
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

A branch-price-and-cut
algorithm for graph coloring

Roelof Petrus van der Hulst
M.Sc. Thesis
August 2021

Supervisor:
dr. M. Walter

Graduation committee:
prof. dr. M.J.Uetz

dr. M. Walter
dr. K. Proksch

Discrete Mathematics and
Mathematical Programming

Faculty of Electrical Engineering,
Mathematics and Computer Science

University of Twente
P.O. Box 217

7500 AE Enschede
The Netherlands

Abstract

Branch-and-price approaches for graph coloring using the set covering formulation have been
shown to be effective, particularly in computing strong lower bounds. This thesis proposes the
addition of both maximally-violated mod-k cutting planes and odd-cycle cutting planes to ex-
tend the existing branch-and-price algorithms. Algorithms to efficiently separate these classes
of cutting planes are proposed. A combinatorial algorithm for the modified pricing algorithm is
proposed, and the resulting branch-price-and-cut algorithm is tested on the DIMACS instances.
The branch-price-and-cut algorithm has similar performance as the branch-and-price algorithm
when applying cuts at the root node. Maximally violated mod-k cutting planes are shown to
be effective in increasing the lower bound of the root node for insertion graphs, and odd-cycle
cuts are shown to be effective in increasing the lower bound of dense DIMACS instances.

Various branching strategies from the literature are also surveyed, and a new branching strat-
egy is proposed which outperforms the existing branching strategies. Using this new branching
strategy, we are able to solve all tested graphs with less than 100 vertices, solving the myciel6
instance, all FullIns and 3 insertion graphs using a branch-and-price algorithm for the first
time. The open instance 5-FullIns 4 is solved by the new branch-and-price algorithm.

2

Preface

This thesis was written in 2021 during the COVID pandemic. This meant there were little
opportunities to meet in person, and that I often had to work in my student room. While this
was not how I initially envisioned my thesis time, I thoroughly enjoyed working on this thesis
and I am proud of it. I would like to thank a few people who have helped make that possible.
First and foremost, I would like to thank Matthias Walter for his feedback, enthusiasm and
guidance in the past year, not only for this project, but also for supervising my internship at
DAT.mobility. I would also like to thank my family, my friends, my roommates at Huize Orient,
and Judith, who have all supported me throughout my study and with this thesis.

3

Contents

1 Introduction and related works 6
1.1 Related work . 6
1.2 Research Goals and contribution . 8
1.3 Outline . 8

2 Set covering formulation 9
2.1 Set covering formulation . 9

2.1.1 Preprocessing . 11
2.1.2 Branching rule . 12

3 Separation methods 16
3.1 Mod-k Cuts . 17

3.1.1 Maximally Violated Mod-k Cuts . 17
3.1.2 Modified Pricing problem . 19
3.1.3 Selecting k . 20

3.2 Odd-cycle cutting planes . 21
3.2.1 Limited to fractional variables . 22
3.2.2 Strong odd-cycle cuts . 23
3.2.3 Modified pricing problem . 24
3.2.4 Polyhedral results . 24

3.3 Cutting planes with larger Chvátal Rank . 25
3.3.1 Separation of maximally violated mod-k cutting planes 25
3.3.2 Separation of odd-cycle cutting planes . 26
3.3.3 Pricing . 28

4 The pricing problem 30
4.1 Background . 30

4.1.1 Numerical safety . 31
4.1.2 Stabilization and early branching . 31

4.2 An algorithm for the modified pricing problem 32
4.2.1 Bounds for the modified pricing problem 32
4.2.2 A combinatorial branch-and-bound algorithm for the modified pricing

problem . 35
4.3 Implementation . 37

4.3.1 Column Initialization . 37
4.3.2 Greedy improvements . 38

5 Branching 39
5.1 Branching strategy . 39
5.2 Experiments . 40

4

6 Experiments 44
6.1 Implementation . 44
6.2 Instances . 45
6.3 Results . 47

6.3.1 Branch-and-price . 47
6.3.2 Mod-k cutting planes . 48
6.3.3 Odd-cycle cutting planes . 50
6.3.4 Comparison of branch-cut-and-price with branch-and-price 51

7 Discussion and recommendations 56
7.1 Recommendations for further research . 56

5

Chapter 1

Introduction and related works

GRAPH COLORING, also known as VERTEX COLORING, is a well known problem in Graph
Theory. Given a graph G = (V,E), a color c(v) is assigned to each vertex v ∈ V , such that no
two adjacent vertices connected by an edge are assigned the same color. More formally, a valid
coloring of a graph G is a coloring for all v ∈ V such that c(u) 6= c(v), ∀(u, v) ∈ E. In graph
coloring, the objective is to use a minimal amount of colors. The minimum number of colors of
a graph is denoted by χ(G), and is also called the chromatic number of G. Graph coloring is
well known to be NP-hard, as shown by Karp [39].

Graph coloring is a fundamental NP-hard problem with many applications. Discrete schedul-
ing problems can often be posed as graph coloring problems[25, 74]. For example, let each vertex
represent an event (e.g. a school class), with edges connecting two vertices if they are in conflict
(e.g. they require the same teacher). Then in a valid coloring of the graph, all events with the
same color can happen simultaneously, and a minimum color solution uses a minimal number
of time-slots. Several applications regarding timetabling exist [9, 69]. Similarly, graph coloring
is used as a model for the register allocation problem [16]. Applications also exist for frequency
assignment [62] and resource allocation problems [71].

Another good reason to investigate the graph coloring problem is that it seems to be one of
the most challenging NP-hard problems. Even for graphs with as few as 95 vertices, research has
been struggled to prove the exact value of χ(G) using state-of-the-art algorithms [45]. In this
light, new techniques applicable to graph coloring could be worthwhile to use in other problems
and have a broader impact.

1.1 Related work

The literature on Graph Coloring is extensive. It can be separated in two different categories,
exact and heuristic approaches. Exact approaches attempt to find an optimal solution and
guarantee its validity. Heuristic approaches also attempt to find solutions, but do not guaran-
tee that the solutions they find are optimal. Typically, these heuristic approaches trade off the
quality of a solution for a much faster running time.

There is a large amount of papers which heuristically try to find valid colorings. Most
notable are tabu search and local search methods [6, 21, 37, 38, 54]. Two papers outside of
this scope have obtained strong results; one extracts independent sets [33] and another uses
simulated (quantum) annealing [64], although more research has been done into this direction
[61]. For a more elaborate discussion and evaluation of the heuristic coloring literature, see [63].
The solutions found by these approaches pose valid upper bounds on the coloring number of a

6

given graph.

The literature on exact methods is less extensive. Three main types of formulations are
commonly used in literature.

First are the ’classical’ integer programming formulations. These typically assign a binary
variable xv,c for each color c and vertex v. These formulations typically obtain weaker lower
bounds and have problems with symmetry between color classes. Attempts to use the classical
formulation typically revolve around breaking these symmetries by adding cutting planes or by
strengthening the formulation to remove symmetries. In a branch-and-cut algorithm, Mendez-
Diaz and Zabala [46, 47] add 5 different types of cutting planes to the classical formulation and
introduce two ordering models which break symmetry. The asymmetric representatives formu-
lation is another attempt to reduce symmetry by Campelo, Campos and Correa [10], and they
also introduce several types of cutting planes. Conraz, Fugini and Malaguti [15] show that this
formulation is also effective in practice, solving more instances than the cutting plane approach
of Mendez-Diaz and Zabala [46].

A second class of methods tries to model the problem as a satisfiability (SAT) problem with
boolean clauses. Van Gelder [65] introduces three formulations using propositional logic. Zhou
et al. [73] also use propositional logic combined with a learning approach. Bouhmala and
Granmo [7] use learning automata and random walks with a satisfiability encoding. In a more
unique approach, Galinier, Hertz and Derosier [18] attempt to find χ-critical subgraphs in order
to determine the chromatic number, which is effective for some classes of graphs. Hebrard and
Katsirelos [35] use similar techniques using a SAT solver. Although finding χ-critical subgraphs
can be useful for computing strong lower bounds, many of the more difficult tested instances
were not χ-critical, making the application of this technique somewhat limited [18].

Last are branch-and-price algorithms. These formulations model each color as a stable set.
Then, using a partitioning or covering problem formulation, they try to minimize the number
of stable sets. Since the number of stable sets of a graph may be exponential in the size of the
graph (O(3

n
3))[48], column generation is used in order to create a tractable problem. Columns

are generated by the pricing algorithm. The strength of these formulations is primarily in their
strong lower bounds. As variables are associated with stable sets, no two adjacent vertices
can be given the same color in the LP relaxation of these formulations. This makes the linear
relaxation of these formulations stronger than that of classical models, as they may allow for this.

The most researched branch-and-price algorithm uses the set covering formulation. This
formulation uses only maximal stable sets. Mehrotra and Trick [45] first introduced a branch-
and-price algorithm using the set covering formulation. Malaguti, Monaci and Toth [44] improve
on these results by generating a large number of initial columns using a metaheuristic algorithm
at the start of the column generation process. The used algorithms are adapted for numerical
safety by Held et al. [36], who also propose a more complex and effective pricing algorithm.
Gualandi and Malucelli [30] use constraint programming to solve the pricing problems, and
introduce an augmented pricing method which attempts to find integral solutions for stronger
upper bounds. The set covering formulation was also investigated by Hansen et al. [32], who
attempt to add cutting plane procedures and introduce two preprocessing rules. Chapter 2
explains the set covering formulation in further detail.

The set partitioning formulation was also investigated by Hansen et al. [32]. They show it
obtains results on par with the set covering formulation. They also attempted to add cutting
plane procedures based on cliques in the conflict graph of stable sets, but results from these

7

experiments were not promising.

Various exact enumeration algorithms also exist. The DSATUR algorithm [45][8] in partic-
ular is widely used by many papers to compare the performance of linear programming or SAT
formulations.

A common technique for integer programming is to add cutting planes based on polyhedral
results of the problem formulation. In his thesis, Schindl introduces some polyhedral results
for the set covering formulation of Graph Coloring [59]. Hansen, Labbé and Schindl [32] try
to apply these results in practice, but do not have much success. They show that odd-cycle
cuts can yield moderate improvements in the branch-and-bound tree size when added appro-
priately, emphasizing that further research may improve on these results. Additionally, they
briefly report on the effect of adding cuts based on small graphs, which did not yield promising
new results. To our knowledge, this is the only existing work of literature which investigates
a branch-price-and-cut approach for graph coloring. Further possibilities for cutting planes are
discussed in Chapter 3.

1.2 Research Goals and contribution

As many heuristic methods are already known, this research investigates exact integer linear
programming formulations using column generation, the branch-and-price algorithms. These
algorithms obtain strong lower bounds, and this way we may hope to prove that known upper
bounds are indeed optimal. For this purpose, the set covering formulation is used, as it is
most commonly used in literature. We then attempt to add cutting planes to the set covering
formulation, in order to obtain stronger lower bounds.

Implementing cutting planes poses a challenge when combined with pricing. In particular, as
the reduced cost of the variables changes, the structure of the pricing problem changes as well.
These modifications can often increase the computational effort in the pricing problem. This
research aims to resolve these issues by proposing and testing effective algorithms for pricing.
This way, we hope to be able to efficiently add cutting planes in order to obtain stronger bounds
for graph coloring problems using the set covering formulation. Furthermore, after adding these
cutting planes, we aim to obtain a better understanding of the cutting planes’ impact on the
branch-price-and-cut algorithm.

1.3 Outline

In Chapter 2 the set covering formulation and its details are discussed. Chapter 3 discusses the
methods necessary to separate odd-cycle and mod-k cutting planes. In Chapter 4 an algorithm
for the modified pricing problem is formulated. Chapter 5 describes various differing branching
strategies, and compares these on a small set of instances. Finally, we discuss our results and
make recommendations for further research in Chapter 7.

8

Chapter 2

Set covering formulation

The set covering formulation was first described in detail by Mehrotra and Trick [45]. This
section is simply an explanation of their work, as we use their work as the basis of this thesis.
Most ideas in this section are based on [30, 32, 36] and [44].

2.1 Set covering formulation

In the set covering formulation (2.1), we use the variables xS , where S is a stable set in the
given graph G = (V,E). A stable set is a set S ⊆ V such that there are no edges between two
vertices within S. More formally we have that for all u, v ∈ S, (u, v) /∈ E. For a valid coloring,
each color can be associated to a stable set.

Then, in the set covering formulation, xS = 1 if and only if the stable set S represents a
color class for the optimal coloring of the graph. Note that for a solution to (2.1) a vertex v is
allowed to be in multiple color classes. We can always pick one of these colors to end up with
a final solution. Then, the formulation can be restricted to only use inclusion-wise maximal
stable sets, as any solution to (2.1) remains valid when we expand one of the color classes with
a vertex. Let Smax be the set of all maximal stable sets. The graph coloring problem can then
be formulated as:

χ(G) = Minimize
∑

S∈Smax

xs (2.1a)

subject to
∑

S∈Smax:v∈S
xS ≥ 1 ∀v ∈ V (2.1b)

xS ∈ {0, 1} ∀S ∈ Smax (2.1c)

This is a valid formulation of the graph coloring problem [45].

In a branch-and-bound application, we seek to find lower bounds to (2.1). This is done by
taking the linear relaxation of the integer programming formulation, relaxing the variables xS
to be able to take values in a continuous [0, 1] interval. Then, we can use the Simplex algorithm
(see [60] for more information) to solve the resulting Linear Program (LP) in practice. Let
S ⊆ Smax. Then the Restricted Master Problem (RMP) can be formulated as in the system
(2.2).

9

χf (G) = Minimize
∑
S∈S

xs (2.2a)

subject to
∑

S∈S|v∈S

xS ≥ 1 ∀v ∈ V (2.2b)

xS ∈ [0, 1] ∀S ∈ S (2.2c)

Although we can try to solve the RMP using all variables so that S = Smax, this is not
feasible in general. The total number of variables |Smax| can be exponential in the size of the

graph with O(3
|V |
3) [48], which slows down the computation by too much. Instead, we restrict

the columns to use the smaller subset S.

After solving the RMP, we then have to consider if expanding our set of columns S would
lead to a better solution for the RMP, as better columns may exist. This is done by using column
generation. In column generation, the RMP is solved using linear programming. Then in the
pricing problem, one decides if any columns exist which could possibly decrease χf (G), and add
these columns if necessary. This is crucial as we otherwise cannot claim to have solved the RMP.

The pricing problem can be decided based on the reduced cost of the variables. By linear
programming, if a variable xS with S /∈ S has negative reduced cost adding the variable to the
RMP may improve the objective. Similarly, if xS has zero or positive reduced cost, it cannot
improve the objective of RMP. In the pricing problem, we then must find a negative reduced
cost variable xS , or prove that none exists. For the RMP (2.2), the pricing problem is a maxi-
mum weighted stable set problem.

Let πv be the dual values in the current LP solution associated with constraints (2.2b).
Then we can formulate the Maximum Weighted Stable Set problem (MWSS) as follows.

Maximize W (y) =
∑
v∈V

πvyv (2.3a)

subject to yu + yv ≤ 1 ∀(u, v) ∈ E (2.3b)

yv ∈ {0, 1} ∀v ∈ V (2.3c)

Solving the system (2.3) gives us a solution vector y which is a stable set within the graph
G. If for the objective (2.3a) we have that W (y) > 1, then we can conclude that we have found
a stable set with negative reduced cost. We can then add this new stable set to S and solve
the Restricted Master Problem again. If W (y) ≤ 1, we can conclude that no negative reduced
cost stable set exists, and thus we can then certify that the solution value as defined by the
linear relaxation of the Restricted Master Problem is optimal. In column generation, we can
then repeatedly add one or more columns to the Restricted Master Problem and solve it again,
terminating when no more negative reduced columns exist.

The optimal solution value of the Restricted Master Problem is called the fractional chro-
matic number and denoted by χf (G). The fractional chromatic number is a lower bound to the
Master Problem [60], so that we have χf (G) ≤ χ(G). In this report we also use the notation
χc(G), that we define as the optimal solution value of RMP at the root branch-and-bound node
after adding cutting planes. Intermediate solutions to the RMP that are not yet proven optimal
by the pricing problem are denoted by zRMP . Note that zRMP is not necessarily equal to χf (G),
as reduced cost columns may be added to the Reduced Master Problem still. Generic lower
bounds for χ(G) are denoted as χ(G).

10

The strength of the set covering formulation lies primarily in its strong lower bounds. The
explanation for this is that using stable sets as variables implies that each clique in G is colored
with the exact amount of colors needed, also within the RMP. This corresponds to adding all
clique inequalities to ’classical’ formulations, which is one of the most important classes of cut-
ting planes used for these formulations [47].

For each pricing iteration the minimal reduced negative cost c∗ and an associated stable set
vector y∗ can be found by solving the pricing problem to optimality. Then, one can define a
lower bound using the optimal value from the maximum weighted stable set problem (see [43,
44]) together with zRMP . Let us denote this lower bound by χp.

χp =
zRMP

1− c∗
=

zRMP

W (y∗)
(2.4)

Note that bound (2.4) can only be used when the pricing problem is solved to optimality or
when a valid upper bound W such that W ≥W (y∗)) is found.

An important note is that the Maximum Weight Stable Set problem is equivalent to the
Maximum Weight Clique problem by simply taking the complement of the edges Ē = {(u, v) /∈
E | u, v ∈ V }, and by then considering the maximum weight clique problem on the graph
Ḡ = (V, Ē). Both problems are among the most studied NP-hard problems. In Chapter 4, we
will further discuss the pricing problem and algorithms used to solve it.

Although we may solve the linear relaxation of the Restricted Master Problem, a large gap
between χf (G) and χ(G) may still exist. This problem is usually solved using a branch-and-
bound algorithm. In branch-and-bound, the problem is recursively split up into two easier
subproblems, creating a branch-and-bound tree. Any integral solution found in a branch-and-
bound node is valid for the original problem and thus constitutes a good upper bound. The
lower bound of a branch-and-bound node is the minimum of the lower bound of its two children.
This lower bound can be computed by solving the Restricted Master Problem again for this
branch-and-bound node. Some of the algorithmic details on the branch-and-bound algorithm
are described in Section 2.1.2.

2.1.1 Preprocessing

In the literature, two preprocessing rules specific to graph coloring have been introduced by
Hansen et al. [32]. These preprocessing rules aim to reduce the size of the graph to be colored.
We use the notation G[V ′] = (V ′, E′) to denote the induced graph of the vertices V ′, with
E′ = {(u, v) ∈ E|u, v ∈ V ′}. Both preprocessing rules are based on expanding valid colorings
of subgraphs. Given some vertex v ∈ V and a valid coloring for G[V \ {v}], we then argue that
a color is available for v or that we can assign a color greedily to v. Then, we can remove this
vertex from the relevant coloring problem, reducing the size of the program.

The first rule introduced by Hansen et al. [32] is based on dominated vertices. Given two
distinct vertices u, v ∈ V, u 6= v, it is said that u dominates v if and only if N(v) ⊆ N(u).
Note this also implies (u, v) /∈ E. Then given any coloring for G[V \ {v}], we can always assign
the color of u to v. This will be valid, as in a valid coloring for G[V \ {v}] all vertices in
N(u) must receive a different color as u, which implies all colors in N(v) are different from
the color of u. Thus, when removing any dominated vertex v from a graph G, we know that

11

χ(G) = χ(G[V \ {v}]).

The second preprocessing rule introduced by Hansen et al.[32] uses knowledge of a lower
bound χ(G) on χ(G). When considering a vertex v with degree d(v) < χ(G) − 1 with a given
optimal coloring for G[V \ {v}], we then know that always at least one color in the set of colors
{1, 2, ..., χ(G)} must be available for it. If a given subgraph G′ is known with χ(G′) = χ(G),
then we can also safely remove vertices v /∈ G′ with d(v) = χ(G) − 1. For example, if a graph
has a single large clique of size n, Kn, all vertices v ∈ Kn have d(v) = n − 1, but removing a
vertex from Kn would delete a vertex from the clique, lowering the coloring number. Thus, in
this case, we can only remove a vertex v with degree n − 1 if v ∈ V \ Kn(V), as χ(Kn) = n
implies that χ(G) would still be unaltered from using the greedy argument.

A lower bound χ(G) can be computed by calculating the size of the maximal clique in G.
Lower bounds also naturally arise when solving the pricing problem to optimality, as given by
equation (2.4), particularly when a branch-and-bound node is solved to optimality.

Then, given an original graph G, we can reduce it to a graph G′ by iteratively removing all
vertices which satisfy one of the above rules until no more vertex can be removed. As this can
be done in polynomial time, it is well worth to apply this reduction to a graph G. Algorithm 1
illustrates the algorithm used.

Algorithm 1 Preprocessing algorithm

1: function Preprocessing(G,χ(G), (optional) clique K such that χ(K) = χ(G))
2: G′ = G
3: loop
4: for v ∈ V (G′) do
5: if d(v) < χ(G)− 1 or (d(v) = χ(G)− 1 and v /∈ Kn) then
6: G′ = G′[V \ {v}]
7: end if
8: end for
9: for u, v ∈ V (G′) do

10: if d(u) ≤ d(v) and N(u) ⊆ N(v) then
11: G′ = G′[V \ {v}]
12: end if
13: end for
14: if No vertex was removed then return G’
15: end if
16: end loop
17: end function

2.1.2 Branching rule

In a branch-and-bound algorithm, we need a procedure to separate the problem into two sub-
problems. The branching rule used by Trick and Mehrotra [45], which was first proposed by
Zykov [75], is the most used branching rule for the set covering formulation. It is equivalent to
the well known Ryan/Foster branching rule for graph coloring [58]. Mehrotra and Trick make
the observation that traditional branching rules are not very suitable. These branching rules
typically split up the problem into two subproblems by fixing a single variable xS to 0 and
1 in the two subproblems respectively. However, this can be problematic as it implies stable
sets must be forbidden in one of the branches, which alters the pricing problem (2.3) (see [44]).

12

u v

a b c

(a) The original graph

u v

a b c

(b) The original graph with DIFFER
branching on vertices u and v

u v

a b c

(c) The original graph with a SAME con-
straint on vertices u and v, without re-
moving a vertex

w

a b
c

(d) The original graph with SAME
branching on vertices u and v, contract-
ing them to a new vertex w.

Figure 2.1: An example of Zykov’s branching rule for a simple graph. Changed edges or vertices
are marked in bold.

Instead, one can use a branching approach specific to graph coloring that does not alter the
problem structure of the pricing problem.

Consider two vertices u, v such that u, v /∈ E. Then we can create two subproblems. In the
first subproblem we require that u and v are given different colors. This can be done by adding
the edge (u, v), e.g. setting GDIFFER = (V,E ∪ (u, v)). In the second subproblem, we require
that u and v are assigned the same color. We can do this by contracting the vertices u and
v. Here, we remove u and v from the graph, and replace them with a new vertex w which has
N(w) = N(u) ∪N(v). We denote the resulting graph as GSAME .

The SAME constraint is sometimes implemented differently. Instead of unifying the two ver-
tices, edges are added to the vertices in N(u) and N(v) such that N(u) = N(v). Then, implicitly
we could remove one of u or v since it is dominated, but for other reasons it may be beneficial
to keep the relevant vertex in the graph. Suppose we are in a branch of the branch-and-bound
tree with a SAME(u, v) constraint. Then, if at a later point in the branch-and-bound tree
edges an edge (u,w) is added for some vertex w ∈ V , we also need to add the edge (v, w) if it
does not yet exist, in order to ensure that the SAME constraint is still implicitly satisfied by
the graph, e.g. that N(u) = N(v) still. Figure 2.1 shows an example of the branching rule and
the two different SAME implementations for a simple case.

In order to select the relevant two vertices to branch on, different procedures have been
tried. Mehrotra and Trick [45] pick some vertex u ∈ S, where S is the most fractional column,
and then pick a second column S′ and choose a second vertex v ∈ (S′ ∪S) \ (S′ ∩S). This way,
in each branch, at least one of S and S′ is invalidated. We call the procedure or function used
to pick the branching vertices the branching strategy. In Chapter 5 several different branching
strategies are investigated with the Zykov branching rule.

When the new branch-and-bound nodes have been generated, we can propagate existing
stable sets which have already been generated to the node. This way, we do not need to start
column generation from scratch in every branch-and-bound node. In particular, given S and
two branching vertices u and v, we can check for each stable set S ∈ S if they violate the given
branch. For GDIFFER, we can initialize the new branch-and-bound node with all stable sets
S ∈ S that contain at most one of u and v, e.g. we can initialize the initial set of stable sets

13

Instance Branch-and-bound nodes |S| in root node |S| after solving

myciel5 3619 73 452
DSJC125.9 355 230 388

Table 2.1: Distribution of the number of generated stable sets over the branch-and-bound nodes

SDIFFER as SDIFFER = {S ∈ S||S ∩ {u, v}| ≤ 1}. We can do something similar for GSAME

and initialize the new branch-and-bound with all stable sets which either have both or neither
of u and v. Then, we can set SSAME = {S ∈ S||S ∩ {u, v}| 6= 1}.

One advantage of having a coloring problem as a subproblem structure is that Algorithm 1
can be applied at every branch-and-bound node. Hansen et al. [32] have observed that apply-
ing these reductions at every branch-and-bound node reduces the computation time for most
instances. We observed similar results in our preliminary tests. Note we do not use the optional
clique argument for further branch-and-bound nodes, as this requires solving the maximal clique
problem again, which is NP-hard.

It is worth noting that the removal of vertices of G does not affect the validity of the stable
sets that have been computed. Thus, we can still share the set of columns which was generated
in the child nodes, provided that they are disabled if they violate the branching constraints.
However, a stable set generated in a graph of a node at a larger depth might not be maxi-
mal in a branch-and-bound node that has more vertices from the original graph. This would
be a shame, as we then cannot use these columns in different parts of the branch-and-bound tree.

To change this, we can extend stable sets in subproblems from the branch-and-bound tree
to also be inclusion-wise maximal in the original graph. We do this by using a greedy strategy
which adds the vertices deleted from the original graph in an arbitrary order, whilst still satisfy-
ing the branching constraints. We can satisfy these branching constraints by only adding edges,
and not removing the relevant vertex in a copy of the graph. For all DIFFER constraints, we
only need to add one edge, and for each SAME constraint we can add edges without removing
vertices (as described above). Then, a simple greedy procedure on this resulting graph will give
a stable set which satisfies the branching constraints. In our implementations, we used a greedy
procedure with a random vertex ordering, to generate a larger ’variety’ of stable sets.

Using the above procedures, the stable sets can be transferred between branch-and-bound
nodes efficiently, and all generated stable sets are also valid and inclusion-wise maximal in the
root node. Together, this helps reduce the computation time significantly when doing branch-
and-price computations. In Table 2.1 one can see that although many stable sets are generated
in the root node, only a few stable sets generated in all other branch-and-bound nodes. For
most nodes, after initialization with the initial (transferred) set of columns, only a few stable
sets are priced in before the branch-and-bound node is solved. For both instances in Table 2.1,
we even need fewer stable sets than branch-and-bound nodes after solving the root node; this
means many branch-and-bound nodes are immediately solved to optimality after only a single
run of the pricing algorithm.

Malaguti et al. [44] have done experiments with variable branching, and have found that in
their case, it performs similarly to edge branching. However, as it complicates the maximum
weight stable set problem, and prevents us from applying Algorithm 1 at every branch-and-
bound node, we decided not to use this branching rule. Indeed, using variable branching, one
would need to prohibit the generation of some stable sets, which makes the pricing problem
more difficult, as the structure is then altered based on the branching decisions. In contrast,

14

Zykov’s branching rule does not alter the pricing problem, but rather the graph itself, which
more easily allows for reductions based on graph coloring arguments. The variable branching
is explained more in depth by Malaguti et al. in their paper [44].

15

Chapter 3

Separation methods

In integer programming, cutting planes are a tool that is often used in order to speed up
the branch-and-bound procedure. The core idea is to consider the linear relaxation of a formu-
lation, and to then strengthen it by adding inequalities that are violated by its optimal solution.

Considering the Restricted Master Problem (2.2), we then seek to add classes of cutting
planes to it in order to strengthen the formulation, and to hopefully speed up the computa-
tion. One important requirement here is that the generated cutting planes are compatible with
column generation. In practice this means that for the generated cutting plane row, we must
know what coefficient to add for each newly generated stable set. If we do not do this, we may
re-generate variables which are ”cut off”, which could lead to an infinite pricing and separation
loop [19].

One clear candidate for cutting planes in this respect are Chvátal-Gomory cutting planes
[13, 28]. Consider the polyhedron P = {x ∈ Rn : Ax ≥ b, x ≥ 0} with A ∈ Zm×n, b ∈ Zn.
Chvátal-Gomory cuts are cutting planes which are defined by a multiplier vector λ ∈ Rm with
0 ≤ λi ≤ 1. This gives a row inequality of the form λTAx ≥ dλT be, where we require that
λTA ∈ Zn, e.g. the coefficients of the new row are integral. Then, when a new column an+1 is
generated for A in pricing, the new coefficient in the cutting plane is simply dλTan+1e. Here
we can use the ceiling operator to ensure that the new row coefficient is integral.

Chvátal-Gomory cuts are a very generic framework. There have been several efforts and
investigations in different applications of these cuts. Mod-k cuts were investigated by Caprara
et al. in [12]. For these cuts, one considers only the multipliers λ ∈ {0, 1k ,

2
k , ...,

k−1
k }

m for
defining a cut. Mod-2 cuts were examined as a special case in another paper by Caprara and
Fischetti [11]. Hansen et al. applied mod-2 cuts to Graph Coloring in their paper [32], using
an approach related to odd-cycle cuts which is explained in Section 3.2. For these results, we
show some elaborations and improvements compared to the results as posed by Hansen.

Hansen et al. [32] also attempted to add cuts based on small subgraphs G[V ′] with known
χ(G[V ′]). One can efficiently detect these for odd hole graphs. However, this did not seem
fruitful, as even adding thousands of inequalities based on these small graphs only lead to a
small improvement in objective, and the authors also show that these inequalities do not yield
a good description of the convex hull for the small instance myciel3.

Although other cutting plane methods exist, they are difficult to apply to the Graph Color-
ing Problem. For set covering programs, only a few other cutting plane methods are known.

Nobili and Sassano introduced inequalities based on ’k-projection’ [51, 52]. Unfortunately,

16

these are not suitable with column generation as they require knowledge of the entire problem
matrix, and thus all columns, in order to separate cuts.

For the set covering problem, Balas and Ho [4][3] introduced conditional cuts, which are
cuts that are only valid under the assumption a better primal solution exists. Unfortunately,
these cuts are also not very well suited for graph coloring. In order to separate a cut, a row
with exactly 3 coefficients of 1 and zero otherwise is required. This is extremely unlikely in
graph coloring, as it requires that |{S ∈ S : v ∈ S}| = 3. For a typical application this is near
impossible, as after solving the root node we have observed only |S| ≥ |V |, with for sparser
graphs |S| � |V |. The typical maximal stable set S ∈ S has size |S| > 3, even for dense graphs;
in this light, the precondition is extremely unlikely to hold. Only for very dense instances one
could hope that these conditions hold, but these instances are also typically considered to be
much easier to solve. Conditional cuts thus do not seem to be promising for graph coloring
applications.

3.1 Mod-k Cuts

Caprara and Fischetti [12] have studied Chvátal-Gomory cuts for which for a given integer
k ≥ 2, the coefficients λ ∈ {0, 1k , ...,

k−1
k }. Here, we present an adaptation of these cuts for the

set covering formulation of graph coloring.

In the separation problem for mod-k cuts the violation of the mod-k cut is maximized.
Adapting Caprara and Fischetti’s work [12], we can formulate this problem in a way relevant
to the set covering formulation for graph coloring. Consider A ∈ Zm×n and b ∈ Zm. Let
P = {x ∈ Rn|Ax ≥ b}, and PI = {x ∈ Zn|Ax ≥ b} be the linear relaxation and integer convex
hull respectively.

Suppose we have a solution x∗ ∈ P and the slack vector s∗ = b − Ax∗. We let µ = kλ be
integer. Then, finding violated mod k cuts amounts to the following optimization problem.

Minimize δ∗ = s∗µ− (k − θ) (3.1a)

subject to ATµ ≡ 0 (mod k) (3.1b)

bTµ ≡ θ (mod k) (3.1c)

µ ∈ {0, 1, ..., k − 1}m (3.1d)

θ ∈ {1, 2..., k − 1} (3.1e)

Note that the objective represents the violation of the found cut. Then, any cut with a strictly
negative objective value is violated by the current LP solution x∗.

The above problem can also be solved as an integer program, as the congruences can be
modeled by introducing an additional variable with coefficient k. For k = 2 the separation
problem is equivalent to finding a minimum weight member of a binary clutter, which is NP-
hard [11]. Thus, we generally cannot expect to solve this problem exactly.

3.1.1 Maximally Violated Mod-k Cuts

One subclass of solutions to this optimization problem is maximally violated mod-k cuts. For
these cuts, all rows with nonzero slack are not considered, such that if s∗i > 0 for the i’th row of
A, µi = 0. As λTA is integral, and the right hand side b is a multiple of 1

k , we can look for cuts
which have the best possible objective by fixing θ = 1. Searching cuts under this assumption

17

turns the optimization problem into a decision problem.

Since for maximally violated mod-k cuts the objective is fixed, all that remains is to find
a feasible solution which satisfies the system (3.1b)–(3.1e). For prime k , this can be easily
done, as we can then simply solve a system of equations over the prime field Z/kZ, which can
be done using Gaussian elimination. For non-prime k, some additional work needs to be done,
as the corresponding system of equations is not in a prime field and we cannot use Gaussian
elimination. Caprara and Fischetti also remark this case is still easy to solve [12], but do not
show in depth how to solve these issues when k is non-prime.

Let us elaborate on how to separate maximally violated mod-k cuts efficiently for arbitrary
k ≥ 2. Here, we assume that the prime decomposition of k is known. Then, we can use
techniques from number theory to find solutions. For prime k, the problem is simple, but for
composite k more complicated tools are necessary.

Consider an arbitrary system of equations Ax = b mod k, with aij , bi ∈ Z for all rows i
and columns j. For prime k, we are solving the problem over the finite prime field Z/kZ. This
can be done efficiently by using the Wiedemann algorithm, see [70] for more elaboration. The
Wiedemann algorithm also benefits from the sparsity of the matrix, making it well suited for
integer programming applications.

Next, there is the case of k = pq for some prime p and integer power q. In this case, one
assumes that the integer solution is a polynomial of p; this can be done by sequentially ’lifting’
the solution to a polynomial of a higher degree. Algorithm 2 shows how this can be implemented
in practice: it is taken from [41].

Algorithm 2 An algorithm to solve a system of equations Ax = b mod pq. If no solution is
found and i > 0, a solution x mod pi is returned instead.

1: function SolveModK(A,b,p,q)
2: i = 0
3: b0 = 0
4: x = 0
5: while i < q do
6: solve Axi = bi mod p
7: if xi infeasible then return
8: end if
9: bi+1 = (bi −Axi)/p

10: x = x+ pixi
11: i = i+ 1
12: end while
13: end function

Note that by updating the basis, this algorithm obtains solutions for increasingly higher
powers of p. Even when it terminates early, if i > 0 we then still have a solution of Ax = b mod
pi.

Given a prime decomposition of k, all of its individual prime factors are coprime with each
other. Suppose we want to solve a system of equation given by A, b for some k = k1k2 where
k1 and k2 are coprime and we have solutions Ax1 = b mod k1 and Ax2 = b mod k2. Then,
by applying the Chinese Remainder Theorem [17], we can efficiently find x such that Ax = b
mod k. Here, each coefficient of x is obtained by using the Chinese Remainder Theorem on the

18

relevant coefficients of x1 and x2 mod k.

For finding maximally violated mod-k cuts, there is a structure that can be exploited to
find maximally violated cuts more efficiently. In particular, we know that the right hand side
b ∈ {0, 1}m. This can be particularly useful, because for k = k1k2 composite, we know that
b ≡ 0 mod k if and only if b ≡ 0 mod k1 and b ≡ 0 mod k2 hold. Similarly, b ≡ 1 mod k holds
if and only if b ≡ 1 mod k1 and b ≡ 1 mod k2 holds. As θ = 1 is fixed, the latter holds for the
last row in (3.1c) and all other rows (3.1b) have a right hand side of zero. Thus, when trying
to find a mod k cut for k composite, all coefficients of b remain unchanged in the subproblems
for k1 and k2. However, this is exactly the problem one solves to find a maximally violated
mod k1-cut. Thus, we only need to solve for each prime factor once, if we desire to find cuts for
composite numbers which have them as divisors.

Although one could suspect that cuts with composite k are weaker or dominated, this is not
necessarily the case from our computational experience. One problem instance which highlights
this well is 4-FullIns 4. The linear relaxation at the root node has objective value χf (G) ≈ 6.33,
and after finding and adding a mod-2 and mod-3 cut and pricing in new stable sets, we improve
to χc(G) ≈ 6.56. Adding the resulting mod-6 cut found by applying the Chinese Remainder
Theorem to the two found cuts and performing pricing, improves the bound to χc(G) = 7.

3.1.2 Modified Pricing problem

In order to be able to apply cutting planes to the set covering formulation, we also need to be
able to price in new columns. The addition of cutting planes changes the associated pricing
problem by changing the reduced cost of each variable. Here, we present a mixed integer linear
programming formulation of the modified pricing problem. In Chapter 4 we introduce a more
advanced combinatorial algorithm for the modified pricing problem.

Let H denote a mod-k cutting plane, with H the set of all mod-k cutting planes. Let πv
be the dual solution values corresponding to set covering constraints for vertex v ∈ V , and let
µH be the dual solution values corresponding to a mod-k cutting plane H. Additionally, we
have the multipliers of a cutting plane λH ∈ {0, 1

kH
, .., kH−1kH

}|V |. Here we use the substitution
ρH = λHkH . Then, taking into the account the dual multipliers when pricing, the pricing
problem becomes as follows:

Maximize W (y) =
∑
v∈V

πvyv +
∑
H∈H

µH

⌈
ρTHy

kH

⌉
(3.2a)

subject to yu + yv ≤ 1 ∀(u, v) ∈ E (3.2b)

yv ∈ {0, 1} ∀v ∈ V (3.2c)

In order to obtain a linear and more tractable problem, we introduce new variables zH

and rH such that zH = dρ
T
Hy
kH
e =

ρTHy+rH
kH

. Note that zH ∈ Z+ and that we can require that
rH ∈ {0, 1, ..., kH − 1}. Let ρvH denote the coefficient for vertex v ∈ V of ρH for cutting plane

19

H ∈ H. We obtain the following formulation:

Maximize
∑
v∈V

πvyv +
∑
H∈H

µHzH (3.3a)

subject to yu + yv ≤ 1 ∀(u, v) ∈ E (3.3b)

yv ∈ {0, 1} ∀v ∈ V (3.3c)

kHzH =
∑
v∈V

ρvHyv + rH ∀H ∈ H (3.3d)

zH ∈ Z+ ∀H ∈ H (3.3e)

rH ∈ {0, 1, ..., kH − 1} ∀H ∈ H (3.3f)

Note that since ρH and kH are known when solving the pricing problem, this is an integer
program. By construction, zH gives the priced coefficient for cutting plane H. Although this
formulation is easy to read, all variables rH can be removed from the linear program and
equation (3.3d) can be weakened to the following:

kHzH ≤
∑
v∈V

ρvHyv + kH − 1 ∀H ∈ H (3.3g)

We can argue this as zH is maximized with positive coefficients µH , and since rH is not
in the objective that this is sufficient. Note that we can then simply set rH = kH − 1, to its
maximum, which allows us to eliminate it from the program.

Important to note is that the lower bound (2.4) can still be used as before, but now using
W (y) as defined in (3.2a), as the lower bound uses the reduced cost.

Lastly, an important detail to discuss about the modified pricing problem is that of lazy
upper variable bounds. When considering the original Restricted Master Problem (2.2), the
variable upper bounds xS ≤ 1 are implicitly satisfied; if xS ≥ 1, all of the constraints associated
with the vertices v ∈ S in (2.2b) are feasible, and the objective will never increase xS past 1 as
it is minimized in the objective (2.2a). This concept is also known as that of lazy bounds within
SCIP. If inequalities from cutting planes are added the above reasoning does not work, as not
all inequalities with non-zero coefficients for xS are necessarily feasible if xS = 1. Thus, in this
case the upper bound inequalities xS ≤ 1 need to be added explicitly to the Linear Program.
This may somewhat slow down the computation speed of the linear program when using cutting
planes. Note that the dual multipliers of these upper bounds do not enter the above pricing
problem, as the priced in coefficient for each new stable set in all existing inequalities is simply
zero by definition.

3.1.3 Selecting k

One practical question which remains is how to select k when deciding which mod k cuts to
investigate. In this section, we detail a heuristic which selects a range of k’s to be considered.
When investigating this issue for Mycielski graphs, we noticed a pattern; maximally violated
mod-k cuts were only found for those k where k was a prime factor of the rational representation
of χf (G). For the Mycielski graphs Mi, an analytical formula for χf (Mi) is known [40], and
these cuts matched the denominators of the rational representation of χf (Mi) exactly.

Although the denominator of the rational representation of the Mycielski graph is known,
for arbitrary graphs we cannot hope to find these easily. In particular, the denominator can
grow very large very quickly. For example, M7 has a denominator of roughly 2.7 · 1023 with

20

|V | = 191 [23, 40]. Thus, we need a different approach. Since each stable set has a coeffi-
cient of 1 in the objective, we can also consider the optimal LP solution x∗ for this purpose.
Then, consider each variable value x∗S . Given a procedure which can estimate n, d ∈ Z such
that x∗S ≈

n
d , we can then simply take the Least Common Multiple of all denominators d to

obtain an estimate of the denominator of the objective value. Since we need to decompose
this number again into its prime factors, this can be done without needing to generate the very
large Least Common Multiple explicitly, by keeping a list of prime factors and their multiplicity.

The integer programming solver used in this research, SCIP [26], has procedures for finding
n, d ∈ Z with a large denominator limit D such that d < D. In our computations, we used
D = 216, as this takes better advantage of modern computer hardware when solving systems of
equations using the Wiedemann Algorithm. Additionally, cuts were typically found more often
for small primes k, where k < 100 (see Section 6.3.2 for details and results). Thus, searching
for cuts with very large denominators did not seem very productive.

3.2 Odd-cycle cutting planes

In this section we will explain how odd-cycle cutting planes can be used and found for the set
covering formulation of graph coloring. In practice, this can be seen as a method to separate
mod-2 cutting planes. This approach is almost identical to the one described by Hansen et
al [32]; we will note it whenever we add new results which are our own work. Hansen et al.
build their argument primarily on the work done by Caprara and Fischetti [11], who rely on
the results of Gerards and Schrijver [27]. Caprara and Fischetti formulate the following theorem.

Theorem 3.2.1 (Caprara and Fischetti [11]). The separation problem (3.1) for mod-2 (k = 2)
cutting planes can be solved in polynomial time if AT is an EPT matrix.

A matrix AT is EPT if A has at most 2 odd coefficients for each row. Note this is not a
definition, but a useful sufficient condition. As we have a binary matrix and our stable sets are
typically of size |S| > 2, this is not directly applicable. However, one can find odd-cycle cutting
planes by weakening the rows of the matrix A.

Consider the constraints (2.2b) as a binary matrix. A cutting plane can be found by using
Chvátal’s procedure for cutting planes, by choosing a subset of rows, with λi = 1

2 if row i is
included in the subset, and λi = 0 otherwise. In the set covering formulation, each row cor-
responds to a vertex in the original graph. We will abuse notation and use H to denote this
vertex subset in the original graph, corresponding to the relevant rows. Odd-cycle cuts can then
be seen as a special kind of mod-2 cuts.

In order to formalize the odd-cycle cuts, we construct the conflict graph. The conflict graph
Gc is defined to have a vertex for each stable set, and an edge if two stable sets have a non-empty
intersection. More formally we define the conflict graph as

Gc = (S, {{S, S′}|S ∩ S′ 6= ∅,∀S, S′ ∈ S}) (3.4)

Now consider a cycle C in Gc. Then for each edge (S, S′) ∈ C we can choose a vertex v ∈ G
such that v ∈ S ∩ S′. Each edge (S, S′) ∈ C then has a corresponding row defined by the
relevant vertex v ∈ S ∩ S′. We then use H to denote the set of vertices corresponding to the
edges for the cycle C, such that λv = 1

2 if and only if v ∈ H.

21

If we consider a feasible solution x?, then we can compute for a cycle whether or not in-
equality associated with our cycle C is violated. Should it be violated, we can add it to our
linear program to strengthen it.

First we will discuss a weaker case of these cuts. Here, the original rows of the LP are
weakened by adding constraints xS ≥ 0 to the rows. For an edge (S, S′) we consider the normal
row for a vertex v ∈ S ∩ S′ to be simply the inequality (2.2b).

∑
S∈S|v∈S

xS ≥ 1

Then, we can weaken the inequality by increasing the coefficients of all sets which are not
in edge in the conflict graph, corresponding to this vertex. Considering all cycles, this expands
the single inequality from above into a set of inequalities:

xS + xS′ + 2
∑

S∈S\{S,S′}:v∈S

xS ≥ 1,∀S, S′ ∈ S|v ∈ S ∩ S′ (3.5)

Now, we use A and b as defined by the matrices after doing the above procedure for every
row. As all the stable sets in the cycle are counted twice, and all other coefficients are even,
we then know that λA ∈ Zn as, all coefficients are then even before dividing λ by 2. Then, we
can trivially round the right hand side dλbe = d |H|2 e. Then, the minimum cost of the cycle C
is simply the sum of the costs of each edge. Note that because we do not need to round the
entries for A, that the edge costs are independent. Given a fractional solution x?, we can then
find minimum-weight odd cycles by defining the weight of the edge to be

w((S, S′)) = x?S + x?S′ − 1 + 2 min
v∈S∩S′

∑
S′′∈S\{S,S′}:v∈S′′

x?S′′ , (3.6)

Note that this is simply the same as choosing v ∈ S ∩ S′ such that the corresponding con-
straint has minimal slack. Then the total weight of a cycle C equals w(C) = 2λAx? − |C|,
where λ now simply indicates which rows are in the cycle. If we then find a cycle C such that
w(C) =

∑
e∈E(C)w(e) < 1, the corresponding mod-2 inequality is violated, as from the basic

argument by Chvátal and Gomory we must have that λAx? ≥ dλbe = |C|+1
2 .

Thus, using the distance as defined above, any odd-length cycle in Gc with weight smaller
than 1 implies a cutting plane that cuts off the fractional solution x?. Finding a minimum
weight odd cycle (if it exists) can be done in polynomial time in size of the conflict graph [32].

We can compute the minimum weight cycle by considering the bipartite graph G′c that has
two copies of the stable sets S = S ′ as its nodes. The edges of G′c are defined as E(G′c) =
{(S, S′) ∈ S × S ′ : S ∩ S′ 6= ∅}. Then, finding a minimum weight odd cycle starting from
some stable set S in the conflict graph Gc is equivalent to finding a shortest path from S ∈ S
to S ∈ S ′ in G′c. We can find the minimum weight odd cycle for Gc by repeating the shortest
path procedure for every stable set S ∈ S. Using Dijkstra’s algorithm, this puts the complexity
of finding a minimum weight odd-cycle on O(|V ||E|+ |V |2 log |V |), which for our case becomes
O(|S|3).

3.2.1 Limited to fractional variables

Hansen et al. claim the following result in Theorem 3.2.2, but do not prove it explicitly [32].
Here, we provide a proof.

22

Theorem 3.2.2 (Hansen et al, [32]). The length of an odd cycle C in the conflict graph Gc is
greater than or equal to |2x?S − 1| for any stable set S ∈ V (C).

Proof. First, we have that for any edge (Si, Sj) within E(C) that w((Si, Sj)) ≥ |x?Si
+x?Sj

−1| =
|1 − x?Si

− x?Sj
|. If x?Si

+ x?Sj
− 1 ≥ 0, this fact can be derived by observing the remaining

terms are also positive. For x?Si
+ x?Sj

− 1 < 0, we can show this fact as well, using that

x?Si
+ x?Sj

− 1 + min
v∈Si∩Sj

∑
S′′∈S\{Si,Sj}:v∈S′′

x?S′′ ≥ 0 as the slack of the associated row is positive.

w((Si, Sj)) = x?Si
+ x?Sj

− 1 + 2 min
v∈Si∩Sj

∑
S′′∈S\{Si,Sj}:v∈S′′

x?S′′

≥ x?Si
+ x?Sj

− 1 + 2(1− x?Si
− x?Sj

)

= 1− x?Si
− x?Sj

Then, let Si be the i’th vertex in the cycle. Then, we obtain the following by alternating
signs and adding them together, as in general, we know that |a|+ |b| ≥ |a+ b|

w(C) =
∑
e∈C

w(e)

≥|x?s1 + x?s2 − 1|+ |x?s2 + x?s3 − 1|+ ...+ |x?s|C|−1
+ x?s|C| − 1|+ |x?s|C| + x?s1 − 1|

=|x?s1 + x?s2 − 1|+ |1− x?s2 − x
?
s3 |+ ...+ |1− x?s|C|−1

− x?s|C| |+ |x
?
s|C|

+ x?s1 − 1|

≥|2x?s1 − 1|

Note, that we can start this proof from any vertex s ∈ V (C) and the argument still holds.
Note we know the outcome of the alternating signs by the parity of |C|. This concludes our
proof.

Since |2x?s − 1| = 1 if x?s = 1 or x?s = 0, this implies the weight of a cycle containing a non-
fractional variable is always greater or equal than 1, ensuring that this cycle is not violated.
This means that we only need to consider all fractional variables when constructing the conflict
graph. Since in many practical examples, the number of fractional variables for an optimal
solution x? can be orders of magnitude smaller than the current amount of columns in the LP,
|S|, this can significantly reduce the computational burden for calculating the minimum weight
odd-length cycle.

3.2.2 Strong odd-cycle cuts

Strong odd-cycle cuts are similar to the weaker odd-cycle cuts as described in Section 3.2. The
major difference, is that we do not weaken the row inequalities before adding them together.
Then, we consider the matrices A and b to be the inequalities (2.2b) together with the lower
bound constraints xS ≥ 0. If we consider A as the matrix just defined by the row constraints
(2.2b), we cannot expect that λA ∈ Zn. During column generation, we typically have |S| > |V |,
and then each coefficient xS in the produced row inequality would need to be even by coincidence
when obtained from the row sum of at most |V | rows. Instead, we can round the coefficient for
each xS to be even by adding the lower or upper bound constraint. This is an application of the
approach described by [11]. In this case, we are simply separating mod-2 cutting planes. Any
weakening done using fractional variables then makes it a cutting plane which is not maximally
violated.

23

Hansen et al. only considered the lower bound rounding in their paper [32]. This is a sensible
decision, as it is very rare for x?S ≥

1
2 to occur in a solution for the Restricted Master Problem.

We too use this scheme.

When pricing a new set S′ with some existing cutting plane H, we know that x∗S′ = 0 at
the time the cutting plane H was defined. Then we always use the lower bound weakening for
newly priced stable sets in the cutting plane coefficient.

Suppose we find that some set of vertices H defines a weak-cycle cut. Then, we can consider
the sum the inequalities (3.5) for this cycle as part of its weight. Note, these inequalities are
dominated by the inequalities (2.2b). If we instead consider their sum in a mod-2 cut, and add
the lower bound constraints xS ≥ 0 if the resulting coefficient is odd so that we can divide by 2,
we must always obtain an inequality with violation at least as big as defined by the odd-cycle
procedure. The weak inequalities are rounded at every intermediate step, and thus must be
coefficient wise larger. Thus, for each violated weak odd-cycle cutting plane, an associated
stronger mod-2 cut exists which is also violated. From now on, when we consider the odd-cycle
cuts, we will use the strong mod-2 cuts as described here.

3.2.3 Modified pricing problem

As the odd-cycle cuts are simply mod-2 cuts, the modified pricing problem for strong odd-cycle
cuts is equivalent to the modified pricing problem for mod-k cuts in system (3.2a)–(3.2c). In-
deed we have k = 2 for the relevant cutting planes which originate from the odd-cycle cuts,
with ρvH = 1 if and only if v ∈ H.

In their implementation, Hansen et al. use a linear approximation, ignoring the ceiling func-
tion in equation (3.2a) for greedy algorithms. If that fails, they run a simple branch-and-bound
algorithm. In Chapter 4 we formulate a more advanced branch-and-bound algorithm based on
the algorithm developed by Held et al. in [36], and explain some greedy procedures.

3.2.4 Polyhedral results

Our odd-cycle cuts satisfy the necessary condition formulated and proven by Schindl [59], proof
for which is presented in Theorem 3.2.3. Here, Chv(V ′, k) is the inequality which is derived
by doing Chvátal’s procedure for the vertices v ∈ V ′ and dividing the resulting equation by k
before rounding up, e.g. the mod-k cut with λv = 1

k if and only if v ∈ V ′ and λv = 0 otherwise.

Theorem 3.2.3 (Schindl [59]). If Chv(V ′, k) defines a facet, then d |V
′|
k e > ω(G[V ′]).

We prove that the condition posed by Theorem 3.2.3 always holds for odd-cycle cuts in
Theorem 3.2.4.

Theorem 3.2.4. All odd-cycle cuts satisfy d |V
′|
k e > ω(G[V ′])

Proof. Note in our case, we have that k = 2 and |V ′| = |H| odd. Now, consider our odd-cycle
procedure. Let M ⊆ H be a maximal clique of G[H], e.g. ω(G[H]) = |M |. Let v, w ∈ M be
two vertices in the maximal-size clique. Since M is a clique, the edge (v, w) ∈ E exists. This
implies that no stable set contains both v and w.

Then considering an edge (S, S′) in our stable cycle, we have that v ∈ S and v ∈ S′ by
construction for some v ∈ S ∩ S′. This implies S′ and S do not contain any other vertex in

24

M but v. Then, considering the next edge (S′S,′′) in our cycle, we know the only possible
candidate u ∈ S′ ∩ S′′ ∩M is v (assuming that v ∈ S′′), as v ∈ S′ and S′ can contain no other
vertex. But, in the odd-cycle procedure, u ∈ S′ ∩ S′′ \ {v} by construction as each row is only
picked once. Thus, we must then conclude that S′ ∩ S′′ ∩M = ∅ is empty. As this argument
holds for any two consecutive edges of the conflict graph, this gives that |H| ≥ 2|M |. However,
since |H| is odd by construction, we then know that |H| ≥ 2|M |+ 1 must hold.

This implies that b |H|2 c ≥ |M | = ω(G[H]) must hold, which implies (by oddness of |H|),
that dH2 e > ω(G[H]). Thus, the odd-cycle cuts satisfy the necessary condition as formulated
by Schindl to be facet defining.

3.3 Cutting planes with larger Chvátal Rank

In Sections 3.1 and 3.2 we discussed mod-k and odd-cycle cuts based on the inequalities (2.2b),
the original problem matrix. In this section, we will discuss how to extend these ideas to be
able to include cuts using arbitrary rows valid for the Restricted Master Problem. This would
allow us to define cutting planes based on ’new’ rows which have been generated from cutting
planes.

This idea is connected with the notion of Chvátal-Rank for Chátal-Gomory cuts. Cuts
which are defined on the original inequalities (2.2b) are said to have Chvátal rank 1. These
cuts only require a single rounding step to derive. Then, if one finds a new Chvátal-Gomory
cut for the system which includes the original inequalities (2.2b) and the derived Chvátal rank
1 inequalities, this cut is said to have Chvátal-Rank 2. Note that here, two ’levels’ of rounding
steps were required to derive the newly added row; once for all rank 1 inequalities, and once for
all rank-2 inequalities. Higher rank inequalities can be defined in exactly the same manner. A
more rigorous definition and discussion of Chvátal-Rank and can be found in integer program-
ming textbooks, see for example [60].

Before we are able to separate cuts with Chvátal rank greater than 1, we need to tackle two
challenges. First, the separation methods need to be able to efficiently separate higher rank
cuts. Secondly,the pricing problem needs to be adjusted to deal with these cuts, and algorithms
for the pricing problem should still be efficient when dealing with higher rank cuts.

3.3.1 Separation of maximally violated mod-k cutting planes

In our separation procedure for mod-k cutting planes, we used generic notation, e.g. matrices
A and b . Adding rows to A from mod-k cutting planes or odd-cycle cutting plane procedures is
then easy, as all results still hold when this is done. The only major modification is that due to
the fact that we now no longer have a binary vector b, we may not be able to directly combine
cuts using the Chinese Remainder Theorem, but we might need to recompute the solution of
one of the prime factors.

Adjusting the separation problem for mod-k cutting planes then simply amounts to adding
these rows, which become columns in the system of equations which is solved mod k by trans-
position. With more columns, it is more likely the system of equations yields feasible solutions,
which then gives us more solutions and also more cutting planes.

25

3.3.2 Separation of odd-cycle cutting planes

In Section 3.2 we explained how to separate odd-cycle cuts for the original problem matrix.
Adding general rows from cutting planes to this procedure breaks several assumptions. How-
ever, the same underlying ideas can still be used; by first weakening each row to have at most
2 odd coefficients, one can still formulate a polynomial time algorithm for separating cutting
planes using Theorem 3.2.1 [11, 27].

First, we can again construct a conflict graph over the variables, but this time also taking
the generated rows into account. Assume a set of rows M exists of the form amx ≥ b. For each
row am, let Tm be the set of stable sets with odd coefficients, more formally, Tm = {S ∈ S :
aSm ≡ 1 mod 2}. Then we can again define the conflict graph Gc, but this time using all rows to
define edges; an edge (S, S′) only exists if a row m exists such that S′ ∈ Tm and S ∈ Tm. More
formally we have V (Gc) = S, with E(Gc) = {(S, S′) ∈ S2 and ∃m|S ∈ Tm, S′ ∈ Tm}. Note that
this definition yields the exact same conflict graph as definition (3.4) when only the problem
inequalities (2.2b) are considered as rows.

We can still consider cycles in the undirected conflict graph Gc to attempt finding cutting
planes. However, unlike before, we now have coefficients bm for which bm 6= 1. When consider-
ing the inequality found by a sum of set of rows M , the constant coefficient of this row becomes∑

m∈M bm. In order to apply the rounding argument for Chvátal Gomory cuts, we then need
to find a cycle such that the corresponding inequality has

∑
m∈M bm ≡ 1 mod 2. We can solve

this issue by differentiating even and odd rows, e.g. rows with bm ≡ 0 mod 2 and rows with
bm = 1 mod 2.

Consider the undirected conflict graph G′c, which has two copies of all vertices , e.g. V (G′c) =
S0 ∪ S1, where S = S0 = S1. Then, we consider edges by the oddness of their right hand
side coefficient; adding edges corresponding to odd rows for the subsets S0 × S1, and edges
corresponding to even rows to S0 × S0 and S1 × S1. To be complete, define Mi(S, S

′) = {m ∈
M : aSm ≡ 1 mod 2, aS

′
m ≡ 1 mod 2, bm ≡ i mod 2} for i = 0 and i = 1. Then the edges can be

defined as follows:

E(G′c) ={(S0, S1) ∈ S0 × S1 : M1(S0, S1) 6= ∅}∪
{(S0, S1),∈ S0 × S0 : M0(S0, S1) 6= ∅}∪
{(S0, S1),∈ S1 × S1 : M0(S0, S1) 6= ∅}

Consider an arbitrary edge (S0, S1). The weight of this edge follows from Mi(S0, S1) in
a natural way. We can again apply the rounding argument from [11], adding variable lower
bounds to each odd coefficient to make them even (except for the edge). Let gm(S0, S1) be the
row am after rounding:

gSm(S0, S1) =

{
aSm if aSm ≡ 0 mod 2 ∨ S = S0 ∨ S = S1

aSm + 1 otherwise

Then the weight of an edge can again be defined by minimizing the resulting slack of this
row for a given solution x∗:

W ((S0, S1)) =

min
m∈M1(S0,S1)

gTm(S0, S1)x
∗ − bm if (S0, S1) ∈ S0 × S1

min
m∈M0(S0,S1)

gTm(S0, S1)x
∗ − bm if (S0, S1) ∈ S0 × S0

min
m∈M0(S0,S1)

gTm(S0, S1)x
∗ − bm if (S0, S1) ∈ S1 × S1

(3.7)

26

Note that gm(S0, S1) can again contain at most 2 odd entries (S0 and S1), so Theorem 3.2.1
applies. Otherwise, we cannot find a polynomial time algorithm to separate the mod-2 cut-
ting planes. The above definitions are consistent with the previously defined odd-cycle cutting
planes, such that one recovers the approach from Section 3.2 when considering only the inequal-
ities (2.2b).

Then, as before, we can simply search for a shortest weight path over G′c from some set
S0 to its corresponding set S1 to find a cycle in Gc. For a cycle, the associated rows can be
recovered by simply substituting ’arg min’ for ’min’ in definition (3.7) .

Then, a path in C ∈ G′c from a stable set S ∈ S0 to itself in S1 corresponds to a cycle in
Gc. If the total weight of the path is less than 1, a violated odd-cycle inequality is found, e.g.
by rounding the constant coefficient, the resulting inequality would become invalid. This can
again be done using Dijkstra’s algorithm, achieving a worst-case time of O(|S|3). Additionally,
note all row coefficients in the computed row

∑
m,(S0,S1)∈C gm(S0, S1) are even, so that we can

safely divide by 2 and round to obtain a mod 2 cut.

Note that similarly to before, we have only described the ’weak’ odd-cycle inequalities. We
must have that R(

∑
m∈C am)Tx∗ ≤ (

∑
m,(S0,S1)∈C gm(S0, S1))

Tx∗, where R(a) represents the
rounding operation on odd coefficients of the row a, increasing them by one. Doing this, we
can potentially find a stronger odd-cycle inequality, and we can use the framework for mod-k
inequalities to formulate it as a mod-2 inequality.

One final difference with the original approach and for higher order cuts is that Theorem
3.2.2 is not valid anymore in this new context. Being able to limit the search to fractional
variables is important for computation time, as the number of fractional variables is smaller
or equal to the number of rows in the current LP, which is typically much smaller than |S|.
Of course, we can still choose to simply not separate using integer variables. Theorem 3.3.1
formulates conditions under which separating non-fractional variables is not useful for finding
cyles with an odd number of edges.

Theorem 3.3.1. Consider an cycle C ∈ Gc with |C| odd. If the condition

s∗m +
∑

S∈Tm\{S0,S1}

x∗ ≥ x∗S0
+ x∗S1

− 1

holds for all S0, S1 ∈ Tm, for all rows m ∈ M , then W (C) ≥ 1 if the cycle C goes through a
stable set S with x∗S = 0 or x∗S = 1.

Proof. First, we consider the edges of cycle C and the associated LP rows m and stable sets
S0, S1, and rewrite it to a form similar to one in Theorem 3.2.2.

W (C) =
∑

(m,(S0,S1))∈E(C)

gTm(S0, S1)x
∗ − bm

=
∑

(m,(S0,S1))∈E(C)

x∗S0
+ x∗S1

− 1 + gTm(S0, S1)x
∗ − x∗S0

− x∗S1
− (bm − 1)

Then, if gTm(S0, S1)x
∗ − x∗S0

− x∗S1
− (bm − 1) ≥ 0 for all rows in the cycle, we can apply the

proof of Theorem 3.2.2 to the remaining terms. This condition can be rewritten by substituting
in gTmx

∗ = aTmx
∗ +

∑
S∈Tm\{S0,S1} x

∗, and substiuting in the row slack s∗m = aTmx
∗ − bm

27

gTm(S0, S1)x
∗ − x∗S0

− x∗S1
− (bm − 1) ≥ 0

aTmx
∗ +

∑
S∈Tm\{S0,S1}

x∗ − x∗S0
− x∗S1

− (bm − 1) ≥ 0

s∗m +
∑

S∈Tm\{S0,S1}

x∗ ≥ x∗S0
+ x∗S1

− 1

Then if this holds for all rows m ∈M it also holds for each cycle C of odd length. The rest
of the argument is similar to the argument in the proof of Theorem 3.2.2. Note we only need
to additionally require that |C| is odd.

W (C) =
∑

(m,(S0,S1))∈E(C)

x∗S0
+ x∗S1

− 1 + gTm(S0, S1)x
∗ − x∗S0

− x∗S1
− (bm − 1)

≥
∑

(m,(S0,S1))∈E(C)

x∗S0
+ x∗S1

− 1

≥ |2x∗S0
− 1| ∀S0 ∈ V (C)

From the last equation it becomes clear that if S0 ∈ V (C) with x∗S0
= 1 or x∗S0

= 0, then
W (C) ≥ 1, which concludes our proof.

The condition of Theorem 3.3.1 is strong in the sense that many LP optima satisfy it in
practice; it is uncommon for x∗S ≥

1
2 to occur in any LP optima, which is clearly required at least

once in order to even make the right hand side positive. It is also easy to check, as for each row m
we only need to check for the two sets S0, S1 ∈ Tm with largest x∗ to verify the condition for all
pairs of sets in Tm. This provides a decent justification for checking only the fractional variables.

3.3.3 Pricing

Higher order cuts also change the pricing problem; the modified pricing problem (3.2a)–(3.2c)
is only valid for rank-1 cuts. A rank-1 cut then combines the coefficients of the original inequal-
ities and rounds up to obtain the coefficient in the rank-1 cut. Similarly, rank-n cuts need the
coefficients in the original system of inequalities and all cuts of rank n− 1 or lower to compute
their coefficient.

For rank-1 cuts the coefficient computed for the cutting plane is part of the objective in
(3.2a). Given a solution vector y and a cutting plane H, this computed coefficient γH is then

defined as γH = dρ
T
Hy
kH
e. Note how this is simply a sum of the coefficients λH and then rounded

up. This procedure can be extended to include the cutting planes by considering extending λH
to also contain multipliers for cutting plane rows.

Let Hn ⊆ H be the set of all cutting planes with Chvátal rank n, and let θH′,H ∈
{0, 1

kH
, ..., kH−1kH

} be the mod-k multiplier of cutting plane H ′ in the cutting plane H. We
define the computed coefficient γH of a cutting plane H of rank N as

γH =

⌈
ρTHy

kH
+

N−1∑
n=1

∑
H′∈Hn

θH′,HγH′

⌉
(3.8)

28

Then, the modified pricing problem with large rank Chvátal cuts can be defined naturally
as

Maximize
∑
v∈V

πvyv +
∑
H∈H

µHγH (3.9a)

subject to yu + yv ≤ 1 ∀(u, v) ∈ E (3.9b)

yv ∈ {0, 1} ∀v ∈ V (3.9c)

Although this is a sufficient formulation, it is not clear if we can efficiently compute γH for a
cutting plane H of rank N as it depends on computed coefficients γ′H , where the rank of H ′ is
smaller than N .

∑
v∈V

πvyv +

N∑
n=1

∑
H∈Hn

µHγH (3.10)

By ordering the cutting planes by Chvátal rank as in (3.10), we can guarantee that each co-
efficient γH only needs to be computed once in order to evaluate the objective for a given vector
y. This is important for efficiency in combinatorial algorithms to solve the pricing problem.

29

Chapter 4

The pricing problem

In this chapter we will discuss the pricing problem, and in particular, how to tackle the modified
pricing problems that arise as a result of adding cutting planes as discussed in Chapter 3. The
effectiveness of a branch-price-and-cut algorithm typically depends on the algorithm for the
pricing problem, as the pricing problem accounts for the majority of the spent time in typical
branch-and-price applications [30, 36]. The pricing algorithm must decide if negative reduced
cost columns exist, and if so, provide one or multiple negative reduced cost columns and add
them to set of columns in the Restricted Master Problem. For the (modified) pricing problem
for graph coloring (3.2a)–(3.2c), this is equivalent to deciding if a stable set y exists that has a
weight W (y) > 1, providing a relevant column y with W (y) > 1 if one exists.

4.1 Background

As discussed in Chapter 2, the pricing problem for the set covering formulation is a maximum
weight stable set problem. By taking the complement graph G(V, Ē), the problem can also
be formulated as a maximum (vertex) weight clique problem. Extensive literature is available
on these problems, with many different heuristic and exact approaches. The maximum weight
stable set problem is well known to be NP-hard [39], and no good approximation schemes are
known either. Indeed, H̊astad has shown that for every real number ε > 0, no polynomial time
algorithm that approximates the solution to within O(n1−ε) can exist, unless P = NP [34].

Given a stable set S, one can perform a (1,2) swap by replacing a vertex v ∈ S with two ver-
tices w1, w2 ∈ V if πw1 + πw2 > πv. Using efficient data structures, (1,2) swaps can be detected
in polynomial time [1, 36]. In a similar way one can also find (2, k) swaps, where two vertices
u, v ∈ S are replaced by a set of vertices w1, w2, ..., wn ∈ N(u) ∪ N(v) if

∑n
i=1 πwi > πu + πv.

Malaguti and Toth implement (1,2) swaps in a tabu search framework, where the initial set
S is randomly generated [44]. Held et al. use both (1,2) swaps and (2,k) swaps, initializing
them with the results of greedy algorithms using several different orderings [36]. Many more
heuristics exist among which a genetic algorithm [50], though most are variations of local search
[55, 56] or tabu search algorithms[5, 72].

Although heuristics are useful in finding solutions quickly, we desire to solve the maximum
weight stable problem exactly and thus need exact algorithms to do so. Combinatorial al-
gorithms are widely used in literature for this purpose. For dense graphs, the combinatorial
CLIQUER algorithm by Ostergard [53] is deemed as one of the best available algorithms for
the maximum weight stable set problem by Held et al. [36]. Held et al. also introduce a similar
combinatorial algorithm [36]. More implementations exist, more detail and explanations can be
found in [42, 67]. Most of the combinatorial algorithms work well as a result of the branching

30

rule formulated by Balas and Xue [2].

Other exact solutions exist as well; many branch-and-cut methods (see [57]) and a few
branch-and-price methods [68] have also been used successfully to solve the maximum weight
stable set problem exactly. However, typically combinatorial algorithms seem to be faster and
more successful in solving the maximum weight stable set problems which arise from graph
coloring, when comparing the results of both Held et al.[36] and Hansen et al. [32] with other
branch-and-price algorithms using integer programming solvers [30, 44].

4.1.1 Numerical safety

Numerical safety can be a serious concern when solving graph coloring problems [36]. Although
software which solves Linear Programming problems exactly exists, its performance is orders of
magnitude worse than that of Linear Programming solvers which use floating-point arithmetic
[36]. However, choosing a floating-point arithmetic solver comes with the drawback that we do
not know the exact value of all found primal solutions x∗ and the corresponding dual values π.
When solving the pricing problem only a floating-point approximation πf ≈ π is available for
use. This can be problematic, as based on πf it may be impossible to decide for a given column
y if W (y) > 1 due to numerical noise in πf .

In order to overcome this problem, Held et al. proposed converting the floating point weights
πf to an integer representation πi [36]. As integer arithmetic can be done exactly and cheaply by
computers, it is then desirable to do computation on πi instead of πf . Noting that πf ∈ [0, 1]|V |,
we can then project the vector πf to a range of integers πi ∈ [0, Imax]|V | by picking some scale
factor K and defining the following transformation:

πi,v = bKπf,vc ∀v ∈ V (4.1)

From the above transformation, we can deduce that πi
K ≤ πf , giving us a good lower approx-

imation of πf . In particular this allows us to conclude that if πTi y > K for some vector y,
then W (y) > 1. One crucial element here is that at no point in our computations we must get
intermediate integer values which are outside of the range [Imin, Imax] which is supported by the
computer hardware. This can be done by picking K smartly:

K =
min{−Imin, Imax}∑

v∈V πf,v
(4.2)

Then, any intermediate sum using the coefficients πi will fall in [Imin, Imax], while K is still made
as large as possible so to minimize the difference between bounds obtained from πf compared
to πi. In the algorithms for the pricing problem in this chapter, we also use the conversion in
equation (4.1) and pick K as in equation (4.2), where we used 64-bit integers and pick Imin and
Imax accordingly.

4.1.2 Stabilization and early branching

Held et al. use a technique to reduce dual weights in their branch-and-price algorithm [36].
After solving the Restricted Master Problem, in pricing we can consider the lower bound (2.4).
If during pricing we can prove that no column y exists such that W (y) > zRMP

bzRMP c , then we know

that the integral bound dzRMP e will remain unchanged for the rest of the column generation.
This can be seen as an early branching procedure. However, instead of increasing the lower
bound for the maximum weight stable set procedure, we can also simply lower the dual weights

31

π, the objective coefficients of the pricing problem, by a total amount of zRMP
bzRMP c − 1. This can

also be done effectively in exact arithmetic [36]. Held et al. investigated two different methods
that decide which dual weights are reduced. Uniform rounding reduces all dual weights by an
equal amount, whereas in neighbourhood rounding a vertex v ∈ V is picked such that the dual
weights are only reduced for vertices in v ∪N(v) . Both methods are shown to be effective in
reducing the number of pricing algorithm calls [36].

Gualandi and Malucelli [30] also use a method that imposes a stronger lower bound on the
maximum weighted stable set problem. They base their bound on knowledge of a lower bound
κ of χ(G) and the lower bound given by (2.4). They first solve the decision problem to find a
column y such that W (y) > zRMP

κ . If one finds such a column y, then by (2.4) the lower bound
from this pricing iteration cannot improve on κ. In this scenario, it can thus be unrewarding
to solve the pricing problem to optimality as it does not improve the lower bound. In the case
that no column y exists such that W (y) > zRMP

κ , Gualandi and Malucelli simply fall back to
solving the maximal weight stable set problem with the original lower bound of 1. They show
that it can be valuable to solve the pricing problem to optimality in this case, as it allows them
to infer a stronger lower bound using (2.4). This bound still comes at a cost, as solving the full
pricing problem to optimality can be expensive, particularly for sparser and larger graphs.

Although early branching is effective and reduces the number of columns that needs to be
generated, it is not very suitable when combined with cutting planes. One can still call separa-
tion procedures on non-optimal LP points, but rows may be generated which are not invalid for
the LP optimum. Additionally, no or few cuts may be found compared to running these separa-
tion procedures at the LP optimum [49]. For the purpose of this research, we thus decided not to
use early branching, and rather get a better idea of the strength of the cutting planes in isolation.

4.2 An algorithm for the modified pricing problem

In this section we will present a branch-and-bound algorithm for the modified pricing problem
(3.2a)–(3.2c). Here, we only consider the rank-1 cuts, as we unfortunately had no time to extend
the pricing algorithm to the higher rank results from Section 3.3. This algorithm is essentially
identical to that of Held et al. [36], with the major difference being that the current algorithm
has been adapted to take cutting planes into account. First, we will introduce some methods
which can be used to bound the modified pricing problem on subgraphs in Section 4.2.1. Then,
we will use these bounds to introduce a branch-and-bound algorithm in Section 4.2.2.

4.2.1 Bounds for the modified pricing problem

We consider the modified pricing problem for a subset of the vertices V ′ ⊆ V . Here, we restrict
ourselves to the induced graph G[V ′] = (V ′, E′), where E′ = {(u, v) ∈ E : u, v ∈ V ′}. Let
us define W (V ′) to be the total pricing weight of V ′. More concretely, we have the following
definition, which is simply equal to the objective as defined in equation (3.2a). Note that the
dual values π and µ are non-negative.

W (V ′) =
∑
v∈V ′

πvyv +
∑
H∈H

µH

⌈∑
v∈V ′ ρ

v
Hyv

kH

⌉
(4.3)

32

First we will introduce an upper bound procedure, which is done by finding a feasible
solution to the dual problem and employing weak duality. Consider the formulation formed by
(3.3a)–(3.3c) with (3.3e)–(3.3g). We can strengthen the edge inequalities (3.3c) by replacing
them with the stronger clique inequalities. Let Q be the set of all maximal cliques of G[V ′].
Then we replace the inequalities (3.3c) with the following set of inequalities:∑

v∈Q
yv ≤ 1 ∀Q ∈ Q (4.4)

Note this is still a valid formulation of the modified maximum weight stable set problem for
G[V ′], as it still ensures each clique can have at most one vertex in the optimal stable set. We
consider then the linear relaxation in the system (4.5a)–(4.5e), where we divide the inequality
(3.3g) by kH for reasons which shall later become apparent. Note the upper bounds yv ≤ 1 can
be left out as they are dominated by the clique inequalities (4.4)

Maximize
∑
v∈V ′

πvyv +
∑
H∈H

µHzH (4.5a)

subject to
∑
v∈Q

yv ≤ 1 ∀Q ∈ Q (4.5b)

yv ≥ 0 ∀v ∈ V ′ (4.5c)

zH ≤
kH − 1

kH
+

∑
v∈V ′

ρvHyv
kH

∀H ∈ H (4.5d)

zH ≥ 0 ∀H ∈ H (4.5e)

Then, let us consider the linear relaxation of this formulation, and take its dual. By weak du-
ality, any valid solution to the dual of the linear relaxation is an upper bound to the objective
value of the linear relaxation in (4.5a) [60].

Let λQ be the dual value corresponding to an inequality from (4.5b), and let νH be a dual
value corresponding to an inequality in (4.5d). The dual of the linear program (4.5a)–(4.5e)
can then be stated as follows:

Minimize
∑
Q∈Q

λQ +
∑
H∈H

νH
kH − 1

kH
(4.6a)

subject to
∑

Q∈Q:v∈Q
λQ ≥ πv +

∑
H∈H

νH
ρvH
kH

∀v ∈ V ′ (4.6b)

νH ≥ µH ∀H ∈ H (4.6c)

λQ ≥ 0 ∀Q ∈ Q (4.6d)

For the dual program (4.6a)–(4.6d), we can argue that in an optimal solution νH = µH for
all H ∈ H, as we have µH ≥ 0, and increasing νH in inequality (4.6b) can only increase λQ,
which also has a positive objective coefficient. More formally, assume a valid optimal solution
exists for which νH > µH for some H ∈ H. By setting νH = µH , the solution must still be
feasible, as this can only increase the slack of inequalities (4.6b), and as the objective coefficient
kH−1
kH

is always positive, this violates the assumption that our solution was optimal. Thus, a
solution can only be optimal if νH = µH .

33

After substituting νH = µH , we are simply left with a weighted clique covering problem
with variables λQ and weights on the vertices as given by inequalities (4.6b). We find feasible
solutions to this problem by employing a greedy algorithm for this clique covering problem. As
mentioned before, any feasible solution provides a feasible upper bound on W (V ′). Note that
by dividing by kH , the contribution of the cutting planes is scaled in the objective (4.6a) and
in inequalities (4.6b), reduces the impact of the cutting plane weights.

Next, we formulate two lemmas that aid us in further proofs and algorithm development by
providing simple bounds on a subset of vertices.

Lemma 4.2.1 (Upper bound, subadditivity). Given two sets A ⊆ V and B ⊆ V , we have
W (A) +W (B) ≥W (A ∪B).

Proof.

W (A ∪B) =
∑

v∈A∪B
πv +

∑
H∈H

µH

⌈∑
v∈A∪B ρ

v
Hyv

kH

⌉

=
∑

v∈(A\B)

πv +
∑
u∈B

πu +
∑
H∈H

µH

⌈∑
v∈A∪B ρ

v
Hyv

kH

⌉

≤
∑
v∈A

πv +
∑
u∈B

πu +
∑
H∈H

µH

⌈∑
v∈A∪B ρ

v
Hyv

kH

⌉

≤
∑
v∈A

πv +
∑
u∈B

πu +
∑
H∈H

µH

⌈∑
v∈A ρ

v
Hyv

kH
+

∑
v∈B ρ

v
Hyv

kH

⌉

≤
∑
v∈A

πv +
∑
u∈B

πu +
∑
H∈H

µH(

⌈∑
v∈A ρ

v
Hyv

kH

⌉
+

⌈∑
v∈B ρ

v
Hyv

kH

⌉
)

=
∑
v∈A

πv +
∑
H∈H

µH

⌈∑
v∈A ρ

v
Hyv

kH

⌉
+

∑
u∈B

πu +
∑
H∈H

µH

⌈∑
v∈B ρ

v
Hyv

kH

⌉
= W (A) +W (B)

Lemma 4.2.2 (Lower bound). Given two subsets A ⊆ V and B ⊆ V , we have W (A ∪ B) ≥∑
v∈(A\B)

πv +W (B).

Proof.

W (A ∪B) =
∑

v∈A∪B
πv +

∑
H∈H

µH

⌈∑
v∈A∪B ρ

v
Hyv

kH

⌉

=
∑

v∈(A\B)

πv +
∑
u∈B

πu +
∑
H∈H

µH

⌈∑
v∈A∪B ρ

v
Hyv

kH

⌉

≥
∑

v∈A\B

πv +
∑
u∈B

πu +
∑
H∈H

µH

⌈∑
v∈B ρ

v
Hyv

kH

⌉

≥
∑

v∈A\B

πv +W (B)

34

Note that both lemmas hold for disjoint sets in particular. If Lemma 4.2.2 is invoked with
two disjoint subsets A,B ⊆ V , this then implies that W (A ∪B) ≥

∑
v∈A

πv +W (B).

4.2.2 A combinatorial branch-and-bound algorithm for the modified pricing
problem

Based on the bounds derived in Section 4.2.1 we can construct a combinatorial branch-and-
bound algorithm. The branch-and-bound algorithm works with 3 sets of vertices. We have F ,
the set of free vertices that we can still pick from, and S, the current stable set. A set of excluded
vertices X is also used; these are vertices that are explored by different subtrees, and do not need
to be checked again. In order to generate valid stable sets, the algorithm keeps some invariants
on these sets. First, S, F and X are always disjoint so that S ∩ F = S ∩ X = F ∩ X = ∅.
Secondly, there is no edge from any vertex in S to any vertex in F , (S ∩ N(f) = ∅,∀f ∈ F),
so that any vertex f ∈ F may be added to S and S will remain a valid stable set. These
invariants are ensured by updating the sets S, F and X whenever branching is done. Algorithm
3 shows a (simplified) version of the implemented algorithm. It uses two pruning rules to prune
redundant recursive calls, and 3 branching rules are scanned in order to select branching vertices.

Algorithm 3 Branch and Bound algorithm for the modified MWSS

1: function ModifiedMWSS(S,F ,X)
2: LB = max(LB,W (S))
3: if F = ∅ and W (S) > 1 then
4: SaveSolution(S)
5: return
6: end if
7: if ∃x ∈ X such that πx ≥W ((S ∪ F) ∩N(x)) then
8: return
9: end if

10: C = WeightedCliqueCover(G[F])
11: if Weight(C) ≤ LB −W (S) then
12: return
13: end if
14: B = {b1, b2, ..., bp} = BranchVertices(C,S,F ,X)
15: for i = 1 to p do
16: Fi = F \ (N(bi) ∪ {bi, bi+1, ..., bp})
17: ModifiedMWSS(S ∪ {bi},Fi, X)
18: X = X ∪ {bi}
19: end for
20: end function
21: ModifiedMWSS(∅,V ,∅)

The validity of the first pruning rule (lines 7-9 of Algorithm 3) can be seen as an application
of Theorem 4.2.3.

Theorem 4.2.3 (Pruning rule). If there exists a vertex x ∈ X such that πx ≥W ((S∪F)∩N(x)),
then from any solution of the current subtree S′ ⊆ S ∪ F we can construct a solution S′′ =
S′ \N(x) ∪ {x} such that W (S′′) ≥W (S′).

35

Proof.

W (S′′) = W ({x} ∪ (S′ \N(x)))

≥ πx +W (S′ \N(x))

≥ πx +W (S′)−W (S′ ∩N(x))

≥ πx +W (S′)−W ((S ∪ F) ∩N(x))

≥W (S′)

In the first two steps Lemma 4.2.2 and Lemma 4.2.1 are used. Then, we use the definition of
S′. The last step simply uses the condition of the theorem.

The first branching rule also uses intuition from the above; for each x ∈ X where πx ≥
W (S ∩ N(x)), we must use some f ∈ (F ∩ N(x)) in the maximal stable set S′ ⊆ (S ∪ F), as
otherwise we would have πx ≥ W (S ∩ N(X)) = W ((S ∪ F) ∩ N(x)) which would imply that
taking the branch would not improve the current stable set by the above pruning rule. Thus
we can branch on all branching candidates f ∈ F ∩N(x) if πx ≥W (S ∩N(x)).

The second pruning rule (lines 10-13 of Algorithm 3) tries to provide an upper bound for
any stable set S′ ⊆ S∪F of the current subtree. We know that W (S′) ≤W (S)+W (F), and by
computing an upper bound to W (F) using a greedy clique covering heuristic, we can compute
an upper bound W (S) + W̄ (F) on the weight of the solutions that can be obtained from the
current subtree. If this upper bound is smaller than or equal to the lower bound then we know
the current subtree cannot yield any improving solutions.

Algorithm 4 A greedy algorithm for the weighted clique cover problem

1: function WeightedCliqueCover(G(V,E), vertex weights w)
2: W̄ (V) = 0
3: while ∃v ∈ V : wv > 0 do
4: v = arg minu∈V {wu : wu > 0}
5: Greedily build the clique Q ⊆ {u ∈ N(v) ∪ {v} : wu > 0}
6: Set W̄ (V) = W̄ (V) + wv
7: Set wu = wu − wv, ∀u ∈ Q
8: end while
9: end function

A greedy algorithm to compute the weighted clique covering bound is presented in Algo-
rithm 4, and is identical to the one used by Held et al. [36]. We order by weight, preferring to
pick vertices with smaller weights first.

The second branching rule is derived from the second pruning rule: instead of computing
the full weight of W (F), we can also stop the greedy covering algorithm early with a covering
C when W (S) + W̄ (F) ≤ LB is first violated (not performing the weight reduction steps for
the ’violating’ vertex). Then, all vertices {f ∈ F : wf > 0} can become the branching vertices,
as we need to add at least one of them in order to ensure that the clique covering bound does
not prune away the current subtree. This branching rule is also used by Held et al. [36] and
other combinatorial algorithms [2, 42, 67], and is key to the performance of the algorithm. It
was first proposed by Balas and Xue [2].

Theorem 4.2.4 (Third branching rule). If a vertex f ∈ F exists such that πf ≥W (F ∩N(f)),
then for any stable set S′ ⊆ S∪F with f /∈ S′ we can construct a stable set S′′ = S′\N(f)∪{f} ⊆
(S ∪ F) such that W (S′′) ≥W (S′)

36

Proof. Suppose there is a maximal stable set S′ ⊆ (S ∪ F) such that f /∈ S′. Then, we can
consider the set S′′ = {f} ∪ (S′ \N(f)). Then, we can claim the following:

W (S′′) = W ({f} ∪ (S′ \N(f)))

≥ πf +W (S′ \N(f))

≥ πf +W (S′)−W (S′ ∩N(f))

≥W (S′) + πf −W ((S ∪ F) ∩N(f))

= W (S′) + πf −W (F ∩N(f))

≥W (S′)

The first and second steps are done by applying Lemma 4.2.2 and Lemma 4.2.1. In the third
step, we use that S ∩N(f) = ∅ in our algorithm, by definition. The last step uses the condition
of the theorem.

The last branching rule is formalized in Theorem 4.2.4. Here, we can see that we simply
create a single branch for a vertex f ∈ F for which πf ≥W (F ∩N(f)), which by Theorem 4.2.4
always contains a solution better or equal than that of all other branches.

The set of branching vertices is selected based on the size of the set, as using fewer branch-
ing vertices means we can typically terminate the algorithm more quickly. Thus, the third
branching rule is preferred over the first, which is (most of the time) preferred over the second
branching rule. For the first branching rule, the vertices are sorted by decreasing degree, whilst
for the second branching rule, they are sorted decreasing by the remaining weight in the clique
covering algorithm.

Before running Algorithm 3 we can reduce the size of the graph by removing any vertex
v ∈ V for which πv = 0 and {H ∈ H : µH > 0, ρvH > 0} = ∅ hold, as these vertices cannot
contribute to the weight of the stable set. Stable sets found can be maximized over these zero
weight vertices arbitrarily, as is also discussed in Section 2.1.2.

Algorithm 3 can be terminated whenever a stable set with W (y) > 1 is found. This is
crucial for its performance, as this is often much cheaper than solving the pricing problem to
optimality [36]. However, only adding a single column is not always productive, as one may
want to generate multiple at once so that fewer calls to Algorithm 3 are necessary. Additionally,
if Algorithm 3 is close to proving optimality of the found column y, then it could be worthwhile
to wait, so that the lower bound from (2.4) can be used. Thus, we adapted the following stop-
ping condition; whenever a stable set y with W (y) > 1 is first found, we terminate Algorithm
3 if 10|V | more calls to function ModifiedMWSS are made after finding this stable set y. In
practice, this gave us a good combination of giving Algorithm 3 enough chances to find better
columns and perhaps prove the lower bound in equation (2.4), but with the benefit of relatively
early termination in most cases.

4.3 Implementation

4.3.1 Column Initialization

In order to find an initial set of columns, the tabu search algorithm as described by Galinier
and Hertz [24] was used. The tabu coloring algorithm for a k coloring starts with an arbitrary

37

distribution of colors, and exchanges the colors of two vertices if this leads to fewer violated
edges, which have the same color on both ends. A tabu list of forbidden exchanges is kept
which aims to forbid short term cycling and makes it possible to escape local optima. We used
the same parameters as in the open-source SCIP implementation [26]; using the notation from
[24], we set L = 50 and λ = 0.9. Then, we search an initial set of columns by first using a
greedy algorithm, which produces a k-coloring. Then, the tabu search algorithm is run with
an iteration limit of 105 exchanges for successively smaller k, until no coloring is found within
the iteration limit. The smallest coloring found is then used as the initial set of columns, after
being greedily expanded using an arbitrary ordering to create maximal independent sets.

4.3.2 Greedy improvements

In Section 4.1, we mention the use of (1,2) and (2,k) swaps in order to improve solutions found
using greedy methods. This can give a ’local’ search like improvement. Although these work
well when the pricing problem is linear, they cannot be used in the context where the weight of
a set is nonlinear. However, we can linearize the weight of a vertex quite easily, by ignoring the
ceiling operator in (3.2a). Then in this linear approximation, the weight of each vertex v ∈ V
can be defined as

w(v) = πv +
∑
H

µH
ρH,v
kH

(4.7)

Held et al. [36] initialized the swapping procedure using greedy methods. We observed that
the local search procedure initialized by greedy methods did not work well for most instances,
only finding the very first columns after initialization of the column generation algorithm. In-
stead, we pass any solution found by Algorithm 3 into a local search algorithm which iteratively
tries to improve the solution using these swapping procedures. The resulting column is added
if it has negative reduced cost. Note that this is not guaranteed, as the linear approxima-
tion in equation (4.7) may cause us to find worse columns. However, this can potentially be a
cheap way to find better columns quickly, which may reduce the number of calls to Algorithm 3.

38

Chapter 5

Branching

In Section 2.1.2 we explained the usage of the Zykov branching rule to create subproblems which
are also graph-coloring problems. In this chapter, we will primarily focus on how to pick the
two vertices u and v to branch on, and how this choice affects solution speed. Although this
is not the primary goal of this research, branching is an important part of branch-price-and-
cut algorithms. The importance of branching is often not discussed in existing papers, and no
comparison of different branching strategies exists in the current literature. Thus, we decided
to run a small experiment in order to decide which branching strategy is ’best’.

5.1 Branching strategy

A few different methods to pick the branching vertices have been suggested in a literature.
Mehrotra and Trick [45] used the following strategy; from the column of the most fractional
stable set S, pick some vertex u ∈ S. Then, from a second column S′ pick a second vertex
v ∈ (S′ ∪ S) \ (S′ ∩ S). This is the most popular branching rule, and several papers have used
this or small variations on it in their research. Malaguti et al. also used this rule [44], and
Gualandi and Malucelli [30] use the vertex degree to break ties when picking the second vertex v.

Held et al. [36] suggest picking the edge using the following formula, which tries to compute
the degree to which two stable sets are considered to be the ’same’ color in the current LP
solution. Consider arbitrary vertices u ∈ V , v ∈ V \ {v} such that (u, v) /∈ E.

p(u, v) =

∑
S∈S:u,v∈S

x∗S

1
2(

∑
S∈S:u∈S

x∗S +
∑

S∈S:v∈S
x∗S)

(5.1)

Note that p(v, w) ∈ [0, 1] is well defined. A factor of 55% was determined empirically to be
most practical in Held’s application.

arg min
u,v∈V :(u,v)/∈E

|p(u, v)− 0.55| (5.2)

A different suggestion was done by Hansen et al. [32]. They pick u and v by maximizing
|N(u) ∩N(v)|.

arg max
u,v∈V :(u,v)/∈E

|N(u) ∩N(v)| (5.3)

39

A rationale for this branching rule is that in GDIFFER when the edge (u, v) is added, tri-
angles are formed with all vertices in N(u) ∩N(v), thus creating |N(u) ∩N(v)| new triangles
in the graph (see Figure 2.1). As the stable set formulation implicitly satisfies the clique in-
equalities belonging to these cliques, one could conjecture that more stable sets are eliminated
and a better lower bound is achieved for the subproblems GDIFFER when |N(u)∩N(v)| is large.

Although the above branching edge selection methods are the ones we could find in literature,
we have tried a few new ones when testing. First, considering Hansen’s rule in equation (5.3), the
rationale we provide only really holds for the branch GDIFFER. Considering the interpretation
of GSAME where the vertex is not removed (see Figure 2.1), we see that |(N(u)∪N(v))\(N(u)∩
N(v))| edges are added to GSAME after branching. Combining the two rules, it makes sense to
then also consider |N(u)∪N(v)| as a metric which acts somewhat favorably for both branches.
This strategy is presented by equation (5.5).

arg max
u,v∈V :(u,v)/∈E

|N(u) ∪N(v)| (5.4)

We also introduce a variant to this which weighs slightly more in favor of the GDIFFER
branch, using |N(u)|+ |N(v)| = |N(u) ∪N(v)|+ |N(u) ∩N(v)| as its metric. A new triangle,
forcing three vertices to belong to different stable sets, may be deemed as a ’stronger’ property
than just adding a single edge, thus not making evenly weighing them equally very logical.

arg max
u,v∈V :(u,v)/∈E

|N(u)|+ |N(v)| (5.5)

Additionally, we were curious about using more information from the LP. The most fractional
variable approach from Mehrotra and Trick [45] and the approach from Held et al. (equation
(5.2)) both use information from the primal LP. However, information from the dual values πv
from the constraints in equation (5.6) also maps directly to the vertices of the graph. Thus, we
also tried a rule which simply maximizes πu + πv.

arg max
u,v∈V :(u,v)/∈E

πu + πv (5.6)

Additionally, a variant of strategy (5.5) was introduced which breaks ties based on the value of
πu + πv.

arg max
u,v∈V :(u,v)/∈E

|N(v)|+ |N(w)|+ πu + πv∑
w∈V πw

(5.7)

An important note is that all of the above branching strategies, with exception of Mehrotra’s
strategy [45], may not violate the LP. More elaborately, when considering an edge (u, v) they
do not explicitly guarantee that there exist at least two fractional stable sets S, S′ ∈ S for
which u ∈ S, v ∈ S∆S′ and x∗S > 0, x∗S′ > 0. If no stable sets satisfying these conditions exist
in the problem, then the current LP solution is not invalidated in any of the two branches as
all variables S ∈ S with x∗S > 0 are transferred to both new branches. This solution is then
again immediately optimal, as adding new edges to a graph G cannot decrease χf (G), and we
obtain the exact same bound as before, making this a ’useless’ branching step. Fortunately, all
procedures can be adjusted to only consider all the non-edges Ē′ for which at least one pair
exists, e.g. Ē′ = {(u, v) /∈ E such that ∃S, S′ ∈ S : x∗S > 0, x∗S′ > 0, u ∈ S, v ∈ S∆S′}.

5.2 Experiments

In order to get an idea of the strengths and weaknesses of all existing and suggested branching
rules, we ran experiments on a few select instances. Our goal here is not to determine the ’best’

40

branching rule, but rather to get an idea of the performance of each branching rule in different
circumstances, so only a few instances were considered. Here, we use the same configuration
for testing as described at the start of Chapter 6.

We computed the results on a select few instances which are all reported to have branch-and-
bound trees of non-trivial size in the literature using branch-and-price algorithms. These are
the instances myciel4, myciel5, queen9 9,DSJC125.9,DSJC250.9 and 4-FullIns 4. These graphs
have varying densities and difficulties. A further explanation of the origin and the structure of
these instances can be found in Section 6.2.

We denote the different branching strategies as follows. The most fractional variable strat-
egy from Mehrotra and Trick is denoted by FRAC. The strategy by from Held et al from
equation (5.2) is denoted by HELD. Hansen’s strategy (equation (5.3)) is denoted by IS, and
the union strategy from equation (5.4) is denoted UN. The combined strategy from equation
(5.5) is denoted ISUN, with the version with dual tie breakers in equation (5.7) denoted as
ISUND. The dual strategy in equation (5.6) is denoted by DUAL. In order to compare the
branching strategies, we also consider a random branching strategy, which picks u, v ∈ V with
uniform probability, subject to the constraint that (u, v) /∈ E. This strategy denoted as RAND.

In this experiment, the branch-and-bound nodes are processed in order of lower bound,
processing nodes with the smallest lower bound first. This is done, so that even when the
branch-and-bound process terminates early, we can compare the obtained lower bounds and ar-
gue about the quality of a strategy for that particular instance. The default branching rules of
SCIP do not necessarily process the nodes in this order, which may paint an inaccurate picture
of the strength of the bounding strategy.

For these tests, a time limit of 1 hour was used. If the instance is not solved within this limit,
this is denoted by ’tl ’ in the time column; otherwise, the time is reported in seconds. Addition-
ally, the best lower bound χ(G) and the number of solved branch-and-bound nodes are reported.
The most important metric for measuring the effectiveness of the branching rules is the number
of branch-and-bound nodes needed to solve a problem. The strategy with the least number of
branch-and-bound nodes is highlighted in bold. Table 5.1 shows the outcome of this experiment.

Instance χ(G) FRAC HELD DUAL RAND
time χ(G) nodes time χ(G) nodes time χ(G) nodes time χ(G) nodes

myciel4 5 0.25 5 241 1.61 5 1529 0.09 5 95 0.7 5 863
myciel5 6 tl 5 241455 tl 4.22 24503 55.71 6 19457 tl 4.31 34501

4-FullIns 4 8 0.21 8 293 tl 7 240204 0.05 8 21 120.98 8 59249
queen9 9 10 4.06 10 19 5.35 10 29 6.42 10 43 5.73 10 35

DSJC125.9 44 1.16 44 75 1.14 44 91 4.30 44 449 1.33 44 93
DSJC250.9 72 1309.45 72 44407 1193.76 72 37979 839.68 72 20869 809.58 72 27821

Instance χ(G) IS UN ISUN ISUND
time χ(G) nodes time χ(G) nodes time χ(G) nodes time χ(G) nodes

myciel4 5 0.10 5 93 0.08 5 77 0.10 5 77 0.08 5 65
myciel5 6 48.31 6 18295 5.98 6 3711 4.83 6 3565 4.35 6 3531

4-FullIns 4 8 0.06 8 41 0.05 8 19 0.05 8 13 0.05 8 13
queen9 9 10 4.47 10 19 4.99 10 27 4.29 10 23 4.52 10 23

DSJC125.9 44 1.82 44 185 6.73 44 535 3.41 44 371 4.19 44 475
DSJC250.9 72 720.17 72 20045 tl 70.83 16816 966.53 72 26731 883.10 72 23965

Table 5.1: Branch-and-bound results for 8 different branching strategies on a select few instances

41

Note that the implementations of the different branching rules are not particularly efficient,
which can explain the difference in timing for different branching rules, particularly for the
smaller instances. However, most of the above branching rules can be implemented efficiently
by computing the needed information once and updating it for every branch-and-bound node,
or by keeping e.g an index of all sets which contain a pair of vertices. In the tested implemen-
tations, a lot of information is recomputed at each branch-and-bound node, such as the set of
possible edge branching candidates. Thus, one should not consider the time, but primarily the
number of used branch-and-bound nodes as the main metric here.

A few interesting observations can be made from Table 5.1. On the three sparse and
smaller instances myciel4, myciel5 and 4-FullIns 4, the existing strategies HELD and FRAC
perform poorly, creating much larger branch-and-bound trees than the neighborhood strategies
IS,UN,ISUN and ISUND. The last three of these strategies perform particularly well, needing
significantly smaller branch-and-bound trees for all 3 instances. The DUAL strategy is also
viable, having results highly similar to the IS strategy for the sparser instances.

All tested methods perform well on the symmetric and somewhat dense queen9 9 instance,
needing only a few branch-and-bound nodes. Interesting to note is that for this highly sym-
metric instance, DUAL seemed to perform comparatively worse, being outperformed by the
random branching strategy.

For the two dense instances DSJC125.9 and DSJC250.9 we obtain varying results. For the
larger instance DSJC250.9, the branch-and-bound tree is smallest using the IS or DUAL strat-
egy. Interestingly, the two strategies from literature FRAC and HELD are both outperformed
by random branching, but there is no order-size difference in branch-and-bound tree. The high
density of this instance may explain this; there is comparatively fewer vertex pairs which can
be branched on, of which only some are violated by the LP solution. For the smaller instance
DSJC125.9 these two strategies interestingly perform best using only 75 and 91 branch-and-
bound nodes, respectively.

One surprising result, is that the branching strategy HELD (Equation (5.2)) seems to per-
form very poorly, even being outperformed by random branching on some instances. This does
not match the results from Held et al. [36], who reported needing only 3225 branch-and-bound
nodes for the instance DSJC250.9, which is significantly lower than any of the strategies tested
in Table 5.1. A potential explanation for this result is that Held et al. perform a dual stabiliza-
tion procedure which also allows for early branching (see Section 4.1 from [36]), whereas we do
not. One could also attribute this observed difference to the LP solver or differences between the
generated columns when solving the pricing problem, or the order in which branches were taken.

The results for the FRAC strategy are similar to the results found in [30, 44, 45], with
the size of the branch-and-bound tree never varying by more than an order. The results from
Hansen et al. [32] mostly match our results for the IS strategy, with minimal differences in the
number of branch-and-bound nodes. The only significant difference is for myciel5, where they
report needing only 4290 branch-and-bound nodes, compared to the 18295 needed in our case.
Again, differences in the LP solver or in the solution of the pricing problem could explain this
discrepancy.

Table 5.2 displays the percentage of interior branch-and-bound nodes for which the last
taken branching decision is of type SAME. In a leaf node of the branch-and-bound node with
graph G′, it is proven for the RMP that dχf (G′)e = χ(G). One can argue that if the percentage
of nodes of a type is higher in the interior, the branching on that type is weaker relative to

42

Instance FRAC HELD DUAL RAND IS UN ISUN ISUND
myciel4 42.86 42.99 36.96 41.16 46.67 35.14 35.14 35.48
myciel5 50.52 * 50.00* 38.05 49.98* 46.84 35.44 36.50 36.51

4-FullIns 4 53.79 44.65* 44.44 34.30 31.58 12.50 0 0
queen9 9 37.50 46.15 10.0 18.75 25.00 8.33 20.00 0

DSJC125.9 50.00 47.73 23.32 28.89 31.87 19.17 30.98 24.15
DSJC250.9 43.11 47.94 21.66 28.91 42.28 39.38* 36.29 36.25

Table 5.2: The percentage of interior branch-and-bound nodes which are of type SAME, ex-
cluding the root node

the other branching type, as it significantly increases χf less often to conclude the subtree is
optimal. Note that runs highlighted with a star did not finish within the time limit. As a
result, their percentage may be off from the percentage obtained when this instance is solved
to optimality.

A first observation is that the percentages in Table 5.2 are almost never larger than 50%; this
indicates that more of the interior nodes are DIFFER. This observation matches the reasoning
for the ISUN strategy presented in the previous section, which argues based on the number
of edges added in the graph that the SAME branch should be relatively stronger; apparently,
SAME branches are more likely to become leaves, and thus must have stronger lower bounds.

We can also argue the UN, ISUN and ISUND strategies indeed select stronger SAME
branches, as for both myciel4 and myciel5 less interior nodes are of type SAME than for
the remaining 5 strategies. Similarly, one could argue that the IS strategy somewhat favors the
’DIFFER’ branch as it typically has more SAME nodes in its interior than the RAND strategy.

Lastly, we can also observe that the number of branch-and-bound nodes is not tightly bound
to the percentage of interior SAME nodes. For the dense graphs DSJC125.9 and DSJC250.9,
various strategies can create branch-and-bound trees of similar size, but the interior of this trees
can contain vastly different percentages of SAME nodes.

In the rest of this research the strategy ISUN (5.5) was used, as it is a balanced branching
rule which performs well for both sparse and dense instances.

43

Chapter 6

Experiments

In this chapter, the set-up and outcomes of experiments to test the methodologies from Chap-
ters 2–5 are described. First, we will describe the configurations tested and relevant details
in Section 6.1. Section 6.2 contains descriptions of the tested DIMACS instances. Finally, in
Section 6.3 we describe the obtained results and compare the described branch-cut-and-price
algorithm with a branch-and-price algorithm.

6.1 Implementation

The methodology and algorithms as discussed in Chapters 2 – 5 are implemented in C++ using
the SCIP framework [26]. The LinBox library [22, 29] was to solve systems of linear equations
over finite fields in order to separate mod-k cuts. Gurobi [31] was used as the Linear Pro-
gramming Solver. All benchmarks have been done on a 3.0 GHz Intel Xeon Gold 5217 CPU
on a system with 64 Gb of RAM memory. The code was compiled using gcc and the ”-O3
-march=native” flags.

In order to test the effect of mod-k cutting planes and odd-cycle cutting planes, we run
several experiments. We were unable to implement the results from Section 3.3 due to a lack
of time, so only rank-1 cuts will be considered in the experiments done.

One of the crucial parameters for separating procedures is deciding when they are called.
Separating cuts at every branch-and-bound node may be too costly computationally, and drive
up the computation time. Additionally, the larger number of cutting planes may slow down the
LP solver and/or the pricing algorithm. We tested three main configurations; separating cutting
planes at every branch-and-bound node, separating cutting planes only at the root node and no
separation. For the experiments which separate cutting planes at the root node, we tested mod-
k and odd-cycle cuts also separately in order to get an better idea of their respective strengths.
This yields the 5 configurations C1-C5 as shown in Table 6.1.

Configuration C1 C2 C3 C4 C5

mod-k cutting planes no yes no yes yes
odd-cycle cutting planes no no yes yes yes
separated at never root node root node root node every node

Table 6.1: Configurations tested

In their tests for the odd-cycle cutting planes, Hansen et al. [32] separate and add cutting

44

planes only when a branch-and-bound node is ’close’ to being solved. For a given branch-and-
bound node, they only separate odd-cycle cutting planes if the difference between the local
bounds UBn, LBn for a branch-and-bound node n is smaller than 1.1, e.g. UBn − LBn ≤ 1.1.
Here, we do not adapt such a choice, but are rather more interested in the strength of the cuts
at the root node. The rationale for this is twofold. First, we have observed large branch-and-
bound trees, even for relatively ’small’ sparse instances such as myciel5 in Chapter 5. Secondly,
the time to solve the root branch-and-bound node can become very large for more difficult and
unsolved instances, sometimes taking weeks to solve [36]. These two arguments combined make
it unlikely that branch-and-bound finds significant improvements for these difficult instances,
and make adding cutting planes at the root node a more attractive alternative.

In the case both (maximally violated) mod-k cutting planes and odd-cycle cuts were used,
we first run mod-k cut separation. As this is a more general class of cutting planes, we expect
that this separator might find stronger cutting planes. If any mod-k cutting planes are found,
the odd-cycle separation procedure is then skipped, and the Restricted Master Problem then
solved again. Only if the mod-k separator finds no new cutting planes, we attempt to find
odd-cycle cutting planes. The first reason for this is that mod-k cutting planes are more general
and from our experience typically stronger (more elaboration below). The second reason to
delay odd-cycle cuts is that after adding the ’weaker’ odd-cycle cutting planes, the procedure
to select k described in Section 3.1.3 seemed to be less effective. Fewer non-zero coefficients of
the optimal LP solution vector x∗ were close to ’nice’ fractions such as 1

2 , and the found lower
bounds were weaker in preliminary experiments as less mod-k cuts were separated.

The branching strategy used is the ISUN strategy from equation (5.5), as argued in Chapter
5 based on preliminary experiments.

6.2 Instances

Most of the experiments in the literature have been carried out using the DIMACS instances.
These are a set of instances of various origins and difficulty. In this section we describe the
characteristics and difficulty of each type of graph.

The myciel graphs are based on the Mycielski transformation. Mycielski graphs have clique
number ω(G) = 2, and the fractional coloring number χf (G) for these graphs has a known ana-
lytical expression [40]. A Mycielski graph Mm has χ(Mm) = m+ 1 and is thus m+ 1 colorable.
Mycielski graphs typically have low density and are some of the most difficult types of graph
to color because of the large gap between χf (G) and χ(G) that they exhibit. This typically
implies these graphs require relatively large branch-and-bound trees.

Insertion graphs (n Insertion m, n FullIns m) are created by taking Mycielski graphs Mm

and inserting vertices and edges to keep the same density. Similar to Mycielski graphs, proving
optimality can be difficult due to the large gap between χf (G) and χ(G), and these graphs are
difficult to solve in practice.

Queen graphs (queenm n) are graphs which model the n queens problem on an m×n chess-
board. For n × n queen graphs it is known they are n-colorable if and only if n ≡ 1 mod 6
or n ≡ 5 mod 6 [14]. These graphs are challenging, particularly due to their large number of
symmetries.

Another set of challenging instances are the DSJC graphs (DSJC.n.p). These are graphs

45

with n vertices, where for each pair of vertices u, v ∈ V , P ({(u, v) ∈ E}) = p independently of
other edges in G. This is also known as an Erdős-Rényi Graph. DSJR graphs (DSJR.n.y) are
geometric graphs, which have n vertices which are randomly distributed over the unit square,
with edges connecting two vertices if the resulting edge length is shorter than 0.y. Graphs which
end with a c are complemented.

Matrix partitioning graphs (ending with GPIA) are graphs related to matrix partitioning
problems which try to find sparse Jacobian matrices. These are typically somewhat large and
difficult to solve, but are often solved in the root node due to a small gap between χf (G) and
χ(G).

Optical network graphs (starting with wap) are large and difficult instances based on real-
life optical network design problems. These graphs have been found difficult to color due to the
large number of columns needed to do so [36].

Latin squares instances (qg.order,latin square 10) are based on latin square problems. These
pose difficult coloring problems, although they typically have small gaps.

Leighton graphs (le450 x) are difficult graphs with coloring number χ(G) = x. Column
generation for these graphs typically stalls, but these graphs have the lower bound ω(G) = x
which can be easily computed.

Flat graphs (flat n c) are difficult instances with n vertices which are colorable with c colors.

In addition to the above, we also test the four large and difficult instances C1000.9, C2000.5,
C2000.9 and C4000.5 , which have (nearly) the same naming scheme and generation procedure
as DSJC graphs.

There is also a number of easier graphs. These are nearly all solved with the initial set of
columns, and Mehotra and Trick have shown their coloring numbers exactly in short periods
of time [45]. In our research, these graphs are all solved by initial heuristics, and proven to be
optimal in the root node. These graphs are:

� Register allocation graphs (ending with .i.n for n = 1, 2, 3) are derived from real-life
register allocation problems

� Book graphs based on name occurences in popular books. (anna,david,homer,huck,jean)

� The two scheduling graphs school1 and school1 nsh

� miles are graphs from geometric graphs based on real road networks

� The games120 graph which is based on football teams, where an edge is inserted if two
teams played each other.

� mug graphs are 4 colorable graphs with ω(G) = 3.

Note that we only report our results on these easier instances for the branch-and-price algorithm
(see Table 7.1 in the appendix) for comparison with the literature and to verify the correctness
of the implemented code.

46

6.3 Results

In this section, we discuss the outcomes of the experiments as described in Section 6.1. The
complete results for all instances using the C1-C5 configurations can be found in the appendix
in Tables 7.1–7.5. Note that we leave out results for cutting planes on all instances that were
solved in the root node by the branch-and-price algorithm, as cuts are not necessary to solve
these instances. In the following sections, we will highlight some of the found results in more
depth, and conclude the outcomes of our experiments based on them.

We denote the number of separated odd-cycle and mod-k cuts separated for a single instance
by |H|oc and |H|modk respectively.

6.3.1 Branch-and-price

First, the branch-and-brice algorithm, configuration C1, was run without cutting planes. A
few new results were obtained, likely primarily due to the ISUN branching strategy we use in
equation (5.5). In this paper, we compare our results with the existing branch-and-price imple-
mentations [30, 32, 36, 44, 45]. Results from other approaches are only included for the best
Upper Bounds and for instances where χ(G) has been proven.

Table 6.2 shows all newly obtained results. Instances for which χ(G) was first proven using
a branch-and-price algorithm have χ(G) highlighted in bold. If the lower bound was improved,
but the instance was not yet solved to optimality, the lower bound is highlighted in bold. Our
algorithm was for the first time able to solve all FullIns instances compared to other branch-
and-price algorithms. For the instance 5-FullIns 4 optimality was proven for the very first
time using any algorithm to our knowledge, solving this instance. Additionally, we compute
a χf (G) = 389.6 for the instance C2000.9 for the first time, giving a strong lower bound of
χ(G) = 390.

Instance |V | |E| χ(G) time (s) B&B nodes χ(G) Best UB Found UB

1-FullIns 4 93 593 5 0.07 21 5 5 5
1-FullIns 5 282 3247 6 3.44 2025 6 6 6
1-Insertions 4 67 232 5 [46] tl 78729 4 5 [46] 5
1-Insertions 5 202 1227 ? tl 504 3.342 6 [46] 6
2-FullIns 4 212 1621 6 0.1 21 6 6 6
2-FullIns 5 852 12201 7 5.06 3879 7 7 7
2-Insertions 4 149 541 ? tl 1563 3.149 5 [46] 5
3-FullIns 4 405 3524 7 0.06 19 7 7 7
3-FullIns 5 2030 33751 8 1.93 1475 8 8 8
3-Insertions 3 56 110 4 9.6 699 4 4 4
4-FullIns 4 690 6650 8 0.13 13 8 8 8
4-FullIns 5 4146 77305 9 5.73 3561 9 9 9
4-Insertions 3 79 156 4 437.77 2183 4 4 4
5-FullIns 4 1085 11395 9 0.11 15 9 9 9
C2000.9 2000 1799532 ? tl 2 389.6 400 [64] 446

Table 6.2: New results on the DIMACS instances using a branch-and-price algorithm

Using the branch-and-price algorithm, we observed that the branch-and-bound tree of the in-
stances myciel6 and 1-Insertions 4 were somewhat likely to terminate within a reasonable time.
For both of these instances, the initial coloring heuristic is able to find the optimal solution, but
they have a large gap between χf (G) and χ(G) which needs to be closed by branch-and-bound.
Thus, we ran both these instances with a longer time limit of 24 hours. Both instances were

47

solved in the time limit; relevant results can be found in Table 6.3, which shows the number of
branch-and-bound nodes and the time taken in minutes.

Instance χ(G) time (m) B&B nodes

myciel6 7 224 911149
1-Insertions 4 5 526 219567

Table 6.3: Results for the instances myciel6 and 1-Insertions 4 using a time limit of 24 hours.

Note the large size of the branch-and-bound tree in both cases. Both instances were already
solved by [30], but not using a branch-and-price algorithm. They needed branch-and-bound
trees in their constraint programming application with more than 106 branch-and-bound nodes
for both instances, which highlights these results as well.

Combining the results from Table 6.3 with the results from Table 6.2 and Appendix 7.1, the
branch-and-price algorithm was able to solve all instances with fewer than 100 vertices. Worth
noting is that most FullIns instances have only been solved by critical subgraph detection [18].
This is a specialized technique to detect Mycielski subgraphs, which specifically does very well
on the insertion set of instances, but performs worse on other types of graphs. We are able
to solve all the FullIns instances within 10 seconds using a more general branch-and-bound
method, which is somewhat faster than the results presented by Desrosiers et al. [18], who
need more than 10 seconds on 4 FullIns instances.

From these results, we can conclude that the ISUN strategy is effective for solving some of
the more difficult Insertion graphs.

6.3.2 Mod-k cutting planes

Over all instances, 554 maximally violated mod-k cutting planes were found in the root node
using configuration C2. Figure 6.1 shows the distribution for k for all cuts with k ≤ 100. From
all cutting planes, 161 (29.1%) have prime k, with only 13 cutting planes having k > 100. and
others were found by further iterations of Algorithm 2 or by applying the Chinese Remainder
Theorem to two found cuts. This implies most cuts with k > 100 are composite and derived
from cuts with k ≤ 100.

48

Figure 6.1: Distribution of k where k ≤ 100 for found maximally violated mod-k cuts in the
root node of all DIMACS instances

One thing which stood out from the test results in Table 7.2 is the apparent strength of
mod-k cutting planes on insertion graphs. Here, often in the root node, the fractional bound is
rounded up by adding the mod-k cut. Table 6.4 highlights a few of these results. For the instance
1-FullIns 5 adding mod-k cuts even improves the integer lower bound. Upon investigation of
these cuts, we noticed that cuts were often on specific subgraphs of the considered graph. For
example, for the instance 2-Insertions 3 a single mod-k cut is found for a subset V ′ ∈ V of size
|V ′| = 9, with λv = 1

4 if v ∈ V ′. This cut effectively requires the condition χ(G[V ′]) ≥ 3 (note
that 3 = d94e). Coincidentally, when coloring the graph one finds that χ(G[V ′]) = 3, so that
the linear relaxation of the complete graph G also satisfies the integer bound on the coloring
number for this subgraph. Similar cuts are found for many of the other insertion instances,
where the mod-k cut finds a subset V ′ ⊆ V which requires that dχf (G)e ≥ χ(G[V ′]).

Instance |V | |E| χ(G) time (s) B&B nodes LB χf (G) χc(G) |H|modk Found UB
1-FullIns 4 93 593 5 0.08 15 5 3.633 4.0 18 5
1-FullIns 5 282 3247 6 3.38 1625 6 3.909 4.066 70 6
1-Insertions 4 67 232 ? tl 79290 4 2.774 3.0 17 5
2-FullIns 4 212 1621 6 0.06 25 6 4.485 5.0 7 6
2-FullIns 5 852 12201 7 6.98 4567 7 4.708 4.8 27 7
2-Insertions 3 37 72 4 0.31 147 4 2.423 3.0 19 4
2-Insertions 4 149 541 ? tl 1513 3.111 2.56 3.0 18 5
3-FullIns 4 405 3524 7 0.06 19 7 5.392 5.5 7 7
3-FullIns 5 2030 33751 8 3.46 2245 8 5.578 6.0 34 8
3-Insertions 3 56 110 4 5.7 505 4 2.334 3.0 4 4
3-Insertions 4 281 1046 ? tl 131 3 2.438 3.0 4 5
4-FullIns 4 690 6650 8 0.1 13 8 6.329 7.0 16 8
4-FullIns 5 4146 77305 9 7.82 3851 9 6.487 6.531 113 9
5-FullIns 4 1085 11395 9 0.13 15 9 7.283 8.0 14 9

Table 6.4: Root bound improvements on the DIMACS instances for configuration C2

In order to obtain more insight into which mod-k cutting planes contribute to these large
increases, we consider cuts which are in the Linear Program at the end of column generation
(in the simplex tableau). These cuts can be considered strong in some sense, as they need to
be kept in the LP to ensure the larger fractional coloring value. Although cut selection is not

49

well understood yet [20], a few common heuristics exist. Some of these heuristics, such as the
distance or the relative violation metrics, try to select cuts with large violation but which are
somewhat sparse, so that they have a small norm |a| and right hand side |b|. In Figure 6.2 we
use the norm |a| as a measure of sparsity and compare cuts in and outside of the LP for the
instances DSJC500.9 and 2-Insertions 3.

Figure 6.2: Relationship between the norm and presence in the final LP tableau for mod-k
cutting planes for the instances DSJC500.9,2-Insertions 3

From Figure 6.2, we can visually observe a clear correlation between the cuts which are in
the LP and their norm |a|, observing that cuts with smaller norm seem to be in the LP tableau
more often. These results somewhat agree with the metrics from literature, in the sense that
sparser cuts with smaller norms |a| are deemed ’stronger’. For other instances, we observed
similar results. Note in Figure 6.2 that the large difference in density of both graphs seems to
have little effect on the obtained results.

6.3.3 Odd-cycle cutting planes

Using configuration C3, we observe from Table 7.3 that odd-cycle cutting planes sometimes
improve the lower bound at the root node slightly. For example, for the dense instances
DSJC1000.9 and DSJC250.9 improvements of the order size 0.1 are found. This is in line
with the results from Hansen et al. [32], who report a similar increase in bound. For most
sparse instances odd-cycle cutting planes seem to be worse in strengthening lower bounds, with
an unimproved bound for many instances, even if cutting planes are found. For the instance
DSJC125.1, odd-cycle cuts are found, but they only increase the bound by approximately
1.3 · 10−4, for example. This issue is also discussed in [32], where they suggest many symmetric
and similar solutions exist and that adding cutting odd-cycle cutting planes does not help much
in this regard.

Using both types of cutting planes at the root node seems to be bound-wise, mostly equiv-
alent to using just maximally violated mod-k cutting planes. Only for high density instances
such as DSJC250.9 and DSJC1000.9, we see that odd-cycle cutting planes seem to increase the
lower bound by more. One observation which can explain this is that the number of odd-cycle
cutting planes is often much larger, making it more likely at least one of these cutting planes is
’good’.

For maximally violated mod-k cuts, we considered the cuts which where in the final simplex
tableau of the root node. We looked at this statistic for odd-cycle cutting planes as well, but

50

found that for none of our instances this ever occurred. Instead, we use a similar metric, where
we consider the number of LP iterations for which the odd-cycle cut row was in the simplex
tableau. One could argue that a cutting plane is stronger if it is in the LP for longer in some
sense, or at least suspect a correlation to occur. Figure 6.3 compares the norm |a| of a cut-
ting plane with the number of iterations it was in the LP in the root node for the instance
DSJC125.9. In the root node of this instance, 146 odd-cycle cuts are separated, which increase
the root node solution from χf (G) ≈ 42.742 to χc(G) ≈ 42.796.

Figure 6.3: Relationship between the norm and number of active LP iterations for odd-cycle
cutting planes in the instance DSJC125.9

From Figure 6.3 we can observe that many odd-cycle cutting planes never enter the LP.
This is not unexpected, as many cuts can be generated at the same time. Secondly, we can
observe that for the cuts which enter the LP that there is a slight preference for cuts with
smaller norms. For other instances, we observed results similar to those in Figure 6.3. This
matches our observations for mod-k cuts, where there seems to be a preference for cuts with
smaller norms.

6.3.4 Comparison of branch-cut-and-price with branch-and-price

In this section, we will compare all of the configurations and draw conclusions on the effective-
ness of our branch-price-and-cut algorithm. Table 6.5 shows the number of instances solved
by branch-and-bound for all configurations C1–C5, excluding instances which are solved by C1

at the root node. The configurations solve approximately the same set of instances, showing
that the branch-price-and-cut algorithm is competitive with the existing branch-and-price algo-
rithms. In Table 6.6, we compare the amount of time and the number of branching nodes each
configuration needs in order to solve 19 out of the 20 solved instances.

Configuration C1 C2 C3 C4 C5

Solved instances 20 20 20 20 19

Table 6.5: Number of solved instances for each configuration out of the 75 instances which are
not solved by C1 at the root node

51

C1 C2 C3 C4 C5

Instance time nodes time nodes time nodes time nodes time nodes

1-FullIns 4 0.07 21 0.08 15 0.06 25 0.07 15 0.07 7
1-FullIns 5 3.44 2025 3.38 1625 3.41 1909 3.63 1713 4.28 1249
2-FullIns 4 0.10 21 0.06 25 0.06 23 0.06 23 0.06 13
2-FullIns 5 5.06 3879 6.98 4567 5.28 4103 5.67 4003 37.31 3799
3-FullIns 4 0.06 19 0.06 19 0.06 19 0.06 19 0.07 13
3-FullIns 5 1.93 1475 3.46 2245 1.90 1437 3.21 2069 7.63 1655
4-FullIns 4 0.13 13 0.10 13 0.08 13 0.08 13 0.09 13
4-FullIns 5 5.73 3561 7.82 3851 6.18 3843 7.69 3737 17.55 2635
5-FullIns 4 0.11 15 0.13 15 0.11 15 0.12 15 0.13 15
2-Insertions 3 0.52 237 0.31 147 0.52 219 0.18 91 0.37 127
3-Insertions 3 9.60 699 5.70 505 13.59 871 5.10 495 4.76 445
4-Insertions 3 437.77 2183 175.5 1365 235.18 1739 91.64 1109 164.93 1129
DSJC125.9 5.57 355 5.90 395 5.73 209 5.95 209 8.84 133
DSJR500.5 880.12 467 395.18 259 290.19 123 431.92 287 tl 59
myciel3 0.13 5 0.16 1 0.07 5 0.09 1 0.10 1
myciel4 0.28 77 0.33 77 0.22 77 0.17 77 0.37 63
myciel5 6.27 3619 5.44 3581 4.81 3511 7.73 3555 25.98 3657
queen9 9 4.35 23 4.46 21 4.00 21 3.87 19 4.35 17
queen11 11 666.94 856 6.32 5 7.82 5 103.98 78 38.79 14

Table 6.6: Comparison of time taken for solved instances for configurations C1-C5

A few observations can be made from Table 6.6. With the exception of queen11 11 and
DSJR500.5, the upper bound found during column initialization for all these instances is equal
to χ(G). For these instances, we thus only need to use a branch-and-bound tree to improve
the lower bounds in order to prove optimality of the found upper bound. Considering the time
taken, we can observe that adding cutting planes has a mixed impact on the size of the branch-
and-bound tree. For some instances, such as 3-Insertions 3,4-Insertions 3 and queen9 9, a clear
decrease in time and branch-and-bound nodes can be observed when comparing strategy C1 to
C2, C3 and C4. When mod-k cuts are used, myciel3 is even solved in the root node. However,
there are also instances where cutting planes seem to have an averse effect on the number of
branch-and-bound nodes. For 2-FullIns 4,2-FullIns 5 and 3-FullIns 5, adding cutting planes at
the root node increases the size of the branch-and-bound tree.

The instances queen11 11 and DSJR500.5 are a bit different from the other instances in
the sense that for both χf (G) = χ(G) holds. As the lower bound at the root node is already
strong enough to prove optimality, and only a valid coloring to the Master Problem needs to be
found. This is done in SCIP [26] by using many heuristics which round fractional solutions x∗

obtained from the LP solutions to integer solutions. It seems that for these instances, adding
cutting planes produces fractional solutions x∗ which are ’closer’ to integer solutions. How-
ever, we observed the exact opposite for the instance queen10 10, which was only solved by the
branch-and-price algorithm (see Table 7.1). With such a small sample size, we cannot conclude
that cuts help these heuristics in finding integral solutions, but this remains an interesting ob-
servation.

The larger queen12 12,queen13 13 and queen14 14 instances are also interesting, as they
only instances where the branch-and-bound process seemed to be faster after adding cutting
planes (see appendices). This can be explained by these cutting planes breaking some of the
many symmetries of these graphs. This could perhaps help the running time of Algorithm 3 by

52

being able to cut off certain parts of the combinatorial branch-and-bound tree for the pricing
problem.

From Table 6.6 we observe that configuration C5, which separates cutting planes at each
branch-and-bound node, produces the smallest branch-and-bound tree for all but a few in-
stances. This indicates that adding cutting planes indeed increases the lower bound, resulting
in a smaller branch-and-bound tree. Do note however, that for many instances the number
of branch-and-bound nodes is close to that of configuration C4. We also see this back in the
computation time, especially for instances with more vertices, such as DSJC125.9. By separat-
ing cutting planes at each branch-and-bound node, the computation time is generally increased.

The specific strength of mod-k cuts and odd-cycle cuts for insertion and dense graphs re-
spectively is also reflected in Table 6.6. We observe that for the denser instances DSJC125.9
and DSJR500.5 strategy C3 using odd-cycle cuts is effective in reducing the number of branch-
and-bound nodes. Mod-k cuts seem to specifically help for the sparser myciel3, 2-Insertions 3,3-
Insertions 3 and 1-FullIns 5 instances, decreasing the number of necessary branch-and-bound
nodes.

Table 6.7 contains an overview of where the extra time is spent when using configuration
C4. All percentages are relative to the total amount of time needed to solve the root node.
Then, tORIG is the fraction of time needed to compute χf (G). The fraction of time spent in
the odd-cycle and maximally violated mod-k separation procedures are denoted by tOC and
tMODK , respectively. The fraction of time spent in Algorithm 3 after cutting planes where
added is denoted by tP . The remaining fraction of time, which is mostly dominated by solution
of the LP for the RMP and heuristics executed by SCIP, is denoted by tLP . The averaged ratio
over all instances is also reported, along with a few examples.

Instance tORIG tOC tMODK tP tLP
all (averaged) 59.8% 1.4% 20.5% 5.8% 12.5%
DSJC125.1 90.8% 0.1% 1.5% 7.2% 0.4%
DSJC125.5 41.9% 0.6% 21.2% 16.4% 19.9%
DSJC125.9 34.4% 1.6% 49.2% 8.4% 6.4%
DSJC500.9 26.8% 0.2% 52.6% 5.8% 14.6%
DSJC1000.9 30.0% 0.1% 34.3% 27.4% 8.2%
myciel5 37.8% 2.0% 5.6% 6.7% 47.9%
myciel6 21.3% 1.5% 25.9% 12.9% 38.4%
myciel7 37.5% 2.1% 18.7% 26.9% 14.8%

Table 6.7: Time division in the root node for a selection of instances

A few things stand out. Firstly, observe that tOC is small so that the cycle separation
procedure is relatively cheap compared to solving the LP. Secondly, tMODK usually dominates
the time spent after solving the original problem. This is primarily due to our implementation,
which allows to check for all primes up to 216 in the selection of k. Particularly for LP solutions
with large denominators, the procedure to pick k as described in Section 3.1.3 will fail to find
the correct rational representation. This is particularly well demonstrated by the large jump in
increased computation time between the instances myciel5 and myciel6, as the denominator of
myciel6 is the first denominator which this algorithm fails to compute. By Figure 6.1, it is also
likely that one can reduce this time by picking a smaller limit for separating prime k. Lastly, we
observe that tP and tLP are typically of the same order as tORIG, so that the extra time spent
pricing and in the LP is not many orders of magnitude larger. This implies we can reasonably

53

expect to solve the root node within 10 times the amount of time it took to solve the original
problem for χf (G).

In Table 6.8 we show the achieved lower bounds of all configurations C1 − C5 for instances
that were not solved. Note that finding the upper bound associated to a strong coloring may
be difficult. In the appendix Table 7.1, one can observe that although the lower bounds of the
DSJC125.5 and DSJC125.1 instances are sufficient to prove optimality, a 17-coloring and a
5-coloring respectively are not found within the time limit. Instances such as these are left out
of Table 4.2.2.

C1 C2 C3

Instance χ(G) χf (G) nodes χ(G) χc(G) nodes χ(G) χc(G) nodes

2-Insertions 4 3.149 2.560 1563 3.111 3.000 1513 3.209* 2.560 1965
3-Insertions 4 3.000 2.438 31 3.000 3.000 131 3.000* 2.438 49
myciel6 5.300 3.834 83532 5.223 3.912 28661 5.400* 3.834 131995
DSJC250.5 25.368 25.165 897 25.364 25.171 874 25.360 25.168 808
DSJC500.9 122.611 122.307 10905 122.609 122.309 10490 122.599 122.334 5886
DSJC1000.9 214.972 214.855 766 214.958 214.858 688 215.019 214.942 60

C4 C5

Instance χ(G) χc(G) nodes χ(G) χc(G) nodes

2-Insertions 4 3.200 3.000 1964 3.172 3.000 1158
3-Insertions 4 3.000 3.000 184 3.000 3.000 140
myciel6 5.217 3.912 24148 4.885 3.912 4203
DSJC250.5 25.360 25.168 812 25.360 25.168 473
DSJC500.9 122.603 122.334 6296 122.548 122.334 727
DSJC1000.9 215.019 214.942 64 214.986 214.942 15

Table 6.8: Comparison of achieved lower bounds for a selection of unsolved instances. For
instances marked with *, no cutting planes were found.

From Table 6.8 we can observe that for most instances, the final bound χ(G) only differs by
small amounts for each strategy. The only exception to this is strategy C5, which for myciel6
is much slower and obtains weaker bounds.
Instance DSJC1000.9 stands out as interesting. If odd-cycle cuts are used as in configurations
C3 − C5, the found bound is stronger. However, the number of branch-and-bound nodes ex-
plored is much smaller, indicating that these odd-cycle cuts slow down the solution speed of
each branch-and-bound node. We even see a factor 10 difference, here. Still, the found bounds
are stronger. This is a promising result which indicates that odd-cycle cutting planes can be
effective in increasing the lower bound for dense random instances. DSJC500.9 shows similar
but less extreme results for the branch-and-bound nodes, but the difference in found bound is
very small, with C1 winning out just barely.

Although for both DSJC250.5 and DSJC500.9 cutting planes are found which increase the
lower bound for strategies C2 and C3, it seems that these have little to no effect. We also see
for DSJC1000.9 and 3-Insertions 4 that the C1 configuration ’catches up’ to the other con-
figurations when comparing the obtained benefits from the root node. This pattern was also
observed in Table 6.6 for many FullIns instances. Here, we see that although strong cuts were
found (see Table 6.4), the branch-and-bound tree and time taken are not necessarily positively
effected in Table 6.6.

54

Concluding the comparison between branch-and-price (C1) and branch-price-and-cut (C2−
C5), we must conclude that their performance seems to be very similar in practice. Although dif-
ferences between the two algorithms on certain problem instances exist, they generally perform
highly similar on all tested instances. Only strategy C5, which separates at every branch-and-
bound node, performs worse than the branch-and-price algorithm C1 in practice.

55

Chapter 7

Discussion and recommendations

Our research has shown that the produced branch-cut-and-price algorithm performs on par
with the tested branch-and-price algorithm. However, a few limitations exist that should be
discussed.

Firstly, we argue that the branching rule does not cooperate with the cutting planes very
well. We observed in section 6.3.4 that the cutting planes at the root node can increase its lower
bound, but that further on in the branch-and-bound tree, this advantage often vanishes. Our
branching procedure does not take any cutting plane rows which are in the LP into account,
and we observed no significant effect of cutting planes on the size of the branch-and-bound tree
for a few instances.

Secondly, we do not focus on finding upper bounds in this research at all. Although this
is an entirely different challenge, finding strong upper bounds can help the solution speed [44].
This is also highlighted by the many instances which were solved at the root node in Table 7.1,
despite their size. Using an algorithm such as MMT [44] could improve the found results.

Regarding cutting planes, we were also somewhat limited by SCIP. SCIP does not easily
allow to manually control the addition of cutting planes into the LP. Due to the significant
observed increase in time spent in pricing and LP solving (Table 6.7), we would have liked to
remove these rows from the LP tableau and only add them selectively for a few branch-and-
bound nodes. This could possibly combine the benefits of a faster branch-and-bound search
from configuration C1 with the stronger lower bound cutting planes.

Lastly, we suspect that the performance of the combinatorial pricing algorithm in Algorithm
3 may start to degrade for large and sparse instances. Although these instances are difficult
regardless, one could try to tackle the modified pricing problem using a MIP solver instead, and
obtain better results.

7.1 Recommendations for further research

One clear recommendation from our research is that further investigation of the branching strat-
egy with Zykov’s branching rule is necessary. We have been able to prove many new results
using the ISUN strategy (5.5) in section 6.3.1. From the experiments in Chapter 5, many of the
newly tested branching rules improve on the known literature, particularly for sparser instances.
However, performance of these branching rules seems to differ across the six tested instances,
where even a random branching strategy outperforms some of the tested strategies for some
instances. This is surprising, and indicates that there may be room for significant improvement

56

by using better branching strategies. Strong branching strategies could be interesting, consid-
ering the results we have obtained.

Results from other papers may also be improved with this new branching rule, in particular
for [30, 36] and [44]. Our tests were only ran with a time limit of one hour, which is compara-
tively quite short, so it is possible that the results some instances could still be improved.

As the results we found do not match the results of Held et al. [36] on the dense instance
DSJC250.9, we recommend further investigation is done to see where this might come from.
The impact of early branching on the strength of the branching edge selection should be inves-
tigated here, in particular, but also pricing schemes and differences in LP solver software could
be interesting to consider.

Additionally, as our results suggest that using information from the dual variables is also
viable for edge selection, this could also be further investigated. Although we have not tested it
one could also take the cutting plane dual weights into account when cutting planes are used.
The odd-cycle cutting planes give better lower bounds on a (small) subset of vertices within the
graph; perhaps branching on a pair of vertices from this subset could yield strong bounds.

Regarding cutting planes, we have a few recommendations. A clear path to follow from this
research is to implement the arbitrary rank odd-cycle and mod-k cutting plane procedures from
Section 3.3, which we unfortunately lacked the time for. We believe that Algorithm 3 for the
pricing problem from Chapter 4 can easily be adjusted as well, by using the weight computation
as outlined in section 3.3.3. The only difficulty one may have is obtaining strong upper bounds
on the Modified pricing problem, as we have not investigated the structure of the dual problem
(the clique-covering problem) in this case.

In this paper, we used only the violation for the weights in the odd-cycle separation al-
gorithm. In our results, we observed that the norm |a| is a decent indicator of the strength
of a cutting plane. We suggest that the odd-cycle separation algorithm can be turned into a
heuristic by modifying the edge weights. For example, one could add a constant weight to each
edge, preferring short cycles, or impose extra penalties for rows with larger norms. This could
make the algorithm prefer shorter length cycles, which could lead to cuts with smaller norms, al-
though this is would also mean one loses the guarantee that all weakly violated cycles are found.

Another recommendation would be to use new methodologies to separate more cutting
planes. In particular, using stable sets, it is easy to expand or contract stable sets on or from
induced subgraphs by greedily adding or removing nodes. This way, one could perhaps sep-
arate on solutions for induced subgraphs G[V ′], as this is equivalent to simply searching cuts
with the multiplier λv = 0 if v /∈ V ′. This may lead to finding sparser and/or stronger cuts.
For larger graphs, where solving the root node can be extremely challenging, one could also
start by first optimizing over subgraphs and finding cuts in this manner before the root node
is solved. Separation on solutions which are not yet optimal would also be a possibility and
may yield better cuts [49]. Both of these ideas are also supported and motivated by the ob-
served strong mod-k cutting planes for insertion graphs in Section 6.3.2, which highlight that
the lower bound of the root node may increase based on chromatic numbers of easier subgraphs.

Another way to find more cutting planes would be to use more heuristic methods to find
cutting planes. Particularly, heuristics could aim to find mod-k planes which are not necessarily
maximally violated. As the mod-k separation problem can be formulated as an integer program,
many heuristic approaches could be used to tackle it.

57

We observed no real issues with the pricing problem, but one may want to add stabilization
procedures similar to the one as described by Held et al. [36]. This could potentially reduce the
solution time of each branch-and-bound node. Lastly, we recommend to investigate paralleliza-
tion of the pricing problem. In particular, running several types of algorithms for the (modified)
pricing problem in parallel could be fruitful. One could let these algorithms communicate found
solutions and bounds with each other, which may reduce the time needed to solve the pricing
problem, in particular for the more difficult DIMACS instances.

58

Bibliography

[1] Diogo V. Andrade, Mauricio G.C. Resende, and Renato F. Werneck. “Fast local search for
the maximum independent set problem”. In: Journal of Heuristics 18.4 (2012), pp. 525–
547.

[2] E. Balas and Jue Xue. “Weighted and Unweighted Maximum Clique Algorithms with
Upper Bounds from Fractional Coloring”. In: Algorithmica 15.5 (1996), p. 397.

[3] Egon Balas. “Cutting planes from conditional bounds: A new approach to set covering”.
In: 1980, pp. 19–36.

[4] Egon Balas and Andrew Ho. “Set covering algorithms using cutting planes, heuristics,
and subgradient optimization: A computational study”. In: February (1980), pp. 37–60.

[5] Una Benlic and Jin Kao Hao. “Breakout Local Search for maximum clique problems”. In:
Computers and Operations Research 40.1 (2013), pp. 192–206.

[6] Ivo Blöchliger and Nicolas Zufferey. “A graph coloring heuristic using partial solutions and
a reactive tabu scheme”. In: Computers and Operations Research 35.3 (2008), pp. 960–
975.

[7] Noureddine Bouhmala and Ole-Christoffer Granmo. “Solving Graph Coloring Problems
Using Learning Automata”. In: 2008, pp. 277–288.

[8] Daniel Brélaz. “New methods to color the vertices of a graph”. In: Communications of
the ACM 22.4 (Apr. 1979), pp. 251–256.

[9] Edmund K. Burke et al. “A graph-based hyper-heuristic for educational timetabling prob-
lems”. In: European Journal of Operational Research 176.1 (Jan. 2007), pp. 177–192.

[10] Manoel Campêlo, Victor A. Campos, and Ricardo C. Corrêa. “On the asymmetric repre-
sentatives formulation for the vertex coloring problem”. In: Discrete Applied Mathematics
156.7 (Apr. 2008), pp. 1097–1111.

[11] Alberto Caprara and Matteo Fischetti. “0, 1/2-Chvátal-Gomory cuts”. In: Mathematical
Programming, Series B 74.3 (Sept. 1996), pp. 221–235.

[12] Alberto Caprara, Matteo Fischetti, and Adam N. Letchford. “On the separation of max-
imally violated mod-k cuts”. In: Mathematical Programming 87.1 (Jan. 2000), pp. 37–
56.

[13] V. Chvátal. “Edmonds polytopes and a hierarchy of combinatorial problems”. In: Discrete
Mathematics 4.4 (Apr. 1973), pp. 305–337.

[14] V. Chvátal. Colouring the queen graphs. url: http://users.encs.concordia.ca/$%
5Csim$chvatal/queengraphs.html (visited on 08/13/2021).

[15] Denis Cornaz, Fabio Furini, and Enrico Malaguti. “Solving vertex coloring problems as
maximum weight stable set problems”. In: Discrete Applied Mathematics 217 (2017),
pp. 151–162.

[16] D. De Werra et al. “On a graph-theoretical model for cyclic register allocation”. In:
Discrete Applied Mathematics 93.2-3 (1999), pp. 191–203.

59

http://users.encs.concordia.ca/$%5Csim$chvatal/queengraphs.html
http://users.encs.concordia.ca/$%5Csim$chvatal/queengraphs.html

[17] Thomas Dence and Joseph Dence. Elements of the theory of numbers. 1999, pp. 156–164.

[18] C. Desrosiers, P. Galinier, and A. Hertz. “Efficient algorithms for finding critical sub-
graphs”. In: Discrete Applied Mathematics 156.2 (2008), pp. 244–266.

[19] Jacques Desrosiers and Marco E. Lübbecke. “Branch-Price-and-Cut Algorithms”. In: Wi-
ley Encyclopedia of Operations Research and Management Science. January. Hoboken,
NJ, USA: John Wiley and Sons, Inc., Jan. 2011.

[20] Santanu S. Dey and Marco Molinaro. “Theoretical challenges towards cutting-plane selec-
tion”. In: Mathematical Programming 170.1 (July 2018), pp. 237–266. arXiv: 1805.02782.

[21] Raphaël Dorne and Jin-Kao Hao. “Tabu Search for Graph Coloring, T-Colorings and Set
T-Colorings”. In: Meta-Heuristics: Advances and Trends in Local Search Paradigms for
Optimization. Vol. 6. Boston, MA: Springer US, 1999, pp. 77–92.

[22] Jean-Guillaume Dumas, Pascal Giorgi, and Clément Pernet. “Dense Linear Algebra over
Word-Size Prime Fields: the FFLAS and FFPACK Packages”. In: ACM Trans. on Math-
ematical Software (TOMS) 35.3 (2008), pp. 1–42.

[23] OEIS Foundation. The On-Line Encyclopedia of Integer Sequences. 2021. url: https:
//oeis.org/A073834 (visited on 08/12/2021).

[24] Philippe Galinier and Alain Hertz. “A survey of local search methods for graph coloring”.
In: Computers and Operations Research 33.9 (Sept. 2006), pp. 2547–2562.

[25] Michel Gamache, Alain Hertz, and Jérôme Olivier Ouellet. “A graph coloring model for a
feasibility problem in monthly crew scheduling with preferential bidding”. In: Computers
and Operations Research 34.8 (2007), pp. 2384–2395.

[26] Gerald Gamrath et al. The SCIP Optimization Suite 7.0. Tech. rep. 05. 2020, pp. 1–46.

[27] A. M. H. Gerards and A. Schrijver. “Matrices with the edmonds—Johnson property”. In:
Combinatorica 6.4 (Dec. 1986), pp. 365–379.

[28] Ralph E. Gomory. “Outline of an Algorithm for Integer Solutions to Linear Programs
and An Algorithm for the Mixed Integer Problem”. In: 50 Years of Integer Programming
1958-2008. January 2010. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 77–
103.

[29] The LinBox group. LinBox. v1.6.3. 2019. url: http://github.com/linbox- team/

linbox.

[30] Stefano Gualandi and Federico Malucelli. “Exact solution of graph coloring problems via
constraint programming and column generation”. In: INFORMS Journal on Computing
24.1 (2012), pp. 81–100.

[31] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. 2021. url: https://
www.gurobi.com.

[32] P. Hansen, M. Labbé, and D. Schindl. “Set covering and packing formulations of graph
coloring: Algorithms and first polyhedral results”. In: Discrete Optimization 6.2 (May
2009), pp. 135–147.

[33] Jin Kao Hao and Qinghua Wu. “Improving the extraction and expansion method for large
graph coloring”. In: Discrete Applied Mathematics 160.16-17 (2012), pp. 2397–2407.

[34] Johan H̊astad. “Clique is hard to approximate within n1ε”. In: Acta Mathematica 182.1
(1999), pp. 105–142.

[35] Emmanuel Hebrard and George Katsirelos. “Clause Learning and New Bounds for Graph
Coloring”. In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 11008 LNCS. 2018,
pp. 179–194.

60

https://arxiv.org/abs/1805.02782
https://oeis.org/A073834
https://oeis.org/A073834
http://github.com/linbox-team/linbox
http://github.com/linbox-team/linbox
https://www.gurobi.com
https://www.gurobi.com

[36] Stephan Held, William Cook, and Edward C. Sewell. “Safe lower bounds for graph color-
ing”. In: International Conference on Integer Programming and Combinatorial Optimiza-
tion. Vol. 6655 LNCS. Berlin, Heidelberg: Springer, 2011, pp. 261–273.

[37] A. Hertz and D. de Werra. “Using tabu search techniques for graph coloring”. In: Com-
puting 39.4 (Dec. 1987), pp. 345–351.

[38] Alain Hertz, Matthieu Plumettaz, and Nicolas Zufferey. “Variable space search for graph
coloring”. In: Discrete Applied Mathematics 156.13 (July 2008), pp. 2551–2560.

[39] Richard M. Karp. “Reducibility Among Combinatorial Problems”. In: 50 Years of Integer
Programming 1958-2008. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 219–
241.

[40] Michael Larsen, James Propp, and Daniel Ullman. “The fractional chromatic number of
mycielski’s graphs”. In: Journal of Graph Theory 19.3 (May 1995), pp. 411–416.

[41] A.K. Lenstra and H.W. Lenstra Jr. “Algorithms in Number Theory”. In: Handbook of
Theoretical Computer Science. 1990, pp. 675–715.

[42] Chu-Min Li et al. “A new upper bound for the maximum weight clique problem”. In:
European Journal of Operational Research 270.1 (Oct. 2018), pp. 66–77.

[43] Marco E. Lübbecke and Jacques Desrosiers. “Selected Topics in Column Generation”. In:
Operations Research 53.6 (Dec. 2005), pp. 1007–1023.

[44] Enrico Malaguti, Michele Monaci, and Paolo Toth. “An exact approach for the Vertex
Coloring Problem”. In: Discrete Optimization 8.2 (2011), pp. 174–190.

[45] Anuj Mehrotra and Michael A. Trick. “A Column Generation Approach for Graph Col-
oring”. In: INFORMS Journal on Computing 8.4 (Nov. 1996), pp. 344–354.

[46] Isabel Méndez-Dı́az and Paula Zabala. “A Branch-and-Cut algorithm for graph coloring”.
In: Discrete Applied Mathematics 154.5 SPEC. ISS. (2006), pp. 826–847.

[47] Isabel Méndez-Dı́az and Paula Zabala. “A cutting plane algorithm for graph coloring”.
In: Discrete Applied Mathematics 156.2 (Jan. 2008), pp. 159–179.

[48] J. W. Moon and L. Moser. “On cliques in graphs”. In: Israel Journal of Mathematics 3.1
(Mar. 1965), pp. 23–28.

[49] Pedro Munari and Jacek Gondzio. “Using the primal-dual interior point algorithm within
the branch-price-and-cut method”. In: Computers and Operations Research 40.8 (2013),
pp. 2026–2036.

[50] Sk Md Abu Nayeem and Madhumangal Pal. “Genetic algorithmic approach to find the
maximum weight independent set of a graph”. In: Journal of Applied Mathematics and
Computing 25.1-2 (Sept. 2007), pp. 217–229.

[51] P. Nobili and A. Sassano. “Facets and Lifting Procedures for the Set Covering Polytope”.
In: Math Prog. 45 (1989), pp. 111–137.

[52] P. Nobili and A. Sassano. “A Separation Routine for the Set Covering Polytope”. In:
Integer Programming and Combinatorial Optimiziation, Proc. of the 2nd Int IPCO Conf.
1992, pp. 201–219.

[53] Patric R.J. Österg̊ard. “A New Algorithm for the Maximum-Weight Clique Problem”. In:
Electronic Notes in Discrete Mathematics 3.April 1999 (May 1999), pp. 153–156.

[54] Daniel Cosmin Porumbel, Jin-Kao Hao, and Pascale Kuntz. “Position-Guided Tabu Search
Algorithm for the Graph Coloring Problem”. In: Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics). Vol. 5851 LNCS. May 2014. 2009, pp. 148–162.

61

[55] Wayne Pullan. “Approximating the maximum vertex/edge weighted clique using local
search”. In: Journal of Heuristics 14.2 (Apr. 2008), pp. 117–134.

[56] Wayne Pullan. “Optimisation of unweighted/weighted maximum independent sets and
minimum vertex covers”. In: Discrete Optimization 6.2 (2009), pp. 214–219.

[57] Steffen Rebennack et al. “A Branch and Cut solver for the maximum stable set problem”.
In: Journal of Combinatorial Optimization 21.4 (May 2011), pp. 434–457.

[58] David Ryan and Brian Foster. “An Integer Programming Approach to Scheduling”. In:
Computer Scheduling of Public Transport 1 (Jan. 1981), pp. 269–.

[59] David Schindl. “Some combinatorial optimization problems in graphs with applications
in telecommunications and tomography”. PhD thesis. Ecole Polytechnique Federale de
Lausanne, 2004.

[60] A. Schrijver. Theory of Linear and Integer Programming. 1998, pp. 347–351.

[61] Carla Silva et al. “Mapping graph coloring to quantum annealing”. In: Quantum Machine
Intelligence 2.2 (Dec. 2020), p. 16.

[62] D. H. Smith, S. Hurley, and S. U. Thiel. “Improving heuristics for the frequency assign-
ment problem”. In: European Journal of Operational Research 107.1 (1998), pp. 76–86.

[63] Wen Sun. “Heuristic Algorithms for Graph Coloring Problems”. PhD thesis. Université
d’Angers, 2018. url: https://tel.archives-ouvertes.fr/tel-02136810/document.

[64] Olawale Titiloye and Alan Crispin. “Quantum annealing of the graph coloring problem”.
In: Discrete Optimization 8.2 (May 2011), pp. 376–384.

[65] Allen Van Gelder. “Another look at graph coloring via propositional satisfiability”. In:
Discrete Applied Mathematics 156.2 (Jan. 2008), pp. 230–243.

[66] Michel Vasquez. “New results on the queens n2 graph coloring problem”. In: Journal of
Heuristics 10.4 (July 2004), pp. 407–413.

[67] JS Warren and IV Hicks. Combinatorial branch-and-bound for the maximum weight inde-
pendent set problem. Tech. rep. 2006, pp. 1–23.

[68] Deepak Warrier. “A branch, price, and cut approach to solving the maximum weighted
independent set problem”. In: 2007.

[69] D. de Werra. “An introduction to timetabling”. In: European Journal of Operational
Research 19.2 (1985), pp. 151–162.

[70] D. Wiedemann. “Solving sparse linear equations over finite fields”. In: IEEE Transactions
on Information Theory 32.1 (Jan. 1986), pp. 54–62.

[71] T.-K. Woo, S.Y.W. Su, and R. Newman-Wolfe. “Resource allocation in a dynamically
partitionable bus network using a graph coloring algorithm”. In: IEEE Transactions on
Communications 39.12 (1991), pp. 1794–1801.

[72] Qinghua Wu, Jin Kao Hao, and Fred Glover. “Multi-neighborhood tabu search for the
maximum weight clique problem”. In: Annals of Operations Research 196.1 (2012), pp. 611–
634.

[73] Zhaoyang Zhou et al. “An exact algorithm with learning for the graph coloring problem”.
In: Computers and Operations Research 51.January 2020 (Nov. 2014), pp. 282–301.

[74] Nicolas Zufferey, Patrick Amstutz, and Philippe Giaccari. “Graph colouring approaches
for a satellite range scheduling problem”. In: Journal of Scheduling 11.4 (2008), pp. 263–
277.

[75] A.A. Zykov. “On some properties of linear complexes”. In: Matematicheskij Sbornik 24
(1949), pp. 163–188.

62

https://tel.archives-ouvertes.fr/tel-02136810/document

Appendix

This appendix contains the results of the experiments on the DIMACS instances with the con-
figurations C1-C5 from Table 6.1 as described in Chapter 6. The ’Best UB’ column in Table
7.1 contains the best known upper bounds from literature. The chromatic number χ(G) in
Table 7.1 is highlighted in bold for instances which were proven optimal by a branch-and-price
algorithm for the first time.

Table 7.1: Results on the DIMACS instances for strategy C1

Instance |V | |E| χ(G) time (s) B&B nodes χ(G) Best UB Found UB

1-FullIns 3 30 100 4 0.07 1 4 4 4
1-FullIns 4 93 593 5 0.07 21 5 5 5
1-FullIns 5 282 3247 6 3.44 2025 6 6 6
1-Insertions 4 67 232 5 [46] tl 78729 4 5 [46] 5
1-Insertions 5 202 1227 ? tl 504 3.342 6 [46] 6
1-Insertions 6 607 6337 ? tl 1 2.535 7 [46] 7
2-FullIns 3 52 201 5 0.03 1 5 5 5
2-FullIns 4 212 1621 6 0.1 21 6 6 6
2-FullIns 5 852 12201 7 5.06 3879 7 7 7
2-Insertions 3 37 72 4 0.52 237 4 4 4
2-Insertions 4 149 541 ? tl 1563 3.149 5 [46] 5
2-Insertions 5 597 3936 ? tl 1 2.198 6 [46] 6
3-FullIns 3 80 346 6 0.06 1 6 6 6
3-FullIns 4 405 3524 7 0.06 19 7 7 7
3-FullIns 5 2030 33751 8 1.93 1475 8 8 8
3-Insertions 3 56 110 4 9.6 699 4 4 4
3-Insertions 4 281 1046 ? tl 31 3 5 [46] 5
3-Insertions 5 1406 9695 ? tl 1 2.023 6 [46] 6
4-FullIns 3 114 541 7 0.09 1 7 7 7
4-FullIns 4 690 6650 8 0.13 13 8 8 8
4-FullIns 5 4146 77305 9 5.73 3561 9 9 9
4-Insertions 3 79 156 4 437.77 2183 4 4 4
4-Insertions 4 475 1795 ? tl 1 2.039 5 [46] 5
5-FullIns 3 154 792 8 0.05 1 8 8 8
5-FullIns 4 1085 11395 9 0.11 15 9 9 9
C1000.9 1000 450079 ? tl 752 215.479 ? 238
C2000.5 2000 999836 ? tl 1 21.187 145 [33] 175
C2000.9 2000 1799532 ? tl 2 389.6 400 [64] 446
C4000.5 4000 4000268 ? tl 1 15 259 [33] 326
DSJC1000.1 1000 49629 ? tl 1 6 20 [44] 23
DSJC1000.5 1000 249826 ? tl 1 18.854 83 [64] 97
DSJC1000.9 1000 449449 ? tl 766 214.972 222 [64] 238
DSJC125.1 125 736 5 tl 823 4.751 5 [44] 6
DSJC125.5 125 3891 17 tl 51541 16.179 17 [44] 18
DSJC125.9 125 6961 44 5.57 355 44 44 44
DSJC250.1 250 3218 ? tl 1 4 8 [44] 9
DSJC250.5 250 15668 ? tl 897 25.368 28 [44] 31

63

Table 7.1: Results on the DIMACS instances for strategy C1

Instance |V | |E| χ(G) time (s) B&B nodes χ(G) Best UB Found UB

DSJC250.9 250 27897 ? tl 122299 70.979 72 [44] 73
DSJC500.1 500 12458 ? tl 1 5 12 [44] 14
DSJC500.5 500 62624 ? tl 4 42.267 48 [64] 54
DSJC500.9 500 112437 ? tl 10905 122.611 126 [64] 132
DSJR500.1 500 3555 12 0.04 1 12 12 12
DSJR500.1c 500 121275 85 6.77 10 85 85 85
DSJR500.5 500 58862 122 880.12 467 122 122 122
abb313GPIA 1557 65390 ? tl 1 8 9 [44] 9
anna 138 986 11 0.08 1 11 11 11
ash331GPIA 662 4185 4 5.95 1 4 4 4
ash608GPIA 1216 7844 4 tl 1 3 4 [44] 4
ash958GPIA 1916 12506 4 tl 1 3 4 [44] 4
david 87 812 11 0.02 1 11 11 [45] 11
flat1000 50 0 1000 245000 50 tl 1 18.436 50 [46] 50
flat1000 60 0 1000 245830 60 tl 1 18.207 60 [46] 60
flat1000 76 0 1000 246708 76 tl 1 18.748 81 [33] 96
flat300 20 0 300 21375 20 71.19 1 20 20 20
flat300 26 0 300 21633 26 224.75 1 26 26 26
flat300 28 0 300 21695 28 tl 150 27.612 28 [6] 34
fpsol2.i.1 496 11654 65 0.07 1 65 65 65
fpsol2.i.2 451 8691 30 0.13 1 30 30 30
fpsol2.i.3 425 8688 30 0.14 1 30 30 30
games120 120 1276 9 0.02 1 9 9 9
homer 561 3258 13 0.05 1 13 13 13
huck 74 602 11 0.04 1 11 11 11
inithx.i.1 864 18707 54 0.1 1 54 54 54
inithx.i.2 645 13979 31 0.1 1 31 31 31
inithx.i.3 621 13969 31 0.11 1 31 31 31
jean 80 508 10 0.05 1 10 10 10
latin square 10 900 307350 ? tl 225 90 98 [64] 109
le450 15a 450 8168 15 tl 10 15 15 [44] 16
le450 15b 450 8169 15 tl 28 15 15 [44] 16
le450 15c 450 16680 15 tl 1 15 15 [44] 16
le450 15d 450 16750 15 tl 1 15 15 [44] 16
le450 25a 450 8260 25 0.26 1 25 25 25
le450 25b 450 8263 25 0.17 1 25 25 25
le450 25c 450 17343 25 tl 13 25 25 [44] 28
le450 25d 450 17425 25 tl 15 25 25[44] 28
le450 5a 450 5714 5 tl 1 5 5 [44] 6
le450 5b 450 5734 5 tl 1 5 5 [44] 6
le450 5c 450 9803 5 1604.08 1 5 5 5
le450 5d 450 9757 5 tl 1 5 5 [44] 6
miles1000 128 6432 42 0.05 1 42 42 42
miles1500 128 10396 73 0.06 1 73 73 73
miles250 128 774 8 0.03 1 8 8 8
miles500 128 2340 20 0.03 1 20 20 20
miles750 128 4226 31 0.04 1 31 31 31
mug100 1 100 166 4 1.53 1 4 4 4
mug100 25 100 166 4 1.45 1 4 4 4
mug88 1 88 146 4 0.79 1 4 4 4
mug88 25 88 146 4 0.99 1 4 4 4
mulsol.i.1 197 3925 49 0.05 1 49 49 49
mulsol.i.2 188 3885 31 0.07 1 31 31 31
mulsol.i.3 184 3916 31 0.04 1 31 31 31
mulsol.i.4 185 3946 31 0.05 1 31 31 31

64

Table 7.1: Results on the DIMACS instances for strategy C1

Instance |V | |E| χ(G) time (s) B&B nodes χ(G) Best UB Found UB

mulsol.i.5 186 3973 31 0.05 1 31 31 31
myciel3 11 20 4 0.13 5 4 4 4
myciel4 23 71 5 0.28 77 5 5 5
myciel5 47 236 6 6.27 3619 6 6 6
myciel6 95 755 7 tl 83532 5.3 7 7
myciel7 191 2360 8 tl 7762 4.898 8 8
qg.order100 10000 990000 100 512.93 1 100 100 100
qg.order30 900 26100 30 1.15 1 30 30 30
qg.order40 1600 62400 40 tl 1 40 40 [44] 41
qg.order60 3600 212400 60 13.86 1 60 60 60
queen10 10 100 2940 11 3113.88 20057 11 11 11
queen11 11 121 3960 11 666.94 856 11 11 11
queen12 12 144 5192 12 tl 1133 12 12 [66] 14
queen13 13 169 6656 13 tl 127 13 13 [66] 15
queen14 14 196 8372 14 tl 17 14 14 [66] 16
queen15 15 225 10360 15 tl 5 15 16 [44] 17
queen16 16 256 12640 16 tl 2 16 17 [44] 18
queen5 5 25 320 5 0.06 1 5 5 5
queen6 6 36 580 7 0.09 1 7 7 7
queen7 7 49 952 7 0.14 1 7 7 7
queen8 12 96 2736 12 0.11 1 12 12 12
queen8 8 64 1456 9 0.25 1 9 9 9
queen9 9 81 2112 10 4.35 23 10 10 10
school1 385 19095 14 1.07 1 14 14 14
school1 nsh 352 14612 14 0.95 1 14 14 14
wap01a 2368 110871 ? tl 1 41 43 [44] 47
wap02a 2464 111742 ? tl 1 40 42 [44] 44
wap03a 4730 286722 ? tl 1 40 47 [44] 48
wap04a 5231 294902 ? tl 1 40 42 [33] 46
wap05a 905 43081 50 0.35 1 50 50 50
wap06a 947 43571 40 tl 35 40 40 [44] 42
wap07a 1809 103368 ? tl 1 40 41 [33] 45
wap08a 1870 104176 ? tl 1 40 42 [44] 45
will199GPIA 701 7065 7 5.4 1 7 7 7
zeroin.i.1 211 4100 49 0.05 1 49 49 49
zeroin.i.2 211 3541 30 0.04 1 30 30 30
zeroin.i.3 206 3540 30 0.06 1 30 30 30

Table 7.2: Results on the DIMACS instances for strategy C2

Instance |V | |E| χ(G) time (s) B&B nodes χ(G) χf (G) χc(G) |H|modk Found UB

1-FullIns 4 93 593 5 0.08 15 5 3.633 4.0 18 5
1-FullIns 5 282 3247 6 3.38 1625 6 3.909 4.066 70 6
1-Insertions 4 67 232 5 tl 79290 4 2.774 3.0 17 5
1-Insertions 5 202 1227 ? tl 1 2.943 2.943 - 7 6
1-Insertions 6 607 6337 ? tl 1 2.497 - - 0 7
2-FullIns 4 212 1621 6 0.06 25 6 4.485 5.0 7 6
2-FullIns 5 852 12201 7 6.98 4567 7 4.708 4.8 27 7
2-Insertions 3 37 72 4 0.31 147 4 2.423 3.0 19 4
2-Insertions 4 149 541 ? tl 1513 3.111 2.56 3.0 18 5
2-Insertions 5 597 3936 ? tl 1 2.198 - - 0 6
3-FullIns 4 405 3524 7 0.06 19 7 5.392 5.5 7 7
3-FullIns 5 2030 33751 8 3.46 2245 8 5.578 6.0 34 8
3-Insertions 3 56 110 4 5.7 505 4 2.334 3.0 4 4
3-Insertions 4 281 1046 ? tl 131 3 2.438 3.0 4 5

65

Table 7.2: Results on the DIMACS instances for strategy C2

Instance |V | |E| χ(G) time (s) B&B nodes χ(G) χf (G) χc(G) |H|modk Found UB

3-Insertions 5 1406 9695 ? tl 1 2.026 - - 0 6
4-FullIns 4 690 6650 8 0.1 13 8 6.329 7.0 16 8
4-FullIns 5 4146 77305 9 7.82 3851 9 6.487 6.531 113 9
4-Insertions 3 79 156 4 175.5 1365 4 2.276 3.0 4 4
4-Insertions 4 475 1795 ? tl 1 2.039 - - 0 5
5-FullIns 4 1085 11395 9 0.13 15 9 7.283 8.0 14 9
C1000.9 1000 450079 ? tl 637 215.481 215.354 215.357 2 240
C2000.5 2000 999836 ? tl 1 21.86 - - 0 175
C2000.9 2000 1799532 ? tl 1 389.6 389.6 389.6 31 446
C4000.5 4000 4000268 ? tl 1 25.077 - - 0 326
DSJC1000.1 1000 49629 ? tl 1 6 - - 0 23
DSJC1000.5 1000 249826 ? tl 1 19.152 - - 0 97
DSJC1000.9 1000 449449 ? tl 688 214.958 214.855 214.858 26 238
DSJC125.1 125 736 5 tl 813 4.731 4.454 4.456 1 6
DSJC125.5 125 3891 17 tl 50887 16.149 15.727 15.737 8 18
DSJC125.9 125 6961 44 5.9 395 44 42.742 42.729 3 44
DSJC250.1 250 3218 ? tl 1 4 - - 0 9
DSJC250.5 250 15668 ? tl 874 25.364 25.165 25.171 2 31
DSJC250.9 250 27897 ? tl 122784 70.991 70.392 70.398 7 73
DSJC500.1 500 12458 ? tl 1 5 - - 0 14
DSJC500.5 500 62624 ? tl 4 42.267 42.264 42.264 0 54
DSJC500.9 500 112437 ? tl 10490 122.609 122.307 122.309 18 132
DSJR500.5 500 58862 122 395.18 259 122 122.0 122.0 2 122
abb313GPIA 1557 65390 4 tl 1 8 - - 0 9
ash608GPIA 1216 7844 4 tl 1 3 - - 0 4
ash958GPIA 1916 12506 4 tl 1 3 - - 0 4
flat1000 50 0 1000 245000 50 489.71 1 50 50.0 50.0 0 50
flat1000 60 0 1000 245830 60 tl 1 19.055 - - 0 60
flat1000 76 0 1000 246708 76 tl 1 18.804 - - 0 96
flat300 28 0 300 21695 28 tl 152 27.609 27.52 27.52 0 34
latin square 10 900 307350 ? tl 207 90 90.0 90.0 3 109
le450 15a 450 8168 15 tl 14 15 15.0 15.0 2 16
le450 15b 450 8169 15 tl 2 15 15.0 15.0 3 16
le450 15c 450 16680 15 tl 1 15 - - 0 16
le450 15d 450 16750 15 tl 1 15 - - 0 16
le450 25c 450 17343 25 tl 4 25 25.0 25.0 8 28
le450 25d 450 17425 25 tl 10 25 25.0 25.0 0 28
le450 5a 450 5714 5 tl 1 5 - - 0 6
le450 5b 450 5734 5 tl 1 5 - - 0 6
le450 5d 450 9757 5 tl 1 5 - - 0 6
myciel3 11 20 4 0.16 1 4 2.9 3.028 8 4
myciel4 23 71 5 0.33 77 5 3.245 3.362 10 5
myciel5 47 236 6 5.44 3581 6 3.553 3.622 8 6
myciel6 95 755 7 tl 28661 5.223 3.834 3.912 10 7
myciel7 191 2360 8 tl 7745 4.898 4.095 4.147 16 8
qg.order40 1600 62400 40 tl 1 40 40.0 40.0 7 41
queen10 10 100 2940 11 tl 25888 10.161 10.0 10.0 0 12
queen11 11 121 3960 11 6.32 5 11 11.0 11.0 11 11
queen12 12 144 5192 12 tl 954 12 12.0 12.0 1 14
queen13 13 169 6656 13 tl 158 13 13.0 13.0 0 15
queen14 14 196 8372 14 tl 25 14 14.0 14.0 4 16
queen15 15 225 10360 15 tl 17 15 15.0 15.0 0 17
queen16 16 256 12640 16 tl 6 16 16.0 16.0 5 18
queen9 9 81 2112 10 4.46 21 10 9.0 9.0 23 10
wap01a 2368 110871 ? tl 1 41 - - 0 47

66

Table 7.2: Results on the DIMACS instances for strategy C2

Instance |V | |E| χ(G) time (s) B&B nodes χ(G) χf (G) χc(G) |H|modk Found UB

wap02a 2464 111742 ? tl 1 40 - - 0 44
wap03a 4730 286722 ? tl 1 40 - - 0 48
wap04a 5231 294902 ? tl 1 40 - - 0 46
wap06a 947 43571 40 tl 38 40 40.0 40.0 2 42
wap07a 1809 103368 ? tl 1 40 - - 0 45
wap08a 1870 104176 ? tl 1 40 - - 0 45

Table 7.3: Results on the DIMACS instances for strategy C3

Instance |V | |E| χ(G) time (s) B&B nodes χ(G) χf (G) χc(G) |H|oc Found UB

1-FullIns 4 93 593 5 0.06 25 5 3.633 3.633 7 5
1-FullIns 5 282 3247 6 3.41 1909 6 3.909 3.909 8 6
1-Insertions 4 67 232 5 tl 83439 4 2.774 2.774 0 5
1-Insertions 5 202 1227 ? tl 471 3.333 2.943 2.943 0 6
1-Insertions 6 607 6337 ? tl 1 2.497 - - 0 7
2-FullIns 4 212 1621 6 0.06 23 6 4.485 4.485 3 6
2-FullIns 5 852 12201 7 5.28 4103 7 4.708 4.708 13 7
2-Insertions 3 37 72 4 0.52 219 4 2.423 2.423 0 4
2-Insertions 4 149 541 ? tl 1965 3.209 2.56 2.56 0 5
2-Insertions 5 597 3936 ? tl 1 2.198 - - 0 6
3-FullIns 4 405 3524 7 0.06 19 7 5.392 5.392 15 7
3-FullIns 5 2030 33751 8 1.9 1437 8 5.578 5.578 0 8
3-Insertions 3 56 110 4 13.59 871 4 2.334 2.334 0 4
3-Insertions 4 281 1046 ? tl 49 3 2.438 2.438 0 5
3-Insertions 5 1406 9695 ? tl 1 2.026 - - 0 6
4-FullIns 4 690 6650 8 0.08 13 8 6.329 6.329 17 8
4-FullIns 5 4146 77305 9 6.18 3843 9 6.487 6.487 32 9
4-Insertions 3 79 156 4 235.18 1739 4 2.276 2.276 0 4
4-Insertions 4 475 1795 ? tl 1 2.039 - - 0 5
5-FullIns 4 1085 11395 9 0.11 15 9 7.283 7.283 24 9
C1000.9 1000 450079 ? tl 61 215.483 215.354 215.421 538 241
C2000.5 2000 999836 ? tl 1 21.86 - - 0 175
C2000.9 2000 1799532 ? tl 4 389.6 389.6 389.6 412 446
C4000.5 4000 4000268 ? tl 1 25.077 - - 0 326
DSJC1000.1 1000 49629 ? tl 1 6 - - 0 23
DSJC1000.5 1000 249826 ? tl 1 19.152 - - 0 97
DSJC1000.9 1000 449449 ? tl 60 215.019 214.855 214.942 706 241
DSJC125.1 125 736 5 tl 802 4.744 4.454 4.454 16 6
DSJC125.5 125 3891 17 tl 43333 16.188 15.727 15.744 65 18
DSJC125.9 125 6961 44 5.73 209 44 42.742 42.796 146 44
DSJC250.1 250 3218 ? tl 1 4 - - 0 9
DSJC250.5 250 15668 ? tl 808 25.36 25.165 25.168 31 31
DSJC250.9 250 27897 ? tl 58292 70.936 70.392 70.522 358 73
DSJC500.1 500 12458 ? tl 1 5 - - 0 14
DSJC500.5 500 62624 ? tl 4 42.267 42.264 42.265 8 54
DSJC500.9 500 112437 ? tl 5886 122.599 122.307 122.334 370 132
DSJR500.5 500 58862 122 290.19 123 122 122.0 122.0 803 122
abb313GPIA 1557 65390 4 tl 1 8 - - 0 9
ash608GPIA 1216 7844 4 tl 1 3 - - 0 4
ash958GPIA 1916 12506 4 tl 1 3 - - 0 4
flat1000 50 0 1000 245000 50 488.16 1 50 50.0 50.0 0 50
flat1000 60 0 1000 245830 60 tl 1 19.055 - - 0 60
flat1000 76 0 1000 246708 76 tl 1 18.804 - - 0 96
flat300 28 0 300 21695 28 tl 140 27.608 27.52 27.522 22 34
latin square 10 900 307350 ? tl 261 90 90.0 90.0 95 109

67

Table 7.3: Results on the DIMACS instances for strategy C3

Instance |V | |E| χ(G) time (s) B&B nodes χ(G) χf (G) χc(G) |H|oc Found UB

le450 15a 450 8168 15 tl 14 15 15.0 15.0 4 16
le450 15b 450 8169 15 tl 7 15 15.0 15.0 7 16
le450 15c 450 16680 15 tl 1 15 - - 0 16
le450 15d 450 16750 15 tl 1 15 - - 0 16
le450 25c 450 17343 25 tl 5 25 25.0 25.0 28 28
le450 25d 450 17425 25 tl 12 25 25.0 25.0 38 28
le450 5a 450 5714 5 tl 1 5 - - 0 6
le450 5b 450 5734 5 tl 1 5 - - 0 6
le450 5d 450 9757 5 tl 1 5 - - 0 6
myciel3 11 20 4 0.07 5 4 2.9 2.9 0 4
myciel4 23 71 5 0.22 77 5 3.245 3.245 0 5
myciel5 47 236 6 4.81 3511 6 3.553 3.553 0 6
myciel6 95 755 7 tl 131995 5.4 3.834 3.834 0 7
myciel7 191 2360 8 tl 7964 4.898 4.095 4.095 0 8
qg.order40 1600 62400 40 tl 1 40 40.0 40.0 418 41
queen10 10 100 2940 11 tl 24543 10.157 10.0 10.0 33 12
queen11 11 121 3960 11 7.82 5 11 11.0 11.0 35 11
queen12 12 144 5192 12 tl 769 12 12.0 12.0 3 14
queen13 13 169 6656 13 tl 124 13 13.0 13.0 6 15
queen14 14 196 8372 14 tl 29 14 14.0 14.0 1 16
queen15 15 225 10360 15 tl 17 15 15.0 15.0 0 17
queen16 16 256 12640 16 tl 3 16 16.0 16.0 0 18
queen9 9 81 2112 10 4.0 21 10 9.0 9.0 62 10
wap01a 2368 110871 ? tl 1 41 - - 0 47
wap02a 2464 111742 ? tl 1 40 - - 0 44
wap03a 4730 286722 ? tl 1 40 - - 0 48
wap04a 5231 294902 ? tl 1 40 - - 0 46
wap06a 947 43571 40 tl 28 40 40.0 40.0 54 42
wap07a 1809 103368 ? tl 1 40 - - 0 45
wap08a 1870 104176 ? tl 1 40 - - 0 45

Table 7.4: Results on the DIMACS instances for strategy C4

Instance |V | |E| χ(G) time (s) B&B nodes χ(G) χf (G) χc(G) |H|oc |H|modk Found UB

1-FullIns 4 93 593 5 0.07 15 5 3.633 4.0 15 18 5
1-FullIns 5 282 3247 6 3.63 1713 6 3.909 4.063 19 70 6
1-Insertions 4 67 232 5 tl 79191 4 2.774 3.0 8 17 5
1-Insertions 5 202 1227 ? tl 1 2.943 2.943 - 0 7 6
1-Insertions 6 607 6337 ? tl 1 2.497 - - 0 0 7
2-FullIns 4 212 1621 6 0.06 23 6 4.485 4.485 3 10 6
2-FullIns 5 852 12201 7 5.67 4003 7 4.708 4.783 26 55 7
2-Insertions 3 37 72 4 0.18 91 4 2.423 3.0 4 18 4
2-Insertions 4 149 541 ? tl 1964 3.2 2.56 3.0 30 18 5
2-Insertions 5 597 3936 ? tl 1 2.198 - - 0 0 6
3-FullIns 4 405 3524 7 0.06 19 7 5.392 5.392 15 14 7
3-FullIns 5 2030 33751 8 3.21 2069 8 5.578 6.0 20 34 8
3-Insertions 3 56 110 4 5.1 495 4 2.334 3.0 6 4 4
3-Insertions 4 281 1046 ? tl 184 3 2.438 3.0 3 4 5
3-Insertions 5 1406 9695 ? tl 1 2.026 - - 0 0 6
4-FullIns 4 690 6650 8 0.08 13 8 6.329 7.0 38 15 8
4-FullIns 5 4146 77305 9 7.69 3737 9 6.487 6.531 39 113 9
4-Insertions 3 79 156 4 91.64 1109 4 2.276 3.0 6 4 4
4-Insertions 4 475 1795 ? tl 1 2.039 - - 0 0 5
5-FullIns 4 1085 11395 9 0.12 15 9 7.283 7.283 24 22 9
C1000.9 1000 450079 ? tl 68 215.483 215.354 215.421 538 1 241

68

Table 7.4: Results on the DIMACS instances for strategy C4

Instance |V | |E| χ(G) time (s) B&B nodes χ(G) χf (G) χc(G) |H|oc |H|modk Found UB

C2000.5 2000 999836 ? tl 1 21.86 - - 0 0 175
C2000.9 2000 1799532 ? tl 1 389.6 389.6 389.6 297 31 446
C4000.5 4000 4000268 ? tl 1 25.077 - - 0 0 326
DSJC1000.1 1000 49629 ? tl 1 6 - - 0 0 23
DSJC1000.5 1000 249826 ? tl 1 19.152 - - 0 0 97
DSJC1000.9 1000 449449 ? tl 64 215.019 214.855 214.942 706 23 241
DSJC125.1 125 736 5 tl 795 4.729 4.454 4.454 16 1 6
DSJC125.5 125 3891 17 tl 47726 16.191 15.727 15.744 65 7 18
DSJC125.9 125 6961 44 5.95 209 44 42.742 42.796 146 3 44
DSJC250.1 250 3218 ? tl 1 4 - - 0 0 9
DSJC250.5 250 15668 ? tl 812 25.36 25.165 25.168 31 1 31
DSJC250.9 250 27897 ? tl 61616 70.956 70.392 70.522 358 7 73
DSJC500.1 500 12458 ? tl 1 5 - - 0 0 14
DSJC500.5 500 62624 ? tl 4 42.267 42.264 42.265 8 0 54
DSJC500.9 500 112437 ? tl 6296 122.603 122.307 122.334 378 17 132
DSJR500.5 500 58862 122 431.92 287 122 122.0 122.0 803 1 122
abb313GPIA 1557 65390 4 tl 1 8 - - 0 0 9
ash608GPIA 1216 7844 4 tl 1 3 - - 0 0 4
ash958GPIA 1916 12506 4 tl 1 3 - - 0 0 4
flat1000 50 0 1000 245000 50 478.94 1 50 50.0 50.0 0 0 50
flat1000 60 0 1000 245830 60 tl 1 19.055 - - 0 0 60
flat1000 76 0 1000 246708 76 tl 1 18.804 - - 0 0 96
flat300 28 0 300 21695 28 tl 146 27.611 27.52 27.522 22 0 34
latin square 10 900 307350 ? tl 244 90 90.0 90.0 95 3 109
le450 15a 450 8168 15 tl 15 15 15.0 15.0 4 2 16
le450 15b 450 8169 15 tl 7 15 15.0 15.0 7 4 16
le450 15c 450 16680 15 tl 1 15 - - 0 0 16
le450 15d 450 16750 15 tl 1 15 - - 0 0 16
le450 25c 450 17343 25 tl 10 25 25.0 25.0 28 7 28
le450 25d 450 17425 25 tl 12 25 25.0 25.0 38 0 28
le450 5a 450 5714 5 tl 1 5 - - 0 0 6
le450 5b 450 5734 5 tl 1 5 - - 0 0 6
le450 5d 450 9757 5 tl 1 5 - - 0 0 6
myciel3 11 20 4 0.09 1 4 2.9 3.026 19 7 4
myciel4 23 71 5 0.17 77 5 3.245 3.362 10 10 5
myciel5 47 236 6 7.73 3555 6 3.553 3.622 19 8 6
myciel6 95 755 7 tl 24148 5.217 3.834 3.912 0 10 7
myciel7 191 2360 8 tl 6823 4.898 4.095 4.147 6 16 8
qg.order40 1600 62400 40 tl 1 40 40.0 40.0 418 7 41
queen10 10 100 2940 11 tl 23338 10.158 10.0 10.0 33 1 12
queen11 11 121 3960 11 103.98 78 11 11.0 11.0 35 13 11
queen12 12 144 5192 12 tl 925 12 12.0 12.0 3 1 14
queen13 13 169 6656 13 tl 124 13 13.0 13.0 6 0 15
queen14 14 196 8372 14 tl 12 14 14.0 14.0 17 12 16
queen15 15 225 10360 15 tl 17 15 15.0 15.0 0 0 17
queen16 16 256 12640 16 tl 6 16 16.0 16.0 0 5 18
queen9 9 81 2112 10 3.87 19 10 9.0 9.0 42 26 10
wap01a 2368 110871 ? tl 1 41 - - 0 0 47
wap02a 2464 111742 ? tl 1 40 - - 0 0 44
wap03a 4730 286722 ? tl 1 40 - - 0 0 48
wap04a 5231 294902 ? tl 1 40 - - 0 0 46
wap06a 947 43571 40 tl 28 40 40.0 40.0 54 2 42
wap07a 1809 103368 ? tl 1 40 - - 0 0 45
wap08a 1870 104176 ? tl 1 40 - - 0 0 45

69

Table 7.5: Results on the DIMACS instances for strategy C5

Instance |V | |E| χ(G) time (s) B&B nodes χ(G) |H|oc |H|modk Found UB

1-FullIns 4 93 593 5 0.07 7 5 29 20 5
1-FullIns 5 282 3247 6 4.28 1249 6 852 224 6
1-Insertions 4 67 232 5 tl 9023 3.642 12741 3113 5
1-Insertions 5 202 1227 ? tl 1 2.943 0 7 6
1-Insertions 6 607 6337 ? tl 1 2.497 0 0 7
2-FullIns 4 212 1621 6 0.06 13 6 47 23 6
2-FullIns 5 852 12201 7 37.31 3799 7 2705 498 7
2-Insertions 3 37 72 4 0.37 127 4 144 49 4
2-Insertions 4 149 541 ? tl 1158 3.172 3778 720 5
2-Insertions 5 597 3936 ? tl 1 2.198 0 0 6
3-FullIns 4 405 3524 7 0.07 13 7 70 24 7
3-FullIns 5 2030 33751 8 7.63 1655 8 1219 245 8
3-Insertions 3 56 110 4 4.76 445 4 315 86 4
3-Insertions 4 281 1046 ? tl 140 3 1300 222 5
3-Insertions 5 1406 9695 ? tl 1 2.026 0 0 6
4-FullIns 4 690 6650 8 0.09 13 8 102 16 8
4-FullIns 5 4146 77305 9 17.55 2635 9 1363 386 9
4-Insertions 3 79 156 4 164.93 1129 4 912 206 4
4-Insertions 4 475 1795 ? tl 1 2.039 0 0 5
5-FullIns 4 1085 11395 9 0.13 15 9 81 28 9
C1000.9 1000 450079 ? tl 20 215.467 1535 1 243
C2000.5 2000 999836 ? tl 1 21.86 0 0 175
C2000.9 2000 1799532 ? tl 1 389.6 297 31 446
C4000.5 4000 4000268 ? tl 1 25.077 0 0 326
DSJC1000.1 1000 49629 ? tl 1 6 0 0 23
DSJC1000.5 1000 249826 ? tl 1 19.152 0 0 97
DSJC1000.9 1000 449449 ? tl 15 214.986 1866 23 243
DSJC125.1 125 736 5 tl 672 4.736 2096 298 6
DSJC125.5 125 3891 17 tl 4669 16.062 20063 137 18
DSJC125.9 125 6961 44 8.84 133 44 1251 3 44
DSJC250.1 250 3218 ? tl 1 4 0 0 9
DSJC250.5 250 15668 ? tl 473 25.36 1235 8 31
DSJC250.9 250 27897 ? tl 1904 70.91 42147 8 74
DSJC500.1 500 12458 ? tl 1 5 0 0 14
DSJC500.5 500 62624 ? tl 3 42.265 24 0 54
DSJC500.9 500 112437 ? tl 727 122.548 12221 17 132
DSJR500.5 500 58862 ? tl 59 122 1990 1 133
abb313GPIA 1557 65390 4 tl 1 8 0 0 9
ash608GPIA 1216 7844 4 tl 1 3 0 0 4
ash958GPIA 1916 12506 4 tl 1 3 0 0 4
flat1000 50 0 1000 245000 50 475.78 1 50 0 0 50
flat1000 60 0 1000 245830 60 tl 1 19.055 0 0 60
flat1000 76 0 1000 246708 76 tl 1 18.804 0 0 96
flat300 28 0 300 21695 28 tl 106 27.604 165 6 34
latin square 10 900 307350 ? tl 111 90 692 8 109
le450 15a 450 8168 15 tl 8 15 91 17 16
le450 15b 450 8169 15 tl 29 15 63 36 16
le450 15c 450 16680 15 tl 1 15 0 0 16
le450 15d 450 16750 15 tl 1 15 0 0 16
le450 25c 450 17343 25 tl 17 25 53 151 28
le450 25d 450 17425 25 tl 14 25 62 17 28
le450 5a 450 5714 5 tl 1 5 0 0 6
le450 5b 450 5734 5 tl 1 5 0 0 6
le450 5d 450 9757 5 tl 1 5 0 0 6
myciel3 11 20 4 0.1 1 4 19 7 4

70

Table 7.5: Results on the DIMACS instances for strategy C5

Instance |V | |E| χ(G) time (s) B&B nodes χ(G) |H|oc |H|modk Found UB

myciel4 23 71 5 0.37 63 5 162 57 5
myciel5 47 236 6 25.98 3657 6 300 136 6
myciel6 95 755 7 tl 4203 4.885 3414 1536 7
myciel7 191 2360 8 tl 3089 4.862 4808 2764 8
qg.order40 1600 62400 40 tl 1 40 418 7 41
queen10 10 100 2940 11 tl 619 10.035 2123 292 12
queen11 11 121 3960 11 38.79 14 11 228 24 11
queen12 12 144 5192 12 tl 657 12 968 181 14
queen13 13 169 6656 13 tl 84 13 271 209 15
queen14 14 196 8372 14 tl 13 14 66 18 16
queen15 15 225 10360 15 tl 5 15 51 37 17
queen16 16 256 12640 16 tl 8 16 25 15 18
queen9 9 81 2112 10 4.35 17 10 157 39 10
wap01a 2368 110871 ? tl 1 41 0 0 47
wap02a 2464 111742 ? tl 1 40 0 0 44
wap03a 4730 286722 ? tl 1 40 0 0 48
wap04a 5231 294902 ? tl 1 40 0 0 46
wap06a 947 43571 40 tl 55 40 191 5 42
wap07a 1809 103368 ? tl 1 40 0 0 45
wap08a 1870 104176 ? tl 1 40 0 0 45

71

	Introduction and related works
	Related work
	Research Goals and contribution
	Outline

	Set covering formulation
	Set covering formulation
	Preprocessing
	Branching rule

	Separation methods
	Mod-k Cuts
	Maximally Violated Mod-k Cuts
	Modified Pricing problem
	Selecting k

	Odd-cycle cutting planes
	Limited to fractional variables
	Strong odd-cycle cuts
	Modified pricing problem
	Polyhedral results

	Cutting planes with larger Chvátal Rank
	Separation of maximally violated mod-k cutting planes
	Separation of odd-cycle cutting planes
	Pricing

	The pricing problem
	Background
	Numerical safety
	Stabilization and early branching

	An algorithm for the modified pricing problem
	Bounds for the modified pricing problem
	A combinatorial branch-and-bound algorithm for the modified pricing problem

	Implementation
	Column Initialization
	Greedy improvements

	Branching
	Branching strategy
	Experiments

	Experiments
	Implementation
	Instances
	Results
	Branch-and-price
	Mod-k cutting planes
	Odd-cycle cutting planes
	Comparison of branch-cut-and-price with branch-and-price

	Discussion and recommendations
	Recommendations for further research

