
LEARNING TO EXPLORE AND MAP
WITH EKF SLAM AND RL

B.T. (Bastian) van Manen

MSC ASSIGNMENT

Committee:
dr. ir. J.F. Broenink
N. Botteghi, MSc

dr. M. Poel

August 2021

056RaM2021
Robotics and Mechatronics

EEMathCS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

ii Learning to explore and map unknown environments with EKF-SLAM and RL

B.T. van Manen University of Twente

iii

Summary

A fundamental aspect of research in mobile robots is autonomous navigation. When Global
Positioning Systems (GPS) is not available, Simultaneous Localization And Mapping (SLAM)
provides a technique to infer the robot position and build a map of the unknown environment.
Extented Kalman Filter SLAM is one of the most popular filter SLAM methods.

This thesis implements a novel Reinforcement Learning (RL) based EKF SLAM algorithm for
exploration of static unknown environments. The proposed approach uses two hierarchically
structured RL policies for the generation of sensing locations and trajectories parameterized
by 3r d order Bézier curves. Additionally, the thesis focuses on exploring how EKF and RL can
be combined in a single framework to minimize the EKF uncertainties and improve the map
accuracy. While navigating in an unknown environment, the EKF SLAM combined with a Light
Detecting And Ranging (LIDAR) sensor provides the robot with an estimate of its current pose
along with the estimated position of the environment landmarks. A map is build in the form of
an occupancy grid by merging the estimated robot pose with the LIDAR data.

Afterwards, the high-level RL network selects informative sensing locations based on the occu-
pancy grid and the actual LIDAR output. The high-level policy assists the robot with obstacle
avoidance by only selecting sensing near the robot. To reach these sensing locations, a second
RL network is trained to compute an obstacle free trajectory that minimizes the uncertainty in
the EKF estimates.

The low-level RL agent manages the shape of the trajectory by modifying the positions of the
Bézier control points. The thesis explores two continuous reward functions to minimize the
EKF uncertainty. The first reward function computes the sum of the diagonal elements of the
Kalman gain. Whereas, the second reward function directly computes the sum of the diagonal
elements of the EKF covariance matrix holding the variances in the EKF estimates. To cover
obstacle avoidance in the learned policy, a final reward function is studied including a discrete
penalty upon collision with an obstacle.

At last, a path planner discretizes the chosen trajectory into a fixed amount points serving as
short term goals for a PD controller to compute appropriate motor control commands. The RL
and SLAM-based approach is implemented and tested in a 2D Python environment. Results
show that the low-level policy does manage to select trajectories that reduce the EKF uncer-
tainty. But the policy has more difficulty handling obstacle avoidance. The high-level policy
did not manage to perform better than random sensing locations when evaluating the map
coverage. The occupancy grids as well as the reward function likely did not provide enough
information for the high-level policy to converge. Longer training is also necessary. The tra-
jectory generation can be improved by adding a reward function based on the ground-truth
positions of the robot and the landmarks. Additionally, obstacle avoidance can better be incor-
porated into the reward function using an exponential of the distance between the robot and
the closest obstacle as a penalty. The high-level policy can further be improved by providing
large occupancy grids to the RL network. Large occupancy grids provide better accuracy of the
location of obstacles and unexplored areas. A reward function based on ground-truth maps
is also thought to be more effective compared than the simple visited landmark percentage
utilized until now.

Robotics and Mechatronics B.T. van Manen

iv Learning to explore and map unknown environments with EKF-SLAM and RL

B.T. van Manen University of Twente

v

Contents

1 Introduction 1

1.1 Autonomous navigation for mobile robots . 1

1.2 Exploring unknown environments with RL and EKF SLAM 1

1.3 Previous work . 2

1.4 Research questions and thesis contribution . 3

1.5 Thesis outline . 3

2 Background 4

2.1 Reinforcement Learning . 4

2.1.1 Markov Decision Process . 4

2.1.2 Partially Observable Markov Decision Process 5

2.1.3 Multilayer perceptron . 5

2.1.4 Deep Deterministic Policy Gradient . 7

2.1.5 Twin Delayed Deep Deterministic Policy Gradient 9

2.2 Simultaneous Localization And Mapping . 10

2.2.1 Introduction to Simultaneous Localization And Mapping 10

2.2.2 Extended Kalman Filter -Simultaneous Localization And Mapping 10

3 Related work 15

3.1 Research in exploration with RL . 15

3.2 Neural SLAM . 15

3.3 Towards dynamic environments . 16

3.4 Towards multi-agent exploration . 16

4 The proposed algorithm 17

4.1 Trajectory-based EKF SLAM architecture . 17

4.2 EKF SLAM implementation . 18

4.2.1 Overview . 18

4.2.2 Observation . 19

4.2.3 Localization and data association . 20

4.2.4 Mapper . 21

4.3 Sensing location extraction . 24

4.3.1 Network architecture . 24

4.3.2 Action space . 25

4.3.3 Reward function . 26

4.4 Trajectory generation . 26

4.4.1 Network architecture . 26

Robotics and Mechatronics B.T. van Manen

vi Learning to explore and map unknown environments with EKF-SLAM and RL

4.4.2 Action space . 27

4.4.3 Reward functions . 30

4.4.4 Evaluation metric . 31

4.5 Discretization . 32

4.6 PD controller . 33

4.7 Summary . 34

5 Simulation experiments and results 35

5.1 Experimental setup: 2D Python environment . 35

5.1.1 Custom environment . 35

5.1.2 Generation of random environments . 36

5.1.3 LIDAR simulator . 36

5.2 Training high- and low-level RL models without obstacle avoidance 37

5.2.1 Low-level model hyper-parameter tuning 38

5.2.2 Reward function comparison . 39

5.2.3 Low-level policy generalization . 41

5.2.4 High-level policy training . 42

5.2.5 Coverage evaluation . 43

5.3 Addition of obstacle avoidance . 44

5.3.1 Merging uncertainty minimization with obstacle avoidance 44

5.3.2 High-level policy retraining . 45

5.3.3 Trajectory-based SLAM algorithm evaluation 46

5.4 Discussion and recommendations . 48

5.5 Summary . 49

6 Conclusion 50

A Appendix 51

A.1 Mapper figures . 51

A.2 Low-level policy cubic polynomial parameterization 52

A.3 Randomizing custom environments . 54

A.4 Learning rate tuning results . 54

A.5 Reward function comparison . 55

A.6 Effect of the noise on the trajectory shape . 56

Bibliography 58

B.T. van Manen University of Twente

vii

Acronyms

ANN Artificial Neural Network

CVPR Computer Vision and Pattern Recognition

D4PG Distributed Distributional Deep Deterministic Policy Gradient

DDPG Deep Deterministic Policy Gradient

DQN Deeq Q-Network

EKF Extended Kalman Filter

GPS Global Positioning System

IMU Inertial Measurement Unit

LIDAR Light Detection And Ranging

LSTM Long Short-Term Memory

MDP Markov Decision Process

MLP Multi Layer Perceptron

OU Ornstein Uhlenbeck

POMP Partially Observable Markov Decision Process

RL Reinforcement Learning

SEIF Sparse Extented Information Filter

SLAM Simultaneous Localization And Mapping

TD Temporal Difference

TD3 Twin Delayed Deep Deterministic Policy Gradient

Robotics and Mechatronics B.T. van Manen

viii Learning to explore and map unknown environments with EKF-SLAM and RL

B.T. van Manen University of Twente

1

1 Introduction

1.1 Autonomous navigation for mobile robots

Over the years it has become essential for any mobile robot to have a navigation system that
tells the robot how to move around in an environment and reach a certain destination. Au-
tonomous navigation refers to the robot’s ability to perform all navigational tasks itself without
human intervention. The robot is in that case able to self-steer from one place to another based
on on-board computers and sensors. Autonomous navigation has already proven its usefulness
during the years and is currently widely used in factories, storage facilities and agriculture for
instance. Still, the market is expected to grow significantly in the next few years with projec-
tions ranging from US$ 8.5 billion by the end of 2025 (ReportLinker, 2021) to US$ 13.5 billion
in 2030 with demands coming from both commercial and military sectors (MarketsandMar-
kets, 2019). Additionally, upcoming technologies such as self-driving cars or extra-planetary
exploration robots all benefit from improved navigational skills. At last, with the ever more
increasing number of robots introduced in almost all fields of the economy, it is clear that au-
tonomous navigation in mobile robots is and will still be a relevant area of research in the near
future.

Nonetheless, in order to navigate in an environment, the robot must know its position at all
times. Most often this is done using a combination of GPS (Global Positioning System) and
IMU (Inertial Measurement Unit) data. But GPS requires an active signal between the robot
and the four GPS satellites in orbit around the Earth. When navigating in enclosed environ-
ments, GPS signal is not always available. Think of large buildings, bunkers, cave systems or
even underwater environments as areas where GPS signal is not present. Therefore, another
method to determine the robot’s precise location is necessary that works in enclosed and re-
mote environments. This is where Simultaneous Localization And Mapping (SLAM) comes in.

Unlike GPS, SLAM does not require external aid from satellites, instead it uses an on-board
sensor to capture the state of the environment around the robot from which it can determine
the relevant information. Most commonly used sensors are cameras and Light Detection and
Ranging (LIDAR) equipment. SLAM was first introduced in the early 1990’s by Smith (1986).
Since then many algorithms have been proposed with each their advantages and disadvantages
such as EKF SLAM (Bailey et al., 2006), FastSLAM (Montemerlo, 2002), GraphSLAM (Grisetti
et al., 2010) and OrbSLAM (Elvira, 2020).

Exploring with autonomous mobile robots has several key benefits over remote-controlled mo-
bile robots. Firstly, it permits to eliminate driving errors by the human operator affecting the
map accuracy. Secondly, it allows to explore dangerous or remote areas with long communi-
cation delays or no communication possibilities at all. Long cave systems or distant planetary
exploration are great examples where autonomous navigation is essential. Furthermore, it is a
crucial step in exploring unknown environments as the user has no a priori knowledge about
the environment. Effectively making it impossible for the user to plan trajectories.

1.2 Exploring unknown environments with RL and EKF SLAM

The approach proposed in this thesis uses Reinforcement Learning (RL) to navigate the robot
through the environment. Combined with EKF SLAM and a LIDAR sensor to infer the robot
pose and create a map of the unknown environment.

Reinforcement Learning is a type of Machine Learning where an algorithm (also called an
agent) is trained to choose correct decisions by receiving either a reward when the decision is
beneficial or a penalty when it is not.

The benefit of Reinforcement Learning over other branches of Machine Learning such as Su-

Robotics and Mechatronics B.T. van Manen

2 Learning to explore and map unknown environments with EKF-SLAM and RL

pervised Learning is that it does not require ground-truth data. Considering path planning, this
is a huge benefit when learning to navigate in continuous environment since it is not tractable
to find the ground-truth trajectory for every possible position of the robot in the environment.

The Extented Kalman Filter (EKF) is a version of the Kalman Filter but extended to include
non-linear state transitions and measurement models. By approximating non-linearity’s using
Taylor Series Expansion, EKF can proceed according to the linear Kalman Filter method. The
EKF SLAM algorithm is composed of two main steps, namely a prediction step and a correction
step. In the first step, the algorithm predicts the robot pose given its motion model. The second
step corrects the estimated robot pose using the measurement model and updates the map.
The EKF map consists of a list of landmarks extracted from the LIDAR data.

Three main advantages make EKF SLAM an interesting choice for autonomous navigation.
First, EKF is known to be particularly fast especially for smaller maps. Second, when handling
obstacle avoidance, the EKF map along with the robot pose and the LIDAR data can be passed
to the Reinforcement Learning agent instead of an occupancy grid. This yields a reduced state
vector and thus avoids the need for deep Neural Networks in the policy network. Third, the EKF
SLAM algorithm computes the uncertainty in its estimates as well as the Kalman gain. Both
metrics can be used to improve the decision making of the Reinforcement Learning agent.

The drawbacks of using EKF is that it becomes computationally demanding for large maps
when updating the covariance matrix (Paz and Neira, 2006). Yet, there exists methods and
variations of the EKF algorithm such as the Sparse Extended Information Filter (SEIF) SLAM to
improve scalability (Eustice et al., 2005).

1.3 Previous work

Even though, the combination of Reinforcement Learning and EKF SLAM to improve naviga-
tion is an active field of research, this report focuses on the approach proposed by Kollar and
Roy (2008). In the paper, the authors use EKF SLAM together with a RL model to generate tra-
jectories that minimize the EKF uncertainty. A key take-away from the paper is that sharp turns
in the robot’s trajectory result in mapping errors. For this reason, the authors stress the impor-
tance of choosing a smooth parameterization for the generated trajectories. Thus, they define
the action space of the RL agent as a set of 3r d order parametric polynomials in the x and y
directions from the robot pose to the next sensing location. Here, sensing locations define
positions of interest in the environment that the agent should visit while exploring the envi-
ronment. They proceed by training the agent in simulation before it is tested in the real-world.
In both the simulations and in the real-world test, results show a smaller error in the estimated
robot position for the trajectories learned with Reinforcement Learning compared to the short-
est path. Consequently, the paper validates the benefit of using RL as a path planning method
to improve map accuracy.

Nevertheless, the research from Kollar and Roy (2008) assumes that the robot knows the posi-
tion of the sensing locations beforehand and does not cover the exploration of unknown en-
vironments. In addition, they do not deal with obstacle avoidance, an imperative part in au-
tonomous navigation. Instead, the authors choose the best obstacle free trajectory.

In the state-of-the-art, most if not all of the exploration algorithms for mobile robots employing
RL, either focus on obstacle avoidance or on maximizing map coverage without optimizing for
map accuracy. Moreover, when it comes to mobile robots, the state-of-the-art still uses discrete
actions for their RL agent in charge of navigation instead of trajectories like in Kollar and Roy
(2008). Discrete actions significantly simplify navigation but reduce the map accuracy since
the overall robot trajectory is less smooth. All in all, what is lacking in the current state-of-the-
art for exploration in mobile robots, is an algorithm that both maximizes map accuracy and

B.T. van Manen University of Twente

CHAPTER 1. INTRODUCTION 3

map coverage while taking into account obstacle avoidance. The thesis seeks to create such an
algorithm by merging EKF SLAM with RL to generate obstacle free smooth trajectories as well
as optimal sensing location for full map coverage.

1.4 Research questions and thesis contribution

To study the effectiveness of combining EKF SLAM with RL in creating an algorithm that max-
imizes map accuracy and map coverage, the following main research question and four sub-
questions are considered.

1. How can we tightly incorporate RL and EKF in a single framework?

(a) How can Reinforcement Learning be used to select informative target positions and
generate informative trajectories?

(b) How can we hierarchically structure the RL policies?

(c) How can we shape the reward function?

(d) What is the benefit of the proposed Reinforcement Learning approach?

The work presented in this thesis is novel considering that it proposes a new algorithm for
exploration with mobile robots. The approach combines sensing location generation for op-
timal map coverage together with trajectory generation for maximum map accuracy in static
unknown environments. The coverage planner is integrated into the algorithm as a high-level
policy and chooses adequate sensing locations governing the overall movement direction of
the agent. In turn, the path planner works as a low-level policy. It generates trajectories de-
ciding how the agent reaches the sensing locations in such a way that minimizes errors in the
map. This novel exploration algorithm is not only unique considering that it takes into account
map coverage and map accuracy simultaneously, but also includes obstacle avoidance. Ad-
ditionally, trajectory generation is a topic that is vastly utilized for aerial vehicles and robotic
arms but remains understudied for ground-based exploration in the field of mobile robotics.

1.5 Thesis outline

The proposed algorithm consists of two Reinforcement Learning agents (the coverage planner
and the path planner), hierarchically structured. Together they form the brain of the robot and
decide where and how the robot should explore the unknown environment. The coverage plan-
ner makes decisions based on information it receives from the EKF SLAM block. While the path
planner sits hierarchically lower and uses information from the coverage planner as well as the
EKF SLAM module. Hence, the success of the proposed EKF SLAM and RL algorithm depends
on how well both RL agents can be trained to find optimal trajectories and sensing locations.
As such, the training of the RL networks also pose the most challenge in this thesis.

Due to the current COVID-19 pandemic, the research is only executed in simulation consid-
ering no real-life experiments could be performed. Additionally, the proposed algorithm is
implemented and tested in Python 3.8.5 because of three main reasons. First, Python gives ac-
cess to a large amount of Reinforcement Learning and Machine Learning libraries with greater
documentation support compared to C++. Second, to provide the computational power (CPU
and GPU) required to train two RL networks, the University’s HPC (High Performance Comput-
ing) cluster must be utilized. The HPC cluster has very good support for Python scripts. Third,
a RL framework was already in place at the University which could be reused to speed up the
creation of a suitable RL training environment.

Finally, the proposed algorithm is independent of the chosen method of implementation and
thus could also very well be implemented in C++ or ROS. The algorithm is also independent of
the chosen SLAM techniques once both RL networks have been trained.

Robotics and Mechatronics B.T. van Manen

4 Learning to explore and map unknown environments with EKF-SLAM and RL

2 Background

2.1 Reinforcement Learning

In RL the process of learning a certain task requires the presence of an agent and an environ-
ment on which it can act. The agent is the decision making body and usually consists of a neural
network. On the other hand, the role of the environment is to react on the agent’s actions and
provide feedback on how beneficial the action is by means of a reward, see Figure 2.1. The goal
of the agent is to maximize the accumulated reward in a single episode. Repeated interaction
between agent and environment permits the agent to gain progressively more experience and
thus improve its decision making skills.

Figure 2.1: Reinforcement Learning cycle. The agent in blue generates a new action based on previously
acquired state and reward. The environment takes in the action and returns the corresponding state and
reward.

On top of giving a reward, the environment must also tell the agent in which state it lays such
that the agent knows what effect its action has on the environment. In essence, the reward is
only used during training as a measure of performance feedback for the agent. Whereas the
state describes the current condition of the environment. In the context of robotics, the envi-
ronment is in many cases a simulation of real-life physics.

Nonetheless, the reward function is a key factor that ultimately determines if the agent adopts
the desired behavior. It often consists of a combination of positive and negative rewards, the
latter also called a penalty. The reward function should penalize bad behavior while encourag-
ing desirable behavior. Therefore, an adequately shaped reward function is equally important
as a well defined environment.

Although, Figure 2.1 describes the main idea behind the learning process of an RL agent, every
problem to be solved using RL must be formulated mathematically first. To do so, the following
section introduces the decision process at the root of most RL problems and named after the
Russian mathematician Andrey Markov, the Markov Decision Process (MDP).

2.1.1 Markov Decision Process

A MDP is a decision process to model the interaction between agent and environment. It is
usually characterized by the 5-tuple < S, A,T,R > where S is a set of states, otherwise also called
a chain. Each state is uniquely described from anything like a set of coordinates to any other
feature uniquely defining the state. Together they encompass all possible configurations in the
environment.

B.T. van Manen University of Twente

CHAPTER 2. BACKGROUND 5

Furthermore, A represents a set of actions containing the complete range of actions available
to the agent. Given all possible states S and actions A, the probability that action a in state s at
time t will lead to state s’ at time t+1 is then designated by the transition function T .

Finally, R is a set of real numbers that simply amounts to the reward function that the agent
tries to maximize.

Using this definition of an MDP, many real-world problems can be modeled such that an agent
can learn an optimal policy. To clarify, a deterministic policy, denoted by π(a|s), maps any ac-
tion to a corresponding state. While in the probabilistic case, the policy returns the probability
of taking action a in state s. Hence, the goal of the agent is to find the best policy that maxi-
mizes the accumulated reward.

At last, it is important to realize that the power of the MDP comes from the fact that each state
only depends on the state immediately prior to it and its action, rather than all previous states.
Often called the Markov Assumption, it drastically increases computational efficiency.

2.1.2 Partially Observable Markov Decision Process

The MDP assumes the current state can be fully observed at all times. This may be true for
environments comparable to that of a game of chess, but in many cases the agent can only
partially observe the state of the environment. In that case, the MDP transforms into a Partially
Observable Markov Decision Process (POMP).

At this instant, the environment is not fully observable anymore and the agent is not able to
view the current state directly. Instead, it receives an observation, usually a sensory measure-
ment, that hints towards the current state of the environment. For example, a self-driving vehi-
cle only knows the state of the environment around itself based on the data it gathers from its
various sensors. But it is not able to see the environment past the range of its sensors.

POMPD models are harder to solve than a regular MDP. The partial observability also means
that Figure 2.1 must be altered since the agent receives observations instead of states. Conse-
quently, decisions are taken based upon a probability distribution over all states rather than
the current state. The probability distribution must be updated after each new action and ob-
servation.

With this in mind, a key element of the RL process is the agent considering it is the trainable
body. In particular, the learning aspect of the agent is handled by an artificial neural network.
Although there are different types of neural networks depending on the application, the sim-
plest form is the Multilayer Perceptron (MLP).

2.1.3 Multilayer perceptron

First and foremost, an MLP is a feedforward artificial neural network composed of multiple
layers of perceptrons. In turn, a perceptron is a single link between an input and an output
node. Every perceptron gives a certain weight to the input and caries an activation threshold.
Activation thresholds are defined by activation functions. These functions can be relatively
simple such as a linear function or more complex like the sigmoid or hyperbolic tangent func-
tion. Multilayer perceptrons are therefore simply multiple perceptrons linked together to form
a network. Figure 2.2 shows an example of a 3 layer deep MLP.

Robotics and Mechatronics B.T. van Manen

6 Learning to explore and map unknown environments with EKF-SLAM and RL

Figure 2.2: 3 layer deep multilayer perceptron. Input to the network is characterized by x1 to xn while
the output is denoted by o1. a1 to ak represent the output of the hidden layer. x0 and a0 are the bias
nodes for the input and hidden layer. The colours are added to improve the visibility of the different
connections in the MLP.

Data enters the network at the input layer and propagates through the hidden layer towards
the output layer. To further tune the network such that it accurately fits the data, a bias is also
added at each layer. The bias works as an offset where the only difference between any other
node is that its input is always one.

Additionally, each arrow represents a data stream and holds a corresponding weight. If a node
has multiple contributions, the sum over all weighted inputs is taken and subsequently passes
through the activation function to yield an output. The output serves as input for the next layer
of nodes. This process is called a forward pass and is described by Equation 2.1 for the first
layer.

a j = f j (
n∑

i=1
w (1)

j ,i ∗xi +w (1)
j ,0) wi th j = 1,2,3, ...,k (2.1)

Where a j and f j are the output and the activation function for the j th node in the hidden layer

respectively. Conversely, w (1)
j ,i is the weight for the connection between the i th input and the

j th node of the first hidden layer whereas xi is the i th input. Likewise, the output of the entire
MLP follows Equation 2.2.

o1 = g1(
k∑

j=1
w (2)

1, j ∗a j +w (2)
1,0) (2.2)

In a similar fashion, the function g1 is the activation function of the output node.

B.T. van Manen University of Twente

CHAPTER 2. BACKGROUND 7

2.1.4 Deep Deterministic Policy Gradient

Although, for trajectory and sensing location generation RL provides a solution, it is still impor-
tant to choose the correct RL algorithm that best suits the problem. Therefore, one should take
into account the type of environment and the type of action space required. To closely match
the real-world, this thesis considers a continuous partially observable environment. First, the
continuity of the environment indicates that there exists an infinite amount of possible states
in which the environment can exist. Second, despite the fact that the environment is at all
times only partially observable by the LIDAR, the EKF provides a state estimate of the entire
environment. As a result, the exploration problem can be modelled as a MDP rather than a
POMPD.

Next, contrarily to most research in autonomous navigation with mobile robots, the agent does
not directly choose the motor control commands but computes a trajectory in the environ-
ment. This means that the action space of the RL agent becomes continuous instead of a prede-
fined set of discrete actions. Likewise, the sensing location generation algorithm also requires a
continuous action space seeing that the environment itself is continuous. Hence, in both cases
a Deep Deterministic Policy Gradient (DDPG) is an appropriate initial choice.

Originally created by Lillicrap et al. (2015), DDPG is a model-free, off-policy, actor-critic type
algorithm that combines techniques from policy based and value based algorithms such as
Deep Q-Network (DQN). The term model-free refers to the fact that DDPG does not try to pre-
dict state transitions or rewards and thus does not receive or learn a model of the environment.
Generally, model-free RL algorithms are easier to implement and tune.

Additionally, considering that DDPG is an actor-critic type algorithm it uses two separate neu-
ral networks, one to compute a new action (actor network µ (s | θµ)) and the other to evaluate
how beneficial this action is by estimating a Q-value (critic network Q

(
s, a | θQ

)
). The bigger

the Q-value the more beneficial the action is. Here s and a are the state and action respectively,
while θµ, θQ correspond to the weights of the actor and critic network.

For both the actor and the critic, DDPG also introduces a target network to improve the training

stability. Each target network is a time-delayed copy of the original network (critic Q ′
(
s, a | θQ ′)

or actor µ′
(
s | θµ′)

) thelike also sharing the same weight initialization and architecture.

Yet, DDPG suffers from similar unstable behaviour when directly using Artificial Neural Net-
works (ANN) as other Q-learning algorithms due to the false assumption that the data sam-
ples are independently distributed. This assumption is no longer valid as the environment
is sequentially explored. Experience replay can overcome this issue by randomly choosing a
mini-batch at each time step t from a replay buffer to effectively remove the time correlation
between each sample. This mini-batch is then used during the training. The replay buffer it-
self consists of a collection of past experiences et = (st , at ,rt , st+1) stored in a finite-sized set
D t = [e1,e2, ...,et]. Once the replay buffer is full the oldest experience is replaced by the most
recent one.

Moreover, by using a replay buffer the agent (actor network) can now use all previous experi-
ences to update its current policy. Off-policy networks such as DDPG have the advantage that
the actor policy is detached from the target policy. The disconnection allows to add noise to the
actor policy and continue exploration following Equation 2.3 while learning an optimal policy.

µexpl (st) =µ(
st | θµt

)+N (2.3)

Here µexpl is the exploration policy, θµt the parameters for the actor network at time t and N

the added noise. Although, the original authors of the DDPG paper (Lillicrap et al., 2015) use
the Ornstein Uhlenbeck process (OU noise) as noise mode, according to successive algorithms

Robotics and Mechatronics B.T. van Manen

8 Learning to explore and map unknown environments with EKF-SLAM and RL

like TD3 and D4PG ((Dankwa and Zheng, 2019), (Barth-Maron et al., 2018)) a Gaussian Noise
works just as well. Consequently a Gaussian noise is chosen in this thesis to increase explo-
ration since it is easier to implement compared to an OU process.

To better understand how DDPG works, Figure 2.3 shows the pseudo-code of the DDPG algo-
rithm as described by the original authors of the algorithm (Lillicrap et al. (2015)).

Figure 2.3: DDPG algorithm (Lillicrap et al., 2015)

After initialization, the training loop starts by computing a new action based on the current
exploration policy µexpl . The action is then applied to the environment which returns a new
state and reward. The new experience tuple of the agent that is subsequently stored in the re-
play buffer.

The critic network is updated by minimizing the loss function in Equation 2.4 defined as the
mean squared error of the difference between the temporal difference (TD) target and the cur-
rent Q-value.

L(θQ) = 1

N

∑
i

[
yi −Q

(
si , ai | θQ)]2

(2.4)

Note that the iterator i refers to a summation over the samples in the mini-batch. In turn, the
TD target yi is obtained by the Bellman Equation 2.5.

yi = ri +γQ ′
(
si+1,µ′

(
si+1 | θµ

′) | θQ ′)
(2.5)

Where γ is the discount factor. It tells the agent how much it should care about future rewards
compared to immediate rewards.

Considering that the assumption of independently distributed samples is now validated with
the replay buffer, the loss function can be minimized using traditional gradient descent meth-
ods. However, remark that the new Q-value in Equation 2.5 comes from the target critic net-

B.T. van Manen University of Twente

CHAPTER 2. BACKGROUND 9

work while the current Q-value in Equation 2.4 originates from the critic network. If this would
not be the case and the same network with the same weights would be used in both Equation
2.5 and 2.4, the interdependence in the parameters would make the gradient of the loss func-
tion prone to diverging during gradient descent. Hence, a time-delayed copy of the original
critic network is used to compute the new Q-value.

Besides, the goal of the actor network is to find actions that maximize the expected return. The
objective function for the actor network can thus be written as Equation 2.6.

J (θ) = E
[

Q(s, a)|s=st ,at=µ(st)

]
(2.6)

Consequently, the gradient of the objective function becomes the sum of the gradients over the
entire mini-batch like described in Equation 2.7.

∇θµ J (θ) ≈ 1

N

∑
i

[
∇aQ

(
s, a | θQ)∣∣

s=si ,a=µ(si)∇θµµ
(
s | θµ)∣∣∣

s=si

]
(2.7)

Finally, the weights of the actor network are then updated following Equation 2.8, where gradi-
ent ascent is performed.

θ
µ
t+1 = θ

µ
t +α∇θµ J (θ) (2.8)

With α corresponding to the learning rate.

Since DDPG uses a deterministic policy, the actor network maps directly from state to action
instead of a distribution over actions as is the case with stochastic policies. In addition, like the
critic network, a target actor network is also used while updating the actor policy.

At last, the parameters of both target networks are kept mostly the same throughout training,
only slowly updating according to Equation 2.9.

θQ ′ ← τθQ + (1−τ)θQ ′

θµ
′ ← τθµ+ (1−τ)θµ

′ (2.9)

With a typical value of τ = 0.01 one can see that the target weights gradually merge with the
current weights.

2.1.5 Twin Delayed Deep Deterministic Policy Gradient

Granted DDPG would solve most RL problems but it still suffers from overestimation of the
Q-value. After all, if the Q-value is overestimated, the agent policy is thought to be better than
it is in reality. In return, this leads to sub-optimal solutions which is of course not desirable.
To solve the overestimation issue, Fujimoto et al. (2018) propose a successor to the DDPG with
three major improvements, called the Twin Delayed Deep Deterministic Policy Gradient.

First, two critic networks are used instead of one to reduce the overestimation. TD3 computes
two Q-values for each action but uses the lesser of the two during training. Second, due to the
overestimation of a poor policy, the training of the agent can diverge. More stability is intro-
duced by reducing the frequency at which the actor updates. While the critic updates every
training step, the actor does so only after a certain amount of steps. Lastly, target networks
in the DDPG have tendencies to generate high-variance Q-values by over-fitting errors in the
Q-function. Given these points, action smoothing is introduced to smooth out changes in the
action and reduce the variance by adding a small amount of clipped noise to the target network.
Clipping the noise is necessary so to keep the new target value close to the original one.

Robotics and Mechatronics B.T. van Manen

10 Learning to explore and map unknown environments with EKF-SLAM and RL

2.2 Simultaneous Localization And Mapping

This section starts off with a small introduction in SLAM after which it continues with an ex-
tensive explanation about how EKF SLAM works.

2.2.1 Introduction to Simultaneous Localization And Mapping

SLAM solves a problem that at first hand seems paradoxical. The agent, in order to create a
map of the unknown environment, must know its position in this environment. Reciprocally, it
also needs a map to infer its position in the first place. Still, several algorithms exist that solve
the SLAM problem like those mentioned in Section 1.1 for example.

The initial estimate of the robot pose can be derived using an internal model of the system and a
given control input or from the odometry. Additionally, much like humans trying to navigate in
an unknown city, SLAM algorithms look at landmarks in the environment to derive the robot’s
position while it is exploring. It is then the job of the chosen sensor to find and extract suitable
landmarks. Good landmarks are features in the environment that are easily distinguishable
and re-observable at a later time. The latter is especially important to perform data association
and consequently loop closure. Loop closing refers to the event where the robot, after a certain
amount of time has passed, navigates in an area that it had previously already explored. It is
an important aspect of SLAM as it is crucial to reduce the drift that occurs in the estimated
trajectory over time.

2.2.2 Extended Kalman Filter -Simultaneous Localization And Mapping

Extended Kalman Filter -Simultaneous localization and mapping (EKF SLAM) was the standard
SLAM algorithm until the introduction of FastSLAM (Montemerlo, 2002) and is still widely used
today. The input state of the EKF SLAM algorithm consists of a collective state space of the robot
pose R̂ and a list of landmarks called the map M̂ , see Equation 2.10.

X̂ =
[

R̂

M̂

]
=



x
y
θ

L
(x1,y1)
1

L
(x2,y2)
2

...

L
(xn ,yn)
n


(2.10)

Additionally, the EKF keeps track of the uncertainties in the estimated robot pose and the n
landmarks with positions (x1, y1) to (xn , yn) in the form of the symmetric covariance matrix P ,
Equation 2.11.

P =


σxx σx y σxθ σxx1 σx y1 σxx2 σx y2 . . . σxxn σx yn

σy x σy y σyθ σy x1 σy y1 σy x2 σy y2 . . . σy xn σy yn

...
σxn x σxn y σxnθ σxn x1 σxn y1 σxn x2 σxn y2 . . . σxn xn σxn yn

 (2.11)

Each element represents the standard deviation between the robot pose and the n landmark
coordinates as well as the error in the estimates themselves. For instance, σxx and σy y are the
standard deviations associated to the x- and y-coordinate in the estimated robot pose R̂ while
σxx1 is the difference between the robot pose x-coordinate and the x-coordinate of the first
landmark.

The covariance matrix P can also be written more concisely according to Equation 2.12 where

B.T. van Manen University of Twente

CHAPTER 2. BACKGROUND 11

σ2
R

and σ2
M

are the variance in the robot pose and in the map respectively. While σ2
RM

is the
variance of the robot pose with respect to the map and vice versa for σ2

MR
.

P =
[
σ2

R
σ2

RM

σ2
MR

σ2
M

]
(2.12)

That is to say σ2
R

and σ2
M

can be interpreted as the uncertainty in the robot pose and in the
map respectively. While σ2

RM
is the uncertainty of the robot pose with respect to the map and

vice versa for σ2
MR

.

However, the EKF algorithm does not compute the variances in Equation 2.12 directly and in-
stead gives an estimate of the P matrix in the prediction step. The EKF SLAM algorithm consists
of two steps, a prediction step to predict a new state given a control input and a correction step
to perform data association and update the belief of the estimated positions.

The prediction step requires the previously estimated state ˆX t−1, covariance matrix ˆPt−1, the
new motor control commands ut and a given state covariance Cx . Depending on the control
vector u the motion model in the EKF SLAM may vary. Here the control vector is assumed to
contain a linear and angular velocity in the form of u = (v,ω).

In simulation, process noise is added to the control vector u, modelling disturbances between
the digital control signal and the motor speed. The covariance matrix Q of the process noise
is a diagonal matrix with the variances in the velocity and yaw rate respectively, see Equation
2.13.

Q =
(
σ2

v 0
0 σ2

ω

)
(2.13)

At first, a motion model of the robot movement is created to predict the next robot state given
the new motor control command vector u. The motion model presented in Equation 2.14 is a
simple model where the control vector U = uT is added to the previous robot state R̂t−1.

R̂t = FR̂t−1 +BU (2.14)

Here F is the identity matrix, R̂ the new robot pose and B the matrix mapping velocity to posi-
tion. Substituting these matrices in Equation 2.14 yields Equation 2.15.

 x̂t+1

ŷt+1

θ̂t+1

=
 1 0 0

0 1 0
0 0 1

 x̂t

ŷt

θ̂t

+
 ∆t cos(θt) 0
∆t sin(θt) 0

0 ∆t

[
vt

wt

]
(2.15)

Notice that in Equation 2.15 the state vector only contains the robot pose seeing that the control
vector U has no effect on the position of the landmarks. ∆t is the simulation tick time,∆t = 0.1s
is used here.

Second, the prediction step of the EKF SLAM algorithm continues by estimating the covariance
matrix P̂ following Equation 2.16.

P̂t =GT P̂t−1G +F T
x Cx Fx (2.16)

Where Cx is the known state covariance matrix and G the jacobian described by Equation 2.17.
The matrix Fx (Equation 2.18) is needed to map from the 3 dimensions of the robot pose to

Robotics and Mechatronics B.T. van Manen

12 Learning to explore and map unknown environments with EKF-SLAM and RL

the 2n +3 (n landmarks with 2 coordinates and the robot pose) dimensions of the covariance
matrix P.

Gt = I +F T
x

 0 0 −∆t vt sin(θ)
0 0 ∆t vt cos(θ)
0 0 0

Fx (2.17)

Fx =
 1 0 0 0 · · · 0

0 1 0 0 · · · 0
0 0 1 0 · · · 0

 (2.18)

Cx is a 3 by 3 diagonal matrix holding the variances in the x, y coordinates as well as in the robot
orientation. Expressed in Equation 2.19, Cx represents the uncertainty in the state and is added
at each prediction step to the system uncertainty characterized by P. Cx can be thought of as
the process noise for the robot pose, modelling in simulation disturbances that affect the robot
pose.

Cx =

 σ2
x 0 0

0 σ2
y 0

0 0 σ2
θ

 (2.19)

From Equation 2.16 it can be observed that the covariance matrix P is only dependant on the
covariance of the robot pose Cx .

Lastly, a correction step is required to perform data association on new landmarks, compute
the Kalman gain K and correct the state and covariance estimate. At each new cycle in the EKF
SLAM algorithm, a new observation vector zt is created. zt contains the range and bearing from
the landmark to the robot position as measured by the onboard LIDAR sensor for n observed
landmarks, similar to Equation 2.20.

zt =
((

r ang e1

bear i ng1

)
· · ·

(
r ang en

bear i ngn

))
(2.20)

Considering that the landmarks are used to correct the EKF state estimate, proper data asso-
ciation is critical. Hence, all landmarks within a fixed Mahalanobis distance from a known
landmark in the map are considered to be the same. For each observation, re-observed land-
marks are used to correct the prior belief (loop closure) while new landmarks are added to the
state EKF vector X and the covariance matrix P. To keep track of their position as well.

The Mahalanobis distance is the distance between two points in mutlivariate space. Unlike
the Euclidean distance, the Mahalanobis distance can be calculated for correlated multi vari-
able points. The Mahalanobis distance between two observations with innovation covariance
matrix S is given by Equation 2.21.

DM ahal anobi s =
√

(z1 − z2)T ∗S ∗ (z1 − z2) (2.21)

The innovation covariance matrix S is computed similarly as for the Kalman gain which is
shown next.

To find the Kalman gain K and the innovation covariance S, the expected measurements ẑ must
initially be found. Given an observed landmark Li , the LIDAR sensor returns its position in the

B.T. van Manen University of Twente

CHAPTER 2. BACKGROUND 13

form of a range and bearing. The conversion from polar coordinates to Cartesian coordinates
for the i th landmark follows Equation 2.22.

Li =
(

Rx + r ang ei ∗ cos(Rθ+bear i ngi)
Ry + r ang ei ∗ si n(Rθ+bear i ngi)

)
(2.22)

The difference in position between the estimated robot pose R̂ to landmark Li is given by
Equation 2.23.

∆i =
(
∆i ,x

∆i ,y

)
=Li −R̂x,y (2.23)

From which the distance from the estimated robot pose to the i th landmark is found from
Equation 2.24.

qi =
√
∆2

i ,x +∆2
i ,y (2.24)

Using the nonlinear observation, the expected measurements ẑ given the current belief then
becomes Equation 2.25.

ẑi =
(

qi at an2(∆i ,y ,∆i ,x)−Rθ

)
(2.25)

Subsequently, comparing the measured observation zi to the expected measurement ẑi yields
an innovation factor I for landmark i.

The innovation factor evaluates the accuracy of the predicted robot pose since ẑi is derived
from the estimated state vector. Equation 2.26 describes the innovation factor I for the i th

landmark.

Ii = zi − ẑi (2.26)

The Kalman gain K serves to balance how much of the innovation should be added in the cor-
rected state vector X cor r ected

t based on the uncertainty in the measurement.

Nevertheless, due to the nonlinearity of the observation ẑ, the jacobian of ẑ, H, is used to com-
pute the innovation covariance S and the Kalman gain K. H is found through Equation 2.27.

H = J ∗T (2.27)

J =
(−∆i ,x

q
−∆i ,y

q 0 ∆i ,x

q
∆i ,y

q
∆i ,y

q2
−∆i ,x

q2 −1
−∆i ,y

q2
∆i ,x

q2

)

T =


1 0 0 0 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 0 0 0 · · ·
0 0 1 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 · · · 1 0 0 0 · · ·
0 0 0 0 0 · · · 0 1 0 0 · · ·


The transformation matrix T has as many columns as there are observed landmarks in the esti-
mated EKF state vector X̂ . T is needed to compute the linear approximation only for the robot
pose and the i th landmark.

Finally, substituting the jacobian of the measurement model H, the covariance matrix P and the

Robotics and Mechatronics B.T. van Manen

14 Learning to explore and map unknown environments with EKF-SLAM and RL

covariance matrix of the measurement noise R for a specific time t in Equation 2.28, provides
the innovation covariance S.

S = Ht P̂t H T
t +Rt (2.28)

And thus the Kalman gain follows in Equation 2.29.

K = P̂t H T
t S−1 = P̂t H T

t

Ht P̂t H T
t +Rt

(2.29)

Rt is known and defines the amount of noise present in the measurement. Its value usually
depends on the type of sensor used for the measurements.

From Equation 2.29, one can see that if the uncertainty in the measurement is very low com-
pared to the current estimate (Rt << Pt), the Kalman gain will tend towards K = 1. This means
that it adds all the innovation to the current estimate as it completely trusts the measurement.
In contrary, very high uncertainty in the measurement (Rt >> Pt) leads to a very low kalman
gain and thus little inclusion of innovation in the current estimate.

Both the state estimate X̂ t and the covariance estimate P̂t are corrected with the Kalman gain,
with the state estimate following Equation 2.30.

X̂ cor r ected
t = X̂ t + (K In) (2.30)

And the corrected covariance estimate specified by Equation 2.31.

P̂ cor r ected
t = (In −K Ht) P̂t (2.31)

B.T. van Manen University of Twente

15

3 Related work

In recent years, there has been many advancements in exploration and mapping with RL and
SLAM. But also in related areas such as combining EKF and RL as well as different exploration
policies and path tracking controllers. Progress in these field are equally important to cre-
ate accurate maps since they tackle specific problems that arise when exploring with RL and
SLAM. In this section, previous studies are reviewed to position the thesis in the context of past
research.

3.1 Research in exploration with RL

RL can be used to generate trajectories similar to other conventional approaches for path
planning such as Dijkstra or A*. The main advantage of RL is its flexibility to maximize any
criterion that suits the purpose of the robot, being either distance, energy efficiency or map
accuracy. Though, multi-objective RL algorithms have been proposed capable of learning
several optimal policies simultaneously ((Barrett and Narayanan, 2008), (Nguyen et al., 2020)).

On top of the study of Kollar and Roy (2008) discussed in the introduction, many more research
has been done dealing with exploring and mapping static unknown environments ((Zhang
et al., 2017), (Ramezani and Lee, 2018), (Mustafa et al., 2019), (Chen et al., 2019), (Placed and
Castellanos, 2020), (Botteghi et al., 2020)). Previous research has mostly focused on shaping
the reward function to incorporate obstacle avoidance by adding knowledge about the map
or prove the benefit of adding memory. Either short-term with Long Short-Term Memory
(LSTM) networks and memory-based multi layer Q-networks or long-term with external mem-
ory. Except for the work of Kollar and Roy (2008), none of the found literature attempted path
planning with RL through trajectory generation, instead discrete actions are computed for the
robot to execute. Arguably, learning to explore with trajectory generation also means the agent
is unable to adjust its path as often as with discrete actions. Consequently, this method makes
it harder for the agent to navigate through the environment and reduces the frequency at
which it updates its policy during training. Both factors contribute to a decrease in the sample
efficiency when using trajectory generation.

Furthermore, the aforementioned literature focused especially on improving model conver-
gence during training, computational efficiency and generalization for different environments
rather than maximizing the accuracy of the map. Similarly to map accuracy, ensuring full map
coverage is also a feature not always taken into account.

3.2 Neural SLAM

Automatically finding optimal targets is a necessary step towards fully autonomous explo-
ration. The purpose of the sensing locations is to ensure a full map coverage of the unknown
environment. Kollar and Roy (2008) discuss the use of a coverage planner that finds suitable
locations for the agent to visit. In their research however, they consider them to be fully observ-
able during the exploration phase. They also assume such a coverage planner exists and instead
provide a predefined set of destination points that the agent must visit to satisfy the coverage
constraint. However, advancements in SLAM algorithms like Active Neural SLAM from Chaplot
et al. (2020) show very promising results using a high-level policy picking suitable sensing lo-
cations. Their algorithm achieves 94.8% coverage on the Gibson database of 3D spaces. Which
is 15% more than other exploration algorithms according to their research. The Active Neu-
ral SLAM is based on visual observation and divides the coverage problem in long-term and
short-term goals. The long-term goal can be seen as the high-level policy (RL algorithm) de-

Robotics and Mechatronics B.T. van Manen

16 Learning to explore and map unknown environments with EKF-SLAM and RL

termining the location the agent should drive. The high-level policy is subsequently trained
with ground-truth maps. Next, a path planner creates short-term goals in order to reach this
destination. Although this method achieves great coverage, as it is the winner of the CVPR 2019
habitat challenge, it is important to realize that Active Neural SLAM only focuses on the cover-
age and not the map accuracy. In contrast to the approach proposed in this thesis which deals
both with coverage and map accuracy.

Besides, Chen et al. (2019) provide another interesting approach to optimize full map explo-
ration using information gain in the form of Shannon entropy as a metric to represent map
completeness. They then train an RL agent to learn an optimal policy that maximizes the in-
formation gain for each discrete action taken by the agent. Their results show an increase in
computational efficiency and accuracy compared to other state-of-the-art approaches.

3.3 Towards dynamic environments

Nevertheless, even though the thesis concentrates on static environments, in most cases the
real-world environment is not static but dynamic which adds a new set of difficulties. For in-
stance, when an obstacle blocks a pathway that was previously accessible, the estimated SLAM
location of the robot becomes less accurate. Several papers propose modified algorithms that
integrate obstacle detection and sudden changes in the environment ((Arana-Daniel et al.,
2011), (Guevara-Reyes et al., 2013), (Wen et al., 2020)). During the exploration phase these
algorithms work similarly as for static environments. However, when an obstacle is detected
that was previously not there, the agent uses its long-term memory or experience to avoid the
obstacle. If the agent is not successful, a new path is generated to circumvent the obstacle and
reach the desired sensing location. Although dynamic environments are not the aim of this
thesis, it is important to understand the complexities that they bring in order to facilitate the
generalization to dynamic environments in future work.

3.4 Towards multi-agent exploration

In addition to dynamic environments, one can also expand to a multi-agent case where multi-
ple agents explore and build together a map of the environment. Several studies have already
considered such a scenario and tackle some of the issue that arise ((Pei et al., 2020), (Dinnis-
sen et al., 2012), (Luviano Cruz and Yu, 2014)). Though, multi-agent exploration and mapping
certainly comes with it own set of difficulties like map merging, multi-agent path planning and
collaboration between the agents, it would also significantly speed up the exploration of large
environments.

B.T. van Manen University of Twente

17

4 The proposed algorithm

This chapter describes the proposed trajectory-based EKF SLAM algorithm. In a first instance,
a general overview of the algorithm is given after which the chapter dives deeper in all the
individual modules.

4.1 Trajectory-based EKF SLAM architecture

The trajectory-based EKF SLAM algorithm consists of five main components governed by a
high- and low-level policy. Figure 4.1 shows the algorithm architecture from the sensor input
to the output signal controlling the movement of the agent.

Figure 4.1: Trajectory-based EKF SLAM. Sensor outputs have a blue color while the different modules
are represented in rounded rectangles with a unique color for differentiation. The information exchange
is expressed by doted rectangles. Modules denoted in bold represent parts of the algorithm that are
based on open-source code.

The first decision making module is the sensing location generation. Also called the high-level
policy, it oversees the general movement of the agent. Afterwards, the role of the low-level pol-
icy is to compute an appropriate trajectory to reach these sensing locations.

Initially, the trajectory-based EKF SLAM algorithm starts with the EKF SLAM module in charge
of mapping and localization of the agent. It takes as input the initial known robot pose as well
as the actual LIDAR readings. Given the newly estimated robot pose, the algorithm can update
the occupancy grid indicating which areas of the environment have already been explored and
conversely which areas remain unexplored.

After, the occupancy map is inserted into the high-level policy to select a new sensing location
acting as target location for the trajectory generation. Two third order polynomials can then
be generated, one for the x coordinate and one for y coordinate. The high-level policy chooses
the sensing locations such to minimize the amount of unexplored area in the occupancy map.
Whereas the trajectory created by the low-level policy aims to reach the sensing location with
an obstacle free path that maximizes the map accuracy.

However, in order to properly move around the environment, the agent still requires motor
control commands.

Robotics and Mechatronics B.T. van Manen

18 Learning to explore and map unknown environments with EKF-SLAM and RL

Hence, both third order polynomials are discretized into a finite set of coordinates. These co-
ordinates form together the trajectory and constitute short term goals for the PD controller.
Consequently, the PD controller returns appropriate velocities and yaw rates to reach these
short term goals and travel along the trajectory defined by the low-level policy.

At last, the EKF SLAM module and the LIDAR provide new outputs every time the agent moves
from one position to another. This means that both modules along with the PD controller
continuously update their outputs for every step along the chosen trajectory. The high- and
low-policy on the contrary, only change their output if the target sensing location is reached.
Computing a new sensing location and a new trajectory.

4.2 EKF SLAM implementation

The algorithm makes use of a Light Detecting And Ranging (LIDAR) sensor in combination with
EKF SLAM to determine the robot pose, landmark locations and occupancy grid. Though, the
LIDAR can also be replaced by any other sensor such as a camera as long as it provides the
distances and angles to nearby obstacles and landmarks with respect to the robot pose. In such
a case, the observation function inside the EKF SLAM module can be skipped.

4.2.1 Overview

Primarily, the tasks of the EKF SLAM module is to estimate the position of the agent and sub-
sequently update the map of the environment given the LIDAR data. Yet, also other tasks
are taken care of, including landmark observation and data association. Figure 4.2 shows an
overview of the EKF SLAM module with the various data exchanges between the submodules.

Figure 4.2: EKF SLAM algorithm. Sensor inputs are represented in blue while the different submodules
are characterized by faded yellow and green rectangles with indented corners. The exchanged data is
shown in dotted rectangles. Submodules denoted in bold represent parts of the algorithm that are based
on open-source code.

The only input to the EKF SLAM module is the LIDAR sensor. It tells the agent at which angle
and distance objects are located. In general, both the EKF localization and data association
submodule as well as the mapper require this information to properly function. The mapper
uses the LIDAR for object detection and keeps track of the occupied areas around the agent
as it moves around. In contrast, the localization submodule needs the LIDAR data to extract
meaningful landmarks. Note however, in Figure 4.2 one can see that there is no information
exchange between the LIDAR output and the observation submodule. Instead, to simplify the
algorithm it is assumed that the agent knows the position of the landmarks if they come within
range of the LIDAR sensor. Effectively disregarding the LIDAR landmark extraction.

All known landmark coordinates are transformed to a range and bearing for further processing
in the EKF localization and data association submodule. Consecutively, this data along with
previously estimated positions is used to update the estimated robot pose. Finally, data associ-
ation is a necessary step that incorporates loop-closure detection and the clustering of a group

B.T. van Manen University of Twente

CHAPTER 4. THE PROPOSED ALGORITHM 19

of landmarks into a single landmark.

At this point, the mapper can map the corresponding LIDAR data to the correct position in the
occupancy map according to the estimated robot pose from the EKF.

4.2.2 Observation

Landmarks are a crucial part of the localization method. Good landmarks must be static and
easily recognizable between successive steps taken by the agent. In the context of this thesis,
both the training and testing environment in which the EKF SLAM operates consists of rectan-
gular shaped objects and walls. Therefore, the only viable option to find fitting landmarks is to
use the corners of the walls and objects in the environment. If the environment has no walls,
the landmark coordinates are defined during the experiment setup.

With this in mind, to simulate a LIDAR feature extraction submodule, the environment in
which the agent moves provides a list of landmarks where each landmark represents a corner
in the surroundings. However, the agent’s field of view is bounded by the maximum operating
range of the LIDAR sensor. Only landmarks within the LIDAR range can be considered valid.

Hence, the observation function computes the Euclidean distance between all landmarks in
the environment and the robot pose, see Equation 4.1. Both the landmarks and the robot pose
used in the observation submodule are the true positions as given by the environment.

‖dL tr ue
i −R tr ue‖ =

√
(di ,x)2 + (di ,y)2 f or i l andmar ks (4.1)

di ,x =L tr ue
i ,x −Rtr ue

x

di ,y =L tr ue
i ,y −Rtr ue

y

The observation algorithm evaluates which landmarks are within the LIDAR range using the
Euclidean distance. Nonetheless, a simple distance threshold is not sufficient to accurately
replicate a LIDAR feature extraction submodule. Indeed, LIDAR beams cannot traverse solid
obstacles such as walls. Therefore, in order for a landmark to be observable by the agent, it must
both be within range of the LIDAR sensor and have an obstacle free, straight path between the
landmark and the agent. In this manner the agent only observes landmarks that are accessible
by the LIDAR laser beams. The landmarks that fulfill both conditions are subsequently propa-
gated to the data association submodule for loop closure detection and clustering.

Next, along with the Euclidean distance, the observation function also finds the angle differ-
ence between the agent and all landmarks with respect to the positive x-axis like Equation 4.2,
where Rtr ue

θ
is the true orientation of the agent and i the i th landmark.

∆φL tr ue
i −R tr ue = [(at an2(di ,y ,di ,x)−Rtr ue

θ +π) mod (2π)]−π (4.2)

At last, before returning the observation matrix, noise is added in simulation to the motor con-
trol commands, the Euclidean distance and the angle variation in the form of process and sen-
sor noise. The process noise discussed in Section 2.2.2 is added to the motor control commands
u = [v,ω]. u consist of a velocity and yaw rate that are fed into the robot motion model. The
addition of process noise follows Equation 4.3.

unoi s y = u +N ∗Q (4.3)

With N a randomly normally distributed sampled number with 0 mean and variance 1 and the
process noise covariance matrix Q given by Equation 2.13.

The process noise influences the accuracy and time lag of the EKF estimates. On the contrary,
the measurement noise covariance matrix R represents the noise characteristics of the sensor,

Robotics and Mechatronics B.T. van Manen

20 Learning to explore and map unknown environments with EKF-SLAM and RL

hence it is added to both the range and the bearing of the LIDAR sensor in Equation 4.1 and
Equation 4.2. Equation 4.4 and 4.5 show the resultant noisy distance and angle variation de-

noted by ‖dL tr ue
i −R tr ue‖noi s y and ∆φnoi s y

L tr ue
i −R tr ue respectively.

‖dL tr ue
i −R tr ue‖noi s y = ‖dL tr ue

i −R tr ue‖+N ∗R[0,0] (4.4)

∆φ
noi s y
L tr ue

i −R tr ue =∆φL tr ue
i −R tr ue +N ∗R[1,1] (4.5)

with R expressed in Equation 4.6.

R =
[
σ2

r ang e 0
0 σ2

bear i ng

]
(4.6)

Where σ2
r ang e and σ2

bear i ng are the variances in the range and bearing of the LIDAR sensor
respectively.

The introduction of noise into the system is essential to better mimic real-life conditions, but
most importantly to insert small errors in the EKF estimates so they can be minimized by the
trajectory generation module. In practice Q and R can be difficult to find and often depend on
the system at hand, the manufacturer and the type of sensor used. For simulation purposes,
Q and R are usually tuned to an appropriate size depending on the data. A good practice is
to start with the identity matrix multiplied by a scalar that is less than one. But care must be
taken in this step considering that the EKF output is sensitive to changes in the process and
measurement noise.

Proceeding with the observation submodule, all that remains is to gather Equations 4.4 and 4.5
for every valid landmark into a single observation matrix according to Equation 4.7.

z = [z1, z2, z3, ..., zi] f or i l andmar ks (4.7)

z1,...,i = [‖dL tr ue
1,...,i −R tr ue‖noi s y ,∆φnoi s y

L tr ue
1,...,i −R tr ue ,1, ..., i]

4.2.3 Localization and data association

The EKF localization and data association submodule is the core function of the EKF SLAM
module. As the name suggests, it not only handles both EKF steps (prediction and correction)
but also loop-closure detection and landmark clustering.

B.T. van Manen University of Twente

CHAPTER 4. THE PROPOSED ALGORITHM 21

These activities are performed by the algorithm in a specific order portrayed by the pseudo-
code shown in Algorithm 2.

Algorithm 2: EKF prediction and correction step with data association

Input : X̂ cor r ected
t−1 , P̂ cor r ected

t−1 , unoi s y , z, Cx , Mahalanobis distance threshold, dimensions
of R, dimensions of L , time step dt

Output: X̂ cor r ected
t , P̂ cor r ected

t , Kalman gain

Calculate G and Fx according to Equation 2.17 and 2.18
Initialize measurement jacobian H and Kalman gain K

Predict robot pose R̂ in X̂ t and covariance of robot pose in P̂t according to Equation 2.14
and 2.16

for observation vector in observation matrix z do
Calculate Mahalanobis distance to all known landmarks

if Mahalanobis distance bigger than Mahalanobis distance threshold then
Compute landmark position using X̂ t and observation vector
Add landmark coordinates to X̂ t and P̂t

end
Calculate innovation factor according to Equation 2.26
Calculate Kalman gain according to Equation 2.29
Correct state vector X̂ t and covariance matrix P̂t following Equation 2.30 and 2.31

end

return X̂ cor r ected
t , P̂ cor r ected

t , K

The process is straight forward and follows exactly the equations discussed in Subsection 2.2.2.

The succeeding section deals with building the map of the unknown environment in the form
of an occupancy grid. The role of the occupancy grid is to keep track of the positions of all solid
obstacles detected by the LIDAR sensor. The grid is in many ways the end goal of the SLAM
algorithm since it represents a map of the previously unknown environment.

4.2.4 Mapper

The mapper translates the coordinates of known obstacles detected by the LIDAR to a row,
column index in the occupancy grid. In it simplest form, the occupancy grid is a matrix where
each element is either equal to 0, 0.5 or 1. The matrix can further be interpreted as an image
with black, grey and white pixels. Table 4.1 discloses the meaning behind each pixel color in
the occupancy grid.

Pixel value Color Meaning
0 black occupied

0.5 grey unknown
1 white free

Table 4.1: Value, color and meaning of each pixel in the occupancy grid. An occupied pixel refers to a
location that the agent cannot drive through. As opposed to white pixels which correspond to free space.
Grey pixels serve to depict undiscovered areas where the algorithm does not know if the region is free or
occupied.

Before actually creating the occupancy grid, the mapper must compute the coordinates of each
object detected by the LIDAR. The module receives from the LIDAR sensor a range and a bear-
ing characterizing the precise location of an object. When combining the EKF and LIDAR data

Robotics and Mechatronics B.T. van Manen

22 Learning to explore and map unknown environments with EKF-SLAM and RL

one can easily infer the location of the obstacle in the world coordinates. Equation 4.8 shows
an example for an arbitrary LIDAR angle and distance pair.

[
obst acl ex

obst acl ey

]
=

[
X̂ cor r ected

t [0]
X̂ cor r ected

t [1]

]
+

[
dl i d ar ∗ cos(X̂ cor r ected

t [2]+ Θ̂l i d ar)
dl i d ar ∗ si n(X̂ cor r ected

t [2]+ Θ̂l i d ar)

]
(4.8)

The variable obst acl ex,y is the newly computed set of coordinates of the object detected by the
LIDAR. X̂ cor r ected

t [i] with i = 0,1,2 is the estimated robot pose by the EKF (x,y coordinates and
orientation to the positive x-axis). Finally, dl i d ar and Θl i d ar stand for the received LIDAR data
in the form of a distance and angle.

At the beginning, the occupancy grid starts off as a completely grey image, centered around the
current position of the agent. The initial size of the image is chosen large enough to encompass
the entire unknown environment.

Despite the fact that the coordinates of the obstacles are known, a conversion step to pixel
coordinates is still necessary seeing that the occupancy grid has different dimensions than the
environment itself. For that reason, each pixel symbolizes an area of the environment. The size
of the area each pixel embodies depends on the resolution of the image.

Essentially, the received LIDAR data by the mapper is arranged in two separate categories, the
laser beams and individual points. The area covered by the laser beams is considered free space
because no obstacle is detected at that specific location. The same can be said for angles where
the LIDAR sensor did not return any echo. As opposed to a point, which represents occupied
space.

Every time the mapper updates the occupancy grid, the location of the obstacles and the robot
pose must be converted to pixel coordinates. Equation 4.9 presents the conversion for a point
in the world coordinate to a pixel coordinate, according to the conversion factor ci mag e << 1.
In this case, a pixel coordinate is a row and column index meaning it must be rounded to the
nearest integer value. [

i mag ex

i mag ey

]
=

[
x/ci mag e

y/ci mag e

]
(4.9)

Conversely, the laser beams of the LIDAR sensor are modelled in the occupancy grid according
to the Bresenham’s line drawing algorithm. Bresenham’s algorithm requires the start and the
end point of the line, after which the algorithm iterates through all columns in-between. For
each column or pixel x-coordinate, it then estimates the closest pixel center to the line. The
y-coordinate is thus given by Equation 4.10.

y pi xel = y pi xel
1 − y pi xel

0

xpi xel
1 −xpi xel

0

∗ (xpi xel −xpi xel
0)+ y pi xel

0 (4.10)

In Equation 4.10, (xpi xel , y pi xel) are the pixel coordinates of the closest pixel center to the line

for a given column number xpi xel . In contrary, (xpi xel
0 , y pi xel

0) and (xpi xel
1 , y pi xel

1) are the start
and end coordinates of the line respectively.

In addition, for angles where no echo was received by the LIDAR sensor (no obstacles), the
maximum LIDAR range is in that case used to compute an endpoint for Bresenham’s line draw-
ing algorithm. All obstacles are given a two pixel big width to make them more visible in the
map as well.

A great start for implementing the LIDAR conversion to occupancy grid can be found in the
Python Robotics library of AtsushiSakai (2021).

Second, despite the fact that at this point the mapper has the ability to map obstacles and LI-

B.T. van Manen University of Twente

CHAPTER 4. THE PROPOSED ALGORITHM 23

DAR beams in the occupancy grid, it remains important to choose a proper image resolution
in order to create a useful map. From Equation 4.9 it is clear that the conversion factor ci mag e

determines the resolution of the image. Decreasing ci mag e would increase the value of the cor-
responding pixel coordinate. In other words, for a similar change in world coordinates, there is
a bigger change in pixel coordinates compared to a larger conversion factor ci mag e .

Starting with a conversion factor of ci mag e = 0.0025, the resulting image presented in the Ap-
pendix Figure A.1 is too large. A large occupancy grid is far from favorable because larger maps
increase the computation cost considerably. Additionally, the smaller conversion factor also
means there are more unknown pixels between successive LIDAR beams or obstacle points.
This leads then again to more noise in the overall map. Therefore, it is desirable to choose a
larger conversion factor, yet not too big to avoid loosing detail in the map.

A conversion factor that is too big, like ci mag e = 0.01, has better coverage by the LIDAR and
decreases computational cost due to its smaller size. The resulting image can be observed in
the Appendix Figure A.2. Though, one could argue that the map is in this case too small and
that too much detail is lost in the process. One pixel represents a larger area in the world coor-
dinates which explains the zoomed out look that arises.

Thus, an adequate conversion factor lays in-between, comparable to ci mag e = 0.005. The new
occupancy grid appears to be the best of both worlds. The image is less sparse while keeping
smaller details in the map. Likewise, walls are clearly identifiable. Still, the occupancy grid can
be improved by applying a small medium blur to the image as can be seen in Figure 4.3.

Figure 4.3: Occupancy grid with conversion factor ci mag e = 0.005. A median blur is applied with kernel
size 3x3. White areas represent obstacle free space while black pixels portray obstacles in the environ-
ment. Grey pixels instead are unknown regions.

The median blur computes the average pixel value in a fixed window size to remove sparsity
in the original image. In Figure 4.3 the kernel size is 3x3. Sections of free space now become a
solid white patch whereas walls are clearly identifiable as a straight black line.

Moreover, if the angle resolution of the LIDAR sensor is too big, it can happen that an obstacle
is located exactly in-between two laser beams. In that case, part of the obstacle can be seen as
free space by the mapper and thus overwritten due to the beam width. In order to avoid this er-
ror, any occupied pixel in the occupancy grid is binding, meaning it can not be converted back
to free space. Even though, this means that the mapper cannot revise the positions of obstacles
in subsequent passes. This choice is deliberate because of the following three factors. First, if
the mapper was allowed to overwrite the position of obstacles in the map in successive runs,

Robotics and Mechatronics B.T. van Manen

24 Learning to explore and map unknown environments with EKF-SLAM and RL

the mapper could introduce errors instead of correcting them. Second, based on the previous
point, it is the goal of the low-level policy to choose trajectories that minimize the uncertainty
in the EKF estimates. Hence, after a single pass the map should already not contain many
errors. Finally, considering that the high-level policy works as a coverage planner, the agent
should not visit the same location in the environment very often in the first place. Note that
to further minimize the chance of obscuring small objects in the environment, a fine LIDAR
angle resolution of 1 degree is chosen.

4.3 Sensing location extraction

The sole purpose of the high-level policy is to ensure the agent explores the full map, preferably
as efficiently as possible. Formally, this can be translated to visiting all the landmarks in the en-
vironment. A high-level policy refers to a decision making body that governs the generation of
sensing locations.

Accordingly, the high-level policy contains a TD3 RL network trained to minimize the amount
of unvisited landmarks. It receives the current LIDAR data as well as the EKF state vector hold-
ing the robot pose and the observed landmark coordinates. Exploration is considered finished
if all landmarks have been visited.

4.3.1 Network architecture

With the RL algorithm for the sensing location generation being a TD3 network, a suitable net-
work architecture is defined for both the actor and the critic in Figure 4.4.

(a) Actor network architecture (b) Critic network architecture

Figure 4.4: High-level policy network architectures for the actor and the critic in the TD3 algorithm.

B.T. van Manen University of Twente

CHAPTER 4. THE PROPOSED ALGORITHM 25

Both the actor and the critic network have very similar architectures. The key differences is that
the critic has an additional concatenation step where the actions are added to the data before
entering the last two fully connected layers. Two or three convolutional layers are sufficient
to extract the required features from the LIDAR and the occupancy grid. More convolutional
layers do not provide more benefits. The same can be said for the fully connected layers.

Note that the size of the network inputs (LIDAR data and occupancy grid) are hyper-parameters
while the final outputs (actions and Q-value) are fixed in size. For a good feature extraction,
the LIDAR data and the occupancy grid are passed through a series of convolutional layers
separately. The resulting latent space is then joined together before being processed in the
fully connected layers.

4.3.2 Action space

Considering the continuous nature of the environment in which the agent moves, the action
space of the high-level policy is continuous with dimension R2. Instead of directly computing
Cartesian coordinates for the sensing location, the high-level policy chooses polar coordinates
to select the desired sensing location.

Selecting directions rather than coordinates still gives the high-level policy enough freedom to
explore the map but simplifies the decision making process. It reduces the amount of possible
actions and avoids the necessity for conversion between the occupancy grid and the world
coordinates. Furthermore, because obstacle avoidance is a difficult task for the low-level policy
to handle alone, the module eliminates directions where the distance between the robot and an
object is smaller than a pre-defined safety margin of 0.1 meters. This means sensing locations
are always located at least 0.1 meters away from any obstacle. The safety margin is set at 0.1
meters considering the agent has a size if 0.018 meters in simulation. Figure 4.5 illustrates the
action space of the high-level RL agent.

Figure 4.5: Invalid and valid sensing location regions for the high-level policy in the case the agent is
surrounded by walls on three sides. A LIDAR sensor displays the position of the walls and the free space.
Polar coordinates are chosen such that the sensing location resides in the valid region.

From there on, the module picks a distance and an orientation to define the polar coordinates
of the sensing location. If the RL network chooses a direction outside the valid region, the
closest valid angle is selected instead. Similarly, the chosen distance is clipped if it exceeds
the boundary of the valid region. In addition, it is good to know that the high-level RL agent
receives a fixed sized occupancy grid while it is exploring. This is imperative to avoid having to

Robotics and Mechatronics B.T. van Manen

26 Learning to explore and map unknown environments with EKF-SLAM and RL

deal with variable size inputs to the convolutional layers in the actor and the critic.

These coordinates are then converted to Cartesian coordinates before being used for trajectory
generation. From Figure 4.5, one can see that the valid region fits inside the LIDAR range to
assist with obstacle avoidance. With the current approach, the low-level policy has an obstacle
free straight path to the next sensing location, without obstacles hidden in blind spots. The
maximum allowed distance a sensing location can be placed from the agent depends on the
range of the LIDAR sensor. The agent is only able to perform local obstacle avoidance relying
on the immediate LIDAR data. Thus, sensing locations must be placed well within the LIDAR
range to give sufficient leeway to the low-level policy. If the sensing location is too close to
the LIDAR range, the agent may compute trajectories that exit the LIDAR range and collide
with unobserved obstacles. The lower boundary of the valid sensing location region defines
the smallest distance the agent can travel. This depends very much on the type of environment
that must be explored. Large environment permit long trajectories while small and compact
environments require at times short trajectories..

4.3.3 Reward function

The goal of the high-level policy is to ensure full map coverage of the unknown environment.
Hence, to teach the network to select informative sensing locations, the percentage of discov-
ered landmarks is used as training metric. Given the total number of landmarks in the environ-
ment (Lal l), the amount of undiscovered landmarks (Lundi scover ed) and an environment state
s with action a∗, the reward function for the high-level RL agent can be written as in Equation
4.11.

Rhl (s, a∗) = 100− Lundi scover ed

Lal l
∗100 (4.11)

4.4 Trajectory generation

The low-level policy consists of a TD3 RL agent with a continuous normalized action space
between [−1,1]. The agent computes 3 actions to select a specific trajectory towards the sensing
location.

4.4.1 Network architecture

Very similar to the high-level RL agent, the low-level RL agent uses an arrangement of 2 con-
volutional layers to extract features from the LIDAR data. Followed by 3 fully connected layers
after concatenation with the remaining RL state vector. Figure 4.6 shows the network architec-
ture for the actor and the critic used in the low-level RL agent.

B.T. van Manen University of Twente

CHAPTER 4. THE PROPOSED ALGORITHM 27

(a) Actor network architecture (b) Critic network architecture

Figure 4.6: Low-level policy network architectures for the actor and the critic in the TD3 algorithm.

Here again the critic concatenates the actions only after the LIDAR data and the RL state vector
went through a fully connected layer. This step can be seen as a pre-processing step to gradu-
ally extract features as more data is added to the network. The brackets around the 2 layer deep
convolutional network means this portion of the actor or critic network can be removed if there
is no LIDAR data.

The RL state vector that the TD3 network receives is characterized in Equation 4.12.

s = [X̂ ,S1,S2, acti on1, acti on2, acti on3,S next
x ,S next

y ,r ang e1, ...,r ang en] (4.12)

Where X̂ is the estimated robot pose and landmark locations by the EKF module, Sx and Sy

are the Cartesian coordinates of the sensing location associated with the trajectory defined by
the agent’s actions acti on1, acti on2 and acti on3. S next

x , S next
y and r ang e1, ...,r ang en rep-

resent the next target sensing locations and the range values of the n LIDAR beams respectively.
The number of LIDAR beams depends on the specified LIDAR angle resolution. The bearing
information is not needed since the position of each range in the state vector is fixed.

4.4.2 Action space

In all cases, the policy class consists of a set of two trajectories that define the parameterized
trajectory from the robot pose to the next sensing location. The thesis further compares two
different parameterization methods. The first method is the standard cubic polynomial like
initially proposed by Kollar and Roy (2008). The second method looks at Bézier curves instead,
due to their smoothness and control simplicity.

Both the standard cubic polynomial and the Bézier curves can be used to create smooth tra-
jectories between two points. Cubic polynomials have already been proven to be effective in
creating smooth trajectories by Kollar and Roy (2008). 3r d order Bézier curves on the other
hand, are known to be particularly smooth and are widely used by car designers and in com-

Robotics and Mechatronics B.T. van Manen

28 Learning to explore and map unknown environments with EKF-SLAM and RL

puter graphics to generate smooth curves. Their shape is interpolated using four control points
which is thought to give a more intuitive control to the low-level policy.

Bézier curves

Starting with the derivation of the Bézier parameterization. The coordinates of the four con-
trol points are used in Equation 4.13 to form the Bézier parameterization for the x- and y-
coordinates.

Bx (t) = (1− t)3 ∗pc1[0]+3(1− t)2t ∗pc2[0]+3(1− t)t 2 ∗pc3[0]+ t 3 ∗pc4[0] (4.13)

By (t) = (1− t)3 ∗pc1[1]+3(1− t)2t ∗pc2[1]+3(1− t)t 2 ∗pc3[1]+ t 3 ∗pc4[1]

Where the four control points are denoted by pc1(xp1, yp1) to pc4(xp4, yp4) and t the simulation
tick time.

Two of the four control points (point 1 and point 4) are fixed since these are the initial position
(robot pose) and final position (sensing location) of the trajectory. Hence, the first and last
control point can already be defined by Equation 4.14.

pc1 = (Rx ,Ry) (4.14)

pc4 = (Sx ,Sy) (4.15)

The so-called easing function is known for its smooth curves and therefore it is a great option
for trajectory generation. To start generating Bézier curves, only two more control points are
needed. But the agent cannot directly choose coordinates for the two control points seeing that
it is always in movement which makes it impossible to have a fixed action range. Rather, the
agent computes an offset for the x and y direction which are later translated into coordinates
for the two control points.

The second control point is related to the initial position of the trajectory. The farther away the
point is from the initial position, the bigger the speed at t=0. Where exactly control point 2 is
located will decide the orientation at the start of the trajectory. Like is the case for the standard
cubic polynomial, one must constraint the initial orientation to enforce smooth transitions
between successive trajectories. Thus, control point 2 is always located in front of the agent,
with only the distance to the agent acting as a free parameter. The coordinates of pc2 are shown
in Equation 4.16.

pc2 = (Rx + f r eeacti on1 ∗ cos(Rθ),Ry + f r eeacti on1 ∗ si n(Rθ)) (4.16)

Finally, control point 3 is completely free for the agent to choose. The agent computes two
offsets from the target sensing location (Sx ,Sy) in order to set the third control point. The
coordinates of control point 3 are in Equation 4.17.

pc3 = (Sx + f r eeacti on2,Sy + f r eeacti on3) (4.17)

After all, the Bézier curve approach gives very similar control to the agent as the standard cubic
polynomial. A change in the distance of a control point with respect to the start or end position
results in a larger corresponding speed. Varying the angle between the control point and the

B.T. van Manen University of Twente

CHAPTER 4. THE PROPOSED ALGORITHM 29

positive x-axis changes the arrival orientation of the trajectory.

With all the control points now defined, the trajectory is parameterized with two 3r d order
Bézier curves as seen in Equation 4.13.

Varying each action of the agent, i.e. the positions of control point 2 and 3 influences the shape
of the curve in different manners. Figure 4.10 emphasizes the impact each parameter has on
the Bézier curve.

(a) 15 trajectories with varying control point 2.
Control point 3 is fixed and shown as a black dot.

(b) 15 trajectories with varying x coordinate in
control point 3 shown by a black dot. Control
point 2 is fixed.

(c) 15 trajectories with varying y coordinate in
control point 3 shown by a black dot. Control
point 2 is fixed.

Figure 4.7: 15 trajectories with corresponding control points. In each subfigure only one parameter is
varied. Control point 3 is shown with black dots. The orange square is the initial position at (0,0) while
the red star shows the target sensing location at (3,0).

Increasing the initial speed creates an overshoot which is clearly visible on Subfigure 4.7a.
Shifts along the x- and y-axis are distinguishable in Subfigure 4.7b and 4.7c as control point
3 is slowly altered. The trajectories become even more interesting if both control points are
modified simultaneously. As an example of the complete action space, Figure 4.8 plots a range
of sample trajectories.

Robotics and Mechatronics B.T. van Manen

30 Learning to explore and map unknown environments with EKF-SLAM and RL

Figure 4.8: Bézier curves for varying control points 2 and 3. The colors represent different horizontal
positions on x-axis for control point 3. The orange square represents the initial position (0,0,0) whereas
the red star is the target sensing location (3,1,0). Units are in meters.

Figure 4.8 shows a portion of all the possible trajectories that the agent can compute using the
Bézier parameterization. The action space of the agent is continuous with dimensions IR3.

Bézier curves versus standard cubic polynomials

Comparing the parameterization using the Bézier approach versus the standard cubic polyno-
mial shown in the Appendix section A.2, it can be observed that Bézier curves provide slightly
smoother trajectories between the robot pose and the target sensing location. In addition,
the parameterization is considerably easier to implement since the low-level policy directly
selects the 2 adjustable control points. As a result, the low-level policy in the trajectory-based
EKF SLAM algorithm uses the Bézier parameterization to compute appropriate trajectories that
minimize the map and robot pose uncertainty.

Though, the TD3 agent generating the trajectories has a normalized action range between [-
1,1], the three actions are scaled to their true range before computing the Bézier curve. A nor-
malized action range is chosen to improve the convergence of the RL agent and to give more
flexibility to the true action ranges. The final action range for the 3 free parameters depends on
the scale and complexity of the environment. Large environments may require larger speeds.
Similarly, a bigger action range leads to more intricate trajectories necessary to explore com-
plex environments. Scaling the normalized action range to [-0.5,0.5] turned out to be adequate
for the environments used in this thesis.

4.4.3 Reward functions

The reward function governing the desired behaviour of the agent consists of a combination of
a continuous and a discrete penalty. The continuous portion of the reward function serves to
guide the agent towards computing trajectories that minimize the map uncertainty. Whereas,
the discrete reward handles the obstacle avoidance by penalizing the agent for picking any tra-
jectory that leads to a collision.

Regarding the uncertainty minimization, two continuous reward functions are proposed to
minimize the map uncertainty, either based on the Kalman gain K or on the EKF uncertainty
matrix P. From Subsection 2.2.2, Equation 2.30 reveals that a reduction in the Kalman gain
translates to a higher confidence in the current state estimate. Remember that the EKF state

B.T. van Manen University of Twente

CHAPTER 4. THE PROPOSED ALGORITHM 31

estimate X̂ , contains both the estimated robot pose and the estimated landmark positions.
Therefore, reducing the Kalman gain is one way to decrease the uncertainty in the EKF esti-
mates. Yet, Equation 2.29 shows that K only decreases if the covariance matrix P or the jacobian
of the measurement function H declines. Seeing that the H matrix exclusively holds the deriva-
tives of the measured distance between the robot pose and the landmark and has no direct
relation to the agent’s action. H is not a viable metric to reduce the map uncertainty. Hence,
minimizing the Kalman gain comes down to minimizing the uncertainty matrix P. This makes
sense since P represents the variances in the robot pose and in the map. Both K and P are con-
sidered as candidate metric in the reward function to minimize the map uncertainty. Given a
RL state s, an action a and neglecting obstacle avoidance for now, Equation 4.18 presents the
two proposed continuous reward functions, denoted by R(a)c1 and R(a)c2.

R(s, a)c1 =−∑
tr ace(K) (4.18)

R(s, a)c2 =−∑
tr ace(P)

The trace function sums the elements on the diagonal of the square matrix. In both K and P,
this refers to the elements relating to the robot pose and the map. The summation in Equation
4.18 spans over the entire trajectory to create a cumulative penalty for the agent.

Next, the continuous reward function that best trains the agent to minimize the map uncer-
tainty is combined with a discrete penalty to include obstacle avoidance when selecting tra-
jectories. Equation 4.19 describes the final reward function used to train the low-level policy
within the framework of the trajectory-based EKF SLAM algorithm.

R(s, a) =
{
−2000, if collision.

−∑
tr ace(K or P), otherwise.

(4.19)

The size of the discrete penalty in case of a collision depends on the size of the continuous
reward. The discrete penalty should be big enough such that the agent quickly learns to stay
away from collisions. While the continuous reward serves as a gradient to learn trajectories
that minimize the map uncertainty.

4.4.4 Evaluation metric

The accuracy of the occupancy grid depends on the accuracy of the EKF estimates. To evaluate
the performance of the low-level policy, the Root Mean Square Error (RMSE) between the true
and estimated robot pose R̂ and landmark positions L̂ is calculated. Equation 4.20 shows how
the RMSE is computed for the robot pose and for n observed landmarks.

RMSER̂x,y
=

√
(Rx −R̂x)2 + (Ry −R̂y)2

2
(4.20)

RMSER̂θ
=

√
(Rθ−R̂θ)2

RMSEL̂ =
√∑n

j=1(L j ,x −L̂ j ,x)2 + (L j ,y −L̂ j ,y)2

n

Where R is the true robot pose and likewise L the true landmark positions.

Robotics and Mechatronics B.T. van Manen

32 Learning to explore and map unknown environments with EKF-SLAM and RL

Despite the fact that the RMSE provides a better picture of the trend in the error signal com-
pared to the Mean Square Error (MSE), it is still subject to a lot of variance. For that reason,
the average RMSE over the entire N steps that compose the trajectory is determined, following
Equation 4.21.

RMSE tr a j ector y

R̂x,y
=

∑N
k=1 RMSER̂x,y ,k

N
(4.21)

RMSE tr a j ector y

R̂θ

=
∑N

k=1 RMSER̂θ ,k

N

RMSE tr a j ector y

L̂
=

∑N
k=1 RMSEL̂ ,k

N

Though, the agent must not only minimize the map uncertainty but also discriminate between
trajectories that interfere with obstacles. To measure the agent’s ability to avoid obstacles, the
environment keeps track of the average number of obstacle free trajectories per episode during
training.

4.5 Discretization

In order for the agent to follow the parameterized trajectory, Equation 4.13 must be discretized
in a finite amount of points l with corresponding time step ∆t = 1

l . This process is best de-
scribed in a for loop going from 0 to the number of desired points l . In each loop, the time step
∆t is added to time variable t in Equation 4.13, starting at t = 0.

These points serve as short term goals for the path follower in Section 4.6. The amount of points
characterizing the trajectory between the robot pose and the sensing location can be fixed but
a suitable amount of points must be chosen. Too many points will slow down the algorithm
substantially without providing any more benefits. Too little and the 3r d order polynomial is
not accurately approximated anymore. The thesis uses 25 points for each trajectory. Figure 4.9
shows an example of a discretized trajectory.

Figure 4.9: Example trajectory after discretization. Each blue point in the trajectory denotes a short
term target for the PD controller. The diamond shaped marker is the target sensing location while the
agent is represented in light blue on the bottom.

The 25 points that make up the trajectory show the path the agent takes to reach the target
sensing location in Figure 4.9.

It is important to realize that the trajectory implementation considers a fixed time, from t =
0s to t = 1s and a fixed amount of discretization points per trajectory. However, this means
that there is currently no set limit for the robot speed. Sensing locations that are set far away
from the agent will lead to faster speeds achieved by the robot. In contrary, close-by sensing
locations lead to very slow speeds.

B.T. van Manen University of Twente

CHAPTER 4. THE PROPOSED ALGORITHM 33

4.6 PD controller

The EKF SLAM module requires a velocity and a yaw rate in the form of the motor control com-
mand u = (u,ω). Given the current estimated robot pose R̂ and the short term goals received
from the low-level policy, the path follower module consists of two separate PD controllers, one
for the velocity and one for the yaw rate. It gives the proper motor controls to accurately follow
the trajectory.

In both cases, an error signal must be created. Firstly, the module calculates the difference in
position between the current robot pose and the target position, see Equation 4.22.

∆X = t ar g etx −R̂x (4.22)

∆Y = t ar g ety −R̂x

epos =
√
∆X 2 +∆Y 2

The same approach is done for the change in angle as described in Equation 4.23.

Φ= (ar ct an2(∆Y ,∆X)+2∗π) mod (2∗π) (4.23)

∆Φ= (Φ−R̂thet a)

Mark that the ar ct an2 function returns an angle in the range of [−1,1], for that reason 2π is
added and subsequently removed to map the result back into the [0,2π] range of the robot
pose.

Another key point is the loop back behaviour of the unit circle when calculating the signed dif-
ference between the robot orientation and the target angle. For the PD controller, the smallest
angle difference between two angles is needed. A simple subtraction works fine in most cases
but not when the 0deg angle is in-between the two angles. A simple solution to solve this prob-
lem is to add or subtract 2pi if ∆Φ is smaller than −π or bigger than +π respectively.

The error signal for both proportional controllers are now ready. Proceeding with the deriva-
tive control, the time derivatives of the error signals in the angle and position are inferred from
Equation 4.24 using the simulation tick time d t = 0.1s.

depos =
epos

d t
(4.24)

d∆Φ= ∆Φ
d t

At this point, the position and derivative error signals are fed into Equation 4.25 for the PD
controller of v and ω.

v = K pv ∗epos +depos ∗K dv (4.25)

ω= K pω∗∆Φ+d∆Φ∗K dω

K pv , K dv , K pω and K dω are the specific gains for the proportional and derivative control of
the velocity and yaw rate PD controller. They must be tuned appropriately for the PD controller
to function.

Both PD controllers are tuned separately starting with proportional control only. Once the pro-
portional gain is satisfactory, the derivative gain is adjusted very slightly for each PD controller.

Robotics and Mechatronics B.T. van Manen

34 Learning to explore and map unknown environments with EKF-SLAM and RL

The proportional gain makes the system respond faster, for that reason the yaw rate propor-
tional gain is easiest to tune in the corner of a trajectory. A good indication of a too low propor-
tional gain is when the agent takes the corner too late. On the other hand, to tune the velocity
proportional gain one must evaluate if the agent reaches the target locations. If the velocity
proportional gain is too low, the agent will finish slightly in front of the target location after
each step. These errors accumulate over the trajectory, meaning that the agent will end up
short at the end of the trajectory.

The derivative control is tuned by looking at how the PD controller reacts to error changes.
This is especially noticeable after the agent overshoots a target location. A good derivative gain
brings the agent back on the trajectory and is able to recover from the overshoot. This holds for
both the velocity and yaw rate derivative control.

4.7 Summary

The proposed trajectory-based EKF SLAM architecture consist of 5 different modules arranged
hierarchically. The first module is the EKF SLAM. It starts by retrieving the range and bearing
of the landmarks within the agent’s observation range. When dealing with obstacle avoidance,
landmarks are located on the corner of an obstacle. From there, the EKF performs its predic-
tion and correction step as described in Section 2.2.2. Subsequently, the estimated robot pose
is combined with the LIDAR data to create an occupancy grid. The occupancy grid keeps track
of which areas in the environment are occupied space or free space.

Next, the high-level RL network uses the occupancy grid, the LIDAR data and the estimated
robot pose to pick a new sensing location in polar coordinates. To aid with obstacle avoidance,
the TD3 network can only choose sensing locations located in a defined valid area. Addition-
ally, a reward function based on the amount of discovered landmarks is used to incite maxi-
mum map coverage.

On the other hand, the generated trajectories are parameterized with the 3r d order Bézier
curves. The shape of the Bézier curve is interpolated from 4 different control points, where
the first and last control points are the start and end positions of the trajectory. This second
TD3 RL agent is tasked to decide on the shape of these Bézier curves by changing the location
of control point 2 and 3. The thesis initially proposes two continuous reward functions to min-
imize the EKF uncertainty. The first continuous reward sums the diagonal coefficients of the
Kalman gain K . While the second continuous reward function sums the diagonal coefficients
of the EKF covariance matrix P . To account for obstacle avoidance, a discrete penalty of -1000
is handed to agent upon collision with an obstacle.

At last, to satisfy the EKF’s need for motor control commands, the computed Bézier curves are
discretized into 25 short term target locations. A PD controller then handles the path following
by finding the appropriate velocity and yaw rate to reach all 25 short term goals forming the
trajectory.

B.T. van Manen University of Twente

35

5 Simulation experiments and results

The Experimental Design Chapter starts off by describing the process used to create custom
environments for training and testing the proposed RL and SLAM-based framework. The two
main experiments are presented. In the first experiment, the low-level policy is trained to min-
imize the map uncertainty without the presence of obstacles in the environment. This to vali-
date the reward functions proposed in Equation 4.18. In the second experiment, it is researched
how obstacle avoidance can be included as a goal for the low-level policy together with the
minimization of the map uncertainty. Both experiments include the training and testing of the
high-level policy. Finally, a discussion with recommendations and a summary conclude the
chapter.

5.1 Experimental setup: 2D Python environment

In order to train the high- and low-level policy as well as test the trajectory-based EKF SLAM
implementation, a 2D Python environment is created. The environment is based on the Gym
library. Since the proposed algorithm is still in the prototyping phase, a simple developing
environment such as Python and 2D physics is preferred. In a latter stage the algorithm can
however be expanded to more complex and realistic environments like the robotic simulator
Gazebo (Gazebo, 2021).

5.1.1 Custom environment

To quickly design versatile environments, the thesis makes use of the Python library Shapely.
Shapely allows to create a wide range of shapes and objects with which a RL agent can interact
with.

Figure 5.1 shows an example of a complex custom environment created with Shapely that can
be used to train a RL agent.

Figure 5.1: Example of a custom Python environment for training RL agents.

This way of creating custom environments is simple and sufficient for training the high- and
low-level RL networks in the proposed SLAM algorithm. All custom environments entirely con-
sist of a collection of polygons and individual points. In Figure 5.1 for instance, one can see thin
polygons representing walls, placed either perpendicularly or diagonally. Polygons with a larger
width are used to simulate internal obstacles.

Robotics and Mechatronics B.T. van Manen

36 Learning to explore and map unknown environments with EKF-SLAM and RL

In addition, the custom environment must at least consist of one polygon representing the
boundary of the environment and one point denoting the starting position of the RL agent. All
other polygons, other than the boundary, are considered obstacles that the agent cannot tra-
verse. The custom environment is also normalized to have a fixed window size.

In the end, the environment changes state each time the agent moves from one position to
another. Accordingly, the training of the low-level policy is divided into a finite number of
episodes, where one episode coincides with one attempt to explore the environment. Such
an episode can be terminated early in the event the agent collides with a wall. If no collision
occurs, the episode finishes once a fixed amount of trajectories is reached (with one full trajec-
tory corresponding to 25 steps). At each start of a new episode, the environment is reset to its
initial state.

5.1.2 Generation of random environments

Introducing sufficient randomization in the environment is important for the creation of a well
generalized high- and low-level policy. Without randomizing the training conditions, the RL
agent would quickly over-fit the training environment. As a result, the learned policy would
have a low operational capability and would only be useful in the exact conditions experienced
during training.

Generalization can be increased by randomizing the environment after every new training
episode. Therefore, the initial starting position of the robot is randomized as well as the lo-
cation of the walls and landmarks. The walls are of random length and orientation. Figure A.4
in the Appendix Section A.3 shows an example of a custom environment with 15 random walls.

Note that in this particular example, fixed sensing locations (diamond markers in Figure A.4)
are used since the high-level policy is not yet trained.

It is clear that increasing the amount of random walls in the environment increases the explo-
ration difficulty for the robot. The more random walls are spawned, the likelier the chance of
generating intricate structures.

Moreover, the RL agent generalizes better if the replay buffer contains disparate states. Care
must be taken that the agent’s starting orientation does not face a nearby wall. Otherwise the
agent has no choice but to collide after its first step. To resolve this issue, random x- and y-
coordinates are chosen for the agent that lay within the world boundary and that do not inter-
fere with any walls or obstacles. At these initial x- and y-coordinates, a valid starting orienta-
tions can be found by evaluating the vector from the agent to nearby walls for all angles in the
unit circle. Doing so eliminates all orientations pointing towards close-by walls. A valid start-
ing orientation can thus randomly be chosen from the remaining angles. Appendix Section A.3,
Figure A.5 demonstrates how every agent is spawned facing away from the nearby wall.

5.1.3 LIDAR simulator

LIDAR data is required in the EKF SLAM module to train the high- and low-level policy and test
the trajectory-based EKF SLAM implementation. For each laser beam of the LIDAR sensor, a
range and a bearing is returned. Given an angle resolution for the LIDAR, one can compute the
corresponding amount of laser beams. Laser beams that do not encounter any obstacles return
the maximum LIDAR range instead along with their bearing.

In the simulation, the Python library Shapely is used to create the desired amount of laser
beams. Each laser beam is represented as a line. The LIDAR simulator then checks for any
intersections between the laser beams lines and the obstacles in the environment. If an inter-
section is detected, a red point is placed at the position of intersection to illustrate the laser
beam hitting the obstacle. The range to an obstacle is calculated as the Euclidean distance

B.T. van Manen University of Twente

CHAPTER 5. SIMULATION EXPERIMENTS AND RESULTS 37

between the true robot pose and the position of intersection. Figure 5.2 illustrates the LIDAR
sensor in the simulation rendering for a 3 degree angle resolution.

Figure 5.2: LIDAR simulation rendering with the remaining elements of the trajectory-based EKF SLAM
algorithm. The agent is displayed as a yellow dot at the center of the LIDAR sensor. The red lines simulate
the LIDAR beams. The green LIDAR beam denotes the current robot orientation.

On top of the LIDAR, Figure 5.2 also shows the rendering of all modules inside the trajectory-
based EKF SLAM algorithm.

5.2 Training high- and low-level RL models without obstacle avoidance

All experiments are performed in simulation due to the current COVID-19 pandemic. The main
goal of this section is to assess and compare the performance of the reward functions proposed
in Equation 4.18. For that reason, this section neglects obstacle avoidance since it affects the
performance of the low-level RL agent. The second goal is to evaluate the performance of the
high-level policy as a coverage planner.

Moreover, to further reduce the influence of the environment when training the trajectory gen-
eration, the high-level RL agent is replaced by pre-defined sensing locations or a simple algo-
rithm that sets a sensing location towards the closest unobserved landmarks. Training both
RL agents separately has several benefits. First, it ensures that the performance of the RL
agent during training truly reflects the performance of the chosen reward function. Second,
it increases the training stability. If both high- and low-level RL agents were to be trained si-
multaneously, the failure of one RL agent would confuse the training of the second RL agent.
Third, it allows to train the high- and low-level policy in parallel thus saving time. All train-
ing experiments are done with seed 1 as opposed to testing procedures that utilize five seeds
< 12,1111,98,4321,123 >
At the same time, Table 5.1 summarizes the PD controller gains used throughout the experi-
ments of this section.

Table 5.1: Velocity and yaw rate PD controller gains used in all experiments

Kpv Kdv Kpω Kdω
2.75 0.15 4.5 0.28

Robotics and Mechatronics B.T. van Manen

38 Learning to explore and map unknown environments with EKF-SLAM and RL

At last, regarding the process and sensor noise in the simulation, the variances are qualitatively
tuned starting from the identity matrix. An indication of too much noise is apparent if the EKF
estimates diverge from their true values. The values for the variances in the process and sensor
noise Q and R along with the covariance matrix of the EKF state vector Cx are given in Table
5.2.

Table 5.2: Values for the covariance matrix of the EKF state vector, process and sensor noise

Process Q Sensor R EKF state
σ2

v σ2
ω σ2

r ang e σ2
bear i ng σ2

x σ2
y σ2

θ

0.01 0.0017 0.002 0.00017 0.25 0.25 0.27

5.2.1 Low-level model hyper-parameter tuning

The first step in training the low-level RL agent is finding suitable values for the TD3 hyper-
parameters.

Setup

As the experiment only seeks to tune the model hyper-parameters, notably the learning rate,
a simple environment with pre-defined sensing locations and landmarks suffices. Figure 5.3
illustrates the environment used in this experiment.

Figure 5.3: Training environment to tune the TD3 network hyper-parameters. The agent is depicted as
a green dot, while the landmark and the sensing locations (S1, ..., S5) are displayed as green stars and
black diamonds respectively.

For a good comparison between the different sets of hyper-parameters, no randomization is
added to the environment. For each episode, the agent starts at the same initial position and
moves through the fixed sensing locations from S1 to S5. The landmarks are placed exactly
in-between two successive sensing locations such that each trajectory observes at least one
landmark.

The hyper-parameters are tuned with the continuous reward function R(s, a)c1 described in
Equation 4.18. Note that R(s, a)c2 could have been used as well. After performing research in
the used hyper-parameters in the original TD3 paper (Fujimoto et al., 2018), the set of hyper-
parameters shown in Table 5.3 is chosen as a baseline for further tuning.

B.T. van Manen University of Twente

CHAPTER 5. SIMULATION EXPERIMENTS AND RESULTS 39

Table 5.3: Starting hyper-parameters for the TD3 network

Hyper-parameter Batch size γ τ Learning rate Start episode Policy noise Noise clip Policy frequency Exploration noise
Value 256 0.99 0.005 0.001 50 0.2 0.5 2 0.1

Starting from the learning rate in Table 5.3, the convergence of the average reward curve after
training is evaluated qualitatively. Depending on how well the model converges, the learning
rate is increased or decreased. The best learning rate is found when the agent accumulates the
most reward, in a steady manner throughout the episodes. The agent trains for at least 2000
episodes where a random policy is used for the first 50 episodes.

Results

The first training session with the hyper-parameters listed in Table 5.3 results in a noisy cumu-
lative reward curve. Therefore, a moving average with a window size of 20 episodes is taken to
smoothen the curve and make the overall trend more apparent. The experiment yields a mov-
ing average reward that increases with approximately 0.5 over 1500 episodes (see Figure A.6 in
Appendix Section A.4). Though, a large drop-off can be observed at around 2100 episodes. This
abrupt decrease in the average reward is most likely due to a too large learning rate resulting in
an unstable learning process. Still, considering the rising nature of the overall average reward,
all hyper-parameters except for the learning rate are kept the same in the next experiments.

Next, the learning rate is decreased by one order of magnitude to l r = 1e −4. In this case, the
average reward curve did not exhibit any increasing or decreasing trend at all (see Figure A.7,
Appendix Section A.4). This can only mean that the new learning rate is set too low this time.
Hence, the optimal learning must lay in between l r = 1e −3 and l r = 1e −4. A learning rate of
l r = 0.0004735 turns out to be near optimal given the experiment conditions. Figure 5.4 shows
the resulting moving average reward curve obtained after training for 10000 episodes.

Figure 5.4: Moving average over 20 episodes after training for 10000 episodes and learning rate l r =
0.0004375.

Figure 5.4 shows a clear upwards trend in the average reward, which means the agent is learning
the desired behaviour.

5.2.2 Reward function comparison

The next step in the process of training the low-level RL agent is to find the best reward function
that leads to model convergence. R(s, a)c1 and R(s, a)c2 are qualitatively and quantitatively
compared to find the best reward function for subsequent experiments.

Robotics and Mechatronics B.T. van Manen

40 Learning to explore and map unknown environments with EKF-SLAM and RL

Setup

Given both continuous reward functions of Equation 4.18, two identical low-level RL agents are
trained in the environment presented in Figure 5.5. One with the Kalman gain based reward
function R(s, a)c1 and the other with the covariance matrix based reward function R(s, a)c2.

Figure 5.5: Training environment for the reward function comparison experiment. The agent initial
position is displayed as a green dot in the bottom left corner. Sensing locations and landmarks can be
observed as diamond shaped markers and green stars respectively.

In this experiment, fixed sensing locations and landmarks are chosen again since generaliza-
tion is not a concern at this stage. In addition, for a good comparison between R(s, a)c1 and
R(s, a)c2, both training runs must be as identical as possible. Figure 5.5 shows the order in
which the RL agent moves through the sensing locations.

Besides, the landmarks are located only on one side between successive sensing locations.
Hence, the low-level policy should prefer trajectories that pass through these landmarks as
it increases the accuracy of the EKF estimates. Both low-level RL agents are trained with the
hyper-parameters presented in Table 5.3 but with learning rate l r = 0.0004375. The models
train for at least 10000 episodes which is equivalent to 160000 trajectories.

A final qualitative validation is also performed, comparing the trajectories originating from the
best learned policy to random trajectories when tested in the environment of Figure 5.5.

Results

The best reward function between R(s, a)c1 and R(s, a)c2 produces a moving average reward
curve that has a continuously upwards trend. This would mean the model is converging to-
wards a global maximum. Figure 5.6 presents the moving average of the received reward by
both low-level RL agents during training.

B.T. van Manen University of Twente

CHAPTER 5. SIMULATION EXPERIMENTS AND RESULTS 41

(a) R(s, a)c1 using the Kalman gain K (b) R(s, a)c2 using the covariance matrix Pest

Figure 5.6: Average reward curves during training for both continuous reward functions proposed in
Equation 4.18

Looking at Figure 5.6, it is obvious that the reward function based on the EKF uncertainties
(R(s, a)c2) managed to converge much better compared to Kalman gain based reward function
(R(s, a)c1). The most notable difference is that R(s, a)c2 reaches a clear asymptote with an av-
erage reward around -200, while R(s, a)c1 does not.

In general, a model converges easier if the actions of the RL agent have a direct influence on
the resulting reward. In this way, the RL network can better approximate the function yielding
optimal actions. With this in mind, the results of Figure 5.6 make sense since it was seen from
Equation 2.29 that minimizing the Kalman gain boiled down to minimizing the EKF covariance
matrix. Yet, the presence of other matrices in the Kalman gain and the presence of the EKF
covariance matrix in both the numerator and the denominator complicates the minimization
of the ratio.

The moving average RMSE values in the robot position, the robot orientation and the landmark
position (Figure A.8, Figure A.9 and Figure A.10 in the Appendix Section A.5) also confirms the
idea that R(s, a)c2 is a more effective reward function.

Although, for both R(s, a)c1 and R(s, a)c2 the average RMSE in the landmark and robot posi-
tions does decline during training. R(s, a)c2 reaches its asymptote, of an RMSE around 0.04m,
already after 40000 trajectories compared to 140000 for R(s, a)c1. This further validates the su-
periority of R(s, a)c2 as a reward function for trajectory generation.

Finally, given R(s, a)c2 a simple test can be done to study the effect of the process and sensor
noise on the trajectory shape. The experiment is described in Appendix Section A.6. Results
show that the low-level RL agent prefers trajectories with the least amount of loops as the noise
gets bigger. The test validates the hypothesis that excessive turns are less desirable.

5.2.3 Low-level policy generalization

In this last experiment without obstacles, a low-level RL agent is trained in a random environ-
ment to improve generalization.

Setup

The low-level RL agent trains with the hyper-parameters of Table 5.3 and with learning rate
l r = 0.0004375. Randomization is added to the training in the form of 30 randomly generated
landmarks and a random robot pose initialization before every episode. Since generalizing
the model also increases the convergence time, the model is left training for a total of 240000
episodes. Such a large amount of episodes amounts to around 800000 computed trajectories
by the low-level policy.

Moreover, the RL agent has an observation range of 0.6 meters. The sensing locations are placed
in the direction towards the closest unobserved landmark.

Robotics and Mechatronics B.T. van Manen

42 Learning to explore and map unknown environments with EKF-SLAM and RL

At last, the generalized policy is evaluated 20 times in the same environment with randomiza-
tion for seeds < 12,1111,98,4321,123 >.

Results

The moving average reward after 240000 episodes is shown in Figure 5.7.

Figure 5.7: Moving average reward of the low-level RL agent while training in the stochastic environment
of Subsection 5.2.3.

From Figure 5.7, no clear increase in the average reward can be observed over time. The re-
ward curve keeps oscillating around approximately -290. Many large, downwards peaks, can
also be observed. These large spikes in the EKF uncertainty are likely due to moment where
the RL agent did not observe any landmarks. Hence, the error accumulates quickly until new
landmarks are observed.

Yet, results from testing the trained policy for 20 episodes on 5 different seeds show very
promising results. Table 5.4 shows the average RMSE in the robot position, robot orientation
and landmark position average over the 20 episodes.

Table 5.4: RMSE during evaluation

Robot position
(m)

Robot orientation
(radians)

Landmark position
(m)

Seeds Random Policy Random Policy Random Policy
12 0.0348 0.0317 3.0885 2.9051 0.0767 0.0739
1111 0.0420 0.0327 3.8704 2.8390 0.0831 0.0759
98 0.0344 0.0411 3.4639 3.2164 0.0791 0.0842
4321 0.0392 0.0359 3.6616 3.3738 0.0821 0.0799
123 0.0274 0.0240 3.8329 3.0875 0.0667 0.0599

In 4 out of 5 seeds the average RMSE in the robot pose as well as in the landmarks is smaller
than the RMSE using random trajectories. These results validate the effectiveness of the chosen
reward function.

5.2.4 High-level policy training

This experiment deals with the training of the high-level RL agent serving as coverage planner.

B.T. van Manen University of Twente

CHAPTER 5. SIMULATION EXPERIMENTS AND RESULTS 43

Setup

The training of the high-level RL agent follows the same setup as the generalization of the low-
level policy in Section 5.2.3. Nevertheless, a maximum of 10 trajectories per episode is set in
case the high-level policy does not manage to visit all the landmarks. After 10 trajectories the
training episode is terminated. As mentioned in Section 5.2, the high- and low-level RL agents
are trained separately. Therefore, the trajectory generation consists of a simple straight line be-
tween the agent and the chosen sensing location.

Additionally, the landmark coordinates in the estimated EKF state vector should provide the
high-level RL agent with enough information to know which areas have already been discov-
ered or not. Thus, as a first test, the high-level RL agent is trained without the occupancy grid.
Including the occupancy grip in the RL state vector makes training significantly more difficult
as it requires a lot more GPU memory.

Results

After training for 37000 episodes, Figure 5.8 shows the obtained moving average reward curve.

Figure 5.8: Moving average reward of the high-level RL agent during training

From the moving average reward seen in Figure 5.8, an increase in the coverage per episode
is observed until 10000 episodes. After this turning point, the high-level policy continuously
decreased in performance until the training session ended.

The poor convergence of the high-level policy in such a simple environment suggests that the
EKF state vector alone is not sufficient for the high-level RL agent to infer optimal sensing lo-
cations. The occupancy grid must be passed to the high-level RL agent as well. It functions
as memory, showing which areas of the environment has already been explored. But it also
highlights where the unexplored areas are located.

5.2.5 Coverage evaluation

In this last experiment, the trained high- and low-level RL agents are combined in the
trajectory-based SLAM algorithm. The goal of the experiment is to evaluate the coverage of
the trained high-level policy in different seeds.

Setup

The trained high-level policy is tested for 20 episodes on the seeds < 12,1111,98,4321,123 >.
The average coverage over the 20 episodes is calculated for each seed. The high-level agent
must visit 15 landmarks, randomly distributed in the environment.

Robotics and Mechatronics B.T. van Manen

44 Learning to explore and map unknown environments with EKF-SLAM and RL

Results

Table 5.5 shows the average coverage percentage obtained during testing of the trained high-
level policy and random sensing locations.

Coverage percentage
(%)

Coverage percentage
(%)

Seeds Random Policy
12 54.0 52.3
1111 57.2 49.8
98 60.7 50.2
4321 68.1 50.5
123 53.7 47.0
Average coverage 58.7 50.0

Table 5.5: Coverage percentage for the trained and random policy. The coverage is averaged over 20
episodes for 5 different seeds.

The results in Table 5.5 validate the findings during training of the high-level policy. Namely,
the high-level RL agent did not converge towards a global maximum.

5.3 Addition of obstacle avoidance

The inclusion of obstacle avoidance in the training of both the high- and low-level RL agents is
studied in this section.

5.3.1 Merging uncertainty minimization with obstacle avoidance

The goal of this experiment is to study the performance and convergence ability of the low-level
RL agent when training with the reward function in Equation 4.19 on the low-level RL agent.

Setup

To include obstacle avoidance in the trajectory generation, the low-level RL agent receives a
penalty of -2000 if it collides with an obstacle (Equation 4.19). Furthermore, the training en-
vironment is kept simple, with only one wall randomly generated in the environment. Start-
ing with a low amount of walls reduces the importance of obstacle avoidance to maximize the
episodic reward. This ensures the low-level agent still focuses primarily on minimising the EKF
uncertainty.

Following the same approach as in Section 5.2.3, 15 landmarks are randomly generated in the
environment. The initial position of the robot pose is also randomized. Note, since walls are
present in the environment, the LIDAR data is passed to the low-level RL agent. The LIDAR has
a resolution of 3 degrees and a maximum range of 0.6 m.

The trained policy is again tested for 20 episodes on seeds < 12,1111,98,4321,123 > with 1 wall
and 15 landmarks.

Results

The training results manifest themselves through the average number of successful trajectories
in Figure 5.9a and the moving average reward Figure 5.9b

B.T. van Manen University of Twente

CHAPTER 5. SIMULATION EXPERIMENTS AND RESULTS 45

(a) Moving average number of trajectories with-
out a collision.

(b) Moving average reward for the low-level policy
with obstacle avoidance.

Figure 5.9: Moving average reward for the low-level policy while training with obstacle avoidance. To-
gether with the average number of trajectories that are collision free.

The training results in Figure 5.9 show an initial decrease in the received reward which cor-
responds to a decrease in the number of successful trajectories. Looking at Figure 5.9a, it is
clear that the low-level RL agent has difficulties with obstacle avoidance. This was expected as
it remains the most challenging problem to solve with the low sample efficiency of trajectory
generation. Overall, the model did not manage to truly converge to an asymptote. Neverthe-
less, the evaluation on the 5 different seeds presented in Table 5.6 gives a better picture of the
model performance.

Table 5.6: RMSE during evaluation with obstacle avoidance

Robot position
(m)

Robot orientation
(radians)

Landmark position
(m)

Seeds Random Policy Random Policy Random Policy
12 0.0551 0.0156 5.4071 2.3040 0.1001 0.0292
1111 0.0330 0.0132 3.8307 6.9186 0.0598 0.0254
98 0.0551 0.0323 4.1119 6.0664 0.0939 0.0750
4321 0.0553 0.0376 5.0883 9.4193 0.0967 0.0767
123 0.0168 0.0326 2.2977 6.8001 0.0345 0.0640

The evaluation results in Table 5.6 make apparent that the model still minimizes the EKF un-
certainties as expected. Except for the robot orientation. It is very likely, considering the long
training time in Section 5.2.3, that the model still needs more training time to minimize the
robot orientation. Thus, the results in Table 5.6 lead to think that the robot orientation is more
difficult to minimize compared to Cartesian coordinates.

5.3.2 High-level policy retraining

In this experiment, the high-level RL agent is trained again but with the addition of obstacles
and thus also obstacle avoidance.

Setup

To include obstacle avoidance in the training of the high-level policy, the high-level RL agent
receives a penalty of -200 if the robot collides with an obstacle. Furthermore, analogous to Sec-
tion 5.3.1, the high-level RL agent is trained on 15 randomly generated landmarks and one ran-
domly generated wall in the environment. In order to properly combine the high- and low-level
policy, it is also important that both models are trained with the same LIDAR angle resolution

Robotics and Mechatronics B.T. van Manen

46 Learning to explore and map unknown environments with EKF-SLAM and RL

and range (i.e. a resolution of 3 degrees and a range of 0.6 meters).

As opposed to Section 5.2.4, the high-level RL agent receives the LIDAR data as well as the oc-
cupancy grid (72px x 72px). The occupancy grid serves two main purposes. First, it provides
memory as it keeps track of where the walls are located even if they are out-of-range of the
LIDAR sensor. Second, it provides crucial information about which areas of the environment
have already been visited (white or black pixels in the occupancy grid) and which areas are still
unexplored (grey space). This should help the RL agent find undiscovered landmarks.

Results

Figure 5.10 presents the moving average reward obtained during training for 25000 episodes.

Figure 5.10: Average reward during training of the high-level policy with obstacle avoidance.

From the training results presented in Figure 5.10, it can be seen that the RL agent does not
manage to increase its accumulated reward over the number of episodes. Unlike the high-
level policy without obstacle avoidance shown in Figure 5.8, the average reward has a clear
decreasing trend from the start to around 20000 episodes. After 20000 episodes, a small incline
in the curve can be observed. Such a rise indicates the agent is learning a better policy than
it currently uses. Therefore, one can assume that the agent requires further training time and
25000 episodes did not suffice for the model to converge.

5.3.3 Trajectory-based SLAM algorithm evaluation

The final experiment evaluates the performance of the high-level RL agent in Section 5.3.2 as
a coverage planner. Given the high-level RL agent action space in Figure 4.5, this experiment
does not seek to evaluate the obstacle avoidance capabilities of the RL agent. Rather, it assess
the affect of the action space when confronted with obstacles on the coverage performance.

Setup

Similarly to the previous coverage planner assessment in the no obstacle case (Section 5.2.5),
the algorithm is tested on 5 different seeds <12, 1111, 98, 4321, 123>. The chosen environment
consists of a random environment with 15 landmarks and one wall for obstacle avoidance.
The position of the landmarks are randomized after every training episode. The assessment
is done in the framework of the trajectory-based EKF SLAM algorithm using the trained low-
level policy.

B.T. van Manen University of Twente

CHAPTER 5. SIMULATION EXPERIMENTS AND RESULTS 47

Results

The average percentage of landmark coverage over 20 episodes in 5 different seeds is displayed
in Table 5.7.

Random Policy
Seeds Coverage percentage(%) Coverage percentage(%)
12 60.0 41.4
1111 53.3 54.0
98 62.1 35.1
4321 64.9 68.1
123 56.1 52.7
Average coverage 59.3 50.3

Table 5.7: Comparison of a random policy and the trained high-level policy on the landmark coverage
for 5 different seeds. Coverage percentages are averaged over 20 episodes per seed.

Comparing the results of Table 5.7 to the results obtained without obstacle avoidance in Table
5.5, one can see that the average coverage for both the random and the trained policy vary less
than 0.6%. For the trained policy, the average coverage stays very close to 50% with or without
obstacles. At first hand, these results seem great seeing that the high-level policy is able to
perform obstacle avoidance without affecting the coverage percentage. However, the same can
be said about the random policy. Hence, one wall is insufficient to accurately measure the
influence of the chosen action space on the coverage percentage. In all cases, the coverage
percentage reached by the high-level policy is too low and must first be improved in order to
have a successful trajectory-based EKF SLAM algorithm.

Robotics and Mechatronics B.T. van Manen

48 Learning to explore and map unknown environments with EKF-SLAM and RL

5.4 Discussion and recommendations

In both the experiments with and without obstacle avoidance, the low-level policy is able to
minimize the EKF uncertainties and improve the EKF estimates. Even though, the thesis took
a slightly different approach regarding the parameterization and the reward functions, the ex-
periment results are consistent with the conclusions of Kollar and Roy (2008).

The covariance matrix based reward function for the low-level policy also showed that it can
be merged with a discrete penalty for obstacle avoidance. Nevertheless, the experiment in Sec-
tion 5.3.1 highlight the difficulty in finding a proper balance between the continuous and the
discrete portion of the reward function. As it was not able to achieve good obstacle avoidance
performance. Though, the low sample efficiency of the trajectory-based navigation also in-
creases the difficulty of the obstacle avoidance problem.

Experiments regarding the high-level RL agent functioning as coverage planner failed to prop-
erly converge given the reward function proposed in Equation 4.11. The first experiment in
Section 5.2.4 exhibited a parabolic trend in the average reward curve during training. Although,
oscillations in the reward curves are to be expected during training, the curve returns to its ini-
tial value of 540 after 37000 episodes. This change in the reward curve is not drastic and shows
the RL agent requires more training episodes before it can converge. A similar behaviour is
also observed when the experiment is repeated with obstacle avoidance. The coverage planner
experiments show that the current reward function for the high-level policy can be improved.
Additionally, it indicated the need for a larger experiment with at least 5 walls to increase the
effect of obstacle avoidance on the high-level RL agent action space.

It is recommended to migrate from the current 2D Python environment to a more accurate and
realistic robotic simulator like Gazebo (Gazebo, 2021) in future experiments. Together with
a better motion model for the robot movements, the more accurate physics will help the RL
agents converge to global optimum. Furthermore, the low-level policy can be improved by
using the ground-truth coordinates of the robot pose and the landmarks during training. For
instance, the RMSE can be used as an additional metric along with the EKF covariance matrix
to further reduce the error in the EKF estimates. Regarding obstacle avoidance, the continuous
reward function proposed by Botteghi et al. (2020) can provide better feedback to the low-level
RL agent during training about how close the trajectories come to nearby obstacles.

Improvements regarding the high-level policy can be found in the size of the occupancy grid.
The occupancy grid tells the high-level agent where walls are located and where it has never
been before. Hence, a larger occupancy grid provides greater accuracy of the position of the
objects in the grid itself. Meaning the high-level agent can perform decisions based on more
accurate data. Though, larger occupancy grid also lead to more GPU memory usage. GPU
memory especially becomes an issue during training due to the large replay buffer and the tar-
get networks that must all be loaded in memory. Therefore, the experiments in this thesis were
limited to an occupancy grid of 72px x 72px.

Next, having a fixed size occupancy grid is not computationally efficient but it simplified the
loading in the convolutional layers of the RL network. A better approach would be to use a vari-
able size occupancy grid that grows as the agent explores. All the while passing a fixed window
size of the occupancy grid through the high-level RL network. Doing so would mean that part
of the memory provided by the occupancy grid will be lost. Therefore, one must in that case
implement recurrency in the RL network in the form of recurrent blocks. The recurrency pro-
vides old occupancy grids to the network. Finally, the reward function of the high-level policy
can be improved by looking at the ground-truth maps instead of a simple coverage percentage
like was used in this thesis. Similarly to the approach proposed by Chaplot et al. (2020). The
ground-truth maps are fully explored occupancy grids of the environment. While the agent
is exploring the unknown environment, it builds an occupancy grid that should look identi-

B.T. van Manen University of Twente

CHAPTER 5. SIMULATION EXPERIMENTS AND RESULTS 49

cal to the ground-truth occupancy grid after completion. Such a reward function provides
much more accurate information about how much of the environment is left to be explored
and where precisely the unexplored areas are. The ground-truth maps themselves can easily
be created automatically when generating new environments in simulation.

5.5 Summary

Experiments are vital to adequately train and test the proposed RL and SLAM-based frame-
work. All experiments are performed in a 2D Python environment using the Python library
Gym to create the structure needed to train and test RL networks. Custom environments can
be created using the Python library Shapely. Though, for better generalization of the RL models,
random environments are created by randomizing the agent’s initial position and the position
of obstacles and landmarks.

With obstacle avoidance in mind, a LIDAR sensor is simulated as a series of Shapely lines with
fixed lengths, extending out from the agent at a constant angle resolution. Any intersection of
a LIDAR line with any other Shapely polygon in the environment returns the range and bearing
to the intersection point.

Two main experiments are proposed. The first experiment neglects obstacle avoidance, focus-
ing solely on the validation of the proposed reward functions for the high- and low-level RL
agent. At the beginning, the hyper-parameters of the low-level TD3 network are tuned using an
environment with fixed landmarks and sensing locations. Once the proper hyper-parameters
are found, the low-level policy is trained in a bigger environment, keeping fixed landmarks and
sensing locations to ensure good comparison between the two proposed reward functions in
Equation 4.18. The best reward function is then used to train the low-level policy in a general-
ized environment where the agent initial position and the landmarks are randomized. Here the
fixed sensing locations are replaced by a high-level policy that selects a sensing location in the
direction of the closest unobserved landmark. The low-level policy experiments show that the
second reward function R(s, a)c2 performs better. Additionally, the low-level policy success-
fully managed to reduce the EKF uncertainty compared to random trajectories. At last, training
of the high-level policy in a random environment proved to be unsuccessful as the coverage
remained lower than random sensing locations.

The second main experiment focuses on merging obstacle avoidance with the minimization of
the EKF uncertainties as well as on the training of the high-level TD3 network. Experiments
are performed with random landmarks positions and initial positions. One wall is randomly
placed for obstacle avoidance. The experiment starts off by training the low-level policy. Re-
sults show again that the low-level RL agent achieves to reduce the EKF uncertainties. But the
policy fails with regards to obstacle avoidance. Conversely, the high-level policy is trained is a
similar fashion. Altough, the high-level policy achieved similar performance with or without
obstacle avoidance. The coverage is not better than random sensing locations. The high-level
RL agent must be further trained to improve results. The last test utilizes the trained low-level
policy to move between sensing locations and test the high-level coverage on 5 different seeds.

Robotics and Mechatronics B.T. van Manen

50 Learning to explore and map unknown environments with EKF-SLAM and RL

6 Conclusion

The aim of this thesis was to develop and implement a trajectory based EKF SLAM algorithm
and research how RL and EKF SLAM can be combined to improve the map accuracy of the
unknown environment.

(a) How can Reinforcement Learning be used to select informative target positions and
generate informative trajectories?

The thesis shows informative trajectories can be selected using a TD3 RL agent
trained using the EKF covariance matrix as reward function. Selecting informative
sensing locations using RL proves unsuccessful at this stage.

(b) How can we hierarchically structure the RL policies?

The RL policies can be hierarchically structured by having one policy select infor-
mative sensing locations that serve as target position for the trajectory generation
of the second RL policy. The proposed algorithm shows how both RL policies can
be hierarchically structured.

(c) How can we shape the reward function?

The best reward function to generate informative trajectories consists of the sum of
the trace of the EKF covariance matrix. At this point in the development, no suc-
cessful coverage reward function has been found for the high-level policy.

(d) What is the benefit of the proposed Reinforcement Learning approach?

The proposed RL approach reduces the error in the EKF estimates while exploring.
RL policies can be shaped and generalized to navigate in all types of environments
while being trained in simulation.

1. How can we tightly incorporate RL and EKF in a single framework?

The proposed trajectory-based EKF SLAM algorithm shows how RL and EKF can tightly
be incorporated in a single framework. The successful training of the low-level policy
proves that EKF can benefit and improve the performance of the RL.

B.T. van Manen University of Twente

51

A Appendix

A.1 Mapper figures

Figure A.1: Occupancy grid with conversion factor ci mag e = 0.0025. White areas represent obstacle free
space while black pixels portray obstacles in the environment. Grey pixels instead are unknown regions.

Figure A.2: Occupancy grid with conversion factor ci mag e = 0.01. White areas represent obstacle free
space while black pixels portray obstacles in the environment. Grey pixels instead are unknown regions.

Robotics and Mechatronics B.T. van Manen

52 Learning to explore and map unknown environments with EKF-SLAM and RL

A.2 Low-level policy cubic polynomial parameterization

With the standard cubic polynomial, the parameterization of the trajectory between the robot
pose and the sensing location follows Equation A.1.

x(t) = ax ∗ t 3 +bx ∗ t 2 + cx ∗ t +dx (A.1)

y(t) = ay ∗ t 3 +by ∗ t 2 + cy ∗ t +dy

Where t ∈ [0,1]. The next step is to find the eight coefficients (ax,y ,bx,y ,cx,y ,dx,y) that define
the polynomial in Equation A.1. From the eight parameters, four of them must be fixed in order
for the trajectory to pass through the robot pose and the sensing location.

Next, a second constraint is applied to the orientation at the start of the trajectory, Rθ. By
constraining the initial direction of the agent, a smooth transition between successive trajec-
tories is ensured. Thus, five of the eight parameters are fixed. The last three are free for the
agent to choose. The action vector of the agent is the combination of all three free parameters
acti ons = [f r eeacti on1, f r eeacti on2, f r eeacti on3]. These are the initial and end speeds of the
trajectory together with the end orientation. Now that the fixed and free parameters are de-
fined, the system of equations can be solved to find the eight coefficients from Equation A.1.

The initial conditions, dx and dy are easily derived according to Equation A.2.

x(t = 0) = dx =Rx (A.2)

y(t = 0) = dy =Ry

Similarly, the initial velocities (at t = 0) follow Equation A.3.

d x(t = 0)

d t
= cx =Vx 0 (A.3)

d y(t = 0)

d t
= cy =Vy 0

Where Vx 0 = f r eeacti on1 ∗ cos(Rθ) and Vy 0 = f r eeacti on1 ∗ si n(Rθ).

Continuing with the derivation, the end position is fixed like in Equation A.4.

x(t = 1) = ax +bx +Vx 0+Rx =Sx (A.4)

y(t = 1) = ay +by +Vy 0+Ry =Sy

With Sx,y the coordinates of the target sensing location. Equation A.4 shows four unknown
coefficients but only two equations. Two more equations are thus missing, these are the end
velocities characterized in Equation A.5.

d x(t = 1)

d t
= 3∗ax +2∗bx +Vx 0 =Vx 1 (A.5)

d y(t = 1)

d t
= 3∗ay +2∗by +Vy 0 =Vy 1

Likewise, Vx 1 = f r eeacti on3∗cos(f r eeacti on2) and Vy 1 = f r eeacti on3∗si n(f r eeacti on2). At this
point, one can solve for all four remaining coefficients, see Equation A.6.

B.T. van Manen University of Twente

APPENDIX A. APPENDIX 53

ax = 2∗ (Rx −Sx)+Vx 0+Vx 1 (A.6)

ay = 2∗ (Ry −Sy)+Vy 0+Vy 1

and therefore bx and by are found as follow, Equation A.7.

bx = 3∗ (Sx −Rx)−2∗Vx 0−Vx 1 (A.7)

by = 3∗ (Sy −Ry)−2∗Vy 0−Vy 1

Substituting all the coefficients in Equation A.1 yields the correct cubic parameterization. In
the end, the action space A of the agent is continuous with dimensions R3.

With this parameterization, the agent can take many different paths to reach a given sensing
location. Figure A.3 illustrates in a 3D plot a more extensive example of all the available trajec-
tories for the agent to compute given the set of 3 free parameters constituting the action space
A .

Figure A.3: 225 sample trajectories for the standard cubic polynomial parameterization. The vertical z-
axis contains the y-coordinates of the sample trajectories. The x-axis on the horizontal plane depicts the
x-coordinates of the sample trajectories while the time t ∈ [0,1] is shown on the y-axis. The 8 different
colors still represent 8 different orientations at t=1. The orange square located at (0,0,0) represents the
initial position, i.e. the robot pose. The red start at (3,1,0) is the target sensing location. Units are in
meters.

The sample trajectories in Figure A.3 highlight the effect each action has on the generated
trajectories. Varying the speed at t=0 creates these shifted trajectories along the positive x-
direction, large initial speeds lead to overshooting the target position. Equivalently, changes in
the speed at t=1 affect the trajectories in the y-direction in this example, yielding a smaller coil
for lower speeds. At last, the trajectories are colored depending on the arrival orientation, the
last free parameter of the agent.

Even though Figure A.3 illustrates 225 different trajectories, the actual action space is continu-
ous.

Robotics and Mechatronics B.T. van Manen

54 Learning to explore and map unknown environments with EKF-SLAM and RL

A.3 Randomizing custom environments

Figure A.4: Custom environment with 15 randomly placed walls. The diamond shaped markers are fixed
sensing locations. The agent start position (orange dot) is located in the bottom left corner.

Figure A.5: Custom environment showing no agent spawns facing a wall. The small protrusion on the
agent designates the orientation of the robot.

A.4 Learning rate tuning results

Figure A.6: Moving average reward over 20 episodes after training for a total of 3500 episodes and learn-
ing rate l r = 0.001.

B.T. van Manen University of Twente

APPENDIX A. APPENDIX 55

Figure A.7: Moving average reward over 20 episodes after training for a total of 2000 episodes and learn-
ing rate l r = 0.0001.

A.5 Reward function comparison

(a) R(s, a)c1 using the Kalman gain K (b) R(s, a)c2 using the covariance matrix Pest

Figure A.8: Average RMSE in the robot coordinates (in meters) during training of the low-level policy
with Rc1 and Rc2.

(a) R(s, a)c1 using the Kalman gain K (b) R(s, a)c2 using the covariance matrix Pest

Figure A.9: Average RMSE in the orientation (in radian) during training of the low-level policy with Rc1

and Rc2.

Robotics and Mechatronics B.T. van Manen

56 Learning to explore and map unknown environments with EKF-SLAM and RL

(a) R(s, a)c1 using the Kalman gain K (b) R(s, a)c2 using the covariance matrix Pest

Figure A.10: Average RMSE in the landmark coordinates (in meters) during training of the low-level
policy with Rc1 and Rc2.

A.6 Effect of the noise on the trajectory shape

The goal of this experiment is to study the effect of the added process and sensor noise in simu-
lation on the computed trajectories. Too much noise leads to incoherent EKF estimates which
results in bad PD control outputs. The effect of the noise on the trajectory shape is studied by
gradually decreasing the process and sensor noise.

Setup

The experiment repeats the experiment from Section 5.2.2 two more times but with R(s, a)c2 as
the chosen reward function. In each case the amount of process and sensor noise added to the
simulation is decreased by a factor of 0.6 and 0.8 respectively.

Results

A qualitative evaluation of the generated trajectories for all three process and sensor noise val-
ues highlight the differences in the learned policies. Figure A.11 shows the produced trajecto-
ries during one test episode.

B.T. van Manen University of Twente

APPENDIX A. APPENDIX 57

(a) Trajectories originating from the
learned policy with 0.6 times the
noise model of Table 5.2. Loops in the
trajectory are accentuated with green
circles.

(b) Trajectories originating from the
learned policy with 0.8 times the
noise model of Table 5.2. Loops in the
trajectory are accentuated with green
circles.

(c) Trajectories originating from the
learned policy with 1 times the noise
model of Table 5.2. Loops in the tra-
jectory are accentuated with green
circles.

Figure A.11: Comparison of generated trajectories for policies trained with 0.6, 0.8 and 1 time the noise
presented in Table 5.2. The green circles indicate loops in the trajectories.

Increasing the process and sensor noise in the EKF SLAM module results in a decrease in the
number of generated loops. This finding is consistent with Kollar and Roy (2008), who state
that the EKF algorithm is sensitive to trajectories with excessive rotation. When the noise is
relatively small, the RL agent is not penalized for trajectories with excessive rotation. Further-
more, it is observed that the agent has no preference for trajectories that come particularly
close to landmarks as long as the landmark fits within the agents observation range.

Robotics and Mechatronics B.T. van Manen

58 Learning to explore and map unknown environments with EKF-SLAM and RL

Bibliography
Arana-Daniel, N., R. Rosales-Ochoa and C. López-Franco (2011), Reinforced-SLAM for path

planing and mapping in dynamic environments, in 2011 8th International Conference on
Electrical Engineering, Computing Science and Automatic Control, pp. 1–6, doi:10.1109/
ICEEE.2011.6106563.

AtsushiSakai (2021), Python Robotics.
https://github.com/AtsushiSakai/PythonRobotics/tree/master/
SLAM/EKFSLAM

Bailey, T., J. Nieto, J. Guivant, M. Stevens and E. Nebot (2006), Consistency of the EKF-SLAM
Algorithm, in 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
3562–3568, doi:10.1109/IROS.2006.281644.

Barrett, L. and S. Narayanan (2008), Learning all optimal policies with multiple criteria, pp.
41–47, doi:10.1145/1390156.1390162.

Barth-Maron, G., M. W. Hoffman, D. Budden, W. Dabney, D. Horgan, D. TB, A. Muldal,
N. Heess and T. Lillicrap (2018), Distributional Policy Gradients, in International Conference
on Learning Representations.
https://openreview.net/forum?id=SyZipzbCb

Botteghi, N., B. Sirmaçek, M. Khaled, M. Poel and S. Stramigioli (2020), On reward shaping for
mobile robot navigation: A reinforcement learning and SLAM based approach,
Workingpaper, arXiv.org.

Chaplot, D. S., D. Gandhi, S. Gupta, A. Gupta and R. Salakhutdinov (2020), Learning To Explore
Using Active Neural SLAM, in International Conference on Learning Representations (ICLR).

Chen, F., S. Bai, T. Shan and B. Englot (2019), Self-Learning Exploration and Mapping for
Mobile Robots via Deep Reinforcement Learning, doi:10.2514/6.2019-0396.

Dankwa, S. and W. Zheng (2019), Twin-Delayed DDPG: A Deep Reinforcement Learning
Technique to Model a Continuous Movement of an Intelligent Robot Agent, pp. 1–5,
doi:10.1145/3387168.3387199.

Dinnissen, P., S. N. Givigi and H. M. Schwartz (2012), Map merging of Multi-Robot SLAM using
Reinforcement Learning, in 2012 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), pp. 53–60, doi:10.1109/ICSMC.2012.6377676.

Elvira, R. (2020), OrbSlam3.
https://github.com/UZ-SLAMLab/ORB_SLAM3

Eustice, R., M. Walter and J. Leonard (2005), Sparse Extended Information Filters: Insights into
Sparsification, pp. 3281 – 3288, ISBN 0-7803-8912-3, doi:10.1109/IROS.2005.1545053.

Fujimoto, S., H. van Hoof and D. Meger (2018), Addressing Function Approximation Error in
Actor-Critic Methods, in Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, Eds. J. Dy and A. Krause,
PMLR, pp. 1587–1596.
http://proceedings.mlr.press/v80/fujimoto18a.html

Gazebo (2021), Gazebo simulator.
http://gazebosim.org/

Grisetti, G., R. Kümmerle, C. Stachniss and W. Burgard (2010), A tutorial on graph-based
SLAM, IEEE Transactions on Intelligent Transportation Systems Magazine, vol. 2, pp. 31–43,
doi:10.1109/MITS.2010.939925.

Guevara-Reyes, E., A. Y. Alanis, N. Arana-Daniel and C. Lopez-Franco (2013), Integration of an
inverse optimal control system with reinforced-SLAM for path planning and mapping in

B.T. van Manen University of Twente

https://github.com/AtsushiSakai/PythonRobotics/tree/master/SLAM/EKFSLAM
https://github.com/AtsushiSakai/PythonRobotics/tree/master/SLAM/EKFSLAM
https://openreview.net/forum?id=SyZipzbCb
https://github.com/UZ-SLAMLab/ORB_SLAM3
http://proceedings.mlr.press/v80/fujimoto18a.html
http://gazebosim.org/

Bibliography 59

dynamic environments, in 2013 IEEE International Autumn Meeting on Power Electronics
and Computing (ROPEC), pp. 1–6, doi:10.1109/ROPEC.2013.6702713.

Kollar, T. and N. Roy (2008), On the Representation and Estimation of Spatial Uncertainty, vol.
27, no.2, pp. 175–196, doi:10.1177/0278364907087426.

Lillicrap, T., J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver and D. Wierstra (2015),
Continuous control with deep reinforcement learning, CoRR.

Luviano Cruz, D. and W. Yu (2014), Multi-agent path planning in unknown environment with
reinforcement learning and neural network, in 2014 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), pp. 3458–3463, doi:10.1109/SMC.2014.6974464.

MarketsandMarkets (2019), Autonomous Navigation Market by Solution (Sensing System,
Software, Processing Unit), Platform (Airborne, Land, Space, Marine, Weapon), Application
(Commercial, Military Government), and Region - Global Forecast to 2030.
https://www.marketsandmarkets.com/Market-Reports/
autonomous-navigation-market-206053964.html

Montemerlo, M.; Thrun, S. K. D. W. B. (2002), FastSLAM: A factored solution to the
simultaneous localization and mapping problem, in Proceedings of the AAAI National
Conference on Artificial Intelligence, pp. 593–598.

Mustafa, K., N. Botteghi, B. Sirmacek, M. Poel and S. Stramigioli (2019), Towards continuous
control for mobile robot navigation: A reinforcement learning and slam based approach,
vol. 42, no.2/W13, pp. 857–863, ISSN 1682-1750,
doi:10.5194/isprs-archives-XLII-2-W13-857-2019, 4th ISPRS Geospatial Week 2019 ;
Conference date: 10-06-2019 Through 14-06-2019.
https://www.gsw2019.org/

Nguyen, T. T., N. D. Nguyen, P. Vamplew, S. Nahavandi, R. Dazeley and C. P. Lim (2020), A
multi-objective deep reinforcement learning framework, Engineering Applications of
Artificial Intelligence, vol. 96, p. 103915, ISSN 0952-1976,
doi:https://doi.org/10.1016/j.engappai.2020.103915.
https:
//www.sciencedirect.com/science/article/pii/S0952197620302475

Paz, L. and J. Neira (2006), Optimal local map size for EKF-based SLAM, pp. 5019 – 5025,
doi:10.1109/IROS.2006.282529.

Pei, Z., S. Piao, M. Quan, M. Z. Qadir and G. Li (2020), Active collaboration in relative
observation for multi-agent visual simultaneous localization and mapping based on Deep Q
Network, vol. 17, no.2, p. 1729881420920216, doi:10.1177/1729881420920216.
https://doi.org/10.1177/1729881420920216

Placed, J. A. and J. A. Castellanos (2020), A Deep Reinforcement Learning Approach for Active
SLAM, vol. 10, no.23, ISSN 2076-3417, doi:10.3390/app10238386.
https://www.mdpi.com/2076-3417/10/23/8386

Ramezani, A. and D. Lee (2018), Memory-based reinforcement learning algorithm for
autonomous exploration in unknown environment, International Journal of Advanced
Robotic Systems, vol. 15, p. 172988141877584, doi:10.1177/1729881418775849.

ReportLinker (2021), Autonomous Navigation Market Research Report by Platform, by
Solution, by Application - Global Forecast to 2025 - Cumulative Impact of COVID-19.
https://www.reportlinker.com/p05913497/
Autonomous-Navigation-Market-Research-Report-by-Platform-by-Solution-by-Application-Global-Forecast-to-Cumulative-Impact-of-COVID-19.
html?utm_source=GNW

Smith, R.C.; Cheeseman, P. (1986), On the Representation and Estimation of Spatial
Uncertainty, vol. 5, no.4, pp. 56–68, doi:10.1177/027836498600500404.

Robotics and Mechatronics B.T. van Manen

https://www.marketsandmarkets.com/Market-Reports/autonomous-navigation-market-206053964.html
https://www.marketsandmarkets.com/Market-Reports/autonomous-navigation-market-206053964.html
https://www.gsw2019.org/
https://www.sciencedirect.com/science/article/pii/S0952197620302475
https://www.sciencedirect.com/science/article/pii/S0952197620302475
https://doi.org/10.1177/1729881420920216
https://www.mdpi.com/2076-3417/10/23/8386
https://www.reportlinker.com/p05913497/Autonomous-Navigation-Market-Research-Report-by-Platform-by-Solution-by-Application-Global-Forecast-to-Cumulative-Impact-of-COVID-19.html?utm_source=GNW
https://www.reportlinker.com/p05913497/Autonomous-Navigation-Market-Research-Report-by-Platform-by-Solution-by-Application-Global-Forecast-to-Cumulative-Impact-of-COVID-19.html?utm_source=GNW
https://www.reportlinker.com/p05913497/Autonomous-Navigation-Market-Research-Report-by-Platform-by-Solution-by-Application-Global-Forecast-to-Cumulative-Impact-of-COVID-19.html?utm_source=GNW

60 Learning to explore and map unknown environments with EKF-SLAM and RL

https://frc.ri.cmu.edu/~hpm/project.archive/reference.file/
Smith&Cheeseman.pdf

Wen, S., Y. Zhao, X. Yuan, Z. Wang, D. Zhang and L. Manfredi (2020), Path planning for active
SLAM based on deep reinforcement learning under unknown environments, Intelligent
Service Robotics, vol. 13, doi:10.1007/s11370-019-00310-w.

Zhang, J., L. Tai, J. Boedecker, W. Burgard and M. Liu (2017), Neural SLAM: Learning to Explore
with External Memory, arXiv preprint arXiv:1706.09520.

B.T. van Manen University of Twente

https://frc.ri.cmu.edu/~hpm/project.archive/reference.file/Smith&Cheeseman.pdf
https://frc.ri.cmu.edu/~hpm/project.archive/reference.file/Smith&Cheeseman.pdf

	Summary
	Contents
	Acronyms
	1 Introduction
	1.1 Autonomous navigation for mobile robots
	1.2 Exploring unknown environments with RL and EKF SLAM
	1.3 Previous work
	1.4 Research questions and thesis contribution
	1.5 Thesis outline

	2 Background
	2.1 Reinforcement Learning
	2.1.1 Markov Decision Process
	2.1.2 Partially Observable Markov Decision Process
	2.1.3 Multilayer perceptron
	2.1.4 Deep Deterministic Policy Gradient
	2.1.5 Twin Delayed Deep Deterministic Policy Gradient

	2.2 Simultaneous Localization And Mapping
	2.2.1 Introduction to Simultaneous Localization And Mapping
	2.2.2 Extended Kalman Filter -Simultaneous Localization And Mapping

	3 Related work
	3.1 Research in exploration with RL
	3.2 Neural SLAM
	3.3 Towards dynamic environments
	3.4 Towards multi-agent exploration

	4 The proposed algorithm
	4.1 Trajectory-based EKF SLAM architecture
	4.2 EKF SLAM implementation
	4.2.1 Overview
	4.2.2 Observation
	4.2.3 Localization and data association
	4.2.4 Mapper

	4.3 Sensing location extraction
	4.3.1 Network architecture
	4.3.2 Action space
	4.3.3 Reward function

	4.4 Trajectory generation
	4.4.1 Network architecture
	4.4.2 Action space
	4.4.3 Reward functions
	4.4.4 Evaluation metric

	4.5 Discretization
	4.6 PD controller
	4.7 Summary

	5 Simulation experiments and results
	5.1 Experimental setup: 2D Python environment
	5.1.1 Custom environment
	5.1.2 Generation of random environments
	5.1.3 LIDAR simulator

	5.2 Training high- and low-level RL models without obstacle avoidance
	5.2.1 Low-level model hyper-parameter tuning
	5.2.2 Reward function comparison
	5.2.3 Low-level policy generalization
	5.2.4 High-level policy training
	5.2.5 Coverage evaluation

	5.3 Addition of obstacle avoidance
	5.3.1 Merging uncertainty minimization with obstacle avoidance
	5.3.2 High-level policy retraining
	5.3.3 Trajectory-based SLAM algorithm evaluation

	5.4 Discussion and recommendations
	5.5 Summary

	6 Conclusion
	A Appendix
	A.1 Mapper figures
	A.2 Low-level policy cubic polynomial parameterization
	A.3 Randomizing custom environments
	A.4 Learning rate tuning results
	A.5 Reward function comparison
	A.6 Effect of the noise on the trajectory shape

	Bibliography

