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ii Generation of Lung CT Images using Semantic Layouts

Summary

Lung cancer is one of the most severe cancers, and early diagnosis is important for life-saving
interventions. However, the diagnosis of the lung cancer, which is based on repetitively moni-
toring axial lung Computed Tomography images and manually segment the nodules, is tedious
and the accuracy are heavily depends on the experience of radiologists. Many researchers and
developers have been working on computer-aided diagnosis (CAD) system to improve the pro-
ductivity of the radiologists. As the development proceed, the radiologists need to learn how to
use these tools efficiently to support their daily work, and a computer assisted learning (CAL)
system is required for training and assessing the radiological professionals in diagnosis with
CAD system. Ideally, the CAL system could render diverse and realistic patient cases that the
radiologists can practice on it, but it requires innumerable amount of data to fulfill that require-
ments.

Compared to other well known datasets, medical datasets are relatively small and it is not easy
to acquire sufficient medical data due to the privacy issues. To tackle this issue, Generative
Adversarial Networks are widely explored and continuing developing in medical field. Recently,
researches have focused on conditional synthesis models to generate images in uncommon
conditions and improve the robustness of the model. Moreover, some researches aim to enable
user-interactive manipulation, by which users are able to guide the generation of synthesis
images.

In order to explore the usability of state-of-the-art method, we utilised Spatially Adaptive De-
normalization (SPADE) to synthesize the lung CT synthesis images. Several metrics for fi-
delity evaluation were used to score the quality of synthetic medical images. We validated
these metrics by aligning the results with visual examination, and we found that Frechet in-
ception distance (FID) could better reflect the quality. Moreover, we trained pix2pixHD, an-
other semantic image synthesis method to compare with SPADE. As the result, SPADE did not
surpass pix2pixHD in quality measurements, but it outperformed the other in the degree of
multi-modal synthesis, meaning that SPADE was able to render varied outcomes with slightly
lower quality. We also tested the manipulability of SPADE by editing nodule masks. By reloca-
tion, expand and shrink, we found that the texture of nodules could be synthesized differently.
We further applied the manipulation on the semantic labels to generated synthetic images for
data augmentation, and the experiments showed that the augmented data improved the per-
formance of segmentation network in dice coefficient and sensitivity. We also compared the
SPADE-based data augmentation method with the common method which the data was aug-
mented with flipping ground truth, and the results showed that the synthetic method did not
surpass the traditional method.

The results show that SPADE can generate a realistic lung CT images, but there are some limita-
tions to be tackled. For fidelity measurement, the visual examination was done without domain
experts. To further evaluate the fidelity, a perceptual study conducted by experienced radiolo-
gists is recommended. The validity of FID in lung CT images can be also verified by the study.
For inducing diversity, the variety of synthetic nodules are limited compared to the ground
truth, since SPADE will generalize the attributes of synthesis results. To overcome this chal-
lenge, it is recommended to classify the nodule into several classes based on their attributes
such as subtlety. By dividing nodule class into several semantic classes, the attributes infor-
mation can be preserved during SPADE learning process, and the SPADE can synthesize each
class specifically. Overall, theses results suggest that SPADE is an effective method to medical
image generation due to its quality and manipulability, and it can be further develop as either
CAL system for training junior professionals or data augmentation for the medical imaging.
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1 Introduction

1.1 Motivation

Lung cancer is one of the most severe cancers. It is the leading cause of cancer deaths world-
wide [1], and early diagnosis is crucial for successful treatment and life-saving interventions
[2]. The diagnosis of lung cancer is based on quantification of pulmonary nodules using axial
lung Computed Tomography (CT) image. The non-invasive imaging technique that constructs
the internal structure of human body by 2D scans. Since pulmonary nodules can be associ-
ated with several diseases, continuous monitoring and accurate segmentation of pulmonary
nodules are required for malignancy estimation and forecast [3] [4]. However, these are tedious
works which introduces the inter-observer variabilities [5].

To overcome these challenges during manual segmentation, researchers have been working
on implementing computer-aided diagnosis (CAD) systems to alleviate the work load and en-
hance the productivity of radiologists. Several techniques have been proposed to support radi-
ologists, including image processing based techniques [6]. In order to implement these tech-
niques successfully, a computer assisted learning (CAL) system is required for training and as-
sessment of radiological residents and technical physicians in diagnosis with advanced CAD
systems. More importantly, it needs to be able to adjust cases to the needs of the trainee.

Compared to other well known datasets, medical datasets are relatively small. It is not easy
to acquire sufficient medical data due to the privacy issues. That is, patient consent may be
required to use the diagnostic images. The data scarcity will limit the capability of artificial in-
telligence, and slow down the research and industrial progress. To tackle this issue, Generative
Adversarial Networks [7], which have the power to generate photorealistic images are widely
explored and continually developed in the medical field. This is useful to generate images in
uncommon conditions, improving the robustness of the model [8]. Moreover, some researches
aim to enable user-interactive manipulation, by which users are able to guide the generation
of synthesis images [9].

To enable user-interactive manipulation, the research community has explored conditional
image synthesis, which includes image translation from text, labels or images. In order to
provide a user-friendly editing tool, a semantic image is used as conditional input. However,
concatenating semantic label to input to the generator does not work, since the conventional
normalization layers tend to wash away this information [10]. Semantic aware approaches are
necessary [11] for developing such an image generation tool. Following the method proposed
by Park et al., by redesigning the normalization layer to be spatially-adaptive and semantic-
aware, the semantic information can be preserved and used as style guidance to supervise the
generation process of synthesis images. Combing with PatchGAN discriminators [12] or seg-
mentation networks, it has been shown that semantic image synthesis is possible for scenes
such as urban streets and landscapes. In this project, we would make use of these ideas for se-
mantic image synthesis and explore the usability of it to generate realistic lung CT images with
an adjustable degree of complexity and solve the problems.

1.2 Related Work

1.2.1 Medical Image Synthesis

GAN (Generative Adversarial Networks) have been used in the medical research community
for style translation [13], super-resolution [14], segmentation [15] and data augmentation [16].
Chuquicusma et al.[17] have proposed to use a DCGAN to synthesize realistic lung nodule and
evaluate them by visual Turing tests, the first time in the literature utilising the GANs to gener-
ate lung nodules. Qin et al. [18] utilise the GANs to synthesize volumetric lung nodules which
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2 Generation of Lung CT Images using Semantic Layouts

will be used as data augmentation for training the segmentation network. The results show that
by using GAN-based augmentation, the performance of the segmentation network improves.
Yang et al. [19] proposed a method based on WGAN with a perceptual objective that can re-
duce the noise level and reconstruct the CT images, which have been taken under low dose
condition.

There is not much research in medical GAN application utilising semantic label map. Proposed
by Tony et al. [20], the semantic label map was used to enhance the brain tumour generation
under elastic deformation. In order to generate detail content, they proposed a multi-task gen-
erator to reconstruct the tumour and other parts separately. The proposed generator is used
to synthesize rare cases where the brain is deformed largely. The method is proposed as a data
augmentation technique improved from traditional elastic deformation, while the capability of
semantic manipulation remains unclear. Besides, inputting semantic label map directly to the
generator, according Park et al., is not an optimal way for semantic image synthesis. Although
there are many state-of-the-art approaches proposed, it was not until recently that the concept
of semantic image synthesis became popular. The community has not explored the possibility
of implementing semantic image synthesis in the medical field yet. This motivates us to explore
the usability through this project.

1.2.2 Conditional Image Synthesis

Generative adversarial network has become popular recently due to its capability in image
synthesis. Applying GAN with conditional setting is referred as Conditional Image Synthesis
[21][22], which GAN synthesizes based on given conditions. Many researches have explored
different conditions to constraint the GAN synthesis, from labels [23] [24], text [25] to images.
Specifically, the image-conditioned models refer to those aimed to learn mapping from source
domain to target domain. See Figure 1.1. Denoting the source domain as A and the target do-
main as B , the goal of these models is to learn the mapping G A→B , translating the input image
xA to xAB , where xAB ∈ B . In the other words, the models convert the extrinsic style represen-
tation of xA to B while preserving the intrinsic source content. Compared to L1 loss, which
usually leads to blurry images, applying trainable adversarial loss, which can learn and adapt
the difference between the source and target domain, automatically has become popular for
image-to-image translation. For example, the pix2pix framework has been used to transfer
Google maps to satellite view [12]. Researchers have explored the usability in different appli-
cations, such as future frame prediction [26], style transfer [27] [28], supperesolution [29] and
photo manipulation [9].

Figure 1.1: Image-to-Image translation

1.2.3 Semantic Image Synthesis

Recently, some works have focused on using a semantic label map as condition for interactive
image manipulation, later called semantic image synthesis. Directly inputting semantic label
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CHAPTER 1. INTRODUCTION 3

map to conventional image-to-image translation models does not give the promising results,
due to the loss of semantic information during normalization. To tackle this challenge, Gau-
GAN [10] has been proposed to preserve the semantic conditions by Spatially-Adaptive Denor-
malization (SPADE). Instead of passing through the normalisation, SPADE utilises the semantic
mask as condition of modulation parameters. By such modification, the semantic label maps
can be used to guide the synthesis process, enabling semantic image synthesis. Following the
success of SPADE, many researches have focused on improving the discriminator structure.
The OASIS [11] model is proposed to replace the PatchGAN [12] discriminator with segmen-
tation network, given a better alignment between synthesis images and semantic label map.
The SESAME [30] model proposed that the semantic label maps and RGB images should be
input to the discriminator separately for better preservation. Besides the conditional batch
normalisation method, CC-FPSE [31] proposed a conditional convolution generator in which
the convolution kernels are conditioned on semantic label maps through a weight prediction
network. So far, semantic image synthesis has not been used in synthesizing lung CT images,
and it remains unknown how suitable these models are in the medical imaging domain.

Figure 1.2: Semantic Image Synthesis

1.3 Objective

The goal of this project is to implement a semantic image synthesis model to generate lung CT
images. The main research question will be:

To what extent can the semantic synthesis GANs be applied to lung CT images?

We further develop several sub questions, aiming to give a comprehensive study of the selected
semantic image synthesis model for lung CT images. The sub-questions that will help to answer
the main research questions are:

• How perceptual realistic are the generated images?

• To what degree can we influence the outcome by user input?

• To what extent can the generated images used for data augmentation?

We evaluate the fidelity of generated images following standard GANs protocol, following the
evaluation metrics of semantic image synthesis papers. Due to the capability of semantic image
synthesis, we also study the influence of manipulation on synthesized images by user input.

There are several challenges in order to answer these questions. First, there is no research con-
ducted using a semantic image synthesis model in the medical field yet. Although there are
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4 Generation of Lung CT Images using Semantic Layouts

many state-of-the-art models proposed recently, most of them follow the precedents, using
the same datasets like COCO-Stuff [32] and Cityscapes [33]. There is no baseline or a proper
reference for usability in medical images. Therefore, we define the project as an exploration
research, aiming to investigate the topic which is not studied yet. Second, most of the lung CT
image synthesis researches focus on the region of interest (ROI) only, so there is no annotations
for other tissues in the chest. To overcome this obstacle without support from the experts, it is
necessary to design an image processing algorithm to generate the semantic label from input
data. Therefore, the design of such algorithm will also be a key part of this exploration project.
We aim to set up a process and generate the semantic label of full CT images with adjustable
parameters, such that it can be applied and extended for future works. Third, since there is no
metric that has been proven effective in the medical image domain, we utilise common met-
rics of semantic image synthesis papers. The evaluation results will be correlated with visual
examination, which will be done by human without domain expertise.

1.4 Report Outline

The remained of this report is structured as follows. Chapter 2 will provide background in-
formation of the selected semantic image synthesis model. The structure and the theory be-
hind the model will be explained in order to better understand the state-of-the-art techniques.
Chapter 3 will cover the method, mainly the design of the image-processing algorithm for se-
mantic label generation, the materials, the training details and the experiment set-up. The
results of the experiments will be shown in Chapter 4, and the discussion of the results will be
in Chapter 5. Finally, based on the results and discussion, the conclusion of the exploratory
research will be drawn in Chapter 6, with the proposed future work.
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5

2 Background

In this chapter, we will first review the literature of GANs in medical imaging, from the gen-
eral concept behind GANs to its variants. There are many GANs implementations in medical
imaging such as segmentation [34], and we specifically focus on image synthesis [13].

Since SPADE is referred as conditional image synthesis, the difference between unconditional
and conditional image synthesis will be explained, aiming to give a comprehensive overview of
the emerging fields. After that, we narrow down to SPADE, describing the detail of the archi-
tecture, and the design choice it made to enable semantic image synthesis. Since SPADE is an
improved model from several precedents, we summarise those literature thoroughly to provide
a concise review.

2.1 Generative Adversarial Networks

GAN [7] is a generative model trained via adversarial process, in which a generative model G
captures the data distribution and generates samples, and a discriminative model D estimates
the probability that a sample comes from training data rather than G.

The GANs process can be described as follows. Consider a training set X , a generator G with
parameters θG , a discriminator D with parameters θD , and a random noise z. G aims to map
x̂ = G(z;θG ) for which x̂ ∈ X̂ , and the primary goal is to optimise the mapping such that
pθ(x̂|z) ∼ X , meaning that the generated samples X̂ resembles the distribution of the train-
ing set X . The mapping is validated by discriminator D , which classifies between fake and real
samples, yielding D(x;θD ) = 1 for real data and D(x;θD ) = 0 for generated data.

The adversarial process is achieved by the interaction between both networks, as G attempts
to synthesize realistic samples that can fool D , while D continuously learns to differentiate be-
tween real and generated one. The feedback is achieved by gradient information propagated
back from D to G , and G adapts its parameters to produce a better output. The adversarial
process can be described mathematically as two-player minimax game with value function
V (G ,D):

min
G

max
D

V (G ,D) = Ex∼pd at a (x)[log(D(x))]+Ez∼pz (z)[1− log(D(G(z)))] (2.1)

Through optimisation, D is trained to maximise the probability of correct classification be-
tween real and fake data, while G is trained to generate realistic data by minimising log(1−
D(G(z))). The optimisation is achievable theoretically by minimising the Jensen-Shannon (JS)
divergence between the distribution of X and X̂ , but it has been proven to be hard to train due
to training instability and mode collapse.

2.2 GANs in Medical Image Synthesis

Originally, GAN is proposed as an unsupervised generative framework. It is able to map from
random noise to the realistic synthetic images. In cGAN[21], it has become a supervised gen-
erative framework for which the synthesis process is influenced by conditional information
instead of random noise alone. The original GAN, known as vanilla GAN, is referred as uncon-
ditional GAN [8][35] in contrast to the conditional GAN.

There are several applications of high quality image synthesis in the medical field. First, the
synthesis images can be used as augmented data for training the deep learning network. With
conditional settings, it is possible to alleviate the data scarcity and class imbalanced problems.
Second, the image-to-image translation models can be implemented as domain transfer for
different imaging modalities. Several researches have been motivated for this purpose and
shown promising results. Third, if the generated samples are realistic enough, it is possible to
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6 Generation of Lung CT Images using Semantic Layouts

use the generative adversarial models as CAL system, the educational tool to train junior pro-
fessionals. Fourth, it can improve diagnostic accuracy by mining highly discriminative imaging
features.

2.2.1 Unconditional Synthesis

Unconditional synthesis indicates image generation from noise without auxiliary information.
It has become popular in medical field since it could tackle data scarcity problems, which are
considered the major challenges in medical imaging. Researches have shown that uncondi-
tional GANs could synthesize realistic medical images that the human experts could hardly
distinguish from the real one. [36] utilises DCGAN [37] to learn mapping the brain MRI to
the implicit manifold, and synthesizes high resolution brain MRI with only small amounts of
training data. The synthesis results are visual compelling which two imaging experts could not
be distinguish reliably from the real brain MRI. This indicates deep convolutional networks
have potential to synthesis photorealistic images with small amounts of medical data. [17] has
also utilised DCGAN to generate lung nodule. It is the first literature using deep learning net-
work to synthesize class-specific lung nodules. Two types of nodules, benign and malignant,
are trained separately, and a series of Visual Turing tests are executed with two radiologists to
quantitatively evaluate the synthesis results. The results show that the radiologists could not
reliably tell the difference between the generated and real nodules for both types. The analysis
also shows the intra-observer variation in diagnostic lung cancers between participants. The
discriminative imaging features learned by the DCGAN could help improving the diagnostic.

For full lung CT image synthesis, [38] has utilised progress growing GAN [39] to generate re-
alistic body CT samples in high resolution. Ranging from thorax to abdomen, the slices are
synthesis in an unsupervised manner and validated by a series of visual Turing test. With ten
radiologists identifying synthetic samples as fake, the results show no significant difference in
the specificity between the visual Turing test and random guessing. They even split the partic-
ipants based on the experience level, and found that the accuracy between each group is not
significantly different, but it has a limitation in synthesizing the slices of thoracoabdominal
junction and the detail of anatomical texture.

2.2.2 Conditional Synthesis

Conditional GANs in medical application is used mostly for cross-modality synthesis due to
clinical needs. A common situation occurs where two imaging modalities render accessorial
information so that two obtainments are required for diagnostic procedure. For example, CT is
used for gel-dosimetry in radiation oncology, so it has to be obtained additionally to diagnos-
tic planning MR [40]. However, conducting CT scan could put patients at risk of cell damage
and cancer due to radiation exposure [35], and this motivates the implementation of image-to-
image translation techniques for cross-modality synthesis. Researches have explored synthesis
CT to MR using CycleGAN [41], lung MR to CT with additional tumour-aware loss function [42],
and lung PET to CT by modified cGAN [43].

2.2.2.1 Semantic Image Synthesis

In this research, the main focus will be image synthesis conditioning with semantic label, which
is known as semantic image synthesis. The benefit of conditioning on semantic label is easy-
editing, allowing user to control image generation by adding, removing, or manipulating the
semantic label [9]. Conditioning on manipulated semantic label can render a powerful tool for
medical image synthesis application.

Several researches in the medical imaging have been done by semantic image synthesis. [18]
utilises cGAN to generate 2D lung nodule conditioning with semantic label. The synthesis nod-
ules are then concatenated into the train set of proposed 3D segmentation network. The au-
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CHAPTER 2. BACKGROUND 7

thors have shown that cGAN conditioning with semantic label could be an effective method
for data augmentation. [20] proposes a coarse-to-fine generative models for data augmenta-
tion of brain tumour. Compare to the brain, tumour is relatively small and the detail tends
to be blurred during synthesis process. To enhance the tumour synthesis quality, additional
boundary-aware generator is added. A multi-task generator is proposed to simultaneously in-
fer the location and the boundary of the complete tumour. Compare to traditional data aug-
mentation method such as flipping and rotation, the proposed method could render a better
results for elastic deformation, providing the rarely-seen samples for the segmentation network
to learn. To be noted, the authors do not mention mode collapse issues, which is commonly
seen in semantic image synthesis according to the literature [10], and the effect of user manip-
ulation for such model remains unknown.

For semantic lung CT image synthesis, [44] has proposed a conditional GAN to generate lung
samples for COVID-19 diagnostic. They utilise the labels from COVID-19 dataset [45], which
contains 3 classes: lung region, ground-glass opacity and consolidation. Without generating
additional labels for non-lung region, the 3-classes segmentation maps are used as conditions
for image generation, resulting in synthesising lung only images. The results are merged with
non-lung area from the ground truth and validated as full CT images. The authors have shown
that the proposed method outperforms the state-of-the-art models either with complemented
images or lung only images. While it is arguable to formulate CT images by combining syn-
thesis and ground truth partially, the boundary of non-lung region will not change correspon-
dently with the manipulated labels. Considering the purpose of our project, all classes should
be editable by users. Therefore, we did not follow the proposed method.

2.3 SPADE

In the following section, the detail of SPADE model will be explained. SPADE model, so called
GauGAN model, is a method to process the semantic information for conditional generative
adversarial network, aiming to resolve the mode collapse problems which happen frequently
when conditioning on semantic labels.

2.3.1 Spatially Adaptive Denormalization

Spatially adaptively denormalization (SPADE) is the conditional normalization methods pro-
posed by Park et al [10]. Compared to unconditional normalization layers, this methods rely on
external data to tune the modulation parameters, given the controllable parameters that the
synthesis process can be conditioned on. The general process operates as follows. The layer
activations are normalized to unit deviation and zero mean. The normalized activations are
then denormalized by modulating the activations based on the affine transformation, which
is learned from the external data. This approach has been applied to style transfer tasks, for
which the affine parameters are used to control the global style of generated images. However,
instead of globally uniform affine transformation, the modulation parameters are redesigned
to be channel-wise and element-wise, making it a spatially-varying affine transformation which
is suitable for image synthesis from semantic maps.

The process of SPADE is similar to Batch Normalization. The activation is normalized and then
modulated with the scale and bias. The semantic maps are first projected to an embedding
space and then convolved, producing the scale and bias learned from the input. Those pa-
rameters and are then multiplied and added to the normalized activation element-wise. The
element-wise and channel-wise manners ensure the style of synthesis objects been generated
coherently, and the preserved semantic information increases the controllability of the synthe-
sis process. The design of SPADE residual blocks largely followed ResBlock proposed by Miyato
et al. [46], for which applying residual learning for super-resolution tasks. In case that the input
and output have different numbers of channels, the skip connection is also learned.
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8 Generation of Lung CT Images using Semantic Layouts

Figure 2.1: Working principle of SPADE.

2.3.2 Generator

The design of SPADE generator and discriminator largely adopt pix2pixHD [25] model with sev-
eral modification. While the generator of pix2pixHD model consists of U-Net [26] like encoder-
decoder network, the SPADE generator is consisted of a series of the SPADE residual blocks with
upsampling layers. Compare to pix2pixHD, the encoder part of the generator is discarded while
several SPADE residual blocks plugged in the decoder structure, resulting in a more lightweight
network. The segmentation labels are not directly fed into the first layer or intermediate layers.
Instead, the input labels are fed into the SPADE residual blocks to encode information of label
layout. The generator itself only takes random vector as input.

It has been shown that the uniform appearance of semantic label will be lost by applying nor-
malization, generating identical outputs without detailed texture. Many well-known image-to-
image translation models fail to preserve the semantic information as they concatenated the
labels map directly to the intermediate layers without further adjustment to ensure the infor-
mation being adopted correctly. Unlike conventional ways, the SPADE generator is modulated
by segmentation semantic maps from the user in different scales, adopting to the spatial res-
olution of residual blocks. Since the semantic maps are used in different scales through the
generator pipeline, it enables coarse-to-fine generation. By such architecture, the labels maps
are encoded in the spatially varying modulation parameters without normalization, so the in-
formation of semantic labels can be preserved. This turns out allowing users to control the
synthesis process of the generator, enabling semantic editing of GAN generated images.

2.3.3 Discriminator

PatchGAN [12] models the image as a Markov random field, assuming independence between
pixels distanced more than a patch diameter. Instead of predicting classes probabilities, Patch-
GAN renders classification results of divided patches from the original images. The original
design of PatchGAN is to restrict the discriminator to only model high-frequency structures in
local image patches, as low frequencies can be handled by L1 loss easily. PatchGAN tries to clas-
sify whether each N×N patch in an image is real or fake. The results of each patch are averaged
to produce final output. Compared to conventional neural networks, applying PatchGAN en-
courages the generator to produce synthesis images with better local structures and contents,
resulting higher quality results.

In order to generate high-resolution image, the discriminator needs to have a larger receptive
field to differentiate high-resolution real and synthesized images. This would require a deeper
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network or larger convolutional kernels, which are both computational expensive. Following
pix2pixHD, SPADE utilises the structure which is called multi-scale discriminators. Three dis-
criminators are created with identical network structure but different operational scales. The
discriminators are trained to differentiate real and synthesized images at three scales from
coarse-to-fine. While the coarse one has the largest receptive field, focusing on guiding the
generator to produce global consistent images, the finest one encourage the generator to gen-
erate finer details.

2.3.4 Multi-Modal Synthesis

Since the random vector provide stochastic input to the generator, by using a random vector
as the input to the generator, it enables multi-modal synthesis. By attaching an image encoder
before the generator, it can be further extended to a style guidance network and form Varia-
tional Autoencoder. Namely, the VAE encodes the real image into a latent representation. By
calculating mean and variance from the encoded information, the original style can be passed
to the generator as random vector. The overall SPADE structure is shown in Figure 2.2.

Figure 2.2: Training the SPADE with the semantic label map. The ground truth image is used as style
guidance fed into the VAE.

2.3.5 Learning Objective

The Hinge loss is applied as adversarial function. As L1-term loss function tackles the correct-
ness of low frequency content construction, PatchGAN focus on high frequency structure.

LD =−E(x,y)∼pd at a [min(0,−1+D(x, y))]−Ez∼pz [min(0,−1−D(G(z), y))] (2.2)

LG =−Ez∼pz ,y∼pd at a D(G(z), y)) (2.3)

Robotics and Mechatronics Sheng-Chih Wu



10 Generation of Lung CT Images using Semantic Layouts

Feature matching loss is also applied as improved adversarial loss. The features are extracted
from multiple layers of the discriminator. By matching these intermediate representation from
real and synthesis images, the discriminator learns how to distinguish them. Penalising the
feature matching loss in L1 distance stabilises the training for multiple scale synthesis.

LF M (G ,Dk ) = Es,x

T∑
i=1

1

Ni
[‖D (i )

k (s, x)−D (i )
k (s,G(s))‖1] (2.4)

For k represents the amount of scale, T the feature maps from the discriminator and the Ni the
normalized factor for each feature map.

The perceptual loss is also applied jointly, since it has shown improving the performance
slightly. It is calculated based on the feature extracted from the intermediate layers of VGG-19
network pretrained on Imagenet. VGG-19 network has been applied in medical image synthe-
sis to calculate loss.

LV GG (G) = Es,x

N∑
i=1

1

Mi
[‖F (i )(x)−F (i )(G(s))‖1] (2.5)

F (i ) denotes the i -th layer with Mi elements of the VGG network.

The importance of each learning objects are weighted by the parameters that user inputs.

The encoder can be trained via parameterisation trick. In the GauGAN, the KL divergence loss
is used for the style encoder.

LK LD = DK L(q(z|x)‖p(z)) (2.6)

The prior distribution p(z) is a standard Gaussian distribution and the variational distribution
q is fully determined by a mean and a variance vector.
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3 Method

In this chapter, the methodology of the experiments will be explained. We started with the
generation of semantic labels. Several processes and design choices of creating 2D lung CT
images dataset will be described in section 3.1. The details of the experiment designs will be
illustrated in section 3.2. The training details of semantic image synthesis are in section 3.3.

3.1 Semantic label generation

The goal of semantic label generation is to extract the data from the database, adjust data
for nodule analysis and generate corresponding semantic labels. The details of the utilised
database will be illustrated in section 3.1.1, and the pre-processing steps will be described in
section 3.1.2. From section 3.1.3 to 3.1.5, the generation of semantic label for non-lung, lung
and nodule are explained respectively. Finally, the post-process step will be described in sec-
tion 3.1.6.

3.1.1 Database

The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI)
establishes a public database for medical imaging research community [47]. It was initialised
by the National Cancer Institute (NCI), aiming to help the development of CAD technologies for
lung nodule classification, detection and segmentation. The LIDC-IDRI Database is collected
and organised by seven academic centers and eight medical imaging companies, resulting in
1018 cases from 1010 patients. For each case, it contains images from clinical thoracic CT scan
and a corresponding XML file that includes the nodule information.

The nodule is defined through a two-phase image annotation process performed by four expe-
rienced thoracic radiologists. In the initial blinded phase, each radiologist reviewed CT scans
independently, and classified the lesions into three categories: nodule ≥ 3 mm, nodule < 3
mm, and non-nodule ≥ 3 mm. Nodules, of which with diameter larger than 3 mm, are an-
notated additionally with the contours and marked attributes such as subtlety, sphericity, and
malignancy. In the subsequent unblinded phase, the radiologists revised their own labels along
with the anonymised marks of the other three participants to give the final determination. The
purpose of such process was to identify all lung nodules in each CT scan, considering the intra-
observer variabilities.

3.1.2 Pre-Processing

3.1.2.1 Rescale and Intercept

The clinical thoracic CT scans are stored in standard Digital Imaging and Communication in
Medicine (DICOM) format [48], which is a widely adopted data type for communication and
management of medical imaging information. Since the LIDC-IDRI Dataset was collected from
different institutes, the equipment from different vendors were used to acquire CT scans. In
each scan, pixel values of CT images are measured in Hounsfield units (HU), which is a quanti-
tative scale for describing radiodensity.

However, CT data acquired from different equipment is stored differently, and the range of in-
tensity values may differ between the representation stored on disk versus in memory, depend-
ing on the system specification. For example, the HU values could be negative, and are usually
stored as an unsigned integer with specific slope and intercept depending on vendor’s prefer-
ence. Therefore, it is common for CT data to have negative intercepts, and the linear scaling is
applied to store the values in a memory efficient way and at the same time avoid quantisation
error.

Robotics and Mechatronics Sheng-Chih Wu



12 Generation of Lung CT Images using Semantic Layouts

The first step after retrieving pixel values from DICOM data is to transform from memory repre-
sentation to disk representation. In other words, to normalise CT data from different vendors.
The linear transformation between the intensity values (IV) and Hounsfield Units (HU):

HU = IV × s + i (3.1)

where s indicates the rescale slope and i denotes the intercept. Two DICOM tags can be used to
perform such transformation, rescale intercept (0028|1052), and rescale slope (0028|1053) [49].

HU values represents the relative density of tissues and organs in CT images. In order to syn-
thesis lung CT images for radiologists to diagnose lung cancer, we followed the literature [50] to
clip the pixel values to [-1024,800], which is the meaningful pixel value for nodule judgement.
The results are shown in Figure 3.1.

(a) Before HU clipped (b) After HU clipped

Figure 3.1: Lung CT images before and after HU clipped.

3.1.2.2 Slice selection

In order to synthesize CT images from upper to lower chest, we included the non-nodule slices
in the train set.

Compared to the number of slices that contain nodules, the amount of non-nodule slices is
larger. We selected 20% of the slices from each scan, including nodule and non-nodule slices,
to avoid further imbalance. The non-nodule slices are selected randomly and uniformly from
each scans. We excluded CT scans whose slice thickness is greater than 2.5 mm in consider-
ation of image quality [18]. For semantic image synthesis, we utilised the nodules which are
annotated by at least two radiologists. The purpose is to acquire nodules as much as possible
with at least 50% of confidence. Hence, there 49992 slices in total.

3.1.3 Non-lung segmentation

Since we did not have the explicit annotation of those non-lung tissues, we classified them into
three categories based on their HU values. We found it difficult to distinguish the organs and
tissues by HU values alone. For example, it is difficult to distinguish the bone from the heart
since they could have the same pixel values, and so does the lung region with the soft tissue.
Therefore, we segmented the non-lung substance into three classes: body, soft tissues, and high
dense tissues.

The first class, the body, is to segment the thorax from the background, and it can be done
robustly by segmenting HU [-400,800]. The second class, the soft tissues, refers to those sub-
stances with HU higher than the skin and fat, but lower than bone and heart. It can be organs,
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muscle and other tissues. We segmented those substance by HU [0,200]. The third class, the
high dense tissue, is segmented based on the HU ranging from 200 to 800, shown as Figure 3.3.
The rib cage and some muscular organs are included in this class. The pixel which belongs to
both class 1 and class 2 or 3 will be overwrote by the latter, see Figure 3.

Even though we did not distinguish the organs and tissues explicitly in semantic label, we be-
lieve the semantic image synthesis model could learn synthesizing the substances based on
their spatial information and surrounding.

(a) Class1: body (b) Class2: soft tissues (c) Class3: high dense tissues

Figure 3.2: Semantic labels of body, soft tissues and high dense tissues

(a) Ground Truth (b) Non-lung semantic label

Figure 3.3: Ground truth image and non-lung semantic labels

3.1.4 Lung segmentation

For the lung region, simple segmentation based on HU does not work due to several tissues
with different HU vales are included. Instead, we utilised classic imaging processing techniques
to segment the lung. In this research, we used K-Means classification method and marching
square algorithm to generate the masks of lung.

Compared to non-lung regions, pixel values of lung area are usually lower. We used K-Means
method to classify the non-lung and lung pixel with several morphology operations. The mor-
phology operations included erosion and dilation, which were implemented to erode the bright
substance in lung and expand boundary to cover the lung area as completed as possible. The
background was excluded by setting up a maximum area threshold.
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14 Generation of Lung CT Images using Semantic Layouts

While K-Means method could robustly locate the lung region, it could not render a precise
boundary between lung and non-lung regions. It would result in an incomplete lung mask
with some substance not included, and an over expanded boundary that overlaps the other
regions. Therefore, we utilised marching square algorithm to find the explicit contour of the
lung. This method would depict the outlines based on the constant valued pixels surrounding
an object, providing accurate contours. The depicted contours would then be transferred into
masks and be compared with the masks generated by K-Means method iteratively, to filter out
the exact lung contours, as shown in Figure3.4. We used cosine similarity to compare the K-
Means masks with the contours efficiently. The selected contours will be transformed into the
lung masks and be used as semantic label for lung. See Figure3.5(b).

Figure 3.4: The lung mask depicted by K-Means method is used to select the lung contour by the march-
ing squire to render a precise boundary.

(a) Ground Truth (b) Lung semantic label

Figure 3.5: The lung CT images and the semantic label embedded with lung region.
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3.1.5 Nodule depiction

The semantic label of nodules were depicted by radiologists’ annotation. For each experiment,
the nodules annotated by the selected amount of radiologists will be used and depicted based
on a 50% consensus criterion. The criterion implies that the given pixels have been included
in the boundary by different radiologists, and the result is depicted at a 50% consensus level,
as shown in Figure3.6. Since the annotation from different radiologist might differ, generating
the nodule label at a 50% consensus level would be fair design choice. The nodule label will be
used to generate the semantic label. See Figure3.7(b).

Figure 3.6: Nodule depiction with 50% consensus.

(a) Ground Truth (b) Lung semantic label

Figure 3.7: Lung CT images and the full semantic labels.

3.1.6 Resampling

The pixel spacing attribute (0028|0030) refers to the physical distance in the patient between
the center of each pixel, ranging from 0.461 to 0.977 mm. We normalise the lung CT images by
resampling to 1×1mm in 2D nodule segmentation researches.

There are some works that utilised spline interpolation method to perform resampling, but we
found that the maximum and minimum pixel values may change after the operation, resulting
in a different contrast compare to the original image. The range of pixel values varies from
slice to slice, so we argue that it is not an optimal method. Alternatively, we performed the
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16 Generation of Lung CT Images using Semantic Layouts

resampling by simply resizing the images based on the pixel spacing attributes. The range of
the pixel values is preserved in [-1024, 800], the same amount before the process.

After resampling, the images became smaller and different in size. It is sub-optimal to train a
generative adversarial model with different size of images, and zero padding was implemented
to obtain the original size of images while preserving the resampled lung CT region. The same
process was performed on corresponding semantic label maps. In the end, a size of 512×512
ground truth image and semantic label map are acquired, shown as Figure3.8.

(a) Ground Truth (b) Lung semantic label

Figure 3.8: Original and resampled lung CT images.

3.2 Experiments

The experiments can be divided into two parts, generation of lung CT images and suitabil-
ity for data augmentation in Section 3.2.1 and 3.2.2 respectively. For the first experiment, the
main goal is to evaluate the synthesized images. In order to meet that goal, a series of trials are
conducted, including fidelity evaluation, model comparison and manipulation test. The sec-
ond experiment is to test the usability of proposed model as data augmentation method, and
the training strategy is different from the previous experiment.

3.2.1 Generation of lung CT images

In this research, we trained the model with 2D lung nodule slices. To train and validate the
model properly in medical image synthesis, we split the dataset into train and test sets in
patient-based. In other words, the patients in the test set will be only seen in the test set, and
so does the train set.

As previously mentioned, we selected 20% of the slices from each scan, including nodule and
non-nodule slices. The selection resulted in 49992 images, and we further split it into train and
test set, 42952 and 5616 respectively. The train set contained the selected slices from patient
number 1 to 900, which is 806 patients in total with 2 scans unavailable (patient number 238
and 585) and 92 scans thickness greater than 2.5 mm. The test set was consisted of slices from
patient number 901 to 1012, 90 patients in total with 22 scnas thickness greater than 2.5 mm.

3.2.1.1 Fidelity evaluation

The experiment was designed to answer the following research question: how perceptual real-
istic are the generated images. The goal of this experiment is to train the SPADE with the lung
CT images and generated semantic label map and validate the quality of synthesis results.
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We trained and validated the model by the proposed train and test set. Through the training
process, the ground truth images were used as style guidance for which the variational autoen-
coder (VAE) will learn to extract meaningful features for the generator. Combined with the
semantic label maps, the semantic information will be passed through the SPADE module to
influence the synthesis process. The synthesis results will be concatenated with semantic label
maps and fed into the discriminator to learn to distinguish the real and fake samples, as shown
in Figure2.2. Following the data format of literature [10], the ground truth images were stored
as colour images with three channels in JPEG type, while the semantic label maps were stored
as grey images in PNG type.

It is challenging to select the metrics for the evaluation of medical image synthesis. Re-
searches have utilised traditional shallow reference metrics such as mean-squared error (MSE),
peak signal-to-nose ratio (PSNR), structural similarity index (SSIM) and multi-scale SSIM (MS-
SSIM). However, these measures do not correspond to the visual quality of the images directly
[8]. For example, direct optimisation of pixel-wise loss function will result in a blurred result.
Therefore, it is not optimal to utilise them alone.

An alternative way is to utilise the down stream tasks such as a segmentation network to vali-
date the quality of synthesis samples. A well-trained segmentation network should be capable
of determining the discriminative features of the target tissues. Hence, if the synthesis samples
are realistic, the network should be able to segment it accurately. On the other hand, qualifying
by segmentation network is also meaningful for semantic image synthesis, since it can be in-
terpreted as the style transfer loss between the semantic labels and the synthesis images. While
the semantic label stands for the source domain, the synthesis process transfers the style from
the semantic label to the target domain, the ground truth images. As the segmentation net-
works transfer reversely from the target domain to source domain, the semantic label should
be the same as the original one if the translations are done perfectly, and the difference between
them refers to style loss, or cycle-consistency loss [51]. Therefore, for a semantic image synthe-
sis model, cycle-consistency loss can be interpreted as a quantitative measure of how precise
the generative model follows the semantic order by users. Many state-of-the-art researches
[10][11][30] have adopted this method as one of the quantitative metrics.

Figure 3.9: To validate the evaluation metrics, 3 experiments were designed with different train sets, and
evaluated by the same test set. SPADE is trained in all trials.

The measures mentioned above provide alternative methods for quantitative measurement,
but they do not directly represent the perceptual quality. Recently, some works have been
focused on developing evaluation metrics that can directly represent the human perceptual
judgement. [52] has proposed learned perceptual image path similarity (LPIPS) based on the
features learned by the deep learning networks. Compare to previous metrics, LPIPS outper-
forms the others in terms of agreement with human judgement, and it has been adopted in
MedGAN [53] as quantitative metric for medical image transfer task. Another popular choice
for evaluating perceptual quality of the images is Fréchet Inception Distance (FID) [54]. The
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FID compares the distribution of generated samples with the distribution of real images, and is
used to evaluate the quality of generated images in many GAN-based researches. However, the
validity of FID for medical imaging remains to be explored [8].

As an exploration research, we want to evaluate how perceptually realistic the generated sam-
ple is compared with the ground truth. In order to achieve that goal, it is necessary to know
which metric is valid for evaluating synthetic medical images. Since not much researches have
synthesized the full lung CT images, we think it is worthy to conduct such comparison in our
study. To do this, we additionally trained the model twice with different train sets. One was
trained with only one patient with full slices from scan, and the other was trained with twenty
five patients also with full slices. We denoted the first one as Trial1, and the latter as Trial2.
The model trained with the original train set was denoted as Trial3, which had the largest train
set compared to the others, as shown in Figure 3.9. By expectation, Trial3 should outperform
Trial2, and Trial1 should have the lowest performance. We observed the synthesis results per-
ceptually and compared them with the metrics. We expected that the difference in perceptual
similarity should be reflected by the difference of metrics.

After we validate the evaluation metrics, we then proceed to evaluate the performance of
SPADE in synthesizing lung CT images, following the standard metrics of semantic image syn-
thesis [11] [30]. FID, mean intersection-over-union (mIoU) and pixel accuracy were utilised,
and a Nested U-Net [34] capable of multi-classes segmentation was trained additionally to
measure the mIoU and accuracy.

3.2.1.2 Model Comparison

As a comparison baseline, we chose pix2pixHD model, the precedent of SPADE, to train and
compare the performance. We also follow the paper [11] to evaluate qualitatively the ability
of multi-modal synthesis. To measure the variation in the multi-modal generation, the same
semantic label will be synthesized 20 times, and MS-SSIM and LPIPS were used to evaluate the
diversity between images generated from the same semantic label, shown as Figure3.10. For
our purpose, the multi-modal synthesis is also an important attribute that we expect the sim-
ulator would have, and conducting such test would render a quantitative result of how diverse
samples the models could generate. pix2pixHD was adopted as the baseline model to compare
with.

3.2.1.3 Manipulation test

With semantic image synthesis, the users are able to generate realistic samples by editing the
semantic label map. In this experiment, we mimicked the samples by changing the location of
nodules and see how the location affected the nodule synthesis, including some extreme cases
such as nodules outside the body or crossing through other tissues, shown in Figure3.11. The
goal of the experiment is to answer the research question: to what degree can we influence the
outcome by user input. By doing this, we could simulate the user editing rarely seen situations
and observe how the model react to it. We utilised Trial2 and Trial3 to perform such tests,
selecting the slice which has a visible nodule in the test set and edited the semantic label. We
expected that the Trial3 should render more realistic samples than Trial2 since it had seen more
samples. Since there was no ground truth available, we compared the results by perceptual
check only, zooming in the nodule to see the detailed texture. Besides this, we also synthesized
the nodule in an expanded and shrunken version.

3.2.2 Suitability for data augmentation

In this experiment, we explored the effectiveness of SPADE as a data augmentation method for
nodule segmentation. To do that, we generated a new dataset with only nodule slices included.
The nodules annotated by at least three radiologists were used in this experiment, ending up
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Figure 3.10: The semantic label was fed into the model and generated 20 synthetic results. The ability
of multi-modal synthesis was quantitatively measured by calculating LPIPS and MS-SSIM between the
synthetic results pair-wisely.

Figure 3.11: By editing the semantic label, the nodule is shifted horizontally and vertically. Through the
manipulation test, synthesis of the nodule in different location and size can be observed.

with 7641 slices. The data was split into train and test set, 5936 and 1705 respectively. See
Figure3.12.

The dataset was split into 5 subsets based on patients. One of the subset is used as test set,
while the others are used as train set. Besides, 10% of the train set data was selected randomly
as validation set during the training process. For data augmentation, we followed the experi-
ment steps of [18], training the SPADE with the train set and synthesizing based on label from
the same set., as shown in Figure3.13. The generated samples were then combined with the
original train set to form the augmented train set, and the amount of training data was dou-
bled. The Nested U-Net was utilised as the 2D nodule segmentation network. In each trial,
we trained the model with two different sets, original train set and the augmented set. The two
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trained models were compared based on the same test set. The segmentation performance was
evaluated quantitatively by dice coefficient, sensitivity and positive predictive value.

Figure 3.12: For nodule segmentation training, we utilised the nodules which were annotated by at least
three radiologists and generated a new dataset to train SPADE and Nested U-Net.

Figure 3.13: Synthetic CT images are generated, and then are combined with the original images to form
the augmented train set for training the segmentation network.

3.3 Implementation detail

The GauGAN model was trained with 50 epochs and a batch size of 8. The spectral normaliza-
tion [55] was applied in both generator and discriminator. The learning rates for the generator
and discriminator are 0.0001 and 0.0004, following the setting of original literature. ADAM op-
timizer [56] was applied with β1 = 0 and β2 = 0.9 . The two time-scale update rule (TTUR) [54]
was applied for training due to the performance boost shown in the literature. We linearly de-
cayed the learning rate to 0 from epoch 25 to 50. The images size was 512×512. Two NVIDIA
A40 GPUs were used for training.

The Nested U-Net was trained with 150 epochs and batch size of 10. Adam optimizer was
utilised and the multi-step learning rate was applied with γ = 0.9. Two decay milestones were
set at epoch 30 and 75, following the default setting. The deep supervision [57], was enabled
and the image size was 512×512 after resampling.
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4 Results

In this chapter, the results of the experiments are shown. The first part is the generation of
lung CT images (4.1) for which we examine the quality of synthetic images. Following sections
are included in this part: fidelity evaluation (4.1.1), model comparison (4.1.2) and manipula-
tion test (4.1.3). The second part is the 2D nodule segmentation. In this part, we evaluate the
performance of SPADE as a data augmentation method (4.2), and the results are shown.

4.1 Generation of lung CT images

4.1.1 Fidelity evaluation

We started with qualitative comparisons. Figure 4.1 shows the comparison of real and synthetic
CT images. The ground truth images are compared with the results of Trial1, Trial2 and Trial3.
For synthesizing body, soft tissues and high dense tissues, the results of Trial3 are the most
realistic due to the texture of tissues, while artefacts are visible in Trial1 and Trial2. We also
found that the model learn to synthesize trachea without additional label. The trachea region,
also known as windpipe, was not synthesized in Trial1, and was partially synthesized in Trial2,
for which some of the trachea were completed and some of them were unclear. In Trial3, the
trachea region was generated in the same position with ground truth. As for the bronchus, the
airway in the respiratory system, was synthesized with visible artefacts in Trial1 and Trial2. In
Trial3, it was synthesized without clear artefact based on visual examination without domain
expertise.

Ground Truth Trial1 Trial2 Trial3

Figure 4.1: Visual comparison of semantic image synthesis results. SPADE is utilised in all trials. Trial3
with the largest train set, renders the most realistic CT images compared to the others.

For nodule synthesis, we compared the results of Trial2 and Trial3 with the ground truth shown
as Figure 4.2. The results of Trial1 were not included in the comparison due to the quality. Com-
pared to Trial3, Trial2 generated nodules with blurred boundaries and textures. Trial3 generally
outperforms the others by visual examination, and we were able to utilise SPADE to mimic lung
CT images from upper to lower lung. The comparison of synthetic nodules between trials are
shown in Figure 4.3. Additional qualitative comparisons between trials are shown in Appendix
A.

Robotics and Mechatronics Sheng-Chih Wu



22 Generation of Lung CT Images using Semantic Layouts

Ground Truth Trial1 Trial2 Trial3

Figure 4.2: Visual comparison of nodule synthesis results between trials.

For quantitative comparisons, Trial3 is the most realistic, and Trial1 is the worst regarding most
of the metrics. As shown in Table 4.1, Trial3 outperforms the others by a large margin in FID,
and Trial2 is generally better than Trial1 except in MSE. For pixel wise metrics, Trial3 achieves
the largest margin in MSE, while in PSNR the performance is slightly better than the others.
For similarity, the difference between these trials is small in MS-SSIM, compared to the results
in SSIM. As for perceptual metrics, the largest margin is achieved in FID, while in LPIPS the
difference in performance is less but still aligned with the perceptual judgement.

MSE ↓ PSNR ↑ SSIM ↑ MS-SSIM ↑ FID ↓ LPIPS ↓
Trial1 226.12±89.18 24.88±1.60 0.65±0.09 0.84±0.04 64.89 0.26±0.08
Trial2 259.78±432.20 25.01±2.29 0.70±0.11 0.85±0.06 28.43 0.22±0.10
Trial3 160.04±69.05 26.48±1.85 0.73±0.08 0.86±0.04 8.23 0.13±0.03

Table 4.1: Quantitative comparison of semantic image synthesis result. Trial3 outperforms the others.
For MSE, FID and LPIPS, lower is better. For PSNR, SSIM, MS-SSIM, higher is better.

We also evaluate the performance by the metrics which are common in the literature of se-
mantic image synthesis, and the results are shown in Table 4.2. FID is used to evaluate the
synthetic quality, while mIoU and pixel accuracy are used to evaluate semantic segmentation,
which refers to the degree that synthesis process followed semantic order. An additional seg-
mentation network is trained and used to segment the synthetic results, and the mIoU and
pixel accuracy are calculated based on the results. Overall, Trial3 shows a better performance
in semantic image synthesis, while the depicted content in Trial2 deviates the most from the
input segmentation mask.

The analysis of segmentation for each class is shown in Table 4.3. Among each class, the high-
est IoU and pixel accuracy are achieved by Class0 and Class4, the background and the body,
through all experiments. Class5, the nodule class, has the lowest segmentation performance,
and Trial2 achieves the lowest IoU in Class5 compared to the others. Trial3 does not surpass
Trial1 in IoU of nodule.
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mIoU ↑ FID ↓ accu ↑
Trial1 0.74 64.89 0.93
Trial2 0.71 28.43 0.92
Trial3 0.76 8.23 0.94

Table 4.2: Trial3 outperforms the others in semantic segmentation (mIoU and accu) and FID. For the
mIoU and accu, higher is better. For FID, lower is better.

Trial1 Trial2 Trial3
IoU accu IoU accu IoU accu

Class0 0.99 0.99 0.98 0.99 0.99 0.99
Class1 0.83 0.94 0.83 0.94 0.87 0.95
Class2 0.83 0.94 0.82 0.93 0.86 0.94
Class3 0.83 0.98 0.82 0.98 0.85 0.99
Class4 0.99 0.99 0.97 0.99 0.99 0.99
Class5 0.6632 0.99 0.6061 0.99 0.6553 0.99

Table 4.3: The analysis of segmentation for each class. Class0 is the background. Class5 the nodule class
achieves the lowest IoU among all classes.

4.1.2 Model comparison

In this section, we would like to utilise another semantic image synthesis model to compare
with. pix2pixHD, the precedent of SPADE, is used and trained with same implementation de-
tail. For comparison, we consider not only the capability of semantic image synthesis, but
also the ability of multimodal synthesis due to the project goal. In Table 4.4, the comparison
of semantic image synthesis is showed. pix2pixHD generates synthetic CT images with better
quality than SPADE. As for semantic segmentation, pix2pixHD is slightly better than SPADE in
mIoU and accu.

In Table 4.5, the analysis of segmentation for two models are shown. pix2pixHD performs better
than SPADE in IoU of Class5 and achieves equally in the others. The synthetic nodules from
pix2pixHD and SPADE are shown in Figure 4.3. The qualitative comparison of lung synthesis is
shown in Appendix A.

mIoU ↑ FID ↓ accu ↑
pix2pixHD 0.7595 7.72 0.9424

SPADE 0.7586 8.23 0.9400

Table 4.4: SPADE does not surpass pix2pixHD in the quality of semantic image synthesis.

pix2pixHD SPADE
IoU accu IoU accu

Class0 0.99 0.99 0.99 0.99
Class1 0.87 0.95 0.87 0.95
Class2 0.86 0.94 0.86 0.95
Class3 0.85 0.99 0.85 0.99
Class4 0.99 0.99 0.99 0.99
Class5 0.6625 0.99 0.6553 0.99

Table 4.5: The analysis of segmentation for pix2pixHD and SPADE.
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Semantic Label Ground Truth pix2pixHD SPADE

Figure 4.3: Qualitative comparison of nodule synthesis results generated by pix2pixHD and SPADE
(Trial3).

In Table 4.6, the results of multimodal synthesis are showed. With same semantic input,
pix2pixHD achieves 0 in LPIPS and 1 in MS-SSIM, indicating it could only synthesize identical
images, while SPADE can achieve different outputs. Therefore, SPADE is better than pix2pixHD
in multimodal synthesis.

The results of multimodal synthesis are shown in the following figures. In Figure 4.4, we show
that the synthetic tissues can be synthesized differently. It can be the texture, contrast or the
content. For example, the air bags in the chest are generated differently with same semantic
input. The nodules can also be synthesized differently, as shown in Figure 4.5

LPIPS ↑ MS-SSIM ↓
pix2pixHD 0 1.000

SPADE 0.022±0.013 0.987±0.007

Table 4.6: The capability of multi-modal synthesis is evaluated quantitatively by pair-wise calculation
between synthetic images. SPADE outperforms pix2pixHD in multimodal synthesis.

4.1.3 Manipulation test

In the manipulation test, the synthetic results was manipulating by semantic labels that nod-
ule is relocated horizontally and vertically. The results are shown in Figure 4.6 and Figure 4.7
respectively. The nodules are not synthesized identically through the process in different po-
sition. Instead, the nodule characteristic such as texture would change based on the position
and the neighbour tissues. We also resize the nodules, and visually examine the results shown
in Figure 4.8. Even though the nodules are synthesized in the same position, the property of
nodule would also change based on the size.

4.2 Suitability for data augmentation

The segment network trained by original data without augmentation is referred as baseline.
The proposed method indicates train set is augmented by 20% synthetic images with horizon-
tal flip operation, while traditional method represents the augmentation by 20% ground truth
data with flip operation. The results are shown in Table 4.7. Compared to the baseline, the
proposed data augmentation method improves the dice coefficient 0.7% and sensitivity 3.65%,
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(a) Non-lung slice 1 (b) Non-lung slice 2

(c) Lung slice 1 (d) Lung slice 2

Figure 4.4: The capability of multimodal synthesis allows synthesizing slightly different outputs with
same semantic label. The difference can be texture, content or the contrast of images. All the results are
synthesized by SPADE.

while dropping 3.29% in PPV due to the increasing amount of false positive. The traditional
method outperforms the proposed method in dice coefficient and PPV by 1.84% and 5.13% re-
spectively, but in sensitivity the proposed method shows slightly advance with 0.78%.

DSC (%) PPV (%) SEN (%)
Baseline 71.47 79.40 64.97
SPADE 72.17 76.11 68.62

Traditional 73.94 81.24 67.84

Table 4.7: Comparison of data augmentation method. SPADE as data augmentation method improves
the dice coefficient and sensitivity, but it does not surpass the traditional approach.
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Figure 4.5: Nodules are synthesized differently due to multimodal synthesis.

Figure 4.6: We relocate the nodules horizontally and synthesize based on the manipulated labels.

Figure 4.7: We relocate the nodules vertically and synthesize based on the manipulated labels.
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Figure 4.8: We also expand and shrink the nodule. From left to right, the nodules are manipulated in
size by 2x, 1.5x, 1x and 0.5x.
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5 Discussion

5.1 Generation of Lung CT Images

The first part of this section will be the interpretation for lung CT generation (5.1) covering
fidelity evaluation (5.1.1), model comparison (5.1.2) and manipulation test (5.1.3). For the sec-
ond part, the results of suitability for data augmentation (5.2) will be disccused.

5.1.1 Fidelity evaluation

In Table 4.1, most of the selected metrics align with visual examination, except Trial2 achieves
the largest mean and deviation in MSE. It is because of mode collapses exist in the inference
samples that the gray scale images were coloured. This indicates that SPADE could still suffer
from mode collapse in semantic image synthesis. While Trial3 achieves the best results in MSE
and PSNR, we argue that pixel-wise metrics are suboptimal for semantic image synthesis, since
synthetic tissues could have different texture than ground truth but still remain photorealistic,
just as the cases we have observed in multimodal synthesis test. Although MSE gives a distin-
guishable result and PSNR reflects the degree of blur, both could not correspond directly to the
fidelity.

For the rest of the metrics that align with visual examination, SSIM and MS-SSIM do not render
distinguishable results. In some cases, synthetic images with worse quality could achieve better
scores in MS-SSIM than the good one. Therefore, both structural similarity metrics are also
suboptimal for semantic image synthesis. For perceptual similarity metrics, the largest margin
is achieved in FID that Trial3 is 7.8 times better than Trial1 and 3.4 times better than Trial2,
given the most distinguishable metrics among the others. On the other hand, LPIPS renders a
relative small margin compared to FID. By comparing the mean LPIPS values, Trial3 is 2 times
better than Trial1 and 1.7 times better than Trial2. Besides, the distinction between Trial1 and
Trial2 in LPIPS is not divisible enough as the visual examination. Therefore, compared to LPIPS,
FID can reflect better the difference of quality for synthesis lung CT images.

In Table 4.2, along with FID, the common metrics for semantic image synthesis are applied for
evaluating Trial1, Trial2 and Trial3. For semantic segmentation, Trial3 performs slightly better
than Trial1 and Trial2, indicating that class 1 to 3 can be synthesized easily with small data and
recognised by the segmentation network. The class 4, the lung class, is easily recognised even
with obvious artifacts due to the clear boundary between dark and bright regions. The class 5,
the nodule class, is the hardest part for the segmentation network to precisely locate due to the
small area and partially solid boundary. The mode collapse in Trial2 is also reflected by seman-
tic segmentation, that the intersection over union for each class decays due to the unnatural
synthesis and the artifacts. Interestingly, the highest IoU of nodule class is achieved by Trial1.
To interpret this, a qualitative evaluation is conducted on the synthetic nodules, shown as Fig-
ure [? ]. The nodules from Trial1 are solid and uniform, for which are easy for the segmentation
network to detect, but they are not as realistic as the results from Trial3. Therefore, the per-
formance in IoU does not directly related to the fidelity, but it indicates that SPADE learns the
discriminated features for the segmentation network.

We set up the experiments to train SPADE, and the amounts of train data for each experiments
are largely different in order to have outcomes that can be judged easily without domain ex-
pertise. Trial3 with the most diverse and abundant training data is expected to outperform the
rest, and we have verified it through visual examination. The metrics have been calculated and
compared with visual examination. We found that most of the metrics align with perceptual
observation, but only FID could fully reflect the level of difference in synthetic quality. There-
fore, we think that FID as a perceptual similarity metric is valid for quantitative evaluation of
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synthetic lung CT images. In latter experiment, we utilised FID along with mIoU and pixel
accuracy, for which are common in semantic image synthesis literature. For semantic image
synthesis, FID indicates the quality of images while the mIoU and pixel accuracy refers to the
fidelity and the level of model following users’ input, and the results also align with perceptual
observation. Therefore, we have verified that the metrics of semantic image synthesis: FID,
mIoU, Accu, are valid for the medical imaging. Future research of semantic image synthesis in
the medical imaging could utilise these metrics for quantitative evaluation.

5.1.2 Model comparison

According to the literature [10], SPADE outperforms pix2pixHD in many datasets competition,
but in Table 4.4, we find that it is not the case for the proposed dataset, and there are two
possible reasons. First, medical imaging is different from regular data such as city scenes or
natural images. Regular images contains colour objects in distant or closed views, while the CT
images are 2D plane slices of the body depicted as grey level images. On one hand, the grey
level images are easier for the model to learn the color appearance, while on the other hand,
the model is required to learn the precise distribution of tissues. The synthetic medical samples
from pix2pixHD are slightly better than those from SPADE in all metrics, and this indicates that
the models which have been shown outstanding in normal images synthesis might not achieve
the same degree of excellence in the medical imaging. The medical image synthesis could be a
different challenge for generative adversarial networks.

Second, the modulation parameters learned by the segmentation masks make the generator
synthesize repetitive texture in the class with large area. It maybe acceptable for natural im-
ages such as grass and sky to have similar texture across the class, while for medical imaging,
those details are essential for quality evaluation. Compared to pix2pixHD, the samples from
SPADE are locally realistic but globally monotonous especially in synthetic bronchi and vessel
tissues, but the opinions from the domain experts are required to judge which one is qualita-
tively better. Besides, since the difference in FID between two models is small, the accuracy of
FID in the medical images is needed to be verified.

In Table 4.6, SPADE demonstrates a level of multimodal synthesis that pix2pixHD is not capable
of. The multimodal synthesis is due to the randomness by the image encoder. Compared to
the regular dataset, the diversity of medical images that SPADE can render is much smaller,
indicating that medical imaging is again a different challenge than normal computer vision
task.

While SPADE is capable of multimodal synthesis in the medical imaging domain, it could be
further improved by replacing the VAE structure. Literature has shown that replacing encoder
structure with a different noise generator could improve the performance of multimodal syn-
thesis, but at the same time decrease the synthetic quality. In other word, a tradeoff between
quality and diversity exists for SPADE. That seems to be the obstacle for model optimisation,
and this can be due to the VGG-based perceptual loss utilised along with the discriminator. As
VGG network is pretrained on ImageNet, it balances the fidelity and diversity of synthetic sam-
ples, and methods relying on it would be constrained by the ImageNet domain, which does not
include medical images, and the representation power of VGG. Even though we have demon-
strated SPADE is capable of generating photorealistic lung CT images, whether such loss func-
tion is optimal for the medical imaging remains unclear. Besides, literature has shown that a
better balance between multimodal synthesis and fidelity can be achieved by excluding per-
ceptual loss. While it remains unclear whether this applies to the medical imaging, with recent
progress on GAN’s architecture designs and regularisation techniques, the actual necessity of
the perceptual loss requires to be reviewed.
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5.1.3 Manipulation test

Both vertical and horizontal nodule movement result in different synthetic outcomes. The dif-
ference can be attributes such as texture or subtlety, and it depends on the position and neigh-
bouring tissues. The nodule can be solid texture when it is located in the middle of lung region,
but become partially solid when it is close to the boundary. Currently we did not split the nod-
ule class into multiple classes based on the attributes, so the model generally inference the
samples based on what it has learn from the train set.

Interestingly, when we placed the nodule at the boundary of other tissues, it did not overlap the
others abruptly. Instead, it merged into the surrounding tissues in order to comply the percep-
tual loss. This is a benefit for our application since it can prevent unnatural output when users
accidentally overlap the nodule label to other tissues in the background. Besides, it seems that
SPADE has learn some natural rules about lung nodule, that it has to be in the lung surrounding
by air bag at least partially. When we placed the entire nodule inside the soft tissues, the SPADE
generated the air bag between the nodule and soft tissues, indicating that SPADE has learned
to manipulate the boundary in order to fit the manipulated object in with others. Spatially-
adaptiveness seems to be an advantage of applying SPADE for user-guided image synthesis,
but it would impact the segmentation performance that the segmented outline deviates from
the given semantic label slightly. This also reflects the results in model comparison that SPADE
achieves a lower mIoU compared to pix2pixHD.

By expanding and shrinking the semantic labels, the size of the nodules can be controlled, but
artifacts become visible as the size increases. Since the big nodules are so limited in quantity,
the synthesis results tend to be uniform and repetitive, making it less realistic.

5.2 Suitability for Data Augmentation

In Table 4.6, we demonstrated that the synthetic images could be used as augmented data to
improve the segmentation network. Compared to the baseline, the dice coefficient and sen-
sitivity are improved while the positive predictive values declines. Compared to the baseline
and traditional approach, the best sensitivity is achieved by the proposed method. However,
the proposed data augmentation approach does not outperform the traditional method on ei-
ther dice coefficient and positive predictive values. Increasing the amount of augmented data
would lead to overfitting and performance reduction for both traditional and proposed meth-
ods.

There are two possible reasons for such results. First, the synthetic nodules are not as diverse
as the attributes presented in ground truth. Even though the segmentation network can learn
nodules in the flipped location, most of them were synthesized as solid texture, following the
majority of nodule types. As a result, the data augmented with flipped ground truth could ren-
der more performance improvement compared to the proposed method due to limitation in di-
versity. Furthermore, synthesizing images by flipping semantic labels might be a sub-optimal
way to induce diversity. Second, the features learn by SPADE might not be realistic enough.
SPADE is good at synthesizing large semantic region, but it does not perform well for fined
details with small area. Compared to other tissues, lung nodules are usually small and the at-
tributes can be varying, making it hard for SPADE to learn.

Several improvements can be made for the experiment. First, instead of flip operation, it is
possible that other manipulation method can better improve diversity of synthetic nodules.
We have shown that relocating the nodules could render different outputs due to spatially-
awareness, so manipulation such as relocating and reshaping could be alternative operations
to improve the degree of diversity. Second, classifying nodules into different classes based on
the attributes could help SPADE to learn features separately and synthesize precisely. By sepa-
rating nodule into different classes, users can control the synthetic attributes and improve the
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class-imbalance problem between different majority and minority types, such as ground glass
opacity (GGO). Third, a better training strategy can be proposed. The options include different
manipulation operations and the quantity of augmented data. Optimising the training options
could help improve SPADE-based data augmentation method.
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6 Conclusion and Future Work

6.1 Conclusion

In this research, we studied the usability of semantic image synthesis in the medical images,
for which we focused on lung CT images. In order to synthesize lung images, we proposed a
preprocessing pipeline to generate semantic labels from CT images, which would then be used
as the conditions for image generation process. As the nodule annotations were given, we used
computer vision methods to divide the other tissues into 4 classes, resulting in 5 classes in total.
The 5 classes semantic maps and the corresponding ground truth were used for training and
synthesizing samples during inference. Our contribution includes:

1. Exploring semantic image synthesis methods to generate realistic lung CT images.

2. Proposing a preprocessing pipeline to generate semantic maps from lung CT images.

3. Proposing a SPADE-based data augmentation method.

In order to answer the three sub-questions and the main research question, the following ex-
periments were designed and executed:

• For fidelity evaluation, the synthesis results were evaluated by visual examination and
quantitative metrics. We also verified the validity of metrics in lung CT images by com-
paring perceptual quality with calculated measurement.

• For model comparison, two semantic image synthesis methods were trained and com-
pared the qualities and the degree of multimodal synthesis.

• For manipulation test, in order to test the synthetic performance, the semantic mask of
nodules were manipulated with different operations. We visually checked and analysed
the outcome.

• As suitability for data augmentation, the synthetic images were used as augmented data
to train the segmentation network. We compared the segmentation performance with
and without the augmented data.

The first sub-question to be answered is: “How perceptual realistic are the generated images?”
We evaluated the quality of synthesis qualitatively and quantitatively.The synthesis outcomes
of a well-trained SPADE can be hardly distinguished from the ground truth images by visual
inspections without domain expertise.

The second sub-question is: “To what degree can we influence the outcome by user input?” We
narrowed down the region of interest to the nodules, and demonstrated that the nodules can be
edited freely. However, the degree of fidelity will be maintained only if the user editing follows
the anatomy. Therefore, as long as the semantic maps comply anthropotomy, it is likely that
the synthesis results can be photorealistic even with manipulation on the nodules.

The third sub-question is: “To what extent can the generated images be used for data augmen-
tation?” We trained the segmentation network with and without the additional synthesis data,
and found that the performance improve slightly in dice coefficient and largely in sensitivity.
However, compared to the traditional data augmentation method with flipping, the improve-
ment by the proposed method does not surpass the traditional one.

These sub-questions helped to answer the main research question: "To what extent can the
semantic synthesis GANs be applied to lung CT images?" Through the experiments, we have
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shown that SPADE is an effective method for lung CT image generation due to its quality and
manipulability. It is possible to further develop as CAL system for training junior professionals.
Moreover, it can be used as data augmentation method for the medical imaging.

6.2 Future Works

Some recommendations for future work can be made. First, a perceptual study conducted by
radiologists is recommended. There are some limitations with current measurements. The
visual examination was done without the support of domain experts, so the synthetic tissues
could be unrealistic from professional points of view. Besides, although the selected metrics are
popular in the community, the validity are not verified in the medical imaging. In the exper-
iment of fidelity evaluation, we have obtained discriminative outputs from several trials. The
perceptual study can be conducted by presenting the these outcomes with the corresponding
ground truths to radiologists for qualitative measurements. The qualitative evaluations by ra-
diologists can be a direct assessment of the fidelity. Moreover, if the radiologists’ judgements
correlate with the quantitative measurements, the validation of the metrics for the medical im-
ages can be proven. A perceptual study can be seen in Appendix B, and we believe this will be
helpful for future research in medical image synthesis.

Second, even though we have shown that the nodules can be synthesized realistically, the gen-
erated samples do present limitations. Since the nodules are not classified by the attributes,
one of major limitation is that the features from all types could be present in a generated sam-
ple. It is also possible that the model will generalise the features after learning from an im-
balanced dataset. This could eventually cause difficulty in interpreting visualisation for radio-
logical residents. By classifying nodules into different classes based on the attributes such as
malignancy score, the model can learn the most discriminative image features for each class,
and the previous mentioned problems can be alleviated.

Third, CT scans are inherently volumetric, and the radiologists visualise the CT scans slice by
slice during reading sessions. Hence, it is desirable for the CAL systems to synthesize axially
consistent tissues, but the information of adjoined slices is not considered in synthesis process
of the current method. Therefore, the possible development for CT scan generation can be
either extending SPADE from 2D to 3D volumetric generation, or developing the loss function
that maintain the continuity between connected slices.

Considering all the above-mentioned recommendations and detailed improvement in the dis-
cussion section, it is possible to develop a feasible and effective simulator of patient cases for
educating radiological residents in diagnosis with advanced CAD systems. In the future, it
is expected that the CAL systems can be one of the major instruments for the realisation of
widespread implementation of lung cancer screening.
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A Additional quantitative and qualitative results

In Table A.1, the additional segment performance for each trial are shown, including the ground
truth.
In Figure A.1, we show additional synthesis results on the test sets with comparisons from
Trial1, Trial2 and Trial3.
In Figure A.2 and A.3, we show the synthesis results from the SPADE on the lung and non-lung
slices with comparison to those from pix2pixHD method.
In Figure A.5, we show that SPADE is able to synthesize lung CT images in different location of
chest.

Ground Truth Trial1 Trial2 Trial3
IoU accu IoU accu IoU accu IoU accu

Class0 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99
Class1 0.87 0.95 0.83 0.94 0.83 0.94 0.87 0.95
Class2 0.86 0.95 0.83 0.94 0.82 0.93 0.86 0.94
Class3 0.86 0.99 0.83 0.98 0.82 0.98 0.85 0.99
Class4 0.99 0.99 0.99 0.99 0.97 0.99 0.99 0.99
Class5 0.6372 0.99 0.6632 0.99 0.6061 0.99 0.6553 0.99

Table A.1: The analysis of segmentation for each class. Class0 is the background. Class5 the nodule class
achieves the lowest IoU among all classes.
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Semantic Label Ground Truth Trial1 Trial2 Trial3

Figure A.1: Additional results with comparison to those from Trial1 and Trial2.
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Semantic Label Ground Truth pix2pixHD SPADE

Figure A.2: Additional results with comparison to those from pix2pixHD and SPADE (Trial3) on the lung
slices.
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Semantic Label Ground Truth pix2pixHD SPADE

Figure A.3: Additional results with comparison to those from pix2pixHD and SPADE (Trial3) on the non-
lung slices.
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Ground Truth pix2pixHD Trial1 (SPADE) Trial3 (SPADE)

Figure A.4: Qualitative comparison of nodules from Ground Truth, pix2pixHD, Trial1 and Trial3. The
IoUs (segment performance) for each nodule class are 0.6372, 0.6625, 0.6632 and 0.6553 respectively.
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Semantic Label Ground Truth SPADE

Figure A.5: A Full thorax CT images synthesis results from SPADE (Trial3).
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B Future work: perceptual study and validation

B.1 Introduction

In the experiments of generation of lung CT images, the visual examination was conducted
without the support from radiologists. The structure and the texture of the synthesized tissues
may not be realistic from the professional points of view. Hence, considering the end users of
the applications, we would like to have the radiologists to judge the fidelity of the synthesized
images based on their domain expertise. The judgements can be used as not only an addi-
tional qualitative measurement, but also the validation of the quantitative measurements in
applicability and accuracy.

B.2 Research questions

The purpose of this experiment is to answer the questions:

• Does the synthesis network render realistic CT images for the radiologists?

• Do quantitative image quality metrics align with the expert opinions?

B.3 Experiment designs

We adopt the methodology from previous work [53]. A series of experiments are designed for
which we plan to have at least 5 radiologists examine the outcomes. There are 60 experiments,
each containing the ground truth image and the synthesized outputs from Trial1, Trial2 and
Trail3. In each experiment, the four images are presented in a randomized order. Participants
are asked to choose one from the quartets which they think is real, and also evaluate the qual-
ity of each image using a 4-point score, with 1 being the most faked and 4 indicating the most
realistic. All images are presented in 512×512 resolution. The same methodology can be ap-
plied for the comparison between those outcomes from SPADE and pix2pixHD for verifying the
accuracy of quantitative image quality metrics.

The outcome of the questionnaires will be calculated based on the 4-point scores and real-
image classifications. The mean value and standard deviation for each category represent the
quality evaluation by experts, and the probability of the images classified as real indicates the
degree of fidelity that the synthesis network can render. By comparing the outcomes of each
category, we can correlate the expert opinions with quantitative image quality metrics.

For the infrastructure, we build the questionnaires using google form such that the participants
can conduct the study in either the work place or home. In the following figures, we show the
example of the questionnaires.
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Figure B.1: The quartet is first presented for the participants to choose which one is most likely the real
lung CT image.
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Figure B.2: Each image is then presented in full resolution for the participants to rate the quality with
4-point score.
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