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Abstract

Machine Learning (ML) has been applied to a wide variety of feeds and achieved
significantly promising results. Its power arises in the ability to learn from data and
make decisions based on its learning. Recognizing the impact of this cutting edge
technology and how it can benefit Requirements Engineering (RE), researchers have
tried applying different ML approaches onto RE tasks. The literature review “The
Landscape of Machine Learning in Requirements Engineering” [1] shows that in
recent years, a plethora of ML techniques have been proposed to solve the prob-
lem of classifying requirements, targeted specifically to functional or nonfunctional
requirements.

In this study, we experiment the cross-applicability of these ML methods, that
are intended for either functional or nonfunctional requirements, when being used
to classify the other. The ML techniques found in [1] will be re-evaluated on a com-
mon dataset of (non-)functional requirements, and then be used to classify the other
to compare their effectiveness. With this study, we hope to put a conclusion to
our hypothesis that although not designed to, ML methods intended for classifying
functional requirements can be effectively used for non-functional requirements,
and vice versa.

Keywords — Machine Learning, ML, Requirement Engineering, RE, Require-
ment Classification
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1

Introduction

1.1 | Motivation
Machine Learning (ML) has become more and more pervasive in recent years because of
its proven ability to automatically solve complicated problems by exploring the hidden
pattern inside the given data. As it shows its ability to benefit Requirement Engineering,
researchers have applied Machine Learning to solve different Requirement Engineering
problems, especially the requirements classification task. However, it is observed from
our literature review “The Landscape of Machine Learning in Requirements Engineer-
ing” that research on the requirements classification task targets only classifying func-
tional requirements or non-functional requirements. In theory, the functional require-
ments classification problem and the non-functional requirements classification are two
parts of the same problem. However, there is no practical research that shows this is the
actual case. Secondly, as mentioned before, researchers have only focused on classifying
either non-functional or functional requirements exclusively but not both. In this thesis,
multiple experiments are conducted to investigate if it is true that they are identical in
nature or there are some hidden nuances that make these two classification problems
- functional requirements classification and non-functional requirements classification
different. Additionally, we aim to check whether there were some unrevealed barriers
that prevent classifying both types of requirements at one time.

1.2 | Goal & Scope
As stated in the Section 1.1, the main goals of this research are to investigate the cross-
applicability of established methods and find out if these methods can extend its ability

1



Chapter 1. Introduction 1.3. Research Questions

to classify both types of requirements.

With those goals defined, the scope of this study is as follows:

� Replicate established methods if the implementations are not publicly available

� Train and test these methods with requirements of the opposite type

� Train and test these methods with both functional requirements and non-functional
requirements

1.3 | Research Questions
The following research questions are formulated to drive the project to follow the critical
analysis of the cross-applicability of the models:

RQ1 How effective is it to use ML methods that were intended for functional require-
ments classification to classify non-functional requirements? And vice versa, how
effective is it to use ML methods that were intended for non-functional require-
ments classification to classify functional requirements?

RQ2 How effective is it to use ML methods that were intended for either functional or
non-functional requirements classification to classify both types of requirements?

RQ3 [Extra] What other ML methods can also be used for the requirements classifica-
tion problem?

1.4 | Document Structure
This final report is structured as follows. Chapter 2 presents the background knowl-
edge and the related work. Chapter 3 explains the methodology used to structure our
study. Chapter 5 discusses experiments conducted in this project while 6 reports results
obtained from experiments and discusses findings from results. Chapter 7 concludes.

2



2

Background

2.1 | Requirements
According to Sommerville [1], the specifications of what a system is expected to offer
and constraints/criteria on its functionalities are called requirements. Requirements are
of such importance that they have their own field (i.e. Requirements Engineering) be-
cause they give an orientation of what and how a system should become, show needed
goals for developing teams to achieve a complete system and help validate and verify
the deliverable.

Normally, requirements are categorized into two categories: functional and non-
functional requirements. Functional requirements are those that describe the function-
alities that a system should offer, its intended behaviors and reactions to different inputs
while non-functional ones are those that describe properties, constraints or quality cri-
teria of a system or its functionalities for example security, scalability, performance, re-
liability [2]. "The system shall allow a user to define the time segments" or "The system
shall locate the preferred repair facility with the highest ratings for the input criteria" are
examples for functional requirements [3]. Examples for non-functional requirements are
"Product shall be able to process 100 payment transactions per second in peak load." or
"When repairing a defect, related non-repaired defects shall be less than 0.5 on average."
[2]

2.2 | Machine Learning

3



Chapter 2. Background 2.2. Machine Learning

2.2.1 | What is Machine Learning?
Machine Learning is a field that tries to make machines be able to learn based on pro-
vided data without human instruction. There are four types of machine learning in-
cluding supervised learning, unsupervised learning, semi-supervised learning and re-
inforcement learning.

A method that predicts outcomes of new inputs based on provided labeled data
is called supervised learning. On the other hand, unsupervised learning is a method
where unlabeled data is given instead of labeled data. This method will depend on the
structure of data to perform some tasks (e.g. clustering, reducing dimension). Semi
supervised learning is a method that is used when given data comprises both labeled
and unlabeled data. Reinforcement learning helps a machine be able to automatically
make decisions based on the context to retrieve the maximum total cumulative reward.

2.2.2 | Loss Function
To be able to learn, a machine learning model first has to calculate a value (i.e. loss)
using loss function. Loss function is a function that calculates the difference between the
predicted values and the true values and shows how well the performance of a model
is. Currently, there are many optimization techniques and Gradient Descent (GD) is one
of the algorithms that is commonly used in both academic and industrial environments.

2.2.2.1 | Gradient Descent

Gradient descent is a common technique that is used for optimization problems to in-
crease the efficiency of a ML method by minimizing loss function.

A rate of change of a one-variable function is described using a derivative. How-
ever, for a multiple-variables function, gradient, which is a synthesis of all partial deriva-
tives of a function, is used to show the direction to the fastest increase of a function. So
to find the minimum value of a function, we have to go in the opposite direction (i.e. in
the descent direction) of a gradient which explains why this technique is called Gradient
Descent.

2.2.2.2 | Stochastic Gradient Descent

Stochastic gradient descent (SGD) is a technique that picks only one sample of data to
compute the gradient of the lost function and update θ values - parameters of a model.

4



Chapter 2. Background 2.2. Machine Learning

This calculation is performed on every sample of data. If a dataset has n samples, theta
values will be updated n times for one epoch. After each epoch, the dataset has to be
shuffled (i.e. data will be reordered) to ensure the randomness which is why it is called
stochastic gradient descent.

2.2.3 | Machine Learning Methods
2.2.3.1 | Support Vector Machine

Support Vector Machine (SVM) is a method that creates an optimal hyperplane to sepa-
rate data into different classes.

2.2.3.2 | Stochastic Gradient Descent SVM

A Stochastic Gradient Descent Support Vector Machine (SGD SVM) is a version of SVM
which uses Stochastic Gradient Descent to solve the SVM optimization problem by
stochastically and iteratively minimizing the hinge loss function based on the direction
of the gradient vector.

2.2.3.3 | K-Nearest Neighbors

K-Nearest Neighbors (KNN) is an algorithm that predicts a label of a new sample of data
based on K nearest data samples in its training set because, normally, similar samples
of data are near to each other. To be more specific, this method will first calculate the
distance between a new data sample and all data it has, then K nearest points will be
picked and decide the label of a new sample.

The advantage of this method lies in the simplicity of calculation in the training pro-
cess and of prediction of new data. However, this algorithm is sensitive to noise when
K is small and when the training set is huge, the prediction could take time because it
has to calculate the distance from a new point to every single point in the training set.

2.2.3.4 | Naive Bayes

Naive Bayesian is a method that calculates the probability of the input’s label based on
Bayes’ theorem with the assumption that each feature of the input is independent of
each other.

5
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2.2.3.5 | Multi-nominal Naive Bayes

Multi-nominal Naive Bayes is one of the variants of Naive Bayes. It considers features
that represent the frequency, the number of times appear (e.g. word counts).

2.2.3.6 | Bernoulli Naive Bayes

Another type of Naive Bayes, namely Bernoulli Naive Bayes is a machine learning al-
gorithm that considers binary features such as 0-1, yes-no, true-false, success-failure.

2.2.3.7 | Gaussian Naive Bayes

Gaussian Naive Bayes is a version of Naive Bayes often used for continuous data under
the assumption that the data within each label follow a Gaussian (normal) distribution.

2.2.3.8 | Decision Tree

Decision tree is a supervised learning method that creates a tree structure which can
predict the label or the value of the given input by learning decision rules inferred from
training data. The decision rules (i.e. attributes) and their order will be arranged based
on criteria such as entropy, information gain, or Gini, etc. For entropy or information
gain criteria, the attribute with the lowest entropy/highest information gain value will
be selected as the current non-leaf node of a tree whose attribute’s values are also treated
as child nodes of the tree. The process is continued on these child nodes until all child
nodes are leaf nodes.

Building a tree with a lot of nodes could lead to overfitting which makes the predic-
tion less precise in real life. To avoid this problem, a few solutions can be used including
providing stopping criteria when building a tree such as tree depth, the maximum num-
ber of leaf nodes or pruning - a technique that after finishing building a complete tree,
it trims leaf nodes which does not affect the overall accuracy of a tree.

2.2.3.9 | Neural Network

The Artificial Neural Network (ANN) [4] operates similarly to the way our brain’s bio-
logical neural networks work. There are numerous neurons existing in human’s brain
and they connect to each other to receive and transmit information.

ANN do the same things. The network consists of a lot of artificial neurons, also
known as perceptions. Each perceptron connects to others via weighted edges. Infor-

6
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mation between neurons will be transmitted through these edges. The weights of edges
affect the importance of the input to the current neuron. If the weight is high, the in-
put’s information is very important, otherwise the information is insignificant to the
current perceptron. Furthermore, these weights are not fixed numbers instead they are
learnable parameters. They can be adjusted when ANN is learning based on the given
training data so that the network can achieve the highest performance. To combine all
the inputs received from other perceptrons of the preceding layer, a summation function
is used which will collectively add each input proportional to its weight. Additionally,
bias is added to the summation function so that it can shift the activation function to the
left or right to better fit to the given data.

Activation Function

Activation function is a function that transforms a given value to a desired-range
output. This transformation is important because it controls if an output should be ac-
tivated i.e whether the output should be passed to the next neuron. Hence, choosing an
activation function is important which directly influences the outcome of the network.

Currently, there are many activation functions being used including linear and non-
linear ones. In the machine learning field, non-linear activation functions are more often
used because they add the non-linear property to a neural network which helps the
network be able to perform complicated tasks. Sigmoid function and rectified linear
unit (ReLU) function are two of the most commonly used non-linear activation function
where sigmoid squashes an input to a range from 0 to 1 and ReLU retains inputs whose
value is bigger than 0 and squashes inputs that are smaller than 0 to 0.

Neural Network Architecture A neural network architecture comprises three main
parts: an input layer, a set of multiple hidden layers and an output layer. Neurons are
arranged into these layers.

A neural network that has only one hidden layer is called a shallow neural network.
Meanwhile, a deep neural network is a network that has two or more hidden layers.

One of the common issues with training models that have many hidden layers is
over-fitting. This issue refers to models that excessively fit only to their training data
but do not fit well to unseen data. Hence, these models would yield extremely good
results in the training phase but perform poorly in the testing phase. To avoid this case,
dropout is used. This technique will randomly omit some neurons of a model while
training so that neurons are forced to not be too dependent on others.
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2.2.3.10 | CNN

Convolutional Neural Network (CNN) [5] is one of the deep learning neural networks
that is used for object detection and natural language processing. The CNN architecture
has three main types of layer: convolutional layer, pooling layer and fully-connected
layer.

Convolutional layers extract features from images, pooling layers picks up features
from inputs of the preceding convolutional layer while fully-connected layers are used
to classify data.

In CNN, convolutional layers are the most important layers. To extract features, a
convolutional layer uses a set of filters (i.e. kernels) sliding over a given input to create
a stack of feature maps with depths equal to the number of filters.

A pooling layer, also known as a sub-sampling layer, receives the output of the
previous convolutional layer, tries to retain important information from the given input
while reducing the spatial size of it in order to decrease the number of parameters used
in a network. The reduction in the number of parameters will help prevent the over-
fitting scenario. A pooling layer works similarly as a convolutional layer by applying a
matrix on an input, but the difference is that a matrix is only applied on a distinct region.
There are pooling operations such as max pooling and average pooling. Max pooling
operation is more widely used than other operations. This operation only takes the
maximum value of the region that a matrix is applied to, thus, helps retain key features.

2.3 | Requirements Classification
Requirement classification is one of the four phases of the requirements elicitation pro-
cess [1]. This phase is crucial because it groups relevant requirements into coherent clus-
ters, provides a guideline to other activities in the requirements elicitation phase and the
requirement validation phase. Such a guideline can be used to check the requirements
coverage and requirement relevance on different aspects of a system (i.e. check if nec-
essary requirements are missing or inconsistent to others). Functional requirements cat-
egorization and non-functional requirements categorization will be introduced Section
2.3.1 and Section 2.3.2 while Section 2.3.3 will discuss about the recent applications of
machine learning methods on the requirement classification problem according to our
literature review "The Landscape of Machine Learning in Requirements Engineering".
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2.3.1 | Functional Requirements Classification
Currently, there are different ways to categorize functional requirements. In the paper
[6], functional requirements were categorized into five categories including data input,
data output, data validation, business logic, data persistence, communication, event
trigger, user interface, user interface navigation, user interface logic, event rigger, exter-
nal call and external behavior.

Koelsch [7] listed possible types of functional requirements in his book Require-
ments Writing for System Engineering which are business rules, transaction corrections
adjustments and cancellations, administrative functions, authentication, authorization
levels, audit tracking, external interfaces, certification requirements, searching reporting
requirements, historical data, archiving, compliance legal or regulatory requirements,
structural, algorithms, database, power, network, infrastructure, backup and recovery.
Meanwhile, solutions, enablement, action constraints, attribute constraints, definitions,
or policy requirements were categories to classify functional requirements listed in the
paper of Jain, Verma, Kass, et al. [8] based on the sentence structure of functional re-
quirements.

2.3.2 | Non-functional Requirements Classification
Non-functional requirements are categorized based on quality attributes [2]. There are
various quality attributes, some of the main types of non-functional requirements based
on quality attributes are scalability, reliability, availability, maintainability, security, etc.
In this study, we choose 11 types of non-functional requirements based on the selected
types of non-functional requirements of the PROMISE dataset [3]. These types include
availability, fault tolerance, legal, look and feel, maintainability, operational, perfor-
mance, portability, scalability, security and usability.

2.3.3 | ML Requirements Classification
In real life, requirement classification is usually done manually. However, this step can
be tedious, time-consuming and inaccurate due to different reasons. Hence, recently,
researchers have tried to apply machine learning on this task to automate and increase
the efficiency of it. Four selected papers listed below are papers found from our litera-
ture review which identifies studies on the application of machine learning in the area
of Requirements Engineering in the last five years from 2015 to 2020 published in three
digital libraries: IEEE Xplore, ScienceDirect and Web of Science.
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Rahimi, Eassa, and Elrefaei [9] proposed an ensemble machine learning method for
functional requirements classification into six classes consisting of solution, enablement,
action constraints, attribute constraints, definitions and policy. This method combined 5
different models including Naive Bayes, SVM, Decision Tree, Logistic Regression, Sup-
port Vector Classification to form the proposed ensemble model. After conducting dif-
ferent experiments, it was found that CountVectorizer achieved a better performance
than TF-IDF in all aspects and for all classifiers in the classification task. The proposed
ensemble approach with the three best classifiers even though gained the same accu-
racy as the proposed one with all 5 models, achieved a slight improvement in time. It
was also concluded that the proposed approach obtained the highest results (99.45%)
compared with other ensemble methods for classifying functional requirements.

Kurtanović and Maalej [10] presented a study for automatically classifying non-
functional requirements into categories including usability, security, operational and
performance using SVM. Employing only word features, non-functional requirements
binary classifiers achieved the precision and recall ranging between 72% and 93% while
selecting 200 most informative features using automatic feature selection, the binary
classifiers obtained more than 70% precision and recall on four different categories.

Haque, Abdur Rahman, and Siddik [11] presented an empirical study that com-
bined 7 machine learning techniques including Multinomial Naive Bayes (MNB), Gaus-
sian Naive Bayes (GNB), Bernoulli Naive Bayes (BNB), K-Nearest Neighbors (KNN),
Support Vector Machine (SVM), Stochastic Gradient Descent SVM and Decision Tree
with 4 feature extraction approaches namely Bag of Words (BoW), Term Frequency
Inverse Document Frequency (TF-IDF) (character level), TF-IDF (word level), TF-IDF
(n-gram) techniques and examined which pair performed the best in classifying non-
functional requirements. It was found that Stochastic Gradient Descent SVM obtained
the highest precision, recall and F1 score regardless of feature extraction methods and
the pair Stochastic Gradient Descent SVM and TF-IDF was the best combination for
non-functional requirements classification among other pairs in the study.

Baker, Deng, Chakraborty, et al. [12] compared two different neural network mod-
els namely an artificial neural network and a convolutional neural network in a clas-
sifying non-functional requirements into five categories including maintainability, op-
erability, performance, security and usability task. The ANN model was trained on 4
classes including operability, performance, security, usability with the number of train-
ing samples cut to half. On the other hand, the authors trained the CNN with an entire
dataset with a full number of security requirements training samples. It was found that
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both CNN and ANN achieved high results on precision, recall and F-score, but the CNN
model performed better than the ANN in Performance and Security classes (10% and
9% respectively).
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3

Research Methodology

This chapter explains the structure of this project based on the framework CRISP-DM.
Some introduction about CRISP-DM is first given. The rest of this chapter will show
how the phases and steps of CRISP-DM are adapted.

Introduced in 1999 by Chapman, Clinton, Kerber, et al. [13], Cross Industry Stan-
dard Process for Data Mining (CRISP-DM) - a well-proven data-mining model is used
to structure this study. This framework comprises six different phases including busi-
ness understanding, data understanding, data preparation, modelling, evaluation, de-
ployment as shown in the Figure 3.1. Each phase will have corresponding tasks to help
explore more about the phase.

These phases represent the life cycle of a data mining project. The previous phase
will base on its results and decide which phase or a task of a phase will perform next.
Dependency relationships between these phases are shown in the inner arrows.

The cyclical nature of a data mining project is shown in the outer circle. The accom-
plishment of a data-mining project is not determined by finishing these phases from
business understanding to deployment at one time since a new process can be triggered
after new business questions are formed based on lessons and solutions learned from
previous phases’ results.

3.1 | Business Understanding
Objectives of the study, seen from a business perspective, are presented in this phase
through smaller steps including:
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Figure 3.1: Overview of the CRISP-DM framework

� Determine Business Objectives

As the name implies, this task’s main purpose is to decide the business objectives
for the study/project and establish criteria for what a successful outcome of a
study/project is.

� Assess Situation

This task requires to give more details about factors (e.g. resources, requirements,
constraints, assumptions, etc.) that could determine goals and plans of a study.

� Determine Data Mining Goals

Instead of identifying business objectives, this task points out objectives and crite-
ria that are seen from a technical perspective.

� Produce Project Plan

A detailed intended plan for how to attain the study’s goals will be proposed in
this step.
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3.2 | Data Understanding
This phase is to get familiar with data used in the study through carrying tasks:

� Collect Initial Data

This task is to gather data from source(s) for the project.

� Describe Data

Collected data from the previous task is examined and described in this task.

� Explore Data

The main purpose of this task is to deepen understanding on collected data through
data mining questions.

� Verify data quality

After exploring the data, the quality of data will be verified and reported in this
task.

3.3 | Data Preparation
As its name suggests, after the data is explored, necessary steps will be taken to process
initial raw data into those that could be used in the study. These steps are:

� Select Data

Data will be filtered based on criteria such as goals, quality, constraints for the next
phase.

� Clean Data

In this task, selected data will be processed to improve the quality of the data.

� Construct Data

Attributes that can be derived from the data will be extracted in this task.

� Integrate Data

This task’s main purpose is to combine data from different forms into an unified
form so that it can be handled conveniently.
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� Format Data

In this task, necessary modifications, mostly syntactic ones, are made to the data
so that it can be used by modelling tools.

3.4 | Modelling
In this phase, different models are explored, selected and tuned to achieve the optimal
results. Several tasks should be done in this phase including

� Select Modeling Techniques

In this task, modeling techniques will be specifically chosen to achieve goals de-
fined in the business understanding phase.

� Generate Test Design

The concern of this task is to design tests that can evaluate the performance and
the validity of models.

� Build Model

As its name suggests, this task is to create models on prepared data.

� Assess Model

Models created in the previous task are interpreted in this task depending on crite-
ria and test design, then, are evaluated to check their quality and their generality.

3.5 | Evaluation
This phase is to evaluate and compare the performance of the developed models to
see if goals that are introduced in the business understanding phase are achieved. The
evaluation will include

� Evaluate Results

Results produced by models will be evaluated in this task to see if they meet the
business objectives or discover the reasons leading to the deficiency of models.

� Review Process

At this point, the whole process will be reviewed to ensure that no activities are
overlooked and there are no quality assurance issues.
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� Determine Next Steps

In this task, based on the outcome of the two previous tasks, some decisions will be
made to the current project (e.g. pass on to the deployment phase, setup iterations,
establish new projects/studies).

3.6 | Deployment
Models after being developed and evaluated will be deployed to be used by customers
in this phase. This phase comprises multiple steps including:

� Plan Deployment

Deployment strategies will be planned in this task depending on the results in
previous phase - evaluation.

� Plan Monitoring and Maintenance

Detailed plan of actions on how to maintain and monitor if the project is deployed
is prepared and designed in this task.

� Produce Final Report

All information related to the project will be documented in a final report.

� Review Project

Aspects of the project and acquired experience when conducting the project will
be reviewed and discussed at this stage.

3.7 | The Structure Mapping
As mentioned above, the CRISP-DM framework is used to guide this study. This thesis
report is structured similarly to the structure of the framework. Business understand-
ing will be presented in the Chapter 1 while data understanding and data preparation
phases will be discussed in Chapter 4. Chapter 5 will explain the Modelling phase
through experiments conducted in the project while the results produced by models
modeled in Chapter 5 will be used in the Evaluation phase - described in Chapter 6.
The deployment phase is out of the scope and hence it will not be discussed in this
report.
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4

Dataset

This chapter describes the data used in our project as well as the process of transforming
raw data into data that were used as inputs of machine learning methods. The insight of
the used data is discussed in Section 4.1, while the transformation process is presented
in Section 4.2.

4.1 | Data Understanding
The final dataset contains 1838 requirements from 13 different datasets collected from
different sources [3], [14]–[18] and in different formats. 1034 out of 1838 requirements
are functional requirements while the remaining (803 requirements) are non-functional
requirements. Table 4.1 shows an overview of the number of requirements originated
from different datasets that are used in this project. PROMISE, SecReq, Dronology,
Leeds, ReqView, Wasp datasets are available in CSV format while the rest are in the
form of requirement specification documents intended for human reading. Collecting
data from different sources ensures that our dataset is context-free and diverse, which
will help increasing the performance of models when they encounter new data.

Table 4.1: Dataset Summary

Source Dataset Id Project Id Req. Set Name # Req. # FR # NR

[3] 1 1 to 15 PROMISE 625 253 372

[19] 2 1 to 3 SecReq 483 211 271

(continued on the next page)
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Table 4.1: (continued) Dataset Summary

Source Dataset Id Project Id Req. Set Name # Req. # FR # NR

[20] 3

1 Dronology 97 94 3

2 Leeds 85 47 38

3 ReqView 87 77 10

4 WASP 62 58 4

[18] 4 1 Inspire 28 16 12

[15] 5

1 CCTNS 63 3 66

2 Gamma 38 12 26

3 Inventory 12 6 6

4 Themas 24 24 0

5 Multi-mahjong 30 30 0

6 TCS 204 203 1

Total requirements 1838 1034 803

As shown in the Table 4.1, the PROMISE [3] dataset accounted for the most re-
quirements of the final dataset, consisting of 625 requirements (255 functional require-
ments and 255 non-functional requirements) collected from 15 different projects. The
CSV file of this dataset comprises three columns, namely ProjectID, RequirementText,
Class. ProjectID is an identification number for each project belonging to a dataset.
RequirementText contains the textual content of a requirement. Class presents the cat-
egory that a requirement belongs to. There are 12 classes in the PROMISE dataset (11
classes for non-functional requirements denoted similarly in the Table 4.2 and one class
for functional requirements denoted as F). Some data samples of the PROMISE dataset
are shown in the Listing 4.1.
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Figure 4.1: Proportion of different datasets

Listing 4.1: PROMISE CSV Data Samples

1 ProjectID,RequirementText,class
2 1,'The system shall filter data by: Venues and Key Events.',F
3 2,'The product shall be easy for a realtor to learn.',US
4 12,'The product shall continue to operate during upgrade change or new resource

addition.The product shall be able to continue to operate with no interruption
in service due to new resource additions.',MN

↪→

↪→

The SecReq [19] dataset has 483 requirements with 185 requirements labeled as se-
curity requirements and the rest labeled as non-security requirements, making SecReq
the second-highest requirement contributor to our final dataset. The collected CSV file
has three columns namely ProjectID, RequirementText, IsSecurity. The IsSecurity col-
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umn value can either be 1 or 0, denoting if a requirement is a security requirement or
not respectively. Some data samples of the SecReq dataset are shown in the Listing 4.2.

Listing 4.2: SeqReq CSV Data Sample

1 ProjectID,RequirementText,IsSecurity
2 1,"The CNG shall implement an authorization management handling policy.",1
3 1,"The CNG shall support mechanisms to authenticate itself to the NGN for

connectivity purposes.",1↪→

4 2,"Payment for a transaction is only required when a detail transaction is submitted
for payment. A merchant acquirer may choose to pay the merchant using the batch
total",0

↪→

↪→

5 3,"The run time environment shall responsible to establish communication services
between card and off-card entities",0↪→

6 3,"Security domain shall ensure complete seperation of keys among the card issuers
and other application providers",1↪→

For convenience, the datasets Dronology, Leeds, ReqView, WASP [14], [16], [17],
[21] are taken from the work of Dalpiaz, Dell’Anna, Aydemir, et al. [20], instead of the
original sources. They processed and formatted each dataset into a unified format (CSV)
which is arguably more convenient than manually extracting requirements from textual
specification documents. These datasets contain four columns of data namely ProjectID,
RequirementText, IsFunctional, and IsQuality. The paper [20] adopted the requirement
categorization of Li, Horkoff, Mylopoulos, et al. [22] which allows a requirement to be
functional or quality (non-functional) or both at the same time. The IsFunctional and
IsQuality columns are intended for the labelling requirements based on the adopted
categorization. Some data samples of these datasets are shown in the Listing 4.3.

Listing 4.3: Dalpiaz, Dell’Anna, Aydemir, et al. [20] CSV Data Samples
This dataset contains multiple files from different projects. Each of these fragments
shows some samples of the data contained in each file in this dataset. From top to
bottom, the names of these project are: Dronology, Leeds, ReqView, and WASP.

1 ProjectID,RequirementText,IsFunctional,IsQuality
2 1,The system must offer customisable metadata schema.,0,1
3 1,The system must offer customisable workflow to import or create metadata and

upload associated files and support multiple ingest protocols e.g. SWORD2,1,1↪→
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1 1,"The MapComponent shall support different types of map layers (e.g. terrain
satellite)",1,1↪→

2 1,"The MissionPlanner shall execute flight plans for multiple UAVs concurrently.",1,1
3 1,"The GCS shall transmit the UAV's properties to the GCSMiddleware",1,0

1 1,User shall be able to import a table from MS Excel,1,1
2 1,User shall be able to use the application without installation of any additional

SW except the web browser,0,1↪→

1 1,The WASP platform must provide services that may be used by a WASP application to
charge the user for using one of his services.,1,0↪→

2 1,The WASP platform must allow end-users to provide profile and context information
explicitly to applications or the platform.,1,0↪→

The Inspire, CCTNS, Gamma, Inventory, Themas, Multi-mahjong, and TCS [15],
[18] datasets are presented as human readable specification documents in the form of
PDF files. Since these files are intended for human viewing, some extra steps are re-
quired to transform them into a computer-friendly format. This is done by extracting
the requirement text and their corresponding classes to a CSV file.

The reason for using the CSV format is that it is widely used in both industry and
scientific research. There are a lot of extensions and libraries supporting extracting and
inserting data from/to CSV files. Furthermore, some of the datasets are already pro-
cessed and stored in CSV files as mentioned above hence it will be more convenient to
use CSV as the file format to store data.

For any case (i.e. datasets that are already in CSV format or datasets that have to be
transformed to a more computer-friendly format), all of the datasets listed above need
to be partially or fully relabeled so that they can be used for this study. Hence, after
collecting all necessary data, we proceeded with the labelling task.

There are different requirement categorizations that are discussed in the Section
2.3. In this study, we adopted the functional requirements categorization introduced
by Jain, Verma, Kass, et al. [8]. Figure 4.2 presents an overview of this categorization.
Actions that a system should perform will be described through solution requirements.
Enablement requirements are those that report abilities of a system offering to its users.
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Action constraint requirements describe constraints on a system’s actions/behaviours
while attribute constraint requirements show constraints on attributes or attribute val-
ues. A system has two kind of entities: agent and non-agent. Agents are entities that can
perform actions while non-agents cannot. Non-agents are defined in definition require-
ments. Lastly, policy requirements are those that name policies a system or a solution of
that system must adhere to.

Figure 4.2: An overview of the categories of functional requirements

For non-functional requirements classification, we adopt the types of non-functional
requirements of the PROMISE dataset [3] as discussed in the Section 2.3.2

In the total of 1838 requirements, we manually labeled 1181 requirements into 17
classes (11 sub-classes of non-functional requirement and six sub-classes of functional
requirement). These classes are denoted by a distinct capital letter or a pair of capital
letters as shown in Table 4.2. Thus, in the final file, a column to determine whether a
requirement is functional or non-functional is unnecessary and will be intentionally left
out since this information can be derived from the Class column.

As shown in the Table 4.2, our dataset is imbalanced. Even though the difference
in the number of functional and non-functional requirements is insignificant, the distri-
bution between their sub-classes is heavily unequal as the number of Definition (DE),
Policy (PL), Fault Tolerance (FT), and Portability (PO) requirements is much less than
other classes. This distribution also reflects the chance of encountering these require-
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ments in practice. Security, operation, and usability are usually considered important
quality attributes of a system, hence security requirements, operational requirements,
and usability requirements appear more often in software requirements specifications.
Similarly, for functional requirements, solution requirements and enablement require-
ments are more commonly encountered than others because they help specify the func-
tionalities of a system as well as what a system can offer to its user. This imbalance can
negatively affect the performance of ML methods because it is hard for a ML method to
learn to differentiate the characteristics of the classes whose information are limited by
the low number of requirements.

Table 4.2: Requirement Types and Classes Distribution Overview

Type ID Class Count

Non-functional

1 [A] Availability 29

2 [FT] Fault Tolerance 12

3 [L] Legal 20

4 [LF] Look & Feel 44

5 [MN] Maintenance 26

6 [O] Operational 170

7 [PE] Performance 74

8 [PO] Portability 12

9 [SC] Scalability 24

10 [SE] Security 262

11 [US] Usability 131

Functional

12 [AC] Action Constraint 178

13 [AT] Attribute Constraint 64

14 [EN] Enablement 348

15 [DE] Definition 9

(continued on the next page)
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Table 4.2: (continued) Requirement Types and Classes Distribution Overview

Type ID Class Count

16 [PL] Policy 15

17 [SO] Solution 420

4.2 | Data Preparation

4.2.1 | Data Integration
In this integration step, all of the collected data are transformed into a unified format
and then are combined in the final file. The final file has a similar structure to the CSV
file of the PROMISE dataset with four columns including ProjectID, RequirementText,
Class, and an extra column called DatasetID. DatasetID is a unique ID number that iden-
tifies each dataset which are numbered from 1 to 5 as shown in the Table 4.1. A dataset
obtained from one source will be denoted with the same DatasetID. CCTNS, Gamma,
Inventory, Themas, Multi-mahjong, and TCS are denoted with the same DatasetID be-
cause they are requirement specifications collected from the work of researchers from
Formal Methods and Tools Group (FMT) of Institute of Information Science and Tech-
nologies "Alessandro Faedo” under the name Natural Language Requirements Dataset,
they are denoted with the same DatasetID. Dronology, Leeds, ReqView, and Wasp are
also considered to be one dataset since we use datasets’ CSV files taken from the work
of Dalpiaz, Dell’Anna, Aydemir, et al. [20]. ProjectID, RequirementText, and Class have
the same meaning as explained in the Section 4.1.

Since data were collected from different sources, reformatting data was necessary
and hence was proceeded so that when being combined, they all had the same style and
can be easily processed in the next step. Steps taken to reformat data include escaping
special characters with backslashes, using single quotation mark to delimit a string,
removing unrelated or unnecessary columns to the study from datasets’ CSV files (e.g.
isSecurity, isFunctional, isQuality), adding extra desired columns according to the final
data file structure (e.g. DatasetID, Class).
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Listing 4.4: Final CSV Data Samples

1 DatasetID,ProjectID,RequirementText,Class
2 1,1,'The product shall be available during normal business hours. As long as the

user has access to the client PC the system will be available 99\% of the time
during the first six months of operation.',A

↪→

↪→

3 1,2,'The look and feel of the system shall conform to the user interface standards
of the smart device.',LF↪→

4 2,3,'The OPEN shall responsible to load application code; card content and memory
management',SO↪→

5 5,6,'The TCS shall be capable of operating continuously in functional Operation Mode
for a minimum of 72 hours.',PE↪→

4.2.2 | Data Pre-processing
Some feature extraction techniques require the data to be processed. In total, there are
four pre-processing steps performed on raw data (i.e. requirement text). These steps
include lower casing, punctuation removal, stop-words removal, lemmatization, utiliz-
ing the Natural Language Toolkit (NLTK) Python library [23] With this process, first, all
the words of a requirement are converted into lowercase. Then, punctuation and stop-
words (i.e. common words in a language, in this case, English) are removed since they
have low semantic values. Words of these text are transformed into their based form to
normalize the data. This transformation process is called lemmatization.

Besides pre-processing requirement texts, categorical data (i.e. Class of require-
ments) is encoded to number in order to be used by machine learning models. The
numerical value corresponding to each class is shown in the Table 4.2.

4.2.3 | Feature Extraction
Feature extraction is the process of transforming raw data into features. Features are
information of interest that can be used for further analysis. In this section, we discuss
some of the feature extraction techniques that are used in the experiments carried out
in our project which are presented in the recent related works [9]–[12]. In these works,
one or multiple feature extraction techniques are used in combination with a machine
learning technique, which will be discussed more in detail in Chapter 5.
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4.2.3.1 | BoW

Bag-of-Words is a common feature extraction technique that counts the number of times
a word appears in a text (in this case, requirement text). For this technique, ngram_range
is an important parameter that decides the type of n-grams to be extracted.

Besides words, word n-grams - a sequence of n adjacent words is often used to
identify multi-word expressions (e.g. nice—weather, I—like—rain, rain—cat—dog). 1-
gram (unigram) is a sequence of 1 word (i.e. word), 2-gram (bi-gram) is a sequence of 2
adjacent words, etc. For BoW, ngram_range is set to (1,1) which means only words are
extracted. To change from BoW to Bag-of-ngrams, ngram_range value is adjusted. For
Bag of Trigrams, ngram_range is set to (3, 3). For Bag of Unigram, Bigram and Trigram,
ngram_range equals (1, 3). As n-grams increases, the information that a model receives
increases and the vocabulary increases, too.

The BoW implementation is obtained by the CountVectorizer provided by Scikit-
learn [24]. To extract features, the training data is first fitted and transformed by the
constructed CountVectorizer. This fitting helps the defined instance learn the vocabu-
lary dictionary from the training data. Then, this CountVectorizer is used to transform
the testing data into a document-term matrix so that they can be understood by ma-
chine learning methods. The testing data is not fitted to the CountVectorizer because
it can leak the information of the testing data to the machine learning methods which
affects the validity of the model testing step.

4.2.3.2 | TF-IDF

Term Frequency-Inverse Document Frequency (TF-IDF) [25] is an alternative technique
to BoW. This technique calculates two things: the frequency of a term in a document
and the importance of that term in the document, then multiplies them for every single
term in a document. Words that have higher scores are less common, and more relevant
to the document, thus will be kept in output vectors. Commonly used words such as
a, an, the usually have lower scores (i.e. less important) hence can be removed out of
output vectors.

The Tf-Idf implementation is obtained by the TfidfVectorizer provided by Scikit-
learn. For TfidfVectorizer, ngram_range and analyzer are two important parameters
that affect the output feature. analyzer determines the output feature are made of words
or characters while ngram_range controls the values of n-grams (e.g. (1,1) - only uni-
grams, (1,3) - unigrams, bigrams and trigrams).
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The normal process to extract features using TfidfVectorizer is to fit and transform a
training set into something that ML methods are capable of processing using the learned
TfidfVectorizer to transform a testing set. As mentioned above, the reason for only
fitting to training data, not to both training and testing set is to avoid data leakage
which could lead to a wrong performance assessment of a model.

4.2.3.3 | Part-of-Speech N-Grams

Part of Speech (POS) is a grammatical category for words (e.g. noun, verb, adjective, ad-
verb, modal verb). POS N-Grams is a feature extraction technique that gets a sequence
of n adjacent tags. For example: POS 1-gram (unigram) is a sequence of 1 POS tag (e.g.
MD (i.e. modal), NN (i.e. noun), RB (i.e. adverb)), POS 2-gram (bi-gram) is a sequence
of 2 adjacent POS tags (e.g. VB-VBN (i.e. verb base form-verb past particle) (e.g. from
a bi-gram “be reviewed”)), POS 3-gram (tri-gram) is a sequence of three POS tags (e.g.
VB-VBN-IN (i.e. verb base form-verb past participle-preposition) (e.g. from a tri-gram
“be reviewed of”)). According to the Penn Treebank corpus [26], there are 36 POS tags
excluding punctuation.

Similar to BoW and Tf-Idf, ngram_range is an important and adjustable parame-
ter. This feature extraction technique is performed before the stopwords removal and
lemmatization steps because removing stop words alters the structure of sentences which
also affects the information retrieved from the extracted feature.

Because this technique has not been provided by Python libraries as well as the
implementation of this technique is not publicly available, we re-implemented it based
on the explanation of the authors Kurtanović and Maalej [10]. Our re-implementation
of this technique is shown in the Appendix A.

4.2.3.4 | Textual Features

Besides the above features, the paper [10] uses additional textual features to train their
models. These textual features include the fraction of nouns, verbs, adjectives, adverbs
and modal verbs, text length, the height of the syntax tree and the number of subtrees
of the syntax tree. Those features are also performed before the stopwords removal and
lemmatization steps because these steps change the number of part-of-speech which
could affect the values of these features. The height of the syntax tree and the number
of subtrees of the syntax tree are derived using NLTK [23].

Besides the listed features above, CP unigrams - one of the features used in the
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paper [10] is not used in our study. The description of the paper’s authors about this
feature - “unigrams of part of speech (POS) tags on the clause and phrase level (CP)” is
brief and incomplete so that we cannot fully recreate these features.
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5

Experiments

This chapter describes the experiments that have been conducted during the project to
answer the research questions defined in Section 1.3.

5.1 | Experiment Setup
Setups which were used throughout experiments conducted in this project are discussed
in this section. Hardware and software specifications will be covered in the Section 5.1.1
and Section 5.1.2. Dataset used in the experiments will be reported in the Section 5.1.3.
The Section 5.1.4 and Section 5.1.5 describe feature extraction techniques and machine
learning techniques setups while the combination of feature extraction techniques and
ML techniques are listed in the Section 5.1.6 to create ML methods following the pro-
cesses of selected papers.

5.1.1 | Hardware Specification
The experimentation is carried out on a system with the configurations as below:

� CPU: Intel(R) Core(TM) i7-7820HQ CPU @ 2.90GHz
� GPU: Intel(R) HD Graphic 630
� RAM: 32GB
� OS: Windows 10 Pro x64
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5.1.2 | Software Specification
All experiments in this chapter are implemented using Python 3.6.13. Python libraries
namely Scikit-learn, Pytorch are used to build machine learning models. Scikit-learn
provides various tools for machine learning modeling ranging from data pre-processing,
data extraction and selection to machine learning model building and model evaluation.
Pytorch is a framework developed by Facebook which helps create deep learning net-
works. NLTK and Pandas are two Python packages that are used to process data where
Pandas supports structuring data and NLTK helps with pre-processing data in the do-
main of natural language processing. All of the experiments are programmed and built
using PyCharm IDE.

5.1.3 | Data Setup
The dataset used in the experiment is the same as mentioned in the Chapter 4. Each
method is trained with three different types of requirements taken from the dataset in-
cluding functional requirements, non-functional requirements, mixed-type of require-
ments (functional and non-functional requirements).

Some of the selected papers only show the results of ML methods in classifying
requirements of top X classes in term of requirement counts, while others trained their
ML algorithms to classify requirements of all classes. Hence, in our experiments, our
ML methods are trained on two different sets of inputs containing requirements of either
significant classes or all classes to see the differences in the results of two different sets.

The definition of a significant class varies from paper to paper. Thus, in this project,
a class is considered to be significant if it contains a number of requirements greater or
equal the average number of requirements per class, which is calculated as:

Average number of req. per class =
Total number of req.
Number of classes

(5.1)

Applying this formula to the requirement counts of the classes shown in Table 4.2,
the average number of requirements for each functional requirement class is 172 require-
ments and the average number of requirements for each non-functional requirement
class is 73 requirements. Hence, based on our dataset, functional requirement classes
that are considered significant are Action Constrain, Enablement and Solution. Mean-
while, Non-functional requirement classes that are considered significant are Look &
Feel, Operational, Performance, Security and Usability.
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5.1.4 | Feature Extraction Technique Setups
This section lists and describes all of the feature extraction techniques setups that are
used in our project. One feature extraction technique setup could be used with multiple
machine learning methods, hence, each setup is set with an id for better organization.

5.1.4.1 | FE1: Term frequency – Inverse document frequency (Tf-Idf) Word Level

For the feature extraction technique, since the authors [9], [11] did not bring up the
configuration of Tf-Idf, the values of the parameters of Tf-Idf are set as default (Tf-Idf
Word Level with ngram_range (1, 1)).

The defined TfidfVectorizer then fits to the training data (i.e. learns vocabulary
of the training data and calculates the idf) and transforms them into a document-term
matrix. For the testing set, TfIdfVectorizer transforms it based on its knowledge of the
training data.

5.1.4.2 | FE2: Term frequency – Inverse document frequency (Tf-Idf) N-Grams

Tf-Idf N-Grams is one of the feature used in the paper [11]. Because the author did not
mention the used values of parameters of Tf-Idf, parameters are left as default. How-
ever, for Tf-Idf N-Grams, letting the Tf-Idf technique with ngram_range value as default
(i.e. 1, 1) will generate the same result as the Tf-Idf word level - which is mentioned in
Section 5.1.4.1, hence this parameter is assigned a new value (1, 4). The defined Tfid-
fVectorizer is fit with the training data and transforms it to a document-term matrix.
Then, the testing set is transformed by the learned TfidfVectorizer.

5.1.4.3 | FE3: Bag of Words (BoW)

The BoW technique is set up with parameters are set default since [9], [11] did not report
the used parameters’ values. The defined CountVectorizer fits to the training set (i.e.
learn a vocabulary dictionary of the training set) and transforms the training set into
a document-term matrix. The CountVectorizer also transforms the testing set into a
document-term matrix based on the learned vocabulary dictionary of the training data.

5.1.4.4 | FE4: Bag of Words (BoW)

According to the paper [12], some parameters of CountVectorizer are set including:

� ‘analyzer’ : ‘word’
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� ngram_range : (1, 1)

The defined CountVectorizer fits to the training set (i.e. learn a vocabulary dictio-
nary of the training set) and transforms the training set into a document-term matrix.
The CountVectorizer then transforms the testing set into a document-term matrix based
on the learned vocabulary dictionary of the training data.

5.1.4.5 | FE5: Multiple Techniques

As discussed in the Section 4.2.3.4 and Section 4.2.3.3, some of features used to train the
SVM in the original paper [10] retrieved before the stopwords removal and lemmatiza-
tion steps including POS ngrams, %noun, %verb, %adjective, %adverb, %modal verb,
text length, the syntax tree height and the subtrees count. Only N-Grams feature is
drawn out after the pre-processing is finished.

Based on the original paper, for N-Grams and POS ngrams, their ngram_range was
set at (1, 3). As mentioned in the Section 4.2.3.1, these two techniques are also followed
by the same process which first defines an instance, uses this instance to fit and trans-
form the training data, and last applies its knowledge of the training data to transform
the testing data.

5.1.5 | ML Technique Setups
The implementation of machine learning techniques that are used in the experiments as
well as their parameters will be described in this section.

5.1.5.1 | ML1: Ensemble Method

Based on the explanation of Rahimi, Eassa, and Elrefaei [9] in their paper, the proposed
ensemble method combines three different base models, in particular, SVM, Linear SVC
and Logistic Regression. The authors did not explicitly mention the parameters used for
these techniques but did mention the default value of these parameters set by the used
library [24].

As described in the Section 2.2, a weighted ensemble method evaluates the perfor-
mance of each model and calculates a weight to each model. The final prediction of this
ensemble method is based on the contribution of each base model which is decided by
the weight. In this paper, Rahimi, Eassa, and Elrefaei [9] proposed a new method to cal-
culate the weights for base models. Since the implementation of this proposed method
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is not publicly available, we re-implement the method based on the explanation of the
algorithm in the original paper [9]. The Python code of our re-implementation as well
as the setting for the ensemble classifier can be found in the Appendix A.

5.1.5.2 | ML2: Multinomial Naive Bayesian

Because Haque, Abdur Rahman, and Siddik [11] did not describe parameters’ values
that are set for this algorithm, we assume that parameters used in their algorithm are
left default. Hence, the initial setup of this method uses the default values which are set
by Scikit-learn [24]that we use to build this algorithm.

5.1.5.3 | ML3: Gaussian Naive Bayesian

Because Haque, Abdur Rahman, and Siddik [11] did not describe parameters’ values
that are set for this algorithm, we assume that parameters used in their algorithm are
left default. Hence the initial setup of this method uses the default values which are set
by Scikit-learn [24]that we use to build this algorithm.

5.1.5.4 | ML4:Bernoulli Naive Bayesian

Because Haque, Abdur Rahman, and Siddik [11] did not describe parameters’ values
that are set for this algorithm, we assume that parameters used in their algorithm are
left default. Hence the initial setup of this method uses the default values which are set
by Scikit-learn [24]that we use to build this algorithm.

5.1.5.5 | ML5: K-Nearest Neighbors

Because Haque, Abdur Rahman, and Siddik [11] did not describe parameters’ values
that are set for this algorithm, we assume that parameters used in their algorithm are
left default. Hence the initial setup of this method uses the default values which are set
by Scikit-learn [24]that we use to build this algorithm.

5.1.5.6 | ML6: SVM

Because both papers [10], [11] did not describe parameters’ values that are set for this
algorithm, we assume that parameters used in their algorithm are left default. Hence the
initial setup of this method uses the default values which are set by Scikit-learn [24]that
we use to build this algorithm.
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5.1.5.7 | ML7: Stochastic Gradient Descent SVM

Because Haque, Abdur Rahman, and Siddik [11] did not describe parameters’ values
that are set for this algorithm, we assume that parameters used in their algorithm are
left default. Hence the initial setup of this method uses the default values which are set
by Scikit-learn [24]that we use to build this algorithm.

5.1.5.8 | ML8: Decision Tree

Because Haque, Abdur Rahman, and Siddik [11] did not describe parameters’ values
that are set for this algorithm, we assume that parameters used in their algorithm are
left default. Hence the initial setup of this method uses the default values which are set
by Scikit-learn [24]that we use to build this algorithm.

5.1.5.9 | ML9: One vs Rest Classifier

Based on the paper [10], this strategy is set with the estimator Support Vector Machine.
Other parameters of the estimator (i.e. SVM) are set default as in the setup of the used
Python library since Kurtanović and Maalej [10] did not explicitly mention the values
of these parameters.

5.1.5.10 | ML10: ANN

The architecture of this network [12] has one input layer, one hidden layer and one out-
put layer. The number of neurons in the hidden layer is a tuning parameter. Meanwhile,
the number of neurons of the input layers will depend on the size of the unique words
in the training data and the number of neurons of the output layers will depend on the
number of classes to classify. The Table 5.1 shows parameters and their values that are
set in the original paper [12].

Table 5.1: Parameters set and explicitly mentioned by Baker, Deng, Chakraborty, et
al. [12] for their ANN

Aspect Parameter Value

Architecture
Number of Hidden Layers 1

Hidden Neurons 5

(continued on the next page)
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Table 5.1: (continued) Parameters of ANN for the initial setup

Aspect Parameter Value

Training
Number of Epochs 50000

Alpha 0.25

The code of the architecture of the ANN can be found in the Section A.3.

5.1.5.11 | ML11: CNN

The architecture of this network [12] has a word embedding layer followed by convolu-
tional layers, max-pooling layers, a dropout layer and lastly a fully connected layer. The
Table 5.2 shows parameters that are brought up and valued in the original paper [12].

Table 5.2: Parameters set and explicitly mentioned by Baker, Deng, Chakraborty, et
al. [12] for their CNN

Aspect Parameter Value

Architecture
Number of Filters 32

Embedding Dimension 150

Training

Optimizer Adam GD

Number of Epochs 250

Batch Size 20

Besides the parameters that are mentioned in the paper, there are parameters that
influence the performance of the network but are not brought up in the paper including
filter sizes, learning rates, loss function. Due to this, these parameters will be set by us.

The chosen loss function for the network is Cross Entropy which is normally used
in the multi-class classification. For filter sizes and learning rate, a lot of tests were
performed to find the best values. Filter sizes were set to [1, 3, 4, 5] and learning rate
was set to 0.01.
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The code of the architecture of the CNN can be found in the Section A.4.

5.1.5.12 | ML12: XGBoost

The parameters of this algorithm are set default as in the setup of the used Python
library.

5.1.5.13 | ML13: Random Forest

The parameters of this algorithm are set default as in the setup of the used Python
library.

5.1.6 | Method Setups Overview
As mentioned above, this section presents combinations of a feature extraction tech-
nique and a machine learning technique used in our experiments which are shown in
the Table 5.3. These combinations are similar to those in selected papers introduced in
the Section 2.3.3 in order to create base ML methods for our research.

Table 5.3: An overview of experimented ML methods and their input features, where
FE techniques stands for Feature Extraction techniques
ML Methods stands for Machine Learning techniques

Method ID FE Technique ML Technique Source

M1 FE1 ML1 [9]

M2 FE3 ML1 [9]

M3 FE2 ML2 [11]

M4 FE3 ML2 [11]

M5 FE2 ML3 [11]

M6 FE3 ML3 [11]

M7 FE1 ML4 [11]

M8 FE3 ML4 [11]

(continued on the next page)
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Table 5.3: (continued) An overview of experimented ML methods and their input fea-
tures

Method ID FE Technique ML Technique Source

M9 FE2 ML5 [11]

M10 FE3 ML5 [11]

M11 FE2 ML6 [11]

M12 FE3 ML6 [11]

M13 FE2 ML7 [11]

M14 FE3 ML7 [11]

M15 FE2 ML8 [11]

M16 FE3 ML8 [11]

M17 FE5 ML6 [10]

M18 FE5 ML9 [11]

M19 FE4 ML10 [12]

M20 — ML11 [12]

M21 FE5 ML12 [27]

M22 FE5 ML13 [28]

5.2 | Experiment 1: Method Replication
This section describes the process of replicating ML methods based on the descriptions
of adopted papers [9]–[12] discussed in the section Section 2.3. The Table 5.3 lists the
feature extraction techniques followed by the ML methods that are used to replicate the
models in the original papers.
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5.2.1 | Experiment Goals
Since the ML methods’ implementation of the papers [9]–[12] are not publicly avail-
able as well as our dataset is different from the datasets used in these methods, model
replication is necessary which gives us a common ground (i.e. base models) to carry
out the experiments and compare results. In this experiment, we attempt to recreate
these methods based on the descriptions in the papers. The setup for each method is
described in the subsequent sections below.

5.2.2 | Experiment Process
5.2.2.1 | Method M1

The whole process to replicate the model starts with splitting up the data using Strat-
ifiedKFold of Scikit-learn. This technique helps splitting data into training and testing
sets and preserves the percentage of requirements for each class in each set. The dataset
is split into a training set and a testing set. The training set takes 70% of the data while
the testing data occupies 30%, as specified in the original paper, the chosen ratio that
the authors use to split data into training and test set is 7:3.

Then, features are extracted from the training set using TfidfVectorizer of Scikit-
learn as explained in Section 5.1.4.1, followed by inputting these extracted features into
the ML technique (ML1). This trained model will be tested using the prepared testing
data to evaluate its performance.

5.2.2.2 | Method M2

The dataset is first split with the ratio that the authors use to split data is 7:3 using
StratifiedKFold of Scikit-learn. Then, converting raw text data to meaningful features is
proceeded using BoW technique as explained in Section 5.1.4.3, followed by inputting
these extracted features into the ML2 technique. Then this trained model will be tested
using the prepared testing data to evaluate its performance.

5.2.2.3 | Method M3, M5, M9, M11, M13, M15

The whole process to replicate the model starts with splitting data using StratifiedKFold
of Scikit-learn. This technique helps splitting data into training and testing sets and
preserves the percentage of requirements for each class in each set. Since the training
and testing split ratio is also not mentioned in the original paper [11], the chosen ratio
to split data into training and test set is 8:2.
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Then, Tf-Idf N-Grams features are extracted using TfidfVectorizer of Scikit-learn
as explained in Section 5.1.4.2. Features are input to different ML algorithms. These
trained models will be tested separately using the prepared test data.

5.2.2.4 | Method M7

The whole process to replicate the model starts with splitting data using StratifiedKFold
of Scikit-learn. This technique helps splitting data into training and testing sets and
preserves the percentage of requirements for each class in each set. Since the training
and testing split ratio is also not mentioned in the original paper [11], the chosen ratio
to split data into training and test set is 8:2.

Then, Tf-Idf Word Level features are extracted using TfidfVectorizer of Scikit-learn
as explained in Section 5.1.4.1. Features are input to the ML4. The trained model will be
tested using the prepared test data.

5.2.2.5 | Method M4, M6, M8, M10, M12, M14, M16

Since the training and testing split ratio is also not mentioned in the original paper [11],
the chosen ratio to split data into training and test set is 8:2 using StratifiedKFold of
Scikit-learn. This technique helps splitting data into training and testing sets and pre-
serves the percentage of requirements for each class in each set. Then, CountVectorizer
is constructed as explained in Section 5.1.4.3 and fits to the training data. The training
data and testing data are then transformed based on the learned vocabulary dictionary
to retrieve BoW feature. These features are inserted into ML algorithms to train them.
Lastly, the test set is input to the trained models to evaluate their performance.

5.2.2.6 | Method M17, M18

Lowercasing is carried out first. As mentioned above, features such as POS N-Grams,
%noun, %verb etc will be drawn out. Then, the preprocessing phase continues with
stopwords removal and lemmatization. At this point, the dataset is split into training
and testing sets and the CountVectorizer is defined as discussed in Section 5.1.4.5. The
constructed CountVectorizer fits to the training set and transforms it into a document-
term matrix. This vectorizer then applies the vocabulary dictionary obtained from the
training set to transform the testing set into a document-term matrix. The matrix of the
training set will be inputted into the machine learning method, in this case, SVM. The
trained model then performs the testing to evaluate the performance of it.
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5.2.2.7 | Method M19

A training dataset and a testing dataset are split from the initial dataset using Strat-
ifiedKFold of Scikit-learn. This technique helps splitting data into training and test-
ing sets and preserves the percentage of requirements for each class in each set. Then,
CountVectorizer as described in Section 5.1.4.4 fits and transforms the training set before
transforming the testing set based on the vocabulary dictionary of the training set. At
this point, transformed training data is fed to the neural network to train. The trained
network then performs the testing to evaluate its performance.

5.2.2.8 | Method M20

Firstly, the dataset is split into a training dataset and a testing dataset using StratifiedK-
Fold of Scikit-learn. This technique helps splitting data into training and testing sets and
preserves the percentage of requirements for each class in each set. A vocab dictionary
which maps words into indices is built on the training set using build_vocab_from_iterator
function provided by torchtext - a Python library which is a part of Pytorch framework.
Based on this dictionary, we transform all the training and testing data into indices. All
transformed data are then padded so they all have the same length.

Training data at this point is input into the network. After learning, the network
carries out some tests to evaluate its performance.

5.3 | Experiment 2: Cross Requirement Types Input
After the base models have been established, in this experiment, requirements of the
opposite type are fed to the same ML methods to evaluate their cross-applicability. The
Table 5.3 lists the feature extraction techniques followed by the ML methods that are
used to conduct the experiment 2.

5.3.1 | Experiment Goal
As stated in the Section 1.2, this experiment’s purpose is to investigate the cross-applicability
of ML methods which are intended for either functional or nonfunctional requirements,
when being used to classify the other.
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5.3.2 | Experiment Process
All of the setup for the method ID from 1 to 17 in this experiment is kept the same
as in the Experiment 1 (Section 5.2), with only the input data is swapped. The meth-
ods that are used to classify functional requirements will be fed with non-functional
requirements and vice versa. For the method M18 and M19 (i.e. ANN and CNN), their
architectures have a slight change in the number of neurons in the output layer due to
the change of the number of classes (from 11 classes of non-functional requirements to
6 classes of functional requirements).

5.4 | Experiment 3: Mixed Requirement Types Input
Instead of training ML methods with input data that only belong to functional or non-
functional requirements, in this experiment, we will put in both types of requirements
and see the difference between the performance of these methods and other methods of
the above experiments. The Table 5.3 lists the feature extraction techniques followed by
the ML methods that are used to conduct the experiment 3.

5.4.1 | Experiment Goal
The goal of this experiment is to see if ML methods’ learning capabilities still can be
expanded to classify both types of requirements (functional and non-functional require-
ments) or they already reach their learning limit. This experiment is necessary and bene-
ficial because if succeeded, these methods can reduce an extra step in the categorization
process.

5.4.2 | Experiment Process
Since we want to test out the limit of leaning capabilities of these methods, all of the
classes should be included, therefore in this experiment, significant classes will not be
used to train these methods.

Except for the input data, all other setup for the method ID from 1 to 17 in this
experiment is similar as in the Experiment 1 (Section 5.2).

As mentioned above, the data input in these models are both functional and non-
functional requirements. For the method 18 and 19 (i.e. ANN and CNN), the architec-
ture has a slight change in the number of neurons of the output layer due to the change
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of the number of classes (i.e. from 11 classes of non-functional requirements to 17 classes
of both functional and non-functional requirements).

5.5 | Experiment 4: Other ML Methods
This experiment explores ML methods that are not mentioned in any of the selected
work discussed above.

5.5.1 | Experiment Goal
Besides methods that are discussed above, we try to solve requirement classification
problems using other new Machine Learning methods.

5.5.2 | Experiment Process
5.5.2.1 | Random Forest Classifier

Random Forest is an ensemble method which consists of decision trees. When classi-
fying any data sample, the forest collects its trees’ predictions for the sample and gives
the final prediction based on the prediction that most of its trees vote for. The reason
for choosing this method for this experiment is that according to our literature review
“The Landscape of Machine Learning in Requirements Engineering”, Random Forest is
the fourth most used machine learning algorithm. Hence, we want to investigate the
effectiveness of this method on the requirements classification task given our dataset.

The experiment process is similar to other experiments. First, the used dataset is
split then we proceed to extract features on the training set and the test set. A combina-
tion of this machine learning method and feature techniques as introduced in the Section
5.1.4 are explored to see which combination yields the best results. After experimenting
with different combinations, the combination of multiple features Section 5.1.4.5 and
Random Forest produces the best result which will be used as the main method in this
experiment. The method at this point will be trained on the training set. The trained
model then performs the testing to evaluate its performance on the test set. The best
result will be presented in the Chapter 6.

5.5.2.2 | XGBoost

Extreme Gradient Boosting (XGBoost) is a popular algorithm in the last couple of years
because of the extensive usage of winning competitors for their solutions in machine
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learning challenges. Boosting is an approach that builds models sequentially, each suc-
cessor focusing on solving instances that its predecessor incorrectly classifies (i.e. dif-
ficult instances). The more difficult instances are, the more weight they get. Gradient
Boosting is quite similar but instead of giving weight for difficult instances, it minimizes
its loss when adding new models by using the gradient descent. Normally, gradient
boosting approaches are quite slow and unscalable because it takes time to build mod-
els sequentially. XGBoost is built to overcome that disadvantage which focuses on speed
and performance. With all reasons mentioned above, we want to assess its performance
on the requirements classification task given our dataset.

The experiment process is similar to other experiments. First, the used dataset is
split then we proceed to extract features on the training set and the test set. A com-
bination of this machine learning method and feature techniques as introduced in the
Section 5.1.4 are explored to see which combination yields the best results. After ex-
perimenting with different combinations, the combination of multiple features Section
5.1.4.5 and XGBoost produces the best result which will be used as the main method
in this experiment. The method at this point will be trained on the training set. The
trained model then performs the testing to evaluate its performance on the test set. The
best result will be presented in the Chapter 6.
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Evaluation & Discussion

6.1 | Evaluation Metrics
This section is to explain the metrics used in the project to evaluate the performance of
ML methods. These metrics include accuracy, precision, recall and F1 which are known
for their simplicity and their popularity in classification problems.

Accuracy is a ratio of correctly predicted instances over the total number of in-
stances. Accuracy works best only if each class contains the same number of instances
(i.e. balanced dataset). However, with an imbalanced dataset, accuracy is not a proper
measure to assess the performance of models. Hence, instead of relying only accuracy,
precision, recall and F1 are often utilized in combination with accuracy if the imbalanced
dataset is used.

Assume that we have a binary classification problem where a ML method can be
utilized to classify whether a requirement is functional or not. In this case, true pos-
itives (TP) are instances that are classified correctly as functional requirements while
true negatives (TN) are instances that are classified correctly as not functional require-
ments. Instances that are incorrectly classified as functional requirements are false pos-
itives (FP) while instances that are incorrectly classified as not functional requirements
are false negatives (FN). Together, the number of these instances are the building blocks
that define the precision, recall and F1 score.
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Figure 6.1: Precision and recall [29]

Precision is a metric used to calculate the proportion of instances that are correctly
predicted as positive (TP) over the total number of instances that are predicted positive
(TP and FP).

Precision =
TP

TP + FP
(6.1)

Recall is a metric used to calculate the proportion of instances that are correctly pre-
dicted as positive (i.e. true positives) over the total number of actually positive instances
(TP and FN).

Recall =
TP

TP + FN
(6.2)

Back to the assumption made above, in that scenario, high recall but low precision
indicates that the method classifies a lot of requirements as functional requirements but
only a few requirements are predicted correctly (i.e. only a few of them are functional
requirements) while low recall but high precision indicates that the method does not
think a lot of requirements are functional requirements, but when it does, it predicts
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correctly (i.e. requirements are correctly classified as functional requirements). High
precision and high recall is the best scenario where the model correctly picks functional
requirements out of all instances.

The harmonic mean of precision and recall is called F1 score. This metric is used
when precision and recall are valued equally (i.e. they are both important).

F1 score = 2× precision× recall
precision + recall

=
TP

TP + 1
2 (FP + FN)

(6.3)

The Figure 6.2 shows the spread and the distribution of best results of established
methods collected from selected papers [9]–[12] using box plots. The maximum and
minimum values among precision values of these established methods are 0.878 and
0.54 respectively while the median value of these precision values equals 0.67. 0.85 and
0.48 are the maximum and minimum values among recall values of the ML methods of
the selected papers. The median value of these recall values is 0.62. For F1 score, the
minimum value and the maximum value are 0.52 and 0.86 with the median equals 0.61.

Figure 6.2: Metrics Values Distribution Box Plots

6.2 | Evaluation Results
This section presents the results of the experiments set up in Section 5.1.6 and discusses
their results to answer the research questions in the Section 1.3. Due to the sheer amount
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of quantitative data produced, this section will only provide an overview of the evalua-
tion results, whereas the full result data is available in Appendix B.

The content of this section is divided based on the established methods from Ta-
ble 5.3, which are combinations of feature extraction techniques and machine learning
techniques, so that it is more convenient to follow the results produced by them in each
experiment.

6.2.1 | Results Overview
This section provides an overview of the results of the experiments. The full results
are available in Appendix B. To better understand the results, graphs are used to il-
lustrate and visually compare the performance of each method when being used for
classifying different types of requirements. Mixed-type requirements should include all
classes while significant classes experiment only include some types of requirements as
discussed in the Section 5.1.3. Therefore, there are two types of graphs that differ in the
number of axes for comparing the methods’ performances in non-functional, functional,
and mixed-type requirements classification. Combined with the use of only significant
classes or all classes for training, there are in total six graphs, each showing the methods’
performances in a certain metric: precision, recall, or F1 score. For any kind of graph,
each method is presented as a point. The style of the point is determined by the original
intention of that method as shown in the legend of each graph.

The first kind of graph illustrates the methods’ performances in classifying non-
functional and functional requirements when trained on only significant classes. These
graphs use a scatter plot as a base where the horizontal axis indicates a method per-
formance in an evaluation metric when being used to classify non-functional require-
ments, whereas the vertical axis indicate the same metric for classifying functional re-
quirements. There is a dotted line bisecting each graph. The closer a method is to this
line, the more similar its performances are for classifying the two types of requirements,
i.e. higher cross-applicability. In the plane of these graphs, there are two special regions
color coded in red and green. These regions are created from the median of each metric,
where the red zone indicates that a method, if fallen in, performs worse than average
in both classification tasks of the two types of requirements.. In contrast, if a method is
placed inside the green zone, that method performs better on average in both tasks. In
short, the closer to the dotted bisector and the closer to the far corner of the green zone,
the more desirable a method is.
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The second kind of graph has similar meaning to the first kind while extending
up one more axis of comparison. These graphs illustrate the methods’ performances in
classifying non-functional, functional, and mixed-type requirements when trained on
all classes. An instance of this kind of graph has three planes, each is a sheared image of
the first kind of graph. The bottom plane compares between classifying non-functional
and functional requirements, while the left plane compares between classifying non-
functional and mixed-type requirements, and the right plane compares between classi-
fying functional and mixed-type requirements.

It is observed that when being trained with requirements of significant classes, the
performance of ML methods are improved as the number of ML methods lying in the
green zone is increased and the number of ML methods falling in the red zone is de-
creased compared to when being trained on requirements of all classes.

It can be seen from these graphs that most of the methods (75% of these meth-
ods) can be cross-applicably used (i.e. can be used for both classifying functional re-
quirements and classifying non-functional requirements). However, two methods that
are originally intended for functional requirements classification do not perform well
in both functional requirements and non-functional requirements classification com-
pared to non-functional methods. Near to none methods perform well in mixed-type
requirements classification, which may hint at the lack of learning capability of these
methods. New methods, specifically, XGBoost and Random Forest classify functional
requirements better than they classify non-functional requirements or mixed-type re-
quirements. However, their performance is only in the white zone at best and not close
to the bisectors of the graphs which shows that the performance of these methods are
not very decent and they are not entirely cross-applicable.

The Table 6.1 shows the training time of each method of our research on the mixed-
type requirements dataset. Overall, given the hardware specification shown the Section
5.1.1, the training time of methods in our study is fast. The training time of Random
Forest is highest while variants of Naive Bayes have the fastest training time. For Ran-
dom Forest, building various decision trees to create a forest probably takes a lot of time
which slows down the training phase. For Naive Bayes variants in this study, namely,
Gaussian Naive Bayes, Bernoulli Naive Bayes, Multinomial Naive Bayes, the incredible
speed is gained because these methods only need to calculate the probability of each
class and the probability of each class given different input values based on the Bayes
theorem. CNN takes the second longest time for training the network. The complex-
ity of the architecture of CNN could be the main reason behind the slow training time
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Figure 6.3: Overview on the precision values trained on all classes

49



Chapter 6. Evaluation & Discussion 6.2. Evaluation Results

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
NR Classification

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

FR
 C

la
ss

ifi
ca

tio
n

Precision (Significant Classes)
NR Classification Method
FR Classification Method
Other Method

Figure 6.4: Overview on the precision values trained on only significant classes
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Figure 6.5: Overview on the recall values trained on all classes
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Figure 6.6: Overview on the recall values trained on only significant classes
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Figure 6.7: Overview on the F1 scores trained on all classes
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Figure 6.8: Overview on the F1 scores trained on only significant classes
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compared to other methods.

Table 6.1: Methods Training Time on Different Types of Requirements

Method FR NR MR

M1 0:00:03.066243 0:00:02.636284 0:00:32.466857

M2 0:00:02.840371 0:00:02.316606 0:00:32.466857

M3 0:00:00.046819 0:00:00.032004 0:00:00.030088

M4 0:00:00.010460 0:00:00.015334 0:00:00.012609

M5 0:00:00.168756 0:00:00.097504 0:00:00.235937

M6 0:00:00.014530 0:00:00.011936 0:00:00.018035

M7 0:00:00.008041 0:00:00.004660 0:00:00.007502

M8 0:00:00.014084 0:00:00.023092 0:00:00.016087

M9 0:00:00.015862 0:00:00.009071 0:00:00.022023

M10 0:00:00.000523 0:00:00.000709 0:00:00.000359

M11 0:00:03.614631 0:00:02.449048 0:00:07.292294

M12 0:00:00.170945 0:00:00.151414 0:00:00.234395

M13 0:00:00.863041 0:00:00.890506 0:00:01.062518

M14 0:00:00.104966 0:00:00.110774 0:00:00.152510

M15 0:00:01.007318 0:00:00.645720 0:00:04.032186

M16 0:00:00.083207 0:00:00.051328 0:00:00.176058

M17 0:00:05.272762 0:00:03.242775 0:00:39.129029

M18 0:00:11.047466 0:00:10.187083 0:01:44.576935

M19 0:00:00.783336 0:00:00.482951 0:00:01.239276

M20 0:02:19.578522 0:01:27.252679 0:08:42.463433

(continued on the next page)
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Table 6.1: (continued) Methods Training Time

Method FR NR MR

M21 0:00:52.311821 0:00:52.888177 0:08:39.630521

M22 0:02:04.974625 0:01:19.235434 0:11:49.468390

6.2.2 | Method M1: Ensemble Method + TF-IDF Word Level Fea-
ture

The result of the method M1 as shown in Table B.1 is not similar to the result of the orig-
inal paper [9] even though efforts are made to reconstruct the same method based on
the description of the paper. This could be because the dataset used in our experiment is
different from the dataset used in the paper. The quality of the dataset could positively
or negatively affect the performance of the model. The dataset used in the paper is bal-
anced (i.e. the number of requirements of classes are quite equally distributed) while
our dataset is imbalanced which negatively affects the result. The detailed configura-
tions of the feature extraction techniques and of the machine learning algorithms are not
provided. This unrevealing could lead to the difference between the paper’s model and
our model which results in the difference in the result.

The result of classifying only functional requirements from three significant classes
of the method M1 shows the effect of a slight imbalanced dataset. As explained in the
method setup, since we split the dataset into the training set and the testing set using
the StratifiedKfold, the training data and the testing data had the same percentage of
requirements with a given class. In the three significant functional requirements classes,
Action Constraint is the class that has the least requirements with only 45 requirements
in the test set. Because of the difference in the number of requirements in each class,
the performance of classifying each class in the test set is different too. While Enable-
ment requirements and Solution requirements are likely to be classified correctly by the
method M1, Action Constraint requirements are not since the small number of Action
Constraint requirements compared to other classes makes it difficult for the ML method
to learn possible characteristics of it, thus, also difficult to differentiate it with others.
However, because the dataset is less imbalanced, overall, it is observed that the perfor-
mance of classifying requirements from only significant functional classes of the method
M1 is better than its performance of classifying instances from all functional classes.
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It can be seen from the Table B.1 that the result when using the method M1 to clas-
sify non-functional requirements is quite close to the result when classifying functional
ones, approximately 0.02 in the F1 score. From this observation, the method M1 seems
to be able to classify both non-functional requirements and functional requirements.

Similarly to the experiment of classifying only requirements from significant func-
tional classes, the result obtained from the non-functional requirements classification
from significant classes is better than the original result (i.e. the result of classifying re-
quirements from all non-functional classes). This better performance could be caused
by the change in the dataset from a severe imbalanced dataset to a slight imbalanced
dataset. In more detail about the obtained result, for classes that have a small amount
of requirements compared to others such as Look & Feel class, the method M1 finds it
difficult to classify these requirements correctly. For Operational and Security require-
ments, the result is high in precision but low in recall indicating that if the method M1
classifies any requirement as Operational or Security requirement, it is likely correct
but the method M1 does not usually classify requirements as Operational or Security
requirement.

Compared to other results of the method M1 obtained in the experiments 1 and 2,
the result of the method M1 when classifying the mixed type requirements is lower with
0.3554 in F1 score.

6.2.3 | Method M2: Ensemble Method + BoW Feature
Similarly to the method M1, the result of the method M2 as shown in Table B.2 is dif-
ferent from the results provided by the paper [9]. The difference in the used dataset
between our study and the paper and the possible dissimilarity between the two meth-
ods regardless of the effort in replicating the same method as described in the paper
could be the reasons for the inequality of the two results.

In general, the overall performance of classifying only requirements from signifi-
cant functional classes of the method M2 is better than the performance of classifying
requirements from all functional classes. As explained in the Section 6.2.2 above, the
improved performance could be because the training set is more balanced compared
to the training set for classifying all functional requirements and the number of classes
that the method M2 has to predict is reduced by half. Similarly to the method M1, the
method M2 tends to correctly classify requirements from classes that have a significant
amount of requirements such as Enablement and Solution. For the Action Constraint

57



Chapter 6. Evaluation & Discussion 6.2. Evaluation Results

class, the number of requirements of this class is not as many as the two other classes
hence it is difficult for the method M2 to differentiate requirements of this class with
other requirements.

The non-functional requirements classification ability of the method M2 is not as
good as its functional requirements classification ability with the F1 score difference
being more than 0.1, as seen from the Table B.2.

In the experiment which let the method M2 classify only non-functional require-
ments from 5 significant classes, its learning ability is improved with 0.07 higher than
the non-functional requirements classification from all classes in precision. This achieve-
ment, as explained in the Section 6.2.2 above, could be due to the less severe balance
dataset. One of the interesting details in the obtained result is that the Look & Feel class
has a 1.0 point in precision but only 0.09 in recall. As explained above, the method M2
even though it does not usually classify requirements as Look & Feel, when it does, the
predictions are correct.

It is shown that the method M2’s performance when classifying mixed type require-
ments is not as good as its own performance when classifying functional requirements
or non-functional requirements which is significantly lower with 0.22 less than the re-
sult of classifying functional requirements and 0.11 lower than the result of classifying
non-functional requirements.

6.2.4 | Method M3: MNB + TF-IDF Word Level Feature
Unlike the other two above mentioned methods, the method M3 outperformed the orig-
inal paper’s method [11]. This difference in the results of the two methods could be
explained by the fact that the dataset used in our study is different than the paper’s
dataset. Even though, as mentioned above, the difference in the used datasets between
our study and the paper [9] has a negative effect on the results, in this case, the differ-
ence may affect positively. Despite the fact that both of the datasets are imbalanced, our
dataset contains a greater number of requirements (804 requirements) which is more
than doubled the number of requirements of the paper’s dataset (370 requirements).
This excess in the amount of non-functional requirements may help the method gain
more insight about each class which then helps it classify these requirements better.

When classifying requirements of only significant 5 non-functional classes, the re-
sult of the method M3 is remarkably better than the result obtained when classifying
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requirements of all non-functional classes, with 0.14 higher in F1. This increase could be
due to the less imbalanced used dataset and the decrease in the number of needed-to-
classify classes.

In contrast to the method M2, the method M3 shows its ability to classify functional
requirements although is not intendedly created for with the gap between the result of
classifying functional requirements and of classifying non-functional one equals 0.01 in
F1 score.

The result of classifying only requirements from significant functional classes is
also higher than the result of classifying requirements from all functional classes. As
discussed above, this achievement could be because the number of classes needed to
predict is reduced by half - from 6 classes to 3 classes as well as the filtered dataset is
less imbalanced as we filtered out the minority classes and only kept significant classes.

The result obtained from classifying mixed-type requirements of the method M3 is
moderately lower than the the results obtained in the two previous experiments which
shows that the method M3 seems unsuitable for classifying requirements into 17 sub-
classes at a time.

6.2.5 | Method M4: MNB + BoW Feature
The method M4 obtained a better result than the original method [11]. As discussed
above, this better performance could be because there are more non-functional require-
ments in our dataset than in the paper’s dataset even though it is still an imbalanced
one and the larger dataset is not always better in this machine learning field.

It seems that the method M4 classifies requirements remarkably better when we de-
crease the number of non-functional classes needed to be classified from 11 to 5 with 0.15
higher than the result acquired when classifying requirements from all non-functional
classes. This improvement could be due to the change of the used datasets as we re-
moved the minority functional classes from our dataset which makes the dataset less
imbalanced than the original dataset.

The method M4 classifies functional requirements worse than classifies non-functional
requirements, as shown in Table B.4, with f1 score 0.112 lower than when classifying
non-functional ones.

The result of the method M4 of classifying requirements of significant functional
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classes is also better than the result obtained from classifying requirements from all
functional classes. As discussed above, the filtered dataset with only the majority classes
and the decrease in the number of classes could be the reasons for this improvement.

Even though the result of the method M4 when classifying mixed-type require-
ments is worse than the result received when it classifies non-functional ones with the
gap as 0.08 in F1, the mixed-type requirements classification result is slightly higher
than the results obtained when classifying functional requirements with 0.03 difference
in F1 score.

6.2.6 | Method M5: GNB + TF-IDF N-Grams Feature
It can be seen that the method M5 achieved a higher performance than the original
method [11]. This achievement could be attributed by the greater amount of non-
functional requirements in our dataset than the original dataset [11] as discussed above.

As we removed insignificant classes from the dataset, it is observed that the method
M5 achieves a better performance than when it classifies requirements from all 11 non-
functional classes with 0.06 higher in F1. This improvement could be caused by using
a less imbalanced dataset to train instead of the original dataset and the reduction in
number of classes needed to be predicted from 11 classes to 5 classes.

When changing the input data, the method M5 shows that it is still able to clas-
sify functional requirements even though the obtained result is not as good as when it
classifies non-functional ones, with 0.09 lower in F1.

The result of the method M5 when classifying requirements from only significant
functional classes is higher than its results when classifying requirements of all func-
tional classes with approximately 0.09 higher in precision, recall and F1. Training the
method with a less imbalanced dataset and the drop in the number of classes needed to
be predicted could be the reasons behind this achievement.

It is observed that the ability of the method M5 in classifying mixed-type require-
ments is worse than its ability in classifying functional requirements or non-functional
requirements which is approximately 0.14 lower than non-functional requirements clas-
sification and 0.05 lower than functional requirements classification in F1.
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6.2.7 | Method M6: GNB + BoW Feature
The result produced by the method M6 as shown in the Table B.6 is slightly higher than
the result of the original method. The larger amount in non-functional requirements
in our dataset than the original dataset could be the reason for this achievement even
though the distribution of requirements between classes are not evenly proportioned.

The method M6 achieved a higher score in classifying requirements of significant
non-functional classes than when classifying requirements of all non-functional classes
with 0.09 higher in F1. This improvement could be due to that the used dataset is less
imbalanced compared to the original dataset and the number of classes needed to pre-
dict is reduced, as mentioned in the sections.

It is observed from the Table B.6 that the method M6 when classifying functional
requirements is not as good as when classifying non-functional ones with the difference
being 0.13 lower in F1.

Similarly to when it classifies non-functional requirements of significant classes,
this method also achieves a better score in classifying functional requirements of signif-
icant classes compared to when it classifies requirements of all functional classes even
though the difference in results is not as much as its result of classifying non-functional
requirements, with approximately 0.06 higher in precision, recall and F1. This better
performance could be because of using the less imbalanced dataset when training and
the reduction in the number of classes that are needed to classify.

The method M6 performance when classifying mixed-type requirements is very
close to its performance when classifying functional requirements with just 0.02 differ-
ence in F1. While on the other hand, the result of mixed-type requirements classification
needs 0.13 point in F1 to bridge the gap between it and the result of non-functional re-
quirements classification.

6.2.8 | Method M7: BNB + TF-IDF Word Level Feature
The method M7 showed a better performance than the original method [11]. As dis-
cussed above, the dissimilarity in the used datasets and the greater number of non-
functional requirements in our dataset may lead to this improvement.

We witness the improvement in the result of the method M7 when classifying non-
functional requirements of only significant classes compared to its result when classi-
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fying all non-functional requirements. This could be explained by the characteristic of
the used dataset which is now less imbalanced and the number of classes needed to
categorize is reduced by half.

The result of the method M7 in classifying the functional requirements surpasses
its own result in classifying non-functional one by approximately 0.13 in the F1 score,
even though it is not intended for this classification task.

The better performance is also observed as shown in the Table B.7 in the case of
classifying functional requirements of only significant classes with 0.09 higher in pre-
cision and F1 and 0.05 higher in recall compared to the result of classifying functional
requirements of all classes. As discussed in the sections above, this achievement could
be because the method M8 is trained with a less imbalanced training dataset compared
to the original dataset.

The method M7’s ability to classify mixed-type requirements falls behind its ability
to classify only one requirement type at a time which result is less than 0.21 in F1 com-
pared to the result for classifying functional requirements and less than approximately
0.08 compared to the result for classifying non-functional requirements.

6.2.9 | Method M8: BNB + BoW Feature
The result of the method M8 is better than the result of the paper’s method [11]. The
difference in these results could be caused by the difference in the used datasets. Al-
though our dataset is as imbalanced as the paper’s, the total number of non-functional
requirements in our dataset is more than twice that of the original paper’s dataset hence
could lead to this improved result.

The result of classifying functional requirements of significant classes of the method
M8 is remarkably higher than its result of classifying functional requirements of classes.
This better performance could be caused by the difference in the used dataset - switching
from a severe imbalanced dataset to a slight imbalanced dataset and the drop in the
number of classes that need to be classified.

Similarly, as presented in the Table B.8, the method M8 shows that its ability in
classifying functional requirements is better than its ability in classifying non-functional
ones which is more than 0.08 in precision and 0.11 in recall and F1 score despite not
being originally created for.
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It seems that the method M8 classifies requirements noticeably better when we de-
crease the number of non-functional classes needed to be classified from 11 to 5 with 0.15
higher than the result acquired when classifying requirements from all non-functional
classes. This improvement could be due to the change of the used datasets as we re-
moved the minority functional classes from our dataset which makes the dataset less
imbalanced than the original dataset.

It is shown that the method M8 cannot extend its ability to classify mixed-type
requirements since its result of mixed-type requirements classification falls far behind
its other results with 0.17 difference in F1 than the functional requirements classification
and 0.06 difference in F1 than the non-functional requirements classification.

6.2.10 | Method M9: KNN + TF-IDF N-Grams Feature
The method M9 obtained higher results than the original method [11]. The difference in
the total number of non-functional requirements in the datasets could be the reason for
this high obtainment, as discussed above.

Following the same trend as other methods, the method M9 achieved a better result
when classifying non-functional requirements of significant classes compared to when
it classifies requirements of all non-functional classes with 0.07 higher in F1, 0.06 higher
in precision and recall. As discussed in the sections above, this improvement could be
because of the difference in the used dataset and the drop in the number of the needed-
to-classify classes.

Even though the method M9 classifies functional requirements not as good as it
classifies non-functional ones, the gap in the results is quite small, only 0.0651 in F1
score. The result shows that the method M9 is also able to classify functional require-
ments as is able to classify non-functional ones.

It can be seen that the result of classifying functional requirements of significant
classes of the method M9 is higher than the result of classifying requirements of all
functional classes with approximately 0.05 higher in precision, recall and F1. This better
result can be due to the fact that the training dataset is less imbalanced than the original
dataset and the number of classes that are needed to predict is dropped by half.

Compared to other results of the method M9 obtained in the two previous exper-
iments 1 and 2, although the result of mixed-type requirements classification is lower
but the difference between the three results are small with 0.04 difference in F1 between
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mixed-type requirements classification and functional-requirements classification and
0.09 difference in F1 between mixed-type requirements classification and non-functional
ones.

6.2.11 | Method M10: KNN + BoW Feature
It is shown that the method M10 gained a better result than the original method [11]. As
mentioned above, the dataset difference as well as the greater amount of non-functional
requirements in our dataset could be the cause of this achievement.

When classifying only non-functional requirements of significant classes, the result
of the method M10 is slightly higher than the result obtained when classifying require-
ments of all non-functional classes, with 0.03 higher in F1. The improvement could be
the result of the change in the used dataset from a severe imbalanced dataset to a slight
imbalanced dataset.

Inferred from the results shown in the Table B.10, with the result of classifying func-
tional requirements exceeding the result of classifying non-functional ones by 0.05, the
method M10 is able to classify functional requirements in spite of not being originally
intended for.

The result of classifying only requirements from significant functional classes is also
higher than the result of classifying requirements from all functional classes, with 0.08
higher in precision and F1 and 0.05 higher in recall. As discussed above, this achieve-
ment could be because the number of classes needed to predict is reduced by half - from
6 classes to 3 classes as well as the filtered dataset is less imbalanced as we filtered out
the minority classes and only kept significant classes.

In contrast to the method M9, the result of the mixed-type requirements classifi-
cation of the method M10 is quite low compared to the results of this method when
classifying only functional requirements or non-functional ones.

6.2.12 | Method M11: SVM + TF-IDF N-Grams Feature
The method M11 performed better than the original method [11]. This improvement
could be due to the difference in the used datasets. Our dataset contains more non-
functional requirements than the paper’s dataset. The larger the dataset, the more in-
sight can be extracted which then helps improve the classification task.
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It can be seen that the method M11 classifies requirements remarkably better when
we decrease the number of non-functional classes needed to be classified from 11 to 5
with 0.11 higher in precision and F1, and 0.08 higher in recall than the result acquired
when classifying requirements from all non-functional classes. This better performance
could be due to the change of the used datasets as we removed the minority functional
classes from our dataset which makes the dataset less imbalanced than the original
dataset and also due to the drop in the number of classes that the method M11 needs to
predict.

It is shown that the method M11 is able to classify functional requirements as it is
able to classify non-functional requirements although the result obtained when classi-
fying functional requirements is slightly lower, 0.04 less than the result obtained when
classifying non-functional requirements.

The result of the method M11 of classifying requirements of significant functional
classes is also noticeably better than the result obtained from classifying requirements
from all functional classes with 0.11 higher in F1 and 0.09 higher in precision and recall.
As discussed above, the filtered dataset with only the majority classes and the decrease
in the number of classes could be the reasons for this improvement.

Even though the result of mixed-type requirements classification of the method
M11 is not as good as the other results of it, it shows that the method M11 has the ability
to categorize mixed-type requirements into different 17 subclasses.

6.2.13 | Method M12: SVM + BoW Feature
The results of the method M12 exceeded the results produced by the original method
[11]. The difference in the used datasets as well as the larger amount of non-functional
requirements in our dataset could be the reasons for this excess, as discussed above.

When we filtered out insignificant classes from the original dataset, it is observed
that the method M12 performs better than when it classifies requirements from all non-
functional classes with 0.06 higher in F1. This higher result could be caused by using
a less imbalanced dataset to train instead of the original dataset and the reduction in
number of classes needed to be predicted from 11 classes to 5 classes.

Similarly to the method M11, the method M12 shows its ability to classify functional
requirements which is only 0.019 lower in F1 than its ability to classify non-functional
ones.
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Similar to other methods, the result of the method M12 when classifying require-
ments from only significant functional classes is higher than its results when classifying
requirements of all functional classes with approximately 0.07 higher in recall and F1
and 0.06 higher in precision. Training the method with a less imbalanced dataset and
the drop in the number of classes needed to be predicted could be the reasons behind
this improvement.

Similarly to the method M11, even though the ability in mixed-type requirements
classification of the method M12 does not surpass its two other abilities, the obtained
result is still considered acceptable with 0.6517 in precision, 0.6348 in recall and 0.6311
in F1.

6.2.14 | Method M13: SGD SVM + TF-IDF N-Grams Feature
The method M13 obtained a higher result than the original method [11]. There could
be impacts on this obtainment including the dissimilarity in the used datasets and the
larger number of non-functional requirements in our used dataset.

The method M13 obtains a higher score in classifying requirements of significant
non-functional classes than when classifying requirements of all non-functional classes
with 0.06 higher in F1 and 0.04 higher in precision and recall. This achievement could
be because the used dataset is less imbalanced compared to the original dataset and the
number of classes needed to predict is reduced, as mentioned in the sections.

It is observed from the Table B.13 that the result when using the method M13 to clas-
sify functional requirements approximate the result when classifying functional ones
with 0.02 difference in the F1 score. From this observation, the method M13 seems to be
able to classify both non-functional requirements and functional requirements.

Similarly to when it classifies non-functional requirements of significant classes,
this method also acquires a higher score in classifying functional requirements of signif-
icant classes compared to when it classifies requirements of all functional classes even
though the difference in results is not as much as its result of classifying non-functional
requirements, with approximately 0.08 higher in precision, recall and F1. Using a less
imbalanced dataset than the original dataset when training and the reduction in the
number of classes that are needed to classify could be the reasons for this better perfor-
mance.

The result of mixed-type requirements classification of the method M13 is only 0.04
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lower than the result of functional requirements classification in F1 while being approx-
imately 0.1 lower than the result of non-functional requirements classification in F1.

6.2.15 | Method M14: SGD SVM + BoW Feature
It can be inferred from the results that the method M14 performed better than the origi-
nal method [11]. This better performance could be caused by the difference in the used
datasets. Even though both datasets are imbalanced, the change in the number of re-
quirements could affect the performance of the method.

We witness the slight improvement in the result of the method M14 when classify-
ing non-functional requirements of only significant classes compared to its result when
classifying all non-functional requirements with 0.02 higher in precision and F1 and 0.04
higher in recall which could be explained by the characteristic of the used dataset which
is now less imbalanced.

When changing the input data to functional requirements, the method M14 shows
that it is still able to classify them even though the obtained result is not as good as the
result when it classifies non-functional ones, with 0.04 lower in F1.

The remarkably better performance is observed as shown in the Table B.14 in the
case of classifying functional requirements of only significant classes with 0.1 higher
in F1, 0.12 higher in precision and 0.08 higher in recall compared to the result of clas-
sifying functional requirements of all classes. As discussed in the sections above, this
achievement could be because the method M14 is trained with a less imbalanced train-
ing dataset compared to the original dataset.

The method M14 follows the similar trend as the method M13 with the result of
mixed-type requirements classification being 0.06 lower than the result of functional re-
quirements classification but approximately 0.1 lower than the result of non-functional
requirements classification in F1.

6.2.16 | Method M15: Decision Tree + TF-IDF N-Grams Feature
The result of the method M15 is greater than the result of the original method [11]. As
discussed above, the difference in the used datasets and the change in the distribution
of requirements in our classes could be the reasons for this performance improvement.

The result of classifying non-functional requirements of significant classes of the
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method M15 is slightly higher than its result of classifying functional requirements of
classes with 0.02 higher in F1. As discussed above, this slightly improved performance
could be caused by the difference in the used dataset - switching from a severe imbal-
anced dataset to a slight imbalanced dataset.

The result of the method M15 in classifying functional requirements exceeded its
own result in classifying non-functional one by approximately 0.09 in the F1 score, even
though it is not intended for this task.

It seems that the method M15 classifies requirements better when we decrease the
number of functional classes needed to be classified from 6 to 3 with 0.07 higher in F1
than the result acquired when classifying requirements from all non-functional classes.
This improvement could be due to the change of the used datasets as we removed the
minority functional classes from our dataset which makes the dataset less imbalanced
than the original dataset.

The method M15 classifies mixed-type requirements worse than it classifies only
functional requirements or only non-functional requirements with 0.05 difference in F1
between mixed-type requirements classification and non-functional requirements clas-
sification and 0.14 difference in F1 between mixed-type requirements classification and
functional requirements as shown in the Table B.15.

6.2.17 | Method M16: Decision Tree + BoW Feature
Similarly to the method M15, the method M16 obtained a better result than the original
method [11]. As explained above, this could happen because of the difference in the
used datasets as well as the greater amount of non-functional requirements available in
our dataset.

Following the same trend as other methods, the method M16 achieved a better
result when classifying non-functional requirements of significant classes compared to
when it classifies requirements of all non-functional classes with 0.07 higher in F1 and
precision, 0.06 higher in recall. As discussed in the sections above, this improvement
could be because of the difference in the used dataset and the drop in the number of the
needed-to-classify classes.

As presented in the Table B.16, the method M16 shows that its ability in classifying
functional requirements is better than its ability in classifying non-functional ones which
is more than 0.05 in F1 score despite not being originally created for.
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It can be seen that the result of classifying functional requirements of significant
classes of the method M16 is higher than the result of classifying requirements of all
functional classes with approximately 0.09 higher in precision, recall and F1. This better
result can be due to the fact that the training dataset is less imbalanced than the original
dataset and the number of classes that are needed to predict is dropped by half.

The result of the method M16 of mixed-type requirements classification is signifi-
cantly lower than its results of functional requirements classification and of non-functional
requirements classification.

6.2.18 | Method M17: SVM + Multiple Features
The method M17 did not achieve the similar results as of the original method [10].
This dissimilarity could be because Kurtanović and Maalej [10] filtered out the minority
classes in the dataset, only kept and classified requirements into the 4 remaining classes
that have a large and even amount of requirements. Retaining only major classes in-
stead of all classes makes the used dataset balanced hence could lead to better results.
Furthermore, the details of values of the used parameters of models are not provided
which could also affect the final results.

When classifying only non-functional requirements of significant classes, the result
of the method M17 is slightly higher than the result obtained when classifying require-
ments of all non-functional classes, with 0.03 higher in F1. This improvement could be
caused by the change in the used dataset which is less imbalanced than the original one.

The result in classifying functional requirements of the method M17 surpasses its
own result in classifying non-functional ones by approximately 0.26 in the F1 score, even
though it is not intended for this kind of task.

The result of classifying only requirements from significant functional classes is also
higher than the result of classifying requirements from all functional classes, with 0.07
higher in precision and 0.05 higher in recall and F1. As discussed above, this achieve-
ment could be because the number of classes needed to predict is reduced by half - from
6 classes to 3 classes as well as the filtered dataset is less imbalanced as we filtered out
the minority classes and only kept significant classes.

In contrast to the result obtained in experiment 2, the result of experiment 3 of
method M17 shows it is unable to classify instances into such a large number of classes -
17 classes to be precise. The result is significantly lower than the functional requirements
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classification result with 0.3 difference in F1 and also lower than the non-functional
requirements classification with approximately 0.04 difference in F1.

6.2.19 | Method M18: OVR + Multiple Features
Similarly to the method M17, the method M18 did not produce the same result as the
original method [10]. There could have been because only classes that have an evenly
large amount of samples are kept which helps form a more balanced dataset. A balanced
dataset could help the method get more accurate in classifying requirements because
the model is not biased to any particular class. Besides, the possible difference in the
configurations of the two methods could also be the cause for this inequality.

It can be seen that the method M18 classifies requirements better when we decrease
the number of non-functional classes needed to be classified from 11 to 5 with 0.08
higher in precision, recall and F1 than the result acquired when classifying requirements
from all non-functional classes. This better performance could be due to the change of
the used datasets as we removed the minority functional classes from our dataset which
makes the dataset less imbalanced than the original dataset and also due to the drop in
the number of classes that the method M18 needs to predict.

Similarly to the method M17, the method M18 obtained a better result in classifying
functional requirements than when it classifies non-functional requirements, with 0.2
higher in F1 score.

The result of the method M18 of classifying requirements of significant functional
classes is also noticeably better than the result obtained from classifying requirements
from all functional classes with 0.1 higher in F1 and 0.09 higher in precision and recall.
As discussed above, the filtered dataset with only the majority classes and the decrease
in the number of classes could be the reasons for this improvement.

The method M18 classifies mixed-type requirements worse than it classifies only
functional requirements or non-functional requirements. The mixed-type requirements
classification result is 0.03 lower than the functional requirements classification and 0.23
lower than the non-functional requirements classification.

6.2.20 | Method M19: ANN
The methods M19 under-performed the original methods [12]. Besides the difference
in the used datasets, Baker, Deng, Chakraborty, et al. [12] only conducted require-
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ments classification experiments on the 4 majority classes - namely Operational, Per-
formance, Security and Usability instead of all classes. Furthermore, although Baker,
Deng, Chakraborty, et al. [12] did provide some of the parameters used for defining a
network, there are still necessary parameters that are unmentioned. These could be the
reasons why our results differ from the paper’s results.

When classifying requirements of only significant 5 non-functional classes instead
of 11 non-functional classes, the result of the method M19 is better than the result ob-
tained when classifying requirements of all non-functional classes, with 0.1 higher in F1
and 0.09 higher in precision and recall even though the classification ability is still not
good. This increase could be due to the less imbalanced used dataset and the decrease
in the number of needed-to-classify classes.

The method M19 shows its ability in classifying functional requirements with the
result as 0.5877 in precision, 0.5676 in recall and 0.5712 in F1 score which surpassed the
result obtained when classifying non-functional requirements.

The result of classifying only requirements from significant functional classes is
also higher than the result of classifying requirements from all functional classes. As
discussed above, this achievement could be because the number of classes needed to
predict is reduced by half - from 6 classes to 3 classes as well as the filtered dataset is
less imbalanced as we filtered out the minority classes and only kept significant classes.

6.2.21 | Method M20: CNN
The method M20 performed not as well as the original method [12]. This underperfor-
mance could be caused by the difference in the used dataset. Furthermore, Baker, Deng,
Chakraborty, et al. [12] filtered out the minority classes (i.e. classes that have a signifi-
cantly small amount compared to other classes), only kept 5 majority classes including
maintainability, operational, performance, security and usability. This filter helps form
a more balanced dataset as well as reduces the number of classes that a classifier has to
predict which could help increase the performance of the method.

We witness the noticeable improvement in the result of the method M20 when clas-
sifying non-functional requirements of only significant classes compared to its result
when classifying all non-functional requirements with 0.12 higher in F1, 0.1 higher in
precision and 0.09 higher in recall which could be explained by the characteristic of the
used dataset which is now less imbalanced.
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It can be seen that the method M20 achieved a better result when classifying func-
tional requirements than when classifying non-functional ones whose F1 score is 0.03
higher.

The better performance is observed as shown in the Table B.20 in the case of classify-
ing functional requirements of only significant classes with 0.03 higher in F1 compared
to the result of classifying functional requirements of all classes. As discussed in the
sections above, this achievement could be because the method M20 is trained with a
less imbalanced training dataset compared to the original dataset.

It is observed from the Table B.20 that the method M20 cannot extend its capabil-
ity to classify requirements into 17 different classes with being 0.13 lower in F1 than the
non-functional requirements classification result and 0.16 lower than functional require-
ments classification result.

6.2.22 | Method M21: XGBoost
While XGBoost shows a decent performance in the functional requirements classifica-
tion problem, it does not perform well in other tasks, non-functional requirements and
mixed-type requirements. Furthermore, it is shown that there is a huge difference in
results between classifying non-functional requirements of significant classes and clas-
sifying requirements of all non-functional classes as well as between classifying func-
tional requirements of significant classes and classifying requirements of all functional
classes. This noticeable difference could be due to the change in the used datasets as we
filtered out classes that have a small amount of requirements compared to others hence,
the filtered dataset is less imbalanced than the original one.

6.2.23 | Method M22: Random Forest
Random Forest performs poorly in all functional requirements classification, non-functional
requirements classification and mixed-type requirements classification. Similarly to the
result of XGBoost, the results of classifying functional/non-functional requirements of
significant classes is significantly higher than the results of classifying requirements of
all functional/non-functional classes. While the sensitivity of random forest for imbal-
anced datasets and overfitting could be the reason for the poor performance, the better
result in classifying requirements of significant classes could be caused by using a less
imbalanced dataset than the original one.
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6.3 | Discussion

6.3.1 | Discussion on Experiment 1
For methods that are originally intended for functional requirements classification, given
our dataset, the method M2 (Ensemble Method with BoW feature) performs better than
the method M1 (Ensemble Method with Tf-Idf feature) by nearly 10% in F1.

For methods that are originally created to classify non-functional requirements,
given our dataset, the method M13 (SGD SVM with Tf-Idf N-Grams feature) performs
the best with average accuracy, precision, recall and F1 as 0.7761, 0.7707, 0.7761, and
0.7555 respectively. On the other hand, the method M19 (ANN with BoW feature) has
the poorest performance with average accuracy, precision, recall and F1 as 0.3731, 0.508,
0.3731, and 0.3647 respectively.

As we filtered the minority classes and trained these methods on a less imbalanced
dataset, it is observed that these methods’ results are higher compared to their results
when being trained on the original dataset.

6.3.2 | Discussion on Experiment 2
Among two methods whose original purpose is to classify functional requirements, the
method M1 shows that it is able to classify non-functional requirements with precision,
recall, and F1 score 0.5352, 0.4925, and 0.4811 while the result of non-functional require-
ments classification of the method M2 is lower than the result obtained when classifying
functional ones by 0.11 in F1 score.

The method M20 achieved the best performance in classifying functional require-
ments with precision, recall and F1 equal 0.755, 0.7422, and 0.7404 among other methods
whose purpose is to classify non-functional requirements, not functional ones. On the
other hand, the method M6 performed not as good as others with precision, recall and
F1 score as 0.5448, 0.556, and 0.5337 respectively.

Similarly to the experiment 1, it is also observed that with a more balanced dataset
of only requirements in significant classes, the results of these methods are improved
compared to the results obtained with the original dataset.
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6.3.3 | Discussion on Experiment 3
As shown in the Appendix B, the methods M9, M11, M12, M13, M14 show acceptable
results for mixed-type requirements classification even though these results are not as
good as the results for functional requirements classification or non-functional require-
ments classification. Among the mentioned methods, the method M13 performs clas-
sifying mixed-type requirements better than others with 0.6833 in precision, 0.6717 in
recall, and 0.6577 in F1.

For other remaining methods, as their results are lower than the median values in
precision, recall, and F1 as discussed in the Section 6.1, these methods are considered
to be unsuitable for classifying mixed-type requirements. Among these methods, the
method M19 obtained the worst result with only 0.4351 in precision, 0.313 in recall, and
0.3383 in F1.

6.3.4 | Discussion on Experiment 4
Overall, for the classification problem, given our dataset, XGBoost performs better than
Random Forest. In all of the obtained results, these two methods received the highest
score for the functional requirements classification task.

However, it can be observed that Random Forest and XGBoost are not effective
when handling imbalanced datasets, in particular, our dataset, as there is a noticeable
difference in the result between classifying requirements of significant classes and clas-
sifying requirements of all classes as well as the difference between functional require-
ments classification, non-functional requirements classification and mixed-type require-
ments classification.

6.4 | Threats to Validity
The threats to the validity of this research includes the manual labeling process and the
configurations of models.

1181 out of 1838 requirements were manually labelled by Nguyen Nhu Thuy - a
master’s student with limited background working in the industry. The labeling per-
son did her best based on her knowledge of the theoretical requirement engineering
field. Because of this, the labeling process is subjective to some extent and may contain
mislabeled requirements.
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Our reconstruction of the original work’s methods [9]–[12] is not perfectly identical
because the actual implementations of these works are not publicly available, hence this
could pose a threat to the validity of the research. To mitigate this threat, we closely
followed the descriptions of the papers on how to build the methods from libraries
usages to parameters methods.
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7

Conclusions and Future Work

7.1 | Revisiting the Research Questions
As presented in the Section 1.3, the following research questions are established to drive
the project to follow the critical analysis of the cross-applicability of the ML methods:

RQ1 How effective is it to use ML methods that were intended for functional require-
ments classification to classify non-functional requirements? And vice versa, how
effective is it to use ML methods that were intended for non-functional require-
ments classification to classify functional requirements?

RQ2 How effective is it to use ML methods that were intended for either functional or
non-functional requirements classification to classify both types of requirements?

RQ3 What other ML methods can also be used for the requirements classification prob-
lem?

7.1.1 | RQ1: Effectiveness of MLMethods with Cross-Applying In-
put

The result of the methods M5, M9, M11, M12, M13 and M14 in the Experiment 2 shows
that these methods can be used to classify functional requirements even though they
are not originally created for. The results of these methods when being used to classify
functional requirements are slightly slower, less than 0.1 in the F1 score, than when they
are used to classify non-functional requirements.
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The ability of classifying functional requirements of the method M7, M8, M10, M15,
M16, M17, M19, M20 exceeded its ability to classify non-functional requirements despite
not being intended for which are recorded in the Table B.7, Table B.8, Table B.10, Table
B.15, Table B.16, Table B.17, Table B.19, Table B.20 that the difference is in the range from
0.3 to 2.6 points.

It is also observed that for the remaining methods M1, M2, M3, M4, M6, their ability
to classify requirements from the type that they are not originally intended for is not
equal to their ability to classify requirements that are initially assigned for them.

In general, 15 out of 20 methods including the methods M1, M3, M5, M7, M8, M9,
M10, M11, M12, M13, M15, M16, M17, M19, M20 demonstrate their cross-applicability
(i.e. those that were intended for classifying functional requirements are able to classify
non-functional ones and vice versa, those that were intended) through the results of
Experiment 2.

7.1.2 | RQ2: Effectiveness of ML Methods with Mixed-Type Input
It can be inferred from Experiment 3 that the methods M9, M11, M12, M13, M14 can
extend their use cases to classify mixed-type requirements. Even though the output
classes are nearly doubled, their performances are still considered acceptable. As men-
tioned above, we evaluate the performance of a ML method whether it is good or not
by collecting all of the results of the techniques in the original work, keeping best cases
and drawing the box plots as shown in the Figure 6.2. Hence, from the calculated result,
models with the results above 0.61 are considered acceptable models.

For other remaining methods namely the methods M1, M2, M3, M4, M5, M6, M7,
M8, M9, M10, M15, M16, M17, M18, M19 and M20 based on their performance when
being used to classify mixed type requirements, it seems unlikely that these models
cannot be used to classify requirements into such a number of classes (17 classes) given
our setups and our dataset.

7.1.3 | RQ3: Effectiveness of Other Methods
For the two new ML methods XGBoost and Random Forest, given our dataset, XG-
Boost and Random Forest perform decently in the functional requirements classification
task. However, it is observed that they are not cross-applicable as the results obtained
from functional requirements classification and non-functional requirements classifica-
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tion are not approximate. Furthermore, they are also unsuitable to classify mixed-type
requirements as their results are much lower than the acceptable values.

In conclusion, given our dataset, as shown in the Table B.22 and Table B.21, both of
the XGBoost and the Random Forest do not show their cross-applicability as well as the
capabilities to classify mixed-type requirements.

7.2 | Contribution and Implication for Practitioner
For researchers, our study provides practical evidence for machine learning methods
that are intended for classifying non-functional/functional requirements can be used
for classifying the other (i.e. functional/non-functional requirements). This research
demonstrates the effectiveness of some ML methods when being input with different
types of data (functional requirements, non-functional requirements or mixed-type re-
quirements). Thus, researchers should try the similar experiment to investigate the
cross-applicability of their own machine learning methods for the requirements clas-
sification problem.

For practitioners, this research provides an insight into the cross-applicability of the
machine learning methods. Using this insight as a reference, practitioners, if having a
ML method at hand, can consider using it for the other requirement type classification.
Through our results, it is also seen that, experimented ML methods learning capabilities
are not enough to be used to classify mixed-type requirements. Hence, if practitioners
want to scale up ML methods for mixed-type requirements classification, they should
build a more dedicated method with careful consideration.

7.3 | Future Work
There are some recommendations for future research. With regard to the dataset, more
requirements should be added so that the distribution of requirements for each class
should be more evenly distributed (i.e. a more balanced dataset). Furthermore, it is
necessary to double check the labels with domain experts to ensure the quality of the
labels.

For future research questions, there is ongoing research on applying supervised ma-
chine learning methods on requirements classification which are not included in this re-
search. These research could be subjected to future research. This research is mainly fo-
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cused on supervised machine learning methods, hence, research questions on the cross-
applicability of semi-supervised and unsupervised methods can be raised in the future
research. It can be seen that the performance on mixed type requirements classification
of machine learning methods is not very good, thus, how to create or adjust machine
learning methods that perform better on mixed-type requirements classification could
be subject to future research.
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Method Implementation

A.1 | POS N-Grams
Listing A.1: POS N-Grams Implementation written in Python

1 class PosNgrams(_VectorizerMixin, BaseEstimator):
2 def __init__(self, ngram_range):
3 self.ngrams_dict = {}
4 self.ngram_range = ngram_range
5

6 def fit(self, list_str: list):
7 ngrams_dict = {}
8 list_str_w_tokenized_sent = DataPreprocessor.sent_tokenize(list_str)
9

10 for str in list_str_w_tokenized_sent:
11 for sent in str:
12 tag_list = []
13 text_tags = pos_tag(word_tokenize(sent))
14 for item in text_tags:
15 tag_list.append(item[1])
16 for i in range(len(tag_list) - self.ngram_range + 1):
17 g = ' '.join(tag_list[i:i + self.ngram_range])
18 ngrams_dict.setdefault(g, 0)
19 self.ngrams_dict = ngrams_dict
20

21 def fit_transform(self, list_str):
22 self.fit(list_str)
23 return self.transform(list_str)
24

25 def transform(self, list_str: list):
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26 ngrams_array = []
27 list_str_w_tokenized_sent = DataPreprocessor.sent_tokenize(list_str)
28 for str in list_str_w_tokenized_sent:
29 for sent in str:
30 tag_list = []
31 text_tags = pos_tag(word_tokenize(sent))
32

33 for item in text_tags:
34 tag_list.append(item[1])
35 for i in range(len(tag_list) - self.ngram_range + 1):
36 g = ' '.join(tag_list[i:i + self.ngram_range])
37 if self.ngrams_dict.get(g) is not None:
38 self.ngrams_dict[g] += 1
39 ngrams_array.append(list(self.ngrams_dict.values()))
40 self.ngrams_dict = dict.fromkeys(self.ngrams_dict.keys(), 0)
41

42 return np.asarray(ngrams_array)
43

44 def get_feature_names(self):
45 return self.ngrams_dict.keys()

A.2 | Ensemble Method
Listing A.2: Ensemble Method Weight Calculation

1 def calculate_weight(models_tp_list):
2 weight = [0] * len(models_tp_list)
3 for i in range(len(models_tp_list[0])):
4 best_models = []
5 current_best_tp = models_tp_list[0][i]
6 for j in range(len(models_tp_list)):
7 current_tp = models_tp_list[j][i]
8 if current_tp > current_best_tp:
9 current_best_tp = current_tp

10 best_models = [j]
11 elif current_tp == current_best_tp:
12 best_models.append(j)
13 for model in best_models:
14 weight[model] += 1
15 return weight
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A.3 | ANN
Listing A.3: ANN Implementation

1 class NeuralNet(nn.Module):
2 def __init__(self, input_size, hidden_size, num_classes, dropout_threshold_hidden

):↪→

3 super(NeuralNet, self).__init__()
4 self.num_class = num_classes
5

6 self.fc1 = nn.Linear(input_size, hidden_size)
7 self.dropout_hidden = nn.Dropout(dropout_threshold_hidden)
8 self.fc2 = nn.Linear(hidden_size, num_classes)
9

10 def forward(self, text):
11 x = self.fc1(text)
12 x = torch.sigmoid(x)
13 x = self.dropout_hidden(x)
14 x = self.fc2(x)
15 x = torch.sigmoid(x)
16 return x

A.4 | CNN
Listing A.4: CNN Implementation

1 class CNN(nn.Module):
2 def __init__(self, vocab_size, embedding_dim, embedding_weights, dropout,

n_filters, filter_sizes, n_classes):↪→

3 super().__init__()
4 self.embedding = nn.Embedding(vocab_size, embedding_dim)
5 self.conv1 = nn.ModuleList([
6 nn.Conv2d(in_channels=1,
7 out_channels=n_filters,
8 kernel_size=(fs, embedding_dim))
9 for fs in filter_sizes

10 ])
11

12 self.fc1 = nn.Linear(len(filter_sizes) * n_filters, n_classes)
13 self.dropout = nn.Dropout(dropout)
14

15 def forward(self, text):
16 x = self.embedding(text)
17 x = x.unsqueeze(1)
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18 x = [f.relu(conv(x)).squeeze(3) for conv in self.conv1]
19 x = [f.max_pool1d(i, i.size(2)).squeeze(2) for i in x]
20 x = torch.cat(x, 1)
21 x = self.dropout(x)
22 x = self.fc1(x)
23 return x
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B

Result Tables

B.1 | Method M1

Table B.1: Experiments results of Method M1

Expr. Cond. Class Accuracy Precision Recall F1 Support

1

Si
gn

ifi
ca

nt

AC — 0.3333 0.0444 0.0784 45

EN — 0.6733 0.7816 0.7234 87

SO — 0.6154 0.7619 0.6809 105

All 0.6329 0.5831 0.6329 0.5821 —

A
ll

FR
C

la
ss

es

AC — 0.3750 0.0667 0.1132 45

AT — 0.0000 0.0000 0.0000 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.6889 0.7126 0.7006 87

PL — 0.0000 0.0000 0.0000 4

SO — 0.5374 0.7524 0.6270 105

All 0.5560 0.5144 0.5560 0.5092 —

2

Si
gn

ifi
ca

nt

LF — 0.5714 0.3636 0.4444 11

(continued on the next page)
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Appendix B. Result Tables B.1. Method M1

Table B.1: (continued) Experiments results of Method M1

Expr. Cond. Class Accuracy Precision Recall F1 Support

O — 0.7241 0.4884 0.5833 43

PE — 0.4848 0.8421 0.6154 19

SE — 0.7143 0.3846 0.5000 65

US — 0.4030 0.8182 0.5400 33

All 0.5439 0.6220 0.5439 0.5379 —

A
ll

N
FR

C
la

ss
es

A — 0.5385 1.0000 0.7000 7

FT — 0.1429 0.3333 0.2000 3

L — 0.2000 0.2000 0.2000 5

LE — 0.5000 0.3636 0.4211 11

MN — 0.2500 0.3333 0.2857 6

O — 0.6364 0.3256 0.4308 43

PE — 0.5185 0.7368 0.6087 19

PO — 0.0000 0.0000 0.0000 3

SC — 0.3333 0.3333 0.3333 6

SE — 0.6512 0.4308 0.5185 65

US — 0.4194 0.7879 0.5474 33

All 0.4925 0.5352 0.4925 0.4811 —

3

A
ll

C
la

ss
es

A — 0.4000 0.8571 0.5455 7

FT — 0.1429 0.3333 0.2000 3

L — 0.1667 0.2000 0.1818 5

LF — 0.1429 0.3636 0.2051 11

(continued on the next page)
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Table B.1: (continued) Experiments results of Method M1

Expr. Cond. Class Accuracy Precision Recall F1 Support

MN — 0.0000 0.0000 0.0000 7

O — 0.2778 0.1163 0.1639 43

PE — 0.5455 0.6316 0.5854 19

PO — 0.0000 0.0000 0.0000 3

SC — 0.4000 0.3333 0.3636 6

SE — 0.6667 0.1538 0.2500 65

US — 0.3750 0.6364 0.4719 33

AC — 0.2857 0.0444 0.0769 45

AT — 0.0000 0.0000 0.0000 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.5135 0.6552 0.5758 87

PL — 0.0000 0.0000 0.0000 3

SO — 0.3926 0.6095 0.4776 105

All 0.4022 0.4018 0.4022 0.3554 —

B.1.0.1 | Method M2

Table B.2: Experiments results of Method M2

Expr. Cond. Class Accuracy Precision Recall F1 Support

1

Si
gn

ifi
ca

nt

AC — 0.3571 0.1111 0.1695 45

EN — 0.8025 0.7471 0.7738 87

SO — 0.6549 0.8857 0.7530 105

(continued on the next page)
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Table B.2: (continued) Experiments results of Method M2

Expr. Cond. Class Accuracy Precision Recall F1 Support

All 0.6878 0.6525 0.6878 0.6499 —

A
ll

FR
C

la
ss

es

AC — 0.3636 0.1778 0.2388 45

AT — 0.3077 0.2500 0.2759 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.7952 0.7586 0.7765 87

PL — 0.0000 0.0000 0.0000 4

SO — 0.6214 0.8286 0.7102 105

All 0.6371 0.6012 0.6371 0.6073 —

2

Si
gn

ifi
ca

nt

LF — 1.0000 0.0909 0.1667 11

O — 0.7436 0.6744 0.7073 43

PE — 0.5385 0.7368 0.6222 19

SE — 0.6327 0.4769 0.5439 65

US — 0.4286 0.7273 0.5393 33

All 0.5789 0.6343 0.5789 0.5685 —

A
ll

N
FR

C
la

ss
es

A — 0.7000 1.0000 0.8235 7

FT — 0.0000 0.0000 0.0000 3

L — 0.2500 0.2000 0.2222 5

LE — 0.5000 0.1818 0.2667 11

MN — 0.5000 0.1667 0.2500 6

O — 0.5946 0.5116 0.5500 43

PE — 0.5769 0.7895 0.6667 19

(continued on the next page)
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Table B.2: (continued) Experiments results of Method M2

Expr. Cond. Class Accuracy Precision Recall F1 Support

PO — 0.0000 0.0000 0.0000 3

SC — 0.2000 0.3333 0.2500 6

SE — 0.6042 0.4462 0.5133 65

US — 0.3898 0.6970 0.5000 33

All 0.5075 0.5200 0.5075 0.4925 —

3

A
ll

C
la

ss
es

A — 0.5455 0.8571 0.6667 7

FT — 0.0000 0.0000 0.0000 3

L — 0.3333 0.2000 0.2500 5

LF — 0.0500 0.0909 0.0645 11

MN — 0.0000 0.0000 0.0000 7

O — 0.3571 0.3488 0.3529 43

PE — 0.5000 0.4737 0.4865 19

PO — 0.0000 0.0000 0.0000 3

SC — 0.1250 0.1667 0.1429 6

SE — 0.6842 0.2000 0.3095 65

US — 0.3396 0.5455 0.4186 33

AC — 0.1765 0.0667 0.0968 45

AT — 0.1538 0.1250 0.1379 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.5636 0.7126 0.6294 87

PL — 0.0000 0.0000 0.0000 3

(continued on the next page)
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Table B.2: (continued) Experiments results of Method M2

Expr. Cond. Class Accuracy Precision Recall F1 Support

SO — 0.4126 0.5619 0.4758 105

All 0.4130 0.4132 0.4130 0.3850 —

B.2 | Method M3

Table B.3: Experiments results of Method M3

Expr. Cond. Class Accuracy Precision Recall F1 Support

1

Si
gn

ifi
ca

nt

LF — 0.3333 0.9091 0.4878 11

O — 1.0000 0.5814 0.7353 43

PE — 0.8750 0.3684 0.5185 19

SE — 0.6966 0.9538 0.8052 65

US — 0.9474 0.5455 0.6923 33

All 0.7135 0.8178 0.7135 0.7136 —

A
ll

N
FR

C
la

ss
es

A — 0.0000 0.0000 0.0000 7

FT — 0.0938 1.0000 0.1714 3

L — 0.0000 0.0000 0.0000 5

LE — 0.0000 0.0000 0.0000 11

MN — 0.0000 0.0000 0.0000 6

O — 0.7188 0.5349 0.6133 43

PE — 1.0000 0.4211 0.5926 19

PO — 0.0000 0.0000 0.0000 3

(continued on the next page)
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Table B.3: (continued) Experiments results of Method M3

Expr. Cond. Class Accuracy Precision Recall F1 Support

SC — 0.0000 0.0000 0.0000 6

SE — 0.6117 0.9692 0.7500 65

US — 0.9615 0.7576 0.8475 33

All 0.6070 0.6054 0.6070 0.5715 —

2

Si
gn

ifi
ca

nt

AC — 0.4655 0.6000 0.5243 45

EN — 0.7297 0.6207 0.6708 87

SO — 0.6476 0.6476 0.6476 105

All 0.6287 0.6432 0.6287 0.6327 —

A
ll

FR
C

la
ss

es

AC — 0.6875 0.2444 0.3607 45

AT — 0.0000 0.0000 0.0000 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.6526 0.7126 0.6813 87

PL — 0.0000 0.0000 0.0000 4

SO — 0.5944 0.8095 0.6855 105

All 0.6100 0.5796 0.6100 0.5694 —

3

A
ll

C
la

ss
es

A — 0.0000 0.0000 0.0000 7

FT — 0.0000 0.0000 0.0000 3

L — 0.0000 0.0000 0.0000 5

LF — 0.0000 0.0000 0.0000 11

MN — 0.0000 0.0000 0.0000 7

O — 0.7500 0.2093 0.3273 43

(continued on the next page)
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Table B.3: (continued) Experiments results of Method M3

Expr. Cond. Class Accuracy Precision Recall F1 Support

PE — 1.0000 0.0526 0.1000 19

PO — 0.0000 0.0000 0.0000 3

SC — 0.0000 0.0000 0.0000 6

SE — 0.6857 0.7385 0.7111 65

US — 1.0000 0.2727 0.4286 33

AC — 0.8750 0.1556 0.2642 45

AT — 0.0000 0.0000 0.0000 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.4500 0.7241 0.5551 87

PL — 0.0000 0.0000 0.0000 3

SO — 0.3832 0.7810 0.5141 105

All 0.4761 0.5382 0.4761 0.4141 —

B.3 | Method M4

Table B.4: Experiments results of Method M4

Expr. Cond. Class Accuracy Precision Recall F1 Support

1

Si
gn

ifi
ca

nt

LF — 0.5263 0.9091 0.6667 11

O — 0.9143 0.7442 0.8205 43

PE — 0.8095 0.8947 0.8500 19

SE — 0.9077 0.9077 0.9077 65

(continued on the next page)
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Table B.4: (continued) Experiments results of Method M4

Expr. Cond. Class Accuracy Precision Recall F1 Support

US — 0.8065 0.7576 0.7812 33

All 0.8363 0.8544 0.8363 0.8395 —

A
ll

N
FR

C
la

ss
es

A — 1.0000 0.4286 0.6000 7

FT — 0.0909 0.6667 0.1600 3

L — 1.0000 0.2000 0.3333 5

LE — 0.3333 0.0909 0.1429 11

MN — 0.5000 0.1667 0.2500 6

O — 0.7442 0.7442 0.7442 43

PE — 0.6667 0.8421 0.7442 19

PO — 0.0000 0.0000 0.0000 3

SC — 1.0000 0.1667 0.2857 6

SE — 0.8548 0.8154 0.8346 65

US — 0.7500 0.9091 0.8219 33

All 0.6965 0.7459 0.6965 0.6898 —

2

Si
gn

ifi
ca

nt

AC — 0.5185 0.6222 0.5657 45

EN — 0.7738 0.7471 0.7602 87

SO — 0.7273 0.6857 0.7059 105

All 0.6962 0.7047 0.6962 0.6992 —

A
ll

FR
C

la
ss

es

AC — 0.4762 0.4444 0.4598 45

AT — 0.2500 0.0625 0.1000 16

DE — 0.0000 0.0000 0.0000 2

(continued on the next page)
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Table B.4: (continued) Experiments results of Method M4

Expr. Cond. Class Accuracy Precision Recall F1 Support

EN — 0.6832 0.7931 0.7340 87

PL — 0.0000 0.0000 0.0000 4

SO — 0.5909 0.6190 0.6047 105

All 0.5985 0.5672 0.5985 0.5778 —

3

A
ll

C
la

ss
es

A — 1.0000 0.4286 0.6000 7

FT — 0.0000 0.0000 0.0000 3

L — 1.0000 0.2000 0.3333 5

LF — 0.6000 0.2727 0.3750 11

MN — 1.0000 0.4286 0.6000 7

O — 0.6591 0.6744 0.6667 43

PE — 0.7222 0.6842 0.7027 19

PO — 0.0000 0.0000 0.0000 3

SC — 0.0000 0.0000 0.0000 6

SE — 0.6500 0.8000 0.7172 65

US — 0.7179 0.8485 0.7778 33

AC — 0.6250 0.6667 0.6452 45

AT — 0.5000 0.0625 0.1111 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.6344 0.6782 0.6556 87

PL — 0.0000 0.0000 0.0000 3

SO — 0.5285 0.6190 0.5702 105

(continued on the next page)
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Table B.4: (continued) Experiments results of Method M4

Expr. Cond. Class Accuracy Precision Recall F1 Support

All 0.6239 0.6096 0.6239 0.6005 —

B.4 | Method M5

Table B.5: Experiments results of Method M5

Expr. Cond. Class Accuracy Precision Recall F1 Support

1

Si
gn

ifi
ca

nt

LF — 0.8571 0.5455 0.6667 11

O — 0.7619 0.7442 0.7529 43

PE — 0.8125 0.6842 0.7429 19

SE — 0.8507 0.8769 0.8636 65

US — 0.7949 0.9394 0.8611 33

All 0.8129 0.8138 0.8129 0.8092 —

A
ll

N
FR

C
la

ss
es

A — 0.7500 0.4286 0.5455 7

FT — 0.0000 0.0000 0.0000 3

L — 0.8000 0.8000 0.8000 5

LE — 0.7143 0.4545 0.5556 11

MN — 0.4000 0.3333 0.3636 6

O — 0.7381 0.7209 0.7294 43

PE — 0.8235 0.7368 0.7778 19

PO — 1.0000 0.3333 0.5000 3

SC — 0.5000 0.5000 0.5000 6

(continued on the next page)
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Table B.5: (continued) Experiments results of Method M5

Expr. Cond. Class Accuracy Precision Recall F1 Support

SE — 0.8028 0.8769 0.8382 65

US — 0.7750 0.9394 0.8493 33

All 0.7512 0.7495 0.7512 0.7426 —

2

Si
gn

ifi
ca

nt

AC — 0.7879 0.5778 0.6667 45

EN — 0.7391 0.7816 0.7598 87

SO — 0.7500 0.8000 0.7742 105

All 0.7511 0.7532 0.7511 0.7485 —

A
ll

FR
C

la
ss

es

AC — 0.5283 0.6222 0.5714 45

AT — 0.4444 0.2500 0.3200 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.6535 0.7586 0.7021 87

PL — 1.0000 0.5000 0.6667 4

SO — 0.7447 0.6667 0.7035 105

All 0.6564 0.6561 0.6564 0.6504 —

3

A
ll

C
la

ss
es

A — 0.7500 0.8571 0.8000 7

FT — 1.0000 0.6667 0.8000 3

L — 1.0000 0.2000 0.3333 5

LF — 0.6250 0.4545 0.5263 11

MN — 0.5000 0.2857 0.3636 7

O — 0.7105 0.6279 0.6667 43

PE — 0.6667 0.4211 0.5161 19

(continued on the next page)
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Table B.5: (continued) Experiments results of Method M5

Expr. Cond. Class Accuracy Precision Recall F1 Support

PO — 1.0000 0.3333 0.5000 3

SC — 0.8000 0.6667 0.7273 6

SE — 0.6515 0.6615 0.6565 65

US — 0.7879 0.7879 0.7879 33

AC — 0.4889 0.4889 0.4889 45

AT — 0.6250 0.3125 0.4167 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.6250 0.7471 0.6806 87

PL — 0.0000 0.0000 0.0000 3

SO — 0.5280 0.6286 0.5739 105

All 0.6152 0.6191 0.6152 0.6069 —

B.5 | Method M6

Table B.6: Experiments results of Method M6

Expr. Cond. Class Accuracy Precision Recall F1 Support

1

Si
gn

ifi
ca

nt

LF — 0.6667 0.5455 0.6000 11

O — 0.6667 0.6512 0.6588 43

PE — 0.6316 0.6316 0.6316 19

SE — 0.8438 0.8308 0.8372 65

US — 0.7838 0.8788 0.8286 33

(continued on the next page)
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Table B.6: (continued) Experiments results of Method M6

Expr. Cond. Class Accuracy Precision Recall F1 Support

All 0.7544 0.7527 0.7544 0.7526 —

A
ll

N
FR

C
la

ss
es

A — 1.0000 0.5714 0.7273 7

FT — 0.0000 0.0000 0.0000 3

L — 1.0000 0.2000 0.3333 5

LE — 0.4444 0.7273 0.5517 11

MN — 0.4286 0.5000 0.4615 6

O — 0.6250 0.5814 0.6024 43

PE — 0.6818 0.7895 0.7317 19

PO — 1.0000 0.3333 0.5000 3

SC — 0.6667 0.3333 0.4444 6

SE — 0.7692 0.7692 0.7692 65

US — 0.6842 0.7879 0.7324 33

All 0.6716 0.6909 0.6716 0.6654 —

2

Si
gn

ifi
ca

nt

AC — 0.4706 0.7111 0.5664 45

EN — 0.6463 0.6092 0.6272 87

SO — 0.6322 0.5238 0.5729 105

All 0.5907 0.6067 0.5907 0.5916 —

A
ll

FR
C

la
ss

es

AC — 0.4000 0.6222 0.4870 45

AT — 0.3333 0.0625 0.1053 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.6355 0.7816 0.7010 87

(continued on the next page)
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Table B.6: (continued) Experiments results of Method M6

Expr. Cond. Class Accuracy Precision Recall F1 Support

PL — 0.0000 0.0000 0.0000 4

SO — 0.5949 0.4476 0.5109 105

All 0.5560 0.5448 0.5560 0.5337 —

3

A
ll

C
la

ss
es

A — 1.0000 0.4286 0.6000 7

FT — 0.0000 0.0000 0.0000 3

L — 1.0000 0.4000 0.5714 5

LF — 0.7273 0.7273 0.7273 11

MN — 0.6000 0.4286 0.5000 7

O — 0.5682 0.5814 0.5747 43

PE — 0.6250 0.5263 0.5714 19

PO — 0.3333 0.3333 0.3333 3

SC — 1.0000 0.3333 0.5000 6

SE — 0.6667 0.6769 0.6718 65

US — 0.6250 0.7576 0.6849 33

AC — 0.3836 0.6222 0.4746 45

AT — 0.7500 0.1875 0.3000 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.5526 0.4828 0.5153 87

PL — 0.0000 0.0000 0.0000 3

SO — 0.4690 0.5048 0.4862 105

All 0.5413 0.5610 0.5413 0.5357 —
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B.6 | Method M7

Table B.7: Experiments results of Method M7

Expr. Cond. Class Accuracy Precision Recall F1 Support

1

Si
gn

ifi
ca

nt

LF — 0.2703 0.9091 0.4167 11

O — 0.8519 0.5349 0.6571 43

PE — 1.0000 0.1053 0.1905 19

SE — 0.7143 0.9231 0.8054 65

US — 0.9048 0.5758 0.7037 33

All 0.6667 0.7888 0.6667 0.6552 —

A
ll

N
FR

C
la

ss
es

A — 0.0000 0.0000 0.0000 7

FT — 0.1667 1.0000 0.2857 3

L — 0.0000 0.0000 0.0000 5

LE — 0.0000 0.0000 0.0000 11

MN — 0.0000 0.0000 0.0000 6

O — 0.6129 0.4419 0.5135 43

PE — 0.6667 0.1053 0.1818 19

PO — 0.0000 0.0000 0.0000 3

SC — 0.0000 0.0000 0.0000 6

SE — 0.5328 1.0000 0.6952 65

US — 0.8148 0.6667 0.7333 33

All 0.5522 0.5027 0.5522 0.4765 —

2

Si
gn

ifi
ca

nt

AC — 0.5750 0.5111 0.5412 45

EN — 0.7442 0.7356 0.7399 87

(continued on the next page)
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Table B.7: (continued) Experiments results of Method M7

Expr. Cond. Class Accuracy Precision Recall F1 Support

SO — 0.6937 0.7333 0.7130 105

All 0.6920 0.6897 0.6920 0.6902 —

A
ll

FR
C

la
ss

es

AC — 0.7000 0.3111 0.4308 45

AT — 0.0000 0.0000 0.0000 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.6700 0.7701 0.7166 87

PL — 0.0000 0.0000 0.0000 4

SO — 0.6204 0.8095 0.7025 105

All 0.6409 0.5982 0.6409 0.6003 —

3

A
ll

C
la

ss
es

A — 0.0000 0.0000 0.0000 7

FT — 0.0000 0.0000 0.0000 3

L — 0.0000 0.0000 0.0000 5

LF — 0.0000 0.0000 0.0000 11

MN — 0.0000 0.0000 0.0000 7

O — 0.7143 0.1163 0.2000 43

PE — 0.0000 0.0000 0.0000 19

PO — 0.0000 0.0000 0.0000 3

SC — 0.0000 0.0000 0.0000 6

SE — 0.6164 0.6923 0.6522 65

US — 1.0000 0.1515 0.2632 33

AC — 0.9231 0.2667 0.4138 45

(continued on the next page)
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Table B.7: (continued) Experiments results of Method M7

Expr. Cond. Class Accuracy Precision Recall F1 Support

AT — 0.0000 0.0000 0.0000 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.4710 0.7471 0.5778 87

PL — 0.0000 0.0000 0.0000 3

SO — 0.3801 0.8000 0.5153 105

All 0.4696 0.4918 0.4696 0.3971 —

B.7 | Method M8

Table B.8: Experiments results of Method M8

Expr. Cond. Class Accuracy Precision Recall F1 Support

1

Si
gn

ifi
ca

nt

LF — 0.2439 0.9091 0.3846 11

O — 0.8621 0.5814 0.6944 43

PE — 1.0000 0.1579 0.2727 19

SE — 0.7683 0.9692 0.8571 65

US — 0.8750 0.4242 0.5714 33

All 0.6725 0.8045 0.6725 0.6658 —

A
ll

N
FR

C
la

ss
es

A — 0.0000 0.0000 0.0000 7

FT — 0.0571 0.6667 0.1053 3

L — 0.0000 0.0000 0.0000 5

LE — 0.0000 0.0000 0.0000 11

(continued on the next page)
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Appendix B. Result Tables B.7. Method M8

Table B.8: (continued) Experiments results of Method M8

Expr. Cond. Class Accuracy Precision Recall F1 Support

MN — 0.0000 0.0000 0.0000 6

O — 0.5556 0.5814 0.5682 43

PE — 0.6667 0.1053 0.1818 19

PO — 0.0000 0.0000 0.0000 3

SC — 0.0000 0.0000 0.0000 6

SE — 0.6129 0.8769 0.7215 65

US — 0.7600 0.5758 0.6552 33

All 0.5224 0.5057 0.5224 0.4812 —

2

Si
gn

ifi
ca

nt

AC — 0.5510 0.6000 0.5745 45

EN — 0.7738 0.7471 0.7602 87

SO — 0.7115 0.7048 0.7081 105

All 0.7004 0.7039 0.7004 0.7019 —

A
ll

FR
C

la
ss

es

AC — 0.5909 0.2889 0.3881 45

AT — 0.0000 0.0000 0.0000 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.7363 0.7701 0.7528 87

PL — 0.0000 0.0000 0.0000 4

SO — 0.5874 0.8000 0.6774 105

All 0.6332 0.5881 0.6332 0.5949 —

3

A
ll

C
la

ss
es

A — 0.0000 0.0000 0.0000 7

FT — 0.0000 0.0000 0.0000 3

(continued on the next page)
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Appendix B. Result Tables B.8. Method M9

Table B.8: (continued) Experiments results of Method M8

Expr. Cond. Class Accuracy Precision Recall F1 Support

L — 0.0000 0.0000 0.0000 5

LF — 0.0000 0.0000 0.0000 11

MN — 0.0000 0.0000 0.0000 7

O — 0.5789 0.2558 0.3548 43

PE — 0.0000 0.0000 0.0000 19

PO — 0.0000 0.0000 0.0000 3

SC — 0.0000 0.0000 0.0000 6

SE — 0.6567 0.6769 0.6667 65

US — 0.8571 0.1818 0.3000 33

AC — 0.9412 0.3556 0.5161 45

AT — 0.0000 0.0000 0.0000 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.5398 0.7011 0.6100 87

PL — 0.0000 0.0000 0.0000 3

SO — 0.3537 0.7714 0.4850 105

All 0.4761 0.4833 0.4761 0.4255 —

B.8 | Method M9
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Appendix B. Result Tables B.8. Method M9

Table B.9: Experiments results of Method M9

Expr. Cond. Class Accuracy Precision Recall F1 Support

1

Si
gn

ifi
ca

nt

LF — 0.4500 0.8182 0.5806 11

O — 0.8485 0.6512 0.7368 43

PE — 0.7857 0.5789 0.6667 19

SE — 0.7945 0.8923 0.8406 65

US — 0.8710 0.8182 0.8438 33

All 0.7778 0.7997 0.7778 0.7791 —

A
ll

N
FR

C
la

ss
es

A — 0.5000 0.8571 0.6316 7

FT — 0.1667 0.3333 0.2222 3

L — 0.6667 0.4000 0.5000 5

LE — 0.4615 0.5455 0.5000 11

MN — 0.6000 0.5000 0.5455 6

O — 0.9600 0.5581 0.7059 43

PE — 0.7778 0.7368 0.7568 19

PO — 0.0000 0.0000 0.0000 3

SC — 0.5714 0.6667 0.6154 6

SE — 0.8000 0.9231 0.8571 65

US — 0.6389 0.6970 0.6667 33

All 0.7114 0.7392 0.7114 0.7089 —

2

Si
gn

ifi
ca

nt

AC — 0.4590 0.6222 0.5283 45

EN — 0.7558 0.7471 0.7514 87

SO — 0.7889 0.6762 0.7282 105

(continued on the next page)
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Appendix B. Result Tables B.8. Method M9

Table B.9: (continued) Experiments results of Method M9

Expr. Cond. Class Accuracy Precision Recall F1 Support

All 0.6920 0.7141 0.6920 0.6988 —

A
ll

FR
C

la
ss

es

AC — 0.6429 0.6000 0.6207 45

AT — 0.2000 0.1875 0.1935 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.6271 0.8506 0.7220 87

PL — 0.3333 0.2500 0.2857 4

SO — 0.8000 0.6095 0.6919 105

All 0.6525 0.6642 0.6525 0.6472 —

3

A
ll

C
la

ss
es

A — 0.4118 1.0000 0.5833 7

FT — 0.6667 0.6667 0.6667 3

L — 0.4000 0.4000 0.4000 5

LF — 0.6667 0.5455 0.6000 11

MN — 0.5000 0.2857 0.3636 7

O — 0.6585 0.6279 0.6429 43

PE — 0.4783 0.5789 0.5238 19

PO — 0.5000 0.3333 0.4000 3

SC — 0.7500 0.5000 0.6000 6

SE — 0.6719 0.6615 0.6667 65

US — 0.7879 0.7879 0.7879 33

AC — 0.4792 0.5111 0.4946 45

AT — 0.5000 0.1875 0.2727 16

(continued on the next page)
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Appendix B. Result Tables B.9. Method M10

Table B.9: (continued) Experiments results of Method M9

Expr. Cond. Class Accuracy Precision Recall F1 Support

DE — 0.0000 0.0000 0.0000 2

EN — 0.6598 0.7356 0.6957 87

PL — 0.0000 0.0000 0.0000 3

SO — 0.6737 0.6095 0.6400 105

All 0.6174 0.6272 0.6174 0.6159 —

B.9 | Method M10

Table B.10: Experiments results of Method M10

Expr. Cond. Class Accuracy Precision Recall F1 Support

1

Si
gn

ifi
ca

nt

LF — 0.1579 0.8182 0.2647 11

O — 0.6071 0.3953 0.4789 43

PE — 0.9286 0.6842 0.7879 19

SE — 0.8400 0.6462 0.7304 65

US — 0.6818 0.4545 0.5455 33

All 0.5614 0.7169 0.5614 0.6079 —

A
ll

N
FR

C
la

ss
es

A — 0.1875 0.4286 0.2609 7

FT — 0.1429 0.3333 0.2000 3

L — 1.0000 0.4000 0.5714 5

LE — 0.4286 0.2727 0.3333 11

MN — 0.0000 0.0000 0.0000 6

(continued on the next page)
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Appendix B. Result Tables B.9. Method M10

Table B.10: (continued) Experiments results of Method M10

Expr. Cond. Class Accuracy Precision Recall F1 Support

O — 0.7105 0.6279 0.6667 43

PE — 1.0000 0.4211 0.5926 19

PO — 0.0000 0.0000 0.0000 3

SC — 0.2500 0.3333 0.2857 6

SE — 0.7121 0.7231 0.7176 65

US — 0.4490 0.6667 0.5366 33

All 0.5721 0.6150 0.5721 0.5718 —

2

Si
gn

ifi
ca

nt

AC — 0.4615 0.8000 0.5854 45

EN — 0.8472 0.7011 0.7673 87

SO — 0.7701 0.6381 0.6979 105

All 0.6920 0.7398 0.6920 0.7020 —

A
ll

FR
C

la
ss

es

AC — 0.6250 0.3333 0.4348 45

AT — 0.7500 0.1875 0.3000 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.6931 0.8046 0.7447 87

PL — 1.0000 0.2500 0.4000 4

SO — 0.6320 0.7524 0.6870 105

All 0.6486 0.6594 0.6486 0.6289 —

3

A
ll

C
la

ss
es

A — 0.4545 0.7143 0.5556 7

FT — 0.0000 0.0000 0.0000 3

L — 0.3333 0.2000 0.2500 5

(continued on the next page)
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Appendix B. Result Tables B.10. Method M11

Table B.10: (continued) Experiments results of Method M10

Expr. Cond. Class Accuracy Precision Recall F1 Support

LF — 0.2632 0.4545 0.3333 11

MN — 0.0000 0.0000 0.0000 7

O — 0.3860 0.5116 0.4400 43

PE — 0.5556 0.2632 0.3571 19

PO — 0.5000 0.3333 0.4000 3

SC — 0.6000 0.5000 0.5455 6

SE — 0.5667 0.5231 0.5440 65

US — 0.2319 0.4848 0.3137 33

AC — 0.6154 0.3556 0.4507 45

AT — 0.0000 0.0000 0.0000 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.6351 0.5402 0.5839 87

PL — 0.0000 0.0000 0.0000 3

SO — 0.5172 0.5714 0.5430 105

All 0.4674 0.4820 0.4674 0.4626 —

B.10 | Method M11

Table B.11: Experiments results of Method M11

Expr. Cond. Class Accuracy Precision Recall F1 Support

1

Si
gn

ifi
ca

nt

LF — 1.0000 0.3636 0.5333 11

(continued on the next page)
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Appendix B. Result Tables B.10. Method M11

Table B.11: (continued) Experiments results of Method M11

Expr. Cond. Class Accuracy Precision Recall F1 Support

O — 0.7750 0.7209 0.7470 43

PE — 1.0000 0.6842 0.8125 19

SE — 0.8289 0.9692 0.8936 65

US — 0.8684 1.0000 0.9296 33

All 0.8421 0.8530 0.8421 0.8315 —

A
ll

N
FR

C
la

ss
es

A — 1.0000 0.5714 0.7273 7

FT — 0.0000 0.0000 0.0000 3

L — 1.0000 0.2000 0.3333 5

LE — 0.7500 0.2727 0.4000 11

MN — 0.0000 0.0000 0.0000 6

O — 0.7255 0.8605 0.7872 43

PE — 1.0000 0.7895 0.8824 19

PO — 0.0000 0.0000 0.0000 3

SC — 1.0000 0.3333 0.5000 6

SE — 0.7722 0.9385 0.8472 65

US — 0.6889 0.9394 0.7949 33

All 0.7662 0.7431 0.7662 0.7267 —

2

Si
gn

ifi
ca

nt

AC — 0.8148 0.4889 0.6111 45

EN — 0.8506 0.8506 0.8506 87

SO — 0.7724 0.9048 0.8333 105

All 0.8059 0.8091 0.8059 0.7975 —

(continued on the next page)
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Appendix B. Result Tables B.10. Method M11

Table B.11: (continued) Experiments results of Method M11

Expr. Cond. Class Accuracy Precision Recall F1 Support
A

ll
FR

C
la

ss
es

AC — 0.6579 0.5556 0.6024 45

AT — 1.0000 0.0625 0.1176 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.7524 0.9080 0.8229 87

PL — 0.0000 0.0000 0.0000 4

SO — 0.6957 0.7619 0.7273 105

All 0.7143 0.7108 0.7143 0.6832 —

3

A
ll

C
la

ss
es

A — 1.0000 0.5714 0.7273 7

FT — 0.0000 0.0000 0.0000 3

L — 1.0000 0.2000 0.3333 5

LF — 1.0000 0.1818 0.3077 11

MN — 0.0000 0.0000 0.0000 7

O — 0.6341 0.6047 0.6190 43

PE — 0.7692 0.5263 0.6250 19

PO — 0.0000 0.0000 0.0000 3

SC — 0.6667 0.3333 0.4444 6

SE — 0.7429 0.8000 0.7704 65

US — 0.8286 0.8788 0.8529 33

AC — 0.9474 0.4000 0.5625 45

AT — 1.0000 0.1250 0.2222 16

DE — 0.0000 0.0000 0.0000 2

(continued on the next page)
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Appendix B. Result Tables B.11. Method M12

Table B.11: (continued) Experiments results of Method M11

Expr. Cond. Class Accuracy Precision Recall F1 Support

EN — 0.7400 0.8506 0.7914 87

PL — 0.0000 0.0000 0.0000 3

SO — 0.5000 0.8095 0.6182 105

All 0.6630 0.6957 0.6630 0.6351 —

B.11 | Method M12

Table B.12: Experiments results of Method M12

Expr. Cond. Class Accuracy Precision Recall F1 Support

1

Si
gn

ifi
ca

nt

LF — 0.6667 0.7273 0.6957 11

O — 0.7750 0.7209 0.7470 43

PE — 0.6957 0.8421 0.7619 19

SE — 0.8235 0.8615 0.8421 65

US — 0.8929 0.7576 0.8197 33

All 0.7953 0.8004 0.7953 0.7955 —

A
ll

N
FR

C
la

ss
es

A — 0.5714 0.5714 0.5714 7

FT — 0.0000 0.0000 0.0000 3

L — 0.5000 0.2000 0.2857 5

LE — 0.5000 0.1818 0.2667 11

MN — 0.7500 0.5000 0.6000 6

O — 0.7143 0.8140 0.7609 43

(continued on the next page)
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Appendix B. Result Tables B.11. Method M12

Table B.12: (continued) Experiments results of Method M12

Expr. Cond. Class Accuracy Precision Recall F1 Support

PE — 0.7619 0.8421 0.8000 19

PO — 0.5000 0.6667 0.5714 3

SC — 0.5000 0.6667 0.5714 6

SE — 0.9077 0.9077 0.9077 65

US — 0.7353 0.7576 0.7463 33

All 0.7512 0.7436 0.7512 0.7395 —

2

Si
gn

ifi
ca

nt

AC — 0.6304 0.6444 0.6374 45

EN — 0.8750 0.8851 0.8800 87

SO — 0.7961 0.7810 0.7885 105

All 0.7932 0.7936 0.7932 0.7934 —

A
ll

FR
C

la
ss

es

AC — 0.5208 0.5556 0.5376 45

AT — 0.5455 0.3750 0.4444 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.8824 0.8621 0.8721 87

PL — 0.3333 0.2500 0.2857 4

SO — 0.7232 0.7714 0.7465 105

All 0.7259 0.7189 0.7259 0.7209 —

3

A
ll

C
la

ss
es

A — 0.8333 0.7143 0.7692 7

FT — 1.0000 0.0000 0.0000 3

L — 0.0000 0.2000 0.3333 5

LF — 0.6250 0.4545 0.5263 11

(continued on the next page)
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Appendix B. Result Tables B.12. Method M13

Table B.12: (continued) Experiments results of Method M12

Expr. Cond. Class Accuracy Precision Recall F1 Support

MN — 0.5000 0.2857 0.3636 7

O — 0.4833 0.6744 0.5631 43

PE — 0.6364 0.7368 0.6829 19

PO — 0.5000 0.3333 0.4000 3

SC — 0.5000 0.5000 0.5000 6

SE — 0.7925 0.6462 0.7119 65

US — 0.8077 0.6364 0.7119 33

AC — 0.6500 0.5778 0.6118 45

AT — 0.5000 0.2500 0.3333 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.8125 0.7471 0.7784 87

PL — 0.0000 0.0000 0.0000 3

SO — 0.5248 0.7048 0.6016 105

All 0.6348 0.6517 0.6348 0.6311 —

B.12 | Method M13

Table B.13: Experiments results of Method M13

Expr. Cond. Class Accuracy Precision Recall F1 Support

1

Si
gn

ifi
ca

nt

LF — 0.7778 0.6364 0.7000 11

O — 0.7500 0.6977 0.7229 43

(continued on the next page)
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Appendix B. Result Tables B.12. Method M13

Table B.13: (continued) Experiments results of Method M13

Expr. Cond. Class Accuracy Precision Recall F1 Support

PE — 0.8750 0.7368 0.8000 19

SE — 0.8356 0.9385 0.8841 65

US — 0.8485 0.8485 0.8485 33

All 0.8187 0.8172 0.8187 0.8155 —

A
ll

N
FR

C
la

ss
es

A — 0.6364 1.0000 0.7778 7

FT — 0.0000 0.0000 0.0000 3

L — 1.0000 0.2000 0.3333 5

LE — 0.5556 0.4545 0.5000 11

MN — 1.0000 0.3333 0.5000 6

O — 0.8500 0.7907 0.8193 43

PE — 0.7778 0.7368 0.7568 19

PO — 0.0000 0.0000 0.0000 3

SC — 0.7500 0.5000 0.6000 6

SE — 0.8429 0.9077 0.8741 65

US — 0.6889 0.9394 0.7949 33

All 0.7761 0.7707 0.7761 0.7555 —

2

Si
gn

ifi
ca

nt

AC — .6897 0.4444 0.5405 45

EN — 0.8065 0.8621 0.8333 87

SO — 0.7913 0.8667 0.8273 105

All 0.7848 0.7776 0.7848 0.7751 —

A
ll

FR
C

la
ss

es

AC — 0.6136 0.6000 0.6067 45
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Appendix B. Result Tables B.12. Method M13

Table B.13: (continued) Experiments results of Method M13

Expr. Cond. Class Accuracy Precision Recall F1 Support

AT — 0.5000 0.3125 0.3846 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.7248 0.9080 0.8061 87

PL — 0.2000 0.2500 0.2222 4

SO — 0.7802 0.6762 0.7245 105

All 0.7066 0.7004 0.7066 0.6971 —

3

A
ll

C
la

ss
es

A — 1.0000 0.8571 0.9231 7

FT — 1.0000 0.6667 0.8000 3

L — 0.3333 0.2000 0.2500 5

LF — 0.6667 0.1818 0.2857 11

MN — 1.0000 0.1429 0.2500 7

O — 0.6429 0.6279 0.6353 43

PE — 0.7333 0.5789 0.6471 19

PO — 0.0000 0.0000 0.0000 3

SC — 0.6667 0.3333 0.4444 6

SE — 0.7937 0.7692 0.7813 65

US — 0.7317 0.9091 0.8108 33

AC — 0.6923 0.4000 0.5070 45

AT — 0.7500 0.5625 0.6429 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.7727 0.7816 0.7771 87
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116



Appendix B. Result Tables B.13. Method M14

Table B.13: (continued) Experiments results of Method M13

Expr. Cond. Class Accuracy Precision Recall F1 Support

PL — 0.0000 0.0000 0.0000 3

SO — 0.5395 0.7810 0.6381 105

All 0.6717 0.6833 0.6717 0.6577 —

B.13 | Method M14

Table B.14: Experiments results of Method M14

Expr. Cond. Class Accuracy Precision Recall F1 Support

1

Si
gn

ifi
ca

nt

LF — 0.5000 0.1818 0.2667 11

O — 0.7209 0.7209 0.7209 43

PE — 0.7222 0.6842 0.7027 19

SE — 0.8243 0.9385 0.8777 65

US — 0.7812 0.7576 0.7692 33

All 0.7719 0.7578 0.7719 0.7586 —

A
ll

N
FR

C
la

ss
es

A — 0.6667 0.5714 0.6154 7

FT — 0.0000 0.0000 0.0000 3

L — 0.6667 0.4000 0.5000 5

LE — 0.5000 0.1818 0.2667 11

MN — 0.6667 0.3333 0.4444 6

O — 0.6981 0.8605 0.7708 43

PE — 0.8421 0.8421 0.8421 19

(continued on the next page)
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Appendix B. Result Tables B.13. Method M14

Table B.14: (continued) Experiments results of Method M14

Expr. Cond. Class Accuracy Precision Recall F1 Support

PO — 0.5000 0.3333 0.4000 3

SC — 0.5000 0.5000 0.5000 6

SE — 0.9062 0.8923 0.8992 65

US — 0.6410 0.7576 0.6944 33

All 0.7463 0.7367 0.7463 0.7319 —

2

Si
gn

ifi
ca

nt

AC — 0.7647 0.5778 0.6582 45

EN — 0.8642 0.8046 0.8333 87

SO — 0.7459 0.8667 0.8018 105

All 0.7890 0.7929 0.7890 0.7861 —

A
ll

FR
C

la
ss

es

AC — 0.5581 0.5333 0.5455 45

AT — 0.5000 0.1875 0.2727 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.8172 0.8736 0.8444 87

PL — 0.0000 0.0000 0.0000 4

SO — 0.6810 0.7524 0.7149 105

All 0.7027 0.6785 0.7027 0.6851 —

3

A
ll

C
la

ss
es

A — 1.0000 0.5714 0.7273 7

FT — 0.0000 0.0000 0.0000 3

L — 0.2500 0.2000 0.2222 5

LF — 0.8000 0.3636 0.5000 11

MN — 0.5000 0.1429 0.2222 7
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Table B.14: (continued) Experiments results of Method M14

Expr. Cond. Class Accuracy Precision Recall F1 Support

O — 0.4394 0.6744 0.5321 43

PE — 0.8667 0.6842 0.7647 19

PO — 0.0000 0.0000 0.0000 3

SC — 1.0000 0.5000 0.6667 6

SE — 0.8627 0.6769 0.7586 65

US — 0.7667 0.6970 0.7302 33

AC — 0.6000 0.6000 0.6000 45

AT — 0.3000 0.1875 0.2308 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.7500 0.7241 0.7368 87

PL — 0.0000 0.0000 0.0000 3

SO — 0.5396 0.7143 0.6148 105

All 0.6304 0.6456 0.6304 0.6248 —

B.14 | Method M15

Table B.15: Experiments results of Method M15

Expr. Cond. Class Accuracy Precision Recall F1 Support

1

Si
gn

ifi
ca

nt

LF — 0.3077 0.3636 0.3333 11

O — 0.6122 0.6977 0.6522 43

PE — 0.7778 0.7368 0.7568 19
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Appendix B. Result Tables B.14. Method M15

Table B.15: (continued) Experiments results of Method M15

Expr. Cond. Class Accuracy Precision Recall F1 Support

SE — 0.7925 0.6462 0.7119 65

US — 0.4737 0.5455 0.5070 33

All 0.6316 0.6528 0.6316 0.6380 —

A
ll

N
FR

C
la

ss
es

A — 0.2222 0.2857 0.2500 7

FT — 0.0000 0.0000 0.0000 3

L — 0.6667 0.4000 0.5000 5

LE — 0.0667 0.0909 0.0769 11

MN — 0.5000 0.3333 0.4000 6

O — 0.6486 0.5581 0.6000 43

PE — 0.6154 0.4211 0.5000 19

PO — 0.0000 0.0000 0.0000 3

SC — 0.1333 0.3333 0.1905 6

SE — 0.7869 0.7385 0.7619 65

US — 0.4884 0.6364 0.5526 33

All 0.5473 0.5785 0.5473 0.5557 —

2

Si
gn

ifi
ca

nt

AC — 0.4091 0.4000 0.4045 45

EN — 0.8415 0.7931 0.8166 87

SO — 0.7117 0.7524 0.7315 105

All 0.7004 0.7019 0.7004 0.7006 —

A
ll

FR
C

la
ss

es

AC — 0.6842 0.5778 0.6265 45

AT — 0.6364 0.4375 0.5185 16
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Table B.15: (continued) Experiments results of Method M15

Expr. Cond. Class Accuracy Precision Recall F1 Support

DE — 0.0000 0.0000 0.0000 2

EN — 0.8977 0.9080 0.9029 87

PL — 0.5000 0.2500 0.3333 4

SO — 0.7094 0.7905 0.7477 105

All 0.7568 0.7551 0.7568 0.7524 —

3

A
ll

C
la

ss
es

A — 0.2941 0.7143 0.4167 7

FT — 0.0000 0.0000 0.0000 3

L — 0.0000 0.0000 0.0000 5

LF — 1.0000 0.0909 0.1667 11

MN — 0.0000 0.0000 0.0000 7

O — 0.4167 0.4651 0.4396 43

PE — 0.6154 0.4211 0.5000 19

PO — 0.1429 0.3333 0.2000 3

SC — 0.1429 0.1667 0.1538 6

SE — 0.6182 0.5231 0.5667 65

US — 0.4412 0.4545 0.4478 33

AC — 0.2917 0.3111 0.3011 45

AT — 0.5000 0.3125 0.3846 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.7045 0.7126 0.7086 87

PL — 0.0000 0.0000 0.0000 3
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Table B.15: (continued) Experiments results of Method M15

Expr. Cond. Class Accuracy Precision Recall F1 Support

SO — 0.5164 0.6000 0.5551 105

All 0.4978 0.5116 0.4978 0.4911 —

B.15 | Method M16

Table B.16: Experiments results of Method M16

Expr. Cond. Class Accuracy Precision Recall F1 Support

1

Si
gn

ifi
ca

nt

LF — 0.3750 0.2727 0.3158 11

O — 0.5682 0.5814 0.5747 43

PE — 0.8000 0.8421 0.8205 19

SE — 0.7812 0.7692 0.7752 65

US — 0.6000 0.6364 0.6176 33

All 0.6725 0.6686 0.6725 0.6699 —

A
ll

N
FR

C
la

ss
es

A — 0.5000 0.5714 0.5333 7

FT — 0.0000 0.0000 0.0000 3

L — 0.3333 0.4000 0.3636 5

LE — 0.3333 0.3636 0.3478 11

MN — 0.0000 0.0000 0.0000 6

O — 0.6286 0.5116 0.5641 43

PE — 0.7500 0.4737 0.5806 19

PO — 0.0000 0.0000 0.0000 3

(continued on the next page)

122



Appendix B. Result Tables B.15. Method M16

Table B.16: (continued) Experiments results of Method M16

Expr. Cond. Class Accuracy Precision Recall F1 Support

SC — 0.1429 0.1667 0.1538 6

SE — 0.6712 0.7538 0.7101 65

US — 0.5682 0.7576 0.6494 33

All 0.5771 0.5639 0.5771 0.5631 —

2

Si
gn

ifi
ca

nt

AC — 0.6207 0.4000 0.4865 45

EN — 0.8025 0.7471 0.7738 87

SO — 0.6929 0.8381 0.7586 105

All 0.7215 0.7194 0.7215 0.7125 —

A
ll

FR
C

la
ss

es

AC — 0.5000 0.4222 0.4578 45

AT — 0.5000 0.5625 0.5294 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.8652 0.8851 0.8750 87

PL — 0.0000 0.0000 0.0000 4

SO — 0.6579 0.7143 0.6849 105

All 0.6950 0.6751 0.6950 0.6838 —

3

A
ll

C
la

ss
es

A — 0.3333 0.7143 0.4545 7

FT — 0.0000 0.0000 0.0000 3

L — 0.6667 0.4000 0.5000 5

LF — 0.4545 0.4545 0.4545 11

MN — 0.0000 0.0000 0.0000 7

O — 0.3953 0.3953 0.3953 43

(continued on the next page)
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Table B.16: (continued) Experiments results of Method M16

Expr. Cond. Class Accuracy Precision Recall F1 Support

PE — 0.6190 0.6842 0.6500 19

PO — 0.0000 0.0000 0.0000 3

SC — 0.3333 0.1667 0.2222 6

SE — 0.6066 0.5692 0.5873 65

US — 0.4359 0.5152 0.4722 33

AC — 0.4211 0.3556 0.3855 45

AT — 0.6667 0.2500 0.3636 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.7931 0.7931 0.7931 87

PL — 0.2500 0.3333 0.2857 3

SO — 0.5854 0.6857 0.6316 105

All 0.5630 0.5567 0.5630 0.5532 —

B.16 | Method M17

Table B.17: Experiments results of Method M17

Expr. Cond. Class Accuracy Precision Recall F1 Support

1

Si
gn

ifi
ca

nt

LF — 0.3333 0.2727 0.3000 11

O — 0.5000 0.6512 0.5657 43

PE — 0.6000 0.4737 0.5294 19

SE — 0.6047 0.4000 0.4815 65

(continued on the next page)
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Table B.17: (continued) Experiments results of Method M17

Expr. Cond. Class Accuracy Precision Recall F1 Support

US — 0.4375 0.6364 0.5185 33

All 0.5088 0.5281 0.5088 0.5034 —

A
ll

N
FR

C
la

ss
es

A — 0.3636 0.5714 0.4444 7

FT — 0.0000 0.0000 0.0000 3

L — 0.5000 0.2000 0.2857 5

LE — 0.2500 0.1818 0.2105 11

MN — 0.0000 0.0000 0.0000 6

O — 0.4310 0.5814 0.4950 43

PE — 0.4444 0.4211 0.4324 19

PO — 0.0000 0.0000 0.0000 3

SC — 0.4000 0.3333 0.3636 6

SE — 0.5909 0.4000 0.4771 65

US — 0.3704 0.6061 0.4598 33

All 0.4378 0.4368 0.4378 0.4215 —

2

Si
gn

ifi
ca

nt

AC — 0.7391 0.3778 0.5000 45

EN — 0.8784 0.7471 0.8075 87

SO — 0.7000 0.9333 0.8000 105

All 0.7595 0.7729 0.7595 0.7458 —

A
ll

FR
C

la
ss

es

AC — 0.6818 0.3333 0.4478 45

AT — 0.2778 0.3125 0.2941 16

DE — 0.0000 0.0000 0.0000 2
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Table B.17: (continued) Experiments results of Method M17

Expr. Cond. Class Accuracy Precision Recall F1 Support

EN — 0.8784 0.7471 0.8075 87

PL — 0.0000 0.0000 0.0000 4

SO — 0.6690 0.9238 0.7760 105

All 0.7027 0.7019 0.7027 0.6818 —

3

A
ll

C
la

ss
es

A — 0.2857 0.5714 0.3810 7

FT — 0.0000 0.0000 0.0000 3

L — 0.5000 0.2000 0.2857 5

LF — 0.0541 0.1818 0.0833 11

MN — 0.0000 0.0000 0.0000 7

O — 0.3667 0.5116 0.4272 43

PE — 0.3333 0.4211 0.3721 19

PO — 0.0000 0.0000 0.0000 3

SC — 0.2000 0.3333 0.2500 6

SE — 0.3617 0.2615 0.3036 65

US — 0.2346 0.5758 0.3333 33

AC — 0.4667 0.1556 0.2333 45

AT — 0.2308 0.1875 0.2069 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.6364 0.5632 0.5976 87

PL — 0.0000 0.0000 0.0000 3

SO — 0.5584 0.4095 0.4725 105

(continued on the next page)
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Table B.17: (continued) Experiments results of Method M17

Expr. Cond. Class Accuracy Precision Recall F1 Support

All 0.3848 0.4312 0.3848 0.3872 —

B.17 | Method M18

Table B.18: Experiments results of Method M18

Expr. Cond. Class Accuracy Precision Recall F1 Support

1

Si
gn

ifi
ca

nt

LF — 0.4444 0.3636 0.4000 11

O — 0.5909 0.6047 0.5977 43

PE — 0.6250 0.5263 0.5714 19

SE — 0.6304 0.4462 0.5225 65

US — 0.4107 0.6970 0.5169 33

All 0.5380 0.5655 0.5380 0.5379 —

A
ll

N
FR

C
la

ss
es

A — 0.4000 0.5714 0.4706 7

FT — 0.5000 0.3333 0.4000 3

L — 0.0000 0.0000 0.0000 5

LE — 0.5000 0.3636 0.4211 11

MN — 0.0000 0.0000 0.0000 6

O — 0.4889 0.5116 0.5000 43

PE — 0.4545 0.5263 0.4878 19

PO — 0.0000 0.0000 0.0000 3

SC — 0.4286 0.5000 0.4615 6
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Table B.18: (continued) Experiments results of Method M18

Expr. Cond. Class Accuracy Precision Recall F1 Support

SE — 0.6410 0.3846 0.4808 65

US — 0.3966 0.6970 0.5055 33

All 0.4577 0.4815 0.4577 0.4507 —

2

Si
gn

ifi
ca

nt

AC — 0.7857 0.4889 0.6027 45

EN — 0.8857 0.7126 0.7898 87

SO — 0.6978 0.9238 0.7951 105

All 0.7637 0.7835 0.7637 0.7566 —

A
ll

FR
C

la
ss

es

AC — 0.7500 0.2667 0.3934 45

AT — 0.2308 0.3750 0.2857 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.8750 0.7241 0.7925 87

PL — 0.0000 0.0000 0.0000 4

SO — 0.6414 0.8857 0.7440 105

All 0.6718 0.6985 0.6718 0.6538 —

3

A
ll

C
la

ss
es

A — 0.3077 0.5714 0.4000 7

FT — 0.3333 0.3333 0.3333 3

L — 0.2500 0.2000 0.2222 5

LF — 0.0556 0.1818 0.0851 11

MN — 0.0000 0.0000 0.0000 7

O — 0.4000 0.3721 0.3855 43

PE — 0.3889 0.3684 0.3784 19

(continued on the next page)
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Table B.18: (continued) Experiments results of Method M18

Expr. Cond. Class Accuracy Precision Recall F1 Support

PO — 0.0000 0.0000 0.0000 3

SC — 0.2143 0.5000 0.3000 6

SE — 0.4130 0.2923 0.3423 65

US — 0.3662 0.7879 0.5000 33

AC — 0.3529 0.1333 0.1935 45

AT — 0.1500 0.1875 0.1667 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.6977 0.6897 0.6936 87

PL — 0.0000 0.0000 0.0000 3

SO — 0.5610 0.4381 0.4920 105

All 0.4217 0.4515 0.4217 0.4208 —

B.18 | Method M19

Table B.19: Experiments results of Method M19

Expr. Cond. Class Accuracy Precision Recall F1 Support

1

Si
gn

ifi
ca

nt

LF — 0.3636 0.3636 0.3636 11

O — 0.6087 0.3256 0.4242 43

PE — 0.2745 0.7368 0.4000 19

SE — 0.8148 0.3385 0.4783 65

US — 0.4237 0.7576 0.5435 33

(continued on the next page)
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Table B.19: (continued) Experiments results of Method M19

Expr. Cond. Class Accuracy Precision Recall F1 Support

All 0.4620 0.5985 0.4620 0.4612 —

A
ll

N
FR

C
la

ss
es

A — 0.2941 0.7143 0.4167 7

FT — 0.0000 0.0000 0.0000 3

L — 0.4167 1.0000 0.5882 5

LE — 0.2222 0.1818 0.2000 11

MN — 0.2143 0.5000 0.3000 6

O — 0.4545 0.1163 0.1852 43

PE — 0.3333 0.5263 0.4082 19

PO — 0.0769 0.3333 0.1250 3

SC — 0.1538 0.3333 0.2105 6

SE — 0.8400 0.3231 0.4667 65

US — 0.3818 0.6364 0.4773 33

All 0.3731 0.5080 0.3731 0.3647 —

2

Si
gn

ifi
ca

nt

AC — 0.4000 0.3556 0.3765 45

EN — 0.8000 0.5977 0.6842 87

SO — 0.6136 0.7714 0.6835 105

All 0.6287 0.6415 0.6287 0.6255 —

A
ll

FR
C

la
ss

es

AC — 0.2581 0.3556 0.2991 45

AT — 0.3333 0.1875 0.2400 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.7500 0.7586 0.7543 87

(continued on the next page)
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Table B.19: (continued) Experiments results of Method M19

Expr. Cond. Class Accuracy Precision Recall F1 Support

PL — 1.0000 0.2500 0.4000 4

SO — 0.6289 0.5810 0.6040 105

All 0.5676 0.5877 0.5676 0.5712 —

3

A
ll

C
la

ss
es

A — 0.2500 0.7143 0.3704 7

FT — 0.0370 0.3333 0.0667 3

L — 0.0000 0.0000 0.0000 5

LF — 0.0769 0.2727 0.1200 11

MN — 0.2000 0.4286 0.2727 7

O — 0.2188 0.1628 0.1867 43

PE — 0.3548 0.5789 0.4400 19

PO — 0.0000 0.0000 0.0000 3

SC — 0.0909 0.5000 0.1538 6

SE — 0.6522 0.2308 0.3409 65

US — 0.3673 0.5455 0.4390 33

AC — 0.3600 0.2000 0.2571 45

AT — 0.2000 0.1875 0.1935 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.6500 0.4483 0.5306 87

PL — 0.0000 0.0000 0.0000 3

SO — 0.4655 0.2571 0.3313 105

All 0.3130 0.4351 0.3130 0.3383 —
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B.19 | Method M20

Table B.20: Experiments results of Method M20

Expr. Cond. Class Accuracy Precision Recall F1 Support

1

Si
gn

ifi
ca

nt

LF — 1.0000 0.5000 0.6667 10

O — 0.9000 0.6750 0.7714 40

PE — 1.0000 0.7222 0.8387 18

SE — 0.8592 0.9531 0.9037 64

US — 0.6341 0.9286 0.7536 28

All 0.8250 0.8546 0.8250 0.8222 —

A
ll

N
FR

C
la

ss
es

A — 0.7500 0.8571 0.8000 7

FT — 0.0000 0.0000 0.0000 2

L — 1.0000 0.4000 0.5714 5

LE — 0.7500 0.2727 0.4000 11

MN — 0.5000 0.1667 0.2500 6

O — 0.5625 0.6750 0.6136 40

PE — 1.0000 0.7222 0.8387 18

PO — 1.0000 0.3333 0.5000 3

SC — 1.0000 0.1667 0.2857 6

SE — 0.8571 0.9231 0.8889 65

US — 0.6279 0.9310 0.7500 29

All 0.7344 0.7548 0.7344 0.7122 —

2

Si
gn

ifi
ca

nt

AC — 0.6346 0.7857 0.7021 42

EN — 0.8370 0.9059 0.8701 85
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Table B.20: (continued) Experiments results of Method M20

Expr. Cond. Class Accuracy Precision Recall F1 Support

SO — 0.8500 0.7010 0.7684 97

All 0.7946 0.8047 0.7946 0.7945 —

A
ll

FR
C

la
ss

es

AC — 0.4925 0.7674 0.6000 43

AT — 0.9000 0.5625 0.6923 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.8690 0.8391 0.8538 87

PL — 0.0000 0.0000 0.0000 4

SO — 0.7895 0.7212 0.7538 104

All 0.7422 0.7550 0.7422 0.7404 —

3

A
ll

C
la

ss
es

A — 1.0000 0.2857 0.4444 7

FT — 1.0000 0.3333 0.5000 3

L — 1.0000 0.2000 0.3333 5

LF — 1.0000 0.2727 0.4286 11

MN — 1.0000 0.3333 0.5000 6

O — 0.4872 0.4524 0.4691 42

PE — 0.6667 0.4444 0.5333 18

PO — 0.0000 0.0000 0.0000 3

SC — 0.5000 0.1667 0.2500 6

SE — 0.7778 0.7424 0.7597 66

US — 0.5676 0.6562 0.6087 32

AC — 0.3913 0.4615 0.4235 39

(continued on the next page)
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Table B.20: (continued) Experiments results of Method M20

Expr. Cond. Class Accuracy Precision Recall F1 Support

AT — 0.5000 0.2500 0.3333 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.6947 0.7765 0.7333 85

PL — 0.0000 0.0000 0.0000 4

SO — 0.5441 0.7184 0.6192 103

All 0.6004 0.6145 0.6004 0.5857 —

B.20 | XGBoost

Table B.21: Experiments results of XGBoost

Expr. Cond. Class Accuracy Precision Recall F1 Support

1

Si
gn

ifi
ca

nt

LF — 0.2000 0.4545 0.2778 11

O — 0.4750 0.4419 0.4578 43

PE — 0.5714 0.6316 0.6000 19

SE — 0.5625 0.2769 0.3711 65

US — 0.3774 0.6061 0.4651 33

All 0.4327 0.4824 0.4327 0.4305 —

A
ll

N
FR

C
la

ss
es

A — 0.5455 0.8571 0.6667 7

FT — 0.0909 0.3333 0.1429 3

L — 0.0000 0.0000 0.0000 5

LE — 0.2500 0.2727 0.2609 11

(continued on the next page)
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Table B.21: (continued) Experiments results of XGBoost

Expr. Cond. Class Accuracy Precision Recall F1 Support

MN — 0.1429 0.1667 0.1538 6

O — 0.5435 0.5814 0.5618 43

PE — 0.4800 0.6316 0.5455 19

PO — 0.0000 0.0000 0.0000 3

SC — 0.5000 0.1667 0.2500 6

SE — 0.7059 0.3692 0.4848 65

US — 0.4118 0.6364 0.5000 33

All 0.4677 0.5107 0.4677 0.4623 —

2

Si
gn

ifi
ca

nt

AC — 0.7407 0.4444 0.5556 45

EN — 0.8551 0.6782 0.7564 87

SO — 0.6809 0.9143 0.7805 105

All 0.7384 0.7562 0.7384 0.7289 —

A
ll

FR
C

la
ss

es

AC — 0.7037 0.4222 0.5278 45

AT — 0.3043 0.4375 0.3590 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.8158 0.7126 0.7607 87

PL — 0.0000 0.0000 0.0000 4

SO — 0.6617 0.8381 0.7395 105

All 0.6795 0.6833 0.6795 0.6692 —

3

A
ll

C
la

ss
es

A — 0.4444 0.5714 0.5000 7

FT — 0.1111 0.3333 0.1667 3
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Table B.21: (continued) Experiments results of XGBoost

Expr. Cond. Class Accuracy Precision Recall F1 Support

L — 0.0000 0.0000 0.0000 5

LF — 0.0500 0.1818 0.0784 11

MN — 0.1000 0.1429 0.1176 7

O — 0.3902 0.3721 0.3810 43

PE — 0.5625 0.4737 0.5143 19

PO — 0.0000 0.0000 0.0000 3

SC — 0.2857 0.3333 0.3077 6

SE — 0.4167 0.2308 0.2970 65

US — 0.2361 0.5152 0.3238 33

AC — 0.4737 0.2000 0.2812 45

AT — 0.4286 0.3750 0.4000 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.6087 0.6437 0.6257 87

PL — 0.0000 0.0000 0.0000 3

SO — 0.5111 0.4381 0.4718 105

All 0.4000 0.4425 0.4000 0.4059 —

B.21 | Random Forest
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Table B.22: Experiments results of Random Forest

Expr. Cond. Class Accuracy Precision Recall F1 Support

1

Si
gn

ifi
ca

nt

LF — 0.4615 0.5455 0.5000 11

O — 0.5172 0.3488 0.4167 43

PE — 0.6923 0.4737 0.5625 19

SE — 0.5556 0.6154 0.5839 65

US — 0.5455 0.7273 0.6234 33

All 0.5497 0.5531 0.5497 0.5417 —

A
ll

N
FR

C
la

ss
es

A — 0.4286 0.4286 0.4286 7

FT — 0.0000 0.0000 0.0000 3

L — 0.0000 0.0000 0.0000 5

LE — 0.0000 0.0000 0.0000 11

MN — 0.0000 0.0000 0.0000 6

O — 0.4545 0.3488 0.3947 43

PE — 0.5882 0.5263 0.5556 19

PO — 0.0000 0.0000 0.0000 3

SC — 0.0000 0.0000 0.0000 6

SE — 0.4750 0.5846 0.5241 65

US — 0.3934 0.7273 0.5106 33

All 0.4478 0.3860 0.4478 0.4052 —

2

Si
gn

ifi
ca

nt

AC — 0.7273 0.3556 0.4776 45

EN — 0.9362 0.5057 0.6567 87

SO — 0.5952 0.9524 0.7326 105

(continued on the next page)

137



Appendix B. Result Tables B.21. Random Forest

Table B.22: (continued) Experiments results of Random Forest

Expr. Cond. Class Accuracy Precision Recall F1 Support

All 0.6751 0.7455 0.6751 0.6563 —

A
ll

FR
C

la
ss

es

AC — 0.8889 0.1778 0.2963 45

AT — 0.0000 0.0000 0.0000 16

DE — 0.0000 0.0000 0.0000 2

EN — 0.9565 0.5057 0.6617 87

PL — 0.0000 0.0000 0.0000 4

SO — 0.5172 1.0000 0.6818 105

All 0.6062 0.6854 0.6062 0.5501 —

3

A
ll

C
la

ss
es

A — 0.5714 0.5714 0.5714 7

FT — 0.0000 0.0000 0.0000 3

L — 0.0000 0.0000 0.0000 5

LF — 0.0000 0.0000 0.0000 11

MN — 0.0000 0.0000 0.0000 7

O — 0.5000 0.1628 0.2456 43

PE — 0.5000 0.4211 0.4571 19

PO — 0.0000 0.0000 0.0000 3

SC — 0.1667 0.1667 0.1667 6

SE — 0.3462 0.1385 0.1978 65

US — 0.5926 0.4848 0.5333 33

AC — 0.5294 0.2000 0.2903 45

AT — 0.0000 0.0000 0.0000 16

(continued on the next page)
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Table B.22: (continued) Experiments results of Random Forest

Expr. Cond. Class Accuracy Precision Recall F1 Support

DE — 0.0000 0.0000 0.0000 2

EN — 0.5368 0.5862 0.5604 87

PL — 0.0000 0.0000 0.0000 3

SO — 0.3420 0.7524 0.4702 105

All 0.4000 0.4011 0.4000 0.3607 —
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