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Abstract—This paper presents research on the feasibility and
effectiveness of multi-perspective stereoscopy. A method is
introduced to reconstruct a 3D face from a set of images
taken by a camera array on a 2D plane. A physical setup
is presented to dynamically emulate this array, along with a
digital rendering setup. Quantitative measurements are shown
on the performance of the physical setup, and the results of
the digital setup are qualitatively compared. The influence of
the camera baseline, subject surface angle and the number of
cameras on the reconstruction quality is determined. Conclu-
sions are drawn, but only for the current setup and methods.

1. Introduction

A decade ago, 3D face recognition was mostly an
academic subject. Nowadays, 3D face recognition’s inherent
advantages over its 2D counterpart has pushed not only
academics, but also the industry towards further development
in recognition and reconstruction of 3D face models. Many
flagship portable devices are now using 3D face recognition
as an unlocking method, and many companies use access
systems based on 3D face recognition. The main advantages
over 2D face recognition are: the minor dependence on (I)
light conditions, (II) make-up and facial texture, and (III)
head pose, and (IV) its higher spoofing resistance[1].

3D reconstruction can be categorized in two approaches:
active and passive. Where the active methods actively project
light onto the subject, the passive methods reconstruct depth
from 2D images. Not all methods of 3D reconstruction are
suitable for face reconstruction. An overview of the methods
will be shown in the related works (Section 2). In [2], the
predecessor of this paper, Spreeuwers describes a passive
5-camera setup in a ’+’ configuration, and shows that using a
larger amount of cameras significantly increases the accuracy
of the reconstruction. An image of this setup is shown in
Figure 1. The theoretical limits for cameras in a single plane,
as shown in [3], state that the standard deviation on the X-
and Y-axes of a reconstruction scales proportionally with
1/
√
C, with C as the number of cameras. On the Z-axis

this scaling factor is 1/
√
C3. This shows a strong potential

for a performance improvement by increasing the amount
of cameras. If we look from a consumer perspective, the

Figure 1: Photo of the 5 camera setup used in [2].

amount of cameras on handheld devices has seen a sharp
increase in the past years, with a current 30% shipment share
of quad-camera phones [4]. This opens up possibilities for
stereo reconstruction. Considering the practical success in
the previous paper, the theoretical potential of improvement
and the current trends in technology, there is a strong
incentive for further research in the performance of multi-
cam 3D face reconstruction. This paper presents an easy-to-
construct physical setup to position a single camera on any
desired location in a 220mm by 220mm plane, in order to
emulate a multi-camera setup. It also presents a digital setup,
which offers further flexibility on all camera parameters and
imperfections. It then proposes a method to combine data
from a set of images taken with a camera array. This method
is used to assess the performance of varying amounts of
cameras, and estimate the effect of the surface angle of
the subject on reconstruction quality. The following main
questions are proposed: (I) What is the relationship between
the amount of cameras and the reconstruction performance?
(II) What is the effect on the reconstruction performance
of the angle between the subject surface and the camera?
(III) What is the relationship between the baseline in the
camera array and the reconstruction performance? (IV) What
is the maximum performance achieved by using the entire
proposed pipeline?
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Two minor questions are formulated to assess the perfor-
mance of the physical setup and the digital setup: (V) What
is the performance in position placement of the physical
setup? (VI) How well does the digital setup mirror the real
setup in terms of performance?

In Section 2, the related works will be discussed. In
Section 3, the methods used in this paper are described.
Section 4 describes the performed experiments and their
respective results. Section 5 describes the conclusions and
Section 6 describes the author’s recommended paths for
future research.

2. Related works

2.1. 3D face reconstruction

Research on both passive and active 3D face reconstruc-
tion is expanding and broadening rapidly. This section will
give an overview of the research field.

2.1.1. Active reconstruction
Active reconstruction methods are all methods that emit

light as a means of capturing depth data from a subject.
The main three methods are structured light, time-of-flight
and laser triangulation. The structured light methods use
a light source to project a pattern on the subject. A camera
captures one or several images of the subject with the pattern
and by matching the projected structures in the source and
the image, the depth is triangulated. Current research is
working on solving issues such as sensitivity to environment
illumination [5] and occlusions [6]. [7] combines structured
light with passive stereoscopic reconstruction, which partially
solves limitations of both methods. Laser triangulation
is somewhat comparable to structured light, but projects
a laser line on the subject. This line is moved over the
entire surface while images are captured, which allows for
depth triangulation. [8] shows very good precision, with a
standard deviation of 0.01mm, and avoids occlusions by using
multiple cameras. However, like many laser triangulation
methods, it reports capture times of multiple seconds, making
it unreliable for scanning the face of a moving subject. Time-
of-flight based systems project a light pulse and register the
time for the light pulse to return to the capturing device.
[9] shows one of the few attempts at registering a 3D face.
However, the accuracy and information density is currently
too low to reliably use for 3D face recognition.

2.1.2. Passive reconstruction
In the last five years, deep learning has become the

dominant research topic for passive reconstruction [10],
with monocular reconstruction being the most active topic.
Monocular reconstruction is the reconstruction of a 3D
face using a single 2D image. Depth from shading is one of
the more notable methods. While monocular reconstruction
has an intrinsic information deficit compared to stereoscopy,
promising results have been achieved very recently. In 2005,
[11] shows a method to extract a 3D model from a single

image to use in face recognition, but the results are poor by
today’s standards. [12], [13] and [14] show deep learning
approaches which clearly improve on their predecessors.
However, use in 3D face recognition is limited due to
insufficient accuracy. Stereoscopic reconstruction generates
a 3D face model by matching features in two or more images,
and triangulating their depth. [15] presents a method with
three cameras, which can prevent occlusions, but does not
reach the accuracy necessary for 3D face recognition. [16]
shows that a stereoscopic system can have very high accuracy
under perfect circumstances, with up to pore-scale accuracy.
However, the demands of this system are very high, requiring
expensive cameras at great angles around the subject, a
completely dark room and a 20 minute processing time. [2]
shows a 5-camera solution with an iterative reconstruction
technique to warp the correlation windows based on depth.
Further research on camera arrays for 3D face reconstruction
is very scarce, partially due to the inferior results compared
to active methods.

2.2. Highlighted methods

Some of the related work is relied on heavily in this
paper, and will therefore be described more thoroughly in
this section.

2.2.0.1 Semi-global matching

In [17], H. Hirschmuller presents semi-global matching
(SGM), a method to estimate a dense disparity map from a
rectified stereo image pair. It consists of the following steps:
(I) A matching cost is calculated for each pixel p in image
1 at each desired disparity. This is stored in a cost matrix
C(p, d) with dimensions W×H×D. (II) A smoothed cost
S(p, d) is generated by accumulating the cost C(p, d) of
each disparity in 8 directions. The disparity with the lowest
smoothed cost is selected for each pixel. (III) Quadratic
curve fitting is performed for three disparities around the
selected disparity for sub-pixel estimation.

Most methods of calculating disparity cost for a pixel
use a matching function on a window around this pixel. This
relies on the fronto-parallel assumption, which introduces
inaccuracies in real-world applications. SGM rejects this
assumption by matching single pixels instead of windows
and applying a smoothness constraint afterwards. For the first
step, many matching costs have been proposed. Hirschmuller
initially proposes using Mutual Information [18] or the
Birchfield and Tomasi measure [19], and later proposes the
census transform [20] as a suitable candidate. The smoothness
constraint is accumulated along 8 paths r. pathwise costs are
stored in Lr(p, d), where p is the pixel for which the cost
is being calculated for each disparity d. Equation 1 shows
the recursive function, which starts at pixel p and sums the
matching cost with the minimum of three options:

1) Lr of the previous pixel on the path with the same
disparity.

2) Lr of the previous pixel on the path with a disparity
jump of 1, with a jump penalty of P1.
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3) Lr of the previous pixel on the path with a disparity
jump to the lowest cost, with a jump penalty of P2.

Note that the paths should be traversed in the direction of r,
from the edges of the image to the pixel, to make calculation
straightforward.

Lr(p, d) = C(p, d) + min(Lr(p− r, d),

Lr(p− r, d− 1) + P1, Lr(p− r, d+ 1) + P1,

min
i
Lr(p− r, i) + P2) (1)

Afterwards, the 8 pathwise costs are summed to a smoothed
cost function S(p, d). See Equation 2.

S(p, d) =
∑
r

Lr(p, d) (2)

Finally, a quadratic interpolation is performed to find a sub-
pixel minimum using the costs of the minimum disparity
and the two surrounding disparities.

2.2.1. Local binary patterns
In [21], the predecessor of local binary patterns is first

discussed under the name ’Texture Units’, used as a means
of texture classification. With this method, the image can
be encoded by its local texture. The following algorithm is
employed for each pixel: (I) A window is drawn around the
center pixel. (II) Each pixel in this window is compared to
the center pixel. When the value is higher, a 2 is stored,
when equal, a 1, and when lower a 0. (III) These values
are then concatenated clockwise in a vector, describing the
local pattern around the pixel. [22] introduces local binary
patterns, where the comparison with each pixel is binary
instead of ternary: a higher value gives a 1, a lower or equal
value gives a 0. The resulting vector for a 3x3 window can
now be encoded as a byte. This process is shown in Figure
2.

Figure 2: Overview of the generation of a local binary pattern.
(a) shows a window of 9 pixels, (b) shows the window,
thresholded with the center pixel. (c) shows the weight for
each pixel, representing the bit shift to concatenate the bits.
(d) shows the weighted values in the window, which can be
added to a single byte. [22]

3. Methods

3.1. Building an experimental setup

There are several options to build an experimental
setup that can take images from several different locations.

However, considering cost, development time and the desired
mutability of camera position, the presented setup moves a
single camera to desired positions in an XY-plane. Instead
of developing a motorized system, the camera is mounted on
the head of a 3D printer. The Creality Ender-5 was selected
on the following criteria: (I) the printer head should have
two axes of translation. (II) The printing nozzle should be
removable to replace it with a camera. (III) The printer head
should have high precision and accuracy for its position
placement. A Raspberry Pi 4b was used as an interface and
a Sony IMX477 sensor with a 6mm lens was used to capture
the images. The setup is shown in Figure 3. For each image,
the 3D printer is instructed to move to its desired location
by directly sending it G-code over USB using Pronsole [23].
After a short delay, to avoid any remaining vibrations, the
Raspberry Pi is instructed to take a photograph over ethernet.
This method gives the researcher the freedom to assess the
performance of any camera arrangement in a 2D plane.

(a) Overview of setup (b) Close-up of camera mounted
on printing head

Figure 3: Photographs illustrating the setup used to emulate
cameras at different positions.

3.2. Calibration

The calibration of the cameras is a two step process:
intrinsic and extrinsic calibration.

3.2.1. Intrinsic calibration
Using 250 images of a checkerboard calibration pattern

in different positions and orientations, the intrinsic camera
parameters are determined. This is done by first estimating
the corners using a sector-based approach [24] and then
calibrating the camera using Z. Zhang’s calibration method
[25]. The lens distortion can now be corrected, and the
principal point and focal length are now known with a high
precision.

3.2.2. Extrinsic calibration
While the experimental setup approximately positions the

camera in the right positions, the accuracy is not high enough
to assume the images to be taken from the exact desired
location. Therefore, an extrinsic calibration step is necessary
to approximate the position and orientation of each camera.
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For the extrinsic calibration, the same calibration pattern
and corner extraction method is used for each image. The
camera extrinsics are first optimized for each camera location
individually using a gradient descent optimization over the
estimated corner positions. This is done by optimizing the six
degrees of freedom of the calibration pattern in each image
over the reprojection error, while assuming the camera is at
the origin without rotation. The positions of the camera are
then found by inverting the position of the calibration pattern
after each descent. Now the approximate positions have been
found, a joint gradient descent is performed for all images
simultaneously, optimizing the already found positions with
additional restraints. Because of the use of a single moving
camera and the planar motion of the setup, the orientation
of all cameras will be considered equal, and will be jointly
optimized while the positions are adjusted accordingly.
The found cameras lie on a plane, which is slightly tilted.
This is caused by the difference in orientation between the
camera and the plane. The angles of the plane are calculated
and the images are rectified to the plane.

3.3. Digital setup

The digital setup is created in Blender [26]. A textured
model of a head [27] is digitally placed in front of a camera
array. Some options to add realism can be implemented: a
light subsurface scattering effect can be applied to the face
surface to simulate real skin, a slight depth-of-field effect
is used to simulate a real camera diaphragm, and a noise
texture is added to the whole image to simulate camera noise.
Additionally, the positions of the cameras can be slightly
varied to simulate an imperfect calibration. These options
will reduce the chance for a correct match to be found in
reconstruction, like imperfections expected in the real world.
Figure 4 shows an example of these renders.

Figure 4: Two cropped renders from a central camera and a
camera 10cm to the right of it.

3.4. Stereo matching

Many methods of multi-camera stereo reconstruction
create disparity maps from different perspectives and later
fuse these. The method presented in this paper generates a

single cost function, generated by using all images, which
is later filtered for smoothness. An origin camera cO with a
corresponding origin image IO is selected which will be the
perspective reference for the disparity map. It is preferably,
but not necessarily, close to the average position of the
cameras. While this method can use an arbitrary number of
cameras, the rest of this section will be described with an
example of 25 images taken by a 5 by 5 array of cameras,
placed approximately 5cm apart. The following stepwise
procedure is followed:
(I) Each image is first transformed to its local binary
pattern, LBPc(pc). With c being the camera index and
pc = [xpc , ypc ]

T the pixel coordinates in the image.
(II) Using the calibrated camera positions, the epipolar line
of each camera with the origin camera is calculated.
(III) A disparity step vector Sc along the epipolar line is
generated for each camera, containing the step in pixels to be
made in an image to increase the disparity by 1. |Sc| will be
1 for a camera next to the origin camera. i.e. a camera with a
relative x,y position of [5cm, 0cm]T will have a step vector
of [1, 0]T . A camera at [−10cm, 5cm]T will then have a step
vector of [−2, 1]T .) Because the spacing of the cameras is
not exact, these step vectors are stored as floating points.
(IV) For each pixel pcO

in the origin image and a selected
disparity range d ∈ [dmin, dmax], the required pixels are
selected and stored in a matrix LBPc(pcO

, d).

LBPdc(pcO
, d) = LBPc (pcO

+ round(dSc)) (3)

(V) To compare the stored disparity ranges, edges e = [c1, c2]
are selected between all orthogonally adjacent cameras. For
a 5 by 5 camera matrix, 40 edges are available. The choice
is made to only compare cameras that are close together.
The underlying idea is that pore level structure, which is
too small to be detailed in disparity calculations, creates an
apparent texture difference from different directions. This
effect is minimized by only comparing adjacent cameras. The
effect on the styrofoam test objects can be seen in Figure 5.
The perspective distortion that can be seen in the last image
compared to the other two is of small concern because of
the matching method, but the change in texture decreases
the chance for a correct match to be found.

Figure 5: The first two images show the came surface as seen
by two adjacent cameras at 5cm distance. The last image
shows the surface as seen by a camera which is at 28cm
distance from the first.

(VI) The initial cost matrix for each edge is determined by
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the hamming distance [28] H of the LBP of both cameras
connected by the edge.

Ce(pcO
, d) = H(LBPdc1 (pcO

, d), LBPdc2(pcO
, d))

(4)
To combine the cost functions of all edges, for each disparity
at each pixel the costs under the median cost are selected in
cmin(pcO

, d) and then averaged to provide a noise rejecting
average.

C(pcO
, d) =

1

size of cmin

∑
c∈cmin(pcO

,d)

Ce(pcO
, d) (5)

If the disparity with the lowest cost is used for each
pixel, the disparity map is very prone to noise, since a
single pixel doesn’t contain enough information to find a
reliable match. To combine pixel information and enforce
smoothness, a smoothed cost is determined using the semi-
global matching[17] constraint. For each pixel, the disparity
with the lowest smoothed cost is selected.

3.5. Orthogonality map generation

Parts of this papers experiments rely on the orthogonality
of a reconstructed surface and the ray cast by a camera
for each pixel. We define an orthogonality map O(p) of
equal size to a depth map, where the value of each pixel
lies between 0 and 1. 0 meaning the surface is parallel
to the camera ray for that pixel and 1 meaning it is
completely orthogonal. O(p) can be generated by taking
the pixelwise dot product of the normalized surface normals
of the reconstruction N̂ (p), and the normalized ray vectors
from a camera to the reconstructed surface R̂(p) The surface
normals can be calculated as follows from a depth map D(p):

N (p) =

D
(
p+ [10]

)
−D

(
p− [10]

)
D
(
p+ [01]

)
−D

(
p− [01]

)
2sp
f D (p)

 (6)

Here p = [up, vp]
T is the 2D pixel coordinate, f is the

camera focal length and sp is the physical pixel size. The
ray vectors are calculated with:

R(p) =

(up − u0)D (p) ∗ sp/f
(vp − v0)D (p) ∗ sp/f

D (p)

− cp + cr (7)

Where u0 and v0 describe the camera principal point, cp is
the position of the camera from which perspective the depth
map is generated, and cr is the camera which is the source
of the rays. Both can then be normalized with:

N̂ (p) =
N (p)

||N (p)||
, R̂(p) = R(p)

||R(p)||
(8)

Finally, the orthogonality is defined by the dot product:

O(p) = N̂ (p) · R̂(p) (9)

Figure 6 shows an example of a surface normal map and an
orthogonality map.

(a) Normalized surface normals.
x, y and z are portrayed in blue,
green and red

(b) Orthogonality map from a
camera positioned to the top
right

Figure 6: Surface normals and orthogonality map, generated
using a 3D model

4. Experiments and results

4.1. Performance of the physical setup

Experiment
The goal of the physical setup is to emulate a desired array
of cameras. How well this array is being emulated can be
described with the standard deviation and the bias of the
camera position. In this experiment, the setup is instructed
to take 10 series s of photographs at 25 locations l in a 5
by 5 grid with a spacing of 5cm. The precise position pl,s is
determined by calibrating the cameras using the calibration
step described in 3.2. The standard deviation from the average
position per location is defined as:

σ =

√
1

LS

∑
l∈L

∑
s∈S

(pl,s − µl)
2 (10)

Where L is the number of target locations, S is the number
of series and µl is the average position for each location.
The average absolute bias for each location is defined as:

b(l) =
1

S

∑
s∈S

|pl,s − pt
l | (11)

Here, pt
l is the target position for the location. From the bias

per location, the average bias and the average Euler distance
can be determined.
Results
The standard deviation of the camera position in XYZ is
[54, 24, 35]Tµm. This means the position is very repro-
ducible. The average absolute bias is [260, 560, 480]Tµm.
This means that, while the calibrated position for a certain
location is very predictable, it is not very precise. With
the current physical setup, a deviation of 1mm translates to
a deviation of 4 pixels on a subject at 1 meter distance.
To maintain precision it is therefore important that the
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(a) Center image of the sty-
rofoam face.

(b) Registered depth image of the
ground truth face model.

(c) Registered depth image of the
reconstructed face model, gener-
ated with 25 cameras at a 5cm
baseline.

(d) Difference of reconstructed
depth with the ground truth. Blue:
reconstruction is too close, yel-
low: too far away.

Figure 7: Overview of the reconstruction and performance metric on a styrofoam face.

reconstruction method can determine and make use of
any arbitrary camera position instead of assuming perfect
placement.

4.2. Reconstruction performance

In this section, the reconstruction of a styrofoam head
using the physical setup is discussed. While insufficient
data has been collected to assess the performance of the
reconstructions in 3D face recognition, an indication can be
obtained by measuring the average error in reconstruction
depth.
Experiment
The physical setup described in Section 3.1 is used to create
an array of images taken in a 5 by 5 array with a baseline
of 5cm. Using the reconstruction method from Section 3.4,
a reconstruction is made of the head. The reconstruction is
manually masked to select the facial area and registered to
an intrinsic coordinate frame using Spreeuwers’ registration
method described in [29]. Then it is stored as a depth
map. The same registration is performed to a high-quality
model of the styrofoam head, to be used as ground truth.
This model is generated with the Artec Eva, a high-quality
hand-held structured-light reconstruction device which has
to be manually rotated around the subject. The error is now
found by subtracting the ground truth depth map from the
registration depth map.
Results
Figure 7 shows an overview of the process and result. The
two areas in Figure 7d that are clearly most problematic are
the edge of the nose and the (from our perspective) right eye.
The error in the eye can be explained by a lack of apparent
texture around the area, caused by insufficient angled lighting.
Illumination from from an angle to the surface causes the
styrofoam to cast a shadow on its pores, while illumination
orthogonal to the surface or scattered illumination produces
almost no shadow, creating an almost textureless surface.
This effect can be seen, albeit to a lesser degree, on the

whole right side of the face. The error in the edge of the
nose can be explained by multiple factors: (I) Because of
the angle, less information is available on these surfaces. (II)
Because occlusion is currently not handled by the proposed
method, cameras with no vision of a surface are still be
taken into consideration. (III) Because of the tendency of
semi-global matching to reward low disparity steps, sharp
edges will be smoothed. Figure 8 shows a single depth row
of the reconstruction and ground truth depth maps, through
the part of the nose with the worst results. This clearly shows
the advantage of the well lit left side.

Figure 8: Comparison of nose depth between the reconstruc-
tion and the ground truth over the X-axis

To convey a more intuitive meaning of the difference
between the reconstruction and the ground truth, Figure 9
shows a 3D rendered version of the reconstruction, with the
ground truth in the background. Note that the well-lit side of
the reconstructed model is prominently shown. Because the
results of the dimly lit side misrepresent the performance of
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the system, only the well-lit side is used to assess the results
in Table 1.

Region Average absolute error
Overall 0.45mm
Nose 0.80mm

Overall without Nose 0.38mm

TABLE 1: Average absolute error for masked parts of the
reconstructed face depth map.

Figure 9: 3D render of the reconstruction in the foreground
and the ground truth in the background.

4.3. Influence of variables on reconstruction perfor-
mance

In this section, a series of experiments is executed to
measure the influence of several parameters. Each experiment
is executed both on (I) images of a 10cm radius styrofoam
ball, acquired from a physical setup and on (II) images of a
head model [27], rendered with Blender [26] (see Section 3.3).
This allows for a result under real-life conditions and under
more ideal circumstances. Both subjects are at approximately
75cm from the camera plane. The reconstructions are masked
using (I) the shape of the ball and (II) the outline of the
face, found using the 68-point face landmark detection [30]
in the dlib [31] library. For the render, camera noise and
depth-of-field are simulated to increase the similarity to a
real-life scenario. The performance metric will be the average
absolute deviation (AAD) in depth error for surfaces with
similar orthogonality (see Section 3.5). This choice is made
because the performance of regions with equal orthogonality
is expected to be comparable. For the physical setup, a depth
map of an ideal ball is generated by determining the position
and radius of the ball on the image, determining its real world
position, and ray casting the depth for each pixel. For the

rendered head model, the 3D model itself is available and will
be used to create a ground truth depth map. The difference
in depth between the reconstruction and the ground truth for
each pixel will be stored as an error map. Four experiments
are executed: (a) measurement of the performance of the full
setup with 25 cameras, (b) measurement of the influence
of the camera baseline, (c) surface orthogonality, and (d)
camera count on the reconstruction performance. Afterwards,
the similarities and differences of the physical setup (I) and
rendered setup (II) are discussed.

4.3.1. Performance of the full setup
Experiment
A reconstruction is made, using a 5 by 5 grid of cameras with
a baseline of 5cm. A orthogonality map is generated from the
perspective of the center camera with the method described
in Section 3.5. The AAD and the bias (average distance to
ground truth) are evaluated against the orthogonality.
Results
Figures 11 and 12 show the results of the full setup. As
expected, the AAD in Figure 11 is lowest for surfaces facing
the camera. Figure 12 shows that the system has a bias.
This could be a function of orthogonality, but also of depth,
which is generally higher with higher orthogonality. It could
be caused by small disparity estimation errors, amplified by
the smoothing constraint of SGM. In the physical setup, the
bias could also be caused by errors in the estimation of the
ball world coordinates. More research is necessary to draw
conclusions.

4.3.2. Influence of camera baseline
The distance between matching cameras (baseline) has

an influence on the reconstruction performance. With a small
baseline, a small error in disparity leads to large errors
in depth, while a large baseline leads to more apparent
dissimilarity of the matched surface. A large baseline will
also provide more information on surfaces at high angles
to the center camera, because more pixels are available to
describe these surfaces.
Experiment
For this experiment, a reconstruction is made with 5 cameras
in a ’+’ arrangement with several different baselines. The
AAD of the error is recorded as a function of orthogonality
to the center camera. The results will be divided in two cate-
gories: high orthogonality (O > 0.35) and low orthogonality
(O ≤ 0.35). This will allow for a metric in both flat areas
like the forehead, chin, nose bridge and part of the cheeks,
and also for high angled areas, like the nose edges and the
edges of the cheeks. Figure 13 shows a selection of these
high angled areas.
Results
Figures 14 and 15 show the AAD at several baselines between
5 and 100mm. Figure 14 shows that for low angled areas,
the best results are achieved for a baseline between 50 and
100mm. This can partially be explained by the decreased
sensitivity to a disparity error for a large baseline. Semi-
global matching rejects the fronto-parallel assumption in the
initial cost function, but in the smoothness constraint it is
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(a) Center image of the sty-
rofoam ball. The yellow ring
shows the found circle used for
generating the ground truth.

(b) Disparity of the ground truth
ball model.

(c) Disparity of the styrofoam
ball, generated with 25 cameras
at a 5cm baseline.

(d) Difference of reconstructed
depth with the ground truth.
Blue: reconstruction is too close,
yellow: too far away.

Figure 10: Overview of the reconstruction and performance metric on a styrofoam ball.

Figure 11: Average absolute deviation versus the surface
orthogonality to the center camera. Reconstruction with 25
cameras in a 5 by 5 array with a baseline of 5cm at a distance
of 75cm to the subject.

still lightly enforced with a penalty for a change in disparity.
Because surfaces with high orthogonality satisfy the fronto-
parallel assumption, large baselines are not penalized and
provide good results. Figure 15 shows a minimum for angled
surfaces at baselines between 40 and 60mm. The decreased
performance at low baselines can be explained by the lower
visibility of the high angled surfaces, while the decreased
performance at high baselines can be explained by the broken
fronto-parallel assumption, which has stronger implications
for higher baselines.

4.3.3. Influence of object surface angle on reconstruction
performance

The orthogonality of a surface to the camera intuitively
has an influence on the reconstruction performance. A surface
that is completely orthogonal has the full amount of pixels
available to describe it, while a surface at a 90 degree angle

Figure 12: Average distance to the ground truth versus the
surface orthogonality to the center camera. Reconstruction
with 25 cameras in a 5 by 5 array with a baseline of 5cm at
a distance of 75cm to the subject.

cannot be seen at all. The influence of orthogonality will be
examined in this experiment.
Experiment
A 5-camera reconstruction is made in a ’+’ shape for each of
the 9 cameras in the center of the 5 by 5 array. The error for
each pixel is found by comparing the reconstruction to the
ground truth. For each used camera an orthogonality map is
generated. The AAD is then plotted against the orthogonality
of the surface.
Results
Figure 16 shows a clear decrease in performance for or-
thogonalities under 0.4 and a fairly stable performance for
orthogonalities above 0.4. Since the information available on
a surface linearly scales with its orthogonality, a theoretical
linear relationship could be expected between the AAD and
the orthogonality. However, for low orthogonalities this is
prevented by SGM’s smoothness constrain, which uses in-
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(a) Orthogonality of the digital
face. white is 1, black is 0.

(b) White marks the selection
of the surface with an orthogo-
nality under 0.35

Figure 13: Orthogonality of a central camera with the digital
face and a selection of the high-angled surfaces

Figure 14: Average absolute deviation for low angled areas
(O > 0.35) at several camera baselines.

formation of the surrounding pixels to increase performance.
For high orthogonalities, the reconstruction method itself
limits the performance by not sufficiently making use of the
available information.

4.3.4. Influence of camera count on reconstruction per-
formance

The use of more cameras theoretically gives more in-
formation of the subject. The noise in reconstruction is
averaged and, by providing cameras a different positions,
more information on angled surfaces is available.
Experiment
A reconstruction is made for an incremental amount of
cameras in a 5 by 5, 5cm baseline array. The AAD of the
error is again plotted for a high-angled region and a low-
angled region.
Results
Figures 17 and 18 show the AAD for low angled surface
areas and high angled surface areas. As expected, the AAD

Figure 15: Average absolute deviation for high angled areas
(O ≤ 0.35) at several camera baselines.

Figure 16: Average absolute deviation against surface orthog-
onality for the physical setup and the digital render.

decreases with the number of cameras. However, there are
clear diminishing returns beyond a camera count of 9. Even
for the low angled surfaces, the reached limit is far above the
theoretical minimum. An estimation of this theoretical limit,
as described in [3] was added to Figure 17. The starting
value of the theoretical minimum is chosen between the
physical and render starting AAD. The large distance to this
minimum suggests that the presented reconstruction method
is not utilizing the available information of multiple cameras
to its full potential.

4.3.5. Render setup performance
No quantitative results can be given on the ability of the

digital render setup to emulate real-world conditions, as the
physical results were achieved with a subject of a different
shape and texture. However, by comparing the graphs in most
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Figure 17: Average absolute deviation against camera count
for low angled areas (O > 0.35).

Figure 18: Average absolute deviation against camera count
for high angled areas (O ≤ 0.35).

experiments, one can see that regions with high orthogonality
have very similar results between the render and the physical
setup, while in regions with low orthogonality, the render
strongly under-performs, albeit with similar tendencies in
the data. This may partially be caused by the overuse of
simulated camera noise, which has more influence on surfaces
at low orthogonality, since little information is available for
these. Further research is necessary to find one or multiple
clear origins of the performance differences.

5. Conclusions

A method is presented to generate a 3D face reconstruc-
tion using an arbitrary amount of cameras in a single plane.
A physical setup and a digital simulation are introduced to
produce input images to this method. It is then used to assess

the influence of several parameters: the amount of cameras,
the distance between the cameras and the orthogonality of
the reconstructed surface. The precision and accuracy of
the physical setup is measured and the ability of the digital
simulation to emulate a real-life scenario is also assessed
by qualitatively comparing the results to the physical ones.
While the performance of the system itself can be measured
and general tendencies can be found, no strong general
conclusions can be drawn from the results, as the calibration,
the reconstruction method and the performance metric can
and should all still be greatly improved.

The experiment on the styrofoam head shows a perfor-
mance that suffices for 3D face recognition. However, with
a sample size of one, no real conclusions can be drawn.
The experiments show that the orthogonality of a surface is
important to the reconstruction result, but with diminishing
results beyond an orthogonality of 0.5. Increasing the amount
of cameras leads to better performance, but not to a degree
comparable with the theoretical performance. This is deemed
a result of the method of reconstruction and assessment.
Higher baselines between the cameras improve the results
for surfaces angled towards the center camera, but after
a baseline of 60mm, this is at the cost of decreasing the
performance of the reconstruction of surfaces at an angle to
the camera.

All in all, this paper introduces a broad pipeline of
methods to research multi-perspective stereoscopy. While
improvements are possible, and advised, for most presented
methods, I hope that the high potential of multi-perspective
stereoscopy for 3D face reconstruction has been conveyed.

6. Future research

There are many sections of this paper that require
further investigation. Each will be highlighted in a separate
paragraph.
Further research on matching
The current matching function, local binary pattern, was
chosen based on the reported leading performance in noisy
environments, which is ideal for the inexpensive camera
used in the setup. However, it is not fine-tuned to work
with face textures. Choosing a better matching function
or altering the current one might lead to improved results.
Also, the current choice to match only orthogonally adjacent
cameras needs further research. With the current methods
it leads to the best results, but this may be the product of
lacking methods instead of lacking information.
Improved test models
Unlike human skin, styrofoam has deep pores, which
cause stronger visual differences from different angles.
Using a more realistic human face model will put the
test setup closer to real-use performance. In addition,
this paper only used a styrofoam ball to assess most
parameters because the comparison with a ground truth
model for a styrofoam face was technically more complex.
A robust method to assess performance on a physical face
would be preferable. Lighting of the object is also very
important. When describing the effect of surface angle
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on reconstruction performance, it is very important that
illumination differences do not influence the results. This is
something insufficiently researched in this paper and needs
further work.
More elaborate render setup
If the parameters and circumstances of a rendered setup
are very closely matched to a real-world scenario, this
might allow for complete emulation of a camera array or
video with every desired camera position and orientation
without building a setup. This paper insufficiently matches
the render setup to the physical setup, which makes it
impossible to assess whether conclusions can be drawn
from only the render setup.
More segmented experiments
The experiments in this paper on surface angle, camera
baseline and camera count are not sufficiently independent.
For example, by increasing the baseline, the orthogonality
of at least one of the cameras to the surface is changing.
More independent experiments should be done in order to
get a better understanding of the effects of these variables.
Building a setup with 25 cameras
A 25 camera setup allows for very precise camera calibration
and opens the door to single-shot reconstruction, which can
be used to capture real subjects and test facial recognition
performance. The disadvantage being that the camera
locations can no longer be easily changed, so research on
camera distance should be finalized first.
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[22] T. Ojala, M. Pietikäinen, and D. Harwood. “Perfor-
mance evaluation of texture measures with classifica-
tion based on Kullback discrimination of distributions”.
In: Proceedings of 12th International Conference on
Pattern Recognition 1 (1994), 582–585 vol.1.

[23] Kliment Yanev. Pronterface. URL: https : / / www .
pronterface.com/.

[24] Alexander Duda and Udo Frese. “Accurate Detection
and Localization of Checkerboard Corners for Cali-
bration”. In: Sept. 2018.

[25] Z. Zhang. “A flexible new technique for camera cali-
bration”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 22.11 (2000), pp. 1330–
1334. DOI: 10.1109/34.888718.

[26] Blender Online Community. Blender - a 3D modelling
and rendering package. Blender Foundation. Stichting
Blender Foundation, Amsterdam, 2018. URL: http :
//www.blender.org.

[27] Ruslan Vasylev. Male Scan - Head RAW - zBrush.
URL: https://www.turbosquid.com/FullPreview/Index.
cfm/ID/777450.

[28] R. W. Hamming. “Error detecting and error correcting
codes”. In: The Bell System Technical Journal 29.2
(1950), pp. 147–160. DOI: 10.1002/j.1538-7305.1950.
tb00463.x.

[29] Luuk Spreeuwers. “Fast and Accurate 3D Face Recog-
nition”. In: International Journal of Computer Vision
93.3 (2011), pp. 389–414. ISSN: 1573-1405. URL:
http://dx.doi.org/10.1007/s11263-011-0426-2.

[30] Vahid Kazemi and Josephine Sullivan. “One millisec-
ond face alignment with an ensemble of regression
trees”. In: 2014 IEEE Conference on Computer Vision
and Pattern Recognition. 2014, pp. 1867–1874. DOI:
10.1109/CVPR.2014.241.

[31] Davis E. King. “Dlib-ml: A Machine Learning
Toolkit”. In: Journal of Machine Learning Research
10 (2009), pp. 1755–1758.

12

https://doi.org/10.1109/ICCV.1995.466930
https://doi.org/10.1109/ICCV.1998.710850
https://doi.org/10.1109/ICCV.1998.710850
https://doi.org/https://doi.org/10.1016/0031-3203(90)90135-8
https://doi.org/https://doi.org/10.1016/0031-3203(90)90135-8
https://www.sciencedirect.com/science/article/pii/0031320390901358
https://www.sciencedirect.com/science/article/pii/0031320390901358
https://www.pronterface.com/
https://www.pronterface.com/
https://doi.org/10.1109/34.888718
http://www.blender.org
http://www.blender.org
https://www.turbosquid.com/FullPreview/Index.cfm/ID/777450
https://www.turbosquid.com/FullPreview/Index.cfm/ID/777450
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
http://dx.doi.org/10.1007/s11263-011-0426-2
https://doi.org/10.1109/CVPR.2014.241

	Introduction
	Related works
	3D face reconstruction
	Active reconstruction
	Passive reconstruction

	Highlighted methods
	Local binary patterns


	Methods
	Building an experimental setup
	Calibration
	Intrinsic calibration
	Extrinsic calibration

	Digital setup
	Stereo matching
	Orthogonality map generation

	Experiments and results
	Performance of the physical setup
	Reconstruction performance
	Influence of variables on reconstruction performance
	Performance of the full setup
	Influence of camera baseline
	Influence of object surface angle on reconstruction performance
	Influence of camera count on reconstruction performance
	Render setup performance


	Conclusions
	Future research

