cleaning 15% of the time and 
that they are idle 30% of the time due to waiting on shared resources (e.g., IBCs and operators). As a result, 
the production throughput is less than 300 mixtures per week, whereas 400 mixtures per week are 
required to satisfy the demand. Therefore, the research question is: 
 

“How to optimize the multi-stage production schedule to achieve the desired throughput?” 
 
The scheduling problem comprises several unique criteria, e.g., restricted sequences of jobs on machines 
and shared resources over multiple production stages. For this problem, we proposed 12 model 
configurations that each consists of (i) a construction heuristic, (ii) an improvement heuristic, and (iii) a 
neighborhood structure. We extended the construction heuristics such that they always generate feasible 
solutions regarding the claim constraints. Moreover, we proposed a decoding- and a corrective 
backtracking algorithm to determine the start- and finish times of the jobs and cleanings. 
 
We performed experiments to tune the weights in the objective function and to find the most promising 
model configuration according to this objective function. The results indicate that the configuration with 
the extended NEH construction heuristic, the simulated annealing improvement heuristic, and a random 
neighborhood structure results in the best objective values. We selected this configuration for the 
remaining experiments. Subsequently, we evaluated the following scenarios: 
 

1. Optimize the schedules of the production stages simultaneously instead of separately; 
2. Consider all eligible production routes instead of only the default production routes; 
3. Optimize the schedules of the production stages simultaneously and consider all eligible 

production routes instead of optimizing the schedules of the stages separately and only 
considering the default production routes. 

 
Table 1 provides the average difference per KPI of these three scenarios. The symbols (↑) and (↓) indicate 
a significant increase or decrease of the KPI with an alpha of 0.01, respectively. The absence of these 
symbols indicates no significant difference. The colors green and red represent a better and worse 
performance, respectively. 
 
Table 1 | Average performance difference per scenario 

Scenario Makespan Tardiness Cleaning time Buffer time IBCs needed Feasibility 

(1) Simultaneous versus separate 
optimization of production stages 

-3.2% ↓   -99.4% -13.0% 15.9% 6.5% 3.3% 

(2) Allowing eligible routes versus 
only allowing default routes 

↓ -16.3% ↓   -33.3% ↑   9.4% ↓ -35.0% ↓ -15.9% ↑ 32.7% 

(3) Proposed model versus current 
situation 

↓ -19.9% ↓ -100.0% -1.1% ↓ -37.6% ↓ -12.7% ↑ 36.0% 
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We conclude that optimizing the production stages simultaneously instead of separately significantly 
improves the total tardiness. Allowing the model to allocate an eligible production route to a job instead 
of only considering the default jobs, results in a significant performance increase for all KPIs, except for 
the cleaning time; the performance of the cleaning time decreases significantly. This is reasonable since 
allowing more changeovers results in more flexibility to improve the other KPIs. Improving the other KPIs 
outweighs the increase in the cleaning time. 
 
Table 29 provides the 99%─CI of the KPIs to compare the performance of the current situation with the 
performance of the proposed model per demand level. The timestamps have the format “d:hh:mm:ss”. 
 
Table 29 | 99%─CI of the current situation and the proposed model 

Demand Model Current situation Proposed model Difference 

Low  
(± 200 jobs) 
 

Makespan [4:07:04:46 - 4:14:47:38] [3:15:48:53 - 3:19:28:31] ↓ -16.2% 

Tardiness [0:01:58:44 - 0:13:21:57] 0:00:00:00 ↓ -100.0% 

Cleaning time [4:08:45:02 - 4:16:10:58] [3:09:14:33 - 3:17:31:15] ↓ -21.3% 

Buffer time [0:01:51:14 - 0:02:18:29] [0:01:58:56 - 0:02:16:41]  2.4% 

IBCs needed [38.9 – 42.5] [40.8 – 43.7]  3.7% 

Feasibility 100% 100%  0.0% 

Normal 
(± 300 jobs) 

Makespan [6:05:58:34 - 6:10:54:02] [4:23:02:47 - 5:02:36:35] ↓ -20.7% 

Tardiness [0:09:38:30 - 1:09:07:22] 0:00:00:00 ↓ -100.0% 

Cleaning time [6:08:55:16 - 6:14:05:44] [5:19:28:38 - 6:08:29:10] ↓ -6.1% 

Buffer time [0:04:16:04 - 0:05:31:53] [0:03:19:33 - 0:03:52:20] ↓ -26.5% 

IBCs needed [51.4 – 57.7] [47.6 – 51.1] ↓ -9.5% 

Feasibility 74% 98% ↑ 24.0% 

High 
(± 400 jobs) 

Makespan [8:03:59:24 - 8:05:56:00] [6:09:52:02 - 6:12:33:42] ↓ -21.2% 

Tardiness [2:15:17:31 - 6:10:21:32] 0:00:00:00 ↓ -100.0% 

Cleaning time [8:01:40:44 - 8:06:04:16] [9:04:39:10 - 9:10:14:02] ↑ 14.1% 

Buffer time [0:07:41:56 - 0:08:33:41] [0:04:03:01 - 0:04:26:44] ↓ -47.8% 

IBCs needed [67.8 – 72.5] [50.9 – 54.7] ↓ -24.7% 

Feasibility 8% 92% ↑ 84.0% 

 
We conclude that, compared to the current situation, the proposed model significantly improves almost 
every KPI on every demand level, except for the cleaning time at the high demand level; the cleaning time 
increases significantly. This is reasonable since allowing more changeovers results in more flexibility to 
reduce the makespan, tardiness, buffer time, and the number of IBCs needed. However, having more 
changeovers may result in a higher cleaning time. Nevertheless, the improvements on the other KPIs 
outweighs the increase in the cleaning time. All in all, the weekly production throughput, which is the main 
KPI of Euroma, increases from 300 jobs for the current situation to 400 jobs per week for the proposed 
model, which meets the desired level of Euroma. 
 
Finally, we implemented a model in practice to optimize the mixing schedules by minimizing the total 
cleaning time and total tardiness. Based on the results, we conclude from the 99%─  s that the cleaning 
time reduction is between [26.3% ─ 49.1%] compared to the situation before implementing the model. 
This results in a weekly cleaning time saving of the mixers between [0:13:21:14 ─ 1:00:55:50]. 
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7.2  Recommendations 
Based on our evaluation of the proposed models, we recommend implementing the scheduling model that 
can optimize the schedules of the production stages simultaneously and that can allocate production 
routes to jobs. This model outperforms all other models and results in significantly better performance 
than the current scheduling procedures. Moreover, the proposed scheduling model can cope with 
different demand scenarios. To configure the model, we recommend using the extended NEH construction 
heuristic and the simulated annealing improvement heuristic with a random neighborhood structure, as 
this configuration outperforms the other configurations. 
 
Furthermore, to enhance the quality of the solutions of the model, we recommend enriching the input 
data by logging the processing times of the key production steps (e.g., the filling-, discharging- and liquid 
dosing steps). Moreover, we recommend monitoring the cleaning times to improve the accuracy of the 
contamination matrix. 
 
Our research focused on evaluating the performance of the proposed models. Chapter 6 describes how 
we implemented a simple version of the model in practice. However, we did not study the costs and 
consequences for stakeholders and IT systems for the implementation of the proposed model. Therefore, 
we recommend investigating these costs and consequences before creating a plan to implement the 
proposed model. 
 

7.3  Limitations & future research 
This section discusses the limitations of this research and provides directions for future research to 
improve the production performance and to enhance our research. 
 
First, we limited the research scope to the IBC-filling-, mixing-, and discharging processes. We did not 
consider processes outside the scope of this research (e.g., filling the silos or palletizing the bags), as there 
was no incentive to assume that these are bottlenecks. Nevertheless, implementing the proposed model 
might shift the bottleneck to a process outside the scope of this research. In that case, the focus should 
be on the new bottleneck process to improve the overall production performance.  
 
Second, the model might not be able to obtain a feasible solution for some problem instances, as the 
limited IBC-capacity is modeled as a soft-constraint. Therefore, future research can focus on a corrective 
algorithm that always obtains feasible solutions regarding the IBC-capacity constraint. As described in 
Section 4.4, such an algorithm must be able to change the sequence of jobs on machines and determine 
the start- and finish times of the operations while still satisfying all remaining constraints. 
 
Third, the initial solution seems to have no influence on the final objective value for the improvement 
heuristics SA and SATL, as described in Section 5.3.2. This indicates that SA and SATL both have a good 
improvement ability, regardless of the initial solution. Therefore, to improve the model even further, we 
suggest focusing on the improvement heuristics. 
 
Finally, the performance of the model is not evaluated in a stochastic environment with, e.g., machine 
breakdowns. Therefore, future research should focus on evaluating the performance of the model under 
stochastic circumstances by using a simulation study. This allows testing strategies to make the model 
solutions more robust. For instance, this can be achieved by scheduling more buffer time for operations 
before they need processing on the bottleneck machine. This way, if the machine before the bottleneck 
machine fails, there still is a buffer to keep the bottleneck machine operational.  
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7.4  Contribution of this research 
This section highlights the contribution of our research to the scientific body of knowledge. 
 
First, following from Section 3.3, HFS problems in the literature each cover only a small variety of practical 
constraints, which Cinar et al. (2015, p. 34) and Li et al. (2020, p. 73) also experience. Our research 
contributes by considering a scheduling problem with a large and unique set of practical constraints (e.g., 
release dates, sequence-dependent changeovers, sequence-dependent job restrictions, transportation 
times between stages, a limited number of cleanings at the same time, a limited number of shared 
resources, machine maintenance, and production stops). Moreover, our model allows multiple production 
routes per job, whereas, to the best of our knowledge, other studies only consider one production route. 
 
Second, Section 3.4 identifies that the majority of the literature concentrates on single objectives. 
However, single-objectives are insufficient for practical applications as Minella and Ruiz (2008), Lei (2009), 
and Yenisey and Yagmahan (2014) address. There is a gap in the literature regarding suitable objectives 
for HFS scheduling problems with practical characteristics (Li, Gao, & Peng, 2020, p. 73). Our research 
contributes to filling this gap as it considers five objectives and demonstrates the effect of these objectives 
on several KPIs that express the solution quality (see Section 5.3.1). 
 
Third, to the best of our knowledge, the work of Costa et al. (2020) and Tao et al. (2020) are the only 
studies that consider additional resources within a production stage in an HFS environment. However, 
these studies do not consider resources that can be shared over multiple different stages (e.g., IBC-filling, 
mixing, and packaging) simultaneously. Our research considers a limited number of operators that are 
required for cleaning machines and we consider IBCs that are shared over all stages. We propose a 
corrective backtracking algorithm that ensures a limited number of changeovers at any time. This 
algorithm is applicable when considering, for example, specific limited tooling or operators that are 
required for operating machines or changeovers. 
 
Fourth, there appears to be a gap in the literature regarding sequencing restrictions between jobs (e.g., 
the claim constraints) in scheduling problems, which Afzalirad & Rezaeian (2017) also experience. We 
extend the NEH construction heuristic such that it always obtains feasible solutions regarding the claim 
constraints. 
 
Finally, this study contributes by demonstrating the effect of several construction heuristics, 
improvements heuristics, and neighborhood structures on a case study problem with real company data. 
The evaluation of the results shows that the NEH-construction heuristic with the simulated annealing 
improvement heuristic and a random neighborhood structure provides good results for our HFS problem 
with many practical constraints. 
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Appendices 

Appendix 1 General production process overview 
Figure 37 provides a general overview of the production processes of the facility in Zwolle. Note that the 
process stages marked in blue are not in the scope of this research. Sections 2.1.1, 2.1.2, and 2.1.3 explain 
respectively the replenishing, mixing, and packaging processes. The colors that correspond to these 
processes are used in all other process flows accordingly. The grey boxes illustrate the departments and 
their process stages. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The logistics department handles all the inbound flow from the suppliers and other facilities of Euroma as 
well as the outbound flow to the customers. There are two warehouses for the inbound and outbound 
flow of which one warehouse is dedicated to untreated raw materials. The Quality Officers inspect the 
untreated raw materials before transportation to the Prima Pura warehouse. The warehouse for the 
inbound and outbound flow connects via a conveyor system to the high-rise warehouse. This high-rise 
warehouse is fully automated and holds 22,000 pallet locations. Within this high-rise warehouse is the 
miniload warehouse with a capacity of 2,000 tote locations. 
  

Figure 37 | General production process flow 
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The Prima Pura and grinding departments receive the untreated raw materials from the Prima Pura 
warehouse. The Prima Pura installation steams these raw materials to increase the safety, quality, and 
shelf-life. After the Prima Pura process, the raw materials are often ground or rolled, and sieved. Dedicated 
packaging lines package the treated raw materials onto pallets and operators store these pallets into the 
high-rise warehouse. 
 
The mixing department receives raw materials from the high-rise warehouse and the miniload warehouse. 
First, the replenishment process collects all raw materials that are in the recipe of a mixture. After that, 
the mixing process starts. After the mixing process, dedicated packaging lines package the mixtures onto 
pallets and operators store these pallets into the high-rise warehouse. 
 

Appendix 2 Packaging process 
Figure 38 provides the discharging and packaging process flow. The process stages within the packaging 
department are marked in light-orange and the transportation mediums are color-marked according to 
the legend.  

10  mi er

1.   mi er

1.   tumbler

0.2  mi er

 ag  ll ing
Votech line

 ackaging
of grinds

 ig bag  ll ing
Dinnissen line

 ag palle ser
Votech sta on

 onve or bu er

2   ig bag  ll ing
sta ons

10  mi er
2   ig bag  ll ing

sta ons

 ag  ll ing
sta on  manual 

 alle sing
 manual 

 igh rise
warehouse

  
  
  

  
 
  
  
 

 
a  a   

 
 
f  

   u
r 

 

Stretch hood
Votech sta on

 
a  a  

 ig bag  ll ing
sta on

 ig bag  ll ing
sta on

3  mi er

2   ag  ll ing
 T  line

2

1

 
  dedicatedmi er 
     llingsta on s 

4.   mi er 1

  n   
       

 ag palle ser
 T  sta on

 onve or bu er

  n   
       

  n   
       

  n   
       

 ipes

 ags

   

 iniload 
warehouse

Figure 38 | Packaging process flow 



 

80 UNIVERSITY OF TWENTE. 

From Figure 38 we note that the two 10K mixers each have two discharging stations that fill big bags. The 
1.5K, 3K, and 4.5K mixers each have one dedicated discharging station to fill IBC and one dedicated 
discharging station to fill big bags. However, these discharging stations are for internal use only as they do 
not contain a sieve. The 0.2K mixer discharges manually with the help of an operator. Further, all 
discharging stations have a weighing system that weighs the requested amount. After discharging, AGVs 
or operators transport the mixture to the high-rise warehouse or to a packaging line. Figure 39 provides a 
Sankey diagram of the flows from the mixers to the final packaging units. The numbers correspond with 
the number of production routes, e.g., both 10K mixers have 2 routes and there are 11 possible routes to 
have the final packaging unit in bags. Figure 38 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
All packaged mixtures are palletized, e.g., big bags are palletized at the big-bag filling stations and the bags 
are palletized at dedicated palletizing stations. Figure 40 depicts an example of a palletizer and Figure 41 
shows the stretch hood machine that wraps and labels pallets. All pallets, except the pallets from the BTH 
line are wrapped and labeled in a stretch hood machine. After wrapping and labeling, a manual forklift 
puts the pallets onto the conveyor belt of the high-rise warehouse. 
 
 
  

Figure 40 | Palletizer Figure 41 | Stretch hood  

Figure 39 | Sankey diagram of the flow from the mixers to the final packaging units 
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Appendix 3 Production routes 
A route is a sequence of production machines to produce a product. Thus, a route determines which 
machines and resources (e.g., IBCs) to use. Products can have multiple production route options. Further, 
all products have a default production route, i.e., the routes that the ERP system suggests according to the 
input of a process engineer.  
 
There are a few criteria that determine which production routes are suitable. These criteria are: (i) the 
product weight and density, (ii) if the recipe requires cutting blades in a mixer, (iii) if the recipe requires 
liquid, and (iv) the final packaging unit. 
 
First, each mixer can only mix a product that is within a certain range of weight and volume, e.g., a mixer 
with the capacity of 10,000L cannot mix a product with a volume of 2000L, as the mixing blades are not 
effective when the mixer is filled for 20%. Second, some mixers have cutting blades to cut for example 
vegetables for soups. Recipes that require these cutting blades can only be allocated to mixers that have 
these cutting blades. Third, for some mixers, it is not possible to add liquids. Thus, recipes that require 
liquids can only be allocated to mixers that have the option to add liquids. Fourth, the final packaging unit 
(e.g., big-bag or bag) determines which packaging line is suitable. 
 
The route determines the machines and the resources. For example, consider a mixture with a volume of 
4500L that is suitable for mixing on the 4.5K and the 10K mixers. The 10K mixer can replenish raw materials 
directly from the outdoor silos and IBCs, whereas the 4.5K mixer can only replenish raw materials from 
IBCs. In this case, the 10K mixer may require only one IBC for replenishment and the 4.5K mixer may 
require 4 IBCs. As a result, the number of IBCs to replenish affects the processing time at the IBC-filling 
stations. Thus, the route affects the usage of resources.  
 

Appendix 4 A detailed description of the scheduling problem taxonomic framework 
This section describes all attributes from the taxonomic framework in Table 30 that we combine in Section 
3.2 based on several common scheduling problem attributes from the literature. The remainder of this 
section elaborates upon these attributes per field. 
 
The α-field of the taxonomy defines the machine environment and the maintenance policies. Section 3.1 
describes the different machine environments. The maintenance policy of machines can be variable, fixed, 
or non-existent. A maintenance policy is variable when the starting times of maintenance activities are 
flexible. It is fixed if the starting times of maintenance activities are predefined (Cinar, Topcu, & Oliveira, 
2015, p. 29).  
 
Ne t, the β-field defines the job characteristics, sequencing relations, transportation- and inventory 
policies, and other characteristics. Processing times of jobs can be fixed or dependent on the operation, 
stage, or machine (Cinar, Topcu, & Oliveira, 2015, p. 27). Moreover, jobs may have release times. In that 
case, these jobs cannot start before their release time (Cinar, Topcu, & Oliveira, 2015, p. 29). Alternatively, 
jobs may also have due dates. In that case, jobs should not finish later than their due date (Ribas, Leisten, 
& Framiñan, 2010). 
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Scheduling problems can have several characteristics that 
depend on the job sequence. For instance, changeovers 
between two consecutive jobs on the same machine can 
depend on the job sequence, the machine, the time, or 
the frequency of utilization (Pinto & Grossmann, 1998, p. 
437). Changeovers are sequence-dependent when 
different pairs of consecutive jobs result in different 
changeovers (Cinar, Topcu, & Oliveira, 2015, p. 29). These 
changeovers may also depend on the machine (Ribas, 
Leisten, & Framiñan, 2010, p. 1442). For instance, two 
different machines that produce the same job sequence 
may require different changeovers. Moreover, 
changeovers can depend on the frequency of utilization 
arise, for instance, when a machine requires a changeover 
after processing every predetermined quantity of units. 
Thus, more changeovers are required in case a machine 
produces more. Time dependent cleaning arises when a 
machine requires a changeover after a certain time 
interval (Pinto & Grossmann, 1998, p. 438). Changeovers 
can also be independent and fixed, for instance, a 
changeover with a fixed time can be required between 
every pair of consecutive jobs (Ribas, Leisten, & Framiñan, 
2010). 
 
Furthermore, some scheduling problems consider 
sequencing constraints between the operations of a job 
or between jobs. The most common sequencing 
constraint ensures that the operations of a job produce in 
a predefined order. Alternatively, when there are no 
sequencing constraints, the operations of a job can 
produce in parallel in an arbitrary order (Pinto & 
Grossmann, 1998, p. 435). 
 
Some scheduling problems consider transportation times 
between stages or machines. Transportation times are 
also referred to as transfer-, or removal times. These 
times can be fixed or variable. For the latter. the 
transportation time depends on the start- and endpoint 
(Ribas, Leisten, & Framiñan, 2010, p. 1442). Moreover, 
transportation times can be asymmetric, i.e., the 
transportation time from A to B differs from the time from 
B to A.  
 
The following three different types of intermediate 
storage policies are common: no-intermediate storage 
(NIS), finite-intermediate storage (FIS), and unlimited-
intermediate storage (UIS) (Rajagopalan & Karimi, 1989). 

Table 30 | Scheduling problem classification framework 
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For the NIS policy, there is no storage capacity between stages. Therefore, jobs need to wait on the 
machine until the next machine is available or they need to transfer to the next stage immediately upon 
completion. The FIS policy has a finite storage capacity, and the UIS policy has unlimited storage capacity. 
In practice, FIS is the most common inventory policy (Pinto & Grossmann, 1998, p. 437). Note that the FIS 
policy can include both the NIS and UIS policies by simply setting the storage capacity to zero or infinity, 
respectively (Rajagopalan & Karimi, 1989). 
 
Demand patterns in scheduling problems can be variable or fixed. Variable demand occurs when products 
have little similarity between demand patterns in different scheduling periods. On the contrary, demand 
can be considered fixed in case products have constant demand rates. Fixed demand is often referred to 
as cyclic demand, as the same production sequence can be scheduled repeatedly. Variable demand 
scheduling often has a short-term horizon, whereas fixed demand scheduling is often considered with a 
more long-term horizon (Pinto & Grossmann, 1998, p. 437). 
 
The time domain representation in scheduling problems can either be discrete or continuous. A discrete 
time representation consists of time slots. Time slots have equal and fixed intervals for unit allocation. The 
duration of time slots need to be sufficiently small to have a suitable approximation of the problem. Often, 
the time slot duration is set to be the greatest common factor of the processing times of the jobs. In the 
case of a discrete formulation, some time slots may remain empty as not every time slot has a unit 
allocation. When the time representation is continuous, unit allocations are associated with time events 
instead of time slots (Pinto & Grossmann, 1998, p. 436). 
 
In scheduling problems, different operations can require the same resources (e.g., utilities or manpower). 
In general, these resources have a finite capacity. Therefore, it is necessary to consider feasible 
combinations of operations that do not exceed the limited resource availability. These resources can be 
considered discrete when the consumption is at a constant level during the process, or continuous, in 
which the resource consumption differs during the process (Pinto & Grossmann, 1998, p. 437). The 
resource capacity needs to be sufficient to ensure feasibility (Brucker & Krämer, 1996).  
 
Some scheduling problems consider lot-sizing. Lot-sizing allows to divide the workload of a job over 
multiple identical machines. However, most scheduling problems do not allow lot-sizing as they consider 
that each job can only produce on one machine at a time (Ribas, Leisten, & Framiñan, 2010, p. 1443). 
 
Finall , the γ-field defines the objective function criteria. Scheduling problems can have single- or multiple 
objective functions. Some common objectives are shown in Table 8. In scheduling, the makespan refers to 
the difference between the start- and finish times of a schedule. The flowtime of a job is the difference 
between the completion- and the release times of a job. Tardiness refers to the time a job is completed 
after its due date (Graham, Lawler, Lenstra, & Rinnooy Kan, 1979). Accordingly, the earliness is the time 
that jobs complete before their due date. Moreover, objectives often include production costs (e.g., 
operating costs, transportation costs, or penalty costs for completing jobs after their due dates) (Cinar, 
Topcu, & Oliveira, 2015, p. 29). 
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Appendix 5 Calculating the number of IBCs needed 
Recall from Section 4.4 that 𝑚𝑎𝑥𝐼𝐵𝐶  is the maximum allowed number of IBCs needed (i.e., in production 
and cleaning) at any time. Besides that, let the number of IBCs for replenishing and discharging the 

operation 𝑜𝑗,𝑟,𝑖  on machine 𝑘 ∈ 𝑀𝑗,𝑟,𝑖  be 𝐼𝐵𝐶𝑗,𝑟,𝑖,𝑘
𝑖𝑛  and 𝐼𝐵𝐶𝑗,𝑟,𝑖,𝑘

𝑜𝑢𝑡 , respectively. The number of IBCs needed 

can vary during an operation, e.g., more IBCs can be needed for filling than for discharging a machine (see 

Section 2.1.3). In the case that 𝐼𝐵𝐶𝑗,𝑟,𝑖,𝑘
𝑖𝑛 > 𝐼𝐵𝐶𝑗,𝑟,𝑖,𝑘

𝑜𝑢𝑡 , the number of IBCs that leave the production status 

(i.e., 𝐼𝐵𝐶𝑗,𝑟,𝑖,𝑘
𝑖𝑛 − 𝐼𝐵𝐶𝑗,𝑟,𝑖,𝑘

𝑜𝑢𝑡 ), become available consecutively after filling machine 𝑘 for a duration of 

𝑓𝑖𝑙𝑙𝑡𝑖𝑚𝑒𝑘
𝐼𝐵𝐶. An IBC that leaves the production process changes its status to cleaning. At first, this IBC 

needs to transport from machine 𝑘 ∈ 𝑀 to the IBC-cleaning stations with a duration of 𝑡𝑟𝑎𝑛𝑠𝑝𝑘
𝐼𝐵𝐶. A single 

IBC-cleaning station can clean one IBC at a time with a duration that is denoted by 𝑐𝑙𝑒𝑎𝑛𝑖𝑛𝑔𝐼𝐵𝐶. Finally, 
let 𝐼𝐵𝐶𝑝𝑟𝑒𝑣 be the number of IBCs at the IBC-cleaning station at the start of the new schedule. 
 
Figure 42 illustrates the IBC-usage of a job. The Gantt chart shows the operations on the machines and the 
stacked line chart shows the status of the IBCs over time. Regarding the latter, the blue and the red area 
indicate, respectively, the number of IBCs in production and cleaning. 
 
We enumerate the number of IBCs in production and in cleaning every time that an IBC changes its status. 
An IBC changes its status once it (i) starts production, (ii) finishes production and starts cleaning, and (iii) 
finishes cleaning. To illustrate this, consider the example in Figure 42. The first operation needs four IBCs 

during the whole process (𝐼𝐵𝐶𝑖𝑛 = 𝐼𝐵𝐶𝑜𝑢𝑡 = 4). The second operation requires four IBCs for replenishing 

and three IBCs for discharging (𝐼𝐵𝐶𝑖𝑛 = 4, 𝐼𝐵𝐶𝑜𝑢𝑡 = 3). Therefore, the first IBC replenishes machine 𝑘 

with a duration of 𝑓𝑖𝑙𝑙𝑡𝑖𝑚𝑒𝑘
𝐼𝐵𝐶 = 10, and after that, this IBC changes its status from production to 

cleaning. Subsequently, this IBC transports from machine 𝑘 to the IBC-cleaning station with a duration of 

𝑡𝑟𝑎𝑛𝑠𝑝𝑘
𝐼𝐵𝐶 = 10. When the IBC arrives at the IBC-cleaning station, it enters the queue for cleaning with a 

duration of 𝑐𝑙𝑒𝑎𝑛𝑖𝑛𝑔𝐼𝐵𝐶 = 10. After cleaning, the IBC becomes available again for production. The 
remaining three IBCs that are still in production fill the machine for the third operation and then transport 
to the IBC-cleaning station consecutively. Note that there are five IBCs in cleaning at the start of the new 
production schedule (𝐼𝐵𝐶𝑝𝑟𝑒𝑣 = 5). These IBCs form a queue at the cleaning station. Therefore, these IBCs 

are clean after one hour (𝑡𝑟𝑎𝑛𝑠𝑝𝑘
𝐼𝐵𝐶 + 5 ∙ 𝑐𝑙𝑒𝑎𝑛𝑖𝑛𝑔𝐼𝐵𝐶 = 10 + 50).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 42 | Example of IBC-usage  
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Appendix 6 Random construction heuristic pseudo code 
Section 4.6.1 describes a random construction heuristic (RCH) that randomly generates a solution for the 
purpose to benchmark the performance of the improvement heuristics. We extend this heuristic such that 
it can deal with sequencing constraints (e.g., the claim constraints as described in Section 2.2.2). Figure 43 
provides a pseudo-code of the RCH for the purpose to enhance the model’s credibilit  and reproducibilit . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Random construction heuristic 

1 Initialize JobsToSchedule, 𝐶𝑜𝑢𝑛𝑡𝐼𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 ← 0 
2 While JobsToSchedule.Count > 0 do 
3  𝑗 ← GetRandom(JobsToSchedule) 
4  If 𝐽𝑜𝑏[𝑗]. 𝑁𝑟𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 = 0 then  
5   𝑟 ← GetRandom(𝐽𝑜𝑏[𝑗]. 𝑅𝑜𝑢𝑡𝑒) else 𝑟 ← 𝐽𝑜𝑏[𝑗]. 𝑂𝑛𝑅𝑜𝑢𝑡𝑒 
6  End 
7  𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 𝐽𝑜𝑏[𝑗]. 𝑁𝑟𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑  
8  For 𝑖 = 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 to 𝐽𝑜𝑏[𝑗]. 𝑅𝑜𝑢𝑡𝑒[𝑟]. 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛. 𝐶𝑜𝑢𝑛𝑡 do 
9   𝑘 ← GetRandom(𝐽𝑜𝑏[𝑗]. 𝑅𝑜𝑢𝑡𝑒[𝑟]. 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛[𝑖].𝑀𝑎𝑐ℎ𝑖𝑛𝑒) 

10   𝑝𝑜𝑠 ← GetRandom(𝑉𝑠⃑⃑ ⃑⃑ ) 

11   𝑉𝑠⃑⃑ ⃑⃑ .Insert(index = 𝑝𝑜𝑠, value= 𝑗) 

12   𝑉𝑚⃑⃑ ⃑⃑ ⃑⃑ .Insert(index = 𝑝𝑜𝑠, value= 𝑘) 
13   If ClaimConstraintsSatisfied(𝑘, 𝑝𝑜𝑠) then 
14    Increment(𝐽𝑜𝑏[𝑗]. 𝑁𝑟𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑) 
15    If 𝑡 = 𝐽𝑜𝑏[𝑗]. 𝑅𝑜𝑢𝑡𝑒[𝑟]. 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛. 𝐶𝑜𝑢𝑛𝑡 then 
16     JobsToSchedule.Delete(𝑗) 
17    End 
18   ElseIf 𝐶𝑜𝑢𝑛𝑡𝐼𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 = 𝐿𝑖𝑚𝑖𝑡 then 

19    𝑝𝑜𝑠 ← 𝑉𝑠⃑⃑ ⃑⃑ .Count  

20    𝑉𝑠⃑⃑ ⃑⃑ .Insert(indexRange = [𝑝𝑜𝑠, 𝑝𝑜𝑠 + 1], value= 𝑑𝑢𝑚𝑚𝑦) 

21    𝑉𝑚⃑⃑ ⃑⃑ ⃑⃑ .Insert(indexRange = [𝑝𝑜𝑠, 𝑝𝑜𝑠 + 1], value= 𝑘) 

22    𝑉𝑠⃑⃑ ⃑⃑ .Insert(index = 𝑝𝑜𝑠 + 2, value= 𝑗) 

23    𝑉𝑚⃑⃑ ⃑⃑ ⃑⃑ .Insert(index = 𝑝𝑜𝑠 + 2, value= 𝑘) 
24    𝐶𝑜𝑢𝑛𝑡𝐼𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 ← 0  
25   Else 
26    Increment(𝐶𝑜𝑢𝑛𝑡𝐼𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒) 

27    𝑉𝑠⃑⃑ ⃑⃑ .Delete(index = 𝑝𝑜𝑠) 

28    𝑉𝑚⃑⃑ ⃑⃑ ⃑⃑ .Delete(index = 𝑝𝑜𝑠) 
29    Break for loop 
30   End 
31  End 
32 End 

33 DecodeSchedule(𝑉𝑠⃑⃑ ⃑⃑ , 𝑉𝑚⃑⃑ ⃑⃑ ⃑⃑ ) 

Figure 43 | Pseudo-code of the random construction heuristic 
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Appendix 7 NEH construction heuristic pseudo code 
Section 4.6.2 describes the NEH construction heuristic that we extend such that it can deal with sequencing 
constraints. Figure 44 provides a pseudo-code of this heuristic for the purpose to enhance the model’s 
credibility and reproducibility. 
 

 
 

 
 
 
  

Extended NEH construction heuristic 

1 Initialize JobsToSchedule.Sort.Descending(𝑇𝐴𝑃𝑇𝑗), 𝑖𝑡𝑒𝑚 ← 0 

2 While JobsToSchedule.Count > 0 do 
3  𝑗 ← JobsToSchedule[𝑖𝑡𝑒𝑚] 
4  If 𝐽𝑜𝑏[𝑗]. 𝑁𝑟𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 = 0 then 
5   𝑟 ← GetRandom (𝐽𝑜𝑏[𝑗]. 𝑅𝑜𝑢𝑡𝑒) else 𝑟 ← 𝐽𝑜𝑏[𝑗]. 𝑂𝑛𝑅𝑜𝑢𝑡𝑒 
6  EndIf 
7  Initialize 𝐵𝑒𝑠𝑡𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 ← ∞, 𝐹𝑜𝑢𝑛𝑑𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒 ← 𝐹𝑎𝑙𝑠𝑒, 𝑖 ← 𝐽𝑜𝑏[𝑗]. 𝑁𝑟𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 
8  For 𝑘 in 𝐽𝑜𝑏[𝑗]. 𝑅𝑜𝑢𝑡𝑒[𝑟]. 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛[𝑖].𝑀𝑎𝑐ℎ𝑖𝑛𝑒 do 
9   For 𝑝𝑜𝑠 in 𝑉𝑠⃑⃑ ⃑⃑  do 
10    𝑉𝑠⃑⃑ ⃑⃑ .Insert(index = 𝑝𝑜𝑠, value= 𝑗) 
11    𝑉𝑚⃑⃑ ⃑⃑ ⃑⃑ .Insert(index = 𝑝𝑜𝑠, value= 𝑘) 
12    If ClaimConstraintsSatisfied(𝑘, 𝑝𝑜𝑠) then 
13     𝐶𝑢𝑟𝑟𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 ← CalculateObjective(𝑉𝑠⃑⃑ ⃑⃑ , 𝑉𝑚⃑⃑ ⃑⃑ ⃑⃑ ) 
14     𝐹𝑜𝑢𝑛𝑑𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒 ← 𝑇𝑟𝑢𝑒  
15     If 𝐶𝑢𝑟𝑟𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 < 𝐵𝑒𝑠𝑡𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 then 
16      𝐵𝑒𝑠𝑡𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 ← 𝐶𝑢𝑟𝑟𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒, 𝐵𝑒𝑠𝑡_𝑘 ← 𝑘, 𝐵𝑒𝑠𝑡_𝑝𝑜𝑠 ← 𝑝𝑜𝑠   
17     EndIf 
18    𝑉𝑠⃑⃑ ⃑⃑ .Delete(index = 𝑝𝑜𝑠) 
19    𝑉𝑚⃑⃑ ⃑⃑ ⃑⃑ .Delete(index = 𝑝𝑜𝑠) 
20   End 
21  End 
22  If 𝐹𝑜𝑢𝑛𝑑𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒 then 
23   𝑉𝑠⃑⃑ ⃑⃑ .Insert(index = 𝐵𝑒𝑠𝑡_𝑝𝑜𝑠, value= 𝑗) 
24   𝑉𝑚⃑⃑ ⃑⃑ ⃑⃑ .Insert(index = 𝐵𝑒𝑠𝑡_𝑝𝑜𝑠, value= 𝐵𝑒𝑠𝑡_𝑘) 
25   Increment(𝐽𝑜𝑏[𝑗]. 𝑁𝑟𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑), 𝑖𝑡𝑒𝑚 ← 0 
26   If 𝐽𝑜𝑏[𝑗]. 𝑁𝑟𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 = 𝐽𝑜𝑏[𝑗]. 𝑅𝑜𝑢𝑡𝑒[𝑟]. 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛. 𝐶𝑜𝑢𝑛𝑡 then 
27    JobsToSchedule.Delete(𝑖𝑡𝑒𝑚) 
28   EndIf 
29  ElseIf 𝑖𝑡𝑒𝑚 = JobsToSchedule.Count then 
30   𝑝𝑜𝑠 ← 𝑉𝑠⃑⃑ ⃑⃑ .Count 
31   𝑉𝑠⃑⃑ ⃑⃑ .Insert(indexRange = [𝑝𝑜𝑠, 𝑝𝑜𝑠 + 1], value= 𝑑𝑢𝑚𝑚𝑦) 
32   𝑉𝑚⃑⃑ ⃑⃑ ⃑⃑ .Insert(indexRange = [𝑝𝑜𝑠, 𝑝𝑜𝑠 + 1], value= 𝑘) 
33   𝑉𝑠⃑⃑ ⃑⃑ .Insert(index = 𝑝𝑜𝑠 + 2, value= 𝑗) 
34   𝑉𝑚⃑⃑ ⃑⃑ ⃑⃑ .Insert(index = 𝑝𝑜𝑠 + 2, value= 𝑘) 
35  Else 
36   Increment(𝑖𝑡𝑒𝑚) 
37  EndIf 
38 End 
39 DecodeSchedule(𝑉𝑠⃑⃑ ⃑⃑ , 𝑉𝑚⃑⃑ ⃑⃑ ⃑⃑  ) 

Figure 44 | Pseudo code extended NEH construction heuristic 
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Appendix 8 Neighborhood structure parameters tuning 
This section describes the tuning process of the neighborhood structure that makes the tradeoff between 
diversifying and intensifying the neighborhood search. Recall that this neighborhood structure first 
intensively searches the current search space by using the small neighborhood operators. After having 
searched the current space and the limit on the number of attempts for finding a better solution 
(𝑐𝑜𝑢𝑛𝑡𝑠𝑡𝑜𝑝) is reached, we use the operator N4 (change the production route) to identify a new search 

space. Therefore, it is necessary to determine the parameter 𝑐𝑜𝑢𝑛𝑡𝑠𝑡𝑜𝑝. To achieve this, we first consider 

the following values for 𝑐𝑜𝑢𝑛𝑡𝑠𝑡𝑜𝑝 {25; 50; 75; 100; 125; 150; 175; 200}. For each 𝑐𝑜𝑢𝑛𝑡𝑠𝑡𝑜𝑝 scenario, we 

conduct 3 replications (i.e., solving every scenario 3 times with the same parameter settings to provide 
statistically significant results). In each replication, we use the NEH construction heuristic and the SA 
improvement heuristic of which the parameter values are described in Appendix 9. Table 31 provides the 
experiments including the CPU time and the objective value per scenario, of which the standard deviation 
is reported between brackets.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Following from the results from Table 31, we observe that scenario 1, which has the lowest 𝑐𝑜𝑢𝑛𝑡𝑠𝑡𝑜𝑝 

value provides the best objective values. To evaluate whether 𝑐𝑜𝑢𝑛𝑡𝑠𝑡𝑜𝑝 = 25 provides the best results 

concerning the objective value, we perform an extra tuning experiment with the following values for 
𝑐𝑜𝑢𝑛𝑡𝑠𝑡𝑜𝑝 {5; 10; 15; 20; 25; 30; 35}. The results of these experiments are in Table 32. 

 
 

 
 
 
 
 
 
 
 
 
 
From the results in Table 32, we choose to select the parameter values of scenario 1, as these provide the 
best objective values. 
 
  

Scenario 𝒄𝒐𝒖𝒏𝒕𝒔𝒕𝒐𝒑  Objective CPU time (s) 

1 25 7713.3 (95.7) 107.3 (1.2) 

2 50 7964.7 (131.9) 107.7 (0.5) 

3 75 7903.0 (65.5) 108.5 (0.8) 

4 100 7906.0 (87.3) 114.0 (3.9) 

5 125 7982.7 (199.9) 112.5 (6.1) 

6 150 7997.7 (53.1) 110.5 (0.6) 

7 175 8145.3 (62.9) 108.5 (0.6) 

8 200 8272.7 (150.8) 109.6 (6.8) 

Scenario 𝒄𝒐𝒖𝒏𝒕𝒔𝒕𝒐𝒑  Objective CPU time (s) 

1 5 7615.0 (87.3) 111.7 (1.8) 

2 10 7690.7 (23.5) 115.0 (0.8) 

3 15 7649.3 (40.0) 111.4 (3.3) 

4 20 7710.7 (130.8) 113.4 (4.8) 

5 25 7725.7 (93.1) 114.2 (4.0) 

6 30 7954.7 (126.3) 116.0 (1.5) 

7 35 7783.7 (162.5) 116.8 (0.7) 

Table 31 | Neighborhood structure parameter tuning 

Table 32 | Neighborhood structure detailed parameter tuning 
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Appendix 9 Simulated annealing parameters tuning 
This section describes the tuning process of the simulated annealing (SA) parameters. At first, we choose 
to determine the start temperature of the heuristic by solving instance 3 (see Section 5.1) with SA with a 
starting temperature of 250. We set the Markov chain length at 500 and the cooling factor at 0.99. Every 
time the Markov chain is at its end, we store the acceptance ratio (i.e., the number of accepted neighbors 
divided by the number of generated neighbors) of that Markov chain. The results are in Figure 45. 
  
 
 
 
 
 
 
 
 
 
 
 
 
  
We choose to set the starting temperature at 100, which results in an acceptance ratio of about 0.75. We 
choose not to start with a larger acceptance ratio since the NEH construction heuristic generates good 
initial solutions. Therefore, we argue that a large acceptance ratio might worsen the initial solution in the 
beginning, resulting in computational waste. 
 
Next, we consider the following Markov chain length values {250; 500; 750} and the following values for 
the decrease factor {0.985; 0.9875; 0.99; 0.9925}. For each combination of the Markov chain length and 
decrease factor, we conduct 3 replications (i.e., solving every scenario 3 times with the same parameter 
settings to provide statistically significant results). Table 33 provides the experiments including the CPU 
time and the objective value per scenario, of which the standard deviation is reported between brackets. 
Moreover, Figure 46 depicts the results. From these results, we choose to select the parameter values of 
scenario 11, as these give a good compromise between the CPU time and the solution quality. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Scenario 
Start 
temperature 

Markov 
chain length 

Decrease 
factor Objective CPU time (s) 

1 100 250 0.985 8497.0 (209.2) 30.4 (0.7) 

2 100 250 0.9875 8568.7 (178.4) 36.6 (2.1) 

3 100 250 0.99 8241.7 (164.1) 42.3 (0.1) 

4 100 250 0.9925 8023.0 (82.6) 54.8 (0.3) 

5 100 500 0.985 8131.0 (100.5) 54.5 (0.1) 

6 100 500 0.9875 7959.3 (111.8) 65.2 (0.3) 

7 100 500 0.99 7735.7 (105.9) 83.4 (1.8) 

8 100 500 0.9925 7583.0 (120.5) 112.0 (0.8) 

9 100 750 0.985 7868.3 (192.9) 83.8 (1.1) 

10 100 750 0.9875 7829.0 (155.0) 103.7 (7.4) 

11 100 750 0.99 7460.7 (93.9) 144.4 (1.2) 

12 100 750 0.9925 7413.7 (122.4) 187.5 (4.6) 

Figure 46 | Computational time compared to the 
objective value per scenario 

Figure 45 | Neighbor acceptance ratio per temperature 

Table 33 | Simulated annealing parameter tuning 
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Appendix 10 Tabu lists length tuning 
This section describes the tuning process of the tabu list length. As we consider a tabu list for each 
neighborhood operator, we should set the tabu list length for the (i) swap operator, (ii) move operators, 
and (iii) the change production route operator. 
 
There are many different swap- and move neighbors. However, the number of jobs that can change the 
production route is limited. Therefore, we consider the same tabu list length for the swap and move 
operators and a separate tabu list length for the change production route operator. The tabu list lengths 
that we consider are {25; 50; 75}. For each tabu list length configuration scenario, we conduct 3 
replications (i.e., solving every scenario 3 times with the same parameter settings to provide statistically 
significant results). Table 34 provides the full factorial experiment including the CPU time and the objective 
value per scenario, of which the standard deviation is reported between brackets.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From the results in Table 34, we choose to select the parameter values of scenario 8, as these provide the 
best objective values. Note that the length of the change production route tabu list is lower than the length 
of the swap and move tabu lists. This might be due to the limited number of neighbors for the change 
route operator compared to the other operators. Also, note that the CPU time does not vary between the 
scenarios. A possible explanation is that when the tabu list lengths are short (e.g., scenario 1), extra time 
is spent on evaluating neighbors that have been visited twice and less time is spent on checking the tabu 
lists for tabu neighborhood operators. On the other hand, scenarios with long tabu lists (e.g., scenario 9) 
might spend less time on evaluating neighbor solutions that have been visited twice and more time on 
checking the tabu lists for tabu neighborhood operators.  
  

Scenario 
Move & Swap 
tabu list length 

Change route 
tabu list length Objective CPU time (s) 

1 25 25 7738.7 (15.5) 91.7 (1.1) 

2 25 50 7731.7 (17.5) 91.5 (1.1) 

3 25 75 7819.0 (96.0) 91.2 (1.5) 

4 50 25 7726.0 (40.4) 91.1 (1.2) 

5 50 50 7609.0 (145.2) 91.1 (0.4) 

6 50 75 7815.0 (165.0) 91.3 (0.7) 

7 75 25 7786.7 (237.2) 90.6 (0.7) 

8 75 50 7532.7 (174.0) 92.1 (0.6) 

9 75 75 7831.3 (54.5) 91.2 (0.9) 

Table 34 | Tabu list length parameter tuning 
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Appendix 11 Claim constraint verification procedure 
The output of the model gets verified by several procedures to enhance the model's credibility and to 
ensure food safety by preventing incorrect schedules that might lead to cross-contamination of allergens, 
as described in Section 6.3. The pseudo-code in Figure 47 illustrates a verification procedure that checks 
whether the claim constraints (see Section 2.2.2) are satisfied. This function returns true when all claim 
constraints are satisfied, and false otherwise. 
 
 

Verification of claim constraints 

1 For 𝑘 in 𝑀 do 
2  For 𝑝𝑜𝑠 in 𝑀𝑎𝑐ℎ𝑖𝑛𝑒[𝑘]. 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 do 
3   𝑜𝑗,𝑟,𝑖 ← 𝑀𝑎𝑐ℎ𝑖𝑛𝑒[𝑘]. 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒[𝑝𝑜𝑠]  

4   For 𝑐 in 𝐶𝑙𝑎𝑖𝑚𝑠 do 
5    If 𝑜𝑗,𝑟,𝑖. 𝐶𝑙𝑎𝑖𝑚[𝑐] = "𝑐𝑒𝑟𝑡𝑖𝑓𝑖𝑒𝑑" then 

6     For 𝑝𝑟𝑒𝑣 = 𝑚𝑎𝑥{0, 𝑝𝑜𝑠 − 1} downto 𝑚𝑎𝑥{0, 𝑝𝑜𝑠 − 2} do 
7      𝑜𝑗′,𝑟′,𝑖′ . 𝐶𝑙𝑎𝑖𝑚[𝑐] ← 𝑀𝑎𝑐ℎ𝑖𝑛𝑒[𝑘]. 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒[𝑝𝑟𝑒𝑣]  

8      If 𝑜𝑗′,𝑟′,𝑖′ . 𝐶𝑙𝑎𝑖𝑚[𝑐] = "𝑛𝑜𝑛 − 𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒" then 

9       Return 𝐹𝑎𝑙𝑠𝑒 
10      EndIf 
12     End 
13    EndIf 
14   End 
15  End 
16 End 
17 Return 𝑇𝑟𝑢𝑒  

 

  

Figure 47 | Pseudo code that verifies whether the claim constraints are satisfied 
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Appendix 12 Problem instances | configuring eligible production routes 
The data of Euroma currently lacks the eligible production routes per job. Therefore, this section explains 
how we obtain the eligible production routes per production job based on historical data. For further 
reference, Section 2.1.3 describes production routes and Appendix 3 provides technical information 
regarding production routes. 
 
At first, whether a production route is eligible for a job depends among others on the job quantity, whether 
the job needs sieving, and the final package unit of the job. Table 35 presents all the available production 
routes, including the job requirements for that production route to be eligible, and the corresponding 
mixing and packaging machines.  
 
Euroma currently does not have a dataset with the minimum and maximum quantity per job per 
production route. The ERP system only contains a set of possible quantities per job that are linked to one 
or multiple eligible production routes. However, only some eligible production routes are stored in the 
dataset, as setting up these production routes in the ERP system is a manual task, which is very time-
consuming. Therefore, to obtain the full set of eligible production routes, we extract the job quantities 
produced per machine over the period 09-10-2020 until 11-03-2021 from the ESA database, where 
N=4563. We set the minimum and maximum quantity per machine at the 10th and 90th percentile, 
respectively. 
 
Besides that, routes 17 and 18 only allow one IBC, as the Z409 mixer rotates one single IBC at the time, as 
described in Section 2.1.2. 
 
 

 Job requirements Mixing Packaging 

Route 
Nr 

Job quantity 
(kg) 

Sieve in 
route 

Final package 
unit Filling Mixer 

Discharge 
unit 

Discharge 
machine 

1 [20-199] Yes Bag Manual Z401 Bag  - 

2 [200-1100] Yes Bag IBC Z402 Bag  - 

3 [270-2500] Yes Big bag IBC Z403 IBC Z420 

4 [270-2500] Yes Bag IBC Z403 IBC Z410 

5 [270-2500] Yes Bag IBC Z403 Big bag Z412 

6 [270-2500] No Big bag IBC Z403 Big bag  - 

7 [900-3400] Yes Big bag IBC Z404 IBC Z420 

8 [900-3400] Yes Bag IBC Z404 IBC Z410 

9 [900-3400] Yes Bag IBC Z404 Big bag Z412 

10 [900-3400] No Big bag IBC Z404 Big bag  - 

11 [270-2500] Yes Big bag IBC Z405 IBC Z420 

12 [270-2500] Yes Bag IBC Z405 IBC Z410 

13 [270-2500] Yes Bag IBC Z405 Big bag Z412 

14 [270-2500] No Big bag IBC Z405 Big bag  - 

15 [1700-7500] Yes Big bag IBC/silo Z407 Big bag  - 

16 [1700-7500] Yes Big bag IBC/silo Z408 Big bag  - 

17 [200-1100] Yes Big bag 1 IBC Z409 IBC Z420 

18 [200-1100] Yes Bag 1 IBC Z409 IBC Z410 

 
For an example of selecting eligible production routes for a job, consider a job with a quantity of 2200kg 
that does not require sieving and needs a big bag as the final package unit. This job can be produced on 
the production routes 3, 6, 7, 10, 11, 14, 15, and 16.   

Table 35 | Eligible production routes per job requirement 
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Appendix 13 Problem instances | setting the processing times 
This section provides an analysis of the processing times of the processes IBC-filling, mixing, and packaging.  
 
IBC-filling 
Euroma aims to have a processing time shorter than 45 minutes for every IBC at the IBC-filling station. 
Therefore, we set the processing time per IBC at the IBC-filling station at 45 minutes. 
 
Mixing 
The mixing process consist of (i) filling the mixer, (ii) mixing, (iii) adding liquids manually if required, and 
(iv) discharging the mixer. Figure 48 shows the filling time per IBC of the 3K, 4.5K, and the 10K mixers. This 
data was extracted from the ESA IBC transport log over the period 01-01-2020 until 31-12-2020. Together 
with the process engineers of Euroma, we decide to set the time to fill a mixer with one IBC at 15 minutes, 
as the majority of the IBCs are expected to complete the filling process within this time in the near future. 
 
 
 
 
 
 
 
 
 
 
 
 
 
We set the processing time of the mixing process at 15 minutes, as this is the maximum possible processing 
time according to the process engineers of Euroma since these processing times are pre-programmed. 
Besides that, in the case that a mixture requires liquids, we add an extra 15 minutes of processing time for 
the operator to manually dose the liquids. 
 
We set the time to discharge a mixture from the mixer into a big bag at 20 minutes per big bag. Besides 
that, Figure 49 shows that discharging the 3K and the 4.5K mixers takes on average 16 minutes per IBC. 
Together with the process engineers of Euroma, we decide to set the time to discharge a mixer with one 
IBC at 30 minutes, as the majority of the IBCs are expected to complete the discharging process within this 
time in the near future. Note that discharging the mixer takes more time than filling the mixer, as 
discharging the mixer requires additional activities such as sieving and weighing the product. 
 
 
 
 
 
 
 
 
 
 
  

Figure 48 | Time to fill a mixer with one IBC 

Figure 49 | Time to discharge a mixer with one IBC 
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Packaging 
After discharging the mixtures, some mixtures need packaging. Figure 50 provides a histogram of the 
average packaging speed in kilograms per minute per job of the Votech (Z410) packaging line. This data 
was extracted from the MES database over the period 05-01-2020 until 20-05-2021, where N=1124. 
Together with Euroma, we choose to set the processing speed at 67 bags per hour. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Furthermore, Figure 51 provides a histogram of the average packaging speed in kilograms per minute per 
job of the BTH (Z412) packaging line. This data was extracted from the MES database over the period 05-
01-2020 until 20-05-2021, where N=388. Together with Euroma, we choose to set the processing speed at 
33 bags per hour. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Dinnissen (Z420) has a packaging speed of between 15 and 20 minutes per big bag. We set the speed 
of this packaging line at 20 minutes per big bag.  
 
Besides that, we set 𝑡𝑟𝑎𝑛𝑠𝑝𝑘,𝑘′, which is the time to transport an IBC or a big bag between any two 

machines 𝑘 ∈ 𝑀𝑗,𝑟,𝑖 and 𝑘′ ∈ 𝑀𝑗,𝑟,𝑖  at 15 minutes. Moreover, the two IBC-cleaning stations each have a 

cleaning time of 𝑐𝑙𝑒𝑎𝑛𝑖𝑛𝑔𝐼𝐵𝐶 =16 minutes.  
 
The processing times are validated by the process engineer and the business analyst of Euroma. According 
to the experts, the processing times that we set seem reasonable. 
  

Figure 50 | Processing speed in bags per hour of the Votech (Z410) 

Figure 51 | Processing speed in bags per hour of the BTH (Z412) 
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Appendix 14 Problem instances | configuring the contamination matrix 
Recall from Section 2.2.2 that on IBC-filling stations, mixers, and packaging lines, cleaning between two 
consecutive jobs on the same machine is required when at least one of the following three conditions is 
applicable: (i) when producing a non-allergen product after an allergen product (containing, e.g., gluten, 
eggs, or sesame), (ii) when colors of two consecutive products can blend into another color, and (iii) when 
the raw materials of two products have different physical characteristics (e.g., aroma, particles structure, 
or stickiness). The data of Euroma currently lacks a contamination matrix. Therefore, this section explains 
how we obtain the contamination matrix. 
 
Also recall that there are two cleaning types: dry-cleaning and wet-cleaning. Wet-cleaning takes longer 
than dry-cleaning, as this cleaning type is more intensive. The type of cleaning depends on the colors, 
physical characters, and allergens of two consecutive products on the same machine. Next, this section 
explains how to determine the cleaning type. 
 
At first, wet cleaning is always required when sequencing a product that contains different allergens (e.g., 
gluten, soya, or celery) before a product that does not contain the same allergens. Moreover, tests were 
done in the laboratory of Euroma to determine which cleaning type is required based on the colors of the 
products. Table 36 provides the resulting contamination matrix regarding the colors, where “-” refers to 
no cleaning, “Dr ” refers to dr -cleaning, and “ et” refers to wet-cleaning. A similar contamination matrix 
was created in the laboratory for the physical characteristics.  
 
Table 36 | Color contamination matrix 

From/To White 
White-
green Gray Green 

Light 
brown Yellow 

Dark 
yellow Orange Red Brown 

Dark 
brown Black 

White - - - - - - - - - - - - 

White-green - - - - - - - - - - - - 

Gray - - - - - - - - - - - - 

Green Dry Dry Dry - - - - - - - - - 

Light brown Dry Dry Dry - - - - - - - - - 

Yellow Dry Dry Dry - - - - - - - - - 

Dark yellow Dry Dry Dry - - - - - - - - - 

Orange Wet Wet Wet Wet Dry Dry Dry - - - - - 

Red Wet Wet Wet Wet Wet Wet Wet - - - - - 

Brown Wet Wet Wet Wet Wet Dry Dry Dry - - - - 

Dark brown Wet Wet Wet Wet Wet Dry Dry Dry Dry Dry - - 

Black Wet Wet Wet Wet Wet Wet Wet Wet Wet Dry Dry - 

 
The cleaning duration depends on the cleaning type and the machines. Table 37 reports the cleaning 
duration per machine and cleaning type according to the control room operators. 
  

 
Finally, a script generates a table with the cleaning time between two consecutive jobs per machine based 
on the (i) allergens information, (ii) color matrix, (iii) physical character matrix, and (iv) the cleaning 
duration table. 

Cleaning type IBC Filling Z401 Z402 Z403 Z404 Z405 Z407 Z408 Z409 Z410 Z412 Z420 

Dry cleaning 10 45 45 30 30 30 75 75 - 45 45 45 

Wet cleaning 30 75 75 75 75 75 150 150 - 75 75 75 

Table 37 | Cleaning duration per machine and cleaning type 
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Appendix 15 Detailed results of experiment 1 
In Section 5.3.1, we choose to select the weight set {14%, 14%, 14%, 28%, 30%} based on problem 
instance 3. To evaluate whether this weight set is also appropriate for all other problem instances, this 
section provides the results of 10 replications per problem instance, of which the standard deviation is 
reported between brackets. 
 
Table 38 | Evaluating the selected weight set on all problem instances 

Instance 𝑪𝒎𝒂𝒙 𝑻𝒕𝒐𝒕 𝑪𝑻𝒕𝒐𝒕 𝑩𝑻𝒂𝒗𝒈 𝑰𝑩𝑪𝒎𝒂𝒙 Feasible CPU 

1 3:21:43:30 
(2:55:33) 

0 3:23:13:00 
(4:19:51) 

2:07:03 
(25:24) 

42.6  
(4.2) 

100% 85.0 
(1.1) 

2 3:12:30:30 
(2:05:33) 

0 3:03:10:30 
(4:34:35) 

2:05:16 
(22:03) 

43.0  
(3.2) 

100% 83.9 
(0.9) 

3 5:05:33:00 
(3:14:37) 

0 6:19:06:30 
(5:28:39) 

3:41:32 
(28:35) 

49.0  
(4.2) 

100% 137.0 
(2.1) 

4 4:19:55:48 
(2:40:26) 

0 5:08:40:00 
(5:26:46) 

3:06:36 
(29:17) 

47.0  
(3.3) 

100% 131.3 
(0.9) 

5 6:09:54:18 
(2:59:06) 

0 9:11:57:30 
(6:50:26) 

4:10:02 
(33:27) 

51.6  
(4.6) 

100% 182.9 
(1.5) 

6 6:13:27:42 
(3:21:55) 

0 9:07:37:00 
(6:21:39) 

4:15:01 
(35:25) 

53.5  
(4.6) 

100% 192.8 
(1.0) 

 
From the results in Table 38, we observe that the selected weight set finds feasible solutions for all 
problem instances over all replications. Therefore, we select this weight set for all other experiments. 
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Appendix 16 Detailed results of experiment 2 
Table 39 provides the detailed experimental results of Exp2 on the alternative model configurations per 
problem instance, as described in Section 5.2.1. For every problem instance and scenario, this experiment 
performs 10 replications. Section 5.3.2 provides a summary and an analysis of these results. 
 
Table 39 | Detailed results of experiment 2 

Ins Scn Configuration Obj 𝑪𝒎𝒂𝒙 𝑻𝒕𝒐𝒕 𝑪𝑻𝒕𝒐𝒕 𝑩𝑻𝒂𝒗𝒈 𝑰𝑩𝑪𝒎𝒂𝒙 Feasible CPU 

1 1 RCH, SIH, RN 54627 
53434 

10:00:58:42 
(15:02:46) 

39:05:13:36 
(7:13:14:28) 

13:06:56:30 
(6:13:42) 

3:17:42:40 
(6:47:56) 

355.9 
(18.1) 

0% 150.0 
(0.0) 

2 RCH, SIH, SN 55894 
52767 

10:03:51:48 
(11:05:53) 

38:11:23:36 
(6:20:15:45) 

13:02:50:30 
(7:28:45) 

3:16:03:09 
(3:24:50) 

357.9 
(15.5) 

0% 150.0 
(0.0) 

3 RCH, SA, RN 57035 
6994 

3:21:07:30 
(2:47:58) 

0 3:23:48:30 
(4:02:11) 

2:19:47 
(25:09) 

40.5 
(2.9) 

100% 83.2 
(1.5) 

4 RCH, SA, SN 56792 
7067 

3:21:01:30 
(1:47:56) 

0 4:03:17:30 
(4:06:17) 

2:14:12 
(24:51) 

41.0  
(2.4) 

100% 96.2 
(4.0) 

5 RCH, SATL, RN 55876 
7118 

3:22:49:30 
(2:05:51) 

0 4:03:10:00 
(6:15:52) 

2:19:09 
(28:53) 

41.1  
(2.8) 

100% 67.6 
(1.6) 

6 RCH, SATL, SN 57965 
7431 

3:22:03:00 
(2:10:09) 

0 4:07:59:00 
(5:40:58) 

3:25:27 
(33:10) 

48.8  
(5.0) 

100% 70.7 
(0.7) 

7 NEH, SIH, RN 20254 
20254 

5:11:01:18 
(7:47:45) 

13:12:45:00 
(1:09:26:17) 

7:05:00:00 
(6:33:08) 

17:21:28 
(2:13:29) 

114.2 
(20.8) 

0% 8.1 
(0.2) 

8 NEH, SIH, SN 20878 
20878 

5:09:58:06 
(4:52:41) 

14:05:07:00 
(1:20:58:14) 

7:08:06:00 
(8:45:59) 

18:30:22 
(3:11:14) 

116.9 
(17.1) 

0% 8.8 
(0.1) 

9 NEH, SA, RN 20314 
6982 

3:21:43:30 
(2:55:33) 

0 3:23:13:00 
(4:19:51) 

2:07:03 
(25:24) 

42.6  
(4.2) 

100% 85.0 
(1.1) 

10 NEH, SA, SN 20294 
7018 

3:22:00:00 
(2:21:34) 

0 4:01:25:00 
(5:30:52) 

2:12:17 
(20:34) 

42.2  
(3.2) 

100% 104.4 
(12.8) 

11 NEH, SATL, RN 20110 
7228 

4:01:16:00 
(3:08:15) 

0 4:04:43:30 
(4:11:15) 

2:22:38 
(30:52) 

40.3  
(3.4) 

100% 73.1 
(1.2) 

12 NEH, SATL, SN 20524 
7473 

3:22:47:30 
(1:44:35) 

0 4:10:04:00 
(2:51:59) 

3:26:39 
(32:23) 

46.5  
(3.3) 

100% 112.6 
(8.5) 

2 1 RCH, SIH, RN 55017 
51328 

10:03:01:48 
(16:39:58) 

34:00:12:12 
(4:16:13:36) 

11:09:52:00 
(4:44:08) 

3:15:54:52 
(4:28:44) 

353.1 
(19.0) 

0% 150.0 
(0.0) 

2 RCH, SIH, SN 51397 
47529 

10:02:35:48 
(21:37:12) 

28:01:58:24 
(3:04:02:27) 

11:03:01:00 
(7:59:40) 

3:14:14:19 
(6:36:33) 

344.9 
(18.7) 

0% 150.0 
(0.0) 

3 RCH, SA, RN 55276 
6409 

3:14:30:00 
(1:36:36) 

0 3:02:45:00 
(4:49:03) 

2:01:21 
(20:02) 

43.7  
(4.0) 

100% 81.9 
(1.0) 

4 RCH, SA, SN 55988 
6440 

3:13:54:00 
(3:28:56) 

0 3:04:04:00 
(4:09:39) 

2:13:11 
(30:26) 

46.6  
(4.1) 

100% 103.1 
(9.1) 

5 RCH, SATL, RN 54945 
6613 

3:15:07:30 
(2:22:57) 

0 3:08:17:30 
(6:02:48) 

2:13:20 
(33:31) 

45.5  
(4.1) 

100% 70.2 
(2.5) 

6 RCH, SATL, SN 56682 
6809 

3:14:03:30 
(2:23:11) 

0 3:08:50:00 
(3:10:20) 

3:33:43 
(32:29) 

52.8  
(3.9) 

100% 69.0 
(0.6) 

7 NEH, SIH, RN 18602 
18602 

5:00:53:54 
(7:12:52) 

10:06:58:06 
(1:21:03:35) 

6:05:09:30 
(7:35:34) 

18:52:28 
(2:04:49) 

146.8 
(14.3) 

0% 8.0 
(0.1) 

8 NEH, SIH, SN 18461 
18461 

4:23:25:06 
(9:28:35) 

10:03:51:48 
(2:14:28:24) 

6:06:26:30 
(5:09:49) 

17:54:12 
(2:09:01) 

137.5 
(13.9) 

0% 8.9 
(0.5) 

9 NEH, SA, RN 17937 
6385 

3:12:30:30 
(2:05:33) 

0 3:03:10:30 
(4:34:35) 

2:05:16 
(22:03) 

43.0  
(3.2) 

100% 83.9 
(0.9) 

10 NEH, SA, SN 17560 
6405 

3:14:09:00 
(2:11:46) 

0 3:02:55:30 
(4:37:27) 

2:03:34 
(29:04) 

44.2 
 (5.2) 

100% 90.0 
(1.8) 

11 NEH, SATL, RN 19134 
6641 

3:16:00:30 
(2:54:29) 

0 3:07:38:30 
(3:30:04) 

2:19:09 
(30:21) 

44.7  
(2.2) 

100% 71.8 
(0.9) 

12 NEH, SATL, SN 18554 
6844 

3:13:51:00 
(2:52:22) 

0 3:10:59:30 
(3:55:49) 

3:27:31 
(34:36) 

52.1  
(5.2) 

90% 92.8 
(16.4) 
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3 1 RCH, SIH, RN 68416 
66100 

18:08:10:36 
(1:06:00:34) 

65:07:53:36 
(6:09:59:50) 

18:03:01:00 
(10:03:13) 

6:11:57:47 
(8:16:47) 

542.2 
(30.3) 

0% 150.0 
(0.0) 

2 RCH, SIH, SN 69777 
64300 

17:18:12:18 
(22:27:32) 

59:00:46:00 
(9:14:08:31) 

17:23:27:00 
(9:18:05) 

6:13:40:41 
(10:07:16) 

532.2 
(28.9) 

0% 150.0 
(0.0) 

3 RCH, SA, RN 66491 
7390 

5:05:12:18 
(1:42:17) 

0 6:19:41:30 
(5:50:27) 

3:50:41 
(31:55) 

49.4  
(3.3) 

100% 133.1 
(2.3) 

4 RCH, SA, SN 65310 
7285 

5:04:48:54 
(2:02:31) 

0 6:16:33:00 
(9:04:43) 

3:33:56 
(19:01) 

49.5  
(2.2) 

100% 144.6 
(2.7) 

5 RCH, SATL, RN 67701 
7437 

5:05:42:42 
(4:04:09) 

0 6:22:14:30 
(8:20:48) 

4:00:25 
(28:35) 

50.3  
(5.5) 

100% 125.4 
(10.1) 

6 RCH, SATL, SN 69528 
7751 

5:04:27:00 
(2:45:11) 

0 7:02:49:00 
(3:41:52) 

5:26:35 
(32:06) 

59.7  
(6.9) 

60% 110.9 
(1.2) 

7 NEH, SIH, RN 21503 
21488 

7:05:59:42 
(8:41:42) 

21:16:55:36 
(3:10:47:42) 

10:16:42:00 
(4:15:57) 

1:01:18:11 
(2:47:53) 

170.5 
(21.2) 

0% 15.6 
(0.3) 

8 NEH, SIH, SN 22572 
22572 

7:22:27:36 
(13:48:21) 

24:01:36:18 
(4:13:23:02) 

10:10:58:30 
(6:06:39) 

1:01:46:58 
(2:30:09) 

157.8 
(21.1) 

0% 16.9 
(0.1) 

9 NEH, SA, RN 21809 
7370 

5:05:33:00 
(3:14:37) 

0 6:19:06:30 
(5:28:39) 

3:41:32 
(28:35) 

49.0  
(4.2) 

100% 137.0 
(2.1) 

10 NEH, SA, SN 21510 
7413 

5:05:22:00 
(3:14:40) 

0 6:21:41:00 
(4:54:14) 

3:44:27 
(19:35) 

47.5  
(3.4) 

100% 144.3 
(0.9) 

11 NEH, SATL, RN 22339 
7493 

5:06:56:30 
(2:46:46) 

0 6:21:46:30 
(4:54:04) 

4:00:16 
(22:05) 

51.0  
(2.4) 

100% 125.9 
(4.7) 

12 NEH, SATL, SN 22087 
7754 

5:04:31:42 
(2:59:24) 

0 7:03:09:30 
(3:15:55) 

5:28:23 
(38:29) 

60.5  
(5.6) 

60% 126.1 
(1.8) 

4 1 RCH, SIH, RN 55288 
54384 

17:06:52:18 
(21:39:04) 

46:20:43:54 
(10:19:30:18) 

17:17:17:30 
(8:18:16) 

5:05:51:38 
(11:34:11) 

468.0 
(32.9) 

0% 131.4 
(44.7) 

2 RCH, SIH, SN 56307 
53514 

17:04:20:54 
(21:03:37) 

44:13:05:12 
(4:13:34:49) 

17:15:17:30 
(7:49:42) 

5:04:35:40 
(6:12:08) 

473.6 
(29.5) 

0% 150.0 
(0.0) 

3 RCH, SA, RN 56729 
6561 

4:19:55:12 
(2:26:05) 

0 5:10:38:30 
(4:04:37) 

3:10:30 
(29:55) 

48.6  
(3.2) 

100% 128.8 
(0.8) 

4 RCH, SA, SN 56689 
6604 

4:20:36:24 
(1:11:39) 

0 5:10:36:30 
(5:08:26) 

3:17:47 
(23:13) 

51.1  
(6.7) 

90% 137.9 
(1.9) 

5 RCH, SATL, RN 59289 
6652 

4:22:50:54 
(2:19:05) 

0 5:10:43:30 
(6:41:01) 

3:13:53 
(17:55) 

47.2  
(4.0) 

100% 121.3 
(9.1) 

6 RCH, SATL, SN 55633 
6941 

4:20:51:18 
(2:03:53) 

0 5:19:14:00 
(7:25:52) 

4:31:59 
(40:47) 

57.1  
(3.1) 

90% 106.2 
(5.1) 

7 NEH, SIH, RN 21625 
21625 

7:05:49:42 
(13:44:38) 

23:22:05:24 
(1:17:51:14) 

8:14:34:30 
(11:50:54) 

23:29:04 
(3:00:14) 

162.1 
(16.6) 

0% 14.5 
(0.2) 

8 NEH, SIH, SN 21135 
21131 

7:06:27:48 
(14:51:35) 

22:01:53:00 
(2:12:11:24) 

8:12:46:30 
(9:39:44) 

1:01:26:11 
(3:07:49) 

168.8 
(17.0) 

0% 15.6 
(0.1) 

9 NEH, SA, RN 21350 
6533 

4:19:55:48 
(2:40:26) 

0 5:08:40:00 
(5:26:46) 

3:06:36 
(29:17) 

47.0  
(3.3) 

100% 131.3 
(0.9) 

10 NEH, SA, SN 21461 
6560 

4:21:49:18 
(2:15:33) 

0 5:08:17:00 
(5:35:49) 

3:11:20 
(17:41) 

45.6  
(4.3) 

100% 137.7 
(5.2) 

11 NEH, SATL, RN 21441 
6752 

4:21:13:36 
(3:19:13) 

0 5:16:13:30 
(7:24:23) 

3:35:24 
(28:19) 

50.0 
 (4.4) 

100% 128.8 
(16.6) 

12 NEH, SATL, SN 22037 
6965 

4:20:54:42 
(2:49:11) 

0 5:21:08:30 
(5:09:44) 

4:23:22 
(26:41) 

54.3  
(3.3) 

100% 121.3 
(1.1) 

5 1 RCH, SIH, RN 85093 
82725 

23:12:51:36 
(1:11:34:54) 

102:01:34:30 
(11:01:58:51) 

24:02:36:30 
(7:54:53) 

7:23:57:46 
(12:27:04) 

668.2 
(25.9) 

0% 150.0 
(0.0) 

2 RCH, SIH, SN 85950 
82360 

23:02:28:24 
(1:16:43:35) 

97:22:04:06 
(9:00:18:16) 

24:06:07:30 
(10:32:22) 

8:03:52:20 
(15:12:08) 

660.9 
(19.5) 

0% 150.0 
(0.0) 

3 RCH, SA, RN 83074 
7519 

6:11:42:24 
(3:23:47) 

0 9:09:27:30 
(6:56:15) 

4:07:10 
(21:38) 

54.2  
(6.4) 

80% 174.7 
(1.2) 

4 RCH, SA, SN 80915 
7462 

6:09:35:06 
(2:44:55) 

0 9:07:52:30 
(6:23:29) 

4:12:35 
(24:19) 

52.4 
(4.5) 

90% 188.1 
(2.7) 
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5 5 RCH, SATL, RN 88901 
7677 

6:12:06:06 
(3:38:54) 

0 9:16:08:00 
(9:59:04) 

4:25:26 
(24:05) 

54.4  
(6.8) 

90% 149.6 
(1.6) 

6 RCH, SATL, SN 84338 
7905 

6:08:51:30 
(3:20:30) 

0 9:21:06:30 
(7:53:55) 

5:49:22 
(28:35) 

62.8 
(3.0) 

30% 154.4 
(9.7) 

7 NEH, SIH, RN 22029 
22029 

9:14:12:00 
(14:45:07) 

25:00:13:42 
(5:02:59:00) 

11:22:37:00 
(15:08:02) 

1:07:43:39 
(5:19:05) 

237.5 
(36.6) 

0% 22.9 
(0.3) 

8 NEH, SIH, SN 23606 
23601 

10:00:36:54 
(20:19:28) 

28:22:37:42 
(4:18:01:43) 

11:20:00:30 
(11:54:21) 

1:10:17:30 
(3:16:41) 

227.7 
(44.9) 

0% 25.3 
(0.3) 

9 NEH, SA, RN 24519 
7548 

6:09:54:18 
(2:59:06) 

0 9:11:57:30 
(6:50:26) 

4:10:02 
(33:27) 

51.6  
(4.6) 

100% 182.9 
(1.5) 

10 NEH, SA, SN 23420 
7521 

6:11:28:24 
(2:53:11) 

0 9:10:45:30 
(7:31:13) 

4:03:47 
(25:35) 

52.5  
(5.2) 

90% 189.8 
(6.6) 

11 NEH, SATL, RN 23999 
7770 

6:12:55:54 
(2:56:05) 

0 9:20:03:30 
(7:39:15) 

4:21:44 
(21:11) 

55.2  
(4.4) 

90% 158.5 
(3.3) 

12 NEH, SATL, SN 23997 
7941 

6:10:12:18 
(2:59:19) 

0 9:20:48:00 
(6:29:30) 

5:55:03 
(27:24) 

65.3  
(3.7) 

10% 162.8 
(5.0) 

6 1 RCH, SIH, RN 102553 
100442 

22:07:02:18 
(2:01:01:06) 

163:05:09:12 
(14:05:27:38) 

23:21:12:30 
(8:43:58) 

8:12:35:09 
(17:35:02) 

690.4 
(35.4) 

0% 150.0 
(0.0) 

2 RCH, SIH, SN 98686 
94880 

22:01:59:30 
(1:14:43:43) 

150:02:01:42 
(12:10:10:43) 

23:10:11:30 
(11:52:09) 

8:02:14:32 
(12:18:20) 

680.4 
(24.3) 

0% 150.0 
(0.0) 

3 RCH, SA, RN 99344 
7580 

6:15:09:00 
(2:31:00) 

0 9:09:05:00 
(7:45:00) 

4:07:28 
(25:37) 

50.4  
(3.0) 

100% 185.5 
(3.3) 

4 RCH, SA, SN 103542 
7615 

6:15:09:30 
(1:50:29) 

0 9:12:54:30 
(5:48:34) 

4:12:41 
(18:58) 

50.4  
(4.6) 

100% 208.2 
(8.8) 

5 RCH, SATL, RN 101289 
7758 

6:15:01:36 
(3:58:14) 

0 9:15:07:30 
(7:11:51) 

4:39:14 
(21:22) 

55.6 
(7.9) 

80% 157.8 
(2.5) 

6 RCH, SATL, SN 100923 
7975 

6:12:33:42 
(1:47:36) 

0 9:18:25:00 
(6:26:55) 

6:02:58 
(37:41) 

63.6  
(5.1) 

30% 184.8 
(32.4) 

7 NEH, SIH, RN 24317 
24311 

9:06:19:36 
(15:16:56) 

34:00:10:54 
(6:21:14:53) 

11:17:02:30 
(15:53:16) 

1:07:22:29 
(2:13:22) 

222.1 
(17.3) 

0% 24.9 
(0.3) 

8 NEH, SIH, SN 22527 
22523 

8:23:46:48 
(18:32:46) 

29:01:23:18 
(5:10:29:56) 

11:09:59:30 
(7:42:08) 

1:07:21:07 
(3:04:32) 

230.9 
(33.9) 

0% 28.2 
(1.4) 

9 NEH, SA, RN 25127 
7568 

6:13:27:42 
(3:21:55) 

0 9:07:37:00 
(6:21:39) 

4:15:01 
(35:25) 

53.5  
(4.6) 

100% 192.8 
(1.0) 

10 NEH, SA, SN 26006 
7539 

6:13:03:00 
(2:45:52) 

0 9:05:22:00 
(7:13:32) 

4:18:57 
(29:23) 

54.1  
(4.7) 

90% 204.1 
(1.5) 

11 NEH, SATL, RN 25050 
7822 

6:17:13:30 
(2:42:24) 

0 9:17:11:00 
(8:06:07) 

4:40:38 
(32:12) 

56.4  
(5.4) 

60% 165.8 
(1.6) 

12 NEH, SATL, SN 24749 
8054 

6:13:29:00 
(3:41:26) 

0 9:23:02:30 
(6:33:44) 

6:02:11 
(38:21) 

65.0  
(4.6) 

20% 172.5 
(4.9) 
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Appendix 17 Detailed results of experiment 3 
Table 40 provides the detailed experimental results of Exp3, which evaluates the effect of optimizing the 
schedules of the stages simultaneously compared to the current situation, which optimizes the stages 
separately, as described in Section 5.2.2. For every problem instance and scenario, this experiment 
performs 25 replications. Section 5.4.1 provides a summary and an analysis of these results. 
 
Table 40 | Detailed results of experiment 3 

Instance Scenario 𝑪𝒎𝒂𝒙 𝑻𝒕𝒐𝒕 𝑪𝑻𝒕𝒐𝒕 𝑩𝑻𝒂𝒗𝒈 𝑰𝑩𝑪𝒎𝒂𝒙 Feasible 

1 Current 
situation 

4:19:28:09 
(5:50:28) 

0 4:21:23:48 
(5:28:53) 

1:45:41 
(32:11) 

38.9 
(4.5) 

100% 

Simultaneous 
optimization 

4:07:54:36 
(29:13) 

0 3:17:33:48 
(3:22:02) 

2:52:35 
(27:34) 

47.3 
(4.3) 

100% 

2 Current 
situation 

4:02:24:14 
(6:33:56) 

15:20:40 
(19:23:35) 

4:03:32:12 
(4:02:06) 

2:24:59 
(31:51) 

42.5 
(4.9) 

100% 

Simultaneous 
optimization 

3:14:57:31 
(1:55:25) 

0 2:23:29:36 
(3:05:48) 

3:28:55 
(28:29) 

50.6 
(3.6) 

100% 

3 Current 
situation 

6:14:34:19 
(2:16:29) 

1:17:43:57 
(1:11:05:27) 

6:17:29:12 
(3:44:30) 

6:17:28 
(1:13:58) 

59.7 
(8.4) 

48% 

Simultaneous 
optimization 

6:14:46:26 
(1:47:45) 

0) 6:02:16:00 
(5:48:18) 

5:42:58 
(44:40) 

57.8 
(5.6) 

68% 

4 Current 
situation 

6:02:18:16 
(3:07:05) 

1:01:55 
(5:09:36) 

6:05:31:48 
(3:48:40) 

3:29:39 
(44:22) 

49.4 
(5.3) 

100% 

Simultaneous 
optimization 

6:00:18:21 
(2:30:39) 

0 5:08:02:48 
(5:53:42) 

4:47:54 
(35:45) 

56.9 
(5.3) 

72% 

5 Current 
situation 

8:03:59:12 
(2:44:52) 

3:55:00 
(10:51:49) 

8:03:59:24 
(6:17:01) 

7:55:15 
(1:01:03) 

71.0 
(6.5) 

4% 

Simultaneous 
optimization 

8:06:40:38 
(5:31:27) 

0 8:01:08:48 
(6:50:56) 

7:01:05 
(1:01:33) 

65.1 
(6.1) 

24% 

6 Current 
situation 

8:05:56:12 
(2:14:07) 

8:21:44:02 
(3:22:05:17) 

8:03:45:36 
(5:53:26) 

8:20:20 
(1:19:03) 

69.2 
(6.4) 

12% 

Simultaneous 
optimization 

8:10:41:48 
(3:50:35) 

3:42:48 
(10:25:43) 

8:01:18:00 
(9:24:02) 

7:17:50 
(51:50) 

66.9 
(6.7) 

20% 
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Appendix 18 Detailed results of experiment 4 
Table 41 provides the detailed experimental results of Exp4, which compares the ability to allow (i) only 
the default production route and (ii) changing the production route to any other eligible production route. 
 e refer to the first scenario as “ odel  default routes ” and to the second scenario as “ odel  eligible 
routes ”. For every problem instance and scenario, this experiment performs 25 replications. Section 5.4.1 
provides a summary and an analysis of these results. 
 
Table 41 | Detailed results of experiment 4 

Instance Scenario 𝑪𝒎𝒂𝒙 𝑻𝒕𝒐𝒕 𝑪𝑻𝒕𝒐𝒕 𝑩𝑻𝒂𝒗𝒈 𝑰𝑩𝑪𝒎𝒂𝒙 Feasible 

1 Model  
(default route) 

4:07:54:36 
(29:13) 

0 3:17:33:48 
(3:22:02) 

2:52:35 
(27:34) 

47.3  
(4.3) 

100% 

Model  
(eligible routes) 

3:22:08:00 
(2:28:58) 

0 3:23:49:00 
(4:21:03) 

2:09:02 
(24:04) 

41.2  
(3.9) 

100% 

2 Model  
(default route) 

3:14:57:31 
(1:55:25) 

0 2:23:29:36 
(3:05:48) 

3:28:55 
(28:29) 

50.6  
(3.6) 

100% 

Model  
(eligible routes) 

3:13:09:24 
(1:50:37) 

0 3:02:56:48 
(4:13:17) 

2:06:30 
(25:04) 

43.3  
(3.9) 

100% 

3 Model  
(default route) 

6:14:46:26 
(1:47:45) 

0 6:02:16:00 
(5:48:18) 

5:42:58 
(44:40) 

57.8  
(5.6) 

68% 

Model  
(eligible routes) 

5:05:05:48 
(2:24:30) 

0 6:18:23:24 
(6:40:45) 

3:59:05 
(45:07) 

49.7  
(4.8) 

100% 

4 Model  
(default route) 

6:00:18:21 
(2:30:39) 

0 5:08:02:48 
(5:53:42) 

4:47:54 
(35:45) 

56.9  
(5.3) 

72% 

Model  
(eligible routes) 

4:20:33:33 
(2:15:14) 

0 5:09:34:24 
(6:44:27) 

3:12:33 
(31:11) 

49.0  
(5.1) 

96% 

5 Model  
(default route) 

8:06:40:38 
(5:31:27) 

0 8:01:08:48 
(6:50:56) 

7:01:05 
(1:01:33) 

65.1  
(6.1) 

24% 

Model  
(eligible routes) 

6:08:44:38 
(2:50:49) 

0 9:07:49:48 
(8:59:09) 

4:11:00 
(33:01) 

52.1 
(5.4) 

92% 

6 Model  
(default route) 

8:10:41:48 
(3:50:35) 

0:03:42:48 
(10:25:43) 

8:01:18:00 
(9:24:02) 

7:17:50 
(51:50) 

66.9  
(6.7) 

20% 

Model  
(eligible routes) 

6:13:41:04 
(2:39:55) 

0 9:07:03:24 
(6:13:28) 

4:18:43 
(32:15) 

53.6  
(5.1) 

92% 
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Appendix 19 Statistical results on the evaluation of the model in practice 
Section 5.4.2 tests if there is a significant reduction in the cleaning time after implementing the model in 
practice. To test this, we perform a two-sample t-test in which we assume unequal variances. Moreover, 
we assume that all samples are independent identically distributed. We set alpha at 0.5%, resulting in a p-
value of 5.23662*10-14. Note that the p-value is smaller than alpha. Therefore, we reject the null 
hypotheses of equal average cleaning times per job before- and after implementation. The corresponding 
statistical results are in Table 42. 
 
 
 t-Test: Two-sample assuming unequal variances 

      
  Cleaning time per job (minutes) 

  
Before 

implementation 
After 

implementation 

Mean 30.95389871 19.03470025 
Variance 21.79836231 12.77060135 
Observations 31 21 
Hypothesized Mean 
Difference 0   
df 49   
t Stat 10.40870121   
P(T<=t) one-tail 2.61831E-14   
t Critical one-tail 2.40489176   
P(T<=t) two-tail 5.23662E-14   
t Critical two-tail 2.679951974   

Table 42 | Statistical results of the implementation of the model in practice 


