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Training Facial Recognition with Synthetic Faces
Patrick Vine, MSc Electrical Engineering,University of Twente

Abstract—The effective generation of synthetic faces may be useful for improving facial recognition training datasets. This work
explores methods for generating synthetic faces and trained a generative network to synthesize front facing facial images of existing
identities with different attributes as well as of completely new identities. The identities of the synthetic faces were evaluated using 3
pretrained facial recognition systems. Facial recognition networks were trained to compare the performance of training with the
synthetic faces and real faces. The ability to use the synthetic faces for data augmentation was also evaluated. It was found that the
mean equal error rate (EER) increased from 2.21% when using the real facial images to 5.27% when training with completely synthetic
faces of new identities. When using the synthetic faces for data augmentation, the new identities could improve the mean EER.
However, this improvement is not guaranteed with some training datasets leading to higher mean EER after training with more synthetic
faces. There is clearly still a difference between the synthetic faces generated and real faces. Understanding what is still missing in the
synthesized faces would be valuable research to more effectively enable training facial recognition with only synthetic faces.

Index Terms—synthetic faces; generative networks; data augmentation; face recognition;
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1 INTRODUCTION

THE current best performing facial recognition systems
have been trained with a large amount of data. This

leaves the best systems in the hands of those with the data,
mostly large companies with an existing, large collection of
facial images. Researchers have access to non-commercial,
reasonably sized datasets such as VGGFace (around 2.6M
images, 2.6K identities [26]) and Casia Webface (around
500K images, 10k identities [37]). In comparison, FaceNet
was trained by Google on 100-200M images of around
8M identities [29]. Acquiring more data for researchers to
compete with large private datasets, or new data for a
commercial organisation that does not yet have any facial
images, is time consuming and privacy issues may arise.
Generating synthetic faces of new identities and more di-
verse facial images of existing identities may help to resolve
this.

New facial images that are more diverse versions of
existing identities in a dataset such as with new poses,
new hairstyles, illumination or wearing glasses would be
beneficial for increasing the diversity of identity images to
learn from. New identities with this diversity may help with
learning better discrimination between different identities.
Synthesized faces may be suitable for data augmentation
to help reduce bias in datasets and improve performance
on certain attributes. Using an entirely synthetic dataset of
new identities reduces potential privacy issues as the facial
images are all of nonexisting people. It is desirable to be
able to generate an entirely synthetic dataset of unique facial
images in which the privacy and diversity can be controlled
in order to train a facial recognition system to the level of
the best networks.

1.1 Research Question
An initial research question for these ideas is: How well can
you train facial recognition with synthetic faces?

To answer this research question the following sub-
questions are investigated:

1) What are the ways of generating synthetic faces?

Fig. 1. Examples of synthetic faces. Left: A new facial image for an
existing identity. Right: A completely new identity

2) How do the properties of the synthetic faces com-
pare to properties of the original faces as seen by
other facial recognition systems?

3) Does training with completely synthetic faces result
in similar performance to training with the original
non-synthetic faces?

4) Does training with the original non-synthetic faces
supplemented with synthetic faces improve the per-
formance of a facial recognition network?

In section 2, Related Work is discussed in order to
address the first research sub-question. In section 3, the
method used to train a face synthesis network is presented
along with methods for analysing the properties of any
synthesized face datasets. The method we used to train the
facial recognition networks is also presented in section 3. In
section 4, experiments and results are presented to answer
the remaining 3 research sub-questions. Finally, in section 5,
conclusions are drawn as to how well you can train facial
recognition with the synthetic faces generated, and future
research is proposed.

2 RELATED WORK

In this section an overview of some of the ways of gen-
erating synthetic faces are presented. This is followed by
an overview of some of the current work in deep facial
recognition and the use of synthetic faces for training facial
recognition networks.
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2.1 Synthetic Faces

The idea of generating facial images to augment facial
recognition datasets is not new. There are several surveys
that focus on data augmentation specifically for facial recog-
nition.

Li et al. [19] reviewed facial generation methods with
a focus on mathematical models for creating new face
samples. They looked at methods that used facial structure,
the sample distribution, and differing viewpoints in order
to generate new faces. They reviewed methods for using
knowledge about facial structure to generate new images
using the symmetry of the face, mirroring the face and
other techniques. Sample distribution methods included
combining perturbed data with the distribution function
of the data to generate new samples. Viewpoint methods
focused on 3D models that could produce different poses
and illumination.

Wang et al. [36] broke techniques for data augmentation
for facial recognition down into different transformation
types and methods. They listed transformation types such
as geometric, photometric, hairstyle, makeup, accessories,
pose, expression, age, gender, skin colour. The transfor-
mation methods included basic image processing, model-
based, and generative-based transformations. Model-based
methods included 2D Active Appearance Models and 3D
Morphable Models (3DMM). The generative-based transfor-
mations were further broken down into autoregressive gen-
erative models, variational autoencoders (VAEs), generative
adversarial networks (GANs) and flow based generative
models.

In our work, we have focused on using a generative
technique to generate new versions of an existing face image
as well as to generate new face images for new identities.

2.1.1 Techniques for modifying an existing face image

Masi et al. [24] applied pose, shape and expression trans-
formations to CASIA WebFace to augment the number of
per-identity images in the dataset. They used a 3D pose
estimation technique to project the 2D image onto a 3D
generic face and generated new poses from the 3D model.
They varied the face shape by using 10 different generic 3D
face shapes which introduced subtle facial changes in the 2D
rendered images. They also manipulated facial expressions
in 3D and rendered 2D images with differing expressions.

Lv et al. [23] combined landmark perturbation with syn-
thesizing hairstyle, glasses, poses and varying illumination
to augment the multi-PIE dataset. The landmark perturba-
tion aimed to apply an affine transformation to the face to
noisily align the landmarks and hence to learn recognition
in the face of misaligned landmarks. Hairstyle and glasses
synthesis was achieved through the use of templates and 2D
image processing techniques that used the facial landmarks
for alignment. Pose and illumination were achieved with a
3D face reconstruction to which different poses and light
sources were applied and rendered.

Upchurch et al. [35] showed that many high-level se-
mantic image transformations can be done via simple linear
transforms in the deep feature space of a pretrained deep
CNN such as VGG-19. A set of images with an attribute
(e.g. wearing glasses) and a set of images with the opposite

attribute (e.g. without glasses) were selected. Linear calcu-
lations were made in the deep feature space with the means
of these two sets to find a vector to move along in the
deep feature space. Images were generated by reversing the
function transformation into the deep feature space back to
the pixel space. Attributes like age, facial hair and glasses
were successfully varied.

In recent years a focus has been on generative models
to modify existing facial images. Generative networks have
been shown to be able to apply makeup (e.g. BeautyGAN,
Li et al. [21]), transform hair colour and age (e.g. StarGAN,
Choi et al. [4]), add and remove accessories such as glasses
and many more.

In this work we used a generative model to combine an
identity image as the source of the identity to maintain in
the synthesized face and an attribute image as the source of
the attribute change to be seen to the identity’s image.

2.1.2 Techniques for maintaining identity.
A key issue for generating faces for training facial recogni-
tion is identity. When modifying the attributes of a facial
image, the identity needs to be maintained so that it is the
same person. It is also useful to generate a new identity
and then modify the attributes of that identity. A problem
with generative networks is that if they are not trained to
maintain the identity in the image, they may not maintain
it.

Li et al. [20] sought to change an input facial image
through controllable attributes by optimising a CNN com-
bined with the input attributes. They combined an identity
loss function with an attribute loss function to learn a
transformation. The identity loss function aimed to keep the
identity the same. The attribute loss function compared the
output with the subset of all images with that attribute in
the training set.

Shen et al. [31] proposed FaceID-GAN, a 3-player GAN
with a classifier of face identity as the third player. They
used a 3DMM representation as an additional input into the
generator to supervise the learning. When trained on Casia
WebFace, the generator generated faces of the same identity
with diverse viewpoints and expressions and performed
well on facial recognition benchmarks for maintaining iden-
tity information in the generated facial image. Cao et al. [3]
implemented similar ideas but included higher resolution
images.

“FaceFeat-GAN: a two-stage approach for identity-
preserving face synthesis” (Shen et al. [32]) split the GAN
learning into two stages. The first stage learnt features using
adversarial loss. These features were input to the image gen-
erator in the second stage. The generator was also trained
using adversarial loss. They used an externally trained facial
recognition model to generate an identity feature which they
also used as input to the image generator. They generated
diverse identity-preserving facial images as viewed from an
independently trained facial recognition system. They were
able to change attributes of the image by manipulating these
features.

Bao et al. [1] introduced the CVAE-GAN which com-
bined a conditional variational autoencoder with a condi-
tional GAN and found the system easier to train and to
converge faster than other designs. Diverse samples could
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be randomly generated from the distribution to generate
facial images of size 128x128 pixels. In a later work, Bao
et al. [2] trained a GAN to combine the attributes of one
image with the identity of another image through the use of
adversarial training. They used an identity network that was
trained to create an identity feature and an attribute network
that was trained to create an attribute feature. These features
were fed into a generator network which creates an image
combining the attributes of the one image with the identity
of the other. They used discriminator and identity classi-
fier networks for feedback to the training networks. They
trained the initial network on MS-Celeb-1M. To expand the
attribute capabilities, they sourced 1M unlabeled faces from
Google and Flickr and trained the network with the identity
feature network and the classifier network locked. They had
success in varying pose, emotion and lighting in unseen
identities of size 128x128 pixels.

The model we used to synthesize identity preserving
faces is based on Bao et al’s attribute and identity networks.
However, we used a pretrained network for the identity
network and focused on using a significantly smaller front
facing dataset. In addition, we evaluated how the synthetic
faces perform as source faces for training a facial recognition
network.

2.2 Deep Facial Recognition
Facial Recognition using Deep Neural Networks (DNNs)
has become prevalent since significant progress was made
on image classification problems in competitions like the Im-
ageNet challenges. Face verification aims to classify two un-
seen facial images as the same identity or not. This requires
generic identity traits to be learnt from the training images.
It is often solved by generating an identity representation
that be used to compare 2 facial images. One method is for
the network to output a vector of fixed size (see Figure 2).
A similarity metric such as the cosine angle or euclidean
distance is then used between the identity vectors generated
from the 2 facial images to determine how close the vectors
are. The smaller the value, the higher the probability of the
2 faces belonging to the same individual.

Validating all facial images as being matching or non-
matching to every other image in a large database is compu-
tationally expensive. Labeled Faces in the Wild (LFW) [13]
uses a method of face verification that compares matching
and non-matching samples from the dataset. In their 13K
face dataset, 3000 matching and 3000 non-matching pairs are
defined for testing. Most DNN systems trained on sufficient,
diverse data achieve over 99% accuracy on LFW for the task
of face verification.

Different methods for training an identity vector have
been used over the years. Initially, cross entropy loss was
used to train the identities as categories and to use the

Fig. 2. Mapping a facial image (e.g. shaped 128x128x3) through a neural
network to output an Identity feature vector (e.g. shaped 1x512).

layer before the final identity category layer as the identity
vector. The ideal separation in an identity vector is for
facial images belonging to the same identity to have small
separation and images belonging to different identities have
as large a separation as possible. Training with cross entropy
loss does not optimise for this and may result in a vector
representation that does not generalise well.

Training with Triplet Loss was used in FaceNet (Schroff
et al. [29]). Triplet loss draws a training sample along with
one matching sample of the same identity and one non-
matching sample of another identity. Matching and non-
matching distances are calculated. Triplet loss minimises
the matching distance and maximises the non-matching
distance. To make this training as effective as possible, hard
samples are needed that are either misclassified or almost
misclassified. The network learns to map the facial images
for the same identities in clusters around the same point and
as far away from all other identity clusters as possible. This
improves the generalisation of the identity vector for unseen
faces.

A problem with Triplet loss is that finding hard samples
can be computationally expensive. Deng et al. [6] introduced
ArcFace loss which attempts to directly optimise the dis-
tances within the data itself. The angle between the identity
vector and the target weights to the identity categories with
an angular margin is optimised. ArcFace loss optimises the
angle between the identity vectors of facial images of the
same identity to be as small as possible and between images
of different identities to be as large as possible.

We used a similar method of face verification to LFW
with 3000 matching and non-match pairs. LFW is not used
as a Test dataset as the size and diversity of the dataset we
used for training was insufficient for us to achieve an LFW
accuracy of over 90%. We trained our facial recognition net-
works with ArcFace loss and used a cosine similarity metric
to perform face verification between unseen identities in the
Validation and Test datasets.

2.2.1 Using Synthetic Faces
When generating new faces, it is common to test the results
on several face related tasks, including how facial recog-
nition systems evaluate the synthetic faces and using the
synthetic faces for data augmentation.

Masi et al. [24] augmented the number of per-identity
images to generate a dataset that was approximately 5 times
the size of the original. Yucer et al. [38] trained a facial
recognition model on a racially augmented dataset to learn
a model that was less prone to racial bias. Both works found
some benefit in using the additional synthetic faces.

In CVAE-GAN Bao et al. [1] used their method to gener-
ate 200 additional faces per identity as well as 100 faces of
5000 new identities for augmentation. They trained a facial
recognition model and compared the results for verification
on LFW. They found using the additional synthetic data
added 1% increase in accuracy over using the unaugmented
dataset.

Tran et al. [34] compared the performance of their learnt
identity representation in DR-GAN with training facial
recognition using their synthetic faces. They found their
identity representation performed better than training with
synthetic faces.
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Kortylewski et al. [18] generated a synthetic dataset
through the use of a 3DMM learnt from 200 neutral face
scans and 160 expression deformations. This model allowed
them to sample from the learnt distribution through the use
of the 3DMM parameters and generate new identities as
well as control the pose, illumination and expression in 3D
to generate images of faces. One drawback is that the image
is not a realistic “in the wild” image as the 2D image only
contains the face region, not the rest of the head and body.
The backgrounds are also not realistic. They generated 20K
identities with 100 images per identity and trained a facial
recognition network with 80% accuracy on LFW. They then
fine-tuned the network using different amounts of Casia
WebFace data and found that they could get similar results
to current state of the art with only using a quarter of the
real facial data.

It is not common to compare how well synthetic faces
are able to be used to train a facial recognition system on
their own. A key contribution of our work is looking at the
differences between the synthetic and original facial images
as viewed from 3 pretrained facial recognition systems as
well as comparing the facial recognition performance when
training with only synthetic faces. We also used the synthetic
faces for data augmentation.

3 METHODS

This section presents methods for generating synthetic faces,
for analysing the resulting face dataset, and for training the
deep facial recognition networks.

3.1 Synthetic Faces
The method used to synthesize identity preserving faces
was based on the work of Bao et al. [2]. The framework
overview can be seen in Figure 3. The framework consisted
of an Attribute encoder, A, an Identity encoder, I, and a
face Generator, G. The Generator, G, takes the identity and
attributes vectors from I and A respectively and outputs a
face image. During training a Discriminator, D, was used
for adversarial feedback to the face generator. We differed
from Boa et al. in that a pretrained FaceNet implementation,
trained on VGGFace, was used for the Identity encoder
network, I. The Identity encoder was not trained further.

Face synthesis involved selecting an identity face image
xs and an attribute face image xa as inputs. The goal of the
face synthesis network was to output a new face image, x′,

Fig. 3. High level face synthesis training framework with Identity Encoder
(I), Attribute Encoder (A), Face Generator (G) and Discriminator (D)
networks. Both I networks represent the same trained Identity Encoder.

with the same identity as xs and the attributes (such as hair
and background) of xa.

Training of the face synthesis network involved two
steps. First, we trained with xa = xs. The Attribute encoder
and Generator were jointly trained to reconstruct the face
and the Generator was trained to generate the same identity.
Adversarial loss was also applied to the Generator via the
Discriminator. The second training step selected another
attribute image, xa, so that xa 6= xs and another image
was synthesized by the Generator. The goal of this step was
to train the Attribute encoder to transfer attributes to the
synthesized face.

The Identity network generated an identity vector,
fI(x

s). The synthesized face, x′ was fed back into the Iden-
tity network and L2 loss, LGI , is applied to the Generator
for the difference between the initial identity vector and the
identity vector of the synthesized face.

LGI =
1

2
||fI(xs)− fI(x′)||22 (1)

The Attribute network generated an attribute vector,
fA(x

a). The Attribute network was similar to a variational
autoencoder and output a mean vector µ, and log-variance
vector, ε. As backpropogration can not flow through a
random layer, the reparametrisation trick was used during
training. This learnt these vectors and used them to trans-
form a Gaussian distribution from which the output vector
was sampled. The resulting output vector was calculated in
the following way:

fA(x
a) = µ+ r ∗ exp(0.5 ∗ ε) (2)

where r ∼ N (0, 1). Kullback-Leibler (KL) divergence was
used as part of the loss when training the Attribute encoder.
Bao et al. [2] found that the KL loss, LKL, reduced the entan-
glement of identity information in the attribute vector. The
KL loss encouraged a Gaussian distribution in the generated
attribute vector which may be able to learn shared attributes
across identities, such as background colour, better than
diverse identity information. The loss for each item in a
batch was:

LKL =
1

2

N∑
i=0

[exp(εi) + µ2
i − 1− εi] (3)

Where the sum was over the elements in the vector of size
N. The mean of the KL loss for each batch was used when
training.

The Generator and Attribute encoder were jointly
trained with a L2 reconstruction loss between the original
and synthesized faces, LGR. Taking the idea to increase
stability by training at multiple scales of the Generator from
Karnewar and Wang [15], we trained with the average L2
reconstruction loss over each scale of the Generator as the
Generator grows the image. To obtain an RGB image at each
scale additional convolutional and activation layers were
trained to map from the current number of channels to the
3 RGB channels for the image at that scale.

LGR =
1

2 ·N

N∑
σ=1

||xaσ − x′σ||22 (4)
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where N=6, σ = 1,2,...,N and xaσ was resize to be 2σ+1x2σ+1

pixels, the same size as x′σ . The 6 scales trained were 4x4,
8x8, 16x16, 32x32, 64x64, 128x128.

In addition, the Generator was trained with adversarial
loss, LGD, from the Discriminator, D. The adversarial loss
applied to G was based on the L2 loss between the final
layer of the discriminator, fD , for the real image and the
reconstructed image.

LGD =
1

2
||fD(xa)− fD(x′)||22 (5)

The discriminator was trained by minimising the standard
GAN loss [10],

LD = −Ex∼Pr
[logD(xa)]− Ez∼Pz

[log(1−D(G(z))] (6)

which attempted to determine the difference between the
reconstructions and real faces. z concatenates fI(xs) and
fA(x

a).
If the network was not trained with the appropriate

losses applied to the appropriate networks, the attribute
encoder could learn an entangled representation of iden-
tity and facial attributes, even with a pretrained identity
network. To avoid this, the losses were combined in the
following way when xa = xs:

LA = LGR + λKLLKL (7)

LG = LGR + λGDLGD + λGILGI (8)

The loss for the Discriminator is made up of LD as previ-
ously defined.

When xa 6= xs only a weighted reconstruction loss was
applied:

LA = λALGR (9)

LG = λALGR (10)

We used λA = 0.1. The reconstruction loss was reduced
as the generated image was not intended to be the same
as either of the original images, however the attributes are
being encouraged to be transferred to the known identity,
hence it should be somewhat similar, for example with the
same background or hair style.

3.2 The Synthetic Face Datasets

3 datasets were generated for evaluation and were used
in the facial recognition training experiments. These are
referred to as the Reconstructed, New Faces and New Iden-
tities datasets. The FRGC training set is referred to as the
Original dataset and was used as a control dataset.

Reconstructed: All 18143 images in this dataset were
reconstructions of the Original dataset. This dataset gives
a representative view of the closest that could be expected
to the Original dataset from faces synthesized by this
network as the identity training was optimised over the
reconstructed faces.

New Faces: Each new facial image in the New Faces
dataset was constructed from the mean identity vector of
an identity from the Original dataset, combined with the
attributes from each image from a different identity in the
Original dataset. This created 18143 facial images with the
same 482 identities as in the Original dataset and with the

Fig. 4. Bimodal distribution of FaceNet euclidean distance scores for
3000 matching (grey) and 3000 non-matching (yellow) pairs of the
Original dataset.

existing attributes from other identities applied to different
identities.

New Identities: Each new facial image in the New Iden-
tities dataset was constructed from 482 unique identities
generated, combined with the attributes from each image
from an identity in the Original dataset. This created 18143
faces with 482 new identities and with the same distribution
of images to identities as the Original dataset.

3.3 Properties of a Facial Recognition Dataset
A common method for training a facial recognition system
is to optimise the output to be a bimodal distribution where
matching pairs map to one mode and non-matching pairs
map to a second mode. These two modes can then be split
by a threshold chosen for a specific anticipated error rate.
Ideally these two modes are completely separable but in
practice they are often not. The bimodal distribution for the
Original dataset can be seeing in Figure 4. When evaluating
a synthesized dataset we would anticipate seeing the same
bimodal distribution.

The Original dataset contained 18143 faces. There were
over 500K possible matching pairs and 150M possible non-
matching pairs in this dataset. Evaluating this number of
pairs over multiple datasets over multiple facial recognition
systems could take a significant amount of time. Randomly
sampling a subset of the pairs gave an approximation of
the full distribution. We used 3000 matching and 3000 non-
matching pairs randomly sampled from each dataset to
provide a view of the distribution.

The score distributions produced were evaluated by 3
different pretrained facial recognition systems. A FaceNet
implementation [8], an ArcFace implementation [14] and
a DLib implementation [9] were used. The FaceNet im-
plementation may have performed well due to being in
the training loop. The ArcFace and DLib implementations
were only used for evaluation and hence provided a useful
comparison.

An additional property that was evaluated was the
uniqueness of the faces synthesized for a new identity. The
faces in the New Identities dataset were intended to be
unique identities from the Original dataset. These new faces
were evaluated through Face Identification by exhaustively
searching for the lowest score between each facial image in
the New Identities dataset and all images in the Original
dataset. In addition, the lowest non-match score between
each facial image in each identity of the Original dataset to
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all other identities in the Original dataset was determined.
The Original dataset provides a control that was considered
as a normal lowest non-matching score distribution and
hence was compared to the distribution of the New Iden-
tities to Original scores to determine if these distributions
were similar. The New Identities to Original distances were
controlled by a threshold, αU , when finding new identities
which could be tuned further. The New Identities would
not be unique if the New Identities to Original score dis-
tributions have smaller distances than within the Original
dataset.

3.4 Deep Facial Recognition

Our facial recognition networks were trained with ArcFace
loss (Deng et al. [6]). ArcFace loss is optimised to use the
cosine similarity metric, therefore cosine angle was used for
all results to find the distance between two identity vectors
to determine how similar they were. The smaller the cosine
distance between two identity vectors, the more likely that
the two faces are of the same identity.

A ResNet-50 network [12] pretrained on ImageNet1 was
used for the training of all facial recognition networks.
Following Deng et al. [6], the layers following the last
convolution layer of the network followed the format of
BN-Dropout-FC-BN to output a 512-d identity vector. The
network was trained with ArcFace loss with the 482 identi-
ties in the training dataset.

All networks to be compared were trained in exactly the
same way with stochastic gradient descent. Unless specified,
only the training dataset used changed per experiment. Five
networks with the final layers randomly initialised were
created and stored. Each experiment trained a network with
each of these five configurations and the mean and standard
deviations of the equal error rates (EER) per trained network
combination were compared. The EER is when the false
match rate is equal to the false non-match rate.

4 EXPERIMENTS & RESULTS

4.1 Synthetic Faces

4.1.1 Initial Experiments

GANs have been shown to produce state of the art, high res-
olution faces such as those generated by StyleGAN (Karras
et al. [17]). Zhang et al. [39] found minor discrepancies on
biometric image quality metrics when comparing StyleGAN
to real images. Therefore a reasonable starting point for
generating synthetic faces in current research was to use
a GAN. Experiments were initially made to generate 64x64
images with a DCGAN architecture (Radford et al. [28]).
This was relatively stable, however, the faces synthesized
were often slightly deformed and exhibited artifacts. Mov-
ing to train 128x128 images was less stable, even when using
the Progressive GAN method from Karras et al. [16] to grow
the network output size. The issue of checkerboarding due
to transposed convolutions growing the network size led to
changing the DCGAN to use UpSampling for growing the
network [25].

1. Implementation: https://pytorch.org/vision/stable/models.html

A goal for this research was to control the identity of the
synthesized face. An early experiment trained an autoen-
coder to generate the faces. However the latent space of the
encoder was highly entangled and the generator was un-
able to synthesize clear or crisp faces. Another experiment
trained a face generator to convert an identity vector pro-
vided from a pretrained Identity network into a face. This
was found to have low image quality, particularly outside
of the central face. The background was particularly blocky.
Interestingly, due to a single identity vector representing a
pose invariant face, the network tended to generate only
front facing faces despite not all images in the training set
being front facing.

Another experiment combined an encoder for attributes
and an encoder for identity to enforce the disentanglement
of the identity from the attributes. This was similar to
the work of Bao et al. [2] but without the variational or
adversarial feedback components. This had some success
with being able to represent an identity however the faces
rendered were not clear or crisp. Experimenting with L1
instead of L2 reconstruction loss did not make a significant
difference to the synthesized face quality.

The next set of experiments incorporated the variational
encoder and adversarial feedback aspects from Bao et al.
These experiments are described in detail in the following
sections.

It should be noted that the above initial experiments
were all trained with the CelebA dataset [22]. CelebA is a
larger and more complex dataset than the final dataset used.
The experiments were run for 50 epochs which is a smaller
number of epochs than the final training run of the final
networks used. Some of these experiments may work more
effectively if trained with the same FRGC dataset used for
training the final networks.

4.1.2 The Face Synthesis Network
The controlled environment portraits of the Facial Recogni-
tion Grand Challenge dataset [27] were used for training the
face synthesis network. These facial images were cropped
to include the whole face, head and hair2. All facial images
were front facing with limited difference in pose. There was
some variation in illumination. The training dataset con-
tained 18143 facial images of 482 individuals. The number
of images per identity ranged from 4 to 130 with a mean of
38.

A validation set of FRGC identities that did not appear in
the training set was available. This dataset consisted of 3629
facial images of 86 identities. This was used to evaluate the
performance on unseen images.

Using front facing faces reduced the complexity of the
problem. The FRGC dataset allowed evaluation of this sim-
pler case. While the training dataset size was not large for
deep learning, the face distribution to learn was also limited
in that all of the faces were front facing with limited pose
differences and similar crop.

The Generator and Discriminator networks were based
on the original DCGAN configuration (Radford et al. [28]).
The Attributes network was based on the same network ar-
chitecture as the Discriminator with the final layers splitting

2. Using a combination of the DLib frontal face detector and the
imutils FaceAligner class
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to generate the mean and log variance vectors. Exact details
of the DNN layers are provided in Appendix A.

The values of λKL = 0.0001, λGD = 0.0005 and λGI = 1
were used when training our final face synthesis network.

Increasing λKL resulted in stronger identity results with
the trade-off of less transfer of the attributes in the synthe-
sized face. With λKL = 0.0005 the facial image was found
to vary little. λKL = 0.0001 was found to be a reasonable
trade-off.

Bao et al. used a value of λGD = 0.001 in their work.
Experimentally it was found that λGD = 0.0005 performed
better for our setup.

Attempts at varying λGI did not result in noticeable dif-
ferences for λGI = 10 and λGI = 100. FaceNet normalised
the identity vector output to place it on a unit hypersphere.
An experiment using the non-normalised FaceNet identity
vector in the L2 identity loss was shown to work well at
early epochs and less well later. This may be because the L2
distance between the two non-normalised identity vectors
were initially large which the normalisation damps while
in the later epochs the L2 distances were smaller between
the non-normalised vectors than the normalised vectors,
therefore, over time the normalisation helps learning more.
The identity was found to be impacted most significantly
over the first 50 epochs by reducing the batch size. As batch
size decreased, the final L2 identity loss after 50 epochs
decreased more. This may be due to less averaging in the
learning which allows different parts of the network to be
optimised to generate more diverse identity features. It may
be that the batch normalisation was more effective for this
problem with smaller batch sizes. A batch size of 8 was used
in the final network training.

Minimising the identity loss during the attribute training
step (xa 6= xs) did not appear to work in the tests that were
run. It may be interesting to revisit that in future work with
the current knowledge of the training times and identity
performance or, alternatively, to start training the attributes
with identity loss from the network we have trained already.

All networks were trained with the Adam optimiser. The
learning rate for the Attribute encoder and Generator net-
works was set to 0.0001. The learning rate for the Discrim-
inator network was set to 0.0004. Setting the Discriminator
learning rate to 0.0001 was found to result in lower quality
faces and the training did not work as well.

Experiments were done with removing the multi-scale
reconstruction loss. It was found that the identity loss
reduced over the first 50 epochs and then consistently
increased for the next 200 epochs while the reconstruction
loss decreased and remained low.

The network was trained with the identity vectors of the
faces in the dataset. Including training with xa 6= xs im-
proved the ability to generate a face-like image when using
unseen identity vectors. To improved the ability to generate
a face-like image further, an identity Generative Adversarial
Network was trained to generate identity vectors with a
similar distribution to the available identity vectors. The
identity GAN was a learnt function that mapped a Gaussian
vector to an identity vector. This was used during training
to provide unseen identity vectors to the network. Every
second Attribute training step (xa 6= xs) drew the identity
vectors for attribute training from this distribution instead

of using and identity from xs. This improved the balance
between the identity loss when xs = xa and when xs 6= xa

when compared to training without these additional iden-
tity vectors.

The network used in these results trained for 300 epochs
and balanced both the results from the differing losses on
seen, unseen and random identities drawn from the GAN
function while visually comparing the ability of the network
to generate recognisable faces for unseen identity vectors.

4.1.3 Finding Valid New Identities
Finding a new identity consisted of several steps. A new
identity needed to be found that was sufficiently different
from all other identities. The generator needed to be able to
use the new identity to synthesize faces that still belong to
the same new identity. All new faces for the identity needed
to be different enough to all other faces in the Original
dataset so that these were indeed new and not different
versions of the Original dataset identities.

Experiments were done with the identity GAN to gener-
ate new identities, however it was difficult to find enough
unique identities using this method.

Schroff et al. [29] used a euclidean distance measure with
FaceNet, therefore we used the euclidean distance between
FaceNet Identity vectors and defined several thresholds.

The threshold for uniqueness while initially searching,
αS , was set to 1.3. This matches the mean FaceNet euclidean
distance of the non-matching pairs in the Original dataset
(see Table 1). We searched for new identities that were αS
euclidean distance from the other identities in the search
parameters.

The FaceNet implementation outputs identity vectors
that were normalised to lie on a unit 512 dimensional hyper-
sphere. In theory any point on the hypersphere was a valid
identity vector. In practice the face synthesis network was
trained on identity vectors from the Original dataset so the
identities that might synthesize a face with the same identity
vector as the input identity vector may be biased towards
the identities of the training dataset. New identities near an
existing identity may be more likely to be synthesized by
the generator and retain the same new identity. It may also
be that the FaceNet implementation has not filled the entire
available space on the hypersphere. As a result, the method
for finding a new identity searched near an existing identity.

The method used to find a new identity followed these
steps:

In: PI , dataset of identity vectors. PA, dataset of at-
tribute vectors. G, the face generator network. fI ,
the identity network.

Set: IDS = [], list of new identity vectors. αS = 1.3,
search distance. αI = 0.95, non-matching distance
to all Ids. αM = 0.7, matching distance. αU = 0.6,
closest distance to PI allowed.

1: sample Ioriginal ∼ PI
2: Ilast = IDS[-1] IF length(IDS)> 1 # last Id created
3: sample Irecent ∼ IDS[-10:-1] IF length(IDS)> 2
4: Istart = 0− Ioriginal # start on the other side of the

hypersphere.
5: Iinitial = minimise(Ioriginal, Istart, [Ilast, Irecent],

αS) # Starting at Istart find a point on the hyper-
sphere that is αS distant from Ioriginal, Ilast and
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Irecent using the Sequential Least Squares Program-
ming implementation from SciPy.

6: sample A ∼ PA, x′initial = G(Iinitial, A) # synthe-
size a face

7: Inew = fI(x
′
initial) # The new identity vector

8: IF Inew distance to ANY IDS < αI GOTO 1:
9: REPEAT 200 times

10: sample A ∼ PA, x′synth = G(Inew, A)
11: Isynth = fI(x

′
synth)

12: IF Isynth distance to Inew > αM GOTO 1:
13: IF Isynth distance to ANY PI < αU GOTO 1:
14: IDS←− Inew
In practice, when searching for 200 passing facial images,

a retry scheme was used to find another A and synthesize
another x′synth instead of failing immediately. That is left
out for simplicity. 500 identities were created for the New
Identities dataset using this algorithm.

Irecent was randomly sampled from the last 10 identities
to improve the diversity of the new identities found.

We used Inew as the new identity as Inew was an
identity that the generator can synthesize and not the same
as Iinitial. All new identities were tested to be at least
αI = 0.95 from all other identities generated. This distance
is less that 1.3 as this was the distance that was practically at-
tainable by the face synthesis network to generate more than
482 new identities. Any new identity that could generate 200
images within a distance of αM = 0.7 from the found Inew
and αU = 0.6 from all other faces in the Original dataset
was kept. αM ensured clustering around Inew. αU was the
threshold for a face identification match. Anything closer
would be considered to overlap with the Original dataset
identities. Creating 200 faces showed that the face synthesis
network could generate faces of this identity. All of these
thresholds could be experimented with further.

To identify low quality faces, identity vectors for each
image were generated using DLib [9]. The DLib imple-
mentation detected the face before generating a vector and
returned no vector if there was no face detected. Any images
that did not return an identity vector were considered low
quality. 7 of the 500 identities included faces that were
unable to generate Dlib identity vectors and were excluded.
The first 482 identities were used from this set of 493 new
identities. These identities were used as the identity vectors
for generating future datasets.

4.1.4 Evaluating Face Dataset Properties
In this section the ability to generate faces is considered
along with how the properties of the synthetic faces com-
pare to the properties of the original faces as seen by other
facial recognition systems.

A face synthesis network requires an ability to generate
faces even when presented with unexpected input. To ex-
periment with this a reconstruction was synthesized with
an image of a teapot as input to the identity and attribute
networks. The result of the face synthesis is seen in Figure 5.
This shows the ability for the face synthesis network to
output faces.

Some low quality faces were synthesized when searching
for new identities. Examples of these faces can be seen in
Figure 6. These images are face-like, though they are not

Fig. 5. Ability to generate faces: Using an image of a teapot as the image
for both the Attribute and Identity networks results in a face.

Fig. 6. Ability to generate faces: Low quality faces, but still in the general
face-like image space.

acceptable as actual faces. Some examples of reconstructed
faces, new faces and new identities are shown in Figure 7.

Initial experiments were conducted with 20 identities
and 20 faces from the Original, Reconstructed, New Faces
and New Identities datasets. The score distributions and
statistics of the scores for all matching and non-matching
pairs were compared. The outcome showed the scores to be
distributed as expected.

The score distributions and statistics for each of the 4
datasets were evaluated by randomly drawing 3000 match-
ing and non-matching samples 5 times. Table 1 shows the
minimum and maximum scores with standard deviation as
well as the mean score and standard deviation of the scores
as viewed by each facial recognition system. The histograms
of one sample of these distributions can be seen in Appendix
B. Table 2 shows the mean EER and standard deviation of
each dataset as viewed from each facial recognition system.
The New Identities dataset had the most stable mean EER.

The mean threshold for the FaceNet mean EER was 0.831

Fig. 7. Examples of reconstruction, new faces and new identities. Top
Row: Identities to apply change to. First column - Attribute Image applied
to all identities from the top row to generate the image at the intersection.
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Matching Non-Matching
FaceNet Original Reconstructed New Faces New Identities Original Reconstructed New Faces New Identities

Minimum 0.09 (0.01) 0.09 (0.02) 0.06 (0.00) 0.08 (0.00) 0.64 (0.04) 0.63 (0.07) 0.63 (0.07) 0.81 (0.05)
Maximum 0.95 (0.02) 1.06 (0.03) 1.22 (0.08) 1.17 (0.03) 1.66 (0.02) 1.67 (0.01) 1.64 (0.02) 1.68 (0.02)

Mean 0.43 (0.14) 0.47 (0.15) 0.38 (0.16) 0.43 (0.16) 1.30 (0.14) 1.30 (0.14) 1.26 (0.14) 1.29 (0.13)
DLib Original Reconstructed New Faces New Identities Original Reconstructed New Faces New Identities

Minimum 0.07 (0.01) 0.08 (0.01) 0.06 (0.01) 0.06 (0.01) 0.36 (0.01) 0.33 (0.02) 0.33 (0.02) 0.44 (0.02)
Maximum 0.54 (0.02) 0.61 (0.02) 0.68 (0.04) 0.66 (0.03) 1.06 (0.01) 1.06 (0.02) 1.05 (0.04) 1.01 (0.02)

Mean 0.27 (0.07) 0.30 (0.09) 0.26 (0.09) 0.29 (0.09) 0.79 (0.10) 0.78 (0.10) 0.75 (0.10) 0.74 (0.08)
ArcFace Original Reconstructed New Faces New Identities Original Reconstructed New Faces New Identities

Minimum 0.16 (0.01) 0.16 (0.01) 0.13 (0.02) 0.13 (0.01) 0.95 (0.07) 0.93 (0.05) 0.93 (0.07) 0.92 (0.04)
Maximum 1.05 (0.03) 1.19 (0.04) 1.19 (0.03) 1.24 (0.03) 1.61 (0.02) 1.58 (0.01) 1.56 (0.01) 1.57 (0.02)

Mean 0.56 (0.14) 0.61 (0.16) 0.55 (0.18) 0.59 (0.18) 1.37 (0.07) 1.36 (0.08) 1.32 (0.08) 1.31 (0.09)
TABLE 1

Score statistics per facial recognition system per Face dataset
Mean minimum score (standard deviation), mean maximum score (standard deviation), mean score (mean standard deviation of the scores) from

3000 matching and 3000 non-matching pairs randomly sampled 5 times.

Original Recon. New Faces New Id.
FaceNet 0.45% (0.07) 0.76% (0.06) 0.97% (0.08) 0.55% (0.07)

DLib 0.66% (0.05) 1.52% (0.15) 1.05% (0.05) 0.51% (0.06)
ArcFace 0.05% (0.03) 0.33% (0.05) 0.35% (0.03) 0.53% (0.09)

TABLE 2
mean EER (standard deviation) for each Face dataset per facial

recognition system from 3000 matching and 3000 non-matching pairs
randomly sampled 5 times.

on the Original dataset. In contrast, Schroff et al. [29] found
a threshold of 1.242 when testing on LFW. Using this LFW
threshold on the Original dataset resulted in a 29% false
match rate and no false non-matches. Similarly, the mean
threshold for the DLib mean EER on the Original dataset
was 0.462, less than the published 0.6 LFW threshold for
DLib [7]. This indicated that the LFW thresholds were not
appropriate values to use with our datasets, probably due
to the different make up of the datasets. Hence we have
experimented and used the thresholds that we defined for
finding new identities and determining uniqueness.

The distributions and statistics for each dataset within
each facial recognition system’s scores followed each other.
The overall distribution for each dataset was the expected
bimodal distribution. The distributions of the generated
datasets followed the Original distribution. The one notable
difference was that the generated datasets tend to have
slightly wider score ranges than the Original dataset.

In all the distributions there was an overlap between
matching and non-matching scores. This overlap may be
reduced in the synthesized datasets by applying a αM
threshold similar to when searching for identities. The dis-
tance between identities may also be increased if a higher
αI threshold were used when searching for identities. Some
tests were done with these thresholds and there seems some
merit to experiment further, however, for these experiments
this was left as is. These images may be hard samples that
would help the training as the network may learn a better
general identity representation with them in the training
dataset, or they may be bad samples that would hinder the
training due to noisy images that have managed to retain
some of the identity features but potentially are another
identity all together.

The distribution of the lowest non-match scores between
the New Identities and the Original dataset followed that
of the Original dataset. The lowest non-match score dis-
tributions can be seen in Figure 8. The lowest non-match
score histograms have similar peaks. The minimum lowest
non-matches between the New Identities and the Original
dataset have higher scores than within the Original dataset.

Fig. 8. Histograms of lowest non-matching score between all Identities
for each facial image. Top Row - between all identities in Original
dataset only. Bottom Row - between each image in the New Identities
dataset to all images in the Original dataset. Lowest score was found
by an exhaustive search between each facial image to all other images
of other identities to find the lowest non-match score and hence the
closest facial image in the dataset. The first histogram bucket on the
left represents the lowest non-match score in the distribution. The New
Identities dataset increased the lowest non-matching score slightly due
to the αU = 0.6 threshold used when creating new identities.

This is due to the αU = 0.6 thresholding when generating
new identities. When the New Identities dataset was gener-
ated with the new identity vectors, no limits were used to
reject faces too close to the Original dataset. 31 synthesized
faces in the New Identities dataset were less than 0.6 away
from an identity in the Original dataset.

Figure 9 shows the closest faces between the New Iden-
tities dataset and the Original dataset as seen by each facial
recognition system along with an example at the αU = 0.6
threshold. This is a difficult task. The FaceNet scores be-
tween the closest matches for both of Dlib (0.912) and
ArcFace (0.893) were not considered as matching according
to the EER threshold for FaceNet (0.831) despite being well
below the Dlib and ArcFace thresholds respectively. The
αU = 0.6 threshold used when searching for new identi-
ties should be experimented with further to push the new
facial images further from the Original dataset and when
synthesizing the final datasets. The trade-off will be whether
the face synthesis network is able to synthesize the required
number of facial images with higher thresholds.

As a final test of uniqueness, the mean EER and standard
deviation of the combined Original dataset and New Iden-
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Fig. 9. Closest faces from New Identities (top row) to Original dataset
(bottow row) as determined by FaceNet (1st column), ArcFace (2nd
column) and Dlib (3rd column), and the αU = 0.6 threshold used (4th
column). The FaceNet score for each column pair is shown in between
the two images. This indicates how high the αU threshold may need
to be for highly convincing unique new identities. Both the ArcFace and
Dlib closest faces would not be viewed as matching by the FaceNet EER
threshold (0.831) found for the Original dataset.

tities dataset were found for each facial recognition system.
These are 0.48% (0.08) for FaceNet, 0.56% (0.04) for Dlib and
0.21% (0.05) for ArcFace. This supports the conclusion that
we have generated faces for unique new identities.

4.2 Deep Facial Recognition with Synthetic Faces
4.2.1 Datasets
The same FRGC training dataset that was used to train the
synthesis network was used as the control dataset in the
facial recognition training experiments. This is referred to as
the Original dataset.

The FRGC dataset consists of front facing images, there-
fore, the Validation and Test datasets were constructed from
similarly front facing images. These datasets were compiled
from 3 sources. The neutral and smiling front facing images
from the Face Research Lab London Set [5] provided 102
identities with 2 images per identity. The CMU Multi-PIE
dataset [11] included a set of high resolution front facing
images consisting of 249 identities with 3 to 5 images per
identity. The FRAV2D dataset [30] included 109 identities.
The first 12 front facing images per identity were used
from FRAV2D. The identities from these datasets were split
evenly into the Validation and Test datasets. This gave
a more diverse set of Validation and Test facial images.
The Validation dataset consists of 230 identities with 1281
images. The Test dataset consists of 230 identities and 1230
images. Unless otherwise stated in the experiment, the non-
synthetic Validation dataset is used in all training.

All images in the Validation and Test datasets were
resized to 256x256 and the face was cropped with MTCNN
[8] with a margin of 33 pixels and resized to be 128x128, the
size expected by the identity network. Deng et al. [6] found
that using specific alignment can improve the performance
despite training with unaligned faces. We have not focused
on the alignment and it is possible that better facial recogni-
tion training and evaluation results can be achieved through
precise alignment and specific cropping sizes.

The FRGC Validation dataset was used in these results
to evaluate if the trained network performed significantly

better on faces of the same FRGC distribution in the data
augmentation experiments. The FRGC Test dataset consists
of 3629 facial images belonging to 86 identities. The min-
imum number of images in any identity was 4 and the
maximum was 120.

A completely Synthetic Validation dataset was also cre-
ated. An additional 100 new identities were created in the
same way as for the New Identities dataset. 20 faces of each
identity were used. This Synthetic Validation set was used
when running experiments with training a facial recognition
network on completely synthetic faces.

3000 matching and non-matching pairs were randomly
sampled and stored for each of the Test and Validation
datasets. These 3000 matching and 3000 non-matching pairs
were used to determine the EERs in the results.

4.2.2 Training Detail

Each facial recognition network was trained in the same
way. Dropout was set to 0.5. We followed Deng et al. [6]
when calculating ArcFace loss. The batch size was set to
128.

An early stopping criteria of 10 consecutive epochs with-
out any improvement of the best Validation dataset EER
was used. Following Simonyan and Zisserman [33], after
the training stopped, the learning rate was reduced (divided
by 10) and training started again. Adam was used as the
optimiser. The learning rate started at 10−3 and ended at
10−7.

All networks were trained with the same random data
augmentation. All image values were normalised with the
PyTorch torchvision.transforms.Normalize method into the
range [-1,1] on each channel. All input images were of
size 128x128. Validation images were only resized and cen-
ter cropped. The specific augmentation that all networks
were trained with included: Gaussian blur sigma in range
[1,2] (20% likely), Random Rotation [-15,15] degrees (80%
likely), Brightness Jitter (50% likely), Contrast Jitter (50%
likely), Saturation Jitter (50% likely), Hue Jitter (10% likely),
Grayscale (5% likely), Randomly resized with range [80%,
120%] and cropped to 128x128.

4.2.3 Only Synthetic Faces

In this section we consider the question: Does training with
completely synthetic faces result in similar performance to
training with the original non-synthetic faces?

Networks were trained with each of the Original, Re-
constructed, New Faces and New Identity datasets. The
Validation dataset used in these training runs was the
same and based on real faces. This enabled like-for-like
comparisons across the datasets as well as in the future
data augmentation experiments as the only input variable
that was changing was the training dataset, though the
stochastic components used in the training would influence
each outcome. The mean EER and standard deviation of the
EERs for the 5 trained networks are shown in the 18143 faces
column of Table 3. The trained networks did not reach the
same level of performance as the facial recognition systems
used for the dataset evalution. Those systems were trained
with one or more orders of magnitude more data with
higher diversity. Despite this, our results remain useful for
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comparison between training with real and synthetic front
facing faces with fewer than 20k images.

In addition to training the whole dataset, a sample of
the dataset is drawn to reduce the dataset size to half (9072
faces), a quarter (4536 faces) and one eighth (2268 faces) to
compare training outcomes at different dataset sizes. These
datasets were generated by drawing one image from each
of the 482 identities in turn until the full dataset size was
reached. The performance can be seen in the additional
columns of Table 3.

Validation results
Total Faces 18143 9072 4536 2268

Original 1.49 (0.12) 1.92 (0.23) 2.41 (0.30) 4.44 (0.63)
Reconstructed 2.30 (0.14) 2.56 (0.30) 3.51 (0.18) 4.82 (0.78)

New Faces 4.61 (0.49) 4.62 (0.31) 5.53 (0.22) 5.89 (0.71)
New Identities 4.80 (0.78) 4.81 (0.53) 5.28 (0.77) 5.82 (0.98)

Test results
Total Faces 18143 9072 4536 2268

Original 2.21 (0.39) 2.83 (0.23) 3.54 (0.23) 5.99 (0.73)
Reconstructed 2.95 (0.25) 3.28 (0.32) 4.41 (0.67) 6.21 (0.94)

New Faces 5.13 (0.34) 4.93 (0.43) 5.80 (0.63) 6.43 (0.56)
New Identities 5.09 (1.14) 5.25 (0.53) 6.01 (0.76) 7.02 (0.79)

TABLE 3
Mean EER (standard deviation) results over 5 trained networks for All

(18143) faces, Half (9072) faces, Quarter (4536) faces and Eighth
(2268) faces per dataset.

To understand the overall stability of the different
datasets, each dataset was divide into 3 equal parts of
identities and each subset was trained as previously. The
mean and standard deviations for each of the 3 parts are
show in Table 4.

Validation results
Segment 1 2 3
Original 3.47 (0.78) 3.76 (0.48) 3.36 (0.40)

Reconstructed 3.74 (0.43) 4.50 (0.13) 4.40 (0.34)
New Faces 7.18 (0.41) 7.45 (0.60) 7.83 (0.94)

New Identities 8.22 (0.54) 7.73 (0.16) 7.65 (0.62)
Test results

Segment 1 2 3
Original 4.51 (0.56) 4.26 (0.55) 4.34 (0.45)

Reconstructed 4.54 (0.59) 5.47 (0.54) 4.78 (0.27)
New Faces 7.62 (0.32) 7.13 (0.46) 7.84 (0.65)

New Identities 8.21 (0.46) 7.63 (0.37) 7.64 (0.89)
TABLE 4

Mean EER (standard deviation) results over 5 trained networks:
Training each third of identities of each dataset.

To understand the change in results for a completely
synthetic dataset, the training was repeated with the
whole New Identities dataset using the Synthetic Validation
dataset. This resulted in a mean EER of 3.86% (0.46) on the
Synthetic Validation dataset and a mean EER of 5.27% (0.34)
on the Test dataset.

Similarly, the results of training each third of the New
Identities dataset with the Synthetic Validation dataset were
8.94% (0.65), 8.95% (0.39) and 9.72% (0.96) mean EER on
the Test dataset. This had a slightly higher mean EER than
training with the non-synthetic Validation dataset however
the variation over each third of the identities showed a
similar stability.

Training with the synthetic faces resulted in a higher
mean EER than training with the Original dataset. The
Reconstructed dataset performs the closest to the Original
dataset. This was anticipated as the Reconstructed dataset
most closely matches the main training objective of the
synthesis network. Training with the New Faces dataset

performed very slightly better than with the New Identities.
The synthesis network was trained to generate new faces of
the known identities and hence this may be why the New
Faces performed slightly better than new identities it was
never trained to synthesize. From the view of the 3 facial
recognition networks, the New Identities dataset was the
most stable with respect to the mean EER, but this did not
result in better training results.

The variance in the Validation and Test results was
generally slightly higher when training with the New Faces
and New Identities, though all results had higher variance
at the smallest size dataset. It may be that the New Identities
and New Faces introduced more noise in image quality or
lower intra-identity consistency and hence the outliers seen
previously in the wider facial recognition score ranges may
have been noisy samples rather than useful hard samples.

The performance was similar for each third of the identi-
ties in each dataset. Across the datasets, different thirds had
higher and lower variance. The mean EERs, while varying
a bit, were in comparable ranges. The New Face and New
Identities datasets had consistently higher mean EERs.

The mean EER on the Test dataset when training with
the New Identities dataset and the Synthetic Validation
dataset was slightly higher than when training with the
non-synthetic Validation dataset. The Synthetic Validation
dataset was closer to the FRGC dataset distribution as that
is what the face synthesis network was trained on that
generated the Synthetic Validation dataset. This may explain
the lower mean EER achieved on the Synthetic Validation
dataset as it is closer to the training distribution. The non-
synthetic Validation and Test datasets were drawn from the
same, non-FRGC distribution hence it is not unexpected that
the mean EER increases slightly when facing a different
facial image distribution. How effective the synthetic faces
are will be limited by the distribution of faces that can
be synthesized, which may be limited to the distribution
of facial images of the original face synthesis network’s
training dataset.

Training with fully synthetic faces was possible, but
it was not as effective as training with the original faces
despite the distributions of the facial recognition properties
following each other. However, if privacy were a highly
important property, using synthetic faces of new identities
may be good enough.

4.2.4 Supplementing Training data with Synthetic Faces
In this section we consider the question: Does training with
the original non-synthetic faces supplemented with syn-
thetic faces improve the performance of a facial recognition
network?

Several scenarios were considered for augmenting a
dataset. The first scenario considers if we could augment
a small subset of the Original dataset and improve the
outcome. The largest reduction in performance was seen
when training with an eighth of the Original dataset, thus
we trained with these 2268 images supplemented with 3
different datasets of synthetic faces - the New Identities
dataset, the New Faces dataset and finally both the New
Identities and New Faces datasets. The second scenario
considers if we could improve the performance when train-
ing with the whole Original dataset by augmenting with
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Original Faces / Identities Synthetic Faces / Original Identities / New Identities Validation Test FRGC Test
2268 / 482 0 / 0 / 0 4.44 (0.63) 5.99 (0.73) 8.41 (0.86)
2268 / 482 18143 / 0 / 482 2.93 (0.39) 3.48 (0.52) 4.45 (1.68)
2268 / 482 18143 / 482 / 0 3.55 (2.37) 3.99 (2.42) 4.25 (3.82)
2268 / 482 36286 / 482 / 482 4.45 (1.94) 4.94 (2.18) 5.36 (2.13)
18143 / 482 0 / 0 / 0 1.49 (0.12) 2.21 (0.39) 2.40 (0.32)
18143 / 482 18143 / 0 / 482 1.42 (0.20) 2.04 (0.19) 1.97 (0.15)
18143 / 482 18143 / 482 / 0 3.34 (2.01) 3.75 (2.08) 2.20 (1.19)
18143 / 482 36286 / 482 / 482 3.40 (1.61) 4.17 (1.82) 3.40 (1.52)
2268 / 482 96400 / 0 / 482 1.90 (0.09) 2.32 (0.09) 3.54 (0.29)
2268 / 482 78257 / 482 / 0 2.01 (0.16) 2.26 (0.13) 2.16 (0.31)
2268 / 482 174657 / 482 / 482 1.93 (0.27) 2.26 (0.27) 2.37 (0.14)
18143 / 482 96400 / 0 / 482 4.31 (2.26) 4.85 (2.44) 4.58 (2.21)
18143 / 482 78257 / 482 / 0 1.69 (0.27) 2.17 (0.31) 1.61 (0.26)
18143 / 482 174657 / 482 / 482 1.81 (0.11) 1.84 (0.20) 1.96 (0.26)

TABLE 5
Mean EER (standard deviation) over 5 trained networks when training with different additional synthetic face sets. Top rows represent training no

additional data as well as with New Identities and New Faces datasets. Bottom 6 rows represent training with the Big New Faces and Big New
Identities datasets.

the same datasets of additional synthetic faces. The results
of the training are shown in Table 5. In these results we
also report on the FRGC Test dataset to determine if the
data augmentation leads to overfitting to the FRGC face
distribution.

As an additional experiment in augmenting with many
synthetic faces, 2 additional larger datasets were synthe-
sized in order to test augmentation with a large number of
images. The Big New Faces dataset augmented the Original
dataset until there were 200 faces per identity. Training with
the Big New Faces dataset resulted in a mean EER of 2.47%
(0.06) on the Test dataset. The Big New Identities dataset
contained 200 synthetic faces for each the 482 new identities.
Training with the Big New Identities dataset resulted in a
mean EER of 4.94% (1.86) on the Test dataset and when
trained with the Synthetic Validation dataset a Test dataset
mean EER of 8.24% (3.66) was achieved. The results of
training with these augmented datasets can be seen in the
bottom 6 rows of Table 5.

Training with 2268 faces from the Original dataset aug-
mented with synthetic faces improved the results. The syn-
thesis network was trained on the full Original dataset, so
this experiment may not be too informative beyond there is
clearly potential in using synthetic faces to expand a dataset.

It is notable that adding real faces to the synthetic faces
datasets and training resulted in lower mean EERs than
when training with only synthetic faces. This implies the
real faces were providing features that the synthetic faces do
not have or the training was unable to find. It is also notable
that when training with the combined New Identities, New
Faces and 2268 real faces there was no improvement over
using either synthetic dataset on their own.

Training with the whole Original dataset and the New
Identities did improve the mean EER on Validation, Test
and FRGC Test datasets over training with only the Original
dataset. Using the Big datasets, there was no improvement
in the Validation dataset however there were improvements
in the Test datasets when training with the Big New Faces
and both Big datasets. These are promising results and
highlight the potential value in data augmentation with
synthetic faces.

The variance was increased when using the New Faces
dataset for data augmentation. Early experiments were done
that combined real and generated faces of the same identi-
ties which showed the score distributions to be similar, but

possibly it was not always the case. When evaluating some
of the high variance results, it could be seen that one or
two of the outcomes had a significantly higher EER than
the mean. In a similar manner, the variance decreased when
training with the Big New Identities and 2268 original faces
while it increased when training with the Big New Identities
and whole Original dataset. More training runs may be
required to understand the variance and mean better for
this dataset but higher variance implies that the Big New
Identities dataset might be less stable for training.

When augmenting with the Big datasets for training,
the most improvement was seen in the FRGC Test dataset
while the Validation dataset mean EER was not improved.
This may show a tendency to overfit to the FRGC dataset
distribution as the number of synthetic faces increases in
the training dataset. This may be because the face synthesis
network was trained on the FRGC distribution and will
synthesize faces close to that distribution.

Based on these results, using the synthetic faces for aug-
menting an existing dataset was possible and can improve
the EER. Using the synthetic data was not guaranteed to im-
prove the performance, but it may do so for a given dataset.
In the scenario where multiple runs are made searching for
the one best trained network, training with synthetic faces
can improve the performance.

5 CONCLUSION

The initial research sub-questions have been evaluated and
discussed within the context of training facial recognition
with synthetic faces. Some methods for generating synthetic
faces have been presented and a method implemented that
focused on the problem of synthesizing front facing faces.
The synthetic faces generated with this method followed
the distributions of the original face dataset when evaluated
with the 3 facial recognition systems.

More work is needed on the criteria of uniqueness be-
tween the New Identity dataset and the Original dataset.
The results are good enough but could be better. Experi-
menting with the thresholds and evaluating the resulting
distributions would provide more insight into if the dataset
can be truly unique with the given training data. This could
then lead to publishing the synthetic faces with no privacy
issues linking to the Original dataset.

When training with the Original dataset of real faces a
mean EER of 2.21% was found on the Test dataset. When
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training with only the synthetic faces of the New Identities
dataset, the mean EER increased to 5.27%. The New Iden-
tities dataset distribution followed the Original dataset’s
distribution and had a stable mean EER when viewed from
the 3 pretrained facial recognition systems. It would seem
that some properties for identity have been embedded into
these synthetic faces, but they are not clearly learnable by a
new system being trained on them alone. It may be of benefit
to further analyse the distributions with other statistical
methods, such as the Kolmogorov–Smirnov method, to get a
more detailed picture of the differences in the distributions.
However, we have shown that a dataset of only synthetic
faces can be used to train a facial recognition system which
has potential privacy benefits.

When using the synthetic faces for data augmentation,
the New Identities dataset improved the mean EER on the
Test dataset to 2.04% and the combined Big New Identities
and Big New Faces datasets improved the mean EER to
1.84%. However this improvement is not guaranteed with
some datasets having higher mean EER after training with
more synthetic faces.

Using synthetic faces for data augmentation is a common
experiment. Our results show that finding synthetic faces
to be beneficial in augmenting data for facial recognition
training is not the same as using only synthetic faces for
facial recognition training. This is a useful result to be aware
of.

There is more to understand in generating synthetic faces
to train a facial recognition system to the same performance
as with real faces. A future research question is to determine
what the relevant difference between the real faces and the
synthetic faces is. Is it more valuable to focus on more iden-
tity preserving loss functions to make the identity features
in the synthetic faces more findable? Or is there something
other than the identity features, such as facial image quality,
that is impacting the performance when training with only
synthetic faces? Early experiments with removing outliers
that are farthest away from the mean identity vector show a
slight improvement in results and that the image quality
of the outliers may be lower. This is a good avenue to
understand better as hard, good quality faces may be useful
but noisy, low quality images may not.

Many research directions can branch out from our work.
A face synthesis network that can synthesize new front fac-
ing faces in the general distribution of the FRGC dataset has
been trained and could be extended with more facial images
and new identities to make the synthetic face distribution
more diverse. Introducing the ability to control attributes
such as pose, expression and other facial features more de-
liberately would be highly beneficial and would potentially
improve general facial recognition training further.
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Attribute Encoder Discriminator
Input image 3x128x128 Input Image 3x128x128

Conv 4x4 (stride 2x2) 128x64x64 Conv 4x4 (stride 2x2) 128x64x64
LReLU (0.2) - LReLU (0.2) -

Conv 4x4 (stride 2x2) 256x32x32 Conv 4x4 (stride 2x2) 256x32x32
Batch Normalisation - Batch Normalisation -

LReLU (0.2) - LReLU (0.2) -
Conv 4x4 (stride 2x2) 512x16x16 Conv 4x4 (stride 2x2) 512x16x16
Batch Normalisation - Batch Normalisation -

LReLU (0.2) - LReLU (0.2) -
Conv 4x4 (stride 2x2) 512x8x8 Conv 4x4 (stride 2x2) 512x8x8
Batch Normalisation - Batch Normalisation -

LReLU (0.2) - LReLU (0.2) -
Conv 4x4 (stride 2x2) 1024x4x4 Conv 4x4 (stride 2x2) 1024x4x4
Batch Normalisation - Batch Normalisation -

LReLU (0.2) - LReLU (0.2) -
Conv 4x4 (stride 1x1) 2048x1x1 Conv 4x4 (stride 1x1) 512x1x1

Tanh - Fully Connected 1x1x1
Fully Connected (mean) 128x1x1 Sigmoid 1x1x1
Fully Connected (var) 128x1x1

TABLE 6
Attribute Encoder and Discriminator DNN layers

APPENDIX A
MODEL ARCHITECTURES

Table 6 shows the DNN layer configuration for the encoder
and discriminator networks used in the training of the
face synthesis network. These are based on the DCGAN
architecture.

Table 7 shows the DNN layer configuration for the face
generator network used in the training of the face synthesis
network. These are based on a modified DCGAN architec-
ture. Upsampling and the additional depth were used in
order to achieve higher image quality.

Generator
Input Vector 640x1x1

Conv 4x4 (stride 1x1) 1024x4x4
LReLU (0.2) -

Conv 3x3 (stride 1x1) 1024x4x4
Batch Normalisation -

LReLU (0.2) -
Output: Conv 1x1 (stride 1x1), Tanh 3x4x4

Upsample 1024x8x8
Conv 3x3 (stride 1x1) 512x8x8

LReLU (0.2) -
Conv 3x3 (stride 1x1) 512x8x8
Batch Normalisation -

LReLU (0.2) -
Output: Conv 1x1 (stride 1x1), Tanh 3x8x8

Upsample 512x16x16
Conv 3x3 (stride 1x1) 512x16x16

LReLU (0.2) -
Conv 3x3 (stride 1x1) 512x16x16
Batch Normalisation -

LReLU (0.2) -
Output: Conv 1x1 (stride 1x1), Tanh 3x16x16

Upsample 512x32x32
Conv 3x3 (stride 1x1) 256x32x32

LReLU (0.2) -
Conv 3x3 (stride 1x1) 256x32x32
Batch Normalisation -

LReLU (0.2) -
Output: Conv 1x1 (stride 1x1), Tanh 3x32x32

Upsample 256x64x64
Conv 3x3 (stride 1x1) 128x64x64

LReLU (0.2) -
Conv 3x3 (stride 1x1) 128x64x64
Batch Normalisation -

LReLU (0.2) -
Output: Conv 1x1 (stride 1x1), Tanh 3x64x64

Upsample 128x128x128
Conv 3x3 (stride 1x1) 64x128x128

LReLU (0.2) -
Conv 3x3 (stride 1x1) 64x128x128
Batch Normalisation -

LReLU (0.2) -
Output: Conv 1x1 (stride 1x1), Tanh 3x128x128

TABLE 7
Generator DNN layers

APPENDIX B
FACIAL RECOGNITION SCORE DISTRIBUTIONS

Figure 10 shows the different score distributions for the
datasets for each of FaceNet, ArcFace and DLib using a
euclidean distance measure. Each column represents the
distribution from the perspective of a facial recognition
system. Each row represents the distribution of a different
dataset. Looking down each column, it can be seen that the
distributions follow each other and have similar bimodal
distributions.
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Fig. 10. Histograms of euclidean distance scores for 3000 matching and 3000 non-matching pairs for each of FaceNet, DLib and ArcFace. Each
column represents the distribution from the perspective of a facial recognition system. Each row represents the distribution of a different dataset.
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