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PREFACE

Dear reader,

Before you lies the report of the research that I have worked on for the past months, containing

my research and findings regarding energy peak reduction at charging stations in the Nether-

lands. I started my research at this company in November 2020, 10 months into the Covid-19

crisis in the Netherlands. After months of applying at different companies, it became clear that

during this crisis, companies were not ready to take in new employees and especially graduates

due to the uncertainties surrounding the virus. I was overjoyed when, with the help of my cousin

Joost, this company reached out to me for an interview, after which I was accepted to start my

graduation. I want to thank Joost for his help in introducing me to this company during this time

where the entire professional world seemed closed for newcomers.

At this company, I was placed in the Products-team, nowadays called Solutions & Services,

where I was given a very warm welcome by the entire team. Bas would become my lead

supervisor and Frank would become the key stakeholder of my research. In a crash course, they

shared with me the most important information about the company, the team I would become

part of, and the EV market with all its complexities. Together with them, we gave direction to

the research and its objective. During my research, they helped me stay on track and working

towards the end goal. I want to thank them both for their help and support. I think our talks have

always contributed to a better end product. Thank you for guiding me through the research.

I also want to thank the Products-team in general, for their warm welcome and always being

available for questions or helping me otherwise. I want to thank Guillaume in special, for taking

me along some field trips to see and discuss the inner workings of charging locations. He has

helped me greatly with understanding the technical aspects of EV-charging, for which I am very

grateful.

I would also like to thank my supervisors Peter and Martijn from the University of Twente for

guiding me through the process of conducting and reporting an academic research. Their

insights and their often critical questions helped me in shaping my research and keeping me

on the right track to successfully complete the research. Our talks, while unfortunately digital,

were always not only insightful but also very fun. We could easily spend half of the appointment

talking about the Covid-19 situation, discussing a scheme for occupying a family member’s

gaming room for use as an office, or simply discussing a recent tennis match. This really helped

in setting the informal tone of our meetings, which however never interfered with the valuable

feedback you provided. Thank you for your help and the great talks.

Furthermore, I want to thank my parents for their unwavering support, who can rest easy now

knowing their son successfully finished his studies. Finally, I want to thank my girlfriend Amy,

who has always been there to help me clear my mind, proofread my report, and calm me down

when anxiety and stress about looming deadlines got the better of me. You have had to endure

countless hours of me discussing problems I ran into, and helped me restructure my thoughts

and overcome these problems. Thank you for being there for me.
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With a research connected to the new developing EV market, I feel privileged to have worked

towards improvements on this company’s operations, and in the process maybe even help

relieve some of the load currently imposed on the Dutch energy grid. In my months at this

company, besides working on my research, I have contributed in a side-project by developing

a dashboard and tool to control and monitor an industrial battery system, which has then been

successfully used for peak-shaving at a charging location during a two month pilot run, which

I am very proud of. Most importantly, I have learned more than I could have ever imagined

about the inner workings of charging locations and all the interesting developments in the EV(-

charging) market. I can only hope my research will contribute to this exciting field.

I hope you enjoy reading my thesis.

Koos Sipma

Amersfoort, August 17th, 2021
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MANAGEMENT SUMMARY

This report presents an exploratory research on options for reducing peak demand at fast

charging locations, in particular by means of Smart Charging, the installation of batteries or

the combination of both. The current working context of company X is analyzed, after which

a model has been built that incorporates the proposed solutions. A tool has been built that

provides easy access to simulating the built model. A total of 18 scenarios have been simulated,

which provide promising results, with possible savings spanning between €5,000 and €70,000

per fast-charging location over a 10-year time-period.

The height of the peak demand on fast-charging locations determines the equipment needed

for supporting that peak, as well as the monthly costs associated with that peak. Initial analysis

reveals that all Dutch fast-charging locations of company X have observed a peak 10x-50x

higher than the average load. Literature suggests the solution of integrating a battery at the

charging locations, providing a buffer whenever the demand is exceptionally high, and recharg-

ing whenever demand is low. Little has been written about Smart Charging at fast-charging

locations, while studies are available where additional customer data (arrival times, departure

times, target battery charge) is available before the start of a charging session. This report

assumes no prior knowledge other than the expected demand for a certain day. This leads

the main research question for this report to be: How can peak-related costs be reduced at

fast-charging locations for EVs in the absence of customer arrival- and charging information,

and what is the impact of the possible solutions? The report further distinguishes itself from the

available literature by combining two peak-reduction techniques.

Amodel has beenmade to combine the use of batteries with Smart Charging. The Smart Charg-

ing algorithm in this implementation distributes the available energy to customers proportional

to their contribution to the total demand. Unfulfilled demand is penalized, introducing costs to

the model whenever Smart Charging is applied. The report defines the mathematical functions

behind the model. Simulations are used to analyze different experiments.

A tool has been built using Apache Spark, providing company X easy access to the simulations

and allowing the model to be scalable through parallel computing. The tool has been used to run

the simulations and gather results. The tool requires input-parameters with which the simulation

can be customized to the desired configuration. For the configuration used in the experiments in

this report, an explanation is given in the report substantiating the choices made. The true value

of certain inputs are not yet known. For those, a sensitivity analysis is done in the experiments

to determine the influence of these inputs on the results. It should therefore be noted that the

results present a range on which the true value is expected to be. Further research should

investigate the actual value of these inputs as to create more precise results.

The experiments investigate three different fast-charging locations in the Netherlands, differing

in number and type of chargers, and thus differing in expected demand profiles. For these three

locations, six experiments are run with some differing input parameters for sensitivity analysis,

for a total of 18 experiments. These experiments show that it is almost always profitable to

apply peak-reduction techniques, with additional profits ranging between €5,000 and €70,000
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per location over a 10-year time-period. The exception is for locations with only a single fast-

charger and low expected demand growth. While some additional profit is generated through

lower monthly costs for peak demand, the majority of the profit is realized through being able

to use smaller -and cheaper- grid connections, easily reducing the total investment costs for

a fast-charging location with €20,000. One especially interesting case is for locations that can

drop below a peak of 160 kW, where not only the expenses for the grid connection drop with

€26,000 total, but also the need for a transformer is removed further reducing the investment

cost by €50,000. Note that these values and prices are specific to the Netherlands (and even

differ slightly inside the Netherlands) and that for other countries other rates and limits may

apply. The created tool offers the possibility to define those values for analysis of charging

locations in other countries.

The majority of the experiments has the best solutions not using any battery at all, while the

experiments that do recommend batteries only use fairly small ones. This presumably indicates

that batteries are on the verge of becoming cost-effective tools of combating demand peaks.

This research recommends that Smart Charging is introduced to new charging locations, or to

charging locations where the demand would normally warrant an upgrade of grid connection.

Charging locations that narrowly exceed the maximum limit of a certain grid connection are

especially interesting candidates for peak-reduction techniques given the possible cost reduc-

tions.

Further research should focus on defining currently unknown input parameters as to increase

the accuracy of the results. Mainly the penalty function for unmet demand should be further

investigated. Furthermore, improvements to the model can be made to include a better imple-

mentation of demand growth. Finally, the influence of lower battery prices can be researched

for more insight in when the batteries are expected to become cost-effective.
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1 INTRODUCTION

With the introduction of Direct Current (DC) Fast Chargers and High Power Chargers (HPCs)

(see Section 2.1.2 for descriptions of these types of chargers), the Electric Vehicle (EV) market

has overcome one of the main concerns for consumers to switch to EVs by supplying time-

efficient ways of recharging an EV. However, increased charging speeds comes with higher

fluctuations in the energy demand, with severely increased peaks in demand when several cars

are charging simultaneously. These peaks require more expensive hardware and furthermore

increase the monthly cost of energy. This report presents an exploratory research investigating

the possibilities for lowering the energy related costs at these fast-charging locations. Real life

data for this report has been made available by company X.

1.1 Problem Statement

company X experiences intermittent demand at their charging locations, causing high initial

and monthly recurring expenses. They want to know what steps they can take to decrease

these costs. This section briefly discusses the main components of this problem: what are

the consequences of the intermittent demand, and which factors drive up company X’s costs?

Finally, a problem cluster is presented to visualize the problem at hand.

1.1.1 Investment costs

The main driver of the initial investment costs is the height of concurrent power that the in-

frastructure must be able to support. The expected peak power usage dictates the type of grid

connection and the need for auxiliary equipment like, for example, a transformer. The choice for

any connection limits the maximum power draw from the grid accordingly. In different countries,

different limits and options apply. Section 2.2.1 elaborates upon the different investment costs

that are incurred.

1.1.2 Intermittent demand

On company X’s Fast-charging locations, while there is historical data, there is no information on

currently occurring customer arrivals. Furthermore, once a customer has arrived, no information

is available on their demands. Combining this with the intermittent demand creates a situation

where scheduling arrivals or pre-allocating resources is hard. There is a clear seasonality over

the day, which increases the variance in load even further. The grid operator uses the observed

peak demand as their metric to decide howmuch capacity theymust reserve (see Section 2.1.1).

This means that the height of the peak directly correlates with the monthly energy costs. Section

2.2.2 goes into more detail about the way these costs are structured, and what monthly costs

to expect.
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1.1.3 Problem Cluster

In order to get a better overview of the problem at hand, a problem cluster has been made,

which is displayed in Figure 1.1.

No information on
customer charging

demands (1)

No information on
arrivals (2)

Very intermittent
demand (3)

High demand
seasonality over the

day (4)

Load not schedulable
(6)

High load variance
(7)

Strong fluctuations
around the

seasonality (5)

Incidentally very high
peak demand (8)

High monthly grid
costs (10)

Expensive grid
connection and

hardware needed (9)

Figure 1.1: Problem Cluster

First of all, there is no information on customer charging demands (1); most of the time there

is no information how long an EV driver wants to wait before leaving the charging locations

again, or how much battery charge they need before being able to arrive at their destination.

Furthermore, there is no information on when an EV driver will arrive (2), as they do not have to

place a reservation on a charging spot. Finally, the nature of fast-charging locations is to have

a very intermittent demand (3). These three factors combine into an encapsulating problem,

which is that the required load is not schedulable (6), which in turn incidentally causes very high

peaks in the required load (8).

Furthermore, the very intermittent demand (3) also causes a high load variance. This is further

increased by having a high seasonality over the day (4) and strong fluctuations around this

seasonality (5). These factors cause a high load variance (7). Having a high load variance

implicitly tells us that, again, there will occasionally be very high demand peaks (8).

Finally, as elaborated in Section 1.1.1, incidentally having a very high peak demand (8) re-

quires expensive grid connections and hardware (9) in order to be able to support those peaks.

Furthermore, these high demand peaks (8) also increases the monthly grid costs (10).

1.2 Research Questions and Deliverables

Themain objective of this research is to explore options to maximizing the profits of company X’s

Fast-Charging operations, by optimizing the peak energy demand from the grid. Looking at the

problem cluster presented in Section 1.1.3, it is clear that solving the main problem, incidentally

very high peak demand, will reduce the expenses for the charging location. Solving this problem

can either be done by solving underlying problems, or by implementing solutions that solve the

problem despite the underlying problems still being present. As for the underlying problems,

the high load variance is implicit with the market in which company X operates, and thus it is
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not subject to change in this research. The other underlying problem, the fact that the load is

not schedulable, can possibly be solved if company X implements some sort of system in which

customers present their arrival times and charging demands. However, this research will focus

on solving the main problem as to provide solutions even if there is no customer information

available. The main research question will therefor be defined as:

Main Research Question. How can peak-related costs be reduced at fast-charging

locations for EVs in the absence of customer arrival- and charging information, and

what is the impact of the possible solutions?

1.2.1 Research Sub-questions

In order to answer the main research question, multiple sub-questions will have to be answered

first. The sub-questions are categorized by the logical step they belong to and display the

section in which the research question is discussed.

I. Analysing Current Situation

The first step is to create a benchmark to which we can compare proposed solutions. Multiple

questions will have to be answered to create a overview of the current situation.

Research Sub-question 1. What are the amounts of costs involved in operating a fast-charging

location? (Section 2.2)

Research Sub-question 2. How does the current demand behave over different time periods?

What are the current demand peaks? How often do those peaks occur? (Section 2.4)

II. Generating Possible Solution Ideas

After quantifying the problem by analysing the current situation, we need solutions to solve the

problem. A literature research conducted in this step will present possible solutions.

Research Sub-question 3. What kind of solutions are proposed in the literature for reducing

peak energy demand? (Section 3.1)

Research Sub-question 4. Which solutions are applicable for company X’s situation? How

would they be applied? To what extend can they be combined and how? (Section 3.2)

III. Creating Methodologies

Knowing which solutions are valuable to test out, methodologies have to be created on how to

approach setting up experiments using the solution, and how to gain meaningful results out of

them.

Research Sub-question 5. How can the proposed solutions be modeled? How should the

proposed solutions be evaluated? (Chapter 4)

Research Sub-question 6. How should the experiments be designed? (Section 5.2)
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IV. Result Analysis

When the experiments are finished, the results have to be analysed on the impact they would

have, both in customer experience and in decrease of operating costs.

Research Sub-question 7. How do the proposed solutions perform? What impact do the solu-

tions have on company X’s profit? (Section 5.3)

Research Sub-question 8. What are the drawbacks of the proposed solutions? What impact do

the solutions have on customer experience? (Section 4.1.1, Section 4.2.1, Section 4.3.1 and

Section 5.3.3)

1.2.2 Research Scope

Now that the research questions are defined, it is important to define a scope in which they will

be investigated. Below, an overview is found defining the scope of this research.

Countries

company X is active in many European Countries. Each country has different rules and associ-

ated costs to high energy usage. While the model aims to be generic enough to include a wide

range of countries, this report will focus on the data originating from the Netherlands.

Charging Stations

Of all the charging locations, fast-charging locations are the main driver when it comes to

energy-related expenses for reasons explained in Section 1.1. This research will therefor focus

on this group of locations.

Note that these locations will often still house Alternating Current (AC) Chargers as well (see

Sections 2.1.2 and 2.3), which are taken into account in the location’s demand models in this

report.

Input Variables

This report will focus solely on lowering energy-related costs, given a certain location configu-

ration. This means that geographical location allocation, as well as demand forecast, location

design (types and amounts of chargers) and other types of input parameters will not be subject

to optimization or investigation. These kinds of variables will be treated as input variables and

the accuracy and efficiency of these variables are thus not discussed in this report.

Tool

In order to provide company X with the means to analyse these problems not only now but

also in the future, a tool will be created that can help company X make decisions on their Peak

Reduction measures. This tool will implement the proposed model and provide easy access to

performing simulation experiments.

1.3 Report Outline

Chapter 2 will present an analysis of the working context, giving an overview of the workings of

the field, explaining the different stakeholders and equipment, as well as present an overview

of the current data on company X’s Fast-Charging locations. Chapter 3 presents the current
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literature on relevant topics, and discusses where this report will fit into the current literature.

Chapter 4 discusses the selected solutions and describes the methodology and model used for

each of the solutions. Chapter 5 presents the results of the experiments with the proposed solu-

tions and presents findings on these results. These findings will be used to create conclusions

and recommendations in Chapter 6, where also the limitations of this research and possibilities

for further research will be discussed.
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2 CONTEXT OVERVIEW

This chapter focuses on the working context of the project. Section 2.1 introduces the actors

and terminology of EV-charging, Section 2.2 presents an overview of the costs associated to

operating a Fast-Charging location. Section 2.3 visualizes an overview of the connections and

interactions at a fast-charging site. Section 2.4 provides data insights into the current situation.

Finally, Section 2.5 concludes the chapter.

2.1 EV Charging

This section will go over the different terminology and actors in the EV charging branch.

2.1.1 Actors

It is important to understand the different actors in the EV-Charging context in this report. We

will discuss Charge Point Operators (CPOs), Mobility Service Providers (MSPs), Grid Operators

and EV-drivers.

Charge Point Operators

A Charge Point Operator (CPO) is a company that is responsible for installing, maintaining and

operating the charge poles. While the exact business models of CPOs differ, their main cash

flow comes from selling the installation of charge poles and auxiliary services like maintenance,

as well as fees from MSPs (see below). The CPO is responsible for connecting the charge pole

to the grid and they pay the energy fees to the Grid Operators and Energy Suppliers (energy

costs as well as connection and transportation fees).

Mobility Service Providers

Mobility Service Providers (MSPs) are parties that mediate between the CPO and the EV-

driver (consumer). They provide services for payment and provide products like charging-

subscriptions as well as payment cards. Alternatively, they handle payments via an smartphone

app. The MSPs have contracts with CPOs allowing the MSP to be able to use the charge poles

owned by the CPO. While many pricing constructions can be imagined, often the CPO receives

some margin per sold kWh, with the MSP determining what the price per kWh would be for

the EV-driver. While the contracts can differ greatly, it can be speculated that the CPO might

impose additional restrictions on the contract such as for example a maximum consumer-price

per kWh.

Grid Operator

The Grid Operator is responsible for maintaining a healthy energy grid in the area where they

are active. They sell grid connections and reserve grid capacity for high-usage customers.
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Their focus lies on ensuring that all energy demand can be transported over the grid. The grid

operator is not responsible for supplying the energy, which is done by an Energy Supplier.

EV-Driver

The EV-driver is the end consumer who uses the charge pole maintained by the CPO and pays

for the charging sessions through their MSP.

2.1.2 Charge Poles

Their exist many types of charge poles, with differing amounts of charge speeds and charge

methods. These charge poles can be categorized based on their charging method.

AC-Chargers

AC-Chargers provide Alternating Current (hence the ”AC”) to the EV. However, in order to

charge the battery of the EV (or any battery for that matter), Direct Current (DC) is required. This

means that the EV needs to convert the current, for which it has a AC-DC converter installed.

This converter is however small and thus often cannot take high amounts of current, resulting in

large charging times. This earns this type of charger its unflattering nickname ”Slow-Charger”.

These kinds of chargers are often found in consumer homes, large charging plaza’s and at

public urban charging spots. These kinds of chargers are mostly fit for overnight charging due

to their low currents. The maximum amount of energy that can be supplied to an EV through

an AC-charger is 19.2 kW [1]. Ultimately, the amount of energy that the EV can actually take is

determined by its transformer and battery.

DC-Chargers

DC-Chargers circumvent the need for the transformer in the EV by providing Direct Current by

converting the AC current from the grid before supplying it to the EV. This allows the charger to

supply the energy straight into the battery without getting bottle-necked by the converter inside

the EV. For DC-charging, the definition in the J1772 standard defines a level 1 DC charger

with a maximum energy throughput is 48 kW, and a level 2 DC charger with a maximum

energy throughput of 400 kW [1]. Nowadays, most DC-chargers implement the level 2 DC

charging, with chargers currently ranging from 50kW to 350kW. The term ”Fast Charging”

(also confusingly named ”DC-charging”) is used for DC charging with 50 kW or lower energy

throughput, while everything above 50 kW is coined ”Ultra-Fast Charging”, also named ”HPC-

charging” (High Power Charger). For this report, we will use the term ”Fast-Charging” to span

all types of DC-chargers. These kinds of chargers are found at in-transit charging locations.

Their high charging speeds make them excellent for recharging during a trip.

2.2 Cost Components

The introduction of DC Fast Chargers (50 kW) on public charging locations has introduced

more erratic demand on the grid, with higher demand peaks. Recently, new fast chargers

have become capable of delivering higher power amounts, increasing the problem even further.

These chargers are called High-Power Chargers (HPCs), currently going up to 350 kW. This

causes two obstacles for the CPO to overcome, as discussed in Section 1.1. First, in order

to assure the peak demand can be met, the hardware on the charging site has to be able to

handle the large amounts of energy. Second, the grid operator needs to reserve capacity for

this site. In this section we will discuss the costs associated with the hardware and the energy
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contract respectively. The elaborated costs are calculated individually per European Article

Number (EAN). An EAN is a code specific to the grid connection of a location. Theoretically

multiple EANs can be present on a single location, however, this only occurs in very specific

circumstances. In practice, the relation between a location name and an EAN code is one-on-

one. As such, this report will be using the two terms interchangeably.

2.2.1 Investment Costs

When thinking about investment costs for Fast-Charging locations, many different elements

can come to mind. For this report however, we will only look at two elements that have a direct

connection to the expected peak power: grid connections and transformer costs. One could

argue that the number and types of charge poles also has a direct connection with the peak

power, and one would be right. However, as stated in the research scope (Section 1.2.2),

the types and amounts of chargers will be treated as input variables and are thus not subject

to optimization. As such, in analyzing different scenarios these charge poles -and thus the

associated costs- remain constant and can therefore be left out of the equation.

Grid Connection

The choice for a certain grid connection determines the maximum concurrent power that can

be supported. The exact costs and limits of different connections differ over the grid operators.

Table 2.1 shows example investment costs of different grid connection sizes, based on the

pricing of Liander in 2021 [2]. As can been seen from the table, these investment costs increase

significantly with each step up. Moreover, these costs are incurred not only for connecting a site

to the grid, but also again on disconnecting from the grid, for example when upgrading the grid

connection or decommissioning a site. Finally, there is also a difference in the associated time-

to-market. Experts say that with a bigger connection, the time needed to install the connection

increases. This means that a site can be operational (and generating revenue) earlier when

choosing a smaller sized connection.

Example of grid connection prices (Liander 2021 [2])

Max. Capacity (in kW) Costs (in €)

100 4,522.00

160 5,037.00

630 18,508.00

1,000 25,179.00

2,000 36,406.00

5,000 237,731.00

10,000 282,321.00

Table 2.1: Example costs for grid connections

Transformer

Charging poles are operating on low voltage alternating current (400Vac 1). When the grid

connection increases, the supplied voltage may be too high, requiring a transformer to change

the voltage down to the required amount. Such a transformer results in significant costs, with

prices in the range of €50.000, required whenever the peak energy usage exceeds 160 kW
2. Furthermore, the transformer has a power loss, which further increases the monthly energy

1400 Volts Alternating Current
2Limit for the Netherlands, other countries may apply different limits
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costs. Finally, a transformer takes up space at the charging location which also introduces costs,

either in the form of contracted costs per square meter or in the form of opportunity costs, as

there could have been more chargers in the same allocated area providing additional revenue.

The power loss and costs per square meter will not be implemented in the model, but will be

additional benefits for locations without the need for a transformer.

2.2.2 Energy Contract

In order to assure the demand can be met, the grid operator reserves a certain amount of

energy transport capacity, determined in the contract between grid operator and the CPO (in

this case company X) as the Contracted Value. Naturally, this reservation of capacity costs

money, which gets charged to the CPO. The way the Contracted Value is determined differs

per country. In the Netherlands, whenever the 15-minute demand exceeds the contracted value,

the Contracted Value is upgraded to the new peak. The Contracted Value has to be manually

adjusted down, and can never be reduced below the highest observed peak demand in the

past 12 months. The implications of such contracts are that a single time period of 15 minutes

with exceptionally high demand can dictate the costs of the Contracted Value for the coming 12

months. In addition to the Contracted Value, depending on the size of your contract, there can

also be additional monthly costs for the observed peak energy usage for that month specifically.

Table 2.2 provides an example of energy transportation costs from Liander in 2021 [3].

Example of monthly grid operator energy transport prices (Liander 2021 [3])

Max. Peak (in kW) Contracted Value (in €/kW) Monthly Peak (in €/kW))

50 0.76 -

136 1.93 1.74

2,000 1.23 1.74

>2,000 2.01 2.50

Table 2.2: Example costs for energy contracts

2.3 Overview Charging Site

Now that the most important elements of a charging location are discussed, it may be helpful

to visualize a charging site. Figure 2.1 presents a simplified overview with the components

discussed in the previous Sections. In this Figure, multiple chargers of different types can be

seen, with DC-Chargers (”Ultra-Fast-Chargers” [A] and ”Fast-Chargers” [B]) and AC-Chargers

[C]. The chargers all connect to the transformer [D] which in turn is connected to the grid [F].

Somewhere between the grid [F] and the transformer [D], the amount of energy is measured [E].

As can be seen from this Figure, the energy usage from the combined chargers is measured

at this point, including possible energy losses in the transformer. Note that this Figure is a

generalization, as the way the energy drawn from the grid is measured differently in varying

countries and even differs within a country depending on different factors including the type

of grid connection. Discussing all the different variations and nuances is beyond the goal of

this report, and the purpose of the Figure is to create a visualization of the connections at an

average charging site. This Figure will be adopted later in the report when discussing solution

proposals to illustrate the differences in site configuration.

2.4 Data Analysis

Before implementing any solutions, it is useful to investigate what the current situation is, which

provides insights and creates a benchmark for later analysis to compare to. This section
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Figure 2.1: Overview Charging Station

19



presents multiple figures representing the data, providing different viewpoints and information.

Each subsection presents a question which that is answered by the presented data. In some

cases, it might prove useful to additionally look at a single EAN (location) to get a better feel for

what the data on EAN-level looks like. In those cases, the charging location ‘Location Y’ will be

used.

2.4.1 Seasonality

It is useful to recognize the patterns in daily and weekly power consumption. Below, an overview

can be found of these seasonalities.

Daily seasonality

Question. What is the average energy demand at a certain time during the day on company X’s

chargers at fast-charging locations?

Figure 2.2: Average Energy Usage over the Day

Figure 2.2 shows that there are large differences between nighttime charging at Fast-Charging

locations, and charging during the day. A peak is observed somewhere between 11:00 and

13:00 (UTC).

Weekly seasonality

Question. What is the average energy demand at a certain time during the week on company

X’s chargers at fast-charging locations?

Figure 2.3 shows that the weekdays have similar demand patterns, whereas the weekends

show a significantly smaller energy demand.
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Figure 2.3: Average Energy Usage over the Week

2.4.2 Load Factors

It is important to know how much of the reserved capacity is actually used, and how much is

‘thrown away’. A good metric to indicate how much of the reserved capacity is utilized is the

Load Factor. Let t be a 15-minute time slot for t = 1, . . . , n. The demand in time slot t is denoted
by dt. The Load Factor L is described by the equation:

L =
d̄

d+
(2.1)

where

d̄ =

n∑
t=1

dt
n

(2.2)

and

d+ = max(d1, . . . , dn) (2.3)

.

As follows from equation 2.1, the Load Factor L will be in the range L ∈ [0, 1] and represents the
fraction of the reserved capacity actually utilized. When trying to increase L, we can either try
to increase the mean demand d̄, or decrease the peak demand d+. As this report does not look
at ways to increase (or decrease) the daily demand, our only option is to somehow decrease

the peak demand d+.

Load Factor Distribution

A central question that arises regarding Load Factor is what the current distribution of Load

Factors over the different locations is. Figure 2.4 shows the distribution of the Load Factors

across all researched EANs. Notice that the majority of the locations have a Load Factor below

0.05, which means that only one twentieth of the reserved capacity is actually utilized.
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Question. How are the Load Factors of company X’s fast-charging locations distributed?

Figure 2.4: Distribution of Load Factors

Load Factor versus Peak Demand

It might be useful to determine if there exists a correlation between the Load Factor and the

maximum peak demand. Figure 2.5 shows the distribution of Load Factors given their Peak

Load. This figure indicates no such correlation.

Question. Is there a correlation between Peak Power and Load Factor at company X’s fast-

charging locations?

2.4.3 Example of energy demand at a location

Given the data found in Section 2.4.2, it might be useful to get a feeling what a time window

of loading sessions looks like. Figure 2.6 shows the data from Location Y over a 3-day time

period in November 2020. Each vertical line represents a 15-minute time interval, with the

height indicating the amount of kW demanded. Recall from equation 2.1 that the Load Factor

is influenced by the maximum demand in the time window. This means that a single outlier can

have a big impact on the Load Factor. From this figure it can be seen that the contracted value

would have been at least 250 kW, while the rest of the time no peak comes close, if there is any

demand to begin with.

Question. What does the energy demand over time at a given location look like?
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Figure 2.5: Peak demand vs Load Factor

Figure 2.6: Example of energy demand at a location
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2.5 Chapter Summary

This chapter has presented the different actors in the EV chargingmarket, and elaborated on the

different types of chargers and hardware found at an EV charging site. An simplistic overview

of the connections at a charging site has been provided. We have presented the types of

costs a CPO has to account for and how these costs are influenced. Finally, data has been

presented to give an overview of the current performance of company X’s charging locations in

the Netherlands, and the term Load Factor was introduced as an indicator to how much of the

reserved energy transport capacity is actually used by the charging site.

Summarizing, the CPO has to pay initial investments in the form of grid connections and auxiliary

hardware like transformers. Furthermore, the CPO also has to pay monthly expenses to the grid

operator for the transportation of the energy. Both the investment costs and monthly costs are

highly dependent on the height of the energy peak that the charging location needs to be able to

draw from the grid. The data analysis showed that the Load Factor is low over all fast-charging

sites, with most values ranging between 0.01 and 0.05, meaning that only 1-5% of the total

reserved transport capacity is utilized.
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3 LITERATURE RESEARCH

This chapter presents an overview of the available literature concerning EV charging (Section

3.1). Furthermore, Section 3.2 reflects on how the current literature is applicable for fast charg-

ing locations and explains where this report tries to fit in within the current literature.

3.1 Literature

Recently, a lot of research has been conducted on the topic of charging electric vehicles,

spanning a wide variety of topics associated with it. Daina [4], Wang [5], Weldon [6], Lin [7] and

Shun [8] have modeled the usage and charging patterns of EV-drivers. Furthermore, research

has been conducted on location-allocation of fast charging sites by Morro-Mello [9] and Motoaki

[10]. More societal focused research is presented by Zheng [11] with research on the topic of

Vehicle-to-Grid, using electric vehicles to help balance energy grids, and Fang [12] who focuses

on the societal costs of EV charging.

Many papers have focused on reducing the peak demand in urban locations caused by EV

home charging. Kang [13] and Jian [14] present concepts of real-time scheduling techniques

for EV charging, with the goal of minimizing impact to the power grid. These techniques make

use of the fact that EVs are charged at night and only have to be done charging when the

EV driver wants to depart in the morning. This creates the opportunity to cleverly allocate the

available energy and reduce the peak energy demand. For Fast-Charging locations, EV drivers

want their EV to charge up quickly as they are in-transit and want to continue their journey as

soon as possible. This creates a new problem of how to reduce peak demand on Fast-Charging

locations.

Reducing the peak power on a Fast-Charging location is not only needed for grid stability,

but also for financial feasibility for the CPO. Flores [15] and Muratori [16] outline the financial

factors that can influence the decision of placing High-Power Chargers at charging locations and

assesses the cost of electricity at Fast-Charging locations. They both show that the marginal

costs of electricity demand goes down when the utilization of a Fast-Charging location goes up.

One of the solutions for reducing peak power is to not always meet the demand. Choices can be

made to deliver less power to the EV driver in periods of high demand. This approach becomes

a trade-off between customer satisfaction and financial gain. Many different approaches exist to

optimize this trade-off, which make use of additional customer information like expected arrival

time, preferred departure time or required state-of-charge of the battery. Casini [17] uses a

receding horizon approach for minimizing peak power while guaranteeing customer satisfaction,

by forcing the EV driver to select upon arrival a desired amount of energy to be charged at

departure. Şengör [18] uses an LP model to maximize the Load Factor, using customer data

on required state-of-charge at a certain specified departure time to optimize allocation of the

available energy.

Another solution is to steer demand to lower demand time-periods. Xydas [19] presents a

scheduling algorithm based on Multi-agent systems, where EV driver agents place bids for

available electricity with the goal of minimizing the costs, while energy supplier agents set prices

of electricity to push energy demand towards low-demand time periods. Zhang [20] uses a
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game-theoretic approach to find the optimal allocation of energy given the departure deadlines

of EV drivers and the cost of electricity as factors in each driver’s willingness to charge. These

methods require dynamic pricing towards the EV driver.

A third solution is presented in the form of storing energy during low demand time periods

for later use during high demand. Muratori [21] and Elma [22] outline the benefits of adding

energy storage to a Fast-Charging location and propose the deployment of microgrids for these

locations, with a battery as a buffer between the supply and demand of energy. Batteries can

reduce the peak demand and the associated demand charges, and increase efficiency of local

energy generation by being able to store the surplus of energy whenever there is more supply

than demand. Johnson [23] presents a methodology to determine the optimal battery size for a

given demand.

Finally, a more visionary approach to solving the EV charging problem is discussed by Sarker

[24] and Tan [25], who present the idea of battery-swapping stations where a depleted EV

battery gets swapped out for a charged battery, theoretically minimising the lead-time of re-

energising the EV while also creating opportunities for optimally recharging the depleted bat-

teries. At the time of writing this report, the company NIO is planning to roll out these kinds of

swapping stations and has presented its deployment plan [26].

3.2 Literature Reflection

The current literature contains many papers about energy distribution and peak shaving in the

presence of EV charging. Most of the literature concerned with lowering demand peaks focuses

on nighttime peak shaving in urban environments, where optimization can take place as cars

will only have to be charged by morning, and they are connected longer than needed to reach

that goal. In the case of fast-charging locations, this problem has not yet been extensively

researched, presumably due to the fast-charging locations being a relatively new concept. The

literature that does discuss peak shaving at fast-charging locations mainly uses dynamic pricing

in order to sway customers to accept longer waiting times or change their behaviour to charge in

low-demand periods of the day. Other literature uses ahead-of-time information on demand for

optimally scheduling sessions. For this report, company X is interested in what other solutions

can be used for peak shaving where pricing is not dynamic, and no session information is

available prior to the EV driver arriving at the station. This report will use existing solutions for

home smart charging and try to adapt them for fast-charging locations. More specifically, two

concepts are chosen and additionally combined to see if that would further improve results. The

first chosen concept is ‘Smart Charging’, where the maximum amount of grid-draw is capped

at some value and the available energy is distributed in some way to the charging EVs. The

second concept is the idea of integrating a battery into the micro-grid, creating a buffer for when

peaks occur. This battery would be configured to store energy whenever the demand is below a

certain threshold, and to supply additional energy to the chargers whenever the demand would

be above the specified threshold to decrease the load on the grid. This report proposes a

novel model where the two concepts are combined and used in fast-charging locations. Table

3.1 gives an overview of what kind of charging scenario (home-charging or fast-charging) is

discussed and what the solutions are that the literature provides, and compares them with what

this report presents.
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[13][14] [17][18] [19][20] [21][22] [23] This work

Home Charging 3 3

Fast-Charging 3 3 3 3

Dynamic Pricing 3

Smart Charging with Prior Info 3

Smart Charging without Prior Info 3 3

Energy Storage 3 3 3

Combining Solutions 3

Table 3.1: Literature Comparison
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4 POSSIBLE SOLUTIONS & MODELS

From the literature, two solutions have been selected to be analyzed in detail to see how much

they could reduce the peak-related costs in fast charging locations: Local Energy Storage and

Smart Charging solutions. A third solution is added in the form of a combination of the two

solutions. This chapter discusses the justifications for proposing the different solutions and

presents the methodologies and functions that are used to build the model. The implementation

of themodel, and the exact implementations for the input functions and parameters can be found

later in Chapter 5.

4.1 Local Energy Storage

This Section discusses the solution of Local Energy Storage, which introduces a battery in

between the charge poles and the grid at an EV-charging site. Subsection 4.1.1 discusses the

concept and the goals of this solution. Subsection 4.1.2 presents a mathematical model of this

solution.

4.1.1 Justification

As shown by the literature (see [21], [22], [23]), local energy storage (a battery) can be used

to decrease the peak grid demand by storing energy in periods of low demand and supplying

energy from the storage system during peaks. Furthermore, it increases effectiveness of local

energy generation, for example from solar panels or other renewable energy sources as energy

generated in periods of low demand will not go to waste but can instead be stored for later

use. Finally, the expected decrease in peak power can also lead to smaller (and cheaper) grid

connections and auxiliary hardware, as discussed in Section 2.2.1. One positive effect from

this solution is that the end-user will not experience any difference from their original charging

experience. However, a downside is that initial investments have to be made to purchase and

install the battery. Also, an extra point-of-failure is introduced, possibly increasing average

maintenance costs. While maintenance costs are out-of-scope for this report, it is important to

evaluate if the reduced costs from lower peaks justify the initial investment of the battery.

Figure 4.1 presents an adaptation of Figure 2.1, with the introduction of the battery into the

system. Again, there are different types of chargers ([A], [B] and [C]) which are now connected

to the battery [D]. In turn, the battery is connected to the transformer [E]. The transformer

is connected on the grid [G], where somewhere along this connection an energy meter is

installed [F]. Note that, as explained in Section 2.2.1, the transformer may be omitted if a small

grid connection is used. In this case, the battery is directly connected to the grid, with the

energy meter somewhere along that connection. The blue lines in the Figure show the tunable

parameters, with the Battery Size b+ [X] and the maximum grid draw g+ [Y]. Section 4.1.2 will

discuss these parameters in detail.
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Figure 4.1: Overview Charging Station

4.1.2 Methodology & Model

A model of the state of the battery is needed in order to analyze this solution. As inputs for this

model, a battery size b+ in kWh and a maximum power draw from the grid g+ in kWh per time-

step t are defined. For each time-step t with corresponding charger demand dt, the battery will
either store the energy in a battery whenever a surplus of energy is available, or draw from the

battery the difference between the demand and the specified max power draw from the grid,

bounded by the capacity of the battery. The amount of stored energy at any time-step bt is
described by equation 4.1.

bt = min(b+, bt−1 − dt + g+) (4.1)

The amount of power drawn from the grid on a certain time-step gt is given by equation 4.2 .

It describes that the amount of energy taken from the grid is either the maximum allowed grid

draw g+ or the amount of energy needed to fill the battery, whichever is lower.

gt = min(g+, b+ − bt−1) (4.2)

It can be observed from equation 4.1 that the battery charge bt can be negative. This does

not concern our model as it allows for freedom to choose what happens whenever the battery

charge bt drops below 0.

4.1.3 Battery Costs

In order to analyze the profitability of implementing local energy storage, a cost function is

required to calculate the investment costs of a battery with a certain size. This battery cost

function will be defined as B(b+), which is some function that returns a value B depending on a

given battery size b+. The implementation of this function for the experiments in this report will
be done in Section 5.2 discussing the experimental setup.

When investigating the battery solution with a certain battery size b+, max grid demand g+ and

battery cost B, we can calculate the total savings by first calculating the peak-related costs per
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time-step if no battery was present and compare it to the peak-related costs after introducing

a battery to the system. Subtracting those two from each other offers a list of savings A per

time-step t for the entire time-frame. We can now subtract the initial costs for the battery at

t = 0 and using a certain discount rate r we can find the Net Present Value (NPV) by applying
the data to equation 4.3.

NPV =
At

(1 + r)t
(4.3)

4.2 Smart Charging

This section discusses the second proposed solution: Smart Charging, which limits the amount

of energy the chargers can collectively draw from the grid. Subsection 4.2.1 presents the

concepts and goals behind the solution. Subsection 4.2.2 presents a mathematical model of

the solution.

4.2.1 Justification

Smart Charging is the name given to the practice of distributing a limited amount of electricity

load to multiple customers. Given that the highest peaks only occur rarely, the idea is to limit the

available energy in such a way that it normally would not have an impact on the end-user, but at

the same time does flatten out the highest outliers. Company X assumes this approach requires

no additional investments to implement, but will have a negative impact on the end-user as they

will not always be able to charge as fast as they normally could, which is why evaluating this

solution should account for that.

Figure 4.2 shows a representation of a site implementing Smart Charging. The chargers of

different types [A], [B] and [C] are all connected to some controller [D] which controls the amount

of energy each individual charger can draw. The controller is connected to the transformer [E]

which in turn is connected to the grid [G], where an energy meter [F] is placed somewhere

along this connection. In case the transformer is not present, the Smart Charging controller [D]

is connected directly to the grid [G] with the energy meter [F] somewhere along that connection.

The amount of energy available for the chargers s+ [Z] is able to be tuned. Section 4.2.2 will

discuss this parameter in more detail.

4.2.2 Methodology & Model

As discussed in Section 1.1.2, there is currently almost no information available to deploy

effective scheduling methods based on existing algorithms. While there is information available

about the ‘present’ situation of a charging site, like for example the amount of currently charging

EVs, or the time that the EVs have been charging, this model assumes no prior knowledge

as to provide a worst-case analysis of the possibilities of deploying this solution. Even so,

Smart Charging can still be useful in reducing the peak load, albeit with a very simplistic energy

distribution algorithm. Given a demand dc,t for each customer c at time-step t, and a maximum
grid draw g+t , where the total demand is dt =

∑
c dc,t, the amount of energy supplied to customer

c, sc,t is determined by equation 4.4.

sc,t(dc,t, dt, g
+
t ) =

{
dc,t, if dt ≤ g+t
(dc,t ∗ g+t )/dt, otherwise

(4.4)

The total charger draw st at time t can be computed easily by computing the sum over all

customers c.
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Figure 4.2: Overview Charging Station

st(dc,t, dt, g
+
t ) =

∑
c

sc,t(dc,t, dt, g
+
t ) = min(dt, g

+
t ) (4.5)

It follows that the total charger draw st is always less or equal to the maximum grid draw g+t :

st ≤ g+t ∀t (4.6)

In the implementation specific for this report, the available energy from the grid at time-step t,
g+t will be constant over t, which is to say that g+t = g+ ∀t.
Note that the distribution algorithm described by equation 4.4 is by no means the only way of

distributing the available energy, nor is it necessarily the best way. Other algorithms, possibly

taking into account more information, can be used to find a more optimal way of distributing the

energy over the chargers. Further research can be conducted in order to analyze and compare

other distribution algorithms.

Financial Impact

In order to calculate the negative financial impact due to unfulfilled demand, a function needs

to be designed that represents these incurred costs at time-step t, given the demand dt and
provided energy to the chargers st at that time-step. While the exact implementation of this

function for the experiments in this report will be presented in Section 5.2.1, let us assume we

have a function Et(dt, st) that describes the costs, we can then compute the total incurred costs
E by summing Et over t.

E(g+) =
∑
t

Et(dt, st) ,where st = min(dt, g
+) (4.7)
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The financial impact can also be positively influenced by the lower demand peak, which causes

lower peak-related costs towards the grid-operator. Let thours be the amount of hours in a single
time-step. Given an original peak grid draw g+O = max(dt)/thours (in kW) and a ‘new’ peak when

applying Smart Charging g+S = g+/thours (in kW), the associated grid operator costs can be used

to calculate the cost savings F based on some function GridOperatorCosts(kW ) taking as a
parameter the highest grid draw amount observed. While the implementation of this function

will be defined in Section 5.2.1, let us assume there is a function GridOperatorCosts(kW ), we
can then state the following:

F (g+O , g
+
S ) = GridOperatorCosts(g+O)−GridOperatorCosts(g+S ) (4.8)

The net financial impact can now be computed by subtracting the additionally incurred costs E
from the cost savings F . It should be noted that the cost savings F are based on a monthly

peak, where the incurred costs E are expressed for an undefined period of time, as such, either

E or F should be scaled accordingly to match in time-span.

FinancialImpact(g+O , g
+
S ) = F (g+O , g

+
S )− E(g+S ) (4.9)

Affected Time-slots

Besides financial impact, another metric for investigating the impact of Smart Charging is the

amount of affected time-slots. Given a demand dt for time-slots t and a maximum grid draw

g+, the amount of affected time-slots is trivially computed by counting the amount of time-slots
where dt > g+.

Simulation replications

Over multiple simulation replications, an average-, minimum- and maximum financial impact

and count of affected time-slots are stored for analysis. As it is assumed that no additional

investments are needed for Smart Charging, we can use the financial impact as a sole financial

indicator on the expected net result per time-step t.

4.3 Combined Solution

4.3.1 Justification

As shown in the literature, both local energy storage and Smart Charging solutions can decrease

the peak power used by fast charging locations. It would be interesting to know what the impact

would be when combining both solutions. The idea behind this approach is that by combining

both solutions, a smaller battery would be required, as well as a less-strict maximum charger

draw. This would both decrease the initial investment compared to solely using a battery, and

decrease the amount of unfulfilled kWhs to the end-user, resulting in lower costs for unfulfilled

demand.

Figure 4.3 shows the combined solution setup. Like the Smart Charging solution, all types

of chargers [A], [B] and [C] are connected to a controller [D] that decides how much energy

is available for the individual chargers. The controller is connected to a battery [E] which is

connected to a transformer [F] which in turn is connected to the grid [H]. Somewhere between

the transformer [F] and the grid [H] is the energy meter [G], unless the transformer is not present,

in which case the energy meter is placed between the battery and the grid. The combined setup

has three tunable parameters; the battery size b+ [X], the maximum grid draw g+ [Y] and the

maximum charger draw s+ [Z]. These parameters will be discussed in more detail in Section

4.3.2.

32



Figure 4.3: Overview Charging Station

4.3.2 Methodology & Model

While the Smart Charging solution required as parameters only a maximum grid draw g+, the
battery solution used two parameters; maximum grid draw g+ and battery size b+. For the

combined solution, we need to introduce a third parameter; maximum charger draw s+. This
maximum indicates how much energy can be drawn by the chargers, which in this solution is a

distinct metric from how much energy can be drawn from the grid, as we also include a battery

in between the grid connection and the chargers. This maximum charger draw is only a limit,

and not necessarily always the amount provided to the chargers as there might not be enough

charge in the battery to reach this limit, or there might simply not be as much charging demand

dt at that time. The actual amount of energy provided to the chargers at time t is denoted as

st. The maximum grid demand g+ determines how high the peak demand on the grid-side can

be. This ultimately decides the size (and costs) of the grid-connection, as well as the need for a

transformer. The maximum available energy s+ dictates the maximum concurrent power draw

from the chargers at the fast-charging location, and thus ultimately dictates the amount of kWh

not delivered to customers. With the battery, there is also a buffer between these two points,

where the battery can fill the gap between what comes into the system via the grid, and what

goes out into the chargers, while being limited in its ability to fill the gap based on its State-

of-Charge bt (amount of kWh stored at time-step t). Whenever there is a surplus, the battery

is filled to a maximum b+. These parameters have time-step associated values in the form of

grid draw (gt), State-of-Charge of the battery (bt) and energy delivered to the chargers (st). The
actual demand per time-step t is described as dt. These three parameters are described in

equations 4.10, 4.11 and 4.12.

The energy delivered to the chargers at some timestep st is equal to the demand at that timestep
dt, bounded by the maximum charger draw s+, and the available energy in the system (grid and

battery combined) g+ + bt:

st = min(dt, s+, g+ + bt) (4.10)

The State-of-Charge of the battery at some time-step is determined by the amount of energy
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coming into the system from the grid gt and the amount of energy going out of the system

towards the chargers and EVs st, bounded by the capacity of the battery b+:

bt = min(b+, bt−1 + gt − st) (4.11)

The amount drawn from the grid at some time-step is equal to the maximum grid draw g+,
bounded by the amount of energy the system can use, either by storing it in available battery

capacity b+ − bt−1 or by supplying it to the charge poles st:

gt = min(g+, b+ − bt−1 + st) (4.12)

For the incurred costs E for not fulfilling all demand, the equations 4.4, 4.5 and 4.7 are reused.

For the cost savings F due to lowering peak, equation 4.8 is reused. The financial impact is

redefined in equation 4.13.

FinancialImpact(g+O , g
+
S , s

+) = F (g+O , g
+
S )− E(s+) (4.13)

If we want to know whether the investments on the battery are worth it for the Financial Impact,

we need to take into account the time-period T over which the Financial Impact is calculated.

We can now calculate the Net Present Value (NPV ) by applying equation 4.3 to the Financial
Impact, with At equal to the calculated Financial Impact for all time-steps t = 1..T . For t = 0
we need to take the initial investment of the battery B(b+) into account, as well as the possible
decrease in costs for the grid connection and auxiliary hardware, C(g+O , g

+
S ), based on a lower

observed (and supported) peak grid draw.

At(g
+
O , g

+
S , b

+, s+) =

{
FinancialImpact(g+O , g

+
S , s

+)−B(b+) + C(g+O , g
+
S ), if t = 0

FinancialImpact(g+O , g
+
S , s

+), otherwise
(4.14)

TheNPV will be calculated according to equation 4.3 for many different combinations of (g+S , b
+, s+)

with the observed value of the original maximum grid draw g+O , where the highest NPV will

provide the recommended setting.

4.4 Chapter Summary

This Chapter has presented three solutions for solving the high peak-related costs at fast charg-

ing locations. First of all, batteries were proposed as a solution to the incidental high peaks,

where the battery would provide additional energy to the charge poles whenever a high peak

would occur, in order to lessen the amount of energy that needed to be drawn from the grid.

Placing a battery does however require additional investments, but the solution will not have

any impact on the EV-driver.

Secondly, the solution of Smart Charging has been proposed, where a certain energy limit is in-

troduced that the combined charge poles cannot exceed. The available energy gets distributed

in some predetermined way to the EV-drivers. While no additional investments are needed for

Smart Charging, additional costs do arise like for example missed income, loss of goodwill and

brand value.

Finally, a solution in the form of a combination of the first two solutions is proposed. A battery

is placed at the site and a energy limit are introduced. When the combined chargers exceed a

certain energy threshold the battery starts supplying energy, while the total amount of demanded

energy cannot be higher than the decided limit, in which case the Smart Charging tactic would

throttle the amount of supplied energy to that limit. This solution tries to combine the advantages

of both solution while reducing the disadvantages: A smaller battery would be needed reducing
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the investment costs, while the EV-driver experiences less impact on their charging, as some

of the demand can now be fulfilled by the battery.

Definitions and formulas have been presented to create a model of the three solutions, which

will be implemented in the experiments in Chapter 5.
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5 TOOL, EXPERIMENTS & RESULTS

This chapter will go over the setup of the experiments that have been run and their corre-

sponding results. In order to run the experiments, a tool has been built that makes use of

simulations to gather information on the viability and impact of the proposed solutions, based

on the methodology and model proposed in Chapter 4. The tool also helps company X to easily

run simulations in the future when the input parameters might have changed. First, this tool and

its functions will be discussed in Section 5.1. Then, the parameters used for the experiments

are presented in Section 5.2. Finally, the results from the outlined experiments are discussed

in Section 5.3.

5.1 Tool

A tool has been created to provide company X with easier access to simulating the solutions

following the models proposed in Chapter 4. The tool is using Apache Spark, allowing for

scalable parallel execution. With a few lines of code, simulations can be run while giving the user

a lot of freedom in defining their parameters and cost functions. The simulations and analysis

are based on the methodologies discussed in Sections 4.1.2, 4.2.2 and 4.3.2. The tool provides

functions that fully autonomously give the user recommendations for implementing solutions

with information on which setup to use and what additional profit to expect compared to the

current situation. Furthermore, the tool provides graphing functionalities for manual analysis

of different proposed solutions. This section briefly goes over the supported functionalities.

Examples of graphs generated by the tool are shown as well. A more hands-on manual for how

to use the tool can be found in appendix A.

5.1.1 Data Generation

All analysis is done on a set of demand-values, where the time-interval is 15 minutes. For an

accurate analysis, the tool supports analysing multiple replications of data. To get this data

prepared in the right form, the tool defines two different ways of preparing this data. The

first function takes historical 15-minute demand data, a list of EAN Codes, and a number of

required replications of the simulations. This function will then create the specified number of

replications, where each replication contains a single week of demand data, created by random

sampling from the historical data. This random sampling is done by taking into account the time

of day and the day of the week that it is sampling for. For instance, for each replication, the

sampled demand data for Monday 2 P.M. will be the demand seen on any of the Mondays 2

P.M. contained in the historical data for that specific EAN. This results in a data set containing

the specified amount of replications for each specified EAN, with each replication containing a

uniquely generated list of 15-minute demand aggregates spanning a single week. The process

described above can take some time to execute, and thus a second function is created for when

pre-generated replications are available. In this case, the user only has to specify where the

pre-generated replications are stored (in one or multiple files) and the program will easily load

them in.
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5.1.2 Battery analysis

The tool supports analysis for battery solutions. A single command can be called to prepare

all simulation scenarios. First, this command takes the generated replications (each containing

15-minute aggregated demand values, like specified above). The command then takes a list

of battery sizes to analyse, as well as a list of maximum grid draw amounts. Optionally, a list

of demand-multipliers can be specified, where a multiplier would take the 15-minute values in

a replication and increase them by the specified multiplier. The Cartesian product between

these 2 (or 3) lists spans the solution space that will be simulated for later analysis, where each

element of the resulting set uses the entire set of replications, ensuring the use of the same

data for all different solutions. This function returns the object that contains the instructions

for simulating all options in the solution space. As Spark execution is ‘lazy’, it will not actually

execute the instructions till this object is used for analysis in displaying the results (either in

graph or list form). Each simulation results in either a ‘fail’ or a ‘success’, depending on whether

the analyzed battery size and maximum grid draw setup would be sufficient to always fulfill

all demand, as denoted in equation 5.1. A simulation run (replication) ri will mark itself as

successful whenever there is not a single time-step t where a negative battery charge occurs.
Given a number of replications, the success fraction r̄ can easily be computed by taking the

mean of results ri over the replications i. The success fraction can be used as an indicator

whether or not the proposed setup would be sufficient for a given location.

ri =

{
1, if bt ≥ 0 ∀t
0, otherwise

(5.1)

The created object can be viewed from different viewpoints. Multiple functions have been

created which take this object and visualize it in different ways. One function displays the

percentage of successes over the maximum grid draw, with the different battery sizes as distinct

lines inside the graph, shown in Figure 5.1. In this Figure it can be seen that a higher success-

expectancy is achieved when the maximum allowed grid draw d+ grows. For instance, if one

would wonder what maximum grid draw d+ would be required for a success-rate of 1 using a

battery of 50 kWh for the specific charging site analyzed in this Figure, it shows that d+ >= 50
kW would suffice.

Another function flips this around and plots the success-percentage over the specified battery

sizes, with each distinct line representing a different maximum grid draw, as can be seen in

Figure 5.2. Here you can see that the success expectancy for a given maximum grid draw

d+ grows with larger battery sizes b+. For example, Figure 5.2 shows that if a maximum grid

demand d+ = 50 kW is desired at the specific charging site analyzed in the graph, the battery

size b+ needs to be a little over 100 kWh big (purple line in the graph).

A third function plots the success-percentage over specified multipliers, with each distinct line

representing a unique combination of battery size and maximum grid draw (Figure 5.3).This

graph illustrates how the site configuration would perform if all demand dt was scaled by the

factor on the x-axis. For example, if the site analyzed in this graph would use a maximum grid

draw of g+ = 50 and a battery capacity of b+ = 100 (blue line), it would not be sufficient at a

growth factor of 2, with a success fraction of almost 0. A battery capacity of b+ = 300 (red line)
would perform much better with a success fraction of more than 90%.

Finally, the tool also contains two functions that lets you analyze the profitability of the battery

solution. The first function again takes the object with the simulation instructions. Addition-

ally, it requires a cost structure for the investment costs, including grid connection costs and

transformer costs, as well as battery costs and any other investment costs the user wants to

specify. Furthermore, it needs a cost-reduction function, providing the weekly cost-reduction

based on the ‘original peak’ and the newly realized peak. Finally, it needs a time-period for

which we want to analyze the profitability. Optionally, a weekly demand-growth factor and a
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Figure 5.1: Example Graph: Success over Maximum Grid Draw

Figure 5.2: Example Graph: Success over Battery Size
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Figure 5.3: Example Graph: Success over Growth Factor

Figure 5.4: Example Graph: Battery profitability over time
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discounting rate can be specified. This function will then plot the Net Present Value (NPV) over

the amount of weeks specified, as shown in Figure 5.4. The function takes into account the

growth factor over the weeks, and will calculate if the configuration would have a success factor

of 100%. The continuous lines represent the configurations that have a success factor of 100%,

while the dashed lines (blue and green in the Figure) represent configurations that would have a

success factor lower than 100%. Figure 5.4 shows that from the 6 analyzed options, no feasible

option would be profitable for this specific charging site, with the specified cost functions. The

blue line indicates that there is a configuration that would generate a positive NPV, but that the

configuration will not be sufficient to meet all demand in the future.

The second function is a simple ‘advice’ function, using the first function and selecting the

configuration with the best (highest) NPV, unless the best configuration still provides a negative

NPV in which case it will return no result. This function does not create a graph.

5.1.3 Smart Charging Analysis

The tool also has functions built-in for Smart Charging analysis. First, similar to the battery

analysis, a simulation instruction object is needed containing the Smart Charging simulation

instructions. This object is created by calling a method contained in the tool, which takes the

previously created 15-minute aggregated replication data, as well as a list of maximum grid draw

amounts that we want to analyze. Optionally, a list of demandmultipliers can be specified, which

multiply the aggregated demand values by the specified amounts.

After creating the simulation instruction object, a method is defined to simultaneously analyze

the simulations from two different standpoints, which only needs the instruction object as a

parameter. This function creates two graphs (Figure 5.5), the first being the amount of kWhs

of demand not fulfilled over the specified list of grid draw amounts, the second graph showing

in how many time-steps the Smart Charging solution actually had impact on the amount of

energy delivered (gt < dt). The blue area show the range found over the number of analyzed

replications, with the red line indicating the average over these replications. The Figure shows

that both the amount of unmet demand and the amount of affected time-slots decrease similarly

when the maximum grid demand g+ increases.

A secondmethod instead plots the amount of unfulfilled demand and affected time slots over the

specified demand-multipliers (Figure 5.6). It shows that the average amount of unmet demand

grows linearly with the growth factor, while the amount of time-slots in which Smart Charging is

applied follows some inverse exponential distribution for the specific charging site analyzed in

the Figure.

Finally, a third method plots the expected weekly cost savings for the specified maximum

grid draws. This method takes the simulation-instruction-object, as well as a cost function for

unfulfilled demand and a function for calculating the weekly costs associated with the peak

(figure 5.7). Additionally, the tool provides a method to get advice on how to setup the smart

charging solution. This method uses the results from the cost-savings graph to find the optimum

and prints the results. As can be seen from the Figure, the cost savings reach some optimum

after which the cost savings trend towards 0 when the maximum grid draw increases. This is

expected, as from some point onward, the maximum allowed grid draw g+ is larger or equal

to the current situation, which means no extra costs are saved or incurred compared to the

current situation. Small bumps in the graphs can be observed at 50 kW and 136 kW maximum

grid draw, which occur when transport prices change for different maximum grid draws (see

Table 2.2).

5.1.4 Combination Solution Analysis

While the previously discussed functions discuss the solutions if applied individually, the tool

also supports analyzing a combination of the two solutions. In practice, this would probably be
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Figure 5.5: Example Graph: Smart Charging - Impact

Figure 5.6: Example Graph: Smart Charging - Impact over growth
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Figure 5.7: Example Graph: Smart Charging - Profitability

Figure 5.8: Example Graph: Combined Solution - Draw limits per week
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Figure 5.9: Example Graph: Combined Solution - Unfulfilled demand per week

the most used functions as these functions can also be used to compare the combined solution

to the individual solutions. In fact, the results of the experiments later in this report are based

on these functions.

The methods associated with the combined solution work slightly different in that there is no

function to create a simulation-instruction object. Instead, all input parameters are directly

passed to the desired analysis function which internally creates a simulation-instruction object.

The parameters for the functions are listed below:

• The generated replications of 15-minute aggregated demand data

• A list of battery sizes for which to test

• A list of maximum grid draw amounts for which to test

• A list of grid draw boundaries for grid-connections

• A list of maximum energy supplied (per 15 minutes) to the chargers for which to test

• An initial investment cost structure

• A function for calculating the lost-value per 15 minutes for unfulfilled demand

• A function for calculating the costs associated with the peak grid draw

• A weekly demand growth rate

• The number of weeks for which to simulate

• A re-calibration period (in weeks)

• A yearly discount rate (used for calculating NPV)
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Many of these parameters are already explained previously, with the exception of the grid draw

boundaries and the re-calibration period. The grid draw boundaries (grid-connection sizes) are

used to create scenarios where a certain grid-connection is used. This means that themaximum

grid draw cannot exceed the maximum grid draw boundary for that scenario. The re-calibration

period is a speed-improvement metric that defines an amount of weeks for which we assume

the demand not to differ too greatly, as to only calculate the optimal levels of grid draw and

available energy for the charger once for the specified re-calibration period. This means that

normally when simulating a period of 500 weeks, the optimal level of maximum grid draw and

maximum charger draw are normally calculated for each week. When using the re-calibration

period, for example with a value of 50, the simulation will only calculate the optimal levels of

grid draw and charger draw every 50 weeks, decreasing the number of calculations for these

optimal levels of grid draw and charger by a factor 50, increasing the simulation speed by this

same factor.

The stand-alone solutions (only using a battery or Smart Charging) can be analyzed by this

function as well by adding the possibility of ‘0’ battery capacity (thus only smart charging can

be applied) and by adding an infinitely big maximum charger draw (thus no Smart Charging will

take place) to the associated parameters.

The first of the three methods associated to the combined solution returns for each possible

setup in the solution space the average expected NPV over the replications, as well as different

confidence intervals of this value. This function creates no Figure.

A second method takes the same parameters as the previous method, and in addition take a

parameter x. This method executes the first method, but then selects only the top x solutions

based on the average NPV over the replications, and then returns for each of those selected

solutions the weekly setup for maximum charger draw s+. These values are then plotted on a
graph to visualize these results (figure 5.8). This Figure shows with the black line what the grid

draw peaks would be if no improvements were implemented. The colored lines show the values

of the maximum grid draw g+ (continuous line) and maximum charger draw s+ (dashed line)

for different configurations of grid connection and battery size. The figure provides a guide to

how much grid draw and charger draw should be allowed on a per-week basis. The difference

between the black line and the colored continuous lines represents the difference in peak grid

draw between no solution and some configuration of the combined solution. The difference

between the black line and the colored dashed lines shows the maximum impact on the EV

driver during a peak demand moment.

A thirdmethod graphs out the amount of unfulfilled demand, both per week andwith a cumulative

sum over the weeks (Figure 5.9), providing insight into howmuch impact the proposed solutions

have on the customer charging experience. The top graph shows the amount of unfulfilled

demand on a per week basis, while the bottom graph shows the same data in cumulative form.

5.2 Experiment Setup

The experiments will run using the provided tool described in section 5.1, specifically the ‘com-

bined solution’ methods will be used, where the parameters will be set up in such a way that also

the individual solutions are analyzed. This section will discuss how the required parameters are

determined and which experiments will be run.

5.2.1 Input Functions and Parameters

Generated Replication Data

For generating the data, the functions defined in section 5.1.1 are used to create 100 replications

of one-week’s worth of 15-minute aggregated demand data for a certain charging location.
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Maximum Grid Draw and Charger Draw Amounts

To define the range for maximum grid- and charger draw, we first look at the observed highest

peak in the historical data. Depending on the growth factor and amount of weeks we want to

simulate for a certain experiment, we take a peak higher than the demand would be in the final

week of the simulation (recall from section 5.1 that the simulation uses the demand growth to

multiply the generated 15-minute demand values). The range for the draw amounts spans from

0 to the calculated peak in equal steps. Table 5.2 displays the ranges that have been selected

for the experiments. In selecting the amount of steps on the selected range, a trade-off is made

between simulation execution speed and result accuracy. The amount of steps used for the

experiments in this report is set on 31. Note that a maximum grid draw and charger draw of 0

is also analysed, which essentially calculates if providing charging infrastructure is profitable at

all.

Maximum Grid Limits, Battery Capacities and Investment Cost Structure

The maximum grid limits defined for these simulation are based on the grid connection sizes

defined by Liander (see table 2.1). The costs associated with these limits are used for the

investment cost structure. While the exact costs do vary between grid operators, they do not

vary by much. Furthermore, as experiments are defined for different types of locations, this

would provide an honest comparison to how different types of locations are applicable for peak-

reduction techniques by using a constant cost-model. Note that the prices from the referenced

table are doubled, as this price is paid both for installing the connection and also for removing

the connection at the end of the term.

ConnectionCosts(g+) =



0, if g+ = 0kW

2 ∗ 4, 522.00, if 0 < g+ ≤ 100kW

2 ∗ 5, 037.00, if 100 < g+ ≤ 160kW

2 ∗ 18, 508.00, if 160 < g+ ≤ 630kW

2 ∗ 25, 179.00, if 630 < g+ ≤ 1000kW

2 ∗ 36, 406.00, if 1, 000 < g+ ≤ 2, 000kW

2 ∗ 237, 731.00, if 2, 000 < g+ ≤ 5, 000kW

2 ∗ 282, 321.00, otherwise

(5.2)

Besides grid connection costs, the investment costs in these experiments also compromise of

transformer costs and battery costs. For the transformer costs, an expert within company X

provided the investment cost function defined by equation 5.3, which takes the peak grid draw

g+ as parameter.

TransformerCosts(g+) =

{
50, 000.00, if g+ > 160kW

0, otherwise
(5.3)

The possible decrease in hardware costs can be described by a function C(d+, g+).

C(d+, g+) = ConnectionCosts(d+) + TransformerCosts(d+)−
ConnectionCosts(g+)− TransformerCosts(g+) (5.4)

Supplier prices for industrial batteries differ and are typically not publically available. To create

a cost model, an approximation has been made on cost per kWh, based on available pricing

information. In table 5.1 an overview is given of the consulted sources. From this table a battery

cost B of €540 / kWh is deemed an acceptable approximation by company X.
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B(b+) = b+ ∗ 540 (5.5)

Name Capacity (in kWh) Costs (in €) Costs per kWh (in €) Source

ECPC-10KWH-Solar-ESS 10 7,060 706.00 [27]

ECPC-15KWH-Solar-ESS 15 10,240 682.67 [27]

ECPC-25KWH-Solar-ESS 25 13,430 537.20 [27]

Tesla Powerpack 232 125,793 542.21 [28]

company X Owned Battery 430 250,000 581.40 -

Table 5.1: Available pricing information for batteries

For the experiments in this report, the tested battery capacities will be ranging from 0 to 200

kWh, in 25 kWh increments.

Lost Demand Cost Function

Determining the financial impact of not fulfilling all demand is not an easy task. Many factors

can negatively influence this value, including missed income of unmet demand, goodwill of

customers, lost brand value, et cetera. Determining the exact value or function of those factors

is beyond the scope of this research. However, as no definite cost function is currently known,

we will run two scenarios per experiment to assess the impact of this cost-function, namely a

‘lenient’ cost-function and a ‘harsh’ cost-function, where the first function would not penalize

unfulfilled demand by much, while the second function penalizes unfulfilled demand by a lot.

These two approximating cost-functions will use the mean gross-profit margin per kWh m,

which is provided by company X, as well as a penalty factor pt determined per time-slot by

the percentage of unfulfilled demand in order to incorporate additional costs, like for example

goodwill. The lenient function uses the penalty factor described by equation 5.6, and the harsh

function uses the penalty function described by equation 5.7. Further research should determine

the exact cost-function for more accurate results.

pt(dt, st) =


1, if st/dt ≥ 0.9

1.25, if 0.7 ≤ st/dt < 0.9

1.50, if 0.5 ≤ st/dt < 0.7

2, otherwise

(5.6)

pt(dt, st) =


1, if st/dt ≥ 0.9

5, if 0.7 ≤ st/dt < 0.9

10, if 0.5 ≤ st/dt < 0.7

1000, otherwise

(5.7)

The incurred costs at time-step t, denoted by Et, can be described by equation 5.8.

Et(dt, st) = pt(dt, st) ∗ (dt − st) ∗m (5.8)

Peak Cost Savings Function

The prices between grid-operators vary but not by much. As such, an approximation based

on the prices of Liander is used for the experiments, for the same reasons as stated with the

implementation of the investment cost structure: the prices do not vary by much and taking

a constant price function for all experiments creates the most objective view of how much
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different types of locations would benefit from the proposed solutions. The prices used for the

experiments were presented earlier in this report in table 2.2, and are expressed in equation

5.9.

GridOperatorCosts(kW ) =


0.76 ∗ kW, if kW ≤ 50

(1.93 + 1.74) ∗ kW, if 50 < kW ≤ 136

(1.23 + 1.74) ∗ kW, if 136 < kW ≤ 2, 000

(2.01 + 1.74) ∗ kW, otherwise

(5.9)

Simulation Length and Weekly Demand Growth

For the simulation length, a period of 10 years (10*52 weeks) is used for the simulation. This

figure is given by company X as an acceptable time-span to look ahead for charging locations

based on contract length for location usage and equipment depreciation times.

For determining the weekly demand growth, a drawback of the design-choices for the simulation

becomes apparent. As the simulation simply scales up the originally generated demand values

per 15 minutes in order to implement demand growth, the highest observed peak will linearly

grow along with the total demand growth. These scaled values very likely do not give a truthful

representation of what demand would look like after growth has taken place. Still, the simulation

can be used as to assess what happens when the peak demand and total demand grow by some

factor, and how that would have impact on the optimal strategy of deploying batteries and/or

Smart Charging. Therefore, three different growth rates are investigated to assess the impact

of growth rate on the optimal strategy. However, we recommend to do further research on how

to better generate future demand aggregates when taking demand growth into account. That

said, the three scenarios that will be investigated are:

• No demand growth

• A demand growth of factor 4 over 10 years (520 weeks)

• A demand growth of factor 10 over 10 years (520 weeks)

These demand growth scenarios can easily be converted to weekly demand growth rates by

applying equation 5.10.

WeeklyGrowthRate = Factor(1/NumWeeks) (5.10)

Given the factors and number of weeks, we get weekly growth factors of 1, 4(1/520) and 10(1/520)

for our scenarios.

Re-calibration Period and Discount Rate

The re-calibration period is used to speed up the execution of the simulation, possibly at the

expense of the accuracy of the results. Instead of calculating the optimal values for maximum

grid draw g+ and maximum charger draw s+, the model will only calculate it once for every

re-calibration period, and assume that g+ and s+ are still optimal. When taking a time-period

where the demand does not change drastically, the optimal values will still be close to the earlier

determined optimal values. Moreover, even when the optimal values do significantly differ from

what was taken by this re-calibration tactic, if anything, this will undershoot the amount of costs

saved by the setup, which is why this is not seen as a problem for interpreting the results. For

the experiments in this report, the re-calibration period is set to 52 weeks.

For the discount rate, an expert within company X provided the value of this variable (which is

undisclosed in the public version of this report), with which the scenarios will be run.
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5.2.2 Experiments

As the simulations can take some time to run, a small selection of EAN-codes (locations) is

made for the experiments to run on. Three locations are selected that differ in the amounts

and types of chargers on the location, as to provide a feeling for what the impact can be on

different types of locations. Furthermore, as discussed in section 5.2.1, both the lost demand

cost function and the growth rate will be subject to sensitivity analysis. Two scenarios will be run

for the cost function and three scenarios will be run for the demand growth. The experiments

will be labeled as displayed by table 5.2. For the Weekly Growth Factor, ranges are defined

on which the optimal value for the maximum Grid Draw and Charger Draw will be searched

for. Both parameters share these ranges. For example, the label A-H-4 will correspond to

the experiment for location A, with the Harsh cost demand function and a weekly growth factor

of 4(1/520), with the values for Grid Draw and Charger Draw being somewhere on the range

[0, 1000].

Label Location Name EAN

A [Redacted] [Redacted]

B [Redacted] [Redacted]

C [Redacted] [Redacted]

Label Lost Demand Cost Function

L Lenient

H Harsh

Label Weekly Growth Factor Grid Draw & Charger Draw Ranges

1 1 [0,250]

4 4(1/520) [0,1000]

10 10(1/520) [0,2500]

Table 5.2: Label legend

5.3 Results

This section will present the results of the experiments defined in section 5.2. With the many

experiments that are run, discussing all experiments individually might prove of little added

value compared to only discussing the results. However, in order to provide more insight into

the results of an individual experiment and how these results should be interpreted, Section

5.3.1 discusses one of the experiments in depth. Section 5.3.2 will discuss the overall results,

while a detailed overview of the results per experiments can be found in Appendix B, including

graphs visualizing each individual experiment. Section 5.3.3 will compare the results and try to

find similarities between the experiments in order to present global conclusions.

5.3.1 Example Experiment Explained (B-L-4)

In this section, we will discuss a single experiment in depth, for which experiment B-L-4 is

chosen. The experiments yields as the best options and corresponding the five setups displayed

in Table 5.3. As shown in the table, all five options expect a positive NPV even when taking a 99

percent confidence interval. All five options use a 100 kW grid connection, indicating that using

this size of grid connection is very much advised for this location in the case of a cost function

similar to the Lenient cost function (Equation 5.6) an expected growth factor of 4. Furthermore,

every setup uses a battery (b+ > 0), with the most profitable setup uses a 50 kWh battery size.

Figure 5.8 shows the values of the maximum grid draw g+ and maximum charger draw s+ over

the weeks of the total time-span. Taking for example the purple line representing the most
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Bat. Capacity Grid Connection NPV CI 0.95 CI 0.99

50 100 42682.03 40334.94-45029.11 39575.31-45788.74

25 100 38642.26 35953.60-41330.91 35083.42-42201.09

75 100 38063.38 35855.56-40271.19 35141.01-40985.75

100 100 29350.03 27240.00-31460.07 26557.09-32142.98

125 100 18772.98 16730.17-20815.79 16069.02-21476.95

Table 5.3: Best options for B-L-4

profitable setup, the Figure shows the recommended configuration for the two variables, with

the maximum grid draw in week 100 being around 75 kW, and the maximum charger draw

around 180 kW. Whenever a peak occurs higher than the maximum grid draw, additional power

is supplied from the battery. As the chosen grid connection allows only for a maximum of 100

kW energy draw, the grid draw values will not surpass this value. Whenever a peak higher than

the maximum charger draw occurs, Smart Charging will throttle the amount of supplied energy

back down to the maximum charger draw. The difference between the black line and the dotted

lines represents the amount of kW shaved from the highest expected demand peak. The actual

amounts of unmet demand is represented in Figure 5.9, where it can be observed that the

majority of unmet demand is incurred in the later weeks of the time-span, when supposedly

the demand and demand peaks have grown by almost a factor 4. For this experiment, it can

be concluded that for charging locations similar to the one in this experiment, around €40,000

can be saved over the time-span of 10 years if the combined solution of Smart Charging and

energy storage is used, where the total amount of unmet demand of this same time-span would

be around 175,000 kWh.

5.3.2 Overview of results

After running the experiments, the best option based on highest NPV is selected for each

experiment. The metrics associated with the solution are displayed in table 5.4 and 5.5. Table

5.4 provides an overview of the average NPV that has been achieved by the best solution over

the 100 replications. Additionally, confidence intervals are provided for confidence levels of 95

and 99 percent respectively. Table 5.5 provides the configuration of the best solution, providing

the used battery size and grid connection. The table also contains some additional columns.

The ‘Current Peak’ column provides the average demand peak that was observed in the data

at t = 0. The ‘Future Peak’ column shows what the peak demand would be in the last week of
the specified time-frame (t = 519). Finally, the column ‘Missed Demand’ specifies the amount
of demand that has not been fulfilled in the time-frame (10 years), and the ‘%’ column specifies

how much that is compared to the total amount of demand. Note that the maximum charger

draw limits are not included in these tables as they change per week. Appendix B contains

graphs per experiment detailing the weekly values for the maximum charger draw.

5.3.3 Result Analysis

Upon inspection of the results, multiple things stand out. First of all, each scenario provides

a positive average NPV (except for C-L-1 and C-H-1 which we will discuss shortly). Also the

confidence intervals show predominantly positive values, indicating that it is very likely for the

true mean NPV to be positive. By running multiple experiments for different unfilled demand

cost functions and demand growths, it became clear that even though the exact values and

functions for these inputs still have to be researched, the peak reduction techniques covered in

these experiments can be cost-effective.

Secondly, using batteries does not seem to be the best options for each scenario. Moreover,
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Label Average NPV (in €) NPV CI(0.95) (in €) NPV CI(0.99) (in €)

A-L-1 16,715 10,584 - 22,847 8,600 - 24,831

A-L-4 59,948 58,391 - 61,505 57,887 - 62,009

A-L-10 34,449 23,121 - 45,778 19,455 - 49,444

A-H-1 5,941 -476 - 12,358 -2,553 - 14,435

A-H-4 5,381 4,341 - 6,422 4,004 - 6,759

A-H-10 13,301 2,786 - 23,815 -615 - 27,218

B-L-1 52,561 46,008 - 59,113 43,887 - 61,234

B-L-4 45,536 43,194 - 47,878 42,436 - 48,636

B-L-10 54,410 33,782 - 75,039 27,105 - 81,716

B-H-1 54,593 38,780 - 52,405 36,576 - 54,610

B-H-4 11,013 9,739 - 12,287 9,327 - 12,700

B-H-10 29,622 9,311 - 49,932 2,738 - 56,506

C-L-1 0 0 - 0 0 - 0

C-L-4 70,888 70,581 - 71,195 70,482 - 71,294

C-L-10 32,648 31,528 - 33,768 31,166 - 31,130

C-H-1 0 0 - 0 0 - 0

C-H-4 64,169 63,952 - 64,387 63,881 - 64,458

C-H-10 101 64 - 138 52 - 149

Table 5.4: NPV best solution per experiment

Label Bat. Capacity Grid Connection Current Peak Future Peak Missed demand

A-L-1 0 100

148

148 16,144 (3.0%)

A-L-4 25 100 594 133,520 (6.1%)

A-L-10 0 1,000 1,485 36,919 (0.7%)

A-H-1 25 100 148 109 (0.0%)

A-H-4 0 630 594 4,544 (0.2%)

A-H-10 25 1000 1,485 15,721 (0.3%)

B-L-1 0 100

181

181 37,616 (3.9%)

B-L-4 50 100 724 175,602 (4.6%)

B-L-10 0 1,000 1,811 67,165 (0.7%)

B-H-1 25 100 148 895 (0.1%)

B-H-4 0 630 724 7,538 (0.2%)

B-H-10 0 2,000 1,811 7,270 (0.1%)

C-L-1 0 100

52

52 0 (0.0%)

C-L-4 0 100 209 54,883 (5.0%)

C-L-10 50 100 524 128,149 (4.6%)

C-H-1 0 100 52 0 (0.0%)

C-H-4 25 100 209 1,676 (0.2%)

C-H-10 0 630 524 752 (0.0%)

Table 5.5: Setups best solution per experiment

when batteries are used they will most often be of a small size, often smaller than what you would

find in a modern EV. This probably would indicate that the prices of batteries are currently on the

verge of becoming cost-effective. Further research could indicate at what price-point batteries

would be present in all optimal solutions.

A third point of interest is the difference in expected profitability between scenarios. Most

notably, A-H-1 and A-H-4 have a significantly lower NPV. It can be observed however that the

demand peaks they would expect at the end of the time-frame are just below the point where

a bigger grid connection would have been needed (160 and 630 kW respectively). This means

that they would need to lower the peak significantly more to realize a smaller grid connection,

compared to other solutions. Take for example B-L-1 and B-H-1, which has a future peak

just above the grid limit of 160 kW. This means that with just a small bit of peak reduction a

big financial impact can be made, especially as dropping below 160 kW not only enables the
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use of a smaller connection, but removes the need for a transformer (costing €50,000 in these

experiments) as well. It can be stated that, possibly unsurprisingly, peak reduction techniques

have the largest financial impact on locations where the expected peak demand would be just

a tiny bit too high for using a smaller grid connection.

Finally, it can be observed that the best solutions for C-L-1 and C-H-1 provide no value. This

is quite intuitive, as those scenarios have only a single fast charger at the location. As this

single charger can only output a maximum of 50kW, it cannot reduce the investment costs as it

already uses the cheapest connection and does not require a transformer. Moreover, applying

peak reduction techniques would probably not prove useful as these techniques mostly tackle

the rare outliers in demand. Having just a single fast charger would not create these outliers

as the ‘peak’ of 50kW will probably be reached quite often. The results from these experiments

are therefore not surprising.

5.4 Chapter Summary

Amodel had been created in Chapter 4 in order to analyze the possible financial impact of Smart

Charging and/or battery usage in grid demand peak reduction. A tool has been developed with

which the impact can be assessed, which is discussed in this Chapter and has been used to

analyze scenarios with three different location types with differing charger amounts and demand

profiles, two different cost functions, and three different demand growth rates. The experiments

show that applying these peak reduction techniques lead to higher profits compared to always

meeting all demand straight from the grid. While a small amount of additional profit comes

from the lower monthly peak-related costs, the majority of additional profit is realized by using

a smaller grid connection than otherwise needed. The results show that the financial impact of

peak-reduction techniques is, not surprisingly, highest whenever a location would expect a peak

just a tiny bit larger than a certain grid connection limit. The peak reduction allows the location

to then use a smaller grid connection, easily saving €20,000 or more on the investment costs.

A particular interesting grid connection change in the experiments in this report is the change

from higher than 160kW to below 160kw, saving two times €13,500 (deploying and removing)

and an additional €50,000 from not requiring a transformer. It very much recommended that

any future location should be investigated using the built model and tool to see if a 160kW grid

connection could lead to substantial cost savings.
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6 CONCLUSIONS, DISCUSSION&FURTHERRESEARCH

The following chapter concludes the report. Section 6.1 summarizes the goals and findings of

the report, and in doing so answers the main research question. Section 6.2 goes into detail

about the limitations of the research and how future research could build further on this report.

6.1 Conclusions & Recommendations

This report set out to answer the following research question:

Main Research Question. How can peak-related costs be reduced at fast-charging

locations for EVs in the absence of customer arrival- and charging information, and

what is the impact of the possible solutions?

In the report, we have identified the different peak-related costs for operating a fast-charging

location with investment costs in the form of grid connections and transformers, and monthly

recurring costs in the form of energy transport costs (Sub-question 1). The current behaviour

of the charging demand has been investigated and both daily and weekly seasonalities in the

data were identified (Sub-question 2). From the literature multiple techniques were found for

reducing peak energy usage at charging locations (Sub-question 3), of which two solutions

were further investigated: Smart Charging and local energy usage (Sub-question 4). Advan-

tages and disadvantages have been identified for these solutions (Sub-question 8), with the

main advantage of the Smart Charging being that it can be implemented without incurring any

investment costs. Smart Charging does however have an impact on the charging solution of

the EV-driver, with possibly longer charging times, resulting in costs in the form of missed sales,

lost customer goodwill or brand value. For the local energy storage solutions, it is exactly the

other way around: this solution will not have any effect on the charging experience of the EV-

driver, but does require an hefty initial investment in purchasing a battery of sufficient size. A

third solution has been created combining Smart charging and local energy usage, aiming to

mitigate the disadvantages of the individual solutions, where Smart Charging would enable a

smaller and cheaper battery to be used, while the battery can provide additional energy instead

of drawing it directly from the grid, increasing the limit where Smart Charging would be activated,

in turn decreasing the impact on the EV-driver. Models have been created and experiments

have been designed for investigating these solutions (Sub-question 5). Experiments have

been designed (Sub-question 6), with the experiments yielding promising results, with clear

indications for possible cost savings of €5,000 to €70,000 over a 10-year period (Sub-question

7). Battery usage is limited with predominantly small batteries used in the combined solution,

where there are even cases where no battery is recommended at all and a ‘pure’ Smart Charging

solution is most profitable instead. The majority of the reduced costs come from the smaller grid

connection needed and the possible removal of the transformer. The smaller grid connection

(and possibly the removal of a transformer) not only lead to higher profits, it possibly also

opens up opportunities to open new fast charging locations in areas where it normally would

not have been possible due to the grid being too congested. Moreover, the time-to-market

might decrease as the lead-time of building a charging location with a smaller grid connection
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is supposedly shorter than with a bigger grid connection. The possibility of using these peak

reduction techniques is very much recommended to further investigate as this study has proven

the possible savings. With the current pricing, the usage of batteries is only recommended when

using small batteries, with a size less than 50kWh. The impact of bigger batteries currently do

not (yet) weigh up to the associated costs. Smart Charging on the other hand does prove

to allow significant cost savings, and it is recommended to move towards hardware (such as

chargers) that support Smart Charging.

6.2 Discussion & Further Research

This research has limitations which are important to be aware of. First of all, the simulation

technique implements demand growth by simply scaling a generated time-set by the demand

growth factor for that week compared to the current situation. It is however likely that demand

would balance itself out more when demand increases, and the peaks would comparatively

not grow as much as the total demand. A better method can be implemented to more ac-

curately represent demand profiles in the future. Attempts during this research have led to

significantly longer simulation times and less accuracy on demand expectancy over the day.

Further research could dive into this problem to see if the demand growth representation can

be improved.

Furthermore, the experiments in this research have used two different Lost Demand functions,

as to assess the impact of different implementations of this function (‘Lenient’ and ‘Harsh’) on

the results. While the comparison between these two implementations show that in both cases

costs can be significantly reduced, further research is needed to determine the actual cost

function as to provide a more definitive answer as to how much money it really is going to save.

As a third point, the batteries in these experiments are modeled to have an infinite charge and

discharge rate. While the delivered tool does support limiting these rates, the actual value

differs greatly between battery producers, models and sizes. Further research could improve

the model by implementing these values in the experiments. Moreover, more research can be

done on the impact of lower battery prices on the suggested optimal location setup. Finally, the

model currently leaves out certain parameters like temperature or grid stability, both of which

can have impact on how the battery behaves. Further research could focus on researching the

behaviour of the battery under changing conditions and implementing this into the model.

Furthermore, the majority of the peak reduction is currently being done by Smart Charging.

However, possibly the profits can be increased further when changing the Smart Charging

algorithm to not balance the load by reducing each charger by the same percentage, but to use

some other load-balancing method, perhaps by taking into account for example the amount

of cars currently charging, the time cars have been charging or even what type of cars are

charging. A research into the possibilities to optimize this load-balancing function is advised.

Finally, this report only discusses the usage of Smart Charging and/or battery usage for peak

reduction. However, as outlined in the literature research (section 3.1), there are also other

opportunities for peak reduction. Further research could investigate how those solutions interact

with the combined solution discussed in this report.
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A TOOL MANUAL

Here you can find the instructions for using the built tool. Examples of code will be given for the

available functions. We will first go over the types of objects specific to the tool, after which we

will go over the different functions grouped by solution type.

A.1 Objects

There are a few objects that are key to understand before we dive into the functions.

A.1.1 Generated Data Object

First, there is a Generated Data Object which is a Apache Spark RDD Object consisting of

Python Tuples. Each Tuple is a key-value pair, with the key being a Spark Row object containing

a field for the EAN Code and a field containing the replication identifier. The ‘value’ in the key-

value pair is a list of Spark Rows where each row contains a Python DateTime specifying the

date and time (rounded to nearest 15 minutes) and an amount specifying the Consumed Energy

for that timeslot.

- Generated Data Object

- - List of [Tuple]

- - - key = Row(EANCode, Replication)

- - - value = List of [Row]

- - - - DateTime

- - - - ConsumedEnergy

A.1.2 Simulation Instruction Object

When the Generated Data Object is passed through Simulation Preperation functions (dis-

cussed later), a Simulation Instruction Object is returned. This object contains the instructions

for which simulations need to be run including the parameters that are used for the simulations.

This object can be passed to graphing functions to create visualizations of the simulation results.

We distinguish three different Simulation Instruction Objects:

- Battery Simulation Instruction Object

- Smart Charging Simulation Instruction Object

- Combined Solution Simulation Instruction Object

Note that while there is a Combined Solution Simulation Instruction Object, this object is only

used in the back-end of the tool, and the user should not have to worry about interacting with it.

It will therefore also not be a part of this manual.
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A.1.3 Investment Cost Structure

An Investment Cost Structure is a structure which holds one or more cost functions defining the

amount of investment needed for a certain setup. The first function passed to this structure on

its creation should be some function f(kWh) which takes a single parameter kWh and returns
the costs for a battery of kWh capacity. Any further functions passed to this object should be

functions of type f(kW ) where kW is the maximum peak that should be supported, and returns

the costs associated with this amount of kW .

A.2 Loading in the Tool

Before we can use the tool, it needs to be loaded in. This process is made very easy by a

single line of code. This code uses the file-location of the tool and imports all dependencies and

functions. A relative or absolute path to the tool must be provided in this function.

%run "./Multi-Simulation Tool"

Running this code imports the Tool’s methods as described in Section 5.1 and uses the following

dependencies:

from datetime import datetime, date, time, timedelta
from pyspark.sql import Row
from pyspark.sql.types import StructType, StructField, IntegerType, StringType,

DateType, TimestampType
from math import inf, log
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats

A.3 Data Generation

Before any analysis can take place, a Generated Data Object should be created. Two different

functions are in place tomake this possible. The first method ‘GeneratedTimeframesRDD’ takes

data from the data-lake, and provides parameters where the specific EAN codes, the amount

of replications and the time frame can be defined. This function returns a Generated Data

Object. This function can take some time to execute, and thus might be prepared beforehand

and saved to some file location. The method ‘LoadGeneratedTimeframesFromFiles’ takes a list

of file-location and can be used to reload an earlier created Generated Data Object.

GeneratedDataObject = GeneratedDemandData(HistoricalData, ListOfEANs,
date_start, date_end, numReplications)

GeneratedDataObject = LoadGeneratedTimeframesFromFiles(ListOfFileLocations)

A.4 Creating Simulation Instruction Objects

Now that we have a Generated Data Object, we can start specifying the simulations we want to

run.
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A.4.1 Battery Simulation Instruction Object

When creating a Battery Simulation Instruction Object (BSIO), we need to define the list of

battery sizes we want to analyze, as well as the different maximum grid demands we want to an-

alyze. Optionally, a list of demand growth factors can be specified. The function ‘getRDD_Bat-

terySimulation’ is then used to create a BSIO. Using the numpy library we can use the ‘linspace’

function to create a list of evenly spaced numbers. The definition of ‘ListOfBatterySizes’ in the

code below will create a list of 6 evenly spread numbers between 0 and 100 (thus [0, 20, 40,

60, 80, 100]).

ListOfBatterySizes = numpy.linspace(0,100,6).tolist()
ListOfMaxGridDemands = numpy.linspace(0,200,41).tolist()

BSIO = getRDD_BatterySimulation(GeneratedDataObject, ListOfBatterySizes,
ListOfMaxGridDemands)

ListOfBatterySizes = numpy.linspace(0,100,6).tolist()
ListOfMaxGridDemands = numpy.linspace(0,200,41).tolist()
ListOfDemandGrowthFactors = numpy.linspace(0,20,21).tolist()

BSIO = getRDD_BatterySimulation(GeneratedDataObject, ListOfBatterySizes,
ListOfMaxGridDemands, ListOfDemandGrowthFactors)

A.4.2 Smart Charging Simulation Instruction Object

If we want to create a Smart Charging Simulation Instruction Object (SCSIO), we can call the

method ‘getRDD_SmartChargingSimulation’. Besides the Generated Data Object, this method

takes only a list with maximum grid limits as an argument, and optionally a list of demand growth

factors.

ListOfMaxGridDemands = numpy.linspace(0,200,41).tolist()

SCSIO = getRDD_SmartChargingSimulation(GeneratedDataObject,
ListOfMaxGridDemands)

ListOfMaxGridDemands = numpy.linspace(0,200,41).tolist()
ListOfDemandGrowthFactors = numpy.linspace(0,20,21).tolist()

SCSIO = getRDD_SmartChargingSimulation(GeneratedDataObject,
ListOfMaxGridDemands, ListOfDemandGrowthFactors)

A.5 Graphing Functions

In this section the available graphing functions will be explained, grouped by the peak shaving

solution they belong to.

A.5.1 Battery Solution

The battery solution defines four graphing functions, three of which take only the created BSIO

as input, the fourth taking more arguments.
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The first function plots the Success Expectancy from a configuration over the maximum grid

demand (see Figure 5.1). A configuration in this case means a maximum battery size and

possibly demand growth factor. The second function turns this around and plots the Success

Expectancy over the maximum battery size, where the configuration is maximum grid demand

with possibly a demand growth factor (see Figure 5.2). The third function plots the Success

Expectancy over the demand growth factors, with a configuration begin the combination of a

certain battery size and a certain grid demand limit (see Figure 5.3).

plot_BatteryRDD_Over_MaxGridDemand(BSIO)
plot_BatteryRDD_Over_BatterySize(BSIO)
plot_BatteryRDD_Over_DemandMultiplier(BSIO)

Note that for the different plots, different BSIOs work best (with different lists of parameters). It

is advised to tailor the BSIO to the graphing function the user wants to execute.

The fourth graphing function creates a graph of the expected profit over time, and takes ad-

ditional parameters (see Figure 5.4). Besides the BSIO, it takes a Investment Cost Structure

(see ”Objects” earlier in this manual), a function (1), the number of weeks we want to calculate

the profit for, a discount rate and finally a weekly demand growth rate. The function (1) should

be a function taking in two parameters detailing the old peak in kW and the new peak in kW,

and return the weekly savings of transportation costs based on the two peaks specified. An

example is given below.

def weeklyCostReduction(oldPeak, newPeak):
#example function based on Liander Grootzakelijke Tarieven
if newPeak <= 50:
c_new = 0.76

elif newPeak <= 150:
c_new = 1.93+1.74

else:
c_new = 1.23 + 1.74

if oldPeak <= 50:
c_old = 0.76

elif oldPeak <= 150:
c_old = 1.93+1.74

else:
c_old = 1.23 + 1.74

return (c_old * oldPeak - c_new * newPeak) / 4

numWeeks = 520 #10 years
yearlyDiscountRate = 0.1
weeklyGrowthRate = pow(2,1/(52*10)) # a doubling in demand every 10 years

plot_BatteryRDD_Profit_Over_Time(BSIO, InvestmentCostStructure,
weeklyCostReduction, numWeeks, yearlyDiscountRate, weeklyGrowthRate)

A.5.2 Smart Charging Solution

For the smart charging solution, three different graphing functions are available. The first two

functions require only the created SCSIO, the third function requires additional parameters.

The first function provides a double graph, where the first graph plots the amount of unfulfilled

demand for different grid demand limits, and the second graph plots the amount of 15-minute
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time-steps in which there was more demand then was ultimately provided to the chargers, i.e.

the number of time-steps the Smart Charging was active (see Figure 5.5). The second function

provides these same two graphs but plotted over the different demand growth factors (see

Figure 5.6).

plot_SmartChargingRDD_Over_MaxGridDemand(SCSIO)
plot_SmartChargingRDD_Over_DemandMultiplier(SCSIO)

The third function creates a graph displaying the expected weekly cost savings over the different

grid draws. Besides the created SCSIO, this function also requires a function describing the

costs of unmet demand, as well as a function describing the cost savings due to a lower peak

grid demand. The unmet demand cost function takes two parameters which hold the value of

the amount of energy of demand, and the amount of energy supplied to the chargers, on a

15-minute basis (see Figure 5.7). The cost savings function also takes two parameters: the

original peak grid demand, and the ‘new’ grid demand when applying Smart Charging.

def DemandCostFuncLenient(d,s):
if d == 0:

return 0

fraction_unfilled_demand = 1 - s/d
if fraction_unfilled_demand <= 0.1:
factor = 1

elif fraction_unfilled_demand <= 0.3:
factor = 1.25

elif fraction_unfilled_demand <= 0.5:
factor = 1.5

else:
factor = 2

return (d-s)*0.25*factor

def weeklyCostReduction(oldPeak, newPeak):
#example function based on Liander Grootzakelijke Tarieven
if newPeak <= 50:
c_new = 0.76

elif newPeak <= 150:
c_new = 1.93+1.74

else:
c_new = 1.23 + 1.74

if oldPeak <= 50:
c_old = 0.76

elif oldPeak <= 150:
c_old = 1.93+1.74

else:
c_old = 1.23 + 1.74

return (c_old * oldPeak - c_new * newPeak) / 4

plot_SmartChargingRDD_Value_over_MaxGridSize(SCSIO, DemandCostFuncLenient,
weeklyCostReduction)
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A.5.3 Combined Solution

For the combined solution, no graphing functions are currently implemented in the tool. How-

ever, this section will discuss the available function for getting simulation results, and propose

graphing functions for visualizing these results. The function take a large list of parameters

which will be discussed below, and returns two variables. The first returned variable is a list of

the top x setups based on NPV with their corresponding NPV and confidence intervals, where

x can be specified in the parameters (see below). The second returned variable is a Apache

Spark RDD-object containing the top x setups based on NPV, each containing a list of y∗ weeks
with each week containing information on the height of the old grid demand peak as well as the

new optimal grid demand maximum and the optimal charger draw maximum. The value of y∗ is
determined dividing the amount of weeks for which will be simulated by the speed-improvement

metric, which are both parameters in calling the function (see below for both these parameters).

In order to call this function, no Simulation Instruction Object is needed, as it will create this

object itself based on the parameters given to the function. The total list of parameters is

given below. Refer to Section 5.1 and in particular Section 5.1.4 for details about the individual

parameters.

• The generated replications of 15-minute aggregated demand data

• A list of battery sizes for which to test

• A list of maximum grid draw amounts for which to test

• A list of grid draw boundaries for grid-connections

• A list of maximum energy supplied (per 15 minutes) to the chargers for which to test

• An initial investment cost structure

• A function for calculating the lost-value per 15 minutes for unfulfilled demand

• A function for calculating the costs associated with the peak grid draw

• A weekly demand growth rate

• The number of weeks for which to simulate

• A re-calibration period (in weeks)

• A yearly discount rate (used for calculating NPV)

def DemandCostFuncLenient(d,s):
if d == 0:

return 0

fraction_unfilled_demand = 1 - s/d
if fraction_unfilled_demand <= 0.1:
factor = 1

elif fraction_unfilled_demand <= 0.3:
factor = 1.25

elif fraction_unfilled_demand <= 0.5:
factor = 1.5

else:
factor = 2
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return (d-s)*0.25*factor

def weeklyCostReduction(oldPeak, newPeak):
#example function based on Liander Grootzakelijke Tarieven
if newPeak <= 50:
c_new = 0.76

elif newPeak <= 150:
c_new = 1.93+1.74

else:
c_new = 1.23 + 1.74

if oldPeak <= 50:
c_old = 0.76

elif oldPeak <= 150:
c_old = 1.93+1.74

else:
c_old = 1.23 + 1.74

return (c_old * oldPeak - c_new * newPeak) / 4

BATTERY_CAPACITIES = np.linspace(0,200,9).tolist()
MAX_GRID_DEMANDS = numpy.linspace(0,200,41).tolist()
MAX_GRID_LIMITS = [0,100,160,630,1000,2000,5000,10000]
MAX_CHARGER_DRAW = numpy.linspace(0,200,41).tolist()
BATTERY_COST_STRUCTURE = InvestmentCostStructure
LOST_DEMAND_FUNC = DemandCostFuncLenient
COST_SAVE_FUNC = weeklyCostReduction
WEEKLY_GROWTH = WEEKLY_GROWTH = pow(4,(1/520)) # multiply by 4 every 520 weeks
NUM_WEEKS = 52*10+1
CALIBRATE_NUM_WEEKS = 52
YEARLY_DISCOUNT_RATE = 0.1

best_options, results_rdd = get_CombinedSolutionRDD_Advice_Fast_New3(
GeneratedDataObject, BATTERY_CAPACITIES, MAX_GRID_DEMANDS,
MAX_GRID_LIMITS, MAX_CHARGER_DRAW, BATTERY_COST_STRUCTURE,
LOST_DEMAND_FUNC, COST_SAVE_FUNC, WEEKLY_GROWTH, NUM_WEEKS,
CALIBRATE_NUM_WEEKS, YEARLY_DISCOUNT_RATE, NUM_BEST = 5

)

Now that the results are loaded into the variables ‘best_options’ and ‘results_rdd’, we can

analyse the results using a user-defined function. Proposed functions for the analysis are given

below.

Visualizing the maximum grid draw and maximum charger draw per week

The function below is proposed to visualize themaximum grid draw andmaximum charger draw.

The resulting graph has been presented in the main report in Figure 5.8.

def plotMaxDraw(results, experiment, recalibrationWeeks):
fig, ax = plt.subplots()
colors = ['b','r','y','m','g']
c = 0
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first = True
for setup in results:
x = [i['Week'] for i in setup[1]]
y = [i['AvgOldPeak'] for i in setup[1]]
z = [i['AvgNewPeak'] for i in setup[1]]
z2 = [i['AvgMaxGridDemand'] for i in setup[1]]
if first:
ax.plot(x,y,color='k',linestyle='-', label = 'Original Grid Demand Peak')
first = False

labeltext = 'Battery: ' + str(setup[0]['BatteryCapacity']) + ' kWh, 
Connection: ' + str(setup[0]['MaxGridLimit']) + ' kW'

ax.plot(x,z2,color=colors[c],linestyle='-', label = labeltext + " (Grid)")
ax.plot(x,z,color=colors[c],linestyle='--', label = labeltext + " (Charger)

")
c = (c + 1) % 5

fig.set_size_inches([16., 10.])
fig.tight_layout(pad=3.0)
ax.legend(loc='best')
ax.set_title('Max Grid- and Charger Draw over the weeks (' + experiment + ')'

, fontsize = 20)
ax.set_ylabel('Max Draw (kW)', fontsize = 16)
ax.set_xlabel('Weeks', fontsize = 16)
display(fig)

Visualizing the amount of lost demand

The function below is proposed to visualize the amount of lost demand due to applying the

combined solution. The resulting graph has been presented in the main report in Figure 5.9.

def plotMissedDemand(results, experiment, recalibrationWeeks):
fig, ax = plt.subplots(2,1)
colors = ['b','r','y','m','g']
c = 0
for setup in results:
x = [i['Week'] for i in setup[1]]
y = [i['AvgUnmetDemand'] for i in setup[1]]
z = np.cumsum([i['AvgUnmetDemand'] for i in setup[1]])
z = [a*recalibrationWeeks for a in z]
labeltext = 'Battery: ' + str(setup[0]['BatteryCapacity']) + ' kWh, 

Connection: ' + str(setup[0]['MaxGridLimit']) + ' kW'
ax[0].plot(x,y,color=colors[c],linestyle='-', label = labeltext)
ax[1].plot(x,z,color=colors[c],linestyle='-', label = labeltext)
c = (c + 1) % 5

fig.set_size_inches([16., 10.])
fig.tight_layout(pad=3.0)
ax[0].legend(loc='best', fontsize='small')
ax[1].legend(loc='best', fontsize='small')
ax[0].set_xlabel('Weeks')
ax[0].set_ylabel('Amount of kWhs unfulfilled')
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ax[0].set_title('Amount of kWhs unfulfilled per week (' + experiment + ')')
ax[1].set_xlabel('Weeks')
ax[1].set_ylabel('Amount of kWhs unfulfilled')
ax[1].set_title('Cumulative amount of kWhs unfulfilled over the weeks (' +

experiment + ')')
display(fig)
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B ALL EXPERIMENT RESULTS

B.1 Results per Experiment

B.1.1 A-L-1

Bat. Capacity Grid Connection NPV CI 0.95 CI 0.99

0 100 15941.11 9690.68-22191.53 7667.74-24214.47

25 100 5337.51 -1208.40-11883.42 -3326.97-14002.00

50 100 -8162.49 -14708.40–1616.58 -16826.97-502.00

75 100 -21662.49 -28208.40–15116.58 -30326.97–12998.00

0 160 -32310.86 -38808.45–25813.26 -40911.39–23710.33

Table B.1: Best options for A-L-1

Figure B.1: Optimal Charger Draw Limit A-L-1
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Figure B.2: Unmet demand A-L-1
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B.1.2 A-L-4

Bat. Capacity Grid Connection NPV CI 0.95 CI 0.99

25 100 59568.05 57639.92-61496.18 57015.89-62120.22

50 100 53989.90 52319.68-55660.12 51779.11-56200.68

75 100 43936.32 42314.61-45558.03 41789.75-46082.89

100 100 31892.38 30302.50-33482.25 29787.94-33996.82

0 100 19584.39 16315.83-22852.95 15257.96-23910.82

Table B.2: Best options for A-L-4

Figure B.3: Optimal Charger Draw Limit A-L-4
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Figure B.4: Unmet demand A-L-4
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B.1.3 A-L-10

Bat. Capacity Grid Connection NPV CI 0.95 CI 0.99

0 1000 33335.34 21857.94-44812.74 18143.30-48527.38

0 630 31036.41 19602.99-42469.82 15902.59-46170.22

25 630 26480.51 15025.62-37935.40 11318.26-41642.76

25 1000 20595.28 9076.42-32114.13 5348.36-35842.19

50 630 16381.01 4927.83-27834.19 1221.03-31540.99

Table B.3: Best options for A-L-10

Figure B.5: Optimal Charger Draw Limit A-L-10
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Figure B.6: Unmet demand A-L-10
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B.1.4 A-H-1

Bat. Capacity Grid Connection NPV CI 0.95 CI 0.99

25 100 5337.51 -1208.40-11883.42 -3326.97-14002.00

50 100 -8162.49 -14708.40–1616.58 -16826.97-502.00

0 100 -21401.75 -34352.52–8450.98 -38544.01–4259.48

75 100 -21662.49 -28208.40–15116.58 -30326.97–12998.00

0 160 -33010.43 -39218.51–26802.35 -41227.75–24793.12

Table B.4: Best options for A-H-1

Figure B.7: Optimal Charger Draw Limit A-H-1
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Figure B.8: Unmet demand A-H-1
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B.1.5 A-H-4

Bat. Capacity Grid Connection NPV CI 0.95 CI 0.99

0 630 5381.88 4341.46-6422.30 4004.73-6759.03

125 100 62.61 -7080.84-7206.06 -9392.81-9518.03

100 100 -4301.87 -15501.15-6897.41 -19125.78-10522.04

150 100 -5104.58 -9208.00–1001.15 -10536.06-326.91

0 1000 -7431.11 -8638.65–6223.57 -9029.47–5832.75

Table B.5: Best options for A-H-4

Figure B.9: Optimal Charger Draw Limit A-H-4
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Figure B.10: Unmet demand A-H-4
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B.1.6 A-H-10

Bat. Capacity Grid Connection NPV CI 0.95 CI 0.99

25 1000 13301.43 2787.00-23815.85 -615.98-27218.83

0 1000 12971.78 5163.10-20780.46 2635.84-23307.73

0 2000 9022.06 -2294.69-20338.80 -5957.33-24001.44

50 1000 1716.36 -8996.74-12429.46 -12464.01-15896.74

25 2000 -3868.29 -15178.70-7442.12 -18839.29-11102.71

Table B.6: Best options for A-H-10

Figure B.11: Optimal Charger Draw Limit A-H-10
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Figure B.12: Unmet demand A-H-10
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B.1.7 B-L-1

Bat. Capacity Grid Connection NPV CI 0.95 CI 0.99

0 100 42666.93 35662.90-49670.97 33396.05-51937.82

25 100 36209.40 28876.58-43542.22 26503.32-45915.47

50 100 22743.13 15402.27-30083.98 13026.41-32459.84

75 100 9243.13 1902.27-16583.98 -473.59-18959.84

0 160 -1646.79 -8920.36-5626.77 -11274.43-7980.85

Table B.7: Best options for B-L-1

Figure B.13: Optimal Charger Draw Limit B-L-1
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Figure B.14: Unmet demand B-L-1
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B.1.8 B-L-4

Bat. Capacity Grid Connection NPV CI 0.95 CI 0.99

50 100 42682.03 40334.94-45029.11 39575.31-45788.74

25 100 38642.26 35953.60-41330.91 35083.42-42201.09

75 100 38063.38 35855.56-40271.19 35141.01-40985.75

100 100 29350.03 27240.00-31460.07 26557.09-32142.98

125 100 18772.98 16730.17-20815.79 16069.02-21476.95

Table B.8: Best options for B-L-4

Figure B.15: Optimal Charger Draw Limit B-L-4
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Figure B.16: Unmet demand B-L-4
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B.1.9 B-L-10

Bat. Capacity Grid Connection NPV CI 0.95 CI 0.99

0 1000 61670.69 38351.33-84990.05 30804.06-92537.33

25 1000 49704.32 26356.72-73051.93 18800.30-80608.34

25 630 45015.70 21758.71-68272.68 14231.63-75799.77

0 630 43065.36 19780.38-66350.34 12244.24-73886.48

0 2000 41917.50 18463.83-65371.17 10873.09-72961.91

Table B.9: Best options for B-L-10

Figure B.17: Optimal Charger Draw Limit B-L-10
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Figure B.18: Unmet demand B-L-10
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B.1.10 B-H-1

Bat. Capacity Grid Connection NPV CI 0.95 CI 0.99

25 100 35527.08 28319.36-42734.80 25986.60-45067.57

50 100 22231.80 14999.88-29463.72 12659.29-31804.32

75 100 8731.80 1499.88-15963.72 -840.71-18304.32

0 160 -4189.46 -11000.17-2621.26 -13204.45-4825.54

100 100 -4768.20 -12000.12-2463.72 -14340.71-4804.32

Table B.10: Best options for B-H-1

Figure B.19: Optimal Charger Draw Limit B-H-1
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Figure B.20: Unmet demand B-H-1
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B.1.11 B-H-4

Bat. Capacity Grid Connection NPV CI 0.95 CI 0.99

0 630 11013.79 9739.64-12287.94 9327.26-12700.32

0 1000 -24.51 -1557.96-1508.94 -2054.26-2005.24

25 630 -596.70 -2028.56-835.16 -2491.98-1298.58

25 1000 -13523.71 -15057.28–11990.15 -15553.61–11493.81

50 630 -13793.51 -15282.39–12304.63 -15764.26–11822.76

Table B.11: Best options for B-H-4

Figure B.21: Optimal Charger Draw Limit B-H-4
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Figure B.22: Unmet demand B-H-4
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B.1.12 B-H-10

Bat. Capacity Grid Connection NPV CI 0.95 CI 0.99

0 2000 29622.22 9311.66-49932.78 2738.18-56506.26

25 2000 17079.99 -3355.35-37515.33 -9969.21-44129.20

50 2000 3312.76 -17165.21-23790.74 -23792.88-30418.40

50 1000 2525.70 -9536.97-14588.36 -13441.03-18492.42

25 1000 2356.33 -6615.78-11328.43 -9519.59-14232.24

Table B.12: Best options for B-H-10

Figure B.23: Optimal Charger Draw Limit B-H-10
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Figure B.24: Unmet demand B-H-10

89



B.1.13 C-L-1

Bat. Capacity Grid Connection NPV CI 0.95 CI 0.99

0 100 0.00 0.00-0.00 0.00-0.00

25 100 -13500.00 -13500.00–13500.00 -13500.00–13500.00

50 100 -27000.00 -27000.00–27000.00 -27000.00–27000.00

75 100 -40500.00 -40500.00–40500.00 -40500.00–40500.00

0 160 -51030.00 -51030.00–51030.00 -51030.00–51030.00

Table B.13: Best options for C-L-1

Figure B.25: Optimal Charger Draw Limit C-L-1
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Figure B.26: Unmet demand C-L-1
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B.1.14 C-L-4

Bat. Capacity Grid Connection NPV CI 0.95 CI 0.99

0 100 70948.66 70650.90-71246.41 70554.54-71342.78

25 100 65005.38 64888.75-65122.01 64851.01-65159.75

50 100 51681.31 51570.08-51792.55 51534.08-51828.55

75 100 38188.10 38077.00-38299.19 38041.05-38335.14

0 160 25637.25 25515.14-25759.35 25475.62-25798.87

Table B.14: Best options for C-L-4

Figure B.27: Optimal Charger Draw Limit C-L-4
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Figure B.28: Unmet demand C-L-4
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B.1.15 C-L-10

Bat. Capacity Grid Connection NPV CI 0.95 CI 0.99

50 100 32164.96 30964.74-33365.17 30576.29-33753.62

25 100 28451.55 26749.63-30153.47 26198.81-30704.30

75 100 26563.41 25616.90-27509.92 25310.56-27816.25

100 100 17247.13 16499.15-17995.10 16257.07-18237.18

125 100 6236.24 5623.40-6849.07 5425.06-7047.41

Table B.15: Best options for C-L-10

Figure B.29: Optimal Charger Draw Limit C-L-10
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Figure B.30: Unmet demand C-L-10
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B.1.16 C-H-1

Bat. Capacity Grid Connection NPV CI 0.95 CI 0.99

0 100 0.00 0.00-0.00 0.00-0.00

25 100 -13500.00 -13500.00–13500.00 -13500.00–13500.00

50 100 -27000.00 -27000.00–27000.00 -27000.00–27000.00

75 100 -40500.00 -40500.00–40500.00 -40500.00–40500.00

0 160 -51030.00 -51030.00–51030.00 -51030.00–51030.00

Table B.16: Best options for C-H-1

Figure B.31: Optimal Charger Draw Limit C-H-1
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Figure B.32: Unmet demand C-H-1
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B.1.17 C-H-4

Bat. Capacity Grid Connection NPV CI 0.95 CI 0.99

25 100 64173.07 63940.01-64406.13 63864.57-64481.56

50 100 51613.97 51518.28-51709.66 51487.31-51740.62

75 100 38143.31 38050.45-38236.17 38020.40-38266.22

100 100 24643.31 24550.45-24736.17 24520.40-24766.22

0 160 18276.21 17770.97-18781.44 17607.45-18944.96

Table B.17: Best options for C-H-4

Figure B.33: Optimal Charger Draw Limit C-H-4
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Figure B.34: Unmet demand C-H-4
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B.1.18 C-H-10

Bat. Capacity Grid Connection NPV CI 0.95 CI 0.99

0 630 83.18 47.91-118.45 36.50-129.87

0 1000 -13207.60 -13251.57–13163.64 -13265.79–13149.42

25 630 -13264.47 -13329.01–13199.93 -13349.90–13179.04

25 1000 -26606.47 -26671.01–26541.93 -26691.90–26521.04

50 630 -26825.94 -26881.50–26770.39 -26899.48–26752.41

Table B.18: Best options for C-H-10

Figure B.35: Optimal Charger Draw Limit C-H-10
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Figure B.36: Unmet demand C-H-10
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