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Abstract 

 

Occlusion-Based Latent Representation is a method within image recognition developed by 

Karatsiolis and Kamilaris in 2021. The method can turn binary multi-labelled datasets into 

meaningful representations and can find correlations within the labels of such a dataset. It 

does this by pre-training a classifier network to generate distributions for the labels and uses 

this classifier to train a Siamese network. While originally developed to work with facial data, 

in this thesis Occlusion-Based Latent Representation is adapted to work with geospatial 

data. Two satellite datasets are used to train the classifier network, the PlanetLab dataset 

and the Orthoimages dataset. Both are combined with the Copernicus Corine European 

Land Cover dataset to provide labels to use. As geospatial data is a challenging type of data 

to classify with a general-purpose classifier, Occlusion Based Latent Representation could 

not be adapted to work with geospatial data. This is presumed to be because of the high 

level of imbalance within the dataset and the broadness of the labels within the dataset, as 

well as the performance of the classifier network itself. Several methods are tried to improve 

the classifier performance, namely Weighted Classes, Pruning Labels, Randomized 

Batches, Combining Labels, Focal Loss and Lowering the Binary Accuracy Threshold. Of 

these methods, Combining labels is found to increase the performance of the networks the 

most, although not enough to work properly with Occlusion-Based Latent Representation. To 

make Occlusion-Based Latent Representation work with geospatial data in the future, it is 

advised to use a pre-existing classifier made specifically for the recognition of multi-labelled 

geospatial data and combine this with a Siamese network. 
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Chapter 1 – Introduction 

 

Machine learning methods have seen a vast increase in usage over the past decade in their 

applications within a range of technologies and sectors [1]. Through years of research, these 

networks are now a key technology in classifying various types of data. Convolutional Neural 

Networks are a subtype of machine learning which are specialized in the classification of 

multi-modal data, such as audio, video, and image data. Their applicability includes 

computer vision, speech recognition, translation, and even healthcare [2]. Where most 

traditional image classification methods specialize in the classification of objects within 

images, multi-labelled data classification (also called Multi-Label Learning or MLL) forms an 

interesting area in which a multitude of labels are utilized to describe the semantics of data. 

Classifiers for this usually binary labelled data have also shown promising results, utilizing 

machine learning techniques to classify said labels [3]–[6]. However, representing data with 

binary labels results in a representation that forms a high-level abstraction of the input, 



condensing the data to a degree that is impossible to reconstruct and which does not 

account for the more subtle semantics found within the data. In contrast, labels that are 

described by a distribution instead of a binary representation form a more meaningful 

representation of the data, mitigating the problem of context unawareness and including 

semantics of the data. Therefore, research into these distributive forms of labelled data 

classification has seen an increase over the past years. This research has already seen 

widespread success within the field of natural language processing for the development of 

the word2vec model, developed by Mikolov et al [7], which exemplifies the ability to use 

distributive label representations as a means of finding meaningful labels to describe the 

semantics of words. Similarly, in the field of image recognition, Karatsiolis and Kamilaris 

developed Occlusion Based Latent Representation (OLR) [4], which has the ability to 

classify 38 distinct binary labels within the facial image data and generate a distribution for 

the labels within said data, capturing meaningful semantics in the process. Because this 

distributive representation maintains semantics, the technique allows for the storage of the 

data more efficiently as well as the approximate recreation of the original image from just 

distributions. On top of this, the technique can be used to find correlations between the 

labels associated with the data, which can be used to find new insights into data 

interrelations.  

Currently, OLR has only been applied to facial data. The architecture however allows other 

forms of labelled image data to be used as input as well. This raises the question of whether 

such a method may be successful in a wider range of labelled image data. Studying such 

data interrelations may reveal properties about data that previously went undetected by 

human subjects. In this thesis, OLR will be applied to a different type of image data, namely 

geospatial data. Geospatial data is a type of data that has been documented well over the 

past decades. As a result, labelled data of land cover is readily available and can thus be 

used in combination with OLR. The goal of this thesis is to discover whether this method is 

effective in classifying labelled geospatial data and generating a distributive label 

representation of said data. If this proves successful, it is a further indication that OLR can 

be a beneficial method within the broader deep learning community and industry. On top of 

this, the fully trained network can be developed to find data intercorrelations within land data, 

which can prove useful in many applications. Within the remote sensing area, the ability to 

estimate specific land categories based on just satellite imagery or surrounding (correlated) 

land can be beneficial. Besides, a deeper understanding of the semantics of land data may 

help in the generation of artificial terrain, which has applications within areas like simulations 

and (educational) video game development. The study of the data interrelations for different 

areas of land may also further research in the way types of land interact with each other, and 



the way human involvement in nature influences this. Also, representing land data in a 

labelled fashion can mitigate its storage requirements greatly, as satellite data often takes 

much space to store.  

While still experimental, this research should prove beneficial for the deep learning and 

remote sensing communities, providing a tool to use in future research and applications 

regarding geospatial data and further building upon the broader labelled data research area.  

 

Chapter 2 – Related Work 

 

2.1 Multi-Label Learning models 

There have been multiple studies dedicated to labelled data classification and its 

applications. The original MLL models used logical labels, where every label is represented 

in a binary fashion with -1 indicating absence and +1 indicating presence [8]. To improve 

upon this and save more of the data semantics, Geng et al. [3] introduced a method called 

Label Distributed Learning (LDL)  which introduces a distribution to MLL to differentiate in 

the importance of district labels. However, to train the LDL, the label distribution must be 

available beforehand, which is often not the case as assigning label distributions to data 

manually is highly labour intensive and prone to human bias. Shao et al. [5] improve on LDL 

by introducing Label Enhanced Multi-Label Learning (LEMML). This method removes the 

need for label distributions to be present in the dataset beforehand by incorporating 

regression of the numerical labels and label enhancement in the method. Consequently, the 

method is applicable for many more types of data, as long as it has binary labels present.  

An often-used method to recognize correlations in data is the Siamese network, introduced 

by Chopra et al [9]. In a Siamese network, two or more distinct pieces of data are run 

through an identical network, and their outputs are assessed for correlation. This method 

has seen success in image recognition applications, most notably facial recognition [10]. 

Karatsiolis’ OLR combines a siamese network for correlation detection with a distributive 

MLL model to find correlations in facial features [4]. This method shows promising results, 

reducing the image data to a collection of feature distributions from which the original image 

can be recreated somewhat accurately. This is achieved by utilizing a normal convolutional 

neural network trained on the CelebA dataset, a dataset containing over 200000 labelled 

facial images [11], and in turn using this CNN to train the siamese network to classify facial 

images and find correlations between the labels contained within the CelebA dataset. 



 

2.2 Geospatial Data research 

Since the launch of several synthetic radar satellites in the period between 2013 and 2016, 

the interest in geospatial data research has seen a steady increase [12]. The European 

Copernicus program is one of the results of these satellite launches, a free dataset labelling 

continental Europe into 48 labels, which will also be used in this research [13].  As a result of 

these launches, there is now a bigger body of research on the topic of geospatial data and 

satellite image recognition [14]. Khatmani et al. [15] found that the best performing methods 

of classifying land-cover data were Support Vector Machine (SVM) and Neural Networks 

(NN), with a similar performance of about 85% accuracy for both. However, for big 

applications SVM appeared to use up too many resources, making NN the preferred choice. 

Within the NN domain, Deep Learning, specifically Convolutional Neural Networks (CNN), 

performed best [16], [17]. This makes sense, as CNNs were specifically designed to identify 

spatial data such as satellite data. Most research so far has however looked at classifying 

rather specific types of land area as opposed to broad categories [14], [18], [19]. This 

research in the recognition of specific types of land data within satellite images has so far 

been successful. Kassul et al. [14] recognized crops types within Ukraine, reaching about 

85% accuracy for major crop types using a 2-dimensional CNN architecture.  

Shendryk et al. [20] made an attempt similar to our research at classifying general labels for 

satellite data. High-resolution (<10 m) image data of the Amazon Rain Forest was analyzed 

using 17 distinct labels. While not as broad as the Corine dataset (48 labels) this was 

already a step towards more general-purpose land image classification. The amazon 

landscape provided a good base for this, having a large amount of similar land available for 

training the network. However, not all satellite data has this luxury of providing this many 

similar samples, and thus the research may not be fully representative for other cases of 

land data classification. The method achieved about 90% accuracy using binary cross 

entropy on the labels as the metric to evaluate the performance.  

 

 

 

 

 



Chapter 3 - Background 

 

3.1 Convolutional Neural Networks 

To recognize satellite data, and most other spatial data in general, Convolutional Neural 

Networks (CNN) are used. At its core, a CNN is a series of layers that attempts to correctly 

classify spatial data. A layer consists of several nodes which are connected to nodes in the 

next layer. The exact relations between nodes are determined by weights and biases, which 

are values that can be updated by the CNN by training. The weights and biases are updated 

so that patterns can be recognized by layers. A low-level layer may pick up on lines and 

edges, where a certain combination of these lines and edges may trigger a node in a higher 

layer corresponding to a shape. A certain combination of shapes may then be used to 

recognize objects. This process goes on until the network has classified the data. Also see 

figures 2 and 3 for examples for low- and high-level layers, respectively. 

To determine these weights and biases and train the network, a process called 

backpropagation is used. During this process, training datasets are fed into the network to 

be predicted. After all data has been evaluated, the network uses a loss function to calculate 

how far off the predictions were. The loss function must be optimized to ensure the network 

correctly classifies the data as often as possible. To optimize the loss function, its local 

minimum must be found. This can be done by taking its derivative and shifting all the 

function’s variables (the earlier discussed weights and biases) “down-slope”. The steeper the 

slope, the more the variable is in- or decreased, until a local minimum is found (See figure 

1). This training process aims to find the optimal settings for the weights and biases for each 

node in the network. By doing this, the network can correctly classify the input data as often 

as possible. 

 

Figure 1: Finding the local minimum of a function [21]. 



 

The training process as described above is common practice in Deep Learning, and thus not 

unique for CNNs. CNNs are optimized for spatial data by use of the convolutional layer. This 

layer takes a combination of data points in close proximity and checks whether this 

combination appears in the next layer to form a more complicated combination of data 

points. Figure 2 shows such a low-level convolutional layer once properly trained, having 

multiple edges and lines it can recognize. Figure 3 shows higher-level convolutional layers, 

which can recognize complex structures, for example faces. 

 

    

Figure 2: Example of low-level convolutional Layers [22] Figure 3: Example of high-level convolutional Layers [22] 

After these convolutional layers, a fully connected layer is traditionally used to converge the 

network into the desired number of possible outputs within the network. These are however 

only the basics of CNNs, many methods have been developed to improve or change the 

performance of these networks to make them work for specialized purposes. These methods 

often include special layers, various loss and activation functions, data manipulation and 

more.  

 

3.2 Occlusion Based Latent Representation 

The OLR model will be adapted to work with the Copernicus Corine 2018 dataset [13], [23].  

The OLR model consists of two important parts, the classifier network and the Siamese 

network. The classifier serves as a reference point for the Siamese network to utilize in its 

training phase. To calculate the loss function for the Siamese network, the output of the 

classifier is compared with the output of the Siamese network, over which the Mean Squared 

Error is taken, to calculate its loss function. Therefore, before the classifier can be used in 

combination with the Siamese network, it has to be pre-trained on the dataset. After this, the 

Siamese network can be used on the same dataset.  



 

3.2.1 Classifier 

As mentioned, the Siamese network must be trained with an existing classifier to properly 

classify the labelled data. The classifier that is used must be able to classify visual data into 

several distinct binary labels. For this purpose, a Multi-Label Learning Convolutional Neural 

Network is used. The network architecture as described in the original paper [4] is relatively 

straightforward and consists of 2 convolutional layers followed by a maxpooling layer. This 

structure is repeated five times in total, with the last maxpooling layer being replaced with a 

fully connected layer with N outputs, where N is the number of distinct label categories for 

the image data. The output consists of N distributions representing the likeliness of a label 

being present in the image and is a value between 0 and 1 represented by a 32-bit float. 

Also see figure 4 for the architecture.  

The images which are analyzed by the classifier have a certain width and height (w & h), and 

three colour channels: red, green and blue, each with a pixel value between 0 and 255. 

These pixel values are normalized to be between 0 and 1. Therefore, the total input of the 

classifier is a matrix of 𝑤 × ℎ × 3 values between 0 and 1. The classifier converts this input 

via the CNN structure to a classification of N distinct labels, which represent the probability 

of the label category being present on the image.  

 

Figure 4: Schematic representation of the classifier network architecture. Note that hyperparameters are variable 

and not accurately represented in the image to maintain legibility. 

This structure of classifier was chosen as a basis as it has already been shown to work in 

combination with OLR and the code was readily available for usage. It must however be 

noted that the exact classifier used in OLR can also have a different architecture, as long as 

it results in an output of N probability distributions that successfully classify the N labels in 



the dataset. Therefore, it is an option to change the network architecture should this prove 

necessary in the research. 

 

3.2.2 Siamese network 

The Siamese network is used to classify images and find correlations within the fed dataset. 

The models’ architecture relies on having two images inputted, which are both evaluated by 

the same Convolutional Neural Network, consisting of a structure similar to the classifier. 

However, where the classifier ends with a fully connected layer, the Siamese network has a 

more thorough architecture which allows it to compute meaningful label embeddings for 

image pairs.  After the convolutional and pooling layers, the model consists of k feature 

maps of a size 𝑓 × 𝑓 (where f is a tunable hyperparameter) for every label 𝑥 ∈ 𝑅𝑁. Each of 

these groups of feature maps is responsible for classifying one labels’ probability vector. The 

number of feature maps k per group is equal to the dimensionality of each embedding’s 

vector size. So, if a vector were to be saved in a 32-bit size format, this would mean k = 32. 

In total, there are 𝑁 × 𝑘 feature maps in this layer. As the feature maps are of a size 𝑓 × 𝑓 , 

the total output size of this layer is 𝑁 × 𝑘 × (𝑓 × 𝑓).  For every feature map, an average 

pooling layer is used to compute the average of the map, decreasing the size from 𝑓 × 𝑓 to 

only 1 scalar. Thus, the output of this average pooling layer is 𝑁 × 𝑘 × 1. This output can be 

reshaped to N layer vectors of size k, thus representing the N label classifications for the 

input image. Also see figure 5: 

 

Figure 5: The final layers of the Siamese Network [4]. 

 

Once this process has been done with two input images, the dot product between the 

computed probability vectors is calculated and serves as the final output of the Siamese 

network. This means that when images share a label, the outputted dot product should be 

high. To train the network, a loss function is required to evaluate the performance of the 

network after each iteration. The loss function chosen is the Mean Squared Error (MSE) 



between the Siamese network’s dot product vector and the product of both image 

probabilities as assessed by the classifier network. To minimize the MSE, the Siamese dot 

product and the classifier probability vector have to be as close as possible. This way, the 

network is trained to recognize the probabilities as assessed by the classifier. The MSE is 

calculated as 
1

𝑁
∑ (𝑐𝑖 − 𝑠𝑖)2𝑁

𝑖=1  which computes the average error over the N datapoints i, 

which are evaluated for the output of classifier c as a “correct” reference and the output of 

the Siamese Network s.  

 

Figure 6: Schematic representation of the training phase of the Siamese model [4]. 

 

The classifier tends to output probability vectors that are close to 0 or 1, resulting in joint 

probability vectors that may closely resemble binary classifications as opposed to 

distributions. When these overconfident vectors are used in the loss function to assess the 

Siamese model, the Siamese model is trained to also become overconfident in its 

predictions, which may result in overfitting. To combat this, the Siamese model makes use of 

random occlusion. In other words, the images which are used in the Siamese network get a 

randomly placed square imposed over them, which hides some of the features in the image. 

This prevents the Siamese network from becoming overconfident and encourages it to find 

meaningful distributions more closely representing the actual distribution a certain feature 

may have.  

 

3.2.3 Dataset  

The dataset to be used in the analysis is the Copernicus European Land Cover 2018 

dataset. This dataset consists of 48 distinct labels indicating the presence of various land 

types in continental Europe. The labels are distributed over a land map of Europe utilizing a 

vector map, see figure 7 for an example of the dataset, and figure 8 for the labels.  



 

Figure 7: Several vector labels of the Corine land cover dataset. Each colour indicates a different label 

representing a type of land use [24].  

 

Figure 8: The categories of land data as defined by the Corine dataset [24]. 

 

The Corine dataset only includes the labels. The classifier network however must learn to 

associate image data with these labels. Therefore, the dataset has to be coupled to actual 

image (satellite) data. The PlanetScope satellite dataset is used for this purpose. For the 

network to work, this image data must be separated into numerous images consisting of 

patches of land which together make up a bigger land area. Each patch must then have its 

own file with associated labels for the network to learn and recognize. There are a few 

considerations to take into account when preparing this dataset. First of all, the resolution of 

the satellite images chosen. When the resolution is higher, it is easier for the network to 

correctly classify the land, as the data is more clear. However, this also causes the land to 

be more densely represented as it takes more pixels to visualize the same amount of land. 

Thus making the network slower and more computationally intensive. On top of this, an 

image patch of the same pixel size would be able to display less label information if it were 



of a higher resolution as it would display less land area. A balance must be found between 

image clarity and computational size. 

Secondly, the size of the image patches has to be considered. The bigger a patch, the more 

land can be displayed and thus the more labels can be included in one image. As the goal is 

to discover correlations, having multiple labels per analyzed patch is crucial. However, when 

the patches are too big they may include labels in one image which are not related, causing 

the network to learn correlations which in reality do not exist. Once again, the right balance 

must be found in the patch size for optimal results.   

To find which works best, two different satellite datasets are considered in this research, 

which vary largely in resolution. The first dataset is the PlanetLab dataset [25], which has 

been collected on the 30th of April 2021 and has been downloaded on the 24th of May 2021.  

It has a resolution of 3m per pixel, which is relatively small. The advantage of this dataset is 

that reasonably big patches of land area can be used while maintaining images that are 

computationally feasible for the classifier to work with. Also, since the resolution is small, 

more land can be covered in total for the same data size (1 GB of data can hold more land in 

this dataset as opposed to one with a higher resolution). Therefore, the dataset allows for 

more land and as a result more labels to be covered. This means the more precise label 

interrelations could be collected, assuming the classifier performs well on the dataset. The 

second satellite dataset is the High-Resolution Orthoimages Dataset [26], whose data has 

been collected on the 31st of March 2012 and has been downloaded on the 29th of June 

2021. It has a considerably higher resolution of 0.5m per pixel. The images are more 

detailed, as the land area can hold relatively more information in this dataset. Thus, the 

classifier should be able to classify distinct labels relatively easier, at the cost of heavier 

computational operation. 

 

3.3 Hardware 

Training a complex network like this one requires a high amount of computational power. 

When training a Neural Network, it is preferable to make use of a high-end GPU that has the 

capacity to make the required calculations to successfully train the network quickly enough. 

For this purpose, the University of Twente (UT) server cluster and Google Colab are 

considered for training.  

 



3.3.1 UT server cluster 

The UT server cluster has several powerful GPUs available to use and can run programs 

indefinitely when required. For Deep Learning operations, the NVIDIA TITAN X and GeForce 

GTX 1080 Ti are utilized. The server however requires some overhead in setting up before 

programs can be run properly and has the tendency to randomly fail on some arbitrary 

iteration of the program, in which case no output log is returned. The cluster also does not 

allow for reading and writing to and from .txt files, which means that keeping track of results 

between sessions must be done manually. Also, no intermediate results are shown during 

execution, the output log is only visible after a complete execution. Finally, the Cluster 

consists of a waiting queue before programs can be run, which varies highly in waiting time. 

 

3.3.2 Google Colab 

Google Colab also has several powerful GPUs which can be used with relative ease, as all 

required dependencies are installed by default. The GPU utilized is the Tesla K80. It makes 

use of a Jupyter notebook for its interface, which allows for quick testing and editing of 

individual blocks of code while keeping the rest of the program intact, including their 

variables and outputs. However, Colab is made for interactive use only, and does not allow 

for a program to run for over 90 minutes without interaction and will terminate user sessions 

when no input is detected, for which it will check using a captcha.  

Considering the advantages and disadvantages of both systems, the UT server cluster has 

been chosen to run training applications on, as these often need long-running times to 

properly train the network. For evaluation and debugging related purposes, Google Colab is 

used for its relative ease in execution and immediate feedback when used, as well as its lack 

of waiting queues to use.  

 

Chapter 4 - Methodology 

 

4.1 Procedure 

The OLR network will be trained utilizing the two aforementioned datasets, which are 

preprocessed with the Corine dataset to a format compatible to be used by the classifier and 

Siamese network. To evaluate its performance, Binary Accuracy is used as a metric for the 

classifier’s label probability outputs. When a probability for a label is above a certain 

threshold, it is considered as being evaluated as present. When it is below said threshold, 



the label is considered absent. This threshold is 0.5 by default but can be changed to 

improve performance. For every label, there are four possible evaluation results for the 

classifier: True Positive, True Negative, False Positive and False Negative, where positive 

correlates with classifying a label as being present and negative correlates with classifying a 

label as being absent. The Binary Accuracy is found by calculating the percentage of True 

label evaluations. A manual evaluation of the predictions the classifier makes on the test set 

will however also be necessary to evaluate its performance. As present (positive) labels are 

sparse within the dataset, it is deemed more important for the dataset to get these labels 

correct. When the dataset accomplishes a high accuracy, yet has very few or no True 

Positives, the classifier is not deemed as being successfully trained despite high accuracy. 

For the Siamese network, the loss function (MSE) is used as a performance metric during 

training for the network to access itself. When the network has finished training, a manual 

inspection of the results is done as an evaluation. Specifically, an NxN matrix is created 

which displays the correlations found between labels. This matrix is compared with the NxN 

co-occurrence matrix of the labels, which shows how often labels are found together on 

images. If the Siamese network is trained well, it is expected that these two matrices 

resemble each other in their division of high and low values. (E.g. when two labels have a 

very low co-occurrence, they should also have a strong negative correlation and vice versa). 

If the Siamese network can find these correlations itself, this is deemed a success. Once 

trained, this would yield a Siamese classifier capable of finding correlations within new land 

data as well, without the help of the classifier network.  

In the case that the networks are not evaluated to perform well as according to the 

previously mentioned metrics, the networks will be adapted to increase performance. There 

are several methods available to be tried in this case, the ones which to use will be decided 

according to an evaluation of the network to try and understand what causes the 

misperformance. This way, the proper method in response to the misperformance can be 

applied. These methods will be discussed in more detail when they are brought into use. 

 

4.2 Testing on facial data 

Before being able to adapt the OLR network to be usable with land data, the network is 

tested with facial data, as the original network is made for the recognition and labelling of 

said facial data [4]. An attempt is made to replicate the findings of this original paper to 

confirm that the correct methodology can be followed and applied with the available 

resources.  



The network is a python-based application, utilizing the commonly used TensorFlow and 

Keras libraries for their deep learning methods which are used to realize the network. The 

dataset used to test the model is the CelebA dataset [11], a dataset consisting of over 

200,000 images of faces which are divided over 100 image batches of size 2000. The 

images are annotated with 40 different binary labels, indicating the presence or absence of 

said label. The images are cropped to be 178 x 178 pixels in dimension, which often cuts off 

the neck of said images. Therefore, the labels “wearing necklace” and “wearing necktie” are 

not considered, making for a total of 38 labels. The images are divided into 100 batches of 

2026 images each as a Numpy array with a dimensionality of 2026 × 178 × 178 × 3. This 

represents the 2026 images of 178x178 pixels, where each pixel has 3 colour channels with 

a value between 0 and 255, representing the amount of red, green or blue in the pixel.  

First, the classifier is trained on this dataset. During one iteration of training, 98 of the 100 

batches are used to train the network, and the remaining 2 are used to test the performance 

of the network. To assess the performance of the network, binary accuracy is chosen as the 

metric to be used. As the network produces a probability vector between 0 and 1 for each 

binary label, this metric assesses whether the prediction for each label is closest to the 

actual label. So, if a label for a certain image were to be predicted with a probability of 0.6, 

this would return a positive assessment if the label were present on the image and negative 

if the label were not present. The metric makes no distinction based on the confidence of the 

predictions, meaning that a probability of 0.05 (very confident) is assessed the same as a 

prediction of 0.45 (very uncertain). The metric returns the percentage of labels correctly 

classified by the network.  

Second, the Siamese network is trained on the same dataset, utilizing the trained classifier 

to assess itself after each training iteration. As discussed previously, the MSE is used as the 

metric to evaluate the model. A low MSE indicates little difference between the prediction 

made by the classifier and the Siamese network and is thus deemed desirable. The network 

attempt to minimize this MSE. After the model has been trained, the correlations found 

between labels are assessed using a heatmap. If this were to return realistic correlations in 

line with the original paper, the classifier and Siamese network have both performed well on 

the dataset.   

The classifier was trained until an accuracy of 91% was reached on the test set, at which 

point it did not appear to improve anymore. The Siamese network was then trained with the 

classifier up until an MSE of 0.0135 was reached, after which the MSE results of the network 

plateaued. To test the network, 2 training batches were classified by the Siamese network 



and analyzed for the discovered correlations between labels. This resulted in the following 

correlation heatmap: 

 

Figure 9: Heatmap of correlations detected by the Siamese network in the CelebA dataset. 

These correlations appear logical at a first glance (“Chubby” and “Double Chin” for example 

have a very high correlation, while “wearing lipstick” and “male” have a very low correlation, 

etc.). The correlations resemble those found in the original paper to a decent degree. There 

are however a high number of correlations that are simply set to zero. This suggests that the 

network may have not picked up on more subtle correlations within the dataset. Also, the 

“weaing_hat” label has an exceptionally high amount of neural correlations, which may 

suggest that the classifier did not recognize the label at all. This is possible if the label is 

underrepresented in the dataset, in which case it can get the label “correct” by simply 

guessing it to be zero the majority of the time.  

 

4.3 Preparing the datasets. 

As it is confirmed the networks (Classifier and Siamese network) can classify and correlate 

facial image data correctly, the network can be prepared to be used with geospatial data. For 

this purpose, both satellite image datasets are prepared with the Corine dataset for the 



network to classify. Since the entire Corine dataset is far too big to analyze, as it consists of 

the entirety of Europe, a subset of the dataset is used for this research. For both satellite 

datasets, the data used consists of a part of Cyprus around the cities of Nicosia and 

Larnaca. This area was chosen somewhat arbitrarily, primarily because the research 

institute for which the project is done is based in Cyprus. See figure 10 for the land which is 

used in the analysis.  

 

Figure 10: PlanetLab satellite data used for analysis. In the north, the city of Nicosia can be seen and in the east 

the city of Larnaca. Apart from this, a big portion of the dataset consists of mountain ranges and forests, 

providing all types of nature labels. 

Both datasets must be prepared by preprocessing them from their original format to a 

NumPy array structure which can be used as input for the classifier and Siamese networks. 

The network expects each image as an array in the format (w,h,b) where w is the width of an 

image, h is the height of an image and b is the number of bands. To make analyzing the 

image arrays more efficient, the network utilizes the Tensorflow train_on_batch() method. 

This method expects an input of (n,w,h,b) where n represents the number of images in a 

batch. So, all images are divided over batches of size n. If there are I images, this means 

that there are a total of  𝐵 = 𝐼 𝑛⁄  batches. The number of batches and the size of the batches 

are chosen such that the network can train on big batches without experiencing issues while 

training, as batches too big may cause the program to experience memory issues. This also 

means that if an image (w,h,b) is of a smaller total size 𝑤 × ℎ × 𝑏, the size of the images 

batches n can be made larger and vice versa as to have the total size of batch  𝑤 × ℎ × 𝑏 ×

𝑛 of a size manageable by the program. The exact size which works or does not work must 

be decided experimentally for the network, as there is no simple way to calculate this.  

Apart from the arrays representing the images, the networks also require the present labels 

per image. The labels are gathered from the Corine dataset based on the associated 

images’ geolocation coordinates. The batches are expected by the network in an (n,l) format, 

where n represents the number of label arrays in this batch and is equal to the size n of the 



image batches. The l represents the number of possible labels associated with the image. 

The labels are formatted as a binary NumPy array of size l indicating the presence of a label 

with a one, and absence with a zero. Thus, every image in a batch has a corresponding 

label array which can be found on the same location in a batch. For example, an image that 

has the labels 2, 3 and 7 present of size 10 will have a label array as such: 

[0,1,1,0,0,0,1,0,0,0] 

Once a dataset has been properly prepared, it consists of B image batches named 0.npy, 

1.npy, … B.npy and B label batches named labels0.npy, labels1.npy, … labelsB.npy. With 

these batches, the network can be trained. The details getting each dataset in this format 

differ somewhat, however, as the type in which they are acquired differs.  

 

4.3.1 PlanetLab Dataset 

The first dataset which is prepared is the PlanetLab dataset. This dataset is in TIF format, a 

datatype specifically used for geolocation data. As mentioned, these must be converted to 

NumPy arrays. Additionally, the satellite images must be divided into patches of a certain 

width and height. A size of 2 kilometres by 1 kilometre is chosen as the size. This way, the 

patches will contain around 3 labels per patch. This results in 14100 patches of 327 x 132 

pixels. While this may seem odd, as the ratio of the pixels is not 2:1 as might be expected, 

this is because of the satellite images not being taken on a flat surface due to the curvature 

of the earth, thus skewing the axes somewhat. The pixel images in turn are converted to 4 

NumPy arrays per image. Every array represents a colour band within the image, which are 

bands for red, green, blue and near-infrared. See figure 11 for examples of the 4 bands and 

figure 12 for an example of a full image. 

 

Figure 11: Example of the 4 bands representing a patch. From left to right: Red, Green, Blue, Near-Infrared. Note 

that this is a representation of the intensity of each band within part of an image using the Viridis colour mapping. 

The actual bands are 1 dimensional 



 

Figure 12: Example of a full image of the PlanetLab dataset. 

 

The network however expects an array in the format (w,h,b) where w is the width of an 

image, h the height of an image and b the number of bands. For this dataset, this is an input 

of (327,132,4). The four bands are currently separated into arrays of (327,132) each. This 

means that the bands must be combined into a bigger array. This is done through the 

Numpy method stack(), which creates a bigger array out of the individual ones. However, 

when transferring from geolocation data to pixels, several band arrays are formatted to a 

dimensionality of either (327,133) or (326,132). To be able to use the stack method and 

evaluate the images correctly with the network, these arrays have to be converted to the 

(327,132) dimensionality. To do this, the (327,133) arrays are stripped of the last row-vector, 

thus making the image slightly smaller. This should not influence the performance of the 

network much, as it is unlikely one horizontal stripe of pixels will hold decisive information on 

the recognition of a label. For the (326,132) arrays, they were extended with a column vector 

that copies the column next to it. This way, the extension should be as close to reality as 

possible. It could also be extended with a simple zero-value column-vector, however, this 

adds the risk of the network recognizing wrong labels because of the odd data. Now that the 

band arrays all have a consistent dimensionality, they can be stacked to a (327,132,4) array, 

which the networks can use. As mentioned, the images must be combined into batches. The 

stack() method is used once more to create 141 batches of size 100 each. This way, there 

are 141 batches of images.  

The dataset has a total of 32 different labels present throughout the various patches on the 

map of Cyprus. This is less than the total labels in the Corine dataset, as some labels do not 

apply to the chosen area. Since the image arrays are divided into batches of size 100, the 

label arrays must be of a dimensionality (100,32) where each image has a correlated label 

array. This makes for a total of 141 batches of label arrays.  

When converted from the Corine dataset, the labels are represented in a CSV file which has 

1 label per row, combined with the appropriate coordinates of the patch as such: 

[left, top, right, bottom, class label] 



As mentioned, the information in this CSV file must be converted to a binary label array per 

image. To do so, it must be assessed with which image number the label correlates. As the 

image numbers are not stored in the CSV file, this is done via the coordinates which are 

stored in the CSV file. Since the image arrays are ordered numerically and contain 

coordinates of their patch of land, the coordinates can be used to combine the class label 

with the number of the image array. To achieve this, a list is made containing the numbers of 

all images and their respective coordinates. Then, the CSV file is iterated over to see which 

number this class label correlates with, after which the binary label array is updated for this 

label from a 0 to a 1. The class labels in the Corine dataset are numbered somewhat odd 

(also see figure 8). To make numbering more logical, the first binary label in the array 

correlates with the lowest-numbered Corine label and so on. The final label representation 

looks approximately like the following: 

Image Label 111 Label 112 Label 121 Label 122 

42 0 1 1 0 

43 1 1 0 0 

44 0 0 0 1 

Table 1: Representation of binary label array data structure. In reality, the batches are of 

size 100 with 32 possible labels, as opposed to the 3x4 array in this example. 

The full preprocessing of the data schematically looks as following: 

 

Figure 13: Schematic representation of the Preprocessing of the PlanetLab dataset. Note that this version 

assumes a total of 6189 images as opposed to the final 14100. 

 



4.3.2 Orthoimages Dataset 

The Orthoimages dataset consists of 1100 PNG images of size 5000x5000. Because of the 

high detail of the dataset, the total size is 57 GB. Each of these images represents an area 

of 2500 x 2500 meters. Contrary to the PlanetLab dataset, this has already been adjusted for 

the earth curvature, thus both axes are of equal size. Also see figure 14 for an example of 

one of the images: 

 

 

Figure 14: Example of a 5000x5000 image from the Orthoimages Dataset 

As the PNG images already hold all 3 colour bands, the images can easily be converted to 

NumPy arrays of size (5000,5000,3). While this does account for the required (w,h,b) 

structure for the network, this size of an input image is too big and will cause memory 

overload within the program. To account for this, the network was run experimentally with 

images of input sizes 1000x1000 and 500x500, as these are both sizes easily yielded by a 

division of the original 5000x5000 size. Regrettably, the network failed to run with images of 

size 1000x1000 as well. Thus, the images were cut to a size 500x500. See figure 15 for an 

example of such a 500x500 image. 

 

Figure 15: Example of a 500x500 image from the Orthoimages Dataset 



 

The labels are also formatted in 1100 grayscale PNG images of size 5000x5000. In these 

files, each pixel value represented the label that was present on that location in the image. 

For example, if a pixel has a value of 18, this corresponds to the 18th label, which is 

“Pastures”. Since the label numbering in the Corine dataset is not continuous and goes 

beyond 256, the maximum value a pixel can have, the labels were numbered 1 to 48 based 

on the same numerical order as in the Corine dataset. For the original ordering, see figure 8. 

Not all of the 48 labels were present in the dataset, however, as not every type of label 

occurs in Cyprus. In total, 34 distinct labels are present in this dataset. This is 3 more than 

the PlanetLab dataset, as this one covers more land in total. This means that every image 

needs an associated label array of size (34). To do this, the 5000x5000 label images were 

cut up into images of 500x500. Over these cut-up images, the np.unique() function was 

used, which returns all unique values found within the array. As the values in the images 

represented the label found in the respective location, this function returns all labels found 

within the image, so an image that has labels 4, 23 and 31 would return [4,23,31]. However, 

this array must be converted to a binary array of size 34. This can be done by creating a size 

34 array filled with zeros and replacing it with a 1 at the index of each label-1 (as the array 

starts counting at 0 while the labels start counting at 1). Keeping to the previous example, 

this would yield the following label array: 

[0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0].  

As each of the 1100 images is cut up into 100 smaller images, the dataset now consists of 

110000 images of size 500x500. The cut-up images each show a land area of 250 by 250 

meters. This is a small area, as many of the images will hold only one label. Since a key part 

of the network is finding correlations within the data, images with multiple labels are strongly 

preferred. To compensate for this and the fact that the original dataset size of 57GB will take 

very long to train, a subset of images that hold 3 labels or more is selected to be used in 

training. This shrinks the original dataset down from 110000 images to only 3500, all of a 

size 500 x 500. This size is however still relatively big compared to the original input of the 

network, which is 178 x 178. To compensate for the size of these images, the batch size 

must be adapted as to restrict the batches from becoming too large in size and prevent 

memory overload. Therefore, the batch size was chosen to be 10 images per batch. 

Stacking the image arrays and label arrays thus results in batches of dimensionalities 

(10,500,500,3) and (10,34) respectively making for a total of 340 batches each.  

 



4.4 Additional Methods  

There are a number of differences between the facial CelebA dataset, which was originally 

utilized in the OLR paper, and the satellite datasets. These differences may hinder the 

performance of the network. To improve results, several additional methods can be utilized 

in the training of the network, should it perform subpar.  

4.4.1 Weighted Classes  

The most obvious difference between the CelebA and Corine dataset is the division of the 

labels between images. It is quite varied how often labels are present within satellite images. 

Looking at the PlanetLab dataset, the most prevalent label (non-irrigated arable land) is 

present in about 38% of images, while the least prevalent label (beaches, dunes, sands) is 

present in only 10 out of the 14100 images. This means that that the network can potentially 

get very high accuracies by simply “guessing” labels to be absent from images. To account 

for this, the classes will be weighted in the network to assign a heavier penalty for evaluating 

their presence wrongfully to the network. This is done using the Tensorflow method 

class_weight(), a parameter assigned in the training phase of the program. It is important to 

properly assign these weights so that the network can evaluate them properly. For each 

batch of images, the class weights are calculated with 
1

𝑓
×

𝑡

2
 where f  is the frequency of the 

class within the batch and t is the total number of labels assigned in the batch [27]. In this 

formula, the less frequent a label occurs, the heavier it is weighted. If a label were to not 

occur within a batch at all, it is set to 1, so it is not taken into account heavily for said 

iteration.  

 

4.4.2 Pruning Labels 

Even with weighted classes in place, the least prevalent labels (<0,1%) may prove hard to 

learn for the network and can skew accuracy. Therefore, it can also be considered to prune 

these labels from the network, such that they do not influence the training process. This is 

done by analyzing which labels are present below a certain threshold in the dataset and 

shrinking the number of labels that can be associated with an image from the original 

amount N1 to shrunk amount N2. When this is done, the network itself also must be adjusted 

to have N2 outputs, as the amount of labels an image can be associated with has changed. It 

is important to note that while this removes sparsely distributed labels, the absolute amount 

of labels will still go down, and some images may end up with very few (between 0 and 2) 

labels associated with them. The relative amount of labels will however go up.  

 



4.4.3 Randomized Batches 

Another problem is that image patches close to each other may share a lot of labels and 

contain a relatively high amount of absent labels. This is because these are all taken from 

comparable land. So, when a batch of image arrays is created by iterating over images 

ordered numerically, a batch does not represent an “average” of the multiple land options 

present. This can be evaluated by counting the number of times a label is present in a batch 

of 100 images. When the baches are created “in order”, this results in the following 

frequencies: 

 

Figure 16: Frequencies of labels within the first 5 batches when batches are created in order. Columns represent 

different batches, where the first number within a column is the first label, etc. 

To combat this, batches can be created which take a random combination of 100 images, 

instead of those that happen to be in order. That way, the batches should represent more of 

an average label division within the dataset. Doing this yields the following label frequencies: 

 

Figure 17: Frequencies of labels within the first 5 batches when batches are created randomly. Columns 

represent different batches, where the first number within a column is the first label, etc. 

As can be seen, the amount of zero-frequency labels within batches is lower when this 

method is applied. The batches now represent the average label division over the entire 

dataset more accurately. Since the training set used by the classifier also consists of a 

combination of (usually 2 – 5) batches, the training sample also represents the full set more 

accurately, making the chance the network overfits on specific labels smaller.  

 

4.4.4 Combining Labels 

Another method to deal with sparsely distributed labels without pruning them is to combine 

labels into more general categories. As can be seen in figure 8, the labels within the Corine 

dataset are quite specific. For example, all labels referencing urban structures can be 

combined into one general label called “urban”. It must be noted however that this may also 

cause the network to have a harder time distinguishing between specific patterns which 



make up labels if the labels become too generalized or if the combined labels are not similar 

enough. The choice of which labels to combine must be made carefully, taking this into 

account. 

 

4.4.5 Focal Loss 

Focal loss is a loss function first introduced by Lin et al [28]. This loss function is specifically 

useful for highly imbalanced data, as it encourages the model to predict a label as being 

“present” more frequently, even if it is not very sure about this assessment. This is contrary 

to the more commonly used Binary Cross-Entropy loss, which requires the model to be very 

certain about its evaluation. While Focal loss does increase the risk of getting a false positive 

in the evaluation, the model needs to predict positive values more frequently in a dataset 

that holds very few positive values like the Corine dataset.  

 

4.4.6 Lowering the Binary Accuracy Threshold 

The default threshold for the binary accuracy metric is 0.5, meaning that any evaluation of a 

label with a probability higher than 0.5 is counted as “present” and lower as being “absent”. 

To encourage the classifier network to evaluate labels as being present more often, this 

threshold can be lowered. This way, a low evaluation where the network is only somewhat 

sure a label correlates with an image will still be counted as being present. While this may 

improve the performance of the classifier, it should be noted that if this method proves 

successful, the Siamese network still has to be trained with this classifier. As the Siamese 

network attempts to imitate the (cross product) probabilities output by the classifier, this will 

also mean that the Siamese network will put out relatively lower probability estimations. 

 

 

 

 

 

 

 



Chapter 5 - Results 

 

To test the OLR network in combination with the datasets, multiple runs were executed of 

both datasets. Between these runs, various hyperparameters were edited and analyzed for 

their influence on the training and prediction results of both networks.  

 

5.1 PlanetLab Dataset 

The PlanetLab dataset was run with the classifier network in multiple configurations to 

attempt to get the classifier to properly train on the dataset. This was ultimately to little avail, 

as the network did not appear to actively improve its classifications much. However, a few 

configurations did seem to train somewhat successfully. The ones which did were selected 

to train with the Siamese network, after which it was evaluated whether the network was 

able to find realistic correlations between labels. For the classifier network, a successful 

result is seen as the network training for higher accuracy, as this indicates it learns the 

underlying patterns and semantics of the data. If the network starts with a high accuracy 

which it does not improve, this is not deemed successful, despite high accuracy.  

 

5.1.1 Results First Run 

The first training run of the classifier network did not indicate it learning to recognize data, as 

the classifier plateaued in its training accuracy after only a couple of iterations. Analyzing this 

run for its label classifications reveals that the classifier learned to classify every label as 

being absent, also see table 2: 

True Positive True Negative False Positive False Negative Total Accuracy 

0 14979 0 1021 0.9361875 

Table 2: Classifiers’ evaluation of the test set after the first training run.  

This is an indication that the sparsity of labels hinders the classifier’s ability to recognize 

labels. Therefore, the earlier discussed methods to deal with spare label division are applied 

to the network to assess whether they improve its performance. Consequently, this will 

investigate if the sparse division of labels is indeed the cause of its subpar classifications. If 

these methods do not improve performance, the cause may be different. 

 



5.1.2 Pruned Labels, Weighted Classes and Randomized Batches 

The methods applied to the dataset/classifier to check for better results are weighing 

classes, pruning labels and randomized batches. The methods were applied in all possible 

configurations, for a total of 8 different networks. For pruning, a threshold of 100 ‘hits’ was 

chosen. So, if a label appeared less than 100 times within the network, it was purged. This 

slimmed the network down from 32 classes to 16. The result of these runs can be found in 

table 3: 

 

Pruned 

Labels 

Weighed 

classes 

Randomized 

Batches 

Starting 

accuracy 

Final 

Accuracy 

Improvement Iterations Run 

ID 

Yes Yes Yes 0.8851250 0.8852500  0.0001250 9 1 

Yes Yes No 0.8406250 0.8801250  0.0395000 5 2 

Yes No Yes 0.8850000 0.8860000 0.0010000 42 3 

Yes No No 0.8403750 0.8801250  0.0695000 3 4 

No Yes Yes 0.9383125 0.9383750  0.0000625 5 5 

No Yes No 0.9230000 0.9361875  0.0131875 2 6 

No No Yes 0.9383125 0.9385625  0.0002500 51 7 

No No No 0.9316250 0.9361875  0.0045625 8 8 

Table 3: The results of the 3 different method configurations applied to the classifier network. 

The number of iterations refers to the iteration on which the best performing (final) accuracy 

was reached.  

From this table, it can be gathered that pruning the labels does indeed lower the initial 

accuracy of the network. However, all configurations stop training around 88%for the pruned 

labels and 94% for the unpruned labels. This is likely because these approximately 

represents the percentage of absent labels within the test set. Thus, when the network trains 

towards guessing absent, these percentages are reached. This is confirmed when 

evaluating the predictions done on the training set by these networks, as they all have a very 

low number of present (positive) guesses. Also see table 4: 

Pruned 

Labels 

Weighed 

classes 

Randomized 

Batches 

True 

Positive 

True 

Negative 

False 

Positive 

False 

Negative 

Run 

ID 

Yes Yes Yes 7 7075 6 912 1 

Yes Yes No 2 7039 2 957 2 

Yes No Yes 65 7023 58 854 3 

Yes No No 0 7041 0 959 4 



No Yes Yes 2 15012 1 986 5 

No Yes No 0 14979 0 1021 6 

No No Yes 62 14955 58 925 7 

No No No 0 14979 0 1021 8 

Table 4: Label evaluations of the 3 different method configurations applied to the classifier 

network. 

A number of observations can be made from these classifications. Firstly, label pruning does 

not appear to influence the performance of the network apart from shifting the accuracy 

range in which it operates. Secondly, the runs which appeared to perform best based on 

accuracy improvement (runs 2, 4 and 6) did so merely by shifting towards more negative 

evaluations. It is also interesting to note that runs which lack randomized batches evaluated 

labels as being present the least, as 3 out of the 4 runs never evaluate any label as being 

present. This is likely because non-randomized batches have their label division more 

focused on specific labels which show a high frequency, rather than an average division. 

Thus, these have relatively more labels always absent, also see figure 16.  

Two runs have a relatively higher number of positive evaluations, runs 3 and 7. These runs 

both reached their best performing accuracy on a relatively late iteration (see table 3) and 

are both runs that lack weighted classes but do have randomized batches. This implies that 

this combination encourages the network to learn to evaluate labels as being positive 

relatively more. Closer inspection of these runs reveals that most of these positive 

evaluations were done for the same labels, namely the labels “Non-irrigated arable land” 

(151/243) and “Scleropyllous vegetation” (27/243). The remaining labels evaluated as 

positive were a variety of labels within the dataset. The label “Non-irrigated arable land” is 

the most common label within the dataset, appearing within 37% of images. This may imply 

that the network has learned to recognize this label within images. It is not plausible that it 

evaluates this label as being present most of the time as to simply get a high accuracy, as to 

get a higher accuracy the network can still guess this label as being absent and get it right 

for the majority of the images evaluated. Indeed, when looking at the evaluations for only 

“Non-irrigated arable land” the two networks had a combined accuracy of 65.8%. While this 

is far from state-of-the-art CNN performance, it does indicate that the positive evaluations for 

this label are not arbitrary but learned. This does indicate that the network is capable of 

learning when a label is present more frequently, as this label indeed is, however, this result 

is only reached with randomized batches and without weighed classes. It must also be noted 

that while these networks performed relatively well on one label, overall, the networks still 

followed the trend of outputting mostly absent labels, as they also have a high number of 

false negatives.  



This also shows that weighing classes does not improve the performance of the network, but 

on the contrary, decreases performance. This is likely because the weight given to the 

classes is inversely proportional to their frequency. Thus, the labels which are absent more 

of the time will weigh higher when calculating the loss function. While the intended outcome 

of this is that the network learns these labels better, it is shown that the result is the 

opposite. The network is encouraged to still evaluate these labels as absent most of the 

time, as these evaluations also weigh heavier.  

 

5.1.3 Combined Labels, Lowered Threshold and Focal Loss 

As these three methods do not appear to sufficiently solve the problem, additional methods 

are incorporated into the classifier program. Since random batch distributions did appear to 

increase performance slightly, all runs from here on will utilize this method. The additional 

methods are combining labels, lowering the binary accuracy threshold and focal loss. For 

combining the labels, the previous 32 labels were combined into a total of 7 new label 

categories. For the conversion, see Appendix C3. For lowering the binary accuracy 

threshold, a new threshold of 0.2 was chosen. These methods resulted in the following 

performance for the classifier: 

Method Starting 

accuracy 

Final Accuracy Improvement Iterations 

Combined 

Labels 

0.81314284 0.83742857 0.0242857 287 

Lowered 

Threshold 

0.8882083 0.9250208 0.0368125 407 

Focal 

Loss 

0.75135416 0.919375 0,16652781 33 

Table 5: Results of the Combined Labels, Lowered Threshold and Focal Loss methods 

applied to the classifier network training phase. The iteration refers to the iteration on which 

the Final Accuracy was reached. 

These results are more promising than the previously applied methods. Namely, the 

Lowered Threshold and Focal Loss methods appear to increase the performance of the 

network significantly. Note that Focal Loss has a far lower number of iterations as this 

network had to be run on Google Colab instead of the UT server cluster, as the server 

cluster did not support the library required to run Focal Loss. For this reason, the Focal Loss 

dataset was also run using a smaller test dataset compared to the Lowered Threshold. 

Looking at their evaluations for the test batch yields the following: 



Method True Positive True Negative False 

Positive 

False 

Negative 

Combined 

Labels 

1588 7205 693 1014 

Lowered 

Threshold 

876 44059 1028 2037 

Focal 

Loss 

840 25638 1309 1013 

Table 6: Label evaluations of the Combined Labels, Lowered Threshold and Focal Loss 

methods applied to the classifier network. 

 

Despite having only little improvement in accuracy, combining labels does appear to be 

relatively good at assessing positive labels. This is likely due to the labels within the dataset 

now being represented more often, and positive labels now being more prevalent within the 

dataset. It assessed the different categories as such: 

 

 True Positive True Negative False Positive False Negative 

Urban 57 1167 4 272 

Special Sites 0 1472 0 28 

Non-irrigated 

arable land 

83 1040 33 344 

Agriculture 650 290 440 120 

Forests 750 410 197 143 

Rocky / 

Mountainous 

areas 

0 1415 

 

0 

 

85 

Bodies of Water 48 1411 19 22 

Table 7: Performance of the Combined Label classifier per label. 

This reveals that the classifier performed well on the labels which were well represented 

within the dataset. It did especially well on the label “forests”, where the classifier got 83% of 

the present images correct as well as 68% of the absent images. Interestingly, whenever the 

classifier assessed an image to contain the “urban” label, it got it correct 93% of the time. 

However, it still missed most of the urban structures within the dataset. This may imply that 

there is some specific urban structure that the classifier succeeded at recognizing which 

accounts for the 57 True Positives. This may be an effect of the overly broad categorization 

of combining labels. Similarly, the classifier was able to correctly assess whether an image 



contained a body of water 97% despite its relatively low representation within the dataset, as 

opposed to merely estimating it to be absent every time.  

The Lowered Threshold and Focal Loss methods appear to perform somewhat better as 

well, although relative to the absolute number of labels they still access a small amount as 

being positive. It can also be seen that focal loss indeed has a higher number of false 

positives as was expected of the method.  

Since the classifiers trained with these methods appeared to perform decently well, they are 

used to train the Siamese network. If the Siamese network performs well, it should find 

correlations between labels that resemble the co-occurrence matrices of the datasets used. 

For each of these 3 classifiers, this is a different co-occurrence matrix. They can be found 

here:  

 

Figure 18:The Combined Label co-occurrence matrix. Labels have been removed to increase legibility, for each 

label see Appendix C3.  



 

Figure 19: The 32 label co-occurrence matrix, as used in Lowered Threshold and Focal Loss. Labels have been 

removed to increase legibility, for each label see Appendix C1. 

The Siamese network is trained utilizing each of these classifier networks. It used the MSE 

to access its training results. The final results can be found in table 7: 

Classifier used Starting MSE Best MSE Iteration 

Combined Labels 0.060082 0.00591019 27 

Lowered Threshold 0.00366061 0.001401 95 

Focal Loss 0.0029063 0.0024499 39 

Table 7: Results of training the Siamese network with classifiers trained on Combined 

Labels, Lowered Threshold and Focal Loss. 

It is interesting to note that the combined labels Siamese network both started and ended 

with a relatively high MSE. This implies that the error of this network stayed relatively higher 

compared to other Siamese network iterations, as well as started higher. This may be 

caused by the relatively high amount of positive classifications made by the Combined 

Labels classifier.  

Since the classifier for these networks has been trained, they can be evaluated by their label 

correlation output. To do this, the Siamese classifier is run over a sample image test set 

which it can evaluate for their label correlations. The resulting correlation matrices for 

Combined Labels, Lowered Threshold and Focal Loss can be found in figures 21, 22 and 23 

respectively. 



 

Figure 20: Correlation matrix based on the correlations found by the Combined Label Siamese network. 



 

Figure 21:  Correlation matrix based on the correlations found by the Lowered Threshold Siamese network. 



 

Figure 22: Label correlation heatmap for the Corine dataset on Cyprus based on the Siamese network trained by 

the Focal Loss classifier network. For labels see Appendix C1.. 

 

These matrices in themselves do not tell us much. They must be compared to the co-

occurrence matrices of the associated datasets. Doing this reveal some interesting findings. 

First and foremost, the Lowered Threshold and Focal Loss matrices seem somewhat 

nonsensical. There are a large number of random samples that can be taken from each 

respective matrix which do not correlate with the associated co-occurrence matrix. For 

example, in the Focal Loss matrix, the labels “Sea and Ocean” (32) and “Annual crops 

associated with permanent crops” (18) appear to have a correlation of 1, indicating that 

these two are always found together. Analyzing the co-occurrence matrix however shows 

that out of their 686 and 2985 respective occurrences, only 44 images hold both labels. 

Thus, the labels hold a rather low correlation, contrary to what the Siamese model found. 

If the classifiers were properly trained, their correlation matrices would likely resemble each 

other somewhat, which is not the case. However, they do seem to agree that the label 

“Coniferous Forest ” has a very low correlation with all other labels. This is the second-most 

common label within the entire dataset, which may imply that this label was learned to 



recognize successfully by both networks, and since other labels are quickly labelled as being 

absent, a negative correlation with this specific label is logical.  

The correlation matrix for the Combined Label network appears to make a bit more sense 

when compared to its co-occurrence matrix, although it still misses several obvious 

correlations. It agrees with the previously discussed networks that “forests” has a low 

correlation with all other labels by merit of its sheer size. It also found a high correlation 

between labels agriculture and urban, which is correct when looking at the co-occurrence 

matrix. It however also missed several important correlations, for example, agriculture and 

forest are found together quite often. Despite this, the network assessed their correlation to 

be -0.6, the strongest negative correlation given to any label. Considering most of the 

correlations found are similarly questionable, it is unclear whether the sensical correlations 

were learned by actual training or simple luck. The number of nonsensical correlations does 

indicate that the latter is more likely. 

Training the classifier and running the full OLR with the PlanetLab dataset did not yield any 

promising results. While it did give an insight into which method can support the analysis of a 

satellite dataset, the classifier ultimately tended towards primarily outputting only absent 

labels and failed to learn the semantics of the provided data. The PlanetLab dataset itself 

may be inherently unlearnable for a general case classifier network, perhaps because it is of 

too low a definition. If this is the case, a higher definition dataset could prove fruitful in the 

analysis of the Corine dataset.  

 

5.2 Orthoimages Dataset 

The Orthoimages dataset has a resolution of 0.5 m per pixel, which is far more resolute than 

the PlanetLab dataset. If the bottleneck within the evaluation of the Corine dataset is indeed 

the detail found within the satellite imagery, the Orthoimage dataset should perform better. 

Due to time constraints, the Orthoimages dataset was not analyzed as thoroughly as the 

PlanetLab dataset since it could only be acquired much later. Despite this, the dataset was 

prepared and ran, once without any additional methods, once with a Binary Accuracy 

Threshold of 0.2 and once with Combined Labels. For the exact labels used, see Appendix 

C5. 

 

 

 



Model Starting 

Accuracy 

Final Accuracy Improvement Iterations 

Standard 0.912381 0.912381 0 0 

Threshold 0.2 0.8338095 0.8841905 0.050381 1 

Combined 

Labels 

0.83 0.816 0.014 12 

Table 8: Results of running the Orthoimages classifier network applying different methods. 

Threshold True Positives True Negatives False Positives False Negatives 

Standard 0 9580 0 920 

Threshold 0.2 401 8883 700 516 

Combined 

Labels 

187 221 53 39 

Table 9: Evaluations of the trained Orthoimages classifier networks applying different 

methods. 

The first two networks do not appear to be training at all. The standard model classifies 

every label as being absent and does not improve anymore beyond the first iteration. The 

0.2 threshold version classifier improves only once, which is not enough for a CNN to 

legitimately learn to recognize labels. This is reflected in its evaluations as well. While not 

always absent, the positive evaluations appear to be random as well, as they are most often 

false.  

The Combined Label version once more proves to generate better results. The test set is 

somewhat small because of the combining of labels, but both for positive and negative labels 

it manages to generate good accuracies. Table 10 shows a more specific overview of the 

network’s performance per label 

 

Label True Positive True Negative False Positive False Negative 

Urban 64 9 24 3 

Agriculture 80 1 19 0 

Forests 42 25 10 23 

Rocky / 

mountainous 

area 

0 89 0 11 

Bodies of water 1 97 0 2 

Table 10: Results per label by the Orthoimages combined label classifier.  



As can be seen, the network performs especially well on the first three labels: Urban, 

Agriculture and Forest. The last two labels appear to be very underrepresented in the 

dataset, and can therefore not be properly learned by the classifier.  

Only the results of the classifier ran with Combined Labels appears to have trained one the 

dataset, and is therefore used to train the Siamese network. This performed as follows: 

Starting MSE Final MSE Iterations 

0.08682765066623688 0.009012744274167787 20 

Table 11: Result of training the Orthoimages Siamese network with Combined Labels 

The resulting Siamese network is used to evaluate for correlations within the dataset and 

compared to the associated co-occurrence matrix. These can be found in figure 23 and 24: 

 

 

Figure 23: Co-Occurence matrix for the combined label Orthoimages dataset. 



 

Figure 24: Correlations found by the Siamese network trained with the Combined Label classifier. 

 

Comparing these two matrices shows that the Siamese model did not learn the correlations very 

well. While it did manage to assess that indeed forest and agriculture have a strong correlation, 

most are nonsensical. For example, Urban and Forests correlate by -0.9, the lowest given by the 

network, even though a sizeable number of images share the label. Regrettably, the Combined Label 

OLR performed similarly for the Orthoimages dataset as it did the PlanetLab dataset. It performed 

decently on the classifier but failed to find correlations with the Siamese model.   

 

 

 

 

 



Chapter 6 – Evaluation 

 

The OLR failed in finding accurate correlations within the Corine dataset, both combined with 

the PlanetLab dataset as well as combined with the Ortoimages dataset. The main reason 

for this appears to be the classifier networks inability to train on the dataset and learn to 

recognize multilabel satellite data. While it is impossible to know the exact cause of this 

without further research, it is possible to hypothesize about the plausible causes for this. It is 

also possible that it is not one, but a combination of these problems caused the classifier to 

fail in training. The most obvious direction to look at in assessing the failure of the network is 

the difference in the CelebA dataset and the Corine data(sub)set used in the research, as 

the first did succeed in yielding correlation while the latter did not. Several important 

distinctions can be pointed out between the datasets. 

 

6.1 Size 

To train a CNN network correctly, it requires a sizeable dataset to learn the structures which 

make up that which it wants to classify. For a multi-label dataset such as this one especially, 

the dataset needs to have various examples of each label as to learn to recognize said 

labels outside of the training context as well. The CelebA dataset originally used in OLR 

consisted of over 200000 images, giving the classifier network a big dataset to train and 

learn the intricacies of the data. In contrast, the PlanetLab dataset used in this research 

consisted of about 14100 images, and the OrthoImages dataset of 3500 after preprocessing. 

The classifier may have been unable to learn to recognize labels as it did not have enough 

examples per label. This is also exemplified by the fact that the label “Non-irrigated arable 

land”, the most common label in the dataset, appeared to be recognized somewhat by the 

PlanetLab classifier trained with random batches enabled. However, it must also be noted 

that there are numerous examples of (albeit small) neural networks learning to recognize 

data from fewer data points, and this explanation does not account for the apparent inability 

of the classifier network to improve its evaluations at all. 

 

6.2 Label Division 

While the amount of training examples is important for the network to learn to recognize 

labels, the quality of said examples is of even higher importance. In the CelebA dataset, 

labels are distributed across images in relatively high density. An image in the CelebA 

dataset often has between 6 and 12 labels associated with it, and all labels are well 



represented within the dataset. In contrast, the Corine dataset combined with the satellite 

image datasets has a very sparse label distribution. This is to be expected of a general-

purpose satellite dataset that assesses only one label per area, as it distinguishes very 

broad categories of land into large areas. Ergo, big patches of land will only contain few 

associated labels. The PlanetLab dataset contained about 4 or fewer labels per image, 

Implying about 28 or more absent labels per image. This makes it harder for the network to 

train on said labels, especially those which are underrepresented. On top of this, it may lead 

the network to assess a big number of labels as simply always being absent to still achieve 

high accuracy.  

However, several methods were applied in this research to the PlanetLab dataset to attempt 

to solve this problem, which was proved ultimately unsuccessful. Firstly, weighing classes 

appeared to have the opposite effect, discouraging the network from learning to recognize 

labels. Secondly, the purging of highly imbalanced labels, bringing the dataset from 32 to 16 

labels in total, also did not change the performance of the network. This may imply that the 

imbalance of the data is not the actual cause of the classifiers inability to learn labels. 

However, the purging of these 16 uncommon labels does not change the fact that even the 

more commonly found labels are still relatively sparse, and in turn difficult to learn for the 

classifier. The third method which was attempted to deal with this issue is combining labels 

into broader categories. This method did see a slight success in improving the performance 

of the classifier on the dataset, as it was able to correctly classify about 61% of positive 

labels. It performed especially well on the Forests label, which was represented within the 

dataset the most, as well as getting decent results on the Urban, and Bodies of Water labels. 

These labels were not represented in the dataset much however, a possible explanation 

could be that they were highly recognizable by the classifier, which seems plausible 

considering the nature of these categories of land use. While this method improves classifier 

performance somewhat it seems, this does not directly translate into good OLR 

performance. Since the combining of labels within the dataset causes labels to co-occur 

within images less, it subsequently becomes harder to find correlations within the dataset. 

This was found for both the PlanetLab as well as the Orthoimages datasets. 

The final methods which attempt to deal with the unbalanced data were focal loss and 

lowering the binary accuracy threshold. Both methods encourage the classifier to classify a 

label as being “present” more frequently. While this was achieved, the methods ultimately 

did not cause much improvement in the performance of the classifier, still getting the majority 

of present labels wrong, and outputting mainly absent label classifications.  

 



6.3 Type of Classifier 

The architecture of the classifier in combination with the dataset used is also of importance. 

The classifier used in this research was a slightly modified version of the CNN originally 

created and evaluated with the CelebA dataset. While it is a quite general image 

classification CNN in its structure, it is possible that this classifier simply works better for 

facial recognition as opposed to satellite image recognition. State of the art research also 

shows that the classification of general case multi labelled satellite data is still a tough 

challenge. On top of this, the metric used to evaluate the performance of the network may 

also play a role in its classification results. As binary accuracy rewards the network for 

getting as many labels correct as possible, it will learn to mostly output zeros. While there 

was an attempt to deal with this in the form of the lowered binary accuracy threshold, 

perhaps a different evaluation metric altogether may prove beneficial for the classification 

performance.   

 

6.4 Satellite Datasets 

The PlanetLab dataset suffered from quite unclear data. Most of the pixel values within the 

dataset lay close together, which may have caused details within the dataset to be difficult to 

pick up by the classifier. This is likely the result of the low resolution of the dataset. However, 

if this were the biggest problem within the evaluation of the image data, the Orthoimages 

dataset should have been able to train the classifier well, as this dataset has a much higher 

resolution. This is not the case, however, which implies that either resolution does not play a 

role within the classification of the data, or the Orthoimages dataset suffers from other issues 

as well (e.g. sparse labels, dataset size, classifier used) making it unable to utilize its higher 

resolution. As the Orthoimages dataset also put out mainly absent labels, the latter option 

seems more plausible. Only when other issues are resolved, is it possible to completely 

evaluate the importance of high definition within the dataset. 

Another issue with combining independently collected datasets, as was done in this 

research, is that they are all collected at different times. Where the Corine dataset stems 

from 2018, the PlanetLab and Orthoimages datasets were collected in 2021 and 2012 

respectively. The land may have changed between these periods of acquisition, making the 

datasets less accurate in themselves in their combination of land and labels. Still, it is 

assumed that this period will not have changed the land drastically enough to have a 

detrimental impact on the accuracy of the dataset, but it is an important concern 

nonetheless. 

 



Chapter 7 - Conclusion and Discussion 

 

This research set out to investigate whether OLR can be combined with geospatial data. 

Whether this is possible or not remains ambiguous, as OLR requires a well-trained classifier 

to be able to train its Siamese network. The type of classifier required by OLR, one which 

can accurately classify multi-labelled images, is challenging to apply to geospatial data. The 

nature of geospatial data is such that labels are divided over land sparsely, and labels may 

not always be recognizable from the satellite data. The dataset used in this research, the 

Corine dataset, is found to be too general-purpose, consisting of many labels of various 

categories of which most are underrepresented on a large scale. In retrospect, attempting to 

apply a general-purpose Multi-Label CNN to a land use dataset was ambitious, as this is a 

challenging task in itself that does not even involve the actual OLR yet, but rather is a step in 

the process of applying OLR. A better approach would have been to find a state-of-the-art 

classifier for a more specific subset of land data, which has already been shown to perform 

well and apply it to OLR. Not all is in vain, however, as the Combined Label classifier ran 

with the PlanetLab dataset managed to learn some correlations within the dataset, showing 

that there may be potential for OLR combined with land data yet, as long as labels are 

present frequently enough within the dataset. This is additionally exemplified by the 

PlanetLab classifier trained with random batches, which did learn to recognize the “Non-

irrigated arable land” label, most likely since this label was most frequently present within the 

dataset.  

The methodology with which the research was done has not always been up to desired 

standards. Much of the process consisted of trying new methods on the datasets just to see 

whether it would change anything. A more precise methodology would have been beneficial 

to the process, as it was observed that a consistent method of analyzing results made 

comparing said results easier. Many experiments were repeated near the tail end of the 

research to be able to compare these results, after all, leading to interesting insights. Had 

this way of working been applied from the start, these insights may have been discovered 

faster. It is however also inherent to this type of research to attempt many types of methods 

and techniques, as there are many out there which may help. This can cause the focus to be 

shifted from a strict methodology to an attempt to try as many methods in as short a 

timeframe as possible. 

Related to this, the addition of the Orthoimages dataset was quite a last-moment effort to 

attempt at getting valid results. Due to this, the dataset could not be explored to its fullest 

potential like how it was done with the PlanetLab dataset. Currently, this dataset appeared to 



perform quite bad, but perhaps any of the methods applied to the PlanetLab dataset would 

have made a difference in this regard. 

In conclusion: OLR could theoretically be applied to general-case geodata, but to do so a 

classifier that can recognize many different types of land would have to be developed first, 

as OLR requires a well working classifier before being able to train the Siamese network. 

Should such a classifier be developed, it would be interesting to repeat this experiment with 

said classifier and associated dataset and see whether it manages to operate successfully. 

 

Chapter 8 - Future Research 

 

The research in this thesis is non-conclusive, and as such the findings provide much space 

for future research. A number of directions for future research can be considered. 

 

8.1 State-Of-The-Art Geospatial Classifier 

To investigate whether OLR could be combined with geospatial data, it is recommended to 

find a state-of-the-art MLL classifier network made specifically for geospatial data. Ultimately 

a general-purpose classifier will likely provide the most interesting results if this research is 

done, as it may yield insight into label correlations that may not have been considered 

before. However, a contemporary network that is more specialized in a specific type of land 

data appears to be the more realistic option as of right now. This will still provide the deep 

learning community with the information of whether OLR can be applied to geospatial data, 

albeit a specific subtype. This may open the door towards a general-purpose classifier being 

applied to geospatial OLR at some point in the future. Additionally, may a strong general-

purpose geospatial classifier be developed, it would be interesting to repeat this research 

and analyze its results. As this research did point out methods that can prove beneficial in 

the training of the classifier and Siamese network, these can be applied to future research as 

well. 

 

8.2 Running OLR with different types of data 

Since the only real criteria for OLR is that it combined the efforts of a CNN classifier network 

with an occlusion based Siamese network to find meaningful data representations and find 

correlations, it can be applied to many types of data, as long as it is multi labelled. The most 



obvious step is to keep within image data and attempt to find correlations within objects 

other than faces. Examples may include animals, plants, or any other image data for which 

correlations can prove useful. It is however also possible to apply this network to other forms 

of spatial data, such as audio or video. As of now Multi-Label Learning is less explored 

within these domains, so finding a good dataset may be difficult. Still, if the opportunity 

arises to run OLR with spatial data other than an image, it would be very interesting to see 

how the network performs.  

 

8.3 Analyzing the Orthoimages dataset more thoroughly  

Since the Orthoimages dataset could not be analyzed to its full potential, it could be 

interesting to see how it would perform if it ran with the various discussed methods enabled. 

This would also prove how important the resolution used is in the geolocation dataset, as it 

can be compared to this research which used a less resolute dataset for the most part. It is 

expected to perform better for its higher amount of detail, but it would require very powerful 

GPUs to fully explore the dataset as it is very large. Alternatively, an attempt can be made to 

lower the resolution by decreasing the image dimensions. This way, the dataset will still have 

a higher resolution compared to the PlanetLab dataset, but it will also be possible to fit more 

land, and thus more labels, on each image while still being runnable on a medium-range 

GPU. 

 

 

 

 

 

 

 

 

 

 



Appendices 

 

Appendix A: The Classifier Model 

 

from tensorflow.keras import backend as keras 

from tensorflow.keras.optimizers import * 

import numpy as np 

import os 

import time 

import tensorflow as tf 

from tensorflow.keras.models import * 

from tensorflow.keras.layers import * 

from tensorflow.keras.activations import * 

 

batch_size = 64 

 

gpus = tf.config.experimental.list_physical_devices('GPU') 

tf.config.experimental.set_memory_growth(gpus[0], True) 

 

 

def model1(input_size=(178, 178, 3)): 

    input = Input(input_size) 

    conv1_1 = Conv2D(64, 3, activation='relu', padding='valid', 

                     kernel_initializer='he_normal')(input) 

    conv1_2 = Conv2D(64, 3, activation='relu', padding='valid', 

                     kernel_initializer='he_normal')(conv1_1) 

    pool1 = MaxPooling2D(pool_size=(2, 2))(conv1_2)           # 87 

 

    conv2_1 = Conv2D(64, 3, activation='relu', padding='valid', 

                     kernel_initializer='he_normal')(pool1) 

    conv2_2 = Conv2D(64, 3, activation='relu', padding='valid', 

                     kernel_initializer='he_normal')(conv2_1) 

    pool2 = MaxPooling2D(pool_size=(2, 2))(conv2_2)           # 41 

 

    conv3_1 = Conv2D(64, 3, activation='relu', padding='valid', 

                     kernel_initializer='he_normal')(pool2) 

    #drop1 = SpatialDropout2D(0.5)(conv3_1) 

    conv3_2 = Conv2D(64, 3, activation='relu', padding='valid', 

                     kernel_initializer='he_normal')(conv3_1) 

    pool3 = MaxPooling2D(pool_size=(2, 2))(conv3_2)          # 18 

 

    conv4_1 = Conv2D(128, 3, activation='relu', padding='valid', 

                     kernel_initializer='he_normal')(pool3) 

    ##drop2 = SpatialDropout2D(0.5)(conv4_1) 

    conv4_2 = Conv2D(128, 3, activation='relu', padding='valid', 

                     kernel_initializer='he_normal')(conv4_1) 

    pool4 = MaxPooling2D(pool_size=(2, 2))(conv4_2)          # 7 



 

    conv5_1 = Conv2D(256, 3, activation='relu', padding='valid', 

                     kernel_initializer='he_normal')(pool4) 

    ##drop3 = SpatialDropout2D(0.5)(conv5_1) 

    conv5_2 = Conv2D(256, 3, activation='relu', padding='valid', 

                     kernel_initializer='he_normal')(conv5_1)  # 3 

    # pool5 = MaxPooling2D(pool_size=(2, 2))(conv5_2) 

 

    # conv6_1 = Conv2D(128, 3, activation='relu', padding='same', 

    # kernel_initializer='he_normal')(pool5) 

 

    # drop4 = SpatialDropout2D(0.5)(conv6_1) 

    # conv6_2 = Conv2D(128, 3, activation='relu', padding='same', 

    # kernel_initializer='he_normal')(conv6_1) 

    # pool6 = MaxPooling2D(pool_size=(2, 2))(conv6_2)            # 3 

 

    # embeddings = Conv2D(128, 3, activation='relu', padding='same', 

    # kernel_initializer='he_normal')(conv6_1) 

 

    embeddings_flat = Flatten()(conv5_2) 

    #drop5 = Dropout(0.5)(embeddings_flat) 

    dense1 = Dense(2000, activation='relu')(embeddings_flat) 

    drop6 = Dropout(0.5)(dense1) 

    dense2 = Dense(1000, activation='relu')(drop6) 

    output = Dense(38, activation='sigmoid')(dense2) 

    model = Model(inputs=input, outputs=output) 

 

    model.compile(optimizer=Adam(lr=1e-4), 

                  loss='binary_crossentropy', metrics=['accuracy']) 

 

    model.summary() 

    return model 

 

 

model = model1() 

 

TestSetData1 = (np.load('98.npy') / 

                255.0).astype(dtype=np.float32) 

TestSetData2 = (np.load('99.npy') / 

                255.0).astype(dtype=np.float32) 

 

TestSet = np.concatenate([TestSetData1, TestSetData2], 0) 

 

TestSetLabels1 = np.load('labels98.npy') 

TestSetLabels2 = np.load('labels99.npy') 

# REMOVE LABELS Wearing_Necklace + Wearing_Necktie 

TestSetLabels1 = np.delete(TestSetLabels1, [37, 38], axis=1) 

TestSetLabels2 = np.delete(TestSetLabels2, [37, 38], axis=1) 

TestSetLabels = np.concatenate([TestSetLabels1, TestSetLabels2], 0) 

 



Best = 0 

for epoch in range(100000000): 

    for fileid in range(1, 98): 

        fnameD = str(fileid) + '.npy' 

        fnameL = 'labels' + str(fileid) + '.npy' 

        X = np.load(fnameD) 

        X = (X/255.0).astype(np.float32) 

        Y = np.load(fnameL) 

        # REMOVE LABELS Wearing_Necklace + Wearing_Necktie 

        Y = np.delete(Y, [37, 38], axis=1) 

 

        rm = True 

        for i in range(np.shape(X)[0]//batch_size): 

            indices = np.random.choice(np.shape(X)[0], batch_size) 

            trn = model.train_on_batch( 

                x=X[indices, :], y=Y[indices, :], reset_metrics=rm) 

            rm = False 

    if epoch % 1 == 0: 

        flag = 0 

        results = model.evaluate( 

            TestSet, TestSetLabels, batch_size=100, verbose=0) 

        if results[1] > Best: 

            Best = results[1] 

            model.save('Model.h5') 

            flag = 1 

            #prediction = model.predict(TestSet) 

            #np.save('prediction', prediction) 

            #np.save('predictionLabels', TestSetLabels) 

 

        print('epoch ' + str(epoch) + '  TRN: ' + 

              str(trn[0]) + ' ' + str(trn[1]) + '   TST: ' + str(results), '  *' if flag == 1 else ' ') 

 

Appendix B: The Siamese model 

 

from tensorflow.keras import backend as keras 

from tensorflow.keras.optimizers import * 

import numpy as np 

import os 

import sys 

import time 

import tensorflow as tf 

from tensorflow.keras.models import * 

from tensorflow.keras.layers import * 

from tensorflow.keras.activations import * 

 

batch_size = 100 

OcclusionWindowMin = 120 

OcclusionWindowMax = 130 



learning_rate = 0.001 

 

gpus = tf.config.experimental.list_physical_devices('GPU') 

tf.config.experimental.set_memory_growth(gpus[0], True) 

 

 

def dp(vests):  # [None,40,64] 

    x, y = vests 

    return keras.sum(x * y, axis=-1, keepdims=True) 

 

 

def cosine_distance(vests):  # [None,40,64] 

    x, y = vests 

    x = keras.l2_normalize(x, axis=-1) 

    y = keras.l2_normalize(y, axis=-1) 

    return -keras.mean(x * y, axis=-1, keepdims=True) 

 

 

def CreateBatch(data, labels, bs): 

 

    Indexes = np.random.choice(np.shape(data)[0], 2*bs, replace=False) 

    Occlusionx = np.random.choice(np.shape(data)[1], 2*bs, replace=True) 

    Occlusiony = np.random.choice(np.shape(data)[2], 2*bs, replace=True) 

    OcclusionWindowX = np.random.randint( 

        low=OcclusionWindowMin, high=OcclusionWindowMax, size=2*bs) 

    OcclusionWindowY = np.random.randint( 

        low=OcclusionWindowMin, high=OcclusionWindowMax, size=2*bs) 

 

    Images = data[Indexes] 

    labels = np.zeros([bs, 38]) 

    for i in range(len(Occlusionx)): 

        Images[i, Occlusionx[i]:Occlusionx[i] + OcclusionWindowX[i], 

               Occlusiony[i]:Occlusiony[i] + OcclusionWindowY[i], :] = 0 

 

    sourceImages = Images[:bs] 

    targetImages = Images[bs:] 

 

    predictSI = classifier.predict_on_batch(sourceImages) 

    predictTI = classifier.predict_on_batch(targetImages) 

 

    labels = predictSI * predictTI 

 

    return sourceImages, targetImages, labels 

 

 

def model1(input_size=(178, 178, 3)): 

    inputX = Input(input_size) 

    inputZ = Input(input_size) 

 

    model = Sequential() 



    model.add(Conv2D(64, 3, activation='relu', padding='valid', 

                     kernel_initializer='he_normal')) 

    model.add(Conv2D(64, 3, activation='relu', padding='valid', 

                     kernel_initializer='he_normal')) 

    model.add(MaxPooling2D(pool_size=(2, 2)))                   # 87 

 

    model.add(Conv2D(128, 3, activation='relu', padding='valid', 

                     kernel_initializer='he_normal')) 

    model.add(Conv2D(128, 3, activation='relu', padding='valid', 

                     kernel_initializer='he_normal')) 

    model.add(MaxPooling2D(pool_size=(2, 2)))                   # 41 

 

    model.add(Conv2D(128, 3, activation='relu', padding='valid', 

                     kernel_initializer='he_normal')) 

    # model.add(SpatialDropout2D(0.5)) 

    model.add(Conv2D(256, 3, activation='relu', padding='valid', 

                     kernel_initializer='he_normal')) 

    model.add(MaxPooling2D(pool_size=(2, 2)))                   # 18 

 

    model.add(Conv2D(256, 3, activation='relu', padding='valid', 

                     kernel_initializer='he_normal')) 

    # model.add(SpatialDropout2D(0.5)) 

    model.add(Conv2D(256, 3, activation='relu', padding='valid', 

                     kernel_initializer='he_normal')) 

    model.add(MaxPooling2D(pool_size=(2, 2)))                   # 7 

 

    model.add(Conv2D(512, 3, activation='relu', padding='valid', 

                     kernel_initializer='he_normal')) 

    # model.add(SpatialDropout2D(0.5)) 

    model.add(Conv2D(4864, 3, activation='relu', padding='valid',  # 38 (classes) x128 = 4864 

                     kernel_initializer='he_normal')) 

 

    encode1 = model(inputX) 

    encode2 = model(inputZ) 

 

    x1 = GlobalAvgPool2D()(encode1) 

    x2 = GlobalAvgPool2D()(encode2) 

 

    features1 = Reshape([38, 128])(x1)  # [None, 38,128] 

    features2 = Reshape([38, 128])(x2) 

 

    DP = Lambda(dp)([features1, features2]) 

 

    ModelSiamese = Model([inputX, inputZ], DP) 

 

    ModelSiamese.compile(optimizer=RMSprop(lr=learning_rate), 

                         loss='mean_squared_error') 

 

    ModelSiamese.summary() 

    return ModelSiamese 



 

 

siamese = model1() 

print('Loading Saved Model...') 

classifier = tf.keras.models.load_model('Model.h5') 

classifier.summary() 

print('\n\n\n\n\n') 

 

TestSetData1 = (np.load('98.npy') / 

                255.0).astype(dtype=np.float32) 

TestSetData2 = (np.load('99.npy') / 

                255.0).astype(dtype=np.float32) 

#TestSetData1 = np.reshape(TestSetData1, [np.shape(TestSetData1)[0], 64, 64, 3]) 

#TestSetData2 = np.reshape(TestSetData2, [np.shape(TestSetData2)[0], 64, 64, 3]) 

 

print(np.shape(TestSetData1), np.shape(TestSetData2)) 

TestSet = np.concatenate([TestSetData1, TestSetData2], 0) 

TestSetPreds = classifier.predict(TestSet) 

 

TestSetLabels1 = np.load('labels98.npy') 

TestSetLabels2 = np.load('labels99.npy') 

TestSetLabels = np.concatenate([TestSetLabels1, TestSetLabels2], 0) 

TestSetLabels = np.delete(TestSetLabels, [37, 38], axis=1) 

 

Best = 100000 

for epoch in range(100000000): 

 

    if os.path.exists('learningRate.txt'): 

        f = open('learningRate.txt') 

        l = f.readline().splitlines() 

        newl = np.float(l[0]) 

        if learning_rate != newl: 

            learning_rate = newl 

            keras.set_value(siamese.optimizer.learning_rate, learning_rate) 

            print('Learning rate = '+str(newl)) 

 

    trainLoss = [] 

    for fileid in range(1, 98): 

        fnameD = str(fileid) + '.npy' 

        fnameL = 'labels' + str(fileid) + '.npy' 

        X = np.load(fnameD) 

        data = (X/255.0).astype(np.float32) 

        #data = np.reshape(X, [np.shape(X)[0], 64, 64, 3]) 

        labels = np.load(fnameL) 

        labels = np.delete(labels, [37, 38], axis=1) 

 

        for i in range(np.shape(data)[0]//batch_size): 

            X, Z, Y = CreateBatch(data, labels, batch_size) 

            trn = siamese.train_on_batch( 

                x=[X, Z], y=Y, reset_metrics=True) 



            trainLoss.append(trn) 

    trn = np.mean(trainLoss) 

 

    if epoch % 1 == 0: 

        tstLoss = [] 

        flag = 0 

        for i in range(np.shape(TestSet)[0]//batch_size): 

            X, Z, Y = CreateBatch(TestSet, TestSetLabels, batch_size) 

            test = siamese.test_on_batch(x=[X, Z], y=Y) 

            tstLoss.append(test) 

 

        test = np.mean(tstLoss) 

        if Best > test: 

            Best = test 

            flag = 1 

            siamese.save('siamese.h5', siamese) 

 

    print('epoch ' + str(epoch) + '  TRN: ' + 

          str(trn) + '  TST: ' + str(test), '  *' if flag == 1 else ' ') 

 

Appendix C: Label Divisions 

 

1: Standard label division PlanetScope 

 

1: Continuous urban fabric 

2: Discontinuous urban fabric 

3: Industrial or commercial units 

4: Road and rail networks and associated land 

5: Port areas 

6: Airports 

7: Mineral extraction sites 

8: Dump sites 

9: Construction sites 

10: Green urban areas 

11: Sport and leisure facilities 

12: Non-irrigated arable land 

13: Permanently irrigated land 

14: Vineyards 

15: Fruit trees and berry plantations 

16: Olive groves 

17: Pastures 



18: Annual crops associated with permanent crops 

19: Complex cultivation patterns 

20: Land principally occupied by agriculture with natural vegetation 

21: Broad leaved forest 

22: Coniferous forest 

23: Mixed forest 

24: Natural grasslands 

25: Scleropyllous vegetation 

26: Transitional woodland shrub 

27: Beaches dunes sand 

28: Bare rocks 

29: Sparsely vegetated areas 

30: Salt marches 

31: Water bodies 

32: Sea and ocean 

 

2: Pruned Label Division PlanetScope: 

 

2: Discontinuous urban fabric 

3: Industrial or commercial units 

10: Green urban areas 

12: Non-irrigated arable land 

13: Permanently irrigated land 

15: Fruit trees and berry plantations 

16: Olive groves 

18: Annual crops associated with permanent crops 

19: Complex cultivation patterns 

20: Land principally occupied by agriculture with natural vegetation 

22: Coniferous forest 

24: Natural grasslands 

25: Scleropyllous vegetation 

26: Transitional woodland shrub 

29: Sparsely vegetated areas 

32: Sea and ocean 

 



3: Combined Label Division PlanetScope: 

 

1: Urban 

2: Special Sites 

3: Non-irrigated arable land 

4: Agriculture 

5: Forests 

6: Rocky / Mountainous areas 

7: Bodies of water 

4: Standard Label Division Orthoimages 

 

1: Continuous urban fabric 

2: Discontinuous urban fabric 

3: Industrial or commercial units 

4: Road and rail networks and associated land 

5: Port areas 

6: Airports 

7: Mineral extraction sites 

8: Dump sites 

9: Construction sites 

10: Green urban areas 

11: Sport and leisure facilities 

12: Non-irrigated arable land 

13: Permanently irrigated land 

14: Vineyards 

15:Fruit trees and berry plantations 

16: Olive groves 

17: Pastures 

18: Annual crops associated with permanent crops 

19: Complex cultivation patterns 

20: Land principally occupied by agriculture with significant areas of natural 

vegetation 

21: Broad-leaved forest 

22: Coniferous forest 

23: Mixed forest 



24: Natural grasslands 

25: Moors and heathland 

26: Sclerophyllous vegetation 

27: Transitional woodland-shrub 

28: Beaches dunes sands 

29: Bare rocks 

30: Sparsely vegetated areas 

31: Burnt areas 

32: Inland marshes 

33: Salt marshes 

34: Sea and ocean 

 

5: Combined Label Division Orthoimages 

 

1: Urban  

2: Agriculture 

3: Forests 

4: Rocky / Mountainous areas 

5: Bodies of water 

 

 

 

 

 

 

 

 

 

 

 



References 

 

[1] Q. Zhang, M. Zhang, T. Chen, Z. Sun, Y. Ma, and B. Yu, “Recent advances in 

convolutional neural network acceleration,” Neurocomputing, vol. 323, pp. 37–51, 

2019, doi: 10.1016/j.neucom.2018.09.038. 

[2] J. Gu et al., “Recent advances in convolutional neural networks,” Pattern Recognit., 

vol. 77, pp. 354–377, 2018, doi: 10.1016/j.patcog.2017.10.013. 

[3] X. Geng, “Label Distribution Learning,” IEEE Trans. Knowl. Data Eng., vol. 28, no. 7, 

pp. 1734–1748, 2016, doi: 10.1109/TKDE.2016.2545658. 

[4] S. Karatsiolis and A. Kamilaris, “Converting image labels to meaningful and 

information-rich embeddings,” in ICPRAM 2021 - Proceedings of the 10th 

International Conference on Pattern Recognition Applications and Methods, 2021, pp. 

107–119, doi: 10.5220/0010375801070119. 

[5] R. Shao, N. Xu, and X. Geng, “Multi-label Learning with Label Enhancement,” Proc. - 

IEEE Int. Conf. Data Mining, ICDM, vol. 2018-Novem, pp. 437–446, 2018, doi: 

10.1109/ICDM.2018.00059. 

[6] X. Rong, “word2vec Parameter Learning Explained,” CoRR, vol. abs/1411.2, 2014, 

[Online]. Available: http://arxiv.org/abs/1411.2738. 

[7] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word 

representations in vector space,” 2013, Accessed: May 14, 2021. [Online]. Available: 

http://ronan.collobert.com/senna/. 

[8] M. L. Zhang and Z. H. Zhou, “A review on multi-label learning algorithms,” IEEE 

Trans. Knowl. Data Eng., vol. 26, no. 8, pp. 1819–1837, 2014, doi: 

10.1109/TKDE.2013.39. 

[9] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric discriminatively, 

with application to face verification,” Proc. - 2005 IEEE Comput. Soc. Conf. Comput. 

Vis. Pattern Recognition, CVPR 2005, vol. I, pp. 539–546, 2005, doi: 

10.1109/CVPR.2005.202. 

[10] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “DeepFace: Closing the gap to 

human-level performance in face verification,” Proc. IEEE Comput. Soc. Conf. 

Comput. Vis. Pattern Recognit., pp. 1701–1708, 2014, doi: 10.1109/CVPR.2014.220. 

[11] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” Proc. 



IEEE Int. Conf. Comput. Vis., vol. 2015 Inter, pp. 3730–3738, 2015, doi: 

10.1109/ICCV.2015.425. 

[12] M. Drusch et al., “Sentinel-2: ESA’s Optical High-Resolution Mission for GMES 

Operational Services,” Remote Sens. Environ., vol. 120, pp. 25–36, 2012, doi: 

https://doi.org/10.1016/j.rse.2011.11.026. 

[13] G. Büttner, J. Feranec, G. Jaffrain, L. Mari, G. Maucha, and T. Soukup, “The CORINE 

land cover 2000 project,” EARSeL eProceedings, vol. 3, no. 3, pp. 331–346, 2004, 

Accessed: May 14, 2021. [Online]. Available: http://terrestrial.eionet.eu.int. 

[14] N. Kussul, M. Lavreniuk, S. Skakun, and A. Shelestov, “Deep Learning Classification 

of Land Cover and Crop Types Using Remote Sensing Data,” IEEE Geosci. Remote 

Sens. Lett., vol. 14, no. 5, pp. 778–782, 2017, doi: 10.1109/LGRS.2017.2681128. 

[15] R. Khatami, G. Mountrakis, and S. V Stehman, “A meta-analysis of remote sensing 

research on supervised pixel-based land-cover image classification processes: 

General guidelines for practitioners and future research,” Remote Sens. Environ., vol. 

177, pp. 89–100, 2016, doi: https://doi.org/10.1016/j.rse.2016.02.028. 

[16] Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, “Deep Learning-Based Classification 

of Hyperspectral Data,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 7, no. 

6, pp. 2094–2107, 2014, doi: 10.1109/JSTARS.2014.2329330. 

[17] W. Zhao and S. Du, “Learning multiscale and deep representations for classifying 

remotely sensed imagery,” ISPRS J. Photogramm. Remote Sens., vol. 113, pp. 155–

165, 2016, doi: https://doi.org/10.1016/j.isprsjprs.2016.01.004. 

[18] B. R. Felton, G. L. O’Neil, M. M. Robertson, G. M. Fitch, and J. L. Goodall, “Using 

random forest classification and nationally available geospatial data to screen for 

wetlands over large geographic regions,” Water (Switzerland), vol. 11, no. 6, 2019, 

doi: 10.3390/w11061158. 

[19] Y. Ioannou, D. Robertson, J. Shotton, R. Cipolla, and A. Criminisi, “Training CNNs 

with Low-Rank Filters for Efficient Image Classification,” 4th Int. Conf. Learn. 

Represent. ICLR 2016 - Conf. Track Proc., Nov. 2015, Accessed: Apr. 11, 2021. 

[Online]. Available: http://arxiv.org/abs/1511.06744. 

[20] I. Shendryk, T. C. Scientific, C. Ticehurst, and T. C. Scientific, “Deep Learning - a 

New Approach for Multi-Label Scene Classification in Planetscope and Sentinel-2 

Imagery,” no. June 2019, 2018, doi: 10.1109/IGARSS.2018.8517499. 



[21] V. Divarak, “Understanding Backpropagation,” Nov. 19, 2018. 

https://blog.quantinsti.com/backpropagation/ (accessed Apr. 05, 2021). 

[22] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Unsupervised Learning of 

Hierarchical Representations with Convolutional Deep Belief Networks,” doi: 

10.1145/2001269. 

[23] “CLC 2018 — Copernicus Land Monitoring Service,” May 04, 2021. 

https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed May 

14, 2021). 

[24] “Land use & land use change.” http://www.clima-project.eu/case-

studies/faleriinovi/land-use/ (accessed Jun. 22, 2021). 

[25] “PlanetScope - Earth Online.” https://earth.esa.int/eogateway/missions/planetscope 

(accessed Jun. 28, 2021). 

[26] “Republic of Cyprus | Department of Land and Surveys.” 

https://portal.dls.moi.gov.cy/en-us/homepage (accessed Jul. 28, 2021). 

[27] “Classification on imbalanced data  |  TensorFlow Core.” 

https://www.tensorflow.org/tutorials/structured_data/imbalanced_data (accessed Jun. 

27, 2021). 

[28] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal Loss for Dense Object 

Detection.” 2018. 

 

 

 


