
August 2021      

 

  

Process mining applied 
to League of Legends to 
achieve performance 
insight by using API data 
extraction 
Industrial Engineering & Management   

Bachelor Thesis 

 

       
First supervisor: Dr. G.W.J. Bruinsma 
Second supervisor: Dr. I. Seyran Topan  
 

       



i 
 

Bachelor thesis Industrial Engineering and Management 

 

Process mining applied to League of Legends to achieve performance insight by using API 

data extraction 

 

 

Author 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

University of Twente 

Drienerlolaan 5 

7522 NB Enschede 

(053) 489 9111 

 

Supervisors University of Twente 

First supervisor: Dr. G.W.J. Bruinsma (Guido) 

Second supervisor: Dr. I. Seyran Topan (İpek) 



ii 
 

Management summary 
eSports is an industry which has been growing over the past decade. This growth has been 

realised in terms of viewers, players, and money involved. Due to the growth, the eSports 

scene has been catching up on traditional sports. One particular game with a large eSports 

scene is the video game League of Legends. Individual players, as well as the eSports teams, 

benefit from improving gameplay. Performance improvement can be achieved in terms of 

improving physiology, psychology, strategies, and team coherence. Data analysis is also a 

way of gaining insight in gameplay, which can lead to performance improvement. There are 

websites online which show dashboards where information is summarised and shared for an 

inputted player to analyse. However, these dashboards only show statistics, and do not take 

into account the timing when events during a match occurred. Furthermore, such 

dashboards primarily show data which League already shows to the player in the game itself. 

There seems to be a lack of applications which analyse in-game objectives, which play a 

critical role in winning a match in League. Academic research also does not provide a tool or 

application which combines the idea of analysing in-game objectives as well as the timing of 

such events. Thus, the research of this thesis aimed to create a tool which analyses the 

timed sequence of events concerning in-game objectives, in order to gain insight in an 

inputted player’s playstyle, which could be used for personal improvement goals, as well as 

analysing and creating counter strategies against opponents. 

To realise this analysis tool, requirements had to be devised, which makes sure that the tool 

would be sufficiently useful. Three requirement categories were created, namely “Collect 

data”, “Analyse data to distinguish winning patterns”, and “Guarantee user friendliness”. 

Each requirement category has its own requirements which need to be satisfied in order to 

sufficiently satisfy the corresponding requirement category. The “Collect data” category 

aimed to make sure that the online data source for the tool was reliable and that the user 

defined inputted data can be analysed without errors. The “Analyse data to distinguish 

winning patterns” category aimed to make sure that the tool scans and analyses the match 

history of the inputted player to analyse by checking for each match the impact of taking an 

objective, as well as the timing of it in a match. The “Guarantee user friendliness” category 

aimed to make sure the tool runs automatically with minimal input from the user, as well as 

providing options to visualise and filter information.  

League provides an online API for players to use. They can use it to extract information 

about their matches played. This API was used by the tool constructed in this thesis. The tool 

consists of a Python code which asks input from the user, such as which player account to 

analyse, and then extracts information of the player’s matches concerning in-game 

objectives. Whether the player won the concerning match when a certain objective was 

taken is used as a measurement of success for the objective. The collected data is put into an 

Excel file which uses VBA coding to interpret the data and create a Pivot table and chart to 

visualise it. The user has the possibility to filter information in the table and graph. 

The constructed tool was tested by inputting a professional eSports player. The tool worked 

as intended and the requirements were sufficiently satisfied. A sensitivity analysis was 

executed for certain requirements where possible. For example, one requirement was that 
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every player in the world could be inputted in the tool. This was tested by inputting players 

from different regions and check whether the tool would adjust accordingly, which was 

indeed the case.  

A survey was constructed as a validation method to check to what extent potential users 

thought the tool was suitable, and what improvements points they could think of. League 

players from the Esports Team Twente were sent the survey to fill in. The response 

concluded that the analysis of in-game objective events as well as their timing could indeed 

be beneficial. Certain points of improvement were also formulated. One example was that a 

more detailed analysis could be more beneficial, since League contains a lot of factors which 

also influence the chances of victory. 

The tool is initially used to analyse the success of taking objectives for the inputted player. 

Even though the tool is not able to analyse the success of other events that occur during a 

match, it requires relatively small changes in the Python code to adjust this, because the API 

also contains data of other events. Furthermore, the design of the tool could be based 

initially on the opinions of eSports players, instead of using their opinions as validation. Such 

a design plan could also benefit if software would be used to create a standalone 

application, instead of separate Python and Excel files, which could improve user 

friendliness. Finally, the API has its limitations, as data is gathered every minute, and not 

every second. Using analysis software to gather data from replays of matches can improve 

the data and make it more detailed. All these aforementioned possibilities can be used as 

starting point for further research.  
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Chapter 1: Context analysis 
eSports, which is short for Electronic Sports, is the world of organised and competitive video 

gaming, where millions of fans all over the world attend live or online events to watch the 

competition play (Willingham, 2018). Professional gaming teams or individual competitors 

battle each other for a title or championship, which includes prize pools, ad revenues (Reyes, 

2021), and other income streams like selling merchandise (Pan, 2018). Research has been 

done on the growth of eSports and a continuation of growth is expected (Newzoo, 2021). 

The eSports scene has also grown compared to traditional sports and gathered in 2019 more 

viewers than rugby and American football combined (Olya, 2021). Furthermore, the amount 

of eSports watchers is expected to surpass the baseball scene in 2022. Especially younger 

watchers, ranging in age from 18 to 25 years old, spend considerably more time watching 

other people playing games than watching more traditional (Limelight Networks, 2020). The 

amount of eSports players also grows when comparing 2014 with 2019.   

Certain parties have already started anticipating on the growth of eSports over the year. For 

example, Madison Square Garden, which has a capacity of 20.000 people, has been used for 

eSports events and managed to consistently fully fill it with eSports watchers. Japanese 

entertainment company Konami has constructed a big facility of 12 stories high which is 

focussed on eSports activities, called the Konami Creative Center Ginza (Olya, 2021). 

Furthermore, eSports has also been speculated to be part of future Olympic Games, and 

eSports is even already part of the 2022 Asian Games.  

In eSports, investments take place. This aspect is investigated on further in the following 

part. 

The prize pools of eSports tournaments also have increased over the years and are starting 

to become comparable to the prize pools of more traditional sports, such as football, golf, 

cricket, darts, and cycling (Wagner, 2018). To highlight the growth of the eSports scene with 

an example: the world championship event of DotA 2 held in 2019 had a prize pool of over 

34.3 million USD, which is also the biggest prize pool so far of an eSports tournament 

(Nordmark, 2021). 

The top 10 Forbes eSports organisation ranking list has the trait that 7 of the top 10 eSports 

organisations currently have franchise League eSports teams (Settimi, 2020). The top 3 

organisations, TSM, Cloud9 and Team Liquid, all have a history in the North American League 

of Legends eSports scene. TSM, with its value around 410 million USD, is the biggest eSports 

organisation in the world, and has been part of the League eSports scene from the 

beginning.  

As highlighted, especially League of Legends is an eSports scene which has seen growth and 

is currently one of the biggest eSports industries in the world (Shelp, 2020). The growth over 

the years of this eSports scene will be explained and elaborated on next. 

The overall number of viewers who watch League of Legends grows over the years (Statista, 

2021). To illustrate, the number of viewers for the League of Legends World Championship 
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finals grew to 100 million in 2019 (Pei, 2019). For comparison, the Super Bowl of that year 

had roughly 98 million viewers and its viewership is on a declining trend.  

This growth of the League of Legends eSports scene manifests in, among others, viewers, 

players, sponsors, investors, and business partners. Football and basketball sports clubs like 

FC Schalke 04, Milwaukee Bucks and Golden State Warriors have started to create their own 

professional League of Legends eSports teams and are competing on a professional level 

(Church, 2020).  

The eSports scene keeps growing over the ages. League of Legends is one of the more 

prominent games with an eSports scene and it has been established for roughly ten years 

now (Shelp, 2020).  

League of Legends is a competitive video game. Performance optimisation could be 

beneficial for the professional eSports teams, its players on the team, and players who do 

not participate in the eSports scene but focus on improving their gameplay. Other more 

traditional sports, like football, has staff to improve performance with relation to coaching, 

game analysis, fitness and medical issues. There are also companies, like SciSports, which 

aim to improve football performance via data algorithms. Similarly, League of Legends 

eSports teams also has coaches, analysts, and data engineers, which could optimise the 

performance of their eSports players. There are papers of academic research available which 

explain about possibilities for performance optimisation concerning League of Legends, such 

as optimisation with regard to physiology, psychology, game strategies, and team 

coherence. Performance optimisation could also be achieved by insight in the game 

performance of the individual. Concerning such game analysis, there are websites available 

which show statistics about what happened during a match played. However, these websites 

do not provide insight in the analysis of events that happened during a match with relation 

to time. Such time series analysis could provide more insight in an individual’s performance, 

which leads to performance improvement.  

The available League of Legends academic research is investigated upon further in Chapter 

2. To understand the material researched in Chapter 2, it would be beneficial to understand 

the video game League of Legends better. Thus, basic information about the game will be 

explained briefly. 

The strategy video game League of Legends (abbreviated as League) consists of matches 

played between 2 teams of 5 players each and the players try to destroy each other’s base, 

which is situated on their respective side of the map. Bases are guarded by turrets which 

needs to be destroyed first. Across the map, there are certain neutral monsters which can be 

killed to make the team who killed it permanently stronger for the rest of the match. 

Destroying turrets or these monsters are labelled as ‘objectives’. More in-depth explanation 

about League is provided in Appendix A. 
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Chapter 2: Theoretical framework 
By investigating previous work and research, a starting point can be identified to find a way 

to solve the main research opportunity faced in Chapter 1, which was about performance 

optimalisation with regard to game analysis of League matches. Similar research might have 

provided some answer regarding the research opportunity, but this should be analysed to 

what extent this is done. Such research can be used as a starting point to modify the 

research goals and adjust it in such a way so that a new innovative solution can be created. 

This chapter starts off by listing current available data analysis visualisation methods. A few 

websites and applications are shown to sketch the current state of visualisation possibilities, 

to help understand what is offered. This shows what is currently done, and also shows what 

is left to improve. Next up, the academic database Scopus is used to search for other 

methods, such as data visualisation, that were used on eSports and League specifically. This 

can show which methods are researched, and can highlight what state-of-the-art possibilities 

there are concerning data analysis. The focus during this orientation phase is to see whether 

a method truly adds value in the sense that the data can provide insight to a team’s or 

player’s performance and whether or not it can contribute to winning. The main focus is that 

either the research or applications should be able to improve the win rate of a team or 

player. The checking of current available data visualisation applications, and the analysis of 

literature of the topic, will realise a requirement list to accomplish setting steps in the 

direction of creating an innovative solution concerning data analysis in League. The new 

method created in the next chapter should be able to meet the requirement list, and thus 

provide both a practical and innovative new method. 

The current available data analysis visualisation methods will now be analysed. Most of 

these available methods are realised in the form of websites. There are already websites 

available which visualise and summarise the data that happened in a game. The best known 

website for this is OP.GG, which is a website where you can fill in a summoner name of a 

player and check their match history, along with their Ranked Queue ranks and other data. A 

nice feature about OP.GG is that it easily also shows the rank, level, and runes of your 

opponents and teammates in the game you are currently in. Figure 1 shows what OP.GG 

looks like. OP.GG uses the League of Legends Riot API as data input. As an example, the main 

account of a famous League eSports player called Rekkles is analysed. League players often 

change the name of their account, which is the summoner name. The main name of the 

player is Rekkles, but he has roughly 5 other accounts which each have other summoner 

names. Thus, at the time of creation of Figure 1 and 2, one of his accounts had the name: 

“Matt Donovan”. This account was used to show what the concerning websites look like in 

the figures. 
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Figure 1: The summoner stats from the summoner Matt Donovan. Extracted from [Matt 

Donovan - Summoner Stats - League of Legends]. (2021). OP.GG Europe West. Retrieved 

from https://euw.op.gg/summoner/userName=matt+donovan  

OP.GG is not the only website which shows data visualisation of games played. There are 

other websites which show and visualise data or winning strategies off champions, like 

Champion.gg, Blitz.gg, Mobafire.com and Mobalytics.gg. Since Mobalytics tries to show more 

data that other sites do not, like showing a playing profile. This is unique to Mobalytics and 

an example of such a playing profile is shown in Figure 2. Its graph has aspects such as 

Fighting, Consistency, Versatility, Survivability and Aggression. This graph is purely meant to 

give an idea of what the data analysis roughly looks like, and thus these aspects are not 

explained further.  

https://euw.op.gg/summoner/userName=matt+donovan
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Figure 2: The playstyle of summoner Matt Donovan according to Mobalytics. Extracted from 

[Matt Donovan (region: EUW) - Champion Stats - League of Legends (Season 11)]. (2021). 

Mobalytics. Retrieved from 

https://app.mobalytics.gg/lol/profile/euw/matt%20donovan/overview  

League of Legends itself also has a way of analysing player specific data and uses it to make a 

playing profile for each champion on each position played, if enough data is gathered. It’s 

similar to the graph of Mobalytics, but not completely. It uses three categories of gameplay 

to visualise someone’s playstyle, which are Combat, Income, and Map Control. Aspects 

shown are fairly general and can be easily viewed in tables and graphs of post-match data. 

Concerning aspects are, for example, Damage Share, Kill Participation, minions killed per 

minute, early gold advantage, Objective Control Ratio, and Vision Score. A dashboard of the 

Combat category is shown in Figure 3. The higher the grade, the better your performance 

compared to other players of different selected ranks. 

https://app.mobalytics.gg/lol/profile/euw/matt%20donovan/overview
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Figure 3: The playing profile visualisation from the game League itself. Extracted from: Riot 

Games, Inc. (2009). League of Legends (Version: patch 10.7) [Video game]. Los Angeles, CA: 

Riot Games, Inc. 

As shown, there are ways to visualise data of players in different contexts. However, none of 

these options take the sequence of events that happen during a game into account, which 

are events in the context of when something happened during the game. Especially 

concerning objectives taken during a game. Objectives have a large impact on the winning 

probability of a game, but a clear analysis lacks so far. Only static data is analysed, 

categorised and visualised. Thus, academic literature should be analysed to check whether 

there are already methods developed to analyse the importance of the occurred sequence 

of events during a game. 

Thus, an innovative dashboard should so far contain the following tentative requirements to 

distinguish itself from current visualisation applications: 

- The sequence of events of a match should be taken into account, instead of just 

analysing simply post-game statistics 

- In -game objectives should be analysed 

The next goal is to follow up on the search for innovative requirements by looking at 

academic literature. It could be that academic research has already created methods which 

meet to the tentative requirements list, even though such methods may perhaps not be 

created in the form of an application or website yet. The main goal is to provide an 

innovative solution, and if such a solution is already done in academic research, then such a 

solution is not innovative after all, thus the academic literature should be analysed. Such 

academic literature was reviewed by using the academic database Scopus. The total relevant 
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list of sources are listed in the appendix. Keywords were used such as MOBA, League of 

Legends, data, mining and strategy. The searching started of simple by searching for general 

research on the eSports aspect of League of Legends.  

Data analysis in League of Legends, and also for MOBAs in general, appears to be a useful 

endeavour according to, for example, Sangster et al. (2016). In this paper, data about kills, 

assists and the familiarity with teammates are analysed in an exploratory way. The 

researcher conclude that expanding research in this field of study has beneficial possibilities. 

The first article found specifically about this data analysis on League was about a dashboard 

build which is called VisuaLeague (Afonso et al., 2019). It uses in-game data to visualise what 

happened during the game, like making a 2D animation of how each player walked during 

the game, thus creating walking routes. The data in the article used was said to be extracted 

from the API of Riot. This API is accessible to general users and thus could be used as a data 

extraction source to collect information about League and about matches played. Simply for 

giving an idea of the dashboard, the VisuaLeague dashboard is shown in Figure 4. In 

comparison to previously mentioned data visualisation, the VisuaLeague dashboard also 

shows walking routes which happen during a game, which can be viewed on the upper left 

map, thus it shows some information about the occurred sequence of events. Perhaps the 

API data could be used to find more information about the timing of events that happen 

during a match.

 

Figure 4: The VisuaLeague dashboard from Afonso, A. P., Carmo, M. B., Gonçalves, T., & 
Vieira, P. (2019b). VisuaLeague: Player performance analysis using spatial-temporal data. 
Multimedia Tools and Applications, 78(23), 33069–33090. https://doi.org/10.1007/s11042-
019-07952-z 
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In the article of (Charleer et al., 2018), dashboards were built for League and also another 

popular shooter game called Counter Strike: Global Offensive. The researchers tried to make 

a dashboard for League which helps spectators watch official eSports matches better by 

visualising potentially more useful information. They created a new visualisation module 

which has not been known before, called Vulnerability, which is an indicator of how likely a 

champion is to die in the current situation. This dashboard also shows other data like gold 

progression and damage dealt by each champion. Even though this dashboard uses a new 

way of analysing data which is also constantly updated, in the form of the Vulnerability 

module, no clear overview is given over the sequence of events at the end of the game. The 

data module simply shows which champion is vulnerable to dying at the moment, which is 

meant to inform the spectator. For this dashboard, a Websocket was used which was 

provided by the League eSports broadcasters, instead of API data like in the VisuaLeague 

paper (Afonso et al., 2019a). In another paper of Afonso et al. (2019b), various visualisation 

tools for League are compared. Interestingly, a VisuaLeague version 2 was developed in for 

this research. The research was meant to test which visualisation is liked more by players, 

where the result was that players favoured dynamic spatio-temporal visualisation, like 

watching a replay of a match or a walking route animation. The walking route animation, 

along with the replay of a match, shows the distinction between early events and late events 

happening in a game, and thus seems to show that players prefer indeed data which give 

insight in the sequence of events of the concerning game. 

A nice goal of visualising and analysing the sequence of events in a game is to see what went 

wrong, fix it, and measure the improved results. Thus, the analysis of useful and less useful 

strategies should also be considered. The paper of Gerber et al., 2019 paper uses API data to 

measure team performance and check performance improvement after an improvement 

program was executed. This improvement program consisted of a three-day sleep-over 

summer camp to do team building exercises with the goal of improving the mental aspect of 

a player and, eventually, in-game team coordination. This research aimed at organising 

activities which are totally separate from the game League of Legends itself. However, 

another paper, which is from Lee & Ramler (2017), tested various different in-game team 

strategies to check whether such behaviour would result in more victories. These team 

strategies referred to mixing up roles. Thus, for example, the team composition of having 

two junglers instead of the usual team role composition of one top laner and one jungler, 

was considered. Readily available post-game statistics delivered by Riot was used to 

compare the success of different team composition. Another paper (Sapienza et al., 2018), 

also analysed the in-game behaviour of players. It used patterns in post-match kills, assists, 

deaths and amount of earned gold to cluster behaviour types.  

There is also research done about comparing the success of deviating strategies to a norm 

for other MOBAs, like DotA 2 (Cavadenti et al., 2016). The research paper from Sapienza et 

al., (2017) also researches DotA 2 to analyse which factors determine success for players. 

Analysed factors were about overall player experience with the game and the type of player 

specific in-game character choice. Another DotA 2 study which analyses success factors is 

from Xia et al., (2019), and another study focussed on the application of machine learning on 

predicting the win probability after the team composition of each team are set by using, just 
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before the match starts (Semenov et al., 2016). The aforementioned DotA studies do not 

distinguish between the timing of occurred in-game events to draw conclusions. 

Another research paper which dived into the analysis of successful strategies for League, is 

from Do Nascimento et al., (2017). In this paper, different behavioural profiles of teams were 

categorised and for each profile, highly correlated post-game statistics were registered. 

Essentially, the post-game statistics which fit a high win rate and a low win rate were 

distinguished to conclude which statistics seemed the most relevant for a high win rate. 

However, this paper uses static post-game statistics and thus does not differentiate between 

the timing of occurrence of different in-game events. Another paper which also checks team 

composition strategies is from Costa et al., (2019), where a Genetic Algorithm was used to 

compose team compositions by selecting champions which all would fit a certain playing 

strategy. There has also been done some research about victory prediction. However, the 

data gathered and used is fairly basic. Examples of such papers are papers from Deja & 

Myslak, (2015) and Ani et al., (2019). 

There are multiple other research papers which identify winning strategies and other 

behavioural patterns. Many of them use post-game data which does not differentiate 

between the timing of occurred events. Most studies look if something happened, but not 

when such an occasion occurred. However, some articles use this differentiation to some 

extent. The research in Eaton et al., (2017), checks the importance of the survival of a team’s 

Carry, which is the most important player who often does the most damage. This is analysed 

by checking when either Carry of a team dies, and what effects these events have on the 

amount of kills, assists, and buildings destroyed. Even though the timed sequence of events 

of a match are taken into account, this paper does not provide some sort of advice in the 

form of strategies or behavioural patterns, since it seems obvious that the team who kills the 

other team’s Carry the most is extremely likely to win.  

Another paper (Kho et al., 2020) also takes into account this sequence of events principle. 

However, the focus is on objectives mainly. It analyses teams from professional eSports 

League scenes from different regions and compare sequence of events with regard to 

objectives result in victories. This objective focussed analysis is relatively unique compared 

to other articles. The paper classifies 6 different objective events, which are first turret or 

first dragon for example, and then looks which objective events happen most often for 

winning teams in the concerning region. The analysed events are shown in Figure 5.  
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Figure 5: The in-game objectives identified to keep track of in eSports matches. Extracted 
from Kho, L. C., Kasihmuddin, M. S. M., Mansor, M. A., & Sathasivam, S. (2020). Logic mining 
in league of legends. Pertanika Journal of Science and Technology, 28(1), 211–225. 

However, this paper uses fairly basic sequence of events analysis because it only checks 

when the first objective is taken by either team. This could be elaborated by checking more 

data with regard to objectives. Also, every team of a region is analysed and allocated 

towards the whole region. Thus, individual teams are not analysed, let alone individual 

eSports players. In short, the depth of the sequence of events and the individuality of players 

has a lot of room to be researched on. 

The final paper discussed (Kho et al., 2020) suggested that there is enough research to be 

done in the field of the sequence of events with relation to objectives. Objectives have a 

large impact on the game but not a lot of academic research has been done to study this 

extensively. Winning patterns for the sequence of events of objectives could be very useful 

knowledge to help teams improve. Especially an automated method would be very useful 

because the game League itself changes significantly after every year when the new season 

arrives, and also after patches which happen roughly every half a month.  

Overall, the academic research analysis concludes that the amount of research done in the 

analysis of in-game objectives and the timed sequence of events is not researched 

extensively. This further supports the requirement list which was constructed after the 

orientation on current available data visualisation methods.  

However, the academic theory orientation also helped extending requirements, since 

common characteristics can be found among the methods done. For example, it was stated 

multiple times in the aforementioned literature that the Riot API portal was used to access 

match data online, and this gives the impression of being a reliable online source for 

collecting data of League matches played. Visualised data in the form of a dashboard is also 

used multiple times (Afonso et al., 2019a; Afonso et al., 2019b), and shows that a dashboard 

has added value. Other aspects, such as quality of life additions, could be realised by the 

customisability of the input and data visualisation. As a side note, in League, there are 

different types of game modes. For example, a casual game mode can be played where the 

results do not matter after a win or loss, or a ranked game mode can be played which will 

impact a player rank depending on whether the player won or lost. Matches which are 

considered serious have different playstyles than matches which are considered casual. 
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Thus, the new method should be able to make a distinction in game modes when analysing a 

player’s match history. 

The full requirement list with its new requirements is as follows. Categories are added to add 

overview: 

- Data collection 

o The method should extract data from a reliable online source about League 

o The method should be flexible to analyse different players, from every region 

o The method should change its sample data of matches analysed if the user 

wants to 

o The method should only collect data from matches played which are 

considered serious  

- Data analysis to identify winning patterns 

o The method should focus on the importance of in-game objectives with 

relation to winning 

o The method should differentiate between early and late events in matches 

(sequence of events) 

- Ensure user-friendliness  

o The method should have settings to view categories of analysed match data 

o The method should use visualisation like graphs on a dashboard to help 

create overview 

o The method should run as automatic as possible 

The requirements list yields a valuable research opportunity with a fitting research question, 

which is: 

How can the performance of League eSports players be identified by analysing behavioural 

in-game patterns with regard to the sequence of events of objectives? 

Essentially, the answer to this research question should be able to expand the research on 

winning strategies and the analysis of player in-game behaviour. To make sure this happens, 

three main aspects should be answered. First of all, it is important to check which data is 

needed to answer the research question, and how it can be collected. Most likely, certain 

data of League itself should be collected to analyse behavioural in-game patterns of players 

during a match, such as with the aforementioned Riot API online portal. Second of all, the 

gathering of the data should be able to be stored. Then, a method should be constructed to 

analyse the data. Perhaps certain software can function as a way to store and analyse the 

extracted data. Third of all, the analysed data should be translated and insightful conclusions 

should be able to be drawn from them. This should result in an advice about the 

performance of the player and would thus identify winning strategies. Meeting the 

requirements of the requirements list will result in a tool which achieves the 

aforementioned sub-goals, and thus would create an innovative method or tool which 

achieves the required needs. For visualisation purposes, the figure with the requirements is 

shown in Figure 6, and will be the blueprint for the actual development and creation of the 

tool which will be done in Chapter 3. 
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Figure 6: Visualised overview of blue requirements list 
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Chapter 3: Method of approach 
The aforementioned research opportunity was that research with relation to game analysis 

to achieve performance optimisation in League can be beneficial. As mentioned in chapter 1, 

such research would be significant due to the growth of the eSports scene in League, and 

can be achieved with insight into the performance of a player. In this chapter is explained 

how the research question posed in chapter 2 is answered. 

The analysis of behavioural in-game patterns could be achieved by creating a tool. The 

requirements, made in chapter 2, of such a potential tool are shown in Figure 6. The orange 

boxes are the categories and the blue boxes are the requirements which can be used as a 

checklist. Each category in this chapter has its own heading and the aspects of the tool which 

would fit each category are explained. The end goal is to create a tool which is able to 

identify in-game performance of League players concerning in-game objectives. This chapter 

is about how each requirement is translated to an aspect of the tool. In Appendix B, a more 

expansive and technical description about the tool itself is provided. 

Collect data 
The first category is “Collect data”. This refers to how data is collected and how it is stored. 

The first requirement in this category is to use an online source for data collection. 

Mentioned data collection methods in chapter 2 are, among others, a Websocket or the Riot 

API. The latter is used by most of the analysed academic sources in chapter 2. The Riot API is 

freely accessible to all players and is able to show in-game match data in the form of 

structured documents, which highlights the impression of being a reliable online data 

source.  

The second requirement is that the data collection method should also be able to collect 

data from every player in the world. Every player plays in its own region, and is not matched 

with people from other regions. The Riot API is able to collect data from different regions, 

which makes it a flexible data collection source. Thus, using the Riot API for data collection 

would be a reliable option and also able to collect data from every player. 

The third requirement is that the tool should be able to collect a desired amount of matches, 

which would be inputted by the user. This should be a customisable option in the tool to 

provide the user the possibility to analyse different amounts of data. The fourth requirement 

also refers to data filtration. This requirement states that only data in the form of matches 

should be included which are considered ‘serious’. Serious matches need to be classified as 

matches where all participants had maximum effort and all played to win, in contrast to 

playing casually for fun. ‘Ranked’ games are the most serious game types because the 

outcome of the match played directly influences the public rank of the player profile. The 

game type called ‘normal’ games, are matches which do not influence this public rank and 

thus are played to a less serious extent. To conclude, the tool should have a customisable 

match sample size and the ability to filter ranked games from normal games. 

The Riot API gives the impression to be able to meet all four requirements of the “Collect 

data” category, because of the data it offers. The Riot API can tell what has happened every 



14 
 

minute within a match. To extract data from the Riot API, a program is needed. Python is a 

programming language which is able to do this. Hence, the decision will be made to program 

the data extraction procedure of the Riot API via Python. 

In order to collect data of the Riot API in Python, functions have to be defined which extract 

the match data of the inputted player to analyse when called. The Riot API uses JSON files 

which can be accessed with an custom URL, which also requires a valid API key to access the 

URL. The URL also contains the region of the player that is analysed, which means that every 

player in the world can be analysed by inputting the region of the analysed player. The API 

key for using the Riot API can be obtained by logging in with a League account and clicking 

on the button to generate an API key, and this API key iteration expires after 24 hours. 

Python is able to turn the JSON file into a ‘dictionary’ file, which makes it possible in Python 

to extract data. In order to extract the data with an URL, the Python library called ‘requests’ 

needs to be imported. Four Python functions will be created to access summoner data, the 

summoner’s match history, match details, and the match timeline. These functions yield all 

the data to view what happened every minute in a match, because summoner data is 

required to access the match history, and the match history contains the match IDs of the 

matches played by the analysed player, which is used to access the match timeline and the 

events of each minute. Not every match from the match history should be analysed, because 

only the matches that are deemed as ‘serious’ matches should be extracted, which are 

ranked matches. The Python code will only include such matches.  

As mentioned before, the URLs which are used to retrieve the API data are customisable, 

which means that specific data can be recalled if the URL is customised appropriately. 

Customisable aspects for the URLs are: the region of the analysed player, the summoner 

name of the player, a valid API key, a match ID, and the amount of matches to be analysed. 

The region, summoner name, API key, and amount of matches analysed will need to be 

inputted by the user. The match IDs would have to be automatically iterated through by the 

code itself, and thus requires no manual input.  

The “Collect data” requirements should be covered by the plan for the Python code: 

• A reliable online source is used, namely the Riot API portal 

• Every player in the world from each region can be analysed by the tool, due to the 

customisable input for the region 

• The amount of matches to be analysed is implemented as user input 

• Only matches are collected which are considered serious, since ranked matches are 

filtered by the code 

Once the data is collected, the tool will need to analyse the data by registering objectives 

and the timing of such events, which relate to the “Analyse data to distinguish winning 

patterns” requirement category. 
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Analyse data to distinguish winning patterns 
The fifth and sixth requirements both refer to the desired ability of the tool to analyse data 

to distinguish winning patterns. Successful in-game behaviour is defined as patterns which 

elicit positive outcomes, which means outcomes that ultimately result in a player winning a 

match.  

The fifth requirement tells that a certain indicator should be provided by the tool which 

shows which objectives seem to be more desirable. This indicator could be a win ratio, which 

shows how likely it is for the analysed player to win when a certain objective is chosen. This 

can be achieved by analysing matches where such an objective is taken and the outcome of 

each match is registered. 

The sixth requirement is that the tool should distinguish events based on their timing during 

a match. This means that not only the acquired objective itself should be taken into account, 

but also when it occurred. For example, whenever a tower is either destroyed in the early 

game or in the late game, it has a different impact on the match. This requirement can be 

realised by creating a data sheet which not only lists when an objective taken and whether 

the outcome of the match was a win or loss for the player, but also at what time period this 

event occurred.  

The Python code explained in the ”Collect data” category should be able to gather the data 

needed for the analysis. More coding is required to register the win rate of taking an 

objective at what time period. The code should iterate through the filtered match IDs and 

check what events concerning objectives occurred during the match. The code should also 

register whether the analysed player won the match. Every match will be scanned by 

analysing the match timeline JSON file by using a function to access the corresponding URL, 

namely requestMatchTimeline. The timeline shows what has happened every minute in the 

match, and thus can be used to register every objective that was taken during a match. 

Other data, such as kills made or items bought, should be ignored because these are not 

objective events. Another similar function is used to register which team won the match, 

which is called requestMatchDetails. This is required to analyse whether the occurrence of 

an objective event resulted in a victory or defeat for the analysed player. The script should 

iterate every minute of a match and register all objectives taken by either team in an Excel 

file which is used for data storage. For each row in this data storage file, the following 

columns are used: 

• Summoner (name of the player’s account) 

• MatchID 

• Outcome (1 means victory for the analysed player, 0 means defeat) 

• Minute 

• Period (early, middle, or late) 

• Tower (whether a team destroyed a turret) 

• Monster (whether a team has slain rift herald, dragon or baron nashor) 

• Dragon Soul (whether a team acquired the dragon soul buff) 
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Every objective event is registered in the Excel data storage file, along with its timing in the 

form of minutes. This is done by using the Python library called ‘openpyxl’, which enables 

Python to put data into an Excel file. The script should also determine whether an event 

happened in the early, mid, or late game. The mid game is defined as the period from 15 to 

25 minutes. The early game occurs before this time window while the late game occurs 

afterwards. The outcome column will be used to calculate the expected win rate of each 

occurred objective in the data set, which is done by dividing the amount of victories by the 

amount of time a match was registered where the corresponding objective event occurred.  

A summary table should be made where each objective event and its timing are shown next 

to its expected win rate, which would grant the user insight into how successful taking an 

objective is. The Excel data storage file will change whenever a new player will be analysed. 

In order to make sure that the summary table reselects the new range of data in the Excel 

data storage file, a VBA code should be created which automates this reselection and data 

update. The library ‘openpyxl’ does not allow data to be pasted in a non-macro Excel file. 

Thus, a separate dashboard Excel file with the summary table should be created which uses 

the data from the data storage Excel file as input. The summary table should also include the 

amount of time a match occurred where an objective event happens, as this amount gives 

an indication of the reliability of the expected win rate. A minimum threshold for this 

amount should be implemented to avoid exceptional matches as they are not 

representative. A possible minimum threshold could be 3, which means that only matches 

should be included with 3 or more occurances. 

The “Analyse data to distinguish winning patterns” requirements should be covered by the 

finished Python code and the plan for the Excel and VBA part: 

• The winning probability is analysed of in-game objectives, because a summary table 

is made in Excel which calculates the expected win rate of each objective event 

• The timed sequence of events is analysed, because the filtered match data 

categorises the objective events according to either the early, middle, or late game 

A flow-chart of how the finished Python code works is shown in Figure 7. 
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Figure 7: flow chart of the Python code 

Guarantee user friendliness 
The final three requirements are about visualisation and user friendliness aspects. The 

seventh requirement is that information should be able to be filtered. This requirement aims 

to make sure that customised navigation of the data analysis is possible, and thus only 

chosen aspects of the data can be showed.  

The eighth requirement is to include graphs or comparable visualisations, to make sure 

conclusions can be drawn from a picture instead of lines of text, which aims to improve  

visual clarity. Both the seventh and eight requirement can be satisfied by creating a 

dashboard with customisable graphs and corresponding tables. The tables should be filtered 

on chosen information by the user and the graphs should adjust accordingly. This provides 

the user two types of ways to observe the conclusions of the data analysis by the tool.  
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The ninth requirement should make sure that the tool runs automatically without 

termination of the program and minimise the actions required by the user when running it. 

The ability to filter information displayed by the tool can be implemented by the 

introduction of an Pivot table in the Excel dashboard file, which should be a replacement for 

the summary table as discussed in the part “Analyse data to distinguish winning patterns”. A 

Pivot table categorises data and allows the user to only check for certain data. For example, 

a Pivot table enables the user to only show objective events which happened in the early 

game time period, along with its expected win rate. The objective events will be listed under 

the ‘Situation’ heading in the Pivot table. Furthermore, it is also possible in Excel to add a 

chart for the Pivot table. Changing which data is shown in the chart automatically updates 

the Pivot table, which shows that data filtration is also possible in the chart. Thus, a 

customisable visualisation is added this way, which fulfils both the seventh and eighth 

requirements.  

The final requirement aims to make sure the running of the tool is automated, in so far 

possible. Since the API key has a limit of being able to be used 100 times per 2 minutes, the 

tool should pause the program for 2 minutes once the API request counter comes close to 

100. A threshold for this could be 98, because every analysed match requires 2 API requests. 

Once this threshold has been surpassed, then the tool should pause and automatically 

resume after 2 minutes.  

After each run, new data is pasted in the Excel data storage file. The tool should 

automatically reselect the new data for the Pivot table and graph, which can be achieved 

with VBA macros in Excel.    

The “Guarantee user friendliness” requirements should be covered by proposed 

interventions: 

• Customisable settings to filter displayed information is guaranteed because a Pivot 

table and graph offers such options 

• A visualisation of the data is added in the form of a Pivot chart 

• Process automatization of the tool is guaranteed with built-in Python functions and 

VBA macros 

The method of approach is extensive enough to create a prototype, which will be discussed 

in the “Prototype” heading. 

Prototype 
The prototype is a practical implementation of the plans proposed in the three 

aforementioned requirement category headings. As mentioned before, the tool starts off by 

running the Python code, which asks for user input. The full Python script is shown in 

Appendix C. This user input is used to analyse the match history of an inputted player, 

concerning in-game objectives. The tool summarises the data of objective events, called 

situations in the Excel file, by putting them into a data storage Excel document. Another 

dashboard Excel document reads this other file and turns the data into a Pivot table and 
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graph, which enables the user of the tool to observe the impact of each analysed objective 

on the outcome of a match. A flow chart of how the tool works is shown in Figure 8. 

 

Figure 8: Flow chart of how the tool works 

Running the Python code yields the interface as shown in Figure 9. The user types their 

desired input and presses the Enter key to make the program save the input. As mentioned 

before, the input is the region of the player to be analysed, the summoner name of the 

player’s account, a valid API key for the Riot API, and the amount of previous matches to be 

scanned. 

 

Figure 9: Python input interface 

The code first accesses summoner data of the inputted account to find the account ID of the 

account, which is done by extracting data from a JSON file reached by a URL which contains 

the API key. This account ID is used to collect the match history of the account, which is filled 

with match IDs. The Python code accesses the API key two times per analysed match. An 

example of a JSON file accessed by a constructed URL is shown in Figure 10. It shows the 
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timeline of a match, where each frame is a minute, which contains events. Events tell what 

happened during a minute, such as whether a champion is killed, an item is bought, or an 

objective is taken. Every event is characterised by a participant ID. Another URL, which is 

about match details, shows which player fits to which participant ID. Thus, both the match 

details and match timeline needs to be analysed to analyse one match, which means that 

the API key is requested twice. The limit API request limit is 100 times per 2 minutes. The 

Python code will automatically pause and continue if the code would otherwise request the 

API key above this limit. 

 

Figure 10: A JSON file of the timeline of a match 

After the Python code has finished running, the Excel data storage file should be opened by 

the user. The name of this Excel file is shown at the end of the Python interface, which is 

“LoLPMData”. The first row of this file contains the headings as discussed in the “Analyse 

data to distinguish winning patterns” part of this chapter. Every next row will write down the 

data of every objective taken by either team of the scanned set of matches by the tool. The 

interface will also show the name of the Excel dashboard file, which should be opened only 

after the Excel data storage file has been opened. This file is called “LoLPMDashboard”. This 

file contains at the very left a table which transforms the data from the Excel data storage 

file to a table which is able to be used as input for the Pivot table and graph. Thus, this table 

is not meant to be looked at by the user. Instead, the Pivot table and graph are the focal 

point of the data visualisation. They categorise each objective according to the time period 

in which the objective events occurred. The user is able to adjust which time periods or 

objective event, or situation, are filtered by the graph, which will automatically update the 

Pivot table as well. It is important to note that the user should only change the filter settings 
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of the Pivot chart, instead of the Pivot table, because this is the only way to update both the 

graph and the table. The x-axis of the Pivot chart shows each objective event and each time 

period, and the y-axis shows the corresponding expected win rate of each of these 

situations. As mentioned in the “Analyse data to distinguish winning patterns” part, the Pivot 

table filters out situations with their corresponding time period which only occurred 3 times 

or less, in order to avoid exceptional scenarios. If preferred by the user, this threshold can be 

manually adjusted in the value filter of the Situation settings of the Pivot chart. Finally, in 

order to make sure the tool functions without errors, the Python code, the Excel data 

storage file, and the Excel dashboard file should be placed in the same folder. Furthermore, 

the Excel files should be closed when the Python code is running. 

Testing of the tool 
In chapter 4, the prototype of the tool will be tested in order to check whether the 

requirements posed in chapter 2 are achieved. An initial run will be executed by analysing 

one of the accounts of an eSports player, whose alias is Rekkles. This initial run is used as a 

demonstration to show how a run works. Additional runs and manual actions will be tried to 

check the reliability of the tool to meet the blue requirements of Figure 6. However, not 

every requirement will need a sensitivity analysis, since some requirements are already 

tested in the initial run. For each requirement, the following testing procedures are 

executed: 

1. None, since the Riot API is already defined as a reliable online source in chapter 2 

2. Players from different regions are inputted, also fake accounts 

3. The amount of matches differs as input 

4. The set of preferred queue types in the Python code, called ‘desiredqueuetypes’, is 

changed to other match types than only ranked matches 

5. None, tested in initial run 

6. None, tested in initial run 

7. None, settings are adjusted in initial run 

8. None, tested in initial run 

9. None, tested in initial run 

The discussion of the results will take place in chapter 5. 
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Chapter 4: Results 
In this chapter, the tool created in chapter 3 is being tested to check to what extent the 

requirements posed at the end of chapter 2 are met. The analysis of these results takes 

place in chapter 5. One of the accounts of the eSports player, whose alias is Rekkles, is used 

for the initial run demonstration. The account’s summoner name is Sammy Winchester. 

After the Python code has been activated to run, the interface to input data appears. The 

interface along with the filled in data is shown in Figure 11. The API key was retrieved from 

the Riot Developer API Portal by signing in with a League account and generating an API key. 

The inputted amount of matches to analyse are 100. When observing the match history of 

the account, it plays approximately 5 matches each day, which means that 100 matches 

should cover 50 days. This amount of matches is chosen to make sure enough data is 

gathered to yield logical conclusions, which was tested via trial-and-error. 

 

Figure 11: Filled in interface of Python code for the account called Sammy Winchester on the 

EUW server region 

The interface will print data for the user to see, which informs the user about the run. 

However, this information only shows that the tool is running and it shows what it is 

currently processing. The data shown in the interface does not provide conclusions for the 

user with relation to the analysis. Such information will only be shown in the Excel 

dashboard file. 

Pressing the Enter key will continue the Python run and it uses the input data. The tool will 

start printing the URL, which refers to the corresponding JSON file, of the summoner data 

and match history of the account. The summoner data is used to find the account ID, and the 

account ID is used to find match IDs. The script also prints the match IDs of the filtered set of 

match IDs which are only ranked matches. Furthermore, the script keeps track of how often 

the API key is used by the program with counter variable ‘APIcallrate’, which is also printed. 

The first lines of output printed by the Python file on the interface is shown in Figure 12.  
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Figure 12: The first lines of codes printed on the interface of the Python file 

Each match is scanned to extract every objective event and their timing and put them into 

the data storage Excel file. The scanning of each match is also printed by the program, as 

shown in Figure 13. The URLs of the match details and match timeline are printed, as well as 

the objectives taken during the match. Other details that are printed are the match ID, the 

team on which the player was (100 is bottom left, 200 is top right), whether the player won 

(1 is victory, 0 is defeat), total minutes of the match, amount of dragons taken by each team, 

and which team took the dragon soul, if applicable. The # means the team of the player and 

the @ means the enemy team. Unbalanced matches, as mentioned in chapter 3, are 

removed and not scanned. 
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Figure 13: An example of the print created by the Python program for each match scanned 

Whenever the amount of API requests crosses 98 requests, the program pauses 2 minutes, 

because the allowed usage of the API key is 100 times per 2 minutes. In this case, the 

program will pause and automatically continue after 2 minutes has passed, and the API 

request counter variable will be reset. 

Once the inputted amount of matches are scanned, the program updates the Excel data 

storage file, and a summary is shown of the matches analysed, as shown in Figure 14. As 

mentioned, the Excel data storage file needs to be opened first before the Excel dashboard 

file is opened.  
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Figure 14: Ending message of the Python program 

The Excel data storage file which resulted in the run is partially shown in Figure 15. Every 

objective taken in every match is registered. 

Figure 15: The partial output of the Excel data storage file 

The data of the Excel data storage file is used to create the Pivot table and Pivot chart in the 

Excel dashboard file, as shown in Figure 16. The VBA macro buttons need to be clicked as 

enumerated in the file to update the table and chart. The coding for the VBA macros is 

shown in Appendix D. The Pivot table and chart show the expected win rate of every 

objective event and its timing. The Situation heading denotes which concerning objective 

event is taken, while the Nr. of Situations heading shows the amount of times this objective 

event occurred in the match data set. The Nr. of Situations of each objective event are 

filtered to make sure only objective events are included in the analysis which occurred more 

than 3 times, in order to avoid exceptional scenarios which may be unrepresentative. Data 

can be filtered to the user’s preference by adjusting the filter settings at the bottom left of 

the Pivot chart. For example, if the user wants to view the expected win rate of taking 

turrets in the early game, then the user types “Turret” as filter in the Situation settings filter 

on the Pivot chart, while also selecting the EARLY filter with the Period settings filter. The 

result of such adjusted settings is shown in Figure 17.  
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Figure 16: The output of the Excel dashboard file 

 

Figure 17: Example of filtered settings in the Excel dashboard file with regards to turrets 

taken in the early game 
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Analysis of Rekkles 
As mentioned before, the dashboard shown in Figure 16 shows the Pivot table and chart for 

the account named Sammy Winchester, which is an account of the eSports player Rekkles. 

An analysis is done to illustrate possible conclusions which the tool can yield. 

Rekkles is a player who only plays in the ADC position, which is in the bottom lane. The 

dashboard shows that he achieves the highest win rate (64%) in the early game when his 

team takes the outer turret at bot lane in this time period, which is the first line of turret 

defence of the enemy in the bot lane. This is an indication that Rekkles is playing well against 

his lane opponent. Another point to note is that his win rate is relatively low (50%) when his 

mid laner takes the enemy middle lane outer turret, which would indicate that his mid laner 

is playing well against their lane opponent. These two win rates show that Rekkles is 

benefited more from playing well as an ADC than when the mid laner of his team is playing 

well. This may highlight that helping the ADC position get ahead in the early game is a more 

impactful and beneficial decision than helping the mid lane position. It could also show that 

Rekkles is a very impactful player and that he can dominate the game and achieve victory for 

his team if he is doing well in the early game. 

Certain objective events result in a 100% expected win rate. These objective events are less 

suitable to use for drawing conclusions, because the tool cannot make a distinction in 

importance between two objective events which always resulted in victories according to 

the match data set. However, the number of occurrences may prove a measure for how 

reliable the according expected win rate is. For example, taking the enemy nexus turret in 

the late game yields in a 100% expected win rate. This objective event occurred 35 times in 

the data set of 100 matches, which is relatively high compared to the other objective events 

in the late game which yielded the same win rate. These other objective events had around 

6 to 11 occurrences in the data set. Thus, taking the enemy nexus turret in the late game 

yields in the highest reliable win rate. This makes sense because the nexus turrets are the 

last turrets of defence of the enemy. Destroying them almost always results in also being 

able to destroy the enemy nexus, and thus winning the match. Hence, it is obvious that 

nexus turrets should be destroyed, and thus this specific data cannot be used to draw 

meaningful conclusions. It is more beneficial to check the objective events that result in a 

high win rate but are not mandatory to win the game (unlike nexus turrets). An example in 

the data set of Rekkles is that taking the bot lane inhibitor in the middle game results in a 

100% win rate according to the data set. As mentioned before, Rekkles plays in the bot lane. 

This data may highlight that Rekkles is good in achieving victory if he is doing well, and it may 

show that the performance of his team is less important than his own performance.  

Taking as much objectives as possible is an indication that the corresponding team is doing 

well. However, the tool also gives an indication on whether a certain objective is preferred 

over another. This does not only apply to turrets, but also to dragons for example. There are 

4 types of dragons in the game. The tool shows the win rate of each dragon taken. In 

Rekkles’ data, it shows that taking the cloud drake in any time period yields in a higher win 

rate than taking the infernal drake. This may highlight the impression that either cloud 
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drakes are more useful than infernal drakes at the moment, or that specifically Rekkles 

makes better use of the cloud drake than the infernal drake. 

Finally, the objective events taken by the friendly team, signified with a #, yield in a higher 

expected win rate than objective events taken by the enemy team, signified with a @. Taking 

objectives helps the concerning team. Hence, it makes sense that the expected win rate of 

the friendly team is lower when the enemy team takes objectives. The tool can also show 

which objectives are optimal for the enemy to take. This data can also show which objectives 

taken by the enemy team have the highest probability of making Rekkles lose, which may 

give an indication of the weaknesses of Rekkles concerning enemy objectives. For example, 

the data of Rekkles shows a low win rate (28.5%) whenever the enemy team destroys the 

middle outer turret of his team in the early game. This win rate is lower than when the 

enemy team destroys the top outer turret of Rekkles’ team in the early game, which has a 

win rate of only 45.5%. This may imply that either the top lane is a less impactful role than 

the middle lane concerning defeating the team of Rekkles. It could also imply that Rekkles is 

able to help his middle laner whenever possible, but not the top laner. This would make 

sense because the middle lane is closer than the top lane to the bot lane, which is where 

Rekkles plays. 

As explained, the data provided by the tool can be used to draw conclusions from an 

analysed player’s playstyle. This gameplay insight can be used to improve in-game decision 

making concerning objectives, and thus lead to possible performance optimisation. The 

information provided by the tool can also be used to derive conclusions about the playstyle 

of the enemy team, which could be used for formulating strategies to counter certain 

opponents. 

Requirements sensitivity analysis 
As mentioned at the end of chapter 3, each requirement of Figure 6 is tested in order to 

analyse the reliability of the tool to fulfil the requirements. Additional testing is required for 

requirements 2, 3, and 4. The rest of the requirements are already tested by the initial test 

run. To recap, the second requirement is tested by inputting players from different regions, 

and also testing fake accounts. The third requirement was tested by varying the amount of 

matches to be analysed by the tool. The fourth requirement was tested by changing match 

queue types to analyse. 

For requirement 2, inputting a region which does not exists results in an error in Python, 

which is what the program should do because the inputted region must exist. When a user 

name is inputted which does not exist, the customised URL yields a JSON file which contains 

only an error, namely “Data not found – summoner not found”. 

For requirement 3, inputting only one match to analyse the aforementioned account of the 

player Rekkles, makes the program work as expected, as only one match is analysed. 

Inputting a 0 for the amount of matches analysed also does not result in an error for the 

Python program. However, the Excel files will not work, as errors will appear when these 

files are opened. Running the initial run for the account of Rekkles again will work as 

intended, which means that faulty runs do not permanently damage any of the files of the 
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tool. Furthermore, even if all cells of the Excel data storage file have been deleted, the 

Python program automatically rewrites the headers and assimilates the table. Whenever a 

higher number of matches to analyse than 100 are inputted in the interface, the tool will 

also work without errors, because runs have been successfully tested with 200 and 300 

matches. However, the user will have to wait 2 extra minutes for every next 50 matches to 

analyse, because the API request limit is 100 per 2 minutes and a match requires 2 API 

requests. Hence, the waiting time increases. 

For requirement 4, inputting different match queue types will make the tool work without 

errors. For example, by changing the ‘desiredqueuetypes’ set in the script to only containing 

‘400’, which is the code for normal draft matches, the tool works. For the case when a player 

does not play any normal draft matches, the tool will treat the input as if 0 matches are 

analysed. This also occurs when the ‘desiredqueuetypes’ set is left empty, because no match 

would fit the match type criterium of the set. 

Validation 
In order to test the applicability of the tool according to potential users, League players from 

the Esports Team Twente were sent a survey to fill in. The survey is shown in Appendix E. 

Every player’s account was inputted in the tool to scan their 60 last matches played, of 

which the normal draft and ranked games are chosen to be analysed. This survey aimed to 

illustrate the eSports player’s opinions of the tool, which could show which aspects of the 

tool are desired and which parts might need adjustment in future research. A summary of 

the received answers will be elaborated upon next. 

According to the response of the survey, the idea of analysing the effectiveness of taking in-

game objectives as well as the dashboard itself were received positively. However, it is also 

stated that the tool in its current state would seem to be quite difficult to draw strategic 

conclusions from, because League contains a lot of factors and variables which are 

correlated. It is claimed that taking a dragon would obviously be a wise decision to make 

after a teamfight is won, because winning a teamfight would make it easier to take any 

objective. Thus, whether dragon should be taken also significantly depends on the current 

state of the match. 

Furthermore, it is stated that the tool might not work optimally if only one player uses it. 

Random players who also play the game could have different ideas on objective decision 

making than the tool. For example, if the tool shows that certain late game decisions can win 

the game, and if randomly allocated online teammates experience a bad early game, then 

they might already start giving up. In such a case, the advice of the tool could not be used to 

its full extent when the user is playing alone, and this shows that the tool would be more 

useful if all teammates use it instead. However, this would not be a problem if the tool is 

used for eSports teams, because in this case, the whole team decides to follow the 

instructions of the tool. 

It was stated that the sample size of the survey dashboard was deemed too small to draw 

conclusions from the data regarding decision making with regards to objectives. The reason 

for this is that the last 60 matches played are scanned, instead of the last 60 normal draft 
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and ranked matches. Thus, if the analysed user played a lot of other match queue types, 

then the final amount of matches to be analysed may be small. However, the sample size 

can be increased to the user’s preference in the tool, which makes sure the amount of 

analysed matches of the desired match queue type is achieved.  

Furthermore, according to the response of the survey, it is recommended that only ranked 

solo queue games are taken as input for the tool, as the skill difference could be too big in 

other queue types. A recommendation of analysing at least 30 ranked games is stated, as 

well as adding the analysis of how each objective is taken, instead of only declaring that it is 

taken, which could make the tool analysis more detailed. It is also stated that the champions 

chosen on each team could be included in the analysis, because every champion has 

different advantages. For example, some champions are better at taking dragon. 

Other received tips are that different events than objectives could also be taken into 

account. An example raised is that finding a pattern in enemy ward placement could help 

your team avoid being spotted by the wards if there is an accurate expectation of where the 

enemy wards will be placed.  

The overall conclusion was that the idea of analysing the success of taking objectives could 

be useful to eSports teams, but it is recommended that more factors should be taken into 

account. Furthermore, the user friendliness of the dashboard gives the impression of being 

sufficient according to the response of the survey, because the reactions were positive 

overall and no significant changes are proposed. Since the survey specifically asked about 

the user friendliness, a few options are listed, such as the possibility of changing the colour 

of the bars of the Pivot chart depending on their win rate. 
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Chapter 5: Discussion and conclusion 
In this chapter, the results posed in chapter 4 are analysed to form conclusions and to 

discuss potential aspects of improvement.  The results are analysed to check whether the 

requirements posed at the end of chapter 2 are satisfied. To recap, the requirements 

diagram is shown again in Figure 18. 

 

Figure 18: Visualised overview of blue requirements list 

Collect data 
The first requirement was that the tool should have a reliable online data collection source. 

This requirement was already satisfied in chapter 2 by analysing academic data. The Riot API 

portal qualified for the requirement, which means that the tool satisfies this requirement. 

The second requirement was that the tool should be able to collect data from every player in 

the world, which means that every server region should be accessed by the tool. In the 

Python part of the tool, the input interface asks the user to input a region. As mentioned in 

chapter 4, the Python code is able to function by inputting every possible region. 

Furthermore, the tool only accepts eligible summoner names that exist, which shows that 

the tool is consistent. Consequently, this shows that the second requirement is satisfied. 

The third requirement was that the tool should be able to gather the amount of matches to 

scan as inputted by the user. In chapter 4 is shown that both the scenarios where an amount 

of 0 or 1 match is inputted, as well as an amount of 300 works. However, no tests have been 

run on an amount of matches higher than 300, because increasing the match data set will 

not create a representative image on what objectives are most important, because the game 

is updated around every 2 weeks in the form of patch updates. Choosing a match data set 

which would cover matches from multiple different patch versions could possibly lead to 

inconsistent conclusions. If the analysed player plays on average only one match per day, 
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then the previous 300 matches of a player will cover more different patch versions than for a 

professional eSports player who would play 5 matches per day on average. Still, for such an 

eSports player, a match set of 300 matches covers 60 days and this data set would also 

contain matches of multiple different patch versions. Inputting a higher amount would 

increase the amount of patch versions in the data set, and thus the results would be less 

consistent. Hence, the tool has been adequately tested for reasonable match amounts, 

which means that the third requirement is satisfied. 

The fourth requirement was that only matches should be gathered by the tool which are 

considered serious, which is classified as ranked matches as mentioned in chapter 3. The 

initial run of Rekkles’ account in chapter 4 showed that the tool works with these settings. As 

tested, inputting different queue match types codes in the ‘desiredqueuetypes’ set will also 

enable the tool to run successfully, which demonstrates that the fourth requirement is 

satisfied. 

Analyse data to distinguish winning patterns 
The fifth requirement was that the winning chances of taking in-game objectives by either 

team should be analysed. The initial run of chapter 4 showed the expected win rate of such 

objectives in the Excel dashboard file with its Pivot table and chart, and thus this 

requirement is satisfied. 

The sixth requirement was that the timed sequence of events with relation to the objectives 

is analysed. The initial run of the tool showed that the objectives are categorised for each 

time period, which demonstrates that the sixth requirement is satisfied by the tool. 

Guarantee user friendliness 
The seventh requirement was that the tool should have adjustable settings with regards to 

the displayed information in the dashboard. The initial run of chapter 4 showed that filter 

settings with regards to each objective event and each time period can be implemented, as 

shown in Figure 17. The objective events and their time periods can also be filtered on the 

amount of times they occurred in the match data set, which can be adjusted in the Situation 

settings filter on the bottom left of the Pivot chart. Thus, the seventh requirement is 

satisfied. 

The eighth requirement was that visualisations such as graph should be added. As shown in 

Figure 16 and Figure 17, the Pivot chart works and adjusts accordingly to filters, which shows 

that this requirement has been satisfied. 

The ninth requirement was that the tool should be executed automatically. The initial run in 

chapter 4 showed that the Python file automatically pauses when the tool is reaching the API 

request limit. The initial run also showed that clicking the VBA macro buttons in the Excel 

dashboard file will update the data accordingly. Even though the user still has to click 

buttons, the coding covers the updating procedure. Besides the clicking of the macro 

buttons, the tool has automated the other processes, which satisfies the ninth requirement. 
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Conclusion 
In this chapter, each orange requirement category in Figure 18 has shown to be satisfied. 

This means that the green end goal to create a tool which identifies in-game performance of 

League players concerning objectives has been achieved. The tool could be used to analyse 

every player in the world, which provides insight in the impact of objectives taken on their 

chances of victory or defeat. This insight in gameplay could be used to achieve in-game 

performance optimisation for the analysed person, but also for analysing the enemy and 

constructing counter strategies.  

Discussion and limitations 
The tool is able to categorise objective events in time periods and show the expected win 

rate, but there are more events that happen in a match, such as kills made or wards placed. 

Matches could also have a different time classification than the early, middle, and late game. 

However, it is important to note that the amount of events and time periods should not be 

too detailed, such as having every minute used as time period. Essentially, every minute 

played in a match of League is unique because there are a lot of variables in play, such as 

players, their rank, how they play, and current patch version. This is why it is important to 

generalise data to a certain extent, such as creating the three time periods as used in this 

thesis. Otherwise, the tool would draw conclusions from in-game scenarios which only 

happened once, which makes it susceptible for generalising such rare scenarios.  

Furthermore, the tool only checks the win rate when a certain objective event along with 

their timing occurs. The tool does not check the increase in in-game experience or gold of 

either team whenever an objective is taken. Measuring the direct impact of taking an 

objective could be a possible point of improvement for the tool. This could be done by 

defining different degrees of advantages gained from taking objectives. An advantage could 

be defined by a gold advantage. The Riot API registers the gold of each team every minute. 

Thus, for example, the tool could be reprogrammed to define a gold advantage within a 

certain amount of minutes after a team has taken an objective, and base the success of 

taking objectives on the size of the gold advantage.  

Analysing the highest ranked players in a region to find which objectives seem most 

important in that level of play is not possible with the current iteration of the tool. Such an 

extension could be used to learn about the most effective tactics available, abbreviated as 

META, concerning objectives. The META changes after every patch version update. Thus, 

analysing the META with a tool could lead to performance optimisation. The tool also does 

not classify matches according to their patch version or season, which means that differing 

METAs might overlap in the analysis of the tool, and thus may draw inconsistent conclusions. 

The season changes every year and is a yearly overhaul of the game. Hence, combining 

matches from different patch versions in the tool might be acceptable, but combining 

matches from different seasons would create conclusions which combine different seasonal 

METAs, which would be undesirable.  

The tool uses unofficial definitions for determining each time period. For example, the 

middle game is not necessarily defined by the time between 15 and 25 minutes, but it is 

used as a guiding measurement. Other definitions of when each time period starts could be 
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used when adjusting the tool. Whenever the early game transitions to the middle game 

differs per match, and differs per META.  

The user friendliness could be examined better in the development of the tool. The tool is 

not fully automated and it requires three separate files to function, namely one Python file 

and two Excel files. However, as shown in the validation in chapter 4, the survey gave the 

impression that the dashboard seemed to have a sufficient user friendliness. Still, this 

validation was executed in hindsight. The design of the tool was not based on initial needs 

and requirements posed by potential users such as eSports players. 

Finally, the tool uses the Riot API, which is restricted to providing information of what 

happened after every minute. The API registers where every player is situated on the map, 

but since this is only registered every minute, it is relatively harder to track how a player 

walks when compared to positional data which is refreshed every second.  
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Chapter 6: Further research 
This chapter is about the potential to execute new academic research by using the 

conclusions of the research of this thesis as a basis. Chapter 5 showed aspects which could 

be improved. Further academic research could be executed to improve some of these 

aspects, which will be elaborated upon in this chapter. However, not all aspects discussed in 

chapter 5 needs academic research to solve them, as some of them can be achieved by 

relatively small adjustment in coding of the tool. The limitation aspects that were named in 

chapter 5 were the following: 

1. The tool is only applied on objectives, not other events such as kills or ward 

placement. 

2. Only the win rate is checked per objective taken. The tool does not check to what 

extent the in-game experience and gold of either team is affected. 

3. Players to analyse has to be inputted sequentially after each run, instead of 

simultaneously which could be used to analyse a whole eSports team at once. 

4. Analysing a sample of players from a certain rank to check the META concerning 

objectives is not possible. 

5. Matches are not classified in patches or seasons. The tool does not make a distinction 

between different versions of the game, and thus combines matches of different 

versions, which could lead to inconsistent conclusions and insights 

6. Time periods use static measurements, even though time periods are flexible in 

practice. 

7. User friendliness is not necessarily guaranteed because no potential users were 

interviewed in order to compile requirements. 

8. The tool is not fully automated, because the user still has to click buttons in order for 

the tool to work. 

9. The tool only analyses what happens every minute, instead of every second. This is a 

limitation of the Riot API. 

The tool was designed to analyse the gameplay of one specific player concerning in-game 

objective decision making. The first limitation of the current version of the tool is that it 

applies to objectives, but not to other events that happen in game. As mentioned in the 

survey response in chapter 4, it could be beneficial to track the warding placement and 

prepare counter strategies. The Riot API provides information on warding and other events 

such as kills. The Python code could be reprogrammed to keep track of other events than 

objectives, and analyse which events are the most favourable for achieving victory, which 

would be done by pasting this data in the Excel data storage file. Instead of focussing on 

events, the tool could also be reprogrammed to focus on champions, such as analysing 

favourable objective event decision making for specific champions. Each champion has a 

different playstyle. Thus, by analysing what makes each champion win a match, it could be 

possible to optimise the way a champion is played. However, this change in focus requires 

significantly changing the Python code, as well as the Excel files, which means that this 

intervention is more extensive than changing the type of events to analyse. 
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The second limitation of the tool is that it only checks whether the occurrence of an 

objective leads to victory. It only focusses on the final outcome of the match, instead of the 

direct impact of taking an objective on the game. This limitation could also be relatively 

simply solved by reprogramming the Python code to categorise objective events in terms of 

gold advantage in the following minutes by the concerning team. Gold advantage categories 

such as “small”, “medium”, and “large” could be defined in Python, where each category has 

its own weight. A higher weight would mean more favourable. Every objective event that 

occurred in an analysed match sample data could be weighed against each other in Excel, 

where the success of each objective event could be shown in a graph. 

The third limitation is that the tool currently uses one player as input to analyse, which 

means that teams cannot be analysed simultaneously as a whole. The tool requires relatively 

little adjustment to make this possible. The Excel data storage file could be filled with 

multiple accounts, which can be achieved by adjusting the Python code with for loops and 

adjusted user input, because multiple names would have to be inputted.  

The fourth limitation could also be addressed by adjusting the input of the Python file. The 

Python interface should ask for the desired rank of players to analyse, as well as the amount 

of players in that rank to analyse. The API can gather random players from the inputted rank 

and it could analyse all of them at the same time by inputting each player in the data storage 

Excel file. However, either the amount of matches analysed or the amount of players 

analysed increases the waiting time for the tool to finish.  

The fifth limitation can be fixed by registering the season and patch version of every match 

analysed. This is registered in the match details JSON file of the API. Categorising matches by 

patch and season would make sure that the there are no overlapping METAs among 

analysed matches. 

The sixth limitation could be researched by defining in-game patterns which signify the 

transformation of the early game to the mid game, as well as the mid game to the late game. 

Usually, the early game is defined when every player, except the jungler, sticks to their lane 

and remains close to the outer turret of their lane. The API registers the position of every 

player at every minute. Thus, for example, the tool could define the start of the middle game 

when an outer turret is destroyed and when each player does not reside as much time in 

their lane as before. The transition from middle to late game could be defined when the 

average experience level or amount of items bought by each team reaches a certain 

threshold, defined by the researcher. This data is provided by the API. 

The seventh limitation can be researched by defining potential users of the tool. 

Interviewing them could yield in requirements for guaranteeing user friendliness. The 

external validation done at the end of chapter 4 used League eSports players as potential 

users of the tool. The ideas and opinions of these players could also be used as starting point 

for designing a tool. 

The eighth limitation could be researched by creating a new standalone application which 

only requires the initial input of the user to function. This would combine the Python and 

Excel files to one file and would improve the design of the tool and the user friendliness, 
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because the user would only have to open the program and input data, and is not required 

to follow up specific instructions in order for the tool to work. 

The ninth limitation, which is that the Riot API only provides data every minute, inhibits the 

accuracy of the data. League is a fast paced game where actions happen every second. If it is 

required to analyse how players walk around the map, then the Riot API is not precise 

enough. For example, if a dragon is taken by a team at 26:30, then the Riot API only registers 

the positions of every player on minute 26 and minute 27, which makes it impossible to 

know who were exactly involved in the act of taking dragon. League has the possibility for 

players to watch replays of the games they played. Using software to analyse such replays 

could provide even more information about matches than the Riot API, because every 

second could in theory be recorded and analysed. The type of visual analysis software to use, 

and what tools are needed to interpret the corresponding data would be a starting point for 

further research. 
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Appendix A: The game League of Legends 
The video game “League of Legends” (will be abbreviated with just “League”) is a MOBA 

video game, which means Multiplayer Online Battle Arena. League is developed by Riot 

Games. It is a subgenre of the bigger genre: strategy games. In these type of games, a player 

controls a chosen unique character for one full match, and tries to achieve a certain main 

strategic objective to win the game. In MOBA games, the player usually looks from above 

down at the map which the players play on, which makes it easy to look around at other 

places at the map where other action takes place. Other examples of MOBA games, are 

“DotA 2” and “Heroes of the Storm”.  

Game set-up 
League has multiple game modes, but the most popular one which is also used for eSports 

will be explained for this case. This game mode is a 5 against 5 match played on a map with 3 

main lanes, and is played on the map called Summoner’s Rift. A match starts with 5 players 

on two teams each. The two teams battle against each other until the end of the match, 

which is when the Nexus of either team is destroyed. The Nexus is based in the middle of 

each team’s base, and is guarded by turrets. Most turrets need to be destroyed before the 

enemy Nexus can be harmed. Each team has to make sure the opposing team does not 

destroy their Nexus. In Figure 19, Summoner’s Rift is shown with the Nexus of each team in 

each far corner. The text within the picture is elaborated upon later in the Objectives 

section. 

 

Figure 19: the Summoner’s Rift map with its objectives (turrets only shown in mid lane for 

clarity). Original picture extracted from Summoner’s Rift :: League of Legends Wiki :: (2021). 

MOBAFire. https://www.mobafire.com/league-of-legends/wiki/maps/summoners-rift    

https://www.mobafire.com/league-of-legends/wiki/maps/summoners-rift
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When playing League, each player has an account, which is called a summoner. Summoner is 

also often used synonymously for players. Each player chooses a champion at the beginning 

of one match and sticks to it the whole match. Each champion has 5 different abilities. There 

are 3 lanes (top, middle and bottom) and a jungle in between the lanes, which is like a 

forest. Each player can collect two types of progression in a match: gold and experience. In 

each lane, minions will spawn constantly for each team. These minions are weak monsters, 

and killing enemy minions grants the player gold and experience. These minions can be used 

to take fire from enemy turrets until they die, so that champions can attack the turret safely 

in the meantime. The jungle contains neutral monsters, which can also be killed for gold. 

Players can buy up to 6 items from the gold. The shop is at the centre of each team’s base. 

Going back to the allied base also regenerates all health and resources. Each player passively 

gain gold and experience during the progress of a match, and killing enemies or getting 

objectives grants even more. Objectives are, for example, destroying enemy turrets or other 

buildings, or slaying epic monsters. Epic monsters are Baron Nashor, an elemental dragon or 

drake, or the Rift Herald. On these objectives will be elaborated later in this chapter. 

Experience accumulates until the concerning champion has enough to level up. A champion 

starts at the beginning of the match at level 1 and can level up to level 18. For each level-up, 

the player can choose one of the 4 different abilities to level up and thus make it stronger. 

However, the fifth passive ability cannot be levelled up this way. When a champion is killed, 

it will respawn after some time in the allied base. A player does not lose any gold, items or 

experience when killed. The only penalty is that the player has to wait some time before he 

respawns in their base, which depends on the current time period the match is in. The more 

the game has progressed, the longer a dead champion has to wait until it respawns.  

Winning the game is often achieved by gaining an advantage over the enemy team in terms 

of experience and gold. This would mean that your champions are stronger compared to the 

enemy champions. A clear way to achieve such advantages is by achieving and gaining 

objectives. 

Objectives 
Taking objectives grants the concerning team advantages based on the objective taken. 

Usually, taking an objective refers to taking an elemental dragon, Baron Nashor, Rift Herald 

or turret. Taking an objective rewards in gold, experience, and also usually grants a long 

term advantage. For example, if an enemy turret is destroyed, it is permanently destroyed 

and thus the friendly team gain more possession over the map.  

A turret or tower is a structure which has a lot of health and deals a lot of damage to 

enemies. So, it can be used to gain cover for a player if he retreats back under a turret of his 

team. Each lane has three turrets. Only the turrets of mid lane are shown in Figure 19 for 

readability purposes. The other lanes actually also have the same set-up. ‘OT’ means outer 

turret, and the other abbreviations of the turret follow the same principle. The outer turret 

is closest to the middle of the map and thus the first line of defence. Behind the outer turret 

is the inner turret. Finally, the base turret defends the inhibitor and is the closest of the 

three to the Nexus. The inhibitor is a structure with no defence and when it is destroyed, it 

grants the opposing team super minions, which are much stronger than normal minions. In 
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Figure 19, inhibitor is abbreviated as ‘I’. The inhibitor can respawn or revive however, which 

happens automatically after 5 minutes. Finally, the base also contains two extra Nexus 

turrets, which guard the Nexus. For each turret, the following rule counts: if there is a non-

destroyed turret in front of the concerning turret in the same lane, then the concerning 

turret is invincible. Thus, a team has to destroy turrets one by one, from outer turret to 

nexus turret. The nexus turrets lose their invincibility when a base turret and its inhibitor are 

destroyed in at least one lane. Similarly, the Nexus can only be harmed if both Nexus turrets 

are destroyed and if at least one inhibitor in the concerning base is currently destroyed. 

The Rift Herald is a neutral monster in the jungle which can spawn up to two times per 

match. It is located in the top left of the map in Figure 19 and is abbreviated as ‘RH’. The first 

time will be at 8:00 and the last Rift Herald will simply disappear just before 20:00. The 

reason for this is that Baron Nashor is about to spawn in the same spot. The Rift Herald can 

be killed by a team and if so, it grants the team the ability to spawn a Rift Herald in a lane 

which they see fit. If spawned this way, the Rift Herald will walk with his friendly team down 

a lane and the Rift Herald will deal tons of damage to enemy turrets. It will continue until the 

opposing team killed the Rift Herald. The Baron Nashor is an even tougher monster to slay 

and it often requires the full team to kill it. Slaying Baron Nashor gives a buff to every 

teammate which makes themselves and the minions of their team stronger. As a team, 

trying to slay Baron Nashor is one of the hardest objectives to achieve, because it takes a 

relatively long time and the enemy team can easily interfere and kill your already damaged 

team. However, the Baron Nashor buff is extremely helpful to win games or gain advantages. 

The Baron Nashor buff makes it much easier to take down enemy turrets. 

Finally, dragons (also called drakes) are other important objectives. These monsters spawn 

at 5:00 and it respawns 5 minutes after it has been slain. There are 4 basic types of drakes, 

namely Cloud, Ocean, Infernal and Mountain. Slaying a drake grants all team members 

permanent buffs for the rest of the match. Thus, a team can rack up drake buffs by slaying 

the drakes again and again. However, after the second drake has been slain, the game 

chooses a random dragon type and from that point on, every new drake that spawns is from 

that type. If a team has slain 4 drakes in total, they gain the Dragon Soul, which is an extra 

and different powerful buff which is granted to all team members once the last drake has 

been slain. Every Dragon Soul has different perks. One Dragon Soul may be good at taking 

down turrets, while the other Dragon Soul may be good at winning teamfights, which is a 

fight where both full teams are involved. After either team has gained the Dragon Soul, 

every next drake that spawns is the Elder Dragon. This dragon is comparable to Baron 

Nashor. The main difference between the two is that Baron Nashor buff is good at taking 

down turrets, while the Elder Dragon buff is good at winning team fights. 

Every objective is harder to achieve in the beginning of the game, because then the 

champions are still relatively weak. Over the course of the game, taking objectives becomes 

easier. The course of the game is divided into 3 main time periods: early game, mid game, 

and late game. Players play differently in every time period. 
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Time periods 
The early game is roughly defined as the time in the match from 0 to 15 in-game minutes. At 

15 minutes is the first time a team can surrender, which makes them instantly lose the game 

if they think defeat is inevitable, and saves the players of the losing team time. However, this 

surrender vote has to be anonymous by all 5 players to pass. At 20 minutes, it is possible to 

surrender when only 4 of the players agree. In the early minutes of the early game is also the 

time when a remake can take place. When analysing match data, it is important to filter out 

remakes because these matches are not representative of normal matches played. The 

remake subject is elaborated on later in this section. During the early game, all laners mostly 

stick to their lane and just farm and sometimes try to get a kill. The junglers mostly farm 

their jungle and try to gank and get a kill if possible. Drakes and Rift Heralds can also be 

taken during this period. The first Drake spawns at 5:00 and the first Rift Herald at 8:00. 

During the early game, the average in-game level of the champions is roughly around 1 to 9. 

The mid game is when objectives start to play a bigger role. The time for the mid is roughly 

signified as between 15 to 25 minutes, but these are not exact thresholds. Players will try to 

gank more often and try harder to take turrets or epic monsters. It is more common that 

people will often leave their original lane to help other lanes if needed. The average level of 

the champions during this period is roughly 10 to 14.  

The late game is roughly defined by the time from 25 minutes until the end of the game. 

Again, this is just an estimate and when the late game starts generally depends on how the 

game goes. A slow paced game has a late game that starts later. This period is characterised 

by players having quite some gold and having fully finished most of their items. Some 

champions are designed to be item reliant, and thus get significantly stronger with their 

completed items. In this period they become a lot more dangerous compared to other 

champions who are, generally speaking, less good in the late game. Still, in general, 

champions are pretty strong at this period due to the lots of experience and gold that each 

champion has now. Because of this, turrets and monsters die quicker and deal less damage 

to champions. Thus, taking objectives is much easier in the late game. The respawn timer for 

champions is a lot longer than in the rest of the other periods, so killing an enemy champion 

has a much bigger impact. So, in this period, players tend to stick together much more so 

they can fight back better if they get attacked by multiple enemy players. Getting kills in this 

period often guarantees getting an objective and thus getting your team ahead. The average 

level of the champions at this period is around 15 to 18. The level cannot get higher than 18. 

Remake 
Like mentioned before, a ‘remake’ matches are important when it comes to analysing 

matches, because remakes are not representative for average matches played. A remake is 

possible when the concerning team has one or more players who is or are AFK. A player 

counts as AFK if he is inactive for 90 seconds. Also, no remake vote can be started if the 

player who later went AFK was still connected to the game when the opposing team made 

the first kill of the match against the concerning player’s team. From 3 minutes after the 

beginning (match) of the match, which means 3 minutes of in-game time, the remaining 

players can vote for a remake to immediately end the game and this match result will not 
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count as a loss for the remaining players who were not AFK. Only two players have to vote 

yes to make the remake happen, and if two players are AFK instead of one, then only one of 

the remaining players who are not AFK can vote ‘yes’ to make the remake happen. However, 

if the remaining players think the AFK player will come back, they could not vote for a 

remake, but this basically only happens if the AFK player is premade with most of the 

remaining players. Once a remake has ensued, the AFK player will be penalised. This can 

either be a time penalty, which means that the concerning player is not able to start new 

games for some time. Or, if the type of match played is ranked, the player will lose LP and 

the match is only for him counted as a loss. LP are points needed to gain a higher rank of the 

account. The higher someone’s rank, the better the player’s skill looks. Furthermore, the 

player will also be reported by LeaverBuster, which is a tool made by Riot, which keeps track 

of the amount of matches a player has left. Leaving multiple matches in a certain period of 

time will result in penalties.  

When doing research on video games, it is evident that actual matches should be analysed, 

as this is where the actual gaming takes place. Thus, basic game mechanics, objectives, time 

periods and remakes were explained.  
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Appendix B: Functioning of the tool 
The tool consists of two parts: a Python part and an Excel/VBA part. In Python, the user 

inputs certain data such as what summoner they want to analyse. User is referring to the 

one who is using the tool, and summoner is referred to when talking about the account who 

is analysed by the tool.  

The Python part extracts data from the Riot API portal and scans the chosen summoner’s 

match history. Every summoner playing League across the world can be analysed. Each 

match is analysed on all the data concerning objectives taken by each team. Python stores 

all this data in a timeline format, which means that each objective taken is registered at each 

corresponding in-game minute and time period for every analysed match. Python puts all 

this categorised information in an Excel file. Another Excel file is used to select and extract 

certain specified data from the other aforementioned Excel file and puts it in a summary 

table with the help of VBA coding. This Excel/VBA file makes a Pivot table and graph of the 

summary table and calculates the average win rate for every situation found in the Excel 

data storage file. The situations which happened up to 2 times in the big Excel data file are 

filtered out by default to increase accuracy of the results. The user can adjust this threshold. 

Python  
The Python part utilises the input data which the user of the tool inputs, including the given 

API key. With this data and API key, the tool accesses the API portal to find the summoner 

data first. The API portal can be accessed by constructing a URL with the help of the input 

data and other looked up values. The URL is a web link which can be reached by typing it in 

the address bar of an internet browser. The accessed URLs of the code contain an online 

JSON file, which is a file with data or text values. In this file it is possible for the tool to seek, 

find and take data of chosen places within the JSON file. In the Python file are four different 

URL and corresponding JSON files used. One accesses summoner account data, one collects 

a summoner match history data, one analyses match details of a certain match and one 

analyses the timeline of each match, which is what happens every minute of the match. 

Every function needs to use the API key, which the user provides. However, the API key may 

only be used 100 times per 2 minutes, which means that the user has to wait 2 minutes if 

the 100 requests have been reached. This waiting process is already integrated in the tool 

and the program will continue after waiting 2 minutes. This call rate limit is the reason why 

the API key should not be used 2 minutes before the program is run and it should also not be 

used while the program is running. The API key expires 24 hours after the last time it has 

been regenerated in the API portal. Hence, it has to be regenerated before the user uses the 

API key. It is possible that the API portal will give an error which is an error of the API portal 

and the website itself, and is not caused by the tool. The tool makes sure that the script 

continues when such an error occurs, and the appropriate match is skipped which was about 

to be analysed by the URL and prompted the error. 
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Code-text simplification 

The Python code is explained with the help of a code-text simplification. Texts starting with a 

hashtag are comments. Texts between square brackets are places where coding resides 

which aims to execute the goal which is explained between the square brackets. The coding 

which reside in for loops and if-then statements have been tabbed. For example, if a piece of 

code resides in two for loops, it is tabbed twice. Showing data, such as the amount of 

matches filtered or analysed or the dragon counters, have been omitted since these values 

will not be put in Excel, and thus will not be used in the final analysis. Furthermore, the 

required Python libraries to execute the code are also omitted in the code-text 

simplification. In the real Python code, they are located at the top of the script, above the 

functions. Finally, the API-call-rate counter is also omitted. This counter keeps track of how 

often the given API key is used by the program. For each fully analysed match, it is required 

to use the API key twice. Once this counter reached at least 98, it will prompt the program to 

pause for 2 minutes, which enables the API key rate counter to reset. The code-text 

simplification is as follows: 

#Functions defined; each function creates a URL which they extract a JSON data file from: 

requestSummonerData (to access accountID) 

requestMatchHistory (to access match history of summoner and find matchID’s by using accountID) 

requestMatchDetails (find general match data of matches by using matchID’s) 

requestMatchTimeline (find timeline data for each minute in a match) 

 

#Main code starts here: 

[Define and set base values of variables, which are almost all 0] 

[Coding for input data: region, chosen summoner name, API key, matchesdesired (amount of matches scanned)] 

[Excel set-up: define Excel file which will be used for data storage] 

[Clear old Excel data] 

 

#Goal:  to collect matchID’s 

[call function requestSummonerData with input data to collect accountID of summoner] 

[call function requestMatchHistory with as input accountID and matchesdesired to collect the summoner’s 

match history and all the matchID’s of only ranked matches] 

 

#Goal: analyse every of the filtered matches and register the time when every objective is taken in a match 

1: for loop: every matchID in filteredmatches: 

[call function requestMatchDetails to acquire match duration of the matchID and name of every 

participant of a match] 

 [filter out unbalanced and thus relatively short matches] 
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 [check which team is the team of the chosen summoner] 

 [determine whether the summoner won or lost] 

 [call function requestMatchTimeline] 

 [determine match length in minutes] 

 2. for loop: every minute in matchID: 

  [count all events happened in concerning minute] 

  [determine the time-period which the minute falls in] 

  3. for loop: every event in minute 

   if-then: [event happening at the minute] == building destroyed 

    [determine in which lane the tower resided] 

    [determine tower type] 

    [determine whether the friendly or enemy team took it] 

    [put data in Excel] 

if-then: [event happening at the minute] == epic monster slain 

 [determine monster type] 

 [determine whether the friendly or enemy team took it] 

 if-then: monstertype == dragon 

  [+1 for either enemy or friendly dragon counter] 

  [determine dragon ‘subtype’ and this replaces ‘monster type’] 

 [put data in Excel] 

[put current dragon soul data also in Excel in same row; getting a 4th dragon 

will grant the team the permanent dragon soul positive effect] 

 

#This is where all previous for loops and if-then statements have ended 

[print headers in Excel]  

[print the value of the total amount of rows in Excel data file]   #this is needed for Excel/VBA 

[save Excel file] 

#End of code 

 

Libraries 

Multiple Python libraries have to be imported in order for the script to function properly. A 

Python library is a type of installation package which contains functions to use in Python. A 

function is defined as a coding shortcut that can be called upon by typing the function name 

and its required input data. The libraries that were imported are ‘requests’, ‘openpyxl’ and 
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‘time’. ‘Requests’ was needed to extract the data from the JSON files that can be accessed by 

compiling URLs. The ‘openpyxl’ library is required for putting data from Python in Excel and 

turning all the data into a table. The ‘time’ library is needed for pausing the code once the 

maximum amount of API requests of the used API key have been reached in 2 minutes.  

Input data 

The Python tool starts off by defining functions which use the ‘requests’ library. After the 

functions, parameters are initialised and values which should be inputted by the user are 

asked. The input data which the user has to write down is the region of the account which 

ought to be analysed, the current summoner name of the account, the API key and the 

amount of matches which the user chooses to have scanned. These data will function as 

input for functions. 

URL/JSON and summoner data 

The tool uses multiple functions. Each function uses the API key to access a URL with a 

corresponding JSON file to extract information from. An example of such a function is 

requestSummonerData(region, summonerName, APIKey). It accesses information about the 

account itself, such as the account ID. The account ID is used to access another function that 

was made in Python, such as requestMatchHistory. The JSON file which is needed to access 

the account ID also contains other information besides this account ID. Other listed 

information at this page are, for example, the summoner name which is shown in the 

original way of writing, which is with capital letters and spaces included, and also the date 

when the summoner name was last changed and the summoner level too. The tool extracts 

only the summoner name and account ID from this JSON file.   

Match history scanning 

After summoner data is collected, the tool uses this data to access the match history of the 

summoner. This is based on the user input data, because the user had the option to choose 

the amount of matches to have scanned. For example, if the user chose 200 matches, then 

the tool will scan all previous matches starting from the last played match, to the last 200th 

match played. However, it is possible that not all matches will be analysed. The tool filters 

out matches which are not ranked matches. Only solo queue ranked matches and ranked 

flex matches will be used. The outcome of a ranked match directly influences the rank of a 

player, and thus is deemed as the most serious game modes. The tool filters out all the non-

ranked matches of the previous 200 games played. The IDs of the matches which do fit the 

criteria are placed in a set called ‘matchesfiltered’. Every match has a unique match ID, 

which is used for analysis of the matches themselves in another function called 

requestMatchTimeline. Furthermore, the tool filters out matches which are deemed 

unbalanced. Examples of such matches are remakes or early surrenders. All games within 

the set ‘matchesfiltered’ which have a match duration of shorter than 22 minutes will be 

filtered out. At 20 minutes is the first time when a team can surrender without voting 

unanimously. Since it is possible that a team does not immediately know that 20 minutes 

have passed, 2 extra minutes are added as slack. In the tool itself, it is possible to change the 

preferred queue types to analyse by manually changing the ‘desiredqueuetypes’ set, as 
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explained with comments in the code. Initially, the set contains the numbers 420 and 440, 

which indicate solo queue ranked matches and ranked flex matches respectively. By adding 

or removing queue type ID’s, the tool will also scan other types of matches. The ID’s for 

queue types, such as normal queues, are also explained shortly in the code itself. 

Scanning the matches itself 

For each analysed match, the outcome of the match needs to be registered. The tool checks 

whether the chosen summoner to be analysed won or lost the match. The players in a match 

are referred to by their participant ID, which differs per match. The Riot API registers which 

participant ID is on which team, and registers which team won the match. The Python code 

determines which participant ID fits the analysed summoner and then checks whether the 

player is on blue side or red side, and which side won or lost to determine what the match 

outcome for the chosen summoner is. After this has been determined, the amount of 

minutes of a match are also registered, which is required to check every minute of the match 

on whether any team has taken an objective.  

The tool then calls the function requestMatchTimeline. The JSON file which it returns 

contains information on what happened every minute of the match. The tool analyses each 

minute. Since we categorised the period of each minute in three time-periods: the early, mid 

and late game, we need to determine in which time-period the appropriate minute and its 

objective events occur. The tool determines with the help of an if-statement the time-period 

of such an event. Every minute consists of multiple events. The tool checks every event that 

happened in a minute and it saves the events which are about an objective being taken by a 

team. It counts the amount of events in each minute and then uses a triple nested for loop 

for every match to check every event in every minute.  

Every event is checked on whether it is an objective that is being taken, with the help of if- 

and else-if statements. One if-statement checks whether the concerning event is a building 

that is being taken and one if-statement checks whether an epic monster is being taken.  

The building if-statement looks at towers. However, inhibitor buildings destroyed are also 

registered. We will refer to these building as turrets also. The tower if-statement checks the 

lane in which the concerning destroyed turret stood, which is either top lane, middle lane or 

bottom lane. The tool also checks the position of the turret in the lane itself. This can be an 

outer turret, inner turret, base turret or nexus turret. The data of the turret events are 

written down in the Excel data storage sheet. 

Another if-statement checks whether an event is about an epic monster that has been slain. 

If this would be the case, the code determines whether the enemy or friendly team of the 

analysed player took it by checking the participant ID of the killer in the JSON file. The type 

of monster slain is also registered. If this monster is a drake, the program checks what type 

of drake this is and registers it. Furthermore, the tool keeps track of how many drakes each 

team has taken. When either team takes their fourth drake, they instantly gain the dragon 

soul buff which corresponds to the last drake taken. The tool will register that dragon soul 

for the corresponding team and this dragon soul value will remain the same for the rest of 

the match.  
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After every event of every minute of every match in the ‘matchesfiltered’ set has been 

analysed, the tool starts to fill the Excel data storage file, which is the document to register 

all the in-game objective data. The headers are added and also the amount of rows in this 

data document are registered. The name of the table with all the data is ExcelDataTable. The 

amount of rows is used in another Excel/VBA document which will be the dashboard 

document. After every run, the table is cleared of data and data of the new run is put into it.  

After the data has been put into the LoLPMData Excel data storage file, the file is saved by 

the Python code. It is crucial that this Excel file is closed while the tool is running, because 

the Excel data file cannot be saved with new information if the file is still open. 

The program has multiple ways of dealing with situations like errors or when the API call rate 

limit has been exceeded. The API call rate is at maximum 100 requests per 2 minutes, which 

means that the program should pause and wait for 2 minutes if the API call rate gets close to 

100 requests. The tool uses a threshold of 98 or more requests for this. The program will 

wait and after 2 minutes it will continue scanning matches until all matches in the set 

‘matchesfiltered’ are scanned. 

For every request function, there is an insignificant probability that the URL responds in an 

error. These types of errors are originating from the Riot servers itself, and not from the tool. 

When this happens, the corresponding match is simply skipped, and the tool proceeds 

scanning the other matches as usual. 

Excel  
There are 2 Excel files, the Excel data storage file and the Excel/VBA dashboard file. The data 

file registers the data which it receives from the Python code and the dashboard file 

processes information from the data file and summarises it to show tables and graphs. The 

name of the Excel data file is “LoLPMData.xlsx”, and the name of the Excel dashboard file is 

“”LoLPMDashboard.xlsm”. Both files have to be opened when the user is going to analyse 

the results, where the “LoLPMData.xlsx” file should be opened first. Pop-ups should be 

enabled when they show up when starting the dashboard file, which is required for VBA 

functioning. 

Excel data storage file 

The Excel data storage file is the collector of the data which it receives from the Python 

script. Each row consists of an event which signifies an in-game objective that has been 

taken. The headers are as follows: 

1. Summoner 

2. MatchID 

3. Outcome 

4. Minute 

5. Period 

6. Tower 

7. Monster 

8. Dragon Soul 
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The file shows which summoner is analysed, which is the chosen summoner of the Python 

code. This was inputted by the user when starting the program. The MatchID, minute and 

period all signify data which tell at what moment in which scenario the associated objective 

was taken. The period refers to the corresponding time-period of the appropriate event, 

which can refer to the early game for example. The abbreviation for this is ‘EARLY’. ‘MIDDLE’ 

and ‘LATE’ are used for the other time periods. The Outcome column shows what team won 

the match. A 0 means that the enemy team won and a 1 means the friendly team won which 

the analysed summoner was on during that match. The Minute column tells when the event 

happened in the match. If an event took place at time 22, then it means that the event took 

place in the 22th minute of the match, which means that the event took place between 

21:00 and 22:00.  

The headings Tower and Monster both refer to what building or epic monster was taken 

respectively. For example, if a building is taken in a certain minute, then the Tower cell will 

be filled with information about what team took which turret at what location, while the 

Monster cell will be left empty. This also works vice versa. Once a team is the first to acquire 

4 dragons, they will gain the dragon soul buff and the type of dragon soul will be written 

down in the Dragon Soul column until the end of the match, because this buff is permanent. 

The notation for the objectives, which are the Tower, Monster and Dragon Soul columns, will 

be explained.  

The team who took the objective is written down. A hashtag ‘#’ means that the friendly 

team of the analysed player took it, and the at sign ‘@’ signifies that the enemy team took it. 

For the Tower column, this means the written down team took a turret from the other team. 

Furthermore, the lane of the concerning turret is written down after the team sign, and then 

the type or position of the turret is written down. For example, if a cell in column Tower says 

‘# Top OUTER_TURRET’, then it means that the friendly team destroyed a turret from the 

enemy team on top lane, and the destroyed type of turret is an outer turret. Nexus turrets 

are abbreviated as ‘NexusT’. 

Since each epic monster has its own set location on the map, the location does not have to 

be written down when registering data about the epic monster objective. In the Monster 

column, only the team sign and the slain monster are written down. First the team sign, and 

then the corresponding monster. The same principle holds for the Dragon Soul column. The 

only difference is that the word ‘Soul’ is added. 

In the Excel data storage document, the amount of total rows are counted and registered in 

a cell next to the data table. This cell value is used in the Excel dashboard file. 

Excel dashboard file 

The Excel dashboard file utilises Excel functions and VBA coding to summarise and visualise 

the data in the Excel data file, which is done by creating two tables and a graph. The tables 

are a normal Excel table and a Pivot table. The Pivot table uses the data of the normal left 

table as input, and creates a graph of it for visualisation purposes. The normal table, which is 

called ‘SituTable’, on the very left of the file is not meant to be looked at by the user, and its 
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purpose is to prepare the data for the second Pivot table on the right. The ‘SituTable’ 

combines for each row in the Excel data file the 3 columns about the objectives, and then 

puts them into one single column. This single combination column is the Situation column. 

The benefit of this is that the permanent dragon soul buff and the other objectives that 

occur after it is gained, can be written down together as one cell value, and this makes it 

possible to put the full objective situation information of an event on the x-axis of the Pivot 

table. If this would not have been implemented, then the tool would see the dragon soul 

buff and other objectives taken as separate events.  

Pivot table can categorise every situation and its corresponding time period in the 

‘SituTable’, and calculate the average win rate when such a situation occurred in a match. 

This average win rate indicates whether achieving a certain situation in-game is favourable. 

The win rate of every situation is put in the Pivot table and also in the Pivot graph. In the 

Pivot table, the amount of situations which occurred in the data set are counted. This is 

called the number of situations. The higher the number of situations, the more accurate the 

corresponding win rate of the situation is. By default, the tool filters out all cases which 

happened 2 times or fewer, which is a suitable threshold when 100 matches are analysed to 

avoid exceptional situations. However, this threshold is still based on the personal 

preference of the user, and can be adjusted by clicking the ‘Situation’ button in the graph 

and input different filter values. The user can also filter on situations and periods by using 

the button.  

Buttons 

The Excel dashboard file contains three buttons. These buttons should be clicked in the 

indicated order in the tool itself to properly update the file. Furthermore, it is essential that 

the Excel data storage file should be opened and loaded before clicking the buttons. The 

buttons are connected to VBA modules and thus the user should allow macros when the 

Excel dashboard file asks whether they should be allowed. Another notification might pop up 

which asks whether data transfer should be allowed or enabled. This should be enabled, 

because otherwise, the dashboard file cannot analyse the data from the data file.  

The first button, called ‘Update Table’ activates a VBA macro which will update the very left 

table ‘SituTable’ in the document. This makes it possible for the Pivot table to analyse the 

data in the ‘SituTable’. The macro checks the amount of rows in the Excel data storage file 

and makes ‘SituTable’ the same size as the original data table situated in the Excel data 

storage file, which makes it possible to copy and process the values to the dashboard file. 

The second button, called ‘Refresh’, refreshes and updates that every table and every graph 

in the dashboard file. 

The third and final button, called ‘Hide Nr. Bars’, makes sure that the Pivot graph only shows 

the win rate, and not the number of situations, because the win rate is the focus of the 

graph. The Pivot graph contains both variables because the Pivot table also contains the 

number of situations, next to the win rate. The button turns the bars of the counted number 

of situations in the graph invisible.  
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Conclusion 

The analysis of the tool will show a summary of the analysed player’s playstyle with relation 

to in-game objectives. The Pivot table and graph can function as a self-analysis and will show 

the expected winning probability of decisions with relation to objectives. Furthermore, the 

results of the tool makes evident which enemy objectives have the largest impact on 

resulting in a defeat for the player, which would yield the lowest win rate, and thus insight is 

provided in the analysed player’s weaknesses. Certain objectives have a larger impact on the 

outcome of the match than other objectives. This impact rate can be concluded by how 

much the win rate of an objective deviates from a 50% win rate. For example, objectives 

with a win rate of around 50% do not seem to have an outspoken impact, while objectives 

with a win rate of 1% or 99% do. 
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Appendix C: Python script 
    ##PRESS F5 TO RUN CODE 

 

#last time code is customised: 22/7/2021                  

 

import requests     #requests has to be installed (via pip installation) 

import openpyxl     #openpyxl has to be installed (via pip installation) 

from openpyxl import load_workbook 

from openpyxl.worksheet.table import Table, TableStyleInfo 

import time 

 

 

#FUNCTIONS 

def requestSummonerData(region, summonerName, APIKey): 

    URL = "https://" + region + ".api.riotgames.com/lol/summoner/v4/summoners/by-name/" 

+ summonerName + "?api_key=" + APIKey               

    response = requests.get(URL) 

    print("SummonerData =", URL) 

    return response.json() 

 

def requestMatchHistory(region, AccID, APIKey, beginIndex, endIndex): 

    URL = "https://" + region + ".api.riotgames.com/lol/match/v4/matchlists/by-account/" + 

AccID + "?endIndex=" + f"{endIndex}" + "&beginIndex=" + f"{beginIndex}"  + "&api_key=" + 

APIKey 

    response = requests.get(URL)             

    print("MatchHistory =", URL) 

    return response.json() 

 

def requestMatchDetails(region, matchId, APIKey): 

    URL = "https://" + region + ".api.riotgames.com/lol/match/v4/matches/" + matchId + 

"?api_key=" + APIKey 



56 
 

    response = requests.get(URL) 

    print("MatchDetails =", URL) 

    return response.json() 

 

def requestMatchTimeline(region, matchId, APIKey): 

    URL = "https://" + region + ".api.riotgames.com/lol/match/v4/timelines/by-match/" + 

matchId + "?api_key=" + APIKey 

    response = requests.get(URL) 

    print("MatchTimeline =", URL) 

    return response.json() 

 

#MAIN CODE STARTS HERE 

APIcallrate = 0          

TotalAPIcallrate = 0 

beginIndex = 0 

matcheschosen = 0 

excelrowcounter = 1 

matchesscanned = 0 

erroramount = 0 

unbalancedamount = 0 

 

#INPUT DATA 

region = (str)(input('Choose and type one region and press Enter: BR1 EUN1 EUW1 JP1 KR 

LA1 LA2 NA1 OC1 TR1 RU: ')) 

summonerName = (str)(input('Type your League of Legends in-game Summoner name: '))  

print(); print("IMPORTANT: Please make sure you did not use this API Key in the last 2 

minutes, and do not use it for something else while the program is running."); print() 

APIKey = (str)(input('Copy and paste your API Key here: ')); print() 

desiredmatches = int(input('Type desired amount of previous matches scanned. For each 

100 after 100, the program runs a maximum of 4 minutes longer: '))                                

#multiples of 100 are recommended if the code somehow fails 
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#customisable queue types by user: 

desiredqueuetypes = []                     #400 is normal draft; 420 is ranked solo queue; 430 

normal blind; 440 is ranked flex (seperate codes by comma's) 

 

print()                  

 

#EXCEL SET-UP 

filename = 'LoLPMData'                                  #the Excel files should be in the same folder as 

this Python code 

wb = load_workbook(f"{filename}.xlsx")                  #both Excel files should be closed before 

and while running the Python code 

ws = wb.worksheets[0]                        

oldfilledrows = len(ws['A'])             

ws.delete_rows(2, oldfilledrows) 

 

#ID's 

responseJSON  = requestSummonerData(region, summonerName, APIKey)# 

APIcallrate += 1 

print("APIcallrate =", APIcallrate), print() 

 

    #try: back-up plan when API request failed 

try: 

    AccID = responseJSON['accountId'] 

except: 

    print(responseJSON) 

    erroramount += 1 

    print("Please restart run. An unexpected error occurred.") 

 

name = responseJSON['name'] 
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AccID = str(AccID)                

print('AccID: "',AccID,'"'), print() 

 

#COLLECT AND FILTER matchId's 

matchesfiltered = [] 

print("desiredqueuetypes =", desiredqueuetypes) 

print("(See Python code for more details about queue types)"), print() 

 

 

while beginIndex < desiredmatches: 

 

    endIndex = beginIndex + 100 

 

    if endIndex > desiredmatches: 

        endIndex = desiredmatches 

     

    responseJSONhistory = requestMatchHistory(region, AccID, APIKey, beginIndex, 

endIndex)# 

    APIcallrate += 1 

    print("APIcallrate =", APIcallrate), print() 

 

    try: 

        matcheswindow = len(responseJSONhistory['matches'])              

    except: 

        print(responseJSONhistory) 

        matcheschosen -= 1 

        matchesfiltered.remove(matchId) 

        erroramount += 1 

        print("Retry due to unexpected error") 

        continue 
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    for match in range(matcheswindow):                   

        queuetype = responseJSONhistory['matches'][match]['queue'] 

        if queuetype in desiredqueuetypes:                            

            matcheschosen += 1 

            matchesfiltered.append(f"{responseJSONhistory['matches'][match]['gameId']}") 

 

    beginIndex += 100 

 

 

print("amount of matchesfiltered =", len(matchesfiltered)) 

print("matchesfiltered =", matchesfiltered), print() 

 

 

#SCANNING matcheschosen  

for matchId in matchesfiltered:                  

     

    if APIcallrate > 97:                            #this part puts a pause on the code in order to not 

exceed the API request limit 

        print(); print("Matches analysed until now =", matchesscanned); print() 

        print("Program will continue after 2 minutes, please wait. This is supposed to happen. 

Don't use the corresponding API Key to access other information in the meantime or it will 

screw up the running program.") 

        print() 

        time.sleep(121) 

        TotalAPIcallrate += APIcallrate 

        APIcallrate = 0 

     

    #ELIMINATE EARLY SURRENDERS AND REMAKES 

    responseJSONdetails = requestMatchDetails(region, matchId, APIKey)# 
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    APIcallrate += 1 

    print("APIcallrate =", APIcallrate); print() 

     

    try: 

        gameDuration = responseJSONdetails['gameDuration'] 

    except: 

        print(responseJSONdetails) 

        matcheschosen -= 1 

        erroramount += 1 

        print("Match skipped due to unexpected error") 

        continue 

 

    if responseJSONdetails['gameDuration'] < 1320:                      #Duration is in seconds, 1320 

is 22 mins; early surrendering may also happen a few minutes after it is possible; 

surrendering also takes some time 

        matcheschosen -= 1 

        unbalancedamount += 1 

        print("Unbalanced match removed"), print() 

        continue 

 

    matchesscanned += 1 

    print("matchId =", matchId)   

 

    #MATCH VALUE RESET 

    dragoncounterF = 0 

    dragoncounterE = 0 

    dragonsoul = "" 

    dragonsoulteam = "" 

    matchoutcome = "" 
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    #DETERMINE FRIENDLY TEAM AND OUTCOME 

    for x in range(10):     

        if responseJSONdetails['participantIdentities'][x]['player']['currentAccountId'] == AccID:                      

            participantId = responseJSONdetails['participantIdentities'][x]['participantId'] 

            teamfriendlyId = responseJSONdetails['participants'][x]['teamId']                                        

            print("teamfriendlyId =", teamfriendlyId) 

 

    if (responseJSONdetails['teams'][0]['win'] == "Win") and 

(responseJSONdetails['teams'][0]['teamId'] == teamfriendlyId): 

        matchoutcome = 1 

    elif (responseJSONdetails['teams'][0]['win'] != "Win") and 

(responseJSONdetails['teams'][0]['teamId'] != teamfriendlyId): 

        matchoutcome = 1 

    else: 

        matchoutcome = 0 

    print("matchoutcome =", matchoutcome), print() 

     

    #REGISTER DATA ABOUT OBJECTIVES 

    responseJSONtimeline = requestMatchTimeline(region, matchId, APIKey)# 

    APIcallrate += 1 

    print("APIcallrate =",APIcallrate); print() 

 

    try: 

        matchframes = responseJSONtimeline['frames'] 

    except: 

        print(responseJSONtimeline) 

        matcheschosen -= 1 

        erroramount += 1 

        print("Match skipped due to unexpected error") 

        continue 
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    matchframes = len(responseJSONtimeline['frames'])                                                            

    print("totalminutes =", matchframes - 1), print()                                                                                      

     

    #MINUTES 

    for minute in range(matchframes):    

        minuteevents = len(responseJSONtimeline['frames'][minute]['events'])                                 

        if minuteevents != 0: 

 

            #GAME PERIOD 

            if minute < 15:                                     

                period = "EARLY" 

            elif 15 <= minute <= 25: 

                period = "MIDDLE" 

            elif minute > 25: 

                period = "LATE" 

 

            #EVENTS 

            for eventnr in range(minuteevents): 

 

                #RESET OBJECTIVES 

                tower = "" 

                monster = ""           

 

                #TOWER/INHIBITOR 

                if responseJSONtimeline['frames'][minute]['events'][eventnr]['type'] == 

"BUILDING_KILL": 

                    towerLane = 

responseJSONtimeline['frames'][minute]['events'][eventnr]['laneType'] 

                    if towerLane == "TOP_LANE": 
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                        towerLane = "Top" 

                    elif towerLane == "MID_LANE": 

                        towerLane = "Mid" 

                    elif towerLane == "BOT_LANE": 

                        towerLane = "Bot" 

                    towerType = 

responseJSONtimeline['frames'][minute]['events'][eventnr]['towerType'] 

                    teamId = responseJSONtimeline['frames'][minute]['events'][eventnr]['teamId'] 

                    if teamId != teamfriendlyId:                    

                        team = "#" 

                    else: team = "@" 

                    if towerType == "NEXUS_TURRET":                  

                        towerLane = "" 

                        towerType = "NexusT" 

                    if towerType == "UNDEFINED_TURRET": 

                        towerType = "INHIB" 

 

                    tower = f"{team} {towerLane} {towerType}" 

                    print(f"In the {minute}th minute: {tower}")     

 

                    excelrowcounter += 1 

                    ws[f"A{excelrowcounter}"] = name 

                    ws[f"B{excelrowcounter}"] = matchId 

                    ws[f"C{excelrowcounter}"] = matchoutcome 

                    ws[f"D{excelrowcounter}"] = minute 

                    ws[f"E{excelrowcounter}"] = period 

                    ws[f"F{excelrowcounter}"] = tower 

                    ws[f"G{excelrowcounter}"] = monster 

                    ws[f"H{excelrowcounter}"] = dragonsoul 
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            #DRAKE/BARON/HERALD 

                if responseJSONtimeline['frames'][minute]['events'][eventnr]['type'] == 

"ELITE_MONSTER_KILL": 

                    if (0 < responseJSONtimeline['frames'][minute]['events'][eventnr]['killerId'] <= 5) 

and (teamfriendlyId == 100):      

                        team = "#" 

                    elif (5 < responseJSONtimeline['frames'][minute]['events'][eventnr]['killerId'] <= 

10) and (teamfriendlyId == 200): 

                        team = "#" 

                    else: team = "@" 

                    monsterType = 

responseJSONtimeline['frames'][minute]['events'][eventnr]['monsterType'] 

                    if monsterType == "DRAGON": 

                        if team == "#":  

                            dragoncounterF += 1  

                        else: dragoncounterE += 1 

                        monsterType = 

responseJSONtimeline['frames'][minute]['events'][eventnr]['monsterSubType'] 

                        if monsterType == "EARTH_DRAGON": 

                            monsterType = "Mountain_Drake" 

                        elif monsterType == "WATER_DRAGON": 

                            monsterType = "Ocean_Drake" 

                        elif monsterType == "AIR_DRAGON": 

                            monsterType = "Cloud_Drake" 

                        elif monsterType == "FIRE_DRAGON": 

                            monsterType = "Infernal_Drake" 

                    monster = f"{team} {monsterType}"            

                    print(f"In the {minute}th minute: {monster}") 

 

                    excelrowcounter += 1 

                    ws[f"A{excelrowcounter}"] = name 
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                    ws[f"B{excelrowcounter}"] = matchId 

                    ws[f"C{excelrowcounter}"] = matchoutcome 

                    ws[f"D{excelrowcounter}"] = minute 

                    ws[f"E{excelrowcounter}"] = period 

                    ws[f"F{excelrowcounter}"] = tower 

                    ws[f"G{excelrowcounter}"] = monster 

 

                    #DRAGON SOUL 

                    if dragonsoulteam == "":                  

                        if dragoncounterF >= 4: 

                            dragonsoulteam = "#" 

                            dragonsoul = f"{dragonsoulteam} {monsterType}Soul"                                 

                        elif dragoncounterE >= 4: 

                            dragonsoulteam = "@" 

                            dragonsoul = f"{dragonsoulteam} {monsterType}Soul" 

                    ws[f"H{excelrowcounter}"] = dragonsoul 

                     

    print() 

    print("dragoncounterE =", dragoncounterE) 

    print("dragoncounterF =", dragoncounterF) 

    print("dragonsoul =", dragonsoul) 

    print("dragonsoulteam =", dragonsoulteam), print() 

 

TotalAPIcallrate += APIcallrate                     

print("Matches analysed =", matchesscanned) 

print("Final APIcallrate =", TotalAPIcallrate) 

print("Amount of matches skipped due to unexpected unimportant errors during run =", 

erroramount) 

print("Amount of heavily unbalanced matches removed =", unbalancedamount) 
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#EXCEL PRINTING 

newfilledrows = len(ws['A']) 

ws["A1"] = "Summoner" 

ws["B1"] = "MatchID" 

ws["C1"] = "Outcome" 

ws["D1"] = "Minute" 

ws["E1"] = "Period" 

ws["F1"] = "Tower" 

ws["G1"] = "Monster" 

ws["H1"] = "Dragon Soul" 

 

ws["K1"] = "Amount of rows of data" 

ws["K2"] = newfilledrows 

 

exceldatatable = openpyxl.worksheet.table.Table(ref = f"A1:H{newfilledrows}", displayName 

= "ExcelDataTable") 

exceldatatable.ref = f"A1:H{newfilledrows}" 

print("Excel raw data table size =", exceldatatable.ref) 

 

if exceldatatable.name not in ws.tables:             

    ws.add_table(exceldatatable) 

elif exceldatatable.name in ws.tables: 

    ws.tables["ExcelDataTable"].ref = exceldatatable.ref 

 

wb.save(f"{filename}.xlsx")            

 

print(), print() 

print(); print('Program finished successfully! First open:'); print(f"{filename}.xlsx"); print() 

print('After it has successfully loaded, open:'); print('LoLPMDashboard.xlsm')  
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Appendix D: VBA macros 
This file contains the coding for the VBA macros connected to the clickable buttons of the 

Excel dashboard file. 

The VBA macro of button 1, which update the SituTable on the left of the Excel dashboard 

file, which is used as input for the Pivot table and Pivot chart 

Sub UpdateTableLength() 

 

' Measure rowlength of new data table and put it in situation table 

 

    SituOldlength = Range("A" & Rows.Count).End(xlUp).Row 

    OGDatalength = Workbooks("LoLPMData.xlsx").Worksheets("Data").Range("K2") 

    If IsEmpty(OGDatalength) Then 

    OGDatalength = 2 

    End If 

    SituNewrange = "$A$1:$C$" & OGDatalength 

    ActiveSheet.ListObjects("SituTable").Resize Range(SituNewrange) 

    If OGDatalength < SituOldlength Then 

        SituDeleteRange = "$A$" & (OGDatalength + 1) & ":$C$" & SituOldlength 

        Range(SituDeleteRange).ClearContents 

    End If 

     

End Sub 
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The VBA macro of button 2, which refreshes the tables and graphs 

Sub RefreshPivotTable() 

 

' RefreshPivotTable Macro 

 

    ActiveWorkbook.RefreshAll 

 

End Sub 

 

The VBA macro of button 3, which hides the bars in the graph which show the number of 

occurrences of each objective event and their timing 

Sub HideCountBars() 

 

' HideCountBars Macro 

 

    On Error GoTo Error 

     

    ActiveSheet.ChartObjects("Average Winrate").Activate 

    ActiveChart.FullSeriesCollection(2).Select 

    Selection.Format.Fill.Visible = msoFalse 

    Range("AF8").Select 

 

Exit Sub 

Error: 

Range("AE8").Select 

Exit Sub 

End Sub 
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Appendix E: External validation survey 
Introduction 

This file contains questions about the Excel dashboard file which shows the expected win rate of 

each objective taken by either team in either the early, middle, or late game. The middle game is 

assumed to happen between 15 and 25 minutes. The early game happens before that and the late 

game afterwards. The data gathering is done by scanning the last 60 matches played by the inputted 

player (which should be your account), and by checking which objectives were taken in a match and 

whether the player won. Only draft pick matches are included, both normal and ranked games. 

Objectives are defined as: Rift Heralds, Baron Nashors, Elemental Drakes, and turrets destroyed. The 

data gathering process is done by using a Python tool which automatically extracts data from the Riot 

API.  

It might seem obvious that taking Nexus Turrets will often result in a 100% expected win rate, but 

this is not the focus of the tool. The value of the analysis lies in the fact that whether choosing to 

take a certain objective over another will more likely result in a victory, and thus this could possibly 

show which objectives are more important (for the inputted player). For example, the tool could 

show that taking Infernal drakes results in a higher expected win rate than taking Cloud drakes. 

Gathering feedback would help to discover possible improvement points according to Esports 

players, and whether the tool indeed gives insight in the importance of objectives. This is the reason 

why I made this questionnaire. 

The filtering of data is possible by adjusting the bottom left filter buttons on the Pivot chart. Please 

use these buttons to filter information, instead of adjusting the Pivot table left of the graph. You may 

ignore the “Update Table”, “Refresh”, and “Hide Nr. Bars” buttons, as these are used for the initial 

data gathering process, which is already done. If the Excel dashboard file is somehow not working, 

then please check the figures at the end of this survey to see the data of one of the accounts of the 

Esports player Rekkles.  

The questions to answer are on the next page. I plan to summarise the responses to this 

questionnaire and use it to write about the external validation part of my thesis.  

Thank you for filling in the questionnaire! 
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Questions 

1. Do you think this tool could help you gain insight in your own gameplay and could help 

improve the strategy of players? If so, how?  

 

 

2. Did you think you  could draw any conclusions from your data? Please explain why or why 

not. What do you think is required to make such conclusions more accurate? 

 

 

3. Do you think the dashboard data can help to create strategies to counter opponents? If so, 

how? 

 

 

4. Does the dashboard provide enough user friendliness? (is it easy to use? Are there aspects 

which seem clunky?) 

 

 

5. Do you think that the idea of analysing the success of taking objectives would be useful for 

Esports teams? 

 

 

6. Do you think the tool would be more useful if it would focus instead on other events that 

happen in-game (such as kills, items bought, or amount of wards placed)? If so, why? 

 

 

7. Do you have any additional remarks, suggestions, or improvement points? 
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Figures of survey 

Figure 20: The output of the Excel dashboard file 

 

Figure 21: Example of filtered settings in the Excel dashboard file with regards to turrets 

taken in the early game 


