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Abstract

Radioembolization is a non-ablative selective procedure that is used for the treatment of advanced stage liver
cancer and liver metastases. In this procedure, radioactive microspheres are administered to blood flow in the
liver arteries by catheter injection, which embolize in narrower vessels near the malignant tissue. This study
focusses on radioembolization in the right hepatic artery with Holmium-166 microspheres. More insight into
microsphere distribution and factors that could influence this can improve Holmium-166 radioembolization
and enhance patient lives.

The Lattice-Boltzmann method is used to study flow in a simplified model of the right hepatic artery. The
Lattice-Boltzmann method is a CFD method that originates from statistical mechanics, in which a version
of the Boltzmann transport equation is solved. The method is very suitable for simulating flow in complex
geometries and with its high parallelization capabilities, interest in the method is increasing with the ongoing
evolution of High Performance Computing (HPC). The general flow distribution is predicted in this study by
analysing the flow behaviour during the cardiac cycle. Flow results are obtained that are in agreement with
in-vitro experimental work that is also conducted at the university. A foundation is laid for future research
on the behaviour and distribution of active particles like the Holmium-166 microspheres, with initial results
showing that some particle distributions can already be predicted using simulations.

Next to the flow behaviour analysis, a qualitative study into catheter injection has been conducted by ana-
lysing the impact of catheter angle and injection location. In the analysis it is shown that the catheter setup
changes the streamlines. It is expected that the catheter setup will have a large impact on the distribution
of microspheres.

Keywords: Lattice Boltzmann Method; Radioembolization; Right Hepatic Artery; Computational Fluid
Dynamics; Musubi; Streamlines; Distribution Maps; Catheter Injection;
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Nomenclature

Abbreviations

BTE Boltzmann Transport Equation

CFD Computational Fluid Dynamics

CRC Colorectal Cancer

CT Computed Tomography

FEM Finite Element Method

FVM Finite Volume Method

GUI Graphical User Interface

HCC Hepatocellular Carcinoma

LBM Lattice Boltzmann Method

MD Molecular Dynamics

MRI Magnetic Resonance Imaging

PDE Partial Differential Equation

RHA Right Hepatic Artery

SIRT Selective Internal Radiation Therapy

SPECT Single Particle Emission Computed Tomography

Physical parameters

µ Dynamic viscosity [Pa · s]

ν Kinematic viscosity [m2/s]

νL Kinematic lattice viscosity [−]

ω Collision frequency [−]

ωi Weight factor [−]

ρ Density [kg/m3]

τ Relaxation factor [−]

c Lattice velocity [−]

c/u Velocity [m/s]

c2
s Lattice speed of sound [−]

F Force [N ]

f Distribution function [−]
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feq Equilibrium distribution function [−]

kB Boltzmann constant [s]

L Length of the model [m]

m Mass [kg]

N Number of elements [−]

NA Avogadro’s number [1/mol]

P Pressure [Pa]

R Gas constant [J/(K ·mol)]

r Radial position [m]

Rsp Specific gas constant [J/(kg ·K)]

Re Reynolds number [−]

T Temperature [K]

t Time [s]

u Macroscopic velocity [m/s]

uL Lattice velocity [−]
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Chapter 1

Introduction

Primary liver cancer is the fifth most common cancer worldwide and the second leading cause of cancer
mortality [1]. Surgical resection of the liver tumour is preferable and shows an increase in survival rate and
life expectancy, however this is not always possible. Only 30% of patients with this diagnosis is eligible for
surgery, so a large group still relies on alternatives [2]. Next to the primary form of liver cancer, a large group
of cancer patients is diagnosed with secondary liver cancer, or liver metastases, with a median survival rate of
less than 8 months [3] [4]. Due to its location, size and amount of metastases, only 15% of patients with this
prognosis is eligible for surgical resection. The group of patients diagnosed with non-resectable primary and
secondary type liver cancer is increasingly treated with the loco-regional therapy called radioembolization [5].
Radioembolization is a non-ablative selective procedure in which radioactive microspheres are administered
to blood flow in the liver arteries by catheter injection, which embolise in narrower vessels near the malignant
tissue. Radioembolization is minimally invasive and most of the healthy tissue is spared, which makes this
the preferred treatment type if the outcomes are favourable with respect to other treatments.

A better understanding of the flow behaviour and the flow distribution could form the basis for improving
microsphere distribution in radioembolization. This improved distribution knowledge can contribute to en-
hance anti-tumour efficacy and could reduce nontarget embolization, which is defined as the unintentional
delivery of microspheres, mostly to extrahepatic regions [6]. For the prediction of microsphere distributions,
a pre-treatment in-vivo simulation is currently applied with surrogate particles. The comparison of pre-
treatment predictive and post-treatment measured dosimetry shows some good results [7]. However, changes
in hemodynamics and catheter setup still result in a difference between the two procedures. Patient specific
in-silica simulations are non-invasive and allow more freedom in optimising the distribution, which might
improve or even replace the pre-treatment procedure in the future.

In most radioembolization procedures yttrium-90 microspheres are used, which have proved to extend the life
expectancy of patients where surgery is not an option [8]. From a medical imaging perspective, microspheres
of a new type have been developed at the University Medical Center Utrecht (Utrecht, Netherlands) that are
visible by other imaging techniques. These particles consist of Holmium-166 which are highly paramagnetic,
a property that makes the particles visible by MRI [9]. While yttrium-90 particles only emit beta radiation,
holmium-166 microspheres also emit gamma radiation which allows for gamma scintigraphy imaging. The
particle behaviour for both particles is still unknown and should be studied to improve radioembolization
outcomes. In practice, many other uncertainties in the procedure still exist regarding the catheter type,
configuration and method of injection with respect to timing and applied pressure.

In this thesis work, flow in a representation of the Right Hepatic Artery will be analysed using the Lattice
Boltzmann Method. The Lattice-Boltzmann method is method for CFD that originates from statistical
mechanics, in which a version of the Boltzmann transport equation is solved. Compared to other more
conventional CFD methods that solve the Navier-Stokes equations like the Finite Element Method or Finite
Volume Method, the Lattice Boltzmann Method offers great capabilities for the simulation of flow in complex
geometries. The method makes use of a structured grid and allows for fast simulations on fine grids using High
Performance Computing, which makes flow simulations in accurate representations of vasculature networks
possible. With the ongoing improvements in High Performance Computing, the relatively simple algorithm
used in the Lattice Boltzmann Method gives a high degree of parallelisation, an important aspect in the
possibility of using multiple cores for simulations. Due to its origin from statistical mechanics, the Lattice
Boltzmann Method also offers relatively easy ways to implement particle coupling which will be interesting
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for future research in this project and also substantiates the choice of the Lattice Boltzmann Method for this
preliminary numerical work.

1.1 Research question

The central research question in this report states: To what extent can we predict and identify the clinical
aspects that influence the microsphere distribution in the liver vasculature using computational modelling?
Several sub questions are stated below to help answer the main research question:

1. How does the Lattice Boltzmann Method compare to in-vitro experiments conducted on the same
model?

2. Can computational modelling be used to identify aspects that influence microsphere distribution?

3. Can the microsphere distribution be predicted by using pure flow streamlines?

4. What is the influence of the position of the catheter on the deviations in flow streamlines?

1.2 Scope

In this thesis, the microsphere distributions are predicted by studying the flow in a simplified Right Hepatic
Artery model. The simplified model could serve as a foundation for studies on other vascular networks
near the liver or near other surrounding organs, as long as the dimensions of the vessels are roughly the
same. Results in this thesis could aid in the improvement of both holmium-166 radioembolization as well
as yttrium-90 radioembolization. Also, research on similar loco-regional therapies with intra-arterial drug
administration, like intra-arterial chemotherapy might benefit from the results in this report.

This thesis is conducted in the context of the ULTIMO project. In-vitro experiments are conducted on the
same models at the University of Twente, which are used for comparison. At Ghent University, in-silica
simulations are performed using Ansys Fluent on the same models, which are also used for comparison.

1.3 Approach

The approach consists of various steps that are required to answer the research questions. First, the Lattice
Boltzmann Method is studied to develop the required knowledge to run the simulations with the software
package Musubi. The literature study in the thesis consists of the Lattice Boltzmann Method analysis and the
radioembolization treatment analysis. The latter also includes a study on the liver anatomy and physiology,
which is required to understand radioembolization treatment of liver tumours. Next to the literature study,
a couple of benchmark cases are studied for which the analytical solutions are known. By practising with
the software and analysing the results, characteristics in simulations and results can be identified and the
simulation software is tested. Also, some initial findings might already give a part of the answer on research
question 2. The main part of this thesis consists of the flow simulations and analysis of the simplified liver
vasculature model. With these results, questions 1, 2 and 3 can be answered. Lastly, a qualitative catheter
study will be conducted to answer question 4.
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1.4 Outline

The outline roughly follows the steps mentioned in the approach, with each step as a separate chapter.
The literature study consists of two chapters, the theory of the Lattice Boltzmann Method in chapter 2
and the theory of the anatomy and physiology of the liver together with radioembolization statistics and
characteristics in chapter 3. In chapter 4, the used software in this thesis and some important aspects of
the implementation of the simulation theory are discussed. To develop more insight into these simulations,
a preliminary study on pipe flow is conducted, which can be found in chapter 5. Chapter 6 contains most of
the results that can answer the research questions and it can be seen as the main work in this thesis. The
model is expanded in chapter 7, where a catheter is added to the model and the impact is examined. In the
closing part of this thesis, chapter 8, the discussion, conclusions and recommendations can be found.
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Chapter 2

Lattice Boltzmann Method

The Lattice Boltzmann Method (LBM) is a relatively new Computational Fluid Dynamics (CFD) method.
Most of its development only started about 20 years ago, but its use has rapidly increased due to some
of the advantages it has over conventional CFD methods like Finite Element Methods (FEM) and Finite
Volume Methods (FVM). One of the biggest advantages of the method is that it allows for a high level
of parallelization, which means that the problem can be split into multiple domains which can be solved
separately. While the amount of computations can be much higher than for another method, the algorithm
that is used LB methods is a bit simpler than in other methods and thus computations are faster. The method
also has a high potential for parallelization due to the nature of the algorithm, which can give relatively fast
LB simulations by using multiple CPU cores.

The derivation of the LBM comes from a different approach of solving the transport equations of mass,
momentum and heat. A blob of fluid can be considered to be a continuum, where the individual particles
are not considered. By applying the conservation laws on an infinitesimal control volume, sets of Ordinary
Differential Equations (ODE) or Partial Differential Equations (PDE) are obtained, a famous example being
the Navier-Stokes equations [10]. This continuous approach results in a problem on macroscopic scale. One
can imagine that this works for many problems, however problems do exist where the assumption of a
continuum could form a problem, for example when inter molecular interactions play a more dominant role.

A discrete approach considers the separate particles, resulting in a complete change of physics. For each
particle, the location and velocity are considered and the system is solved by applying momentum conservation
for the collisions between molecules and the boundaries. On this microscopic scale, macroscopic properties
like pressure and temperature do not exist explicitly, but are derived from the kinetic energy of the particles.
Simulation methods that use these principles are called Molecular Dynamics (MD) methods. Inter molecular
interactions are now taken into account, which should mean that an even broader range of problems could
be solved with such methods compared to the conventional CFD methods. One of the largest disadvantages
of these methods is however the scale. For macroscopic problems, these methods are computationally-wise
too demanding, since computations for all the individual particles are required. Here, a typical time step is
of the order femto seconds (10−15s) and the total simulation time is of the order pico seconds (10−12s) [11].

Now, what if we would like to solve a problem at macroscopic scale, but still desire the advantages that a
particle interaction approach gives us? One of the possible solutions is applying statistical mechanics to the
transport equations, which was done by Ludwig Boltzmann. He derived the Boltzmann transport equation,
which forms the basis of Lattice Boltzmann Methods. In this chapter, the derivations and assumptions are
given which eventually give us the framework for the Lattice Boltzmann Method. A single particle will be
analysed in section 2.1, which forms the basis of most molecular dynamics methods. Then in section 2.2, it
will be shown that using statistical mechanics, an equation for the whole system can be obtained called the
Boltzmann Transport Equation (BTE). While this equation can be used for some applications, its discrete
variant is better applicable. The derivation of this discrete equation is given in section 2.3. This discretization
only works for a special type of elements called lattice elements. The basic principles of these elements and
the resulting equations are given in section 2.4. The last part in this chapter will give the relation between the
discrete BTE and the Navier-Stokes equations by using the Chapman-Enskog expansion, which shows that
the obtained equation is indeed capable of producing similar results to conventional CFD methods regarding
incompressible flow problems.
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2.1 Kinetic theory of gases

In the introduction of this chapter, it was already stated that the Lattice Boltzmann Method uses statistical
mechanics to describe fluid behaviour. Before statistical mechanics are applied, a system is considered from
a particle or molecular perspective. We consider a particle that is moving in free space, that obeys the
conservation laws. One of the conservation laws is conservation of momentum, also known as Newton’s
second law:

F = m
dc
dt

= m
d2r
dt2

(2.1)

In the equation, F is the applied force, m is the mass of the particle, c is the velocity vector and r is the
position vector. Now, we consider a particle at a position r with a velocity c at a time instant t that is
subjected to a force F at that time instant. In figure 2.1 the result for the position and velocity vectors can
be seen.

Figure 2.1: Position and velocity vector of a particle subjected to a force [12]

This is already the basis for MD methods. For each particle in the system, only the position and velocity
vectors have to be saved. This representation is called phase space. Together with the information of the
particles, like molecular structure, size and mass, we have sufficient information to macroscopic values like
the temperature and pressure. It can be shown that the pressure P is linked to the kinetic energy of the
particles, see equation 2.2.

P = 2
3 ñEkin (2.2)

In the equation, ñ is the number of particles per unit volume and Ekin is the kinetic energy given by equation
2.3. In the equation, c is the total velocity, which is the sum of the squared velocities in all three spatial
directions.
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Ekin = 1
2mc

2 (2.3)

The kinetic energy on the microscopic level can also be used to obtain the temperature. For example for a
gas, the assumption of an ideal gas relates the kinetic energy to the temperature, as can be seen in equation
2.4. If the amount of interactions between particles is too high, a result at high pressure, then the ideal gas
law does not hold [13]. Also, the type of interactions is important for the validity of the law: only particle
collisions are taken into account. If other interactions become more dominant, the law does not hold, which
happens at low temperatures. This is however only a problem in extreme cases, for normal room temperature
conditions the equation results in the following relation:

T = 2Ekin
3kB

= mc2

3kB
(2.4)

Where kB is the Boltzmann constant, which is related to the gas constant R = 8.314 J · K−1mol−1 and
Avogadro’s number NA = 6.02214 · 1023mol−1.

kB = R/NA = 1.38× 10−23 J/K (2.5)

The full derivations are left out here, the equations are given to show that it is possible to link the particles
with only momentum conservation to macroscopic quantities. However, this is an impossible task for many
types of problems if the information of all particles is required to obtain a solution. Now, it turns out that
in many cases the information from the individual particles is not required to acquire accurate macroscopic
quantities. By introducing statistical mechanics, the number of computations can be reduced drastically,
which results in a more feasible method that still has some of the advantages of this particle perspective
approach. This approach forms the basis of the Boltzmann transport equation, which will be derived in the
next section.

2.2 Boltzmann Transport Equation

Like the Navier-Stokes equations in CFD, the discrete version of the Boltzmann Transport Equation (BTE)
is the workhorse in LBM simulations. The continuous variant of this equation can be derived by taking a
statistical approach for describing a system. In the equation, a distribution function is solved that describes
the state of the particles in the system. This distribution function is a type of Probability Density Function
(PDF), which is a function of the six variables that are saved in the phase state (three position components
and three velocity components), and the time.

We again consider the two states of a particle that were discussed in the particle kinetics theory (section 2.1),
that is before and after being subjected to a force. These two states are given by figure 2.1. From this figure,
we will now take a look at a group of particles, which can be represented by the distribution function. The
distribution of molecules before and after applying the force is the same, but only if no collisions take place.
This gives the following conservation equation, where a distribution function f is introduced to include all
the particles in the system:

f (r + cdt, c + Fdt, t+ dt) drdc− f(r, c, t)drdc = 0 (2.6)

In the equation, the function f is a function of the position r, the velocity c and the time t. If collisions
do take place, we do not have an equilibrium. Instead, the right hand side becomes equal to the collision
operator, denoted by Ω, which also depends on the chosen distribution function.
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f(r + cdt, c + Fdt, t+ dt)drdc− f(r, c, t)drdc = Ω(f)drdcdt (2.7)

Dividing this equation by drdcdt and taking the limit dt→ 0 yields the total rate of change for the distribution
function:

df

dt
= Ω(f) (2.8)

Since the distribution function is a function of variables in the phase state, which means we can expand the
rate of change and express it in multiple components:

df

dt
= ∂f

∂r
dr
dt

+ ∂f

∂c
dc
dt

+ ∂f

∂t
= Ω(f) (2.9)

In this equation, the derivative of the position r with respect to time is the velocity c and the derivative of
the velocity with respect to time is the acceleration, which is rewritten by using Newton’s second law. This
yields the Boltzmann Transport Equation:

∂f

∂t
+ c · ∂f

∂r + F
m
· ∂f
∂c = Ω(f) (2.10)

The above equation is the general form of the BTE, with external forces. For the remaining derivations in
this chapter, we will use a form of the BTE without external forces. In the discretized version of the equation,
most cells are in general not subjected to external forces, which substantiates this choice of representing the
general equation. The equation without external forces is given by equation 2.11, where the ∂f

∂r term is
rewritten by using the ∇ (nabla) operator:

∂f

∂t
+ c · ∇f = Ω(f) (2.11)

In this equation, the collision function Ω should be known if the equation is to be solved. If this function
is known, the equation can be solved for the distribution function f . Then, macroscopic quantities can be
obtained from this equation, like the density and velocity of the fluid:

ρ(r, t) =
∫
mf(r, c, t)dc (2.12)

u(r, t) = 1
ρ(r, t)

∫
mcf(r, c, t)dc (2.13)

However, these macroscopic quantities can only be obtained in this way if equation 2.11 can be solved
analytically. This mainly depends on the analytical solution possibilities for the collision function, which
is an integro-differential function. For some very specific cases it is possible to do this and comprehensive
and complex papers have been written on these subjects [14][15][16]. This is interesting mainly from a
mathematical perspective and not useful for most engineering applications.

From a practical and engineering perspective, the discrete version of this equation is much more interesting.
The discrete version of the equation can be derived by approximating the collision function Ω. In the next
section, the collision function will be addressed by introducing the Bhatnagar, Gross and Krook (BGK)
approximation. The approximation makes use of a known distribution function for particles in equilibrium,
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which can be chosen depending on the problem that has to be solved. In this thesis, incompressible fluid
flows are solved, which make use of a specific equilibrium distribution function called the Maxwell-Boltzmann
distribution function, which will also be discussed in the next section.

2.3 The BGK approximation and Maxwell-Boltzmann distribu-
tion function

In the transport equation, the collision function Ω is a very complicated function, which makes it difficult
to solve the equation. A simple approximation was made by Bhatnagar, Gross and Krook (BGK), which
replaces the collision function with a term that suffices for single phase flows. The approximation eventually
makes the BTE solvable, while the simplicity of the approximation results in a discretized version of the
equation that is able to give accurate results.

Ω = 1
τ

(feq − f) = ω (feq − f) (2.14)

In the equation, τ is the relaxation factor and ω is the collision frequency. For the collisions, the difference
between the local equilibrium distribution function feq and the actual distribution function f is taken for
the collisions. If the difference between the two distributions is large, the term has a larger value, which
means that more collisions take place in order to reach the equilibrium faster. The difference is multiplied by
the relaxation frequency ω which dictates how fast equilibrium is reached. This relaxation frequency can be
seen as a form of viscosity: for lower values of ω, equilibrium is reached slower and the fluid is more viscous.
Another way to look at it is by comparing it to a proportional action in a PID controller. For a larger P
action, the the system moves faster to the equilibrium, however this can also result in a larger overshoot and
more severe initial fluctuations.

The local equilibrium distribution function feq that is used in the majority of LB simulations is the Maxwell-
Boltzmann distribution function. For the derivation of this function, four assumptions are made regarding
the behaviour of the particles [17][18]:

• The diameters of the molecules are much smaller than the distance between them.

• The collisions between molecules conserve energy.

• The molecules move between collisions without interacting, with a constant speed in a straight line.

• The position and velocities of the molecules are initially random.

From a particle perspective and by using these assumptions, the Maxwell-Boltzmann distribution function in
equation 2.15 can be obtained. The Maxwell-Boltzmann distribution in this form is obtained by considering
the speed instead of the velocity, which is the resultant of the individual components, or c =

√
c2
x + c2

y + c2
z.

In phase space, this corresponds to the surface area of a sphere which is 4πc2. The surface area of this sphere
accounts for all particles with exactly that speed. This means that the Maxwell-Boltzmann distribution
function describes the possibility of a particle being in a certain velocity state.

feq(c) = 4πc2
(

m

2πkBT

) 3
2

e
− mc2

2kB T (2.15)

In the equation, m is the mass of the molecule in [kg], T is the temperature of the system in [K] and
c is the velocity of the particle in [m/s]. The Maxwell-Boltzmann distribution function depends on the
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temperature of the system and the mass of the molecules. In figure 2.2, the distribution functions of both
helium (u = 4 g/mol) and oxygen (u = 16 g/mol) at room temperature (T = 293K) and at elevated
temperature (T = 393K) can be found, which is computed by using equation 2.15. The molecular mass u
can be converted to the mass of one molecule by multiplying the molecular mass with Avogadro’s number.

Figure 2.2: Distribution functions of Helium and Oxygen

In the figure, it can be seen that the mean velocity and the maximum velocity of helium are higher than
those of oxygen. This is the expected result since generally lighter molecules move faster. The dimension of
the probability density is in [s/m], such that the area under any section of the curve is dimensionless [19].

The Maxwell-Boltzmann distribution function is the basis for the BGK approximation, which can replace
the complex collision term in equation 2.11. With the BGK approximation, we get equation 2.16.

∂f

∂t
+ c · ∇f = ω (feq − f) (2.16)

The left hand side of the equation represents the streaming process and the right hand side of the equation
represents the collision process.

In the collision term, feq is a another form of the Maxwell-Boltzmann distribution function, where the
individual components of the velocity are taken into account. To transform the equation, we consider the
probability of finding a particle on a spherical shell with radius c and width dc. For the individual components,
we then get the following transformation [20]:

feqbox (cx, cy, cz) 4πc2dc = feqsphere(c)dc (2.17)

This transformation gives equation 2.18. Note that the velocity in the equation is now a vector.

feq(c) =
(

m

2πkBT

) 3
2

e
− mc2

2kB T (2.18)

Equation 2.18 is multiplied by the macroscopic density ρ, to scale the normalised distribution function and
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make it specific for the system. When we consider a gas that has a non-zero macroscopic velocity, we obtain
the equation below:

feq = ρ

(2πRspT )3/2 exp
(
− (c− u)2

2RspT

)
(2.19)

In the equation, Rsp is the specific gas constant in [J kg−1 K−1], given by the equation below:

Rsp = kB
m

(2.20)

First, the exponential in equation is rewritten to allow for a Taylor expansion:

feq = ρ

(2πRspT )3/2 exp
(
− c · c

2RspT

)
exp

(
2 (c · u)− u · u

2RspT

)
(2.21)

The second term in the equation is now approximated:

feq = ρ

(2πRspT )3/2 exp
(
− c · c

2RspT

)[
1 + 2 (c · u)− u · u

2RspT
+ (2 (c · u)− u · u)2

8 (RspT )2 + . . .

]
(2.22)

Now, the substitution below is used to get rid of the exponential term:

W (c) = 1
(2πRspT )3/2 exp

(
− c · c

2RspT

)
(2.23)

With some rewriting and ignoring all terms of order O(u3) in the approximation of the exponential, we
get the second order accurate equilibrium distribution function that is most commonly used in the BGK
approximation:

feq = ρW (c)
[

1 + 2 (c · u)− u · u
2RspT

+ (c · u)2

2 (RspT )2

]
+O

(
u2) (2.24)

With the equilibrium distribution function known, the collision term can now be discretized on its own, which
allows for discretization of the full BTE. This discretization is done by using a special type of element, called
a lattice element. In these elements, specific directions are defined for the flow directions. The discretization
using these lattices and the results for a type of lattice will be explained and discussed in the next section.

2.4 Discretization: lattice elements

The BTE with the BGK approximation that is given by equation 2.16 can be discretized by introducing lattice
elements. A lattice element is a unique kind of element that is used in LB methods, where possible directions
of flow are determined by the type of lattice element. Lattice elements evolved from cellular automata, which
offer some insights into the working of lattice elements. The working principles of cellular automate are well
explained by Sukop et al., however they are however mainly interesting from a historical perspective and will
not be discussed here. [21].
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In a lattice element, discrete probability functions are used to indicate the probability of a particle moving
in a certain direction with a microscopic velocity c. Lattice element type is denoted by DnQm, with n giving
the dimension of the lattice and m giving the number of flow directions. The simulations that can be found
in this report all use the same D3Q19 stencil. In this section, the 2 dimensional D2Q9 stencil given by figure
2.3 will be used as an example, which is better for visualisation purposes.

Figure 2.3: D2Q9 lattice arrangement [12] Figure 2.4: D2Q9 distribution function example [21]

In the figure, it can be seen that for this stencil 9 streaming directions are possible, where the streaming
direction with index 0 indicates a particle at rest. The streaming directions are given by the discrete velocity
vectors ci:

ci =

 (0, 0) i = 0
(1, 0), (0, 1), (−1, 0), (0,−1) i = 1, 2, 3, 4
(1, 1), (−1, 1), (−1,−1), (1,−1) i = 5, 6, 7, 8

(2.25)

The discrete probability distribution function fi can be seen as direction specific densities, or particle popu-
lations. An example of the distribution can be found in figure 2.4. Next to a discrete probability distribution
function fi for each streaming direction, a weight factor wi is introduced. The weight factors for this stencil
are given by equation 2.26.

wi =

 4/9 i = 0
1/9 i = 1, 2, 3, 4
1/36 i = 5, 6, 7, 8

(2.26)

These weight factors are obtained from applying the rules that a lattice model has to obey. For this model,
the equation is given by equation 2.27. The equation below has the same form as the equation for the moment
of a probability distribution function, which will be used later in the Chapman-Enskog expansion in section
2.6. The moment is mentioned here to clarify that the equation below is not arbitrarily chosen and has a
significance in statistical mechanics. For example, the zeroth and first order central moments of a PDF are
equal to 1 and 0 respectively, by definition.

E(n) =
8∑
i=0

ωici,j1ci,j2 · · · ci,jn
(2.27)

This equation can be expanded for values of n, with the first 5 equations given below, where cs is the lattice
speed.
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E(0) =
8∑
i=0

ωi = 1

E(1) =
8∑
i=0

ωici,j1 = 0

E(2) =
8∑
i=0

ωici,j1ci,j2 = c2
sδj1j2

E(3) =
8∑
i=0

ωici,j1ci,j2ci,j3 = 0

E(4) =
8∑
i=0

ωici,j1ci,j2ci,j3ci,j4 = c4
s (δj1j2δj3j4 + δj1j3δj2j4 + δj1j4δj2j3)

(2.28)

The first line in equation 2.28 gives the sum of the weight factors is equal to 1, which corresponds to both
the definition of the zeroth order moment of a PDF and the definition of the sum of the weight factors. The
second line can be seen as a symmetry condition, which is required for a balanced lattice element, where
streaming directions do not have a preference. The second to fourth order moments are obtained by applying
isotropy conditions to the lattice element. In the Navier-Stokes equations, isotropy of the environment is
automatically conserved, as the physical properties that are independent of the orientation are also invariant
by orthogonal changes in the spatial frame [22]. For a lattice element, this means that rotation of the lattice
element by 90 degrees in an arbitrary direction around an axis should not change the result. It is known that
the higher order isotropic tensor has the form of an ’isotropic delta function’, which is the sum of Kronecker
delta functions over all distinctive permutations of its sub-indices, by Chen [23]. In this paper, it is stated
that full rotational symmetry is impossible for lattice element with a finite number of vectors. The choice of
a lattice element is very important here, as it can guarantee isotropy up to a specific order. For the problems
in the thesis, lattice elements that give up to fourth order isotropy suffice, which is the case for the used
D3Q19 elements.

With the lattice elements, the discrete version of the BTE that is valid along these specific directions can be
obtained, given by equation 2.29:

∂fi
∂t

+ ci · ∇fi = ω (feqi − fi) (2.29)

The equilibrium distribution function in the equation is now also discrete. The discrete distribution function
can be derived from 2.24, which uses the substitution below:

c2
s = RspT (2.30)

Here, c2
s is the lattice speed of sound, which depends on the lattice element that is chosen and can be derived

from equation 2.28. The general discrete equilibrium function is given by equation 2.31. In the equation, it
is assumed that the basic speed on the lattice is 1 lu ts−1.

feqi = ρwi

[
1 + 2 (ci · u)− u · u

2c2
s

+ (ci · u)2

2c4
s

]
+O(u2) (2.31)

This approximation is again second order accurate. For both the D2Q9 and D3Q19 lattice elements, the
lattice speed of sound is given by c2

s = 1/3. For these lattice elements, equation 2.32 is the equilibrium
distribution function.
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feqi = ρwi

[
1 + 3 (ci · u)− 3

2 (u · u) + 9
2 (ci · u)2

]
+O(u2) (2.32)

For an incompressible fluid flow, the density is constant. It is however difficult to constrain the density in
LB methods, which remains a topic of research [24]. One option is to replace the density by equation 2.33,
proposed by He and Luo [25].

ρ = ρo + δρ (2.33)

In the equation, the average density of the fluid ρ0 is a constant, which is a fluid property. The δρ term
accounts for small density fluctuations. The incompressible equilibrium distribution function for the earlier
mentioned two lattice types can now be written as equation 2.34.

feqi = wi

[
ρ+ ρ0

(
3 (ci · u)− 3

2 (u · u) + 9
2 (ci · u)2

)]
+O(u2) (2.34)

In most LB methods, the streaming step takes place first, followed by the collision step. This process is nicely
visualized by Yuanxun Bill Bao & Justin Meskas [26]. The streaming step is given by the left hand side of
equation 2.16, which can be found in figure 2.5.

Figure 2.5: Streaming step for a D2Q9 lattice [26]

After the streaming step, the particles have moved in directions specified by the lattice, which is the new
location if no collisions take place. Since the lattices are surrounded by other lattice elements and sometimes
walls, collisions do take place. This means that the moving particles are initially in a sort of imaginary
state, denoted by f∗i . For the collision step, the information of the streaming step is used by calculating the
macroscopic density and speed from this step. This can also be seen in equation 2.31, where the density ρ
and the velocity u are the only unknowns in the equation. These macroscopic values can be calculated by
using equations 2.37 and 2.38, which is a sum over all N streaming directions in the lattice. To derive these
equations, we first take the mass and momentum conservation over the lattice for the discrete BTE [27]:

N∑
i=0

feqi =
N∑
i=0

fi (2.35)

N∑
i=0

ci,jf
eq
i =

N∑
i=0

ci,jfi (2.36)

20



In equation 2.36, the vector ci is replaced by the vector components ci,j , since we have momentum conser-
vation in all spatial dimensions. Now for the equilibrium distribution function, we can use equation 2.32
to obtain the equations for the density and velocity as a function of the calculated particle density func-
tions. It is logical that the sum of the distribution functions is equal to the density, since the normalised
Maxwell-Boltzmann distribution function was multiplied by the density in equation 2.19.

ρ =
N∑
i=0

fi (2.37)

u = 1
ρ

N∑
i=0

fici (2.38)

For the collision step, we have particle-particle collisions and particle-wall collisions. When looking at the
streaming process, one could expect interactions between the distribution functions coming from neighbouring
lattice elements. For example, we take the lattice element in figure 2.5 and imagine another lattice element on
the right side of this element. If this lattice element has the same numbering convenience, a collision might be
expected between distribution function f1 and f3. The particle-particle collisions however take place inside
the distribution function and the collisions can be seen as a purely local process. For a single-phase flow, the
distribution functions are simply interchanged after the time step.

These local collisions are taken into account by the distributions moving to the local equilibrium. The new
distribution functions are obtained by using the distribution function after the streaming step f∗i .

fi = f∗i − ω (f∗i − f
eq
i ) (2.39)

For the particle-wall collisions, extra information is needed to calculate the updated distribution functions.
These collisions are actually taken into account in the streaming step, which means that the collisions in the
LB method are a bit different than for molecular dynamics models. At the walls, a boundary conditions is
imposed that dictates how these collisions take place. These boundary conditions will be explained in the
next section. In the BGK BTE version that is given in the report, the external force term is not included.
The main reason for this is that in the problems in this report, external forces like the buoyancy, gravity or
magnetic forces do not have to be applied to solve the problems. The impact on the derivations is often not
treated in literature, however the complexity of the implementation of the external forces can become quite
large depending on the problem [28].

One of the largest advantages of LB methods is the possibility for parallelization, which can be explained by
the streaming and collision in each time step. The collisions take place locally, which means that interactions
between the lattice cells only happen due to streaming. At the next time step, only the information from
the direct neighbouring cells is required to update the distribution functions in the cell. The streaming and
collision steps in the LB method can thus be solved separately for each element, before updating the cells
based on the distributions coming from the neighbouring cells. This in turn allows for parallelization, since
all elements can be computed separately, which is often done by dividing the tasks over multiple CPUs.
Also, in Navier-Stokes based solvers like FEM and FVM, the pressure field has to be solved explicitly from
a pressure Poisson equation. In equation 2.37 it can be seen that the density is derived locally. In LBM, the
pressure and density are related by equation 2.40:

P = ρc2
s (2.40)

From this equation, it becomes clear that the pressure can be calculated from the density which means that
the pressure Poisson equation does not have to be solved explicitly in LB methods.
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2.5 Boundary condition

The equations that hold for the internal flows are explained. For the boundaries, various options exist that are
able to fully describe the system that has to be solved. In this section, the bounce-back boundary condition
and the Dirichlet boundary condition will be discussed. Other boundary conditions like the Neumann flux
boundary condition can also be used to describe the behaviour at the walls and the inlets and outlets of a
model. They are however used in specific cases and most basic simulations can be performed by using the
two types of boundary conditions that are explained below.

Bounce-back boundary condition

The simplest boundary condition that can be used in LB methods is the bounce-back condition. This
condition is often used to describe the particle-wall collisions and while it is a simple condition, it is used
very often in LB simulations. For this boundary condition, either the nodes on the boundary are used to
describe the process, or additional nodes are generated behind the wall that act as storage nodes which gives
a different bounce-back behaviour.

Figure 2.6: Collision process at the wall [21]

The process of bounce-back is quite straightforward,
which can be seen in figure 2.6 for a southern solid
boundary with a mid-plane bounce-back condition. In
the first three images, one time step is shown near the
boundary. The streaming process takes place from the
first image to the second image and a sort of collision
process takes place from the second image to the third
image. The bounce-back condition can be seen as an
alternative collision process where all the particle dens-
ities are reversed in direction by the wall. At the end
of the time step, it can be seen in the figure that the
particle densities are stored at the nodes in the wall.
In the fourth image, the particle densities for the next
time step after streaming are shown, which shows that
the particles have been released from the wall and are
now streaming in opposite direction.

The bounce-back condition that is described here is the
mid-plane condition, where the solid boundary is ex-
actly in between the node in the fluid node and the
solid node. It is also possible to place the boundary
at another location relative to the lattice, as shown in
figure 2.7 [29].

The traditional bounce-back condition is obtained when
the boundary plane coincides with A, however it has
been shown that this gives first order behaviour for the
error, or that the error reduces linearly with a decreas-
ing mesh size [30]. The traditional bounce-back takes
place after half the time step, which results in poorly
described particle-wall collision for streaming directions
c4, c7 and c8 in the figure. This can be fixed by changing
the definition of the bounce-back, by for example chan-
ging the time instant at which the bounce-back takes
place. Another option is to place the boundary plane
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such that it coincides with B in the figure. It has been shown that placing the boundary condition at this
location yields second order behaviour for the error. This bounce-back condition is referred to as the mid-
plane bounce-back condition, or as the shifted bounce-back condition. This boundary condition can however
not be implemented in all cases, but various other options exist that still ensure the global second order
behaviour of the LB method if this is desired [30].

The bounce-back condition here is explained for the wall-particle collisions, however it is also possible to
use this condition for some inlets and outlets. For example, the inlet velocity can be prescribed by using
a bounce-back condition. Here the particle densities just before the bounce-back are prescribed in such a
way, that with the bounce-back a prescribed velocity is achieved. The theory behind this condition is a bit
more complex than the wall bounce-back condition. A simpler condition that can also be used for inlets and
outlets is a Dirichlet boundary condition, which will be explained in the next paragraph.

Figure 2.7: Options for the placement of the boundary for the bounce-back condition, adapted from Kim [29]

Dirichlet boundary condition

The bounce-back condition is a very suitable boundary condition for the walls in a model and it can also
be used for some types of inlets and outlets. An alternative that is also widely applied in LB methods is a
Dirichlet boundary condition. Here, a value like the velocity, pressure or density is applied on a point, line
or plane. For this, we consider a D2Q9 lattice element with a prescribed velocity at the southern boundary,
which corresponds with the A plane in figure 2.7. The macroscopic density for this lattice element can be
calculated by using equation 2.37:

ρ = f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8 (2.41)

The momentum equations in x and y direction can be obtained from equation 2.38:

ρu = f1 + f5 + f8 − f6 − f3 − f7 (2.42)

ρv = f5 + f2 + f6 − f7 − f4 − f8 (2.43)

Also, we have an equilibrium over the boundary, which gives:
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f2 − feq2 = f4 − feq4 (2.44)

The fluid is considered incompressible, however the density ρ is still an unknown since incompressibility
cannot be enforced. This means that there are four equations and four unknowns (f2, f5, f6 and ρ). The
other distribution functions are outward of the domain and are known and obtained from the streaming
step. One could see this boundary condition as a response to the streaming step from the boundary. Using
the equilibrium distribution function from equation 2.32, we obtain the following equations for the unknown
variables:

ρ = 1
1− v [f0 + f1 + f3 + 2 (f4 + f7 + f8)] (2.45)

f2 = f4 + 2
3ρv (2.46)

f5 = f7 −
1
2 (f1 − f3) + 1

6ρv + 1
2ρu (2.47)

f6 = f8 + 1
2 (f1 − f3) + 1

6ρv −
1
2ρu (2.48)

Here, we can see that the unknowns at the boundary are fully defined by the given equations, so the Dirichlet
boundary condition can be implemented in this way. For a given pressure at the boundary, which is often
desired at outlets, the method is quite similar. For an incompressible flow, the change in pressure and density
can be related by the lattice speed of sound, given by equation 2.40 [25].

This means that the velocity over the boundary is the only unknown in equations 2.41 to 2.44, which only
requires a relation between the velocities u and v to solve, which is given by the geometry or angle of the
boundary.

There are other options for boundary conditions, like the Neumann flux condition that is often used in
diffusion problems. In this report, problems with incompressible fluid flows are solved, which means that the
given boundary condition options will be used to fully define and solve the problems.

2.6 Chapman-Enskog expansion

Up to this point, many equations have already been derived or explained regarding the LB method. The
purpose of these derivations is to show the assumptions and underlying theory on which the LB method is
built. The topic of interest in this thesis is incompressible flow with a low Mach number. It seems that the
derived equation should be able to produce results for such a flow problem, however proof of this is yet to be
given. For other more conventional CFD methods, a certain set of PDEs is solved for such problems, which
are called the Navier-Stokes equations. Now, it has been proven that the link between the BTE and the
Navier-Stokes equations can be given by the Chapman-Enskog expansion [31] [27]. Next to the link between
these two equations, it can also be shown that the parameters in the LB methods have to be chosen in a
specific way to obtain physical results.

First, we will rewrite the discrete version of the BTE with the BGK approximation, given by equation 2.16.
The particle density function f is a function of the time and the position vector r.

fi (r + ci∆t, t+ ∆t)− fi(r, t) = ω (feqi (r, t)− fi(r, t)) (2.49)
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First, the material derivative operator is introduced, given by equation 2.50. The material derivative operator
is often used to track the change of a property in the field while moving with the flow.

D

Dt
= ∂

∂t
+ ci · ∇ (2.50)

Now equation 2.49 can be rewritten with a sum to infinity based on a Taylor expansion:

∞∑
n=1

∆tn
n!

(
D

Dt

)n
fi(r, t) = ω (feqi (r, t)− fi(r, t)) (2.51)

Before the Chapman-Enskog expansion can be introduced, the moments of the equilibrium distribution
function feqi are given. These equations can be derived from using the properties of the lattice model, given
by equation 2.28. Here, we have j1, j2, j3 ∈ [1, 2, 3] for a 3D model, accounting for the x, y and z directions.

∑
i

feqi = ρ∑
i

ci,j1f
eq
i = ρuj1∑

i

ci,j1ci,j2f
eq
i = c2

sρδj1j2 + ρuj1uj2∑
i

ci,j1ci,j2ci,j3f
eq
i = c2

sρ (δj1j2uj3 + δj1j3uj2 + δj2j3uj1)

(2.52)

Similar forms of the first two equations of these low-order moments were already given earlier for calculating
the macroscopic values for the density and velocity (see equations 2.37 and 2.38). These equations for the
equilibrium distribution function will be used later in the derivation of the incompressible Navier-Stokes
equations. Now, the Chapman-Enskog expansion is introduced to allow expansion of the unknown particle
distribution function and the time derivative:

fi =
∞∑
n=0

f
(n)
i (2.53)

∂

∂t
=
∞∑
n=0

∂

∂tn
(2.54)

In equation 2.51, each term is expanded separately and the terms are grouped based on the magnitude [32].
The magnitude in this sense is the order of the expansion. If one term is expanded once and another term is
expanded once as well, the order of the expansion is 2. Expansion and ordering of the magnitudes gives the
zeroth, first and second order magnitude equations below:

f
(0)
i = feqi (2.55)

∆t
(
D

Dt

)
f

(0)
i = −ωf (1)

i (2.56)
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∆t
(
D

Dt

)
f

(1)
i + ∆t ∂

∂t1
f

(0)
i + (∆t)2

2

(
D

Dt

)2
f

(0)
i = −ωf (2)

i (2.57)

In equation 2.57, the second term is the expanded material derivative. Now, the following assumption is
made that still obeys the conservation laws of mass and momentum, or equations 2.37 and 2.38:

∑
i

f
(n)
i = 0,∀n 6= 0 (2.58)

∑
i

ci,j1f
(n)
i = 0,∀n 6= 0 (2.59)

Now, using the assumptions from equations 2.58 and 2.59 and the definition given by equation 2.55, equation
2.56 can be rewritten. Here the material derivative is written out for purpose of clarity.

∂feqi
∂t0

+ ci,j1

∂feqi
∂rj1

= 0 (2.60)

With this equation, equation 2.57 can also be rewritten using the assumptions again:

∂feqi
∂t1

= 0 (2.61)

The zeroth order moments of equations 2.60 and 2.61 can be obtained by taking the first equation in 2.52
as the basis, also using the other equations of the low order moments to rewrite the equilibrium distribution
function:

∂ρ

∂t0
+ ∂ (ρuj1)

∂rj1

= 0

∂ρ

∂t1
= 0

(2.62)

These two equations can be combined by using that ∂
∂t

=
∑∞
n=0

∂
∂tn
≈ ∂

∂t0
+ ∂

∂t1
, which gives the mass

continuity equation of the incompressible Navier-Stokes equations:

∂ρ

∂t
+ ∂ (ρuj2)

∂rj1

= 0 (2.63)

The similar method can be used to obtain the first order moments of equations 2.60 and 2.61:

∂ (ρuj1)
∂t0

+ ∂

∂rj2

(
c2
sρδj1j2 + ρuj1uj2

)
= 0

∂ (ρuj1)
∂t1

+
(

1− ω

2

) ∂

∂rj2

∑
i

ci,j1ci,j2f
(1)
i = 0

(2.64)

The sum in the bottom equation can be rewritten by using some algebraic manipulations. The derivation is
quite long, so only the result of the derivation is shown below:
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∑
i

ci,j1ci,j2f
(1)
i = −∆t

ω

[
c2
sρ

(
∂uj2

∂rj1

+ ∂uj1

∂rj2

)
− ∂

∂rj3

(ρuj1uj2uj3)
]

(2.65)

Now, by combining 2.64 and 2.65, a form of the momentum equation of the incompressible Navier-Stokes
equations is obtained. Again, the sum of the partial time derivatives is taken here:

∂ (ρuj1)
∂t

+ ∂ (ρuj1uj2)
∂xj2

=

− ∂

∂xj1

(
c2
sρ
)

+ ∂

∂xj2

[(
1− ω

2

) ∆t
ω

(
c2
sρ

(
∂uj2

∂xj1

+ ∂uj1

∂xj2

)
− ∂

∂xj3

(ρuj1uj2uj3)
)]

(2.66)

The equation above only represents the incompressible Navier-Stokes equations if the parameters in the
equation are chosen carefully. The restrictions to these parameters and relations between the parameters
in LBM simulations will be discussed in section 4.2. If these parameters are chosen correctly, the derived
discrete BTE can be used to simulate incompressible flows, like blood flows in the human body.
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Chapter 3

Biomedical background of the liver and
radioembolization

The liver is the largest internal organ in the human body, located in the abdomen. The liver weighs about
1500 grams and it is one of the most versatile organs, performing over 500 known functions [33] [34]. It is
part of the gastrointestinal tract and it is vital to a working metabolism. Next to storing nutrients, it acts
as a filter for blood and chemicals in food, medicine and alcohol. If the liver function becomes limited, a
person often experiences problems with body homeostasis and the liver begins to decompensate [35]. One of
the possible reasons for liver decompensation is liver cancer. In liver cancer, cells in the liver start to grow
unbounded, spreading and invading other parts of the liver or the body [36]. There are many causes for
liver cancer, which are often life style related, like excessive drinking, smoking or obesity. Other possibilities
concern long term liver diseases, like liver cirrhosis or hepatitis B or C viruses. For advanced stage liver
cancer, a non-ablative therapy called radioembolization can be used to treat the tumour and increase the life
expectancy and quality of patients.

The goal of the research is to get a better understanding of radioembolization treatment, which could be
improved with this information. For the modelling and interpretation of the results of the simulations in this
thesis, a good understanding of the liver and radioembolization is required. In this chapter, the required
information for a good understanding of the study will be given, which should provide more insights in the
acquired results from the simulations.

3.1 Human liver anatomy and physiology

The liver plays a vital part in the metabolism of many vertebrates. In order for the liver to perform its
functions, it has to work together with the surrounding organs in many and often complex ways. In this
section, the anatomy and physiology of the human liver will be explained and discussed. The anatomy of
the liver can become very complex and whole books are written on the anatomy and physiology of the liver.
The focus here is on the macroscopic anatomy, as the microscopic anatomy is too small for the level of detail
for the modelling, or the smallest scale is already represented by the macroscopic anatomy. Also, the blood
supply is the most important aspect for a good understanding of the impact of the study, so the general focus
in this chapter is on the macroscopic blood supply.

The liver is located in the upper right side of the abdominal cavity, with a large part of the liver being
covered by the rib cage. A simplified anterior representation of the abdominal cavity is given by figure 3.1a.
A part of the liver is connected to the thoracic diaphragm with areolar tissue, which is a type of connective
tissue. The thoracic diaphragm, often referred to as just diaphragm, separates the thoracic cavity, which
contains the heart and the lungs, and the abdominal cavity. Since the liver is connected to the diaphragm, it
moves down in inspiration and up in expiration. The liver is closely related to the small intestine and other
organs in the digestive tract, from which it receives nutrient-enriched venous blood. The liver also secretes
bile, which is transported to the duodenum, which is the first part of the small intestine. The liver secretes
bile continuously, however the usage of bile is not constant in the digestion. Any excess bile is stored in the
gallbladder, which is located just below the liver.
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(a) Anterior view [37] (b) Zoomed anterior-inferior view [38]

Figure 3.1: Anatomy of the abdominal cavity

Next to bile, the liver produces many more important substances, like cholesterol, glycogen and urea. Choles-
terol is used to make hormones and other substances that help in the digestion of food. Glycogen is produced
from glucose, which unlike glucose can be stored in the body. Glucose serves as a fuel for cells and a constant
supply of glucose can be realised by the conversion of glycogen reserves to glucose. The urea is a product of
the blood filtering in the liver, where any old and abnormal red blood cells are removed. Together with other
harmful substances they are excreted in the bile and blood in the form of urea. The bile is further processed
in the intestine and leaves the body as feces, while the blood is processed in the kidneys and leaves the body
as urine.

(a) Posterio-inferior view of the liver lobes [34] (b) Anterior view of the liver segments [34]

Figure 3.2: Liver anatomy based on division definition

The liver lobes consist mainly of functional tissue, or liver parenchyma. The liver parenchyma consists of
about 80% hepatocytes, which can be considered to be the main and most important cells in the liver. The
number of non-parenchymal cells, like connective tissue, is relatively large in the liver. However, their volume
is small compared to the parenchymal cells.

In the liver, two lobes of unequal size, the left and right lobe, can be distinguished. In figure 3.2a a posterio-
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inferior view of the liver lobes is given, which means that the liver is observed from the back and below side.
The left lobe is much smaller than the right lobe, as can be seen in the figure. When looking at the function
of the liver, the two accessory lobes can also be distinguished which gives a liver division with four different
lobes. The two accessory lobes are the caudate lobe and the quadrate lobe, which are also given in the figure.
The gallbladder is located between the right lobe and the quadrate lobe.

The liver is also sometimes divided into two, four and eight segments based on the blood supply, which can
be seen in figure 3.2b. Here an anterior or front view of the liver is given, where the right lobe of the liver
is now located on the left side of the figure. The segments that are numbered in the figure can all work
independently because they all have their own independent fluid vessels. This also means that all these
segments are surgically resectable. The division here can be made by classifying the segments in the liver
based on the splitting of the main portal triad branch. For example, the right and left lobe receive blood
from the left and right branches of the portal triad, which gives a different definition of the left and right
lobe than the anatomical definition.

In the human body, two types of blood circulation can be distinguished: systemic circulation and pulmonary
circulation. The liver is part of the systemic circulation, like all other organs in the abdominal cavity. About
a quarter of the total cardiac output goes to the liver to deliver oxygen and nutrients that are transported
by the blood [33]. In most organs, an artery transports oxygen-rich blood to the organ, where capillaries
take care of the distribution. Only one red blood cell can fit through a capillary, so this can be classified as
microscopic anatomy. Due to the high pressure in the arteries and the permeable walls of the capillaries, a
part of the oxygenated blood is pushed through the walls to the interstitium, where interstitial flow distributes
nutrients and oxygen to nearby tissue. After the interaction with the tissue, the capillaries form multiple
larger venules, which combine into veins and eventually in the vena cava which transports the deoxygenated
blood to the heart.

Figure 3.3: Typical pattern of branching of celiac axis and hepatic arteries [39]

The blood supply for the liver is a bit different compared to other organs, because it has a dual blood supply.
The liver receives blood from the hepatic artery and also the hepatic portal vein, which contains blood that is
already used in the digestive tract, which contains the spleen, stomach, pancreas, and intestines. The largest
amount of blood is delivered by the hepatic portal vein. In general, the hepatic portal vein delivers oxygen
and nutrients to the liver parenchyma, while the hepatic arteries deliver blood to the non-parenchymal cells
in the liver. These two fluid vessels are combined with a third fluid vessel, the bile ducts, which form the
portal triad. After they are combined, they branch off over the whole liver, as can be seen in figures 3.1b and
3.2b. The blood vessels transport blood to the liver, while the bile ducts transport bile from the liver. The
produced bile in the liver is transported to the gallbladder and the duodenum, which is a part of the small
intestine. The gallbladder is connected to the portal triad by the cystic duct.

While delivering a smaller part of the blood supply to the liver of about 25%, a relatively large part of the
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required oxygen is delivered by the hepatic arteries. The main artery that eventually branches off into the
hepatic artery is called the celiac axis, or celiac trunk. The celiac trunk is a primary branch of the aorta,
from which several arteries branch off that go to other organs in the abdominal cavity. In figure 3.3, it can
be seen that the name of the artery that goes to the liver is called the common or proper hepatic artery,
depending on which and how many arteries have split off from the main artery. From the proper hepatic
artery, the left, middle and right hepatic artery deliver the oxygenated blood to the liver. The cystic artery
delivers blood to the cystic duct, which is part of the bile ducts that originate from the liver.

In general, the right hepatic artery delivers blood to the right part of the liver, and the left hepatic artery
delivers blood to the left part of the liver. In figure 3.2b, this means that the right hepatic artery delivers
blood to segments V to VIII. In most cases, it also delivers blood to segment I which is part of the caudate
lobe, however this segment also receives blood from the middle hepatic artery. Some of the blood is used by
the tissue in the liver and the remaining part is collected by the left, middle and right hepatic vein, which is
connected to the inferior vena cava that transports the deoxygenated blood back to the heart.

(a) Overview, artery to vein [34] (b) Zoomed artery [34]

Figure 3.4: Schematic of the blood vessel structure

A schematic of the structure of a blood vessel is given by figures 3.4a and 3.4b. The hollow space in the
arteries and veins through which the blood flows is called the lumen. As can be seen in figure 3.4a, the
diameter of the lumen is much smaller for the arteries compared to the veins, which helps maintain the blood
pressure [40]. Also, the arteries have a thicker wall, which gives them a more rounded appearance than veins.
As the blood moves through the arteries to the capillaries, the vessel becomes narrower to maintain sufficient
pressure. After the capillaries, the blood flows from the venules to the veins, which eventually enter the vena
cava. For the liver, the veins all enter the inferior vena cava, which transports the blood up, back to the
heart. For the veins, the diameter of the lumen increases to maintain the pressure and flow in the vessels.

Through the lumen the blood flows, which is composed of plasma, red blood cells, white blood cells, and
platelets [41]. About 55% of the whole blood consists of plasma, with the whole blood defined as the blood
that runs through the arteries, veins and capillaries. The plasma can be seen as a transport fluid, which
transport the blood cells, nutrients and other bodily product in the entire vasculature network. The blood
cells consist largely of red blood cells, which contain hemoglobin, a protein that can transport oxygen from
the lungs to the organs and carbon dioxide back to the lungs. The white blood cells account for about 1% of
the blood and are essential to the immune system. The platelets are small fragments of cells which help in
the blood clotting process that closes wounds.

Blood is a non-Newtonian fluid, which has a shear thinning behaviour due to the shape of the red blood
cells. At low velocity, the molecular interactions are increased which causes red blood cells to stick together,
which is called a Rouleaux formation [42]. As the velocity increases, the shear stress increases which causes
a decrease in the blood viscosity. This property of blood is essential to an efficient perfusion of the vascular
tree [43].
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3.2 Liver cancer: statistics, types and treatment

Liver cancer is the fifth most common type of cancer and it is the second leading cause of cancer due to
its high mortality rate. If cells start to grow uncontrolled, a tumour is formed which can be either benign
(non-cancerous) or malignant (cancerous). A benign tumour does not spread into tissue and it is not able
to metastasise, which means that it will not spread throughout the body. In most cases this tumour type is
not too harmful and surgery often provides a solution, if required at all. A malignant tumour on the other
hand can spread through other tissue and metastasise, which in most cases requires treatment.

The amount of liver cancer diagnoses has more than tripled since the 1980s [44]. In 2020, about 1500 people
were diagnosed with liver cancer in the Netherlands [45]. In the same year, about 905.000 cases of liver cancer
were reported globally [46]. The mortality of liver cancer in the same year was about 830.000, which gives a
global mortality rate of around 92%. A higher mortality rate can be expected in non-western countries, since
the possibility of treatment is often more limited here. The amount of new cases in males was about 630.000,
which is about 70% of the total amount of cases. The mortality rates for both sexes are about equal. The
incidence of liver cancer has remained quite constant over the last few years, so the calculated mortality rate
should be accurate and not be affected by yearly fluctuations [44].

The 5 year survival rate for a certain type of cancer gives the percentage of patients who are alive 5 years
after their diagnosis. The 5 year survival rate of liver cancer for all ages is about 20% in western countries,
compared to 3% four decades ago. The survival rate largely depends on the stage of the cancer when it
is discovered, with lower survival rates for metastasised cancer. One of the factors that plays a role in the
survival rate is the available treatment at a stage. In general, surgery gives a better survival rate than other
therapies like radiation- and chemotherapy, however surgical resection is often not possible for advanced
stages of liver cancer.

A distinction is made between two types of cancer: primary and secondary cancer. For a primary type cancer,
the cells form at the location itself, while for a secondary type cancer or metastatic cancer, the cancerous
cells have formed at another location in the body and have metastasised to the location that is observed. In
this case, it concerns malignancies that originate from an extrahepatic site and metastasise to the liver [6].
These tumours are also called metastases. Second type liver cancer is much more common than first type
liver cancer in Europe and the US [44].

In the human liver, several types of cancer have been observed and classified based on how and where they
form and grow. The most common form of primary liver cancer is Hepatocellular Carcinoma (HCC). HCC is
a primary type cancer which has two distinguished growth patterns. The first type of HCC starts to grow in
the liver, only spreading to other parts in the liver and the rest of the body at a late stage. The second type of
HCC grows as small cancerous nodules (small tumours) on multiple locations in the liver. This type of HCC
is often found in patients who also suffer from cirrhosis or scarring of the liver tissue. Another primary type
cancer in the liver is called Intrahepatic Cholangiocarcinoma, which is a type of bile duct cancer. The bile
ducts are connected to the liver and a part of the bile ducts is located in the liver, so tumours that form in
these parts of the bile ducts are classified as liver cancer. However, the largest part of bile duct cancer cases
are not classified as primary liver cancer since they form outside of the liver. Next to these two most common
types of liver cancer, other types of liver cancer like hepatoblastoma, angiosarcoma and hemangiosarcoma
also exist, but they are considered relatively rare.

The liver is especially susceptible to the spread of cancer cells because of its blood filtering function. For
this reason, a relatively large part of the liver cancer diagnoses is second type cancer. Second type cancer
metastasises from another location in the body and is considered advanced stage cancer if detected in the
liver. About 50% of all secondary type liver cancers originate from the colon and rectum, which is a part of
the large intestines [47]. This type of liver cancer is called colorectal liver metastases. Up to 70% of people
with Colorectal Cancer (CRC) eventually develop liver metastases [48]. The reason for this is partly because
of the direct connection between the intestines and the liver through the portal vein. Due to the advanced
stage of the secondary type liver cancer, surgery is often not a solution anymore. Other techniques like
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chemotherapy, immunotherapy and radiotherapy are often used to extend the lives of patients and enhance
the quality of life, however a full recovery is uncommon in advanced stage liver cancer.

Terminal or advanced stage HCC and colorectal liver metastases are often chemorefractory, or not respons-
ive to chemotherapy. Then, a form of radiotherapy called Selective Internal Radiation Therapy (SIRT),
or transarterial radioembolization is applied to enhance the survival of patients [49]. In this loco-regional
treatment, a radiation source is administered to the blood stream close to the tumour. The radioactive
particles are glass or resin microspheres containing either 90Y (Yttrium-90) or 166Ho (Holmium-166), which
are injected through a catheter [50]. The treatment relies on the principle that hepatic tumours are predom-
inantly supplied by the hepatic arteries, while the healthy liver tissue blood supply is mostly provided by
the portal vein. The particles move through the hepatic arteries to the hepatic arterioles, where they cluster
and accumulate. The goal is to direct the microspheres to an arteriole near the cancerous tissue, where they
lodge and emit beta radiation over time.

The treatment is performed after the angiographic workup, or the mapping of the vasculature. First, an in-
vivo simulation procedure is started, where surrogate particles are injected into the bloodstream to predict
the microsphere distribution. The results are also used for the assessment of the suitability of the treatment.
For example, if microsphere deposition in other vessels than the desired ones is observed, the treatment should
be adjusted or maybe even another treatment should be investigated. Based on the in vivo simulation results,
a dosis is prescribed and the microspheres are injected into the blood stream. After the procedure, imaging
can show the the microsphere distribution, which can validate the earlier performed in vivo simulation and
improve the distribution for follow-up treatment.

90Y microsphere studies in human bodies were already performed in the late 1970s, however it has only proved
to be clinically interesting and viable over the last two decades [51]. Around the year 2000, treatment with
two types of 90Y microspheres was approved for unresectable HCC and colorectal metastases. An increasing
amount of evidence is emerging that radioembolization is an effective treatment for these two types of diseases
[52].

For advanced stage HCC, a median survival of 10 months was the result of a large study with a total of
about 700 patients [53]. It is shown that this median survival largely depends on the stage of HCC, however
radioembolization data is lacking for earlier stages as it is currently not used as a first-line or primary therapy.
For untreated advanced stage HCC, the median survival rate is 6 months, which shows that radioembolization
is effective [54]. For colorectal liver metastases, a median survival of 4 to 5 months was reported without
radioembolization [55]. A study with 71 patients showed an estimated survival rate of 65% after 6 months
and 30% after 12 months, with a median survival of 8 months using radioembolization [56]. In a larger and
more recent study with 531 patients, the median survival was even higher at 10.6 months [55]. The treatment
shows good results with low toxicity and minor side effects, with the most common side effects being fatigue,
abdominal pain and sometimes nausea. These side effects are often caused by extrahepatic deposition of
microspheres, where radiation is unintentionally released near healthy tissue outside of the liver.

The study in this thesis focuses on radioembolization using 166Ho particles. Next to the shorter half-life value
of 26.8 hours for 166Ho compared to 64.1 hours for 90Y, the paramagnetic properties and gamma radiation of
the particles enable imaging with MRI and better imaging with SPECT/CT respectively [57]. The number of
studies on 166Ho radioembolization is relatively small, however a recent study on a small group of 40 patients
with colorectal liver metastases shows some promising results with a median survival of 10.7 months [58].

While the treatment is not considered curative by itself, it can offer the possibility of an organ transplant
and further surgical resection. Also, it can be applied with other treatments like chemotherapy, which
increases the overall effectiveness. With more research on radioembolization, the median survival using this
treatment will increase and maybe in the future, radioembolization might be applied in many more cases and
be considered a first-line therapy for even early stages of liver cancer.
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Chapter 4

The APES Simulation Framework

The Lattice Boltzmann Method simulation results that are given in this thesis report are obtained using soft-
ware from APES. APES is a suite of simulation tools built around an octree mesh infrastructure [59]. APES
provides the tools that are required for simulations on large parallel computing facilities, or supercomputers.
In figure 4.1 all components that APES provides are given. It is available as an open-source download at
https://apes.osdn.io.

Figure 4.1: APES structure and components

For the LBM simulations, a structured mesh is generated by the mesh generator called Seeder. On this
mesh, the LBM simulation software package Musubi is used. For the visualization of the mesh the package
Harvester is used. The combination of Seeder and Musubi gives very large simulations that require many
computations compared to other conventional CFD software that is based on FEM or FVM. One of the
advantages of using the mentioned software is the possibility for parallelization, which allows for solving
large scale problems relatively fast by using parallel computers. The computer power comes from the usage
of many cores that are provided by the Dutch national supercomputer Cartesius. For the post-processing,
the software Matlab and Paraview are used, which will not be discussed as they are quite commonly used
packages. In this chapter, the packages and facilities that are used for producing the results are discussed.
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4.1 Mesh generation: Seeder

The mesh that is used with the Musubi simulations is generated by Seeder, which is a component of APES.
Generally, unstructured meshes contain elements of different sizes, which requires that all geometries and
relations to neighbouring elements should be described explicitly [60]. For larger systems where parallelization
is required, this is not the preferred option. With Seeder, a structured mesh is generated by using the principle
of an octree, which does allow for the required level of parallelization [61]. Here, an element is split into eight
octants, which results in a mesh refinement in all three spatial dimensions. Translating this process to the
entire space, every element in the mesh is split into eight octants, such that with each refinement level, the
number of elements is given by nelements = 2(3·level). In this method, a recursive bisection method is used
to achieve the desired number of elements in a level, which continually applies bisectioning until the desired
element size or number of elements is obtained.

The recursive bisection algorithm is applied to generate the mesh by using the information provided by
the bounding cube and the desired element size, thus the level. The bounding cube is a cube that is put
around the geometry, which should at least contain the whole geometry. First, elements are put inside the
total bounding cube. The recursive bisection algorithm splits the elements based on the geometry, however
elements are also put outside of the geometry. Next, the elements that coincide with the geometry are
flooded, which means that those elements are saved in the final mesh. This coincidence is determined by
placing a seed in the geometry. Everything that is between the walls around this seed is then considered to
be the geometry. Elements that coincide with the boundaries of the geometry of the mesh are not flooded.
For curved boundaries, this is one of the reasons why a very fine mesh is required to accurately represent the
actual model. The level is calculated by using the length L of the model and the desired element length dx.
The length of the model here is the largest length in one of the spatial dimensions.

level = log (L/dx)
log (2) (4.1)

In the equation, the level is rounded up since it should be an integer. This also means that the desired length
dx will be slightly smaller in most cases. The desired length can still be obtained by changing the size of
the bounding cube. The number of elements in the bounding cube is set for a certain level. By increasing
the size of the bounding cube, the number of elements and the size of the elements can be changed to better
approximate the desired element length dx. This is done by using the ratio of the desired element length dx
and the ’real’ element length dxreal resulting from the rounding of the refinement level. The origin of the
bounding cube is placed in such a way that the middle of the geometry is also in the middle of the bounding
cube. The origin of the bounding cube is given by equation 4.2.

xi,new = xi −
L

2 ·
(

dx

dxreal
− 1
)

(4.2)

In the equation, L is the length of the model and xi is the original location of the origin of the bounding
cube, with i = 1, 2, 3, representing the spatial dimensions x, y and z respectively. The length of the bounding
cube is given by equation 4.3, which is the same in each direction.

Lnew = L+ L ·
(

dx

dxreal
− 1
)

(4.3)

From the equation, it can be seen that the bounding cube is not expanded if the value of dx is not changed,
meaning that the level is not rounded up. From equation 4.1, it can be concluded that halving the value of
dx results in an increase of the level by exactly 1. The length of the bounding cube is increased more if the
rounding of the level is more extreme.
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The Seeder program uses an input file where the dimensions are given. In this file, the boundaries of the
model, the bounding cube and the refinement level can be defined. The boundaries can be defined by inserting
a basic geometry like a plane based on coordinates. For more complex boundaries like the walls of the model
that is used for the simulation, a geometry file can be used, like an STL file. These basic inputs for Seeder are
sufficient to define the system boundaries for the simulations. In this thesis, other options that are included
in the mesh generator are not used.

4.2 Musubi: the Lattice Boltzmann solver

The software package Musubi is used for the LBM simulations in this thesis. The software package roughly
follows the LB theory given in chapter 2. For the simulations, a Solver Input File (SIF) is used in which
the simulation parameters are defined, as well as the tracking of variables used for post-processing. Some
of the relevant options will be discussed here to show some of the parameters that can be adjusted for the
simulation. The impact of these choices will also be discussed.

In Lattice Boltzmann simulations, the macroscopic physical variables and the microscopic lattice variables
are concurrently used in many different contexts. A clear distinction should be made between these two sets
of variables, as they can become confusing. In the general sense, the physical variables are defined in such a
way that they represent the real physical system, while the lattice variables can often be tuned to ensure a
certain accuracy or stability of the simulation [62] [63]. While the lattice variables can be tuned to increase
the efficiency or the performance of the simulations, the variables are still bounded by the physical system.
Derivations of the lattice variables are usually done by first converting the system to a non-dimensional
system and from this system a mesoscopic LB system can be obtained. For all these systems, the dominant
non-dimensional numbers in the problem should be equal if a similar problem and solution are desired. In this
case, the derivations for the similar Reynolds numbers will be discussed, because this is the only important
non-dimensional number for the type of problems in this research. In this section, the definitions of the
lattice variables will be given, together with their limitations.

In the previous section, it was already mentioned that the relaxation frequency ω is coupled to the viscosity
of the system. For a given system, the density and viscosity of the system are known. The density, the
kinematic viscosity and the dynamic viscosity are linked by equation 4.4, which means that only two of these
parameters should be given to define the system.

ν = µ

ρ
(4.4)

The relation between the kinematic viscosity and the relaxation frequency is given by equation 4.5 [26]. This
expression is a result of the Chapman-Enskog expansion, which links the Lattice Boltzmann Method to the
incompressible Navier-Stokes equations [27]. If the parameters are chosen in this way, then a LB model is
obtained that follows the physics that are described by the incompressible NS equations.

ν = 2τ − 1
6

(∆x)2

∆t =
1
ω −

1
2

3
(∆x)2

∆t (4.5)

In the equation, the kinematic viscosity is known from the fluid and the element size dx depends on the mesh
that is used. The parameter ω can be tuned, which means that the time step of the simulation is chosen
implicitly. If a larger value of ω is chosen, then the time step becomes smaller and thus the simulation time
is increased. From this equation, we can also see that for a mesh refinement where the element size is halved,
the time step is divided by 4, which means that the amount of iterations is multiplied by 4. This is a choice
that can be made for the simulations, which is called diffusive scaling. Another option that is sometimes
used in LBM simulations is acoustic scaling, which gives a constant ratio of the spatial step over the time
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step, instead of the spatial step squared over the time step. In this thesis, diffusive scaling will be used for
all simulations. For a 3D model with diffusive scaling, the number of elements is increased by a factor 8 for
such a mesh refinement, which means that the total amount of computations is increased by a factor 32. The
lattice viscosity is the apparent viscosity in the system on a microscopic level, which is given by equation 4.6.

νL = ν
∆t

(∆x)2 =
1
ω −

1
2

3 (4.6)

From equation 4.6, we can see that ω should be greater than 0, but smaller than 2.0. The lattice viscosity
as a function of the relaxation frequency is given by figure 4.2a. In most simulations the value of ω is higher
than 1.5, which is shown in figure 4.2b. Here, it can be seen that the function is quasi-linear in this region.

(a) Full range (b) Zoomed

Figure 4.2: Lattice viscosity for different values of ω, from equation 4.6

In the figure, it can be seen that lower values of ω introduce more viscosity in the system. The viscosity can
be seen as damping of the solution: for a higher viscosity, the initial fluctuations in the system are lower,
however convergence to a steady solution takes longer. These initial fluctuations can cause some trouble due
to limitations to the lattice velocity, however it is often desired to have a low apparent viscosity in the system
due to faster convergence. This is one of the reasons why a larger value of ω is chosen.

Next to the viscosity, the lattice velocity is an important parameter in LB simulations. The lattice velocity
is given by equation 4.7.

uL = u
dt

dx
(4.7)

The lattice velocity now depends on the grid and the time step, while the macroscopic velocity is often
determined by the problem. A mesh refinement can solve the problem, since a decrease in dx gives an even
larger decrease in dt due to the definition of the viscosity given by equation 4.5. From this same equation,
it can also be seen that an increase in the relaxation frequency leads to a smaller time step. While the
relaxation frequency leads to a smaller time step, it also leads to larger initial fluctuations, which could mean
that the lattice velocity is actually larger at the start for a larger value of ω.

At the start of this section, it was mentioned that only the Reynolds numbers of the systems should be
matched to ensure a physical solution. This is partly true, as the Mach numbers of the systems should
also be below the threshold for the assumption of incompressible flow, but they do not have to be matched
exactly. The Mach numbers for the types of problems in this research are well below the compressibility
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threshold on the macroscopic scale. On the mesoscopic scale this is often not the case, but also not desirable
since this requires very fine meshes and many iterations because of the low time step. The threshold is set
at uL = 0.15 and the simulation stops if the lattice velocity in the model is higher than this velocity at any
point. Officially, an incompressible flow can be assumed if the fluid speed is lower than 0.3 times the speed
of sound. The lattice elements that are used in this research have c2

s = 1/3, which means that the lattice
speed should be lower than uL = 0.10 for the official definition of incompressible flow.

In Musubi, a choice should be made for the physical model, which can be either a compressible or incom-
pressible fluid, where the choice mainly depends on the value of the Mach number in the problem. The
model of the simulations in this thesis is set to an incompressible fluid, since the Mach number is below the
compressibility limit. It is expected that this choice will not have a large influence on the simulation, since
the choice for a compressible model would only result in small density fluctuations due to the definition of
incompressible flow. With the incompressible model, a standard value is chosen for the bulk viscosity and
only the kinematic viscosity and the density of the fluid should be given. The bulk viscosity is a hydro-
dynamic parameter that is important in compressible flows, which captures more movement of molecules like
vibrations and rotations, instead of only the translations that are described by the dynamic viscosity [64].

For the relaxation frequency in LBM, either BGK or MRT relaxation is used. BGK relaxation is named
after the BGK approximation, which gives a single relaxation frequency that is used in the entire simulation.
It has an easy implementation, however it can give some numerical instabilities and unphysical numerical
artifacts in complex geometries [65]. The other relaxation option is MRT, which uses multiple relaxation
times that are tuned by Musubi to ensure numerical stability. In general, MRT relaxation will give a more
stable simulation, however some varying values of the relaxation frequency will be used. In most cases this
is fine, however using multiple relaxation frequencies might influence a grid refinement study, as the value of
ω should be kept constant to get the expected convergence slope.

In the simulations, the standard condition that is used at the walls is a bounce-back condition. This condition
is first order accurate, which offers advantages for computation time. In the chapter on the LBM theory,
higher order bounce-back boundary conditions were discussed briefly, which are also available in Musubi, with
the implementation method explained by Bouzidi et al. [66]. In this thesis, only the first order bounce-back
condition will be used in the simulations. This means that the results become first order accurate due to
the boundary condition. The derived equations for the bulk flow are second order accurate, which means
that second order behaviour can be obtained in Musubi by changing the wall boundary condition. The most
important options in the SIF have been discussed that are relevant for this thesis. Information about the
other options should not be required to understand the simulation results and the impact of the choices made
in the simulations thereon.

4.3 Code execution: High Performance Computing

The Musubi code was executed on two clusters. The first cluster is a local cluster from the Thermal and
Fluid Engineering department of the University of Twente. This cluster can be used for some small LBM
simulations, however it is not always reliable due to variations in users of the cluster. Also, for larger LBM
simulation the cluster does not provide enough cores to ensure fast simulations. The total amount of cores on
the TFE cluster is 480, which are divided over 15 nodes with 32 cores each. The other core cluster that is used
is provided by the Dutch national super computer Cartesius, which is a part of the cooperation association
of educational and research institutions called SURF [67]. Cartesius uses a Slurm Workload Manager, which
is a job scheduler for Linux kernels that increases the reliability of running simulations consistently. The
maximum number of cores that a user can use at once on Cartesius depends on the type of node. The
maximum number of nodes for the standard node type is 17,280, which is a maximum of 720 nodes with 24
cores each. While many cores can be used, the clock speed of these cores is relatively low. The clock speed
gives information about how fast arithmetic operations are done by a CPU. The potential of a supercomputer
relies mostly on the number of cores and the individual performance of each core is less important.

38



Chapter 5

Preliminary pipe flow studies

To get familiar with the software and to see the effects of different parameters, two test cases were used to get
a better understanding of the possibilities for Lattice Boltzmann simulations. For this purpose, the steady
behaviour of two types of channel flow with a different uniform cross-sectional geometry are analysed. For
the second test case with a square cross-section, the transient behaviour is also analysed.

5.1 Pipe flow with a circular cross section

The first case that is analysed is a pipe flow test case. This is also one of the benchmark cases from Musubi,
to check if the implementation of the code is done correctly. The flow characteristics of pipe flow have been
studied many times and the type of flow for the test case has a specific name: Poiseuille flow [68]. Poiseuille
flow is an axisymmetrical pressure induced laminar flow in a long horizontal tube, meaning R << L, with R
the radius and L the length of the pipe.

The flow becomes fully developed after a certain length, called the inlet length. The equations below are
derived from the assumption of fully developed flow. This means that the pressure drop is only caused by
friction and not by acceleration to fully developed flow [69]. Poiseuille flow can be assumed if equation 5.1 is
valid.

∆L
2R >

Re

48 (5.1)

The definition of the Reynolds number is given by equation 5.2.

Re = ρuL

µ
= uL

ν
(5.2)

Poiseuille flow is only valid for laminar flow, restricting the possible values for the Reynolds number. The
maximum Reynolds number in equation 5.1 cannot be higher than 2300, which is the critical Reynolds
number for pipe flow. Substitution of the values of the geometry for this test case in equation 5.1 gives a
maximum Reynolds number of Re = 363, which means that similar results should be obtained based on the
type of flow.

The mass and momentum conservation equations of the Navier-Stokes equations are solved to obtain an
analytical expression for the axial velocity. Here, a no-slip boundary condition is used at the edge and
a symmetry condition is used at the centre of the pipe. The derivation of this equation can be found in
many textbooks and the results have already been used in many benchmark test cases, so the details of this
derivation will not be discussed here. The equation for the velocity is given by equation 5.3 in cylindrical
coordinates x, r and θ.
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ux =
∆p
(
R2 − r2)
4µL (5.3)

In the equation, ∆p is the pressure difference over the pipe, R is the radius, µ is the dynamic viscosity and
L is the total length of the pipe. From this equation it can be seen that the velocity profile is parabolic. The
expression for the pressure drop is obtained by using that the velocity is highest at the centre of the pipe.

∆p = 4νρLumax
R2 (5.4)

Here, the dynamic viscosity is written as the product of the density and the kinematic viscosity, because
these two variables are used to define the flow properties for the simulation. The velocity profile is parabolic,
which means that the velocity is highest at the centre of the pipe. Also, the maximum velocity for Poiseuille
flow through a circular pipe is exactly twice the mean velocity:

umax = 2 · umean (5.5)

The analytical solution is now fully described. Now, the first test case can be described. The parameters for
the simulation can be found in table 5.1.

Parameter Value Parameter Value
R 0.205 [m] ρ 1.0 [kg/m3]
L 2.05 [m] umax 0.244 [m/s]

pamb 1.0 [Pa] ν 1.0 · 10−3 [m2/s]
∆p 4.76 · 10−2 [m2/s] Re 100

Table 5.1: Parameters for Lattice Boltzmann pipe flow simulations

For this case the fluid properties are not linked to a specific fluid. The parameters are chosen such that
the resulting velocities and pressures are not too small or too large and such that the specific effects can be
observed clearly. The ambient pressure Pamb is chosen to be equal to 1, which is defined in such a way that
the pressure at the end of the channel is equal to the ambient pressure. Also, this case is a benchmark case
from Musubi and the parameters were not changed.

Poiseuille flow is a pressure driven flow, so the boundary conditions for both the inlet and the outlet are
pressure related. The pressure here is defined by using the pressure drop from equation 5.4. The pressure of
the outlet is set to the ambient pressure Pamb and the pressure of the inlet is set to the sum of the ambient
pressure and the pressure drop, where the pressure drop is positive. For the inlet and outlet, pressure
extrapolation boundary conditions are used with different values. This also means that after convergence,
the inlet flow is already parabolic and no acceleration to Poiseuille flow takes place. A constant pressure does
not limit the velocity in the radial direction, so here the velocity will directly assume the parabolic velocity
profile. For the walls, a standard bounce-back condition is used.

For this simulation, the relaxation frequency is implicitly defined by defining the lattice Mach number. As
will be shown later in this section, this results in a slightly changing value of ω. For the relaxation method,
the standard BGK relaxation is used.

The results for the velocity and the pressure at the centre of the pipe in the middle can be seen in figures
5.1a and 5.1b. Here, the analytical solution is the fully developed solution at the centre of the pipe, which
is the expected result from the simulations at every x location in the pipe, with x in lengthwise direction.

40



For these results, a probe was placed at the centre of the middle of the pipe, however the same results are
expected at another location with r = 0.

(a) Velocities for varying grid sizes (b) Pressures for varying grid sizes

Figure 5.1: Velocity and pressure at the centre of the middle of the pipe

In figure 5.1a, the reference analytical solution line is given by umax, since the centre of the pipe is observed.
In the figures, n is the number of elements in radial direction. In table 5.2, the different parameters for
different grid sizes can be found.

n N dt iterations ω
4 252 1.213e-2 s 2691 1.986
8 2132 6.066e-3 s 6595 1.973
16 16848 3.033e-3 s 13189 1.946
32 130732 1.516e-3 s 26378 1.895
64 1025916 7.582e-4 52755 1.800
128 8197108 3.791e-4 131892 1.637

Table 5.2: Pipe case simulation parameters

For n = 4, a converged solution is obtained, which is truncated because of an implemented abort criterion in
the benchmark case, which states that the simulation is aborted if the velocity and pressure fluctuations are
both smaller than 1 · 10−8. In figure 5.1b, the reference line is exactly half the pressure drop. The coarsest
grid simulation does give a very good result for the pressure, however for the velocity plot shows that the
result is bad. For n = 8 an unstable solution is obtained which can be seen in both the pressure and velocity
graphs. For the three finer grids, steady and converging solutions are obtained, which approach the reference
lines better for the finer grids.

For one finer grid than is displayed in figures 5.1a and 5.1b with n = 128, the velocity field of a cross-section
in length-wise direction is visualised in figure 5.2a. Also, the results for the velocity along the height of the
pipe for the same grid is given by figure 5.2b.
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(a) Velocity field in the cross-section, using Paraview (b) Velocity along the height at the centre of the pipe

Figure 5.2: Velocity fields in two cross-sections, with n = 128

In figure 5.2a it can be seen that the flow does not accelerate to Poiseuille flow and that the velocity profile
is independent of x. From figure 5.2b it can also be seen that the analytical solution is quite well approached
if we look at the centre line in the pipe. The line velocity is expanded to a 3D planar velocity plot in figures
5.3a and 5.3b.

(a) Numerical and analytical solution (b) Numerical solution with the pipe geometry as reference

Figure 5.3: Fully developed planar velocity plots of the pipe

The convergence for the different grid sizes can be analysed by using the Euclidean norm, or L2 norm, for
difference between the analytical solution X and the numerical solution xh over the whole grid. This norm
is given by equation 5.6, which gives the mean error per element:

L2(x) = 1
N

√∑
(xh −X)2) (5.6)

In the equation, N is the total amount of elements in the model. The convergence results for the different
grid refinements in table 5.2 can be seen in figure 5.4.
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Figure 5.4: L2 norm for different grid refinements

From the characteristics of the Lattice Boltzmann method, we know that the method is first order accurate
if the collision frequency ω is kept constant. The definition of the variables for this test case is a bit different
from the usual method, where the lattice Mach number is kept constant instead of the relaxation frequency.
This results in a value for the collision frequency that is slightly changing per grid refinement, as can be seen
in the last column of table 5.2. For this reason, the slopes in figure 5.4 do not match entirely and the error
reduction is not exactly first order.

5.2 Pipe flow with a rectangular cross section: steady flow

For further analysis, a pipe with a rectangular cross section will be used, which will be referred to as channel.
The geometry of this channel can be found in table 5.3, along with the properties of the fluid that flows
through the channel. The fluid properties of Blood Mimicking Fluid (BMF) are used for these simulations.
BMF is a mixture of water, glycerol and urea, which is the working fluid that is used in the experimental setup
that is used for comparison with the main research in this thesis. This fluid is also used here to investigate
its behaviour in a steady-state case with a simple geometry concerning. The geometry is given in mm and
all units that contain a unit of length have been converted accordingly.

Parameter Value
L 150 [mm]
B 20 [mm]
H 20 [mm]
U 1.0 · 10−6 [mm/s]
ρ 1.1474 · 10−6 [kg/mm3]
µ 4.3100 · 10−6 [kg/ (mm · s)]
ω 1.9 [−]

Table 5.3: Parameters for Lattice Boltzmann mini channel flow simulations

The boundary conditions for this test case are a little bit different compared to the pipe flow test case: the
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left boundary has a prescribed velocity, which is imposed as a block velocity. This means that the fluid first
has to develop to the parabolic Poiseuille flow velocity profile.

First, the steady state simulation will be tested using different refinement levels. For these different refinement
levels, the relaxation frequency remains constant, while the lattice size dx and resulting time step dt decrease
per level. For these simulations, an incompressible fluid model and the standard BGK relaxation method are
used.

Figure 5.5: 2D view of the converged solution for the velocity in the channel

In the generation of the different meshes, a refinement level was prescribed and the bounding box remained
constant. The result is that the element size on the new level is exactly half of the old element size. This
also means that the difference between the new time step and the old time step is a factor 4 because of the
constant ω, which is explained in section 4.2. For Poiseuille flow in a channel with a rectangular cross-section,
the velocity in the stream-wise direction is given by equation 5.7 [70]:

u = U
48
π3

∑∞
i=1,3,5,...(−1)(i−1)/2

[
1− cosh(iπy/2a)

cosh(iπb/2a)

]
cos(iπz/2a)

i3

1− 192a
π5b

∑∞
i=1,3,5,...

tanh(iπb/2a)
i5

(5.7)

In the equation, U is the bulk or mean velocity, a is half of the width of the channel and b is half of the height
of the channel. Since the cross section of the channel is square, we have a = b = 10mm. While equation 5.7
is an analytical expression, the equation is solved numerically to solve the sum in the equation. For this, we
will first look at the convergence of the numerical solution to the analytical expression by using the following
L2 norm:

L2 = 1
N

i=N∑
i=1

√
(ui,j − ui,j−1)2 (5.8)

In the equation, N is the number of grid points and the index j represents the number of summation
components. The L2 norm here calculated the convergence, where the result for the new sum is compared
to the result of the old sum with one less component. For j = 1, the sum is solved for i = 1 in equation 5.7,
which can not be compared to the previous solution and it is thus not calculated. The result can be seen
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in figure 5.6. Note that the x-axis represents the number of sum components and since the sum interval in
equation 5.7, the sum index is about twice this value.

Figure 5.6: L2 norm of the convergence of the analytical solution, solved numerically

In the figure, a relatively smooth convergence can be seen. The spikes in the figure are a result of the
hyperbolic trigonometric functions. For some sum components, these functions result in a very low value
that is added in the sum, which means that the difference between the updated value and the old value in
the sum is very small, hence a spike in the convergence plot. For the 150th sum component, the difference
is of the order 10−7 and we assume that the error in the approximation is of the same order. The velocity
differences between the approximated analytical expression and the simulation on the finest grid is in this
case of the order 10−4, so we can assume that the analytical expression is approximated well enough to
capture the convergence of the simulations. So, we will consider the analytical expression with the sum to
299 for the comparison to the simulation results. The result of the approximation analytical solution can be
seen in figure 5.7.
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(a) Two dimensional (b) Three dimensional

Figure 5.7: Velocity solution of the approximated analytical expression

To compare the simulation results to the analytical results, we take the velocities at a cross section near the
end of the channel. As mentioned before, the boundary condition imposes a block velocity at the start, which
means that the flow should first accelerate to Poiseuille flow. In figure 5.5 it can be seen that this happens
quite early in the channel, however for the best result we will still take a plane near the end. The simulations
were performed on 4 different grids, which can be found in table 5.4.

Level N dx [mm] dt [s] iterations
5 480 4.69 5.13 · 10−2 974
6 3968 2.34 1.28 · 10−2 3897
7 32256 1.17 3.20 · 10−3 15591
8 293624 5.86 · 10−1 8.02 · 10−4 62364
9 2358240 2.93 · 10−1 2.00 · 10−4 249456

Table 5.4: Simulation parameters with grid refinements

Now a mesh convergence study can be done by using the Euclidean norm given by equation 5.6. The results
can be found in figure 5.8, along with the expected first order slope. Here, the level 5 grid is not included in
the figure because of the relatively bad solution.
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Figure 5.8: Mesh convergence of the channel, using the Euclidean norm

The same value ω = 1.9 is now used for all simulations, first order behaviour should now be obtained for
the error norm. In the figure it can be seen that, although the result is not a straight line, this behaviour is
approximately obtained. In the ideal case the result is a straight line, similar to what was observed in the
previous test case in figure 5.4, however for this case with flow development and a square cross section that
is relatively more complex, this result can be considered quite acceptable.

Next to the convergence study, we will look at some other parameters and their influence on the simulations.
For the results below, the average over the cross section was taken near the inlet and the outlet. Note that
the time interval is changed from t = 50s to t = 30s for visualization purposes.

(a) Velocity average for different grid refinements (b) Velocity average for different values of ω

Figure 5.9: Channel velocity average over the cross section near the inlet
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(a) Velocity average for different grid refinements (b) Velocity average for different values of ω

Figure 5.10: Channel velocity average over the cross section near the outlet

In the figures above, we can see the convergence for different grid sizes and values of ω. For the different
grid sizes, the same value of ω = 1.9 is used, while for the different values of ω the same grid level is used:
level 7. Also, the expected velocity is plotted. For the steady-state simulation using the incompressible fluid
model, the average velocity should be the same everywhere in the channel, independent of the location and
flow development stage. Thus, if the inlet velocity value is better approximated, we have a better solution.
For the grid refinements, we can see that the solution converges faster and to a better value for a finer grid.
The faster convergence is most likely due to the increased amount of iterations on a finer grid, while the
better approximation is also expected based on the convergence study.

The density plot for different grids also gives interesting information about the results. For the simulations,
an incompressible model is used, however the density cannot be constrained in LB methods. The density at
the centre of the middle of the channel is given by figure 5.11.

Figure 5.11: Channel density at centre for different grid refinements

In the figure, it is clear that the fluid is not entirely incompressible. However, a finer grid does give a better
approximation of the density that is prescribed for the simulation. The steady state simulation in the channel
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gives the expected results, so now the simulation can be expanded to a transient simulation by varying the
input signal in time. The transient behaviour will be analysed by using a simple sine wave input. From
the results in figures 5.9a and 5.10a, it is assumed that the simulations are converged well enough after 20
seconds, especially on the finer grids. This will be the starting point of the sine wave, with the proposed
input signal given by figure 5.12.

Figure 5.12: Transient inlet velocity profile

The sine wave is smooth, however the start of the wave is quite abrupt and the input signal has a discontinuous
acceleration. By this, the response of a change in the system for a grid can also be analysed. The results for
the velocities at the inlet and the outlet can be found in figures 5.13a and 5.13b.

(a) Inlet velocity for different grids (b) Outlet velocity for different grids

Figure 5.13: Channel velocity average over the cross section

The fluid model that is used for the simulations is an incompressible model, which means that density
fluctuations are only minor. Also, the response to the sine wave should be directly noticeable near the inlet
and outlet. In figure 5.13b it can be seen that the finer grids converge faster and approximate the inflow
profile better. At the start of the wave, it seems that all grids have reached a steady velocity. During the
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wave, better results are obtained for the finer grids, however the profile is followed quite well in all simulations.
After the sine wave, only the simulations with grid levels 6 and 7 require some convergence again.

A better review of the performance of the simulations on the different grids can be given by looking at the
velocity near the outlet in figure 5.13b. The results for grid levels 5 and 6 are dismissed here, because they
do not follow the sine wave and make the figure unclear, which could be expected based on the results from
figures 5.9a and 5.10a. For grid level 7, it can be seen that there is a delay in the reaction to the sine wave,
together with an overshoot. At the start of the wave, the solution is not converged and after the wave a
relatively large overshoot can be seen. Grid level 8 follows the sine wave much better, however a higher
response to the sine wave than expected can also be seen here. The finest grid performs best, which does
have some fluctuations around the inflow sine wave. At the start of the simulation, the initial overshoot is
highest for the finest grid. This can give problems for the lattice velocity, however this is not a problem in
this test case.

For any deviations from the sine wave in the channel, density fluctuations are also expected. In figures 5.14a
and 5.14b the middle of the channel is observed. Here, an average of the velocity is taken and a probe is
placed in the middle for the density. A better comparison could be made if the averages of both are taken or
if the values at the probe are taken, however the plots still show the expected density fluctuations. Especially
for the coarsest grid simulations in the figures, the fluctuations in the velocity are clearly visible in the density
plot. From this, it can be seen that a finer grid obeys the incompressibility condition much better compared
to a coarser grid.

(a) Velocity average for different grids (b) Probe density for different grids

Figure 5.14: Channel values in the middle
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Chapter 6

Right Hepatic Artery: models, results
and analysis

The flow in the liver vasculature can become quite complex due to the transient flow and its behaviour in
a complex geometry. Next to the yet unknown behaviour of injected radioactive particles in the blood, the
liver vasculature is also highly patient specific. In this chapter, the flow in a simplified model of the Right
Hepatic Artery (RHA) will be analysed. With the analysis of the flow, more insight in the flow is obtained
and from these insights, the model can hopefully be expanded to a patient specific model in later research.
The simplified model can also serve as a form of validation of future models, so an in-depth analysis of the
flow can largely benefit future research.

The results in this chapter are valid for a simplified RHA with a Newtonian fluid called Blood Mimicking
Fluid (BMF). In the work by Gijsen et al., flow differences between a Newtonian and non-Newtonian fluid
in a carotid bifurcation model have been studied [71]. In this study, it was shown that the shear-thinning
behaviour of blood has an impact on the velocity gradients in a cross section of the vessel. The dimensions
are similar for the models in this chapter, so it can be expected that this assumption will have an impact on
the velocity field. However, to study the flow field and resulting distributions of flow and eventually particles,
in-vitro experiments are also performed with the fluid BMF. This substantiates the choice for this fluid for
the simulations, since comparison is now possible.

In the simulations, the walls are assumed to be completely rigid. The used simplification is expected to have
some impact on the flow behaviour, as vessel elasticity will make the pressure-drop non-linear. Including the
elasticity of the walls will also make the simulations incredibly more complex regarding boundary conditions.
Lastly, gravity is neglected in the model, which has an impact on the flow in the human body. The model is
compared to experimental work which was placed horizontally and due to the placement, gravity is expected
to have a small effect. Also, the RHA of a patient is oriented differently for each patient. For the simplified
model, the gravity also makes the simulations complex and since the orientation is unknown, gravity can be
neglected.

In this chapter, the details and results of the liver vasculature LBM simulations will be discussed. For
validation of these results, in-vitro experimental work is performed at the University of Twente, of which the
procedures will be discussed briefly.

6.1 Experimental setup

In this chapter, experimental results will be used for the validation of the simulations. The experimental
setup will first be discussed shortly. The experimental work is conducted at the University of Twente by
H. Mirgolbabaee, R. Kunst and E. Groot Jebbink, which is explained in detail in the MSc thesis by H.
Mirgolbabaee [72].

Two pictures of the experimental setup are given by figure 6.1. In the simulations, two distinct models have
been used that have different angles and outlets lengths. The given setup is similar for both models.
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(a) Top view (b) Top side view with beakers

Figure 6.1: Experimental setup for the second model

The flow is pumped into the vasculature and measured at the inlet and outlets. A flow profile in the RHA
is proposed by Aramburu et al [73], which is replicated by using two pumps. A hydraulic piston pump
(SuperPump, ViVitro labs, Victoria, Canada) was used to generate the pulsatile flow and a gear pump (12V,
Kavan, type 0190.121; Kavan GmbH, Nürnberg, Germany) was used to generate the steady flow. The cardiac
cycle was measured in the liver phantom using a Coriolis MX55 flow sensor (Bronkhorst High-Tech B.V.,
The Netherlands), using an average over 30 cycles. The cycle that is generated in the liver phantom deviates
a bit from the proposed profile due to the limitations of both pumps. Since the simulation is compared to
the experimental data, the measured flow profile is used as the input for the simulation. The proposed flow
and the measured flow can be found in figures 6.2a and 6.2b.

(a) Proposed flow in the RHA (b) Measured flow in the liver phantom

Figure 6.2: Proposed and measured flow in the RHA phantom

It can be seen that the measured flow is much smoother than the proposed flow, since abrupt changes in
the flow rate likely require a more powerful pump. In the human body, the cardiac wave form is smoothed
by the elasticity of the blood vessels [74]. The smoothing of the wave form due to the pump limitations
could compensate a bit for the rigidity of the walls. Another difference between the proposed flow and the
measured flow is the cycle rate of the flows, which are 60 BPM and 70 BPM respectively. The flow rate
results of the experiments for both models will be given later in this chapter for validation of the numerical
results.
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6.2 Wide angle liver vasculature model

The first vasculature model that was used for the simulations is a plane symmetric model with three bifurc-
ations. This model has bigger angles than the second model in this chapter, hence the name wide angle
model. In figures 6.3a and 6.3b, a cross section of the model and the schematic of the model can be seen
respectively. The x-y plane is given here, with the horizontal x-axis and the vertical y-axis. A communication
mistake resulted in the usage of this model, which is the mould of the model that is used in the first set of
experiments, meaning they do not correspond. Still, the results of this model are shown here which will show
that results can be obtained with a model with multiple outlets and thus it can be seen as a specific test
case. It also shows that flow in an even smaller model is possible with Musubi, which means that the model
could be extended to an even smaller scale. It should be noted that a Newtonian fluid is used that mimics
blood and that at a very small scale this mimicking is not realistic anymore.

(a) Section view of the x-y plane, through z = 0 (b) Dimensions of the model

Figure 6.3: Liver vasculature model 1

In figure 6.3a, it can be seen that the inlet and outlets of the model are closed off. For the simulations,
boundary conditions were placed on the inside of the model, effectively cutting off some parts of the model
and transforming the model to an open model. For the inlet, a larger part of the top of the model was cut
off to remove the loft.

The dimensions can be found in figure 6.3b, which are the outer dimensions. The inner dimensions can be
found in table 6.1, together with the angles of bifurcation. The angle here is defined by comparing the main
vessel to either one of the smaller vessels in which the main vessel branches off. The model is symmetric
in the vertical axis through the middle, but also locally in each bifurcation, since the angle of bifurcation is
equal on both sides. This also means that the angle between the two smaller resulting vessels is exactly twice
the bifurcation angle.
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Parameter Value Parameter Value
Din 6.2 mm L 134.5 mm
Dout 2.6 mm H 130.0 mm
D1 2.6 mm twall 0.5 mm
D2 1.9 mm α1 30°
D3 1.3 mm α2 25°
D4 0.8 mm α3 20°

Table 6.1: Dimensions of the vasculature model

Parameter Value
ρ 1.1474 · 10−6 [kg/mm3]
µ 4.3100 · 10−6 [kg/ (mm · s)]
ω 1.9 [−]

Table 6.2: Parameters for the LBM simulations

At the outlets, a zero pressure boundary condition is imposed. Here, an extrapolation method is used to obtain
the prescribed pressure value, where the distribution function at the boundary is obtained by extrapolation
by using the known distribution functions at two neighbouring points according to Junk et al. [75]. The
parameters and fluid properties that are used in the simulations are given by table 6.2. The fluid properties
were already tested in the channel test case and thus the geometry and the velocity value and profile are the
only changes relative to that model. The properties in the table will be used in all the simulations in this
chapter.

At the inlet, the velocity is prescribed by using a velocity bounce-back condition. The flow profile from
figure 6.2b is used together with the area of the inlet to obtain the velocity profile that is prescribed at the
boundary, given by figure 6.4. The first 2 seconds of the profile are steady, which is used for the convergence
of the simulation. After one cardiac cycle is completed, a steady flow is introduced again to see if fluctuations
after the cycle occur. If the flow is largely laminar, then it is unlikely that these fluctuations will occur. If
they do occur, this means that it does not suffice to only simulate one cycle and extrapolate these results,
which makes the simulations computationally much more expensive.

Figure 6.4: Velocity profile at the inlet
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In the velocity profile figure, the flow analysis will be conducted at a few different time instances, which are
given in the plot, with the exact values and names given by table 6.3. The choice of these locations is not
arbitrary: points 3 and 5 are the minimum and maximum values of the velocity and points 2 and 4 are the
maximum values of the acceleration of the flow, which should be sufficient to show all the characteristics
of the cardiac cycle and resulting flow in the vasculature. During deceleration of the flow, the most drastic
changes to the flow field are expected. Once the flow is decelerated, the pressure increases with the flow,
which is called an adverse pressure gradient. With an adverse pressure gradient present, instabilities like flow
reversal and flow separation occur, which have the biggest influence on the shape of the flow field.

Index Name t [s]
1 start 0.0
2 acceleration 0.15
3 peak systole 0.23
4 deceleration 0.32
5 peak diastole 0.45
6 end 0.86

Table 6.3: Important time instances in the cardiac
cycle

case dx [mm] dt [s] N
1 0.0055 1.38 ·10−6 23.1 ·106

2 0.005 1.13 ·10−6 35.5 ·106

3 0.004 7.29 ·10−7 58.4 ·106

Table 6.4: Simulation details

Now, the model is fully defined and the mesh can be generated, which defines the element size dx and the
time step dt. In chapter 4.2 it was already discussed how to calculate the minimum required element size.
Also, decreasing the element size will in general reduce the numerical error made in the simulation, but it
will increase the simulation time. For the results in figures 6.5 to 6.8, the case 2 in table 6.4 is used.

(a) 2D velocity field at the start of the cardiac cycle (b) 2D velocity field during deceleration in the cardiac cycle

Figure 6.5: Planar velocity field at two time instances, in mm/s

In figures 6.5a and 6.5b, the velocity field of the model is given for two time instances. This velocity field
is obtained by considering the x-y plane, through z = 0. Looking at figure 6.4, it can be seen that the
inlet velocities for these two time instances are about 60 mm/s and 100 mm/s respectively. Because of the
narrowing just after the inlet, the velocity is generally much higher in the rest of the model. As the fluid
approaches the bifurcation, the velocity decreases due to the wall and the resulting rise in pressure. After the
bifurcation, the flow tends to Poiseuille flow if the length of the vessel is long enough. In this model, the flow
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velocity increases relatively quite a lot in the later branches because of the relatively small diameter. The
diameters in this model are not realistic according to Murray’s law, which states that in an optimal vascular
system the cube of the radius of the parent vessel is equal to the sum of the radii of the daughter vessels,
such that flow is obtained with the least biological work [76]. A generalisation of Murray’s law is given by
the equation below:

rγp = rγ1 + rγ2 (6.1)

The amount of biological work is a trade-off between energy dissipation for the blood transport due to
the viscosity and metabolic costs for maintaining the vascular walls [77]. Here, the assumption of laminar
Poiseuille flow results in Murray’s law, where γ = 3. Depending on the blood flow and the desired vasculature
form, other values have also been reported in the human body, with for example γ = 2.7 at locations with a
very small vascular wall thickness. An ideal model for the right hepatic artery is assumed to have Murray’s law
properties. Conclusions based on this model are therefore less representative of flows in an actual vasculature.
The vessels in the later models in this chapter are designed in such a way that they approximately obey
Murray’s law, which means that they represent a more realistic vasculature, albeit simplified.

To review the numerical results, the inflow and outflows will be analysed first. Any inequality in inflow and
outflows either means an error in the model, or numerical inaccuracies. In figure 6.6, the tracked velocities
at the start of the simulation and during the cardiac cycle are given.

(a) Start of the simulation (b) Cardiac cycle

Figure 6.6: Tracked velocities near the inlet and outlets during startup and the cardiac cycle

The velocity at the start of the simulation gives information about the convergence to a steady solution of the
simulation. The initial response in LBM simulations was already investigated in the test cases in the previous
chapter and a similar response is observed here. After 0.2 seconds, it can be seen that the solution has already
converged quite well. A choice was made to start the cardiac cycle after 2.0 seconds for convergence purposes,
however while it is a safe choice, some computation time could have been saved by starting the cycle earlier.

In both figure 6.6a and 6.6b, the inlet velocity is given as an input and it is also tracked some distance away
from the inlet to check if the velocity boundary condition works as expected. Initially some fluctuations are
visible, but after convergence the tracked inlet velocity follows the imposed inlet velocity perfectly. Also,
only four of the eight outlets are given in both figures, since the model is symmetric and the same values are
expected for the other corresponding outlets, which is shown in figure 6.7.
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(a) Full range (b) Zoom on the smaller errors

Figure 6.7: Difference between the symmetric outlet velocities during the cardiac cycle

From figure 6.7, it can be seen that the difference between the symmetric outlet velocities is very small.
For outlets 2 and 7, this difference is significantly larger compared to the other outlets. There are various
possibilities which could cause this difference, like the placement and the type of boundary conditions, the
tracking of the velocity or the mesh generation, which could not be entirely symmetric. A symmetry check
of the model in SolidWorks also shows a slight asymmetry in the smaller vessels towards outlets 2 and 7,
however it has not been verified if this asymmetry causes this velocity deviation. The difference is about 2%
of the total velocity and it does not result in a visible difference in the outflow plot over the whole cardiac
cycle, given by figure 6.8.

Figure 6.8: Outlet outflow fractions, calculated over the entire cardiac cycle
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In this figure, it can be seen that the outflows from outlets 2 and 7 are much lower compared to the other
outflows. This difference can be explained by the longer path to these outlets and the same zero pres-
sure boundary condition. For this model, a grid refinement study was carried out to show the numerical
convergence. The results of this can be found in figure 6.9.

(a) Full simulation (b) Zoomed

Figure 6.9: Tracked outflows for different grids for the whole simulation

In figure 6.9, the outflow results over the entire simulation range can be found. The initial phase is the
startup phase, to ensure a converged solution before the cardiac cycle starts. After the cardiac cycle, the
simulation returns to the steady velocity from the start-up, which is used to check if there are any visible
effects of the cardiac cycle after the cycle has ended. If multiple cardiac cycles are simulated, this last region
is replaced by another cardiac cycle, which is at t = 2.86s.

From these figures, it looks like the solution is converging and this plot was initially used to determine
if the earlier discussed results were accurate enough. However, this plot alone does not suffice to check
convergence. The outflow is calculated by taking all the values of the velocity on a plane, summing these
values and taking the average. By multiplying this result with the area of an outlet and summing the results
of all outlets, the total outflow is calculated. By adding more elements to a simulation, in general a solution
with a smaller numerical error is obtained. What also happens here is that more elements are added to this
plane, which makes the approximation of the outflow better, since more elements are used to calculate the
average velocity. For future simulations, the convergence will also be tested by using pressure or velocity
point data and comparing the results at the same point for multiple grid sizes.
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6.3 Wide angle liver vasculature model, corrected geometry

As mentioned in the previous section, the model used for the first vasculature simulations was the mould
model of the actual model. This means that the outer diameters in figure 6.3b are the inner dimensions of
the new model. The new model can be seen in figure 6.10.

Figure 6.10: Front view of the vasculature model with the updated geometry

The dimensions of the new model can be found in table 6.5. Comparing this table to table 6.1, it can be seen
that the corresponding diameters are exactly 1 mm larger than in the previous model. The length and height
of the model are a bit shorter since the outer parts of the previous model are cut off. The updated model has
no thickness, which is not realistic for a real model, however in these simulations this is not a problem. The
thickness only becomes important if there is flow around the geometry and if the wall is not rigid. The radii
that are used in this model approximately follow Murray’s law, which also makes it more realistic compared
to the previous model. Next to approximately following Murray’s law, the model is designed in such a way
that the inlet area is exactly half of the sum of the outlet areas. For incompressible flow this means that
the mean velocity at the outlet is approximately half the mean inlet velocity with an approximately equal
flow distribution over all the outlets. Compared to the previous model, it is expected that the velocity will
decrease after each bifurcation, as the area before the bifurcation is always larger than the total area after
the bifurcation.
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Parameter Value Parameter Value
D1 3.6 mm L 102.5 mm
D2 2.9 mm H 90.0 mm
D3 2.3 mm α1 30°
D4 1.8 mm α2 25°
twall [−] α3 20°

Table 6.5: Dimensions of the corrected vasculature model

case dx [mm] dt [s] N
1 0.024 1.38 ·10−6 102 ·106

2 0.022 1.16 ·10−6 132 ·106

3 0.020 9.59 ·10−7 176 ·106

Table 6.6: Simulation details

Although the model is quite similar to the previous model, the dimensions have changed quite a bit and a
grid refinement study is again required to investigate the numerical convergence of the solution. In table
6.6 the simulation details can be found regarding element size, time step and the number of elements. A
relatively large amount of elements is used for these simulations compared to the previous model, which was
initially expected to be required because of the increased diameters in the model. Because of the increase in
diameters, the velocity in the vessels also decreases and this means that a larger element size can be used
for keeping the lattice velocity below the limit. The flow results of these simulations can be found in figure
6.11. Note that 1000 mm3/s is 1 mL.

(a) Entire range (b) Zoom of peak systole

Figure 6.11: Cardiac wave, input and tracked flows

Again, it seems like a better solution is observed by using a finer grid. The approximation of the outflows
here are not entirely precise however. In this model, the outlets are not horizontal or vertical. To track the
velocities here, a skewed plane was used and the average velocity was taken. In a structured grid, a plane can
be used for tracking if it is horizontal or vertical, however at an angle a sort of staircasing effect is observed,
which can be seen in figure 6.12.
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(a) No staircasing with horizontal plane (b) Staircasing with tilted plane

Figure 6.12: Example of the staircasing effect in tracking

The average is taken over all the elements that intersect with the plane, which is different for the two cases
in figure 6.12. In the example, the difference in average velocity for both cases is very large because of the
large contribution of each element to the average. In practice, this difference will be smaller but most likely
still noticeable. A better approximation of the outflows can be realised by adding more points to calculate
the average velocity. Increasing the number of points on a plane is only possible by decreasing the element
size, so an alternative can be used by calculating the average velocity in a volume instead of a plane. By
using this method for tracking, the staircasing effect is also decreased.

Another method to check the convergence is by placing probes at some locations, as was discussed in the
previous section. For this model, three probes were placed near the first bifurcation, as can be seen in figure
6.13. The numbering of the probes increases for larger distance from the outlet. For example, probe 1 is
located in the middle of the model, just before the first bifurcation.

Figure 6.13: Velocity and pressure probe locations in the vasculature model, with the velocity field in mm/s

The results for both the pressure and the velocity at these probes for the different grid sizes in table 6.6 can
be found in figures 6.14a and 6.15a.
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(a) Probe 1 (b) Probe 2 (c) Probe 3

Figure 6.14: Pressure at probes over one cardiac cycle for different grids

In the pressure plots in figure 6.14, the two coarsest grids give a similar probe pressure for all three probes
over the whole cardiac cycle. The finest grid deviates a bit from this pressure, which gives a slightly lower
pressure at all three probes during the cardiac cycle. A possible explanation could be given by the boundary
conditions, which causes a different pressure propagation through the vasculature for a different grid. Here
the placement has a large influence, which will be shown in more detail for the next model. Also, the outlets
do not have the same length, which could also cause this boundary condition problem and the resulting
pressure difference. It is possible that the observed effect is a difference caused by the convergence, however
based on the small difference between the first and the second grid relative to the third grid, this is unlikely.

(a) Probe 1 (b) Probe 2 (c) Probe 3

Figure 6.15: Velocity at probes over one cardiac cycle for different grids

The velocity plots in 6.15 show that the difference in pressure values does not always result in a difference
in velocity. For example, the pressure difference for the finest grid at the first probe is not observed in the
velocity at this probe. For flow in the vasculature, a pressure difference is required, which means that a single
pressure value cannot be linked to a velocity difference. For the second probe, a velocity difference is visible
for the entire cardiac cycle, which could be explained by the boundary condition. While there is a velocity
difference for the finest grid at the second probe, this difference is not observed at the other two probes and
it can be assumed that the results of the second grid are accurate enough to represent the flow. The resulting
outflow deviations from the average outflow of this simulation can be found in figure 6.16a. Next to this
figure, the experimental results are given for comparison.
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(a) Simulations results (b) Experimental results

Figure 6.16: Outflow deviations from the average outflow given by equation 6.2

The outflow deviation from the average outflow δ is calculated by using equation 6.2.

δ = Vout − Vavg
Vavg

· 100% (6.2)

In the equation, Vout is the tracked outflow and Vavg is the total inflow or outflow divided by the number of
outlets, which is 8 in this model. In both the experimental results and simulation results, a smaller outflow
in outlets 2 and 7 is observed. However, the simulations show a much larger deviation from the average than
the experiments. In figure 6.17 the velocity field of the vasculature at the start of the cardiac cycle is given.

Figure 6.17: Velocity magnitude at the start of the cardiac cycle for case 1, in mm/s

The velocity in the vasculature decreases after each bifurcation, which was expected from the increase in area
after each bifurcation. However, the velocity in outlets 2 and 7 is relatively low, which is expected from the
given outflow plots. In figure 6.18 the outflow deviation and outflow fractions of the Musubi simulation are
compared to the Ansys Fluent simulations that are performed by Ghent University.
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(a) Outflow deviations from average outflow (b) Total outflow fractions

Figure 6.18: Musubi and Ansys Fluent simulation comparison on outflow deviation and total volumetric
outflow fraction

The trend in the Musubi and Ansys simulations is much more similar than what is observed in the comparison
with the experimental outflows. In the Ansys simulations, a similar zero pressure boundary condition is used.
From this, it can be assumed that the simulations perform as well as could be expected with this type of
boundary condition. One of the options to solve this problem is to impose a pressure boundary condition
is a specific non-zero value, however for this the pressure from the experiments should be known. Here,
an analytical derivation of the pressure could be a possibility, however this can become quite complex [78].
Instead, experiments were conducted with a new vasculature model with outlets that all have the same length.
In the next section, the simulation results with this new model will be discussed.
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6.4 Small angle liver vasculature model

With the updated model, the outlets all have the same length and problems with the pressure boundary
condition should be solved. Also, the bifurcation angles of the new model are smaller for all three bifurcations.
A front view of the updated model can be found in figure 6.19, with the new dimensions listed in table 6.7.

Figure 6.19: Front view of the new vasculature model

Parameter Value

D1 3.6 mm

D2 2.9 mm

D3 2.3 mm

D4 1.8 mm

twall 0.1 mm

L 150.0 mm

H 120.5 mm

α1 20°

α2 12°

α3 6°

Table 6.7: Dimensions of the new vasculature model

The model in figure 6.19 was created in SolidWorks and it is the second version of this model. Initially
a similar model was used, however due to some modelling issues in SolidWorks it took a lot of time and
computation power to get a working simulation. The results can be found in Appendix A, in which it is
apparent that there is a mistake in the simulation. To get a working model, a very fine mesh was used and
the relaxation frequency value was adjusted such that the simulation worked. From the results, it seems like
the model is leaking at some location, since there is a large difference between the inflow and outflow. After
remodelling, the simulation required less elements and the relaxation frequency could be changed back to the
original value of ω = 1.9 that is used in all simulations. Tuning the relaxation frequency could in some cases
result in a working simulation, however this is a circumvention of the problem without solving the problem.

With the updated model, the results improved a bit, however still some strange results were observed initially.
In the previous model but also from the vasculature with the old angles in the previous section, some very
fine were used and initially, convergence seemed to be the problem. Some very fine grids were used and the
outflow fractions changed for each simulation. For a very fine grid with about 389 million elements, the result
of the fractional outflow in one cardiac cycle can be found in figure 6.20. The tracked inflow and outflows
can be found in figure 6.21 for the same grid over the cardiac cycle.
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Figure 6.20: Fractional outflows with dx = 0.018 Figure 6.21: Tracked inlet and outlet flows over the
cardiac cycle

From figure 6.20, it can be seen that outflows 3 and 6 are very low for this very fine grid, which is not expected
when analysing the model. Also, there is a difference between the outflows at outlets 1 and 8, which should
not be observed in a symmetric model. In figure 6.21 the tracked inflow and outflows are given and while
there is a difference between the inflow and outflow, this difference is much smaller compared to the outflows
that the simulations with the wrong model produced. Still, there is an error in the model that should be
resolved. Previous results were largely influenced by the wrong model, so first the model was analysed in
attempt to resolve the error.

Figure 6.22: Symmetry check in the vertical
axis of the model

Figure 6.23: Velocity differences between the outlets for the
symmetric and asymmetric model

In figure 6.22 a symmetry check of the model can be seen. The symmetry check is a tool in SolidWorks
which identifies similar surfaces based on a symmetry plane. In the figure, the yellow surfaces are symmetric,
which means that the surfaces are identified to be similar on the left and right side of the plane and they also
have the same dimensions. The green surfaces in the figure are not symmetric, which means that SolidWorks
does consider the surfaces to correspond, however it does find different dimensions. The red surfaces in the
figure are unique faces, which means that SolidWorks does not find corresponding surfaces on both sides of
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the plane. While it looks like those surfaces should correspond, the modelling is done in a slightly different
way in the model, which results in two defined surfaces at this location on the left side of the plane and one
defined surface at this location on the right side of the plane. These unique surfaces do not mean that this
location is asymmetric.

While an asymmetry is detected, the model does look symmetric and the asymmetry seems to be small.
The model has been cut in half and mirrored in the symmetry plane to obtain a symmetric model. Similar
simulations were performed using both models and the results can be found in figure 6.23 in an attempt to
quantify this asymmetry. In this comparison, both the simulation with the symmetric and the asymmetric
model have an element size of dx = 0.038. The rest of the simulation details are given in table. 6.8.

In the ideal case with the symmetric model, the difference between the velocities in the symmetric outlets
should be equal to zero. The result of the asymmetry should especially be observed in the difference between
outlets 1 and 8, and also 2 and 7. In the figure, the biggest difference between the symmetric case and
asymmetric case is in this outlet difference, so it can be concluded that there is indeed an asymmetry that
could influence the results. Deviations are also observed in the other outlet velocities differences, which can
be explained by the pressure boundary condition. If the length or the diameter is changed, the pressure
gradient also changes. For instance, if the outlet becomes shorter due to the asymmetry, then near the
bifurcation the pressure will not be equal and flow tends to go into the vessel with the lower pressure.

Although there is an influence by the asymmetry, this cannot explain the results in figure 6.20. From some
further analysis using the symmetric model, a tracking error was found at outlet 8. While the definition of
the tracking was similar at the other outlets, the error only occurred at outlet 8. Defining the same region
in a different way solved the error, which gives the results in figure 6.24. In this figure, a grid with about 69
million elements is used, which is much lower compared to number of elements used for the finest simulation
with the asymmetric model.

Figure 6.24: Fractional outflows with dx = 0.032 Figure 6.25: Tracked flows with dx = 0.032

In the figure, it can be seen that the results are symmetric now, however this is mainly due to the fixed outlet
tracking at outlet 8 and not due to the new symmetric model. Another difference between figure 6.20 and
6.24 is the volumetric outflow fraction at outlets 3 and 6, which is much lower for the finer grid. It seems
that this difference becomes larger if the grid becomes finer, which is either a convergence issue or another
problem in the simulation. In figure 6.25 the tracked inflow and outflows are given for the finest grid in table
6.8. The maximum difference between the inflow and outflow is about 2.5%, which can be explained by some
compressibility, by the calculation of the average velocity or the numerical convergence of the simulation,
which also influences the former two reasons. The tracking for these simulations is done by tracking points
in a volume instead of on a plane as in the previous simulations, so the calculation of the average velocity
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should be more accurate. Some simulations with coarser grids were performed to check the convergence,
which can be found in table 6.8.

case dx [mm] dt [s] N
1 0.038 3.46 ·10−6 41.3 ·106

2 0.035 2.94 ·10−6 52.9 ·106

3 0.032 2.45 ·10−6 69.2 ·106

Table 6.8: Simulation details

Probe x [mm] y [mm] z [mm]
1 33.0 0 0
2 43.5 0 -4.0
3 52.4 0 -7.3
4 62.4 0 -10.75

Table 6.9: Probe locations

Instead of using the outflows to investigate the convergence of the different grids, velocities at some probes
were used. The probe values can be found in table 6.9, which are also plotted as yellow dots in the vasculature
given by figure 6.26. The coordinates of the probes are given relative to the origin, which is located exactly
in the middle of the model for the y and z coordinate, and in the middle at the top of the inlet for the x
coordinate.

Figure 6.26: Velocity and pressure probe locations in the vasculature model, with the velocity field in mm/s

For the three different grids, the probe velocities at the four different locations are given during the cardiac
cycle by figure 6.27.
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(a) Probe 1 (b) Probe 2

(c) Probe 3 (d) Probe 4

Figure 6.27: Velocity probe values over the cardiac cycle for multiple grids

For probes 1, 3 and 4, the lines are almost on top of each other. Only for probe 2 a difference in probe
velocity can be seen for the finest grid. It could be possible that this is a convergence problem, however
based on the results from the other probes it is more likely that something went wrong with the tracking at
the probe in the simulation with the finest grid. A possible explanation could be that the second probe is
located near the edge of the element and that it shifts to another element only for the finest grid. The probe
velocity is shifted during the entire cardiac cycle and the tracking of a different element could explain this
best.

It seems that the numerical error does not cause the relatively low outflows at outlets 3 and 6. For finer
grids, these outflows even become lower instead of higher, so it is not a convergence issue. While in general a
finer grid gives a better solution, this is not always the case. From the experiments, which will be compared
to the simulations later in this section, this was also not observed, which means that there is still an error in
the model that is unresolved. The results of the outflow plot in figure 6.24 can also be seen in the velocity
and pressure plots, which means that the tracking errors are now fully resolved. These velocity and pressure
plots are given by figure 6.28.
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(a) Full scale velocity field in mm/s (b) Pressure field with adjusted scale, in mP a

Figure 6.28: Planar scalar fields at the start of the cardiac cycle, inaccurate boundary condition placement

The velocity in figure 6.28a seems to be too low compared to the other outlets, however from the velocity
plot alone it is difficult to draw conclusions. The pressure plot gives more information, which contains visibly
different pressure gradients near outlets 3 and 6. Also, the pressure at the end of the vasculature is not equal
to 0 here. Since a zero-pressure boundary condition is used, a pressure closer to zero would be expected. It
turns out that the outflow difference is largely dependent on the pressure boundary condition placement. The
placement precision could not be achieved in Seeder, so the model was adjusted again, in which STL files were
placed at the end of the outlets. In Musubi, a boundary condition can be placed on an STL object defined by
Seeder, so the precision from SolidWorks could be transferred to the simulation. In figure 6.29, a coarsened
mesh with dx = 0.12 is used for highlighting the difference between the new and old placement. With the
new boundary placement, more elements are added to the model which gives a more accurate representation
of the model, where the lengths of the outlets are more equal. Due to the precision of the old placement,
more elements are added to some of the outlets, in particular to outlets 3 and 6. Although the difference
seems to be small, it does have a large impact on the results. For finer meshes, the difference between the
number of layers that are added between the outlets becomes larger, which explains the increasing differences
in outflows for the grid refinements.
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(a) Old (blue) and new (red) placement (b) Old and new placement, zoomed

Figure 6.29: Element difference due to the placement of the boundaries

6.5 Small angle liver vasculature model, boundary correction

With the changes concerning symmetry and boundary placement, the second model is adjusted and the final
model is obtained. The velocity and pressure plots with the improved boundary condition placement are
given by figure 6.30. Here, the same element size is used as in figure 6.28 of dx = 0.038.

(a) Full scale velocity magnitude field in mm/s (b) Pressure field with adjusted scale in mP a

Figure 6.30: Planar scalar fields at the start of the cardiac cycle, accurate boundary condition placement

Similar velocities and pressure gradients can now be seen in the velocity and pressure fields. The outflow is
also much more evenly divided over the outlets, which was also observed in the experiments. Another grid
refinement should not be required here, since the placement of the boundary condition will not change the flow
too much in general and the geometry remains the same. Because of a limited computational capacity, the
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coarsest grid in table 6.8 will be used for the remainder of the simulations, which should give accurate enough
results based on the probe convergence study. The comparison to the experiments can be seen in figures 6.31
and 6.32. The simulation results are based on one cycle, while the experimental results are obtained from
running multiple cycles through the phantom. The results are compared by using the percentual outflows,
which should be equal for one and multiple cycles based on the type of flow in the model.

(a) Simulation results (b) Experimental results

Figure 6.31: Comparison of fractional outflows from the simulations and experiments

(a) Simulation results (b) Experimental results

Figure 6.32: Comparison of outflow deviations from average outflow from the simulations and experiments

In the simulations, there is a minor trend visible in figure 6.31a. From the results it can be seen that the
central outlets have a slightly higher outflow than the more peripheral outlets. It could be possible that the
boundary placement still causes this difference and that another boundary condition for the pressure could
reduce this difference. The difference between the volumetric rates between the simulations and experiments
is within 5%.

This difference is comparable to the found deviations in the experiments. Here, even outflow should be
observed in the symmetric outlets and an error can be defined based on this. For example, the flow rate
difference is about 4% between outlets 3 and 6 for all conducted experiments, which can still be considered
a relatively small error. The errors in the experiments become more apparent when looking at the outflow
deviation plots in figure 6.32. Here, a symmetric profile like the simulations show in figure 6.32a is expected.
Again in outlets 3 and 6, a large difference is clearly visible, but the total error is limited to a few percent.
Although some differences between the experiments and simulations can be seen, quite an even flow distri-
bution over the outlets is obtained in both the simulations and the experiments and it can be assumed that
they match well enough for the purpose of the simulations.
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From the simulations, it can be concluded that there is no turbulence and no backflow happening in the
model at any time in the cardiac cycle. The most extreme flow with the largest velocity can be found near
the first bifurcation. As the flow nears the bifurcation, the pressure increases and the flow is directed into
one of the branches. This increase in pressure can be seen in figure 6.33a for the deceleration phase. The
velocity field of the deceleration phase be seen in figure 6.33b. Here, the scale is set so velocities below 400
mm/s are not in the figure, to visualise the high velocity regions.

(a) Pressure field in mP a, adjusted scale (b) Velocity magnitude field in mm/s, adjusted scale

Figure 6.33: Planar scalar fields during deceleration of the cardiac cycle

The velocity magnitude fields at all 6 time instances given in figure 6.4 can be found in Appendix B. The
shape of the velocity field changes slightly over the cardiac cycle, mostly around the first bifurcation of the
vasculature. This is best displayed by showing the gradient field of the velocity field. The gradient matrix is
calculated by using equation 6.3:

Gij = ∇vi = ∂vi
∂xj

(6.3)

In the equation, vi accounts for the velocity is three directions and xj accounts for the three spatial directions,
with i, j ∈ {1, 2, 3}. The full gradient matrix Gij for a 3D vector field contains 9 components, where the
magnitude of the matrix is also computed. The magnitudes of the velocity field and the gradient field are
given in the figures 6.34 and 6.35 for the start of the cycle and during deceleration of the cycle. Since larger
gradients are found for increased values of the velocity, the gradient field range is scaled with the velocity to
highlight the changes in the velocity field form during the cycle.
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(a) Velocity magnitude field in mm/s (b) Gradient magnitude field in 1/s

Figure 6.34: Magnitude planar fields at the start of the cardiac cycle

(a) Velocity magnitude field in mm/s (b) Gradient magnitude field in 1/s

Figure 6.35: Magnitude planar fields during deceleration of the cardiac cycle

The unit of the velocity magnitude is mm/s and the unit of the gradient magnitude is 1/s. It can be seen that
the gradient field changes mostly around the first bifurcation, but also slightly around the second bifurcation
during the cardiac cycle. Only the plots for the start of the cycle and the deceleration of the cycle are
given, because from further analysis it is concluded that these plots also represent the shape of the field for
the other time instances. For example, during acceleration the gradient field transforms from the start to
the deceleration gradient field. At peak systole, the gradient field has the same shape as the deceleration
gradient field. Interesting here is that the gradient field during deceleration with a certain velocity has a
different shape that the gradient field during acceleration with the same velocity, which means that next to
the magnitude of the velocity, the acceleration of the flow also has an effect on the shape of the field. The
gradient fields for the other time instances can be found in Appendix B.

The change in the gradient field shows that the cardiac cycle time instance can have a large impact on the
particle distribution in the vasculature. For a large change in the velocity field shape, the streamlines change
over the cardiac cycle and the injection time and instance during the cycle become important parameters
for a good particle distribution. With a known velocity field, streamlines can be calculated for the cardiac
cycle. Based on the differences in the gradient fields during the cardiac cycle, differences in the streamlines
can already be expected.

Streamlines are always tangent to the direction of the flow and if the direction of the flow changes, the
streamlines change. The flow directions changes are governed by the rotation of the flow, which is related to
the vorticity or curl of the flow. The vorticity of the velocity field can be calculated by using equation 6.4.

ωi = ∇× vi (6.4)
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The result is a vector with three component, since for a 3D field i ∈ {1, 2, 3}. The magnitude of this vector
gives the degree of rotation, but does not give information about the direction. The three components give
the curl of the flow around the three axes. To understand the meaning of the vorticity, the right hand rule
can be used. In figure 6.36, the vorticity field around the y-axis is given. For these plots, the right hand rule
shows that a positive value gives a counter-clockwise rotation and a negative value gives a clockwise rotation.
The unit of vorticity in this case is mrad/s. Again, the start and deceleration phase are given in the plots.

(a) Start of the cardiac cycle (b) Deceleration during the cardiac cycle

Figure 6.36: Vorticity of the velocity field around the y-axis

The vorticity is scaled with the velocity, because a higher value is obtained if the velocity is the same for a
similar flow field. From the gradient field plots differences in the vorticity are expected and these differences
can be observed around the first bifurcation, however the differences are not apparent. Still, after inspection
it can be seen that the vorticity is lower at the start of the cardiac cycle and a relatively smoother vorticity
field is also observed around the bifurcation. From this, differences in the streamlines are expected, however
the severity is still to be determined. Also, the acceleration seems to have a negligible impact on the form of
the vorticity field. The plots for the other time instances can be found in Appendix B.

The streamlines are calculated using a Runge-Kutta 4-5 integration scheme on a constant velocity field at
one time instance. The streamlines are coloured based on the outlet they eventually flow to. The streamlines
are calculated from the outlets back to the inlet, where a sufficient amount of points are placed at the outlet
to generate distinct regions. In figure 6.37 the streamlines with the colours based on their corresponding
outlet are given. Here, z is the vertical axis and x is the horizontal axis.
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Figure 6.37: Streamlines in the vasculature model during deceleration, col-
oured by outlet

Figure 6.38: Colourmap based
on the outlets

Now, cross sections are made near the inlet to show the streamline distribution maps. The distributions at
the inlet for the 6 time instances that are given by figure 6.4 are displayed in the plots in figure 6.39. Here
the y-z plane is given with z as the vertical axis.

(a) Start (b) Acceleration (c) Peak systole

(d) Deceleration (e) Peak diastole (f) End

Figure 6.39: Streamline distribution at the inlet at various instances
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In the streamline distribution maps, clear regions can be distinguished based on the outlet where the stream-
lines end up. This also means that the used Runge-Kutta integration scheme is very accurate: intersection
of the streamlines is not constrained and calculation is done from the outlets to the inlet, where the largest
error will consequently be found at the inlet. With a lower accuracy, a mix of the regions is expected and
symmetry in both the vertical and horizontal plane would likely not be observed.

The obtained maps give a lot of information about particle distributions under some circumstances. If the
streamlines remain constant sufficiently long, then a weightless particle that is released at the inlet at one
of the regions in the map will flow to the corresponding outlet. From these maps, the start and end map
are similar, which is expected since the velocities are similar and there are no residual flow effects due to
the cardiac cycle in the model at the end of the cycle, which is largely due to the laminar flow. Also, the
streamline maps from acceleration, peak systole and deceleration are quite similar. From this, it can be
concluded that the velocity magnitude has the biggest influence on the streamlines and not the acceleration
or deceleration of the flow. This observation is further substantiated by the peak diastole map, which is
clearly different from the start and peak systole maps, with the only difference being the velocity magnitude.

The calculated streamline distribution map for the velocity at the start of the cycle can also be compared
and verified to a steady state simulation in which particles are released. For such a simulation, particle
trajectories should be similar to the streamlines if the particles are passive enough and if the inlet velocities
are similar. At Ghent University, Ansys Fluent simulations have been conducted by T. Bomberna and N.
Saikali on the same model. Particle Release Maps (PRMs) were calculated for different types of particles for
both steady and transient flow. The steady state microbubble PRM from these simulations is given by figure
6.40a, where the inlet velocity of this simulation is the same as the velocity at the start of the cardiac cycle
that is used in this chapter. Next to this figure, the streamline distribution map at this time instance in the
cycle is given again, with an adjusted colour legend for comparison. Further comparison to the Ansys Fluent
simulations can be found in Appendix C

(a) Steady state microbubble release map (b) Streamlines distribution map at the start of the cardiac
cycle

Figure 6.40: Comparison of the particle release map and the streamline distribution map for similar velocities

Microbubbles are very small particles that are often used as contrast agents in medical imaging. It is expected
that the particles are sufficiently small and light, such that they will follow the streamlines of the flow quite
well. In the simulation, particles are released at the inlet and tracked throughout the vasculature model.
Based on the outlet they flow to, a colour is assigned to the microbubble. If they follow the streamlines,
then the coloured cross-section of the streamlines at the start of the cardiac cycle should correspond to the
PRM of the microbubbles. The comparison in figure 6.40 between the microbubble PRM and streamline
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distribution can be considered quite good, as the outlet streaming regions can be found in the same locations
and their shapes are similar. Some differences in the plots can be explained by the thickness of the points
in the streamline distribution plot, which is used for visualization and gives an apparent larger thickness of
the outer layer. Moreover, the microbubbles are not entirely passive and thus some differences are expected
between the microbubble paths and the paths that passive tracers would follow. Still, the results can be
considered quite good and the microbubble distribution can be predicted by looking at the streamlines for
this case.

Based on this comparison, the conclusion can be expanded for transient flow behaviour. If the streamlines
are more or less constant over a sufficient period of time such that the particles can reach the outlets, then
the streamlines and the trajectories of the weightless and near-weightless particles should be quite similar.
From the acquired maps, it can be stated that the velocity is especially important for the distributions. Also,
for higher velocities the streamlines have to remain constant for a shorter amount of time, because particles
reach the outlets faster in this case.

The particle time to reach the outlets versus the plane injection location should be studied for more inform-
ation about the best injection location and time, however the calculated streamline plots already give an
implication. For example, if particles should be directed to the more peripheral outlets, it seems that the
best injection time is around peak diastole or around the start of the cardiac cycle. If the model is placed
horizontally, the injection location should be as close as possible to the right or left side of the wall. For
outlets 2 and 7, the best injection time would be around the start of cardiac cycle, near the top or the bottom
of the outlet depending on the desired outlet.

One of the limitations here is the catheter precision, which is used for the injection of the particles in the
blood stream. For this reason, only general conclusions can be drawn from the given plots, given that the
velocity is the most important parameter for the distribution plot shape. During the diastolic phase, the
velocities are in between the start/end of the cycle velocity and the peak diastolic phase velocity, which
means that during this phase the distribution maps look similar to the found distribution maps for these
three phases. For the outermost 4 outlets, distributions seem to be better during the diastolic phase, with
injection preferably a bit closer to the wall. For the innermost 4 outlets, distributions seem to be better
during the systolic phase. These conclusions are based on the sizes and locations of the found shapes.

The obtained results apply only for the simplified model with weightless particles, however it could already
give an implication for any model based on the flow behaviour. During the cardiac cycle, streamlines change
due to the increase and decrease in velocity for this model. From previous analysis it was seen that the
vorticity field also changes with the velocity, so it implies that the vorticity and streamline development can
be linked. The complete flow and streamline development is difficult to visualise using the previously used
cross-section of the model, so a new approach will be used for this analysis. In figures 6.41 to 6.43, the
development of the streamlines over the vasculature is given using several slices for three time instances. The
velocity field developments are also given. The start, deceleration and peak diastole time instances account
for the calculated streamline distribution maps at all the 6 important time instances.
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(a) Cross sections of the velocity field magnitude in mm/s (b) Cross sections of the streamlines

Figure 6.41: Slices at the start of the cardiac cycle, with a slice interval of 5mm

(a) Cross sections of the velocity field magnitude in mm/s (b) Cross sections of the streamlines

Figure 6.42: Slices in the deceleration phase of the cardiac cycle, with a slice interval of 5mm

(a) Cross sections of the velocity field magnitude in mm/s (b) Cross sections of the streamlines

Figure 6.43: Slices at peak diastole of the cardiac cycle, with a slice interval of 5mm
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From these plots, it is clear that the streamline development is quite different between the phases, especially
during the deceleration phase. In the deceleration velocity plot, a v-shape velocity profile is observed, which
is also slightly visible in the start of the cycle velocity plot. This flow velocity difference could explain the
change in streamlines. In the deceleration phase, flow in this region is be pushed upwards, causing the
flow above to be pushed towards the lower velocity region in the middle, which can be seen for the yellow
streamlines. Another relevant difference here is the development length to Poiseuille flow in the vessels
after the bifurcation, which is much longer for the deceleration phase. When zooming in on the streamline
development plots, it can also be seen that in the deceleration phase the streamline cross-sections are still
changing further downstream relative to streamline plots of the other phases.

It is however difficult to draw conclusions on streamline development. The velocity field and streamline
development plots are different, however the link between the differences is not clear from these plots. The
vorticity plots of these three time instances should offer more information, as the change of the streamlines
is governed by the vorticity. In figures 6.41 to 6.43, it can be seen that the largest changes occur around the
first bifurcation, so in the next part of the analysis a closer at this area is taken. In figure 6.44, slices around
the first bifurcation are given for the streamlines, velocity, vorticity and a newly defined variable that is the
vorticity scaled by the velocity per point.

(a) Cross sections of the streamlines (b) Cross sections of the vorticity magnitude field in mrad/s

(c) Point scaled vorticity field by velocity magnitude (mm/s) in mrad/mm

Figure 6.44: Slices at the start of the cardiac cycle zoomed on the first bifurcation, with a slice interval of
5mm
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In figure 6.44 the vorticity magnitude plot is given next to the streamline slices plot. It can be seen that
the vorticity changes around the bifurcation, which can be linked to the changes in the streamlines. Still,
this can only be seen from the vorticity slice changes relative to the vorticity at the start of the inlet, given
by the first slice in the plot. While the streamline changes are influenced by the vorticity, the magnitude
of the vorticity alone does not give enough information about the change. If the vorticity is similar over a
whole region in a cross-section, then a region with a higher velocity is affected less by the vorticity due to the
shorter period of time the fluid is in this region. The unit of the vorticity is in rotation per second, while for
the streamline development it would be more interesting to see the rotation per unit of length. The vorticity
magnitude is divided by the velocity magnitude at each point, which gives a vorticity like parameter with
the unit mrad/mm. The result is given in figure 6.44c.

For the flow in the middle of the channel, it can be seen that the region of the higher adjusted vorticity
coincides with the region in the streamline development plot where the streamlines are changing. For the
flow at the sides of the channel, very high values of the vorticity are found which do not result in streamline
changes. This wall-induced vorticity is and effect of the used no-slip boundary condition. This vorticity
does however not result in flow rotation, which can be explained by imagining a particle near the wall of the
vasculature. This particle will rotate due to the velocity gradient near the wall, even thought the streamlines
are parallel to the wall and do not experience rotation at all. The vorticity can be seen as a microscopic
rotation of the fluid, which can result into macroscopic rotation if the flow has inertia. Near the walls, the
flow inertia is very low, which does not result into flow rotation even though the vorticity can be very high
here. The point velocity scaled vorticity can thus only give information about the flow rotation in the middle
of the channel.

(a) Cross sections of the streamlines (b) Point scaled vorticity field by velocity magnitude (mm/s) in
mrad/mm

Figure 6.45: Slices during the deceleration phase of the cardiac cycle zoomed on the first bifurcation, with a
slice interval of 5mm
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(a) Cross sections of the streamlines (b) Point scaled vorticity field by velocity magnitude (mm/s) in
mrad/mm

Figure 6.46: Slices at peak diastolic in the cardiac cycle zoomed on the first bifurcation, with a slice interval
of 5mm

In figures 6.45 and 6.46 streamline and adjusted vorticity slices of the deceleration and peak diastolic phase
are given. Again, the streamline changes coincide with the adjusted vorticity plots. Also, the changes in
streamline direction in the deceleration phase are larger than at peak diastolic in the cardiac cycle, which
can be seen in the adjusted vorticity plots by the larger values in the middle of the vessels. The direction of
the vorticity is not given, however this can in turn be derived from the streamline plots.

In the deceleration phase plot, the region after the bifurcation on the outside of the model has a relatively high
vorticity compared to the velocity. This region coincides with the yellow streamlines just after the bifurcation.
In the plots, it looks almost like the red and dark red streamlines wrap around the yellow streamlines. Due
to the high vorticity, the yellow streamlines disappear from this region after one slice already. Some more
flow development happens after this until the known Poiseuille flow profile can be seen again, in which the
streamlines become steady. The development to Poiseuille flow in the deceleration phase was already given
by figure 6.42a.

The regions of interest are highlighted for further analysis from a particle dynamics perspective. Particle
path deviations from the streamlines will be investigated in the future. The results in this chapter can be
used for this and possible deviations are likely to take place in the highlighted regions. Also, the results
can be used as a validation baseline for the activity of the particles. Similar results should be obtained for
passive particles that are actually tracked in the flow by Musubi, while a difference in distribution will give
a measure of the influence of the activity of the particles. The administration of the particles is done by a
catheter, which will also have an influence on the flow. In the next chapter, the qualitative study on the
catheter effect on the flow and a possible impact on the found flow characteristics in this chapter will be
discussed.
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Chapter 7

Catheter injection: a qualitative study

In the previous chapter the simplified RHA model was analysed, which offers more insight into the particle
distributions. In SIRT, particles are administered into the blood flow by catheter injection. While the
selective therapy offers some advantages with respect to ablative techniques like chemotherapy, catheter
injection also has its own limitations. One important limitation for this technique is the catheter reach: the
vasculature becomes smaller after bifurcations and eventually the vessels become too narrow for the catheter.
To ensure a good distribution, which in practice means that most particles will be delivered to vessels near
the tumour, a good understanding of the flow is required. In the previous chapter, the general flow in the
simplified model was studied with an initial prediction of particle delivery regarding injection time and the
planar particle release location. In the obtained streamline maps in figure 6.39, the influence of the catheter
was initially neglected and the validity of the assumption has to be investigated. The goal of this study is
to obtain more insight into the disturbance of the flow due to catheter injection. Therefore, the influence of
the catheter flow on the vasculature flow will be investigated. In the analysis, the influence of the blood flow
on the obtained flow fields will also be discussed to estimate the total impact that catheter injection could
have. In this chapter, the blood flow will be referred to as external flow. With the results in this section,
only a prediction of the results can be made and the influence of the blood flow can only be estimated. It is
therefore a purely qualitative study which could be used as the groundwork for further research into catheter
injection parameters.

7.1 Catheter specifications and modelling

Figure 7.1: Progreat® microcatheter 0.025”
(0.65 mm) label

In this study a rigid catheter is placed in the vasculature, from
which a flow is injected into a stationary fluid in the model. The
catheter dimensions are based on the Progreat® microcatheter
from Terumo [79]. The specification are given by figure 7.1.

The model of the catheter can be found in figure 7.2. Here, the
full model is given by figure 7.2a without a catheter angle and
a zoom of the model is given by figure 7.2b for the model with
a catheter angle of 2°. The simplest type of catheter is used for
this study, while new and complex catheters are designed and
show a real influence on distribution results [5]. In the simula-
tions the catheter remains in the same place, but it should be
noted that in the in-vitro experiments with a catheter injection
performed at the University of Twente, large fluctuations in
catheter position were visible during the injection. How large
these fluctuations can be in practice and to what extent these
fluctuations could influence the distribution results is not quan-
tified and might be interesting for future research on catheter
modelling in CFD.
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(a) Full catheter model, case 1: no catheter angle and in-
serted at the centre

(b) Full catheter model, case 2: tilted catheter,
inserted at the centre

Figure 7.2: Cross-section of the catheter model for two different setups

In this chapter, the length of the catheter is also adjusted for the model, which should be clear from the
corresponding velocity and vorticity plots. The information on the different catheter placement cases is given
by table 7.1. The other parameters of the model are the same as in the previous model, with the dimension
given in table 6.7.

Case Length [mm] Angle Wall Thickness [mm] Diameter (excl. wall thickness) [mm]
1 20 0 0.1 0.65
2 20 2 0.1 0.65
3 32 0 0.1 0.65
4 32 2 0.1 0.65

Table 7.1: Catheter cases and dimensions

In the table, the catheter length is the length of the catheter inside the model. The length to the bifurcation
from the inlet is 37.6 mm. The wall thickness is the thickness of the catheter wall. First, a wall thickness
of 0.01 mm was used, however this resulted in leaking of the catheter, which can be found in figure D.1 in
Appendix D. For such a simulation to work, the element size should at least be of the same order, preferably
smaller, which would results in the use of many elements if the uniform structured grid is used. For the
new simulations a thickness of 0.1 mm is used. This thickness is also more realistic when looking at existing
catheters, with wall thicknesses of new catheter being pushed to just below 0.1 mm [80]. The catheter
diameter that is given in the table is excluding the wall thickness.
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7.2 Catheter injection simulation results

Now the model is described, the results from the simulations can be discussed. From these simulations, only
a prediction of the influence can be made. The performed analysis is based on steady state simulations, with
the velocity boundary condition placed on the inlet of the catheter. The vasculature inlet is now closed and
treated as a wall. The velocity is equal to the velocity at the start of the cardiac cycle in the previous section,
given in table 7.2 with the other simulation parameters. The parameters are the same as in the previous
section. The choice for the velocity is made such that a similar grid size can be used as in the previous
section, where higher velocities could exceed the lattice velocity limit.

Parameter Value
ρ 1.1474 · 10−6 [kg/mm3]
µ 4.3100 · 10−6 [kg/ (mm · s)]
ω 1.9 [−]
v 255.0 [mm/s]

Table 7.2: Simulation parameters

case dx [mm] dt [s] N
1 0.038 3.46 ·10−6 41.1 ·106

2 0.035 2.94 ·10−6 52.7 ·106

3 0.032 2.45 ·10−6 69.0 ·106

Table 7.3: Simulation details

For catheter case 1, the convergence was analysed using several probes given in figure 7.3a. The probes are
placed at the same locations as the previous model, with the dimensions given by table 6.9 in the previous
chapter. Here the probes number is increasing from the outlet, which means that probe 1 is located in the
middle of the model just before the bifurcation. The three different grids are also similar to the grids that
were used in the previous section, which are given in table 7.3.

(a) Probe locations (b) Velocity at probe 1

Figure 7.3: Convergence study using probes

Looking at the probe locations in figure 7.3a, one could argue that the placement could be better for checking
the convergence. The region of interest is around the catheter and the biggest velocity and flow differences
are expected in that region. Of all the probes, probe 1 is located the closest to the catheter and it is assumed
that this probe can give information about the consistency in this region. Still, the rest of the field should also
be consistent for different grids, so all the results are expected to give enough information about convergence.
Only the probe values for the first probe are given, because similar results are obtained for the other probes.
The other probe plots can be found in Appendix D.

85



In figure 7.3b, it can be seen that the finest grid probe values are slightly higher than the probe values for
the two coarser grids. The difference between the finest and coarsest grid is about 3%, which is acceptable.
Also, since this is a qualitative study, it is important that the flow behaviour is captured by the simulation.
It can be assumed that this probe velocity difference will not result in major flow differences. The results in
the plots below are all obtained using the coarsest grid in table 7.3.

First, case 1 is analysed. Here, the catheter is located a bit further from the bifurcation and it is placed
horizontally in the vasculature model, so without an angle. The velocity and vorticity plots can be found in
figure 7.4a. For all the four cases, four 2D plots are given to visualise the results. First, the velocity plot
is given at full scale and at an adjusted scale to visualise the locations that are impacted by the catheter
injection. The velocity magnitude plots are given, but also the velocity in x direction, which gives information
about the backflow. From the velocity, the vorticity can be calculated. Here, the y component of the vorticity
is given, which gives the 2D curl of the velocity field. In the previous chapter, high velocity and vorticity
were linked with a change in streamlines. From the results below, regions with high values for both these
quantities could result in changes in the flow.

(a) Velocity magnitude field in mm/s, full scale (b) Velocity magnitude field in mm/s, adjusted scale

(c) Velocity field in x direction in mm/s, backflow visual-
isation

(d) y component of the vorticity field in mrad/s

Figure 7.4: Catheter fields, case 1: no angle, far from the bifurcation

In the velocity plots of figure 7.4, it can be seen that a jet is coming out of the catheter. The jet spread out
a bit, while the velocity decreases, until the jet vanishes. Above and below the jet similar flow is observed,
which is expected from the symmetry in the model. In the backflow plot, it can be seen that after the outlet
of the catheter the velocity reverses direction above and below the catheter. These results can be translated
to the vorticity plots, where an increase in vorticity is observed near the walls. In the middle of the catheter,
the vorticity is very low, which increases closer to the sides of the catheter. From this, it is expected that
the streamlines in the middle of the catheter change only slightly, while the streamlines near the walls of the
catheter do change direction. In figure 7.5, the streamlines for this case are given, coloured by the velocity.
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Figure 7.5: Streamlines from the catheter, case 1: no angle, far from the bifurcation

In the figure, it can be seen that the streamlines show the predicted behaviour. The divergence of the
streamlines is expected to be less when an external flow is included. Only the inner vorticity regions in figure
7.4c are expected to have an influence on the flow. The outer vorticity regions are located in a region where
the velocity is very low. These vorticity regions are not likely to be observed with the external blood flow,
as this is expected to be a result of injection in a stagnant fluid. In figure 7.6 a glyph plot is given, including
the vorticity and the glyphs coloured by the velocity magnitude.

Figure 7.6: Velocity field visualisation using velocity magnitude (mm/s) coloured glyphs and the y component
of the vorticity (mrad/s), case 1: no angle, far from the bifurcation

From this plot, an impact is only expected from the high velocity region, which is just after the catheter.
From this analysis, the prediction is that straight catheter injection far from the bifurcation will give quite
similar results as the earlier calculated distribution maps. The flow disturbance seems to be minor based on
these results. Now, the catheter is put at an angle of 2°. The results are given by figure 7.7.
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(a) Velocity magnitude field in mm/s, full scale (b) Velocity magnitude field in mm/s, adjusted scale

(c) Velocity field in x direction in mm/s, backflow visual-
isation

(d) y component of the vorticity field in mrad/s

Figure 7.7: Catheter fields, case 2: tilted catheter, far from the bifurcation

In the velocity plots in figure 7.7, the jet coming out of the catheter is again clearly visible. In the backflow
plot, the main difference compared to the previous case is that there is now only one region with backflow
above the catheter. The value of the backflow is also higher, which means that the influence on the external
flow by the catheter injection is higher for the inclined catheter. The angle of the catheter causes the jet
to bounce off the wall, which also changes the direction of the high velocity region. The vorticity plots are
similar to the previous case, however the tilted catheter does alter the region of the lower high red vorticity
region slightly. The backflow and vorticity plot correspond again and circulation is again observed in this
simulation. An extra test to ensure consistency of the results was carried out by running a simulation with
a mirrored model. The results for the backflow and vorticity can be found in figure 7.8.
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(a) Velocity field in x direction in mm/s, backflow visual-
isation

(b) y component of the vorticity field in mrad/s

Figure 7.8: Catheter fields, mirrored case 2: tilted catheter, far from the bifurcation

In figure 7.8 the same flow patterns and values are observed as in 7.7. This means that the used grid gives
a consistent simulation and it also gives some information about the accuracy based on similar velocity and
vorticity values. In figure 7.9 some streamlines are plotted for this case.

Figure 7.9: Streamlines from the catheter, case 2: tilted catheter, far from the bifurcation

In the figure, it can be seen that most streamlines go to the upper region of the vasculature, which contradicts
with the catheter placement. This can be explained as an effect of the static fluid simulation and the low
velocity streamlines will likely not have the same rotation as observed in the simulation. The streamlines
are affected by the vorticity, however the results is difficult to see due to the high velocity and relatively
low vorticity. In figure 7.10 the velocity field is visualised using glyphs that are coloured by the velocity
magnitude again. The vasculature cross section itself is coloured by the vorticity. The scale here is a bit
different compared to figure 7.6 regarding the velocity, which is used to highlight the impact of the catheter
injection on the region above the catheter outlet.
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Figure 7.10: Velocity field visualisation using velocity magnitude (mm/s) coloured glyphs and the y com-
ponent of the vorticity (mrad/s), case 2: tilted catheter, far from the bifurcation

In the figure, it can be seen that the streamlines are affected by the vorticity. Flow that remains in this high
vorticity region is affected more, which results in the circulation above the catheter. For higher velocities,
the vorticity values are too low and they only have a small effect on the direction of the flow. The backflow
region will likely not be found with the external flow, as it is expected that this is an effect due to the
injection in a stagnant fluid. In the simulation, the extra vorticity implies more flow rotation. The geometry
of the catheter could also cause extra rotation to the flow as it is not parallel to the flow. The jet that
bounces off the wall will likely still be visible with the external flow, which could cause a different particle
distribution compared to a horizontal catheter with the outlet at the same location. Especially the injection
speed could be interesting in this case, as it could have an especially large impact on the distribution with a
tilted catheter.

For the next case, the catheter is placed closer to the bifurcation. First, the results of this case without a
catheter angle will be discussed. The results are given by figure 7.11.
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(a) Velocity magnitude field in mm/s, full scale (b) Velocity magnitude field in mm/s, adjusted scale

(c) Velocity field in x direction in mm/s, backflow visual-
isation

(d) y component of the vorticity field in mrad/s

Figure 7.11: Catheter fields, case 3: no angle, close to the bifurcation

In figure 7.14 it can be seen that the jet that comes out of the catheter is really affected by the proximity of
the wall. A splitting effect of the jet can be seen in the figures, with some high velocity regions on the inside
on both sides of the bifurcation. Due to this high velocity region and the static fluid, a large backflow area
is created around the catheter. The more peripheral flow that comes out of the catheter is affected most by
the vorticity, because of the combination of relatively low velocity and high vorticity. The backflow region is
likely again caused by the injection in a stagnant fluid. In figure 7.12, some streamlines are plotted for this
case.

Figure 7.12: Streamlines from the catheter, case 3: no angle, close to the bifurcation
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In figure 7.12 it can be seen that putting the catheter closer to the bifurcation leads to the splitting of the
jet. Due to the splitting, a high velocity region is created that pushes the flow more to the centre of the
vessels after the bifurcation. For case 1, it is expected that the streamlines will go mostly through the middle,
around the bifurcation and close to the inner walls after the bifurcation. For case 3, it is expected that the
streamlines flow further away from the inner walls after the bifurcation due to the high velocity of the splitted
jet. It is expected that the streamlines from the catheter in case 1 will mostly flow to the central outlets 4
and 5, while the streamlines from the catheter in case 3 could also flow to more peripheral outlets like outlets
3 and 6. The glyphs and vorticity are given for this case, by figure 7.13.

Figure 7.13: Velocity field visualisation using velocity magnitude (mm/s) coloured glyphs and the y com-
ponent of the vorticity (mrad/s), case 3: no angle, close to the bifurcation

From this figure, it can be seen that there are some large vorticity regions around the bifurcation created by
the injection jet. It is expected that placing the catheter closer to the bifurcation will cause a larger flow
disturbance compared to an injection location further upstream. For the last case, the elongated catheter is
put at an angle that is the same as in case 2. The results can be found in figure 7.14.
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(a) Velocity magnitude field in mm/s, full scale (b) Velocity magnitude field in mm/s, adjusted scale

(c) Velocity field in x direction in mm/s, backflow visual-
isation

(d) y component of the vorticity field in mrad/s

Figure 7.14: Catheter fields, case 4: tilted catheter, close to the bifurcation

In the last case, the catheter injection is really focused on the lower vessel in the bifurcation. The entire jet
from the catheter develops in the direction of this vessel. It looks like a part of this jet goes to the other
vessel in the velocity magnitude plot in figure 7.14b, however in the backflow plot it can be seen that this
is part of the backflow region above the catheter. From these plots it is expected that most if not all of the
streamlines will go into the lower section of the vasculature. The streamlines can be found in figure 7.15.

Figure 7.15: Streamlines from the catheter, case 4: tilted catheter, close to the bifurcation
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Most of the streamlines follow the predicted path to the lower section of the vasculature. The streamlines
that go to the upper section will most likely not follow the same path and are caused by the injection in the
stagnant fluid. In figure 7.16 the flow field is again visualised using glyphs and the vorticity.

Figure 7.16: Velocity field visualisation using velocity magnitude (mm/s) coloured glyphs and the y com-
ponent of the vorticity (mrad/s), case 4: tilted catheter, close to the bifurcation

In the figure it can be seen that the region around the bifurcation is again influenced. The region above
the catheter has quite a low velocity in general, which will likely only cause a minor flow disturbance. It is
expected that the flow is also disturbed by the geometry of the catheter, because the placement is again not
parallel to the flow. The streamline plots of case 2 and 4 imply that the streamline distribution to the lower
section of the vasculature is higher for case 4. For case 2, it is uncertain how the streamlines will develop
with an external flow, while for case 4 it is clear that the streamlines will go to the lower section.

In general, it can be concluded that the catheter setup has a large influence on the streamlines and thus the
microsphere distributions. The different cases already give some implications on the streamline development.
While it is possible to plot streamlines, quantification of the streamlines in a stationary fluid does not mean
anything physical and conclusions on the exact particle distributions should not be drawn based on those
results.
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Chapter 8

Discussion, conclusions and
recommendations

In this chapter the results will be discussed by focusing on the research question and sub questions that were
stated in the introduction. In an attempt to assess the results, comparisons will be made to similar studies.
Based on the discussion, conclusions will be drawn and recommendations will conclude the chapter. In this
chapter, the degree of uncertainty in the results will be covered to give a clear indication of which aspects
are conclusive and which aspects require further research.

8.1 Discussion

In this section different aspects of the results will be discussed. First, the validity of the model is discussed.
After that, the results are discussed, with the focus on microsphere distribution. Lastly, the catheter study
will be discussed.

Large deviations exist in the hepatic artery networks in patients. The variations exist in the RHA itself,
but also on a larger scale with as an example differences in where the RHA originates from [81]. The choice
for a simplified model can be substantiated from this information, as the simple model could function as a
baseline for future models. The simplified model has been analysed and the results have been verified by
experiments. From this, important aspects could be identified which should really speed up the process of
correctly setting up LB simulations with more complex models. Also, some results of the simplified model
could be used to assess the results from the patient specific models regarding streamline and possible some
types of microsphere distributions. With these results, conclusions might be drawn in the future on the
degree to which patient specific models should be represented accurately for a good indication of microsphere
distribution. Also, complexity changes in the model can be analysed to see which changes really influence
the microsphere distribution. While the model does show promise, it is not expected that the results now
could already be applied in practice because of too many unknowns in the results.

In the simulations and experiments, the Newtonian fluid BMF is used to represent the blood flow. While
the choice for this fluid decreases the complexity in the simulations, a perfect representation of the flow is
not achieved since blood is a non-Newtonian fluid. The dynamic viscosity changes with the shear rate and
thus the velocity of the flow for blood, which results in differences in reported viscosity values for blood. In
healthy adults, Yousif et al. report a dynamic viscosity of 4.4+/-0.6 cP [82]. Three values of the dynamic
viscosity are reported by Yazdi et al., with the dynamic viscosity given as 3.26+/-0.43 cP, 4.37+/-0.60 cP
and 5.46+/-0.84 cP. for shear rates of 100, 50 and 1 s−1 respectively [83]. The BMF that is used in the
experiments is made at Fisher Scientic in the Netherlands and has a viscosity of 4.2 cP, which should be
in the appropriate viscosity range for the flow in the RHA. Large changes in the shear rates are mostly
observed in smaller vessels like capillaries and it is expected that the shear thinning effect is less pronounced
in vessels with larger dimensions. Also, the choice for using the Newtonian fluid BMF for the simulations
is substantiated as it allows comparison to the in-vitro experiments. The effect of the shear thinning in the
vasculature model may be studied in future research.
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In the model, the walls of the vessels are rigid. In CFD it is possible to obtain results with moving vessel
walls by using Fluid Structure Interaction (FSI) models, however the simulation time increases drastically
if this is used [84]. In most of these models, a new mesh has to be generated if the wall is moved. In the
study by Siogkas et al. it is concluded that deformable walls increase the CPU drastically, which can only be
justified if a clinician needs accurate results regarding the vessel wall location. The high correlation between
the flow results from a rigid model and a elastic walls model substantiates the choice for the rigid walls and
it is expected that the effect will be small on the velocity field.

The results in this report are mostly judged based on the outflow and point values at probes. From the
convergence study on the final model, it can be concluded that the numerical accuracy is high enough.
One aspect that really influenced the simulation results is the placement of the boundary condition at the
outlets. The accuracy of the placement has improved, which drastically changed the results and forms a
good comparison with the in-vitro experimental work performed with the same model at the University of
Twente. However, the deviations in the experiments are relatively large and the agreement in results is based
on these deviations, which are larger than the difference between the simulations and experiments. While
the simulations results are good enough for the analysis, other boundary conditions might be interesting if a
higher accuracy is desired.

Recently, a CFD study on 90Y radioembolization has been performed by Antón et al., with the main purpose
of developing a microsphere distribution tool to optimise radioembolization on a patient specific level [85]. It
shows that CFD modelling is an option to improve personalised radioembolization treatments and it can be
used as a very nice comparison to the work in the entire project that this thesis is a part of. In this study, a
difference between the blood flow and the microsphere distribution is observed, which gives an indication that
the yttrium-90 microspheres are not passive particles. This behaviour is still to be investigated for holmium-
166 particles, however an indication is given that these particles will also not follow the streamlines perfectly.
The comparison between the streamlines and the microbubble distribution in figure 6.40 is quite good however
and comparison with other particle types could give very interesting results. Also, the streamline distribution
maps could again form a baseline for the microsphere distribution, where the degree of activity of the particles
could be assessed by using the maps.

The catheter type effect on microsphere distribution has been analysed in a hepatic arterial model by Van den
Hoven et al. [5]. It is concluded that the catheter type has a significant effect on the microsphere distribution
and administration in a vascular network. While a different type of catheter is used, it is shown that an off-
centre placement of the catheter resulted in a difference in microsphere distribution, which is in accordance
with the qualitative catheter study. Yttrium-90 microsphere deposition is also affected by parameters such
as the distance between the catheter tip and an arterial bifurcation, the radial position of the catheter in
the artery, the catheter injection speed and the type of catheter tip, stated in the work by Antón et al. [85].
The effects of the former two have been studied in the catheter study and the other mentioned parameters
could also be studied by simulating in a similar way by adding more catheter setups. From the results of the
catheter study, it is concluded that the two studied parameters disturb the flow in different ways and indeed
yield different streamlines and thus microsphere distributions.

Different models have been used for the simulations in this chapter, which have offered a lot of insight into
the Musubi software. By resolving the errors in the models and simulation, more confidence in the results
of the simulations is achieved. On the other hand, errors in the models and the simulations have resulted in
the usage of more computational hours than expected beforehand, which have also consumed a lot of time.
Moreover, problems with the supercomputer itself wasted a lot of the used CPU hours and acquiring results
often took much longer than expected with these problems. The LB simulations were largely ran on the Dutch
national supercomputer Cartesius. Many simulations were performed, ranging from 20 million elements to
400 million elements. Results for simulations with a large number of elements especially took very long due
to a lack of stability of the supercomputer and segmentation errors. The relatively smaller simulations with
about 40 million elements eventually ran reliably and Cartesius has improved a lot regarding stability during
this research. Also, Cartesius will be replaced by a new system called Snellius, which is expected to guarantee
a higher computational stability. After optimisation, like reducing the simulation time, results are obtained
using a simulation with 40 million element in about 30 minutes on 80 nodes (1920 cores), which is about
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1000 CPU hours. The steady state simulations for the catheter use about half the CPU hours. The whole
thesis has cost about 3 million CPU hours.

8.2 Conclusions

This research aims to answer the question: To what extent can we predict and identify the clinical aspects that
influence the microsphere distribution in the liver vasculature using computational modelling? To answer this
question, LBM simulations were performed on a simplified RHA model which were verified by experiments.
From the simulations, a prediction of the microsphere distribution has been made based on the streamlines
of pure flow. Also, the effects of the catheter injection have been studied and results show that the catheter
injection will have an effect on the distribution.

The biggest problem that was experienced in LBM simulations concerns the pressure boundary condition. It
was shown that the placement of the boundary condition is very important for an accurate flow distribution
that corresponds to the experiments. The implemented boundary condition placement by defining a plane in
Seeder is very prone to placement imprecision and the boundary condition should be imposed on a separate
object that can be defined in CAD software. Next to the placement, it was also shown that the outlet
lengths have a large impact on the pressure gradient, which yields outflow results that deviate from the
outflows found in the experiments. Regarding the future switch to patient specific models, LBM can be a
very suitable CFD method for flow simulations in these often complex vasculature networks if the pressure
at the outlets is known.

For the final RHA model, simulation results are in agreement with the experimental results. The difference
between the outflow rates found in the simulations and experiments is within 5%, which is a good match
considering the accuracy of the experimental results.

With the validation of the simulations, streamlines of the flow have been computed at different time instances
to predict the microsphere distribution. It is found that the velocity has a large impact on the distribution,
while the impact of the acceleration is negligible. The biggest changes happen around the first bifurcation
where clear differences in streamline shapes can be distinguished for the different time instances.

The pure flow streamlines should match with weightless particle trajectories, however particles with a mass
might follow different trajectories. A steady state simulation that tracks microbubble trajectories is compared
to the predicted distribution from the streamlines of the flow, which shows a good comparison. For Holmium-
166 particles, the validity of the streamlines for the distribution is still to be investigated.

For the catheter influence, four different positions were simulated to predict the impact that the injection
location could have on the distribution. This is done by analysing the resulting streamlines from the catheter,
together with the velocity and vorticity fields. The velocity fields are also visualised by using glyphs to see
the direction of the velocity. From this study, it can be concluded that the injection location distance from
the bifurcation and the bifurcation angle are important parameters that influence the flow, streamlines and
thus microsphere distributions. Quantification of the streamlines in a stationary fluid is however not possible
and the impact of these setups can only be estimated.

In radioembolization, the microsphere distribution is determined by pre-treatment in-vivo simulation, where
surrogate particles are released in an hepatic artery to predict the distribution. In this thesis, the first steps
of in-silica simulations to improve or even replace this pre-treatment procedure have been made. The Lattice
Boltzmann Method is a suitable CFD method to study the flow in a vasculature. While there are still
many aspects to be studied, computational modelling could provide the results to improve radioembolization
outcomes in the future.
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8.3 Recommendations

Based on the conclusions and the goals of the project and this report, several recommendations for future
research can be made.

In the simulations some assumptions are made which mostly simplify the complexity and computational
requirements, like the usage of a Newtonian fluid model and the assumption of the inelastic walls. While
these assumptions might have some effect on the results, it was already mentioned in the discussion that
these assumptions will likely not have a big effect on the results. For future research, the focus should lie on
the expansion of this model to patient specific models and active particle tracking in the vasculature rather
than on showing the validity of these assumptions.

It took quite a long time to get correct results for the last vasculature model. From the errors in the model,
the pressure boundary condition had the largest impact on the results. It was found that the placement was
crucial for the outflows, which might give problems for future models with a more complex geometry and
outlets of uneven length. The pressure boundary condition used is the pressure expol boundary condition.
Other boundary conditions exist like the pressure eq condition, which might have a higher tolerance for the
placement and better results for the pressure gradients for uneven outlet lengths. The option was tested in
this thesis, however due to other errors in the model the new boundary condition type seemed to have no
effect. To test the effects of other boundary condition types, the final model with the old placement could be
used. If the results are more similar to the final model with the new placement, then the boundary condition
gives more tolerance for the placement and could be a better option for any new models.

For future research with computational modelling, LBM has proven to be a suitable method for solving flow
problems in vasculatures, based on the results that have been presented in this report. One of the advantages
of LBM is the possibility for fluid simulations in complex geometries. The patient specific models are often
quite complex and Musubi can be recommended for CFD analysis of flow in these models. Also, due to the
nature of LBM, implementation of particle coupling can be done to study the behaviour of holmium-166
particles. This is also currently being implemented in Musubi by T. Vlogman, which will hopefully give more
insights into the behaviour of these particles.
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and M. Abkarian, “A new look at blood shear-thinning,” arXiv e-prints, 8 2016. [Online]. Available:
https://arxiv.org/abs/1608.03730v1

[44] “Liver Metastases (Secondary Liver Cancer).” [Online]. Available: https://www.mskcc.org/cancer-care/
types/liver-metastases

[45] “The Netherlands Source: Globocan Incidence, Mortality and Prevalence by cancer site,” 2020.

[46] “Global Source: Globocan Incidence, Mortality and Prevalence by liver cancer site,” 2020. [Online].
Available: https://gco.iarc.fr/today/data/factsheets/cancers/11-Liver-fact-sheet.pdf

[47] “Understanding the different types of liver cancer,” 4 2015. [Online]. Available: https:
//utswmed.org/medblog/liver-cancer-types/

[48] “Liver Cancer — CDC.” [Online]. Available: https://www.cdc.gov/cancer/liver/index.htm

101

https://www.tandfonline.com/action/journalInformation?journalCode=unhb20
/pmc/articles/PMC6112813/ /pmc/articles/PMC6112813/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6112813/
/pmc/articles/PMC6112813/ /pmc/articles/PMC6112813/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6112813/
https://www.cancer.org/cancer/liver-cancer/about/what-is-liver-cancer.html
https://www.cancer.org/cancer/liver-cancer/about/what-is-liver-cancer.html
https://www.earthslab.com/anatomy/abdominal-cavity/?dc=ThoraxMuscle-Interface&rm=true
https://www.earthslab.com/anatomy/abdominal-cavity/?dc=ThoraxMuscle-Interface&rm=true
https://www.hopkinsmedicine.org/health/conditions-and-diseases/liver-anatomy-and-functions
https://www.hopkinsmedicine.org/health/conditions-and-diseases/liver-anatomy-and-functions
https://courses.lumenlearning.com/suny-ap2/chapter/structure-and-function-of-blood-vessels/
https://www.hematology.org/education/patients/blood-basics
https://www.hematology.org/education/patients/blood-basics
https://www.cvphysiology.com/Hemodynamics/H011
https://www.cvphysiology.com/Hemodynamics/H011
https://arxiv.org/abs/1608.03730v1
https://www.mskcc.org/cancer-care/types/liver-metastases
https://www.mskcc.org/cancer-care/types/liver-metastases
https://gco.iarc.fr/today/data/factsheets/cancers/11-Liver-fact-sheet.pdf
https://utswmed.org/medblog/liver-cancer-types/
https://utswmed.org/medblog/liver-cancer-types/
https://www.cdc.gov/cancer/liver/index.htm


[49] “Selective internal radiation therapy (SIRT).” [Online]. Available: https://www.cirse.org/patients/
ir-procedures/selective-internal-radiation-therapy-sirt/

[50] A. A. Alsultan, A. J. Braat, M. L. Smits, M. W. Barentsz, R. Bastiaannet, R. C. Bruijnen, B. de Keizer,
H. W. de Jong, M. G. Lam, M. Maccauro, and C. Chiesa, “Current Status and Future Direction of
Hepatic Radioembolisation,” Clinical Oncology, vol. 33, no. 2, pp. 106–116, 2 2021.

[51] L. Bester, B. Meteling, D. Boshell, T. C. Chua, and D. L. Morris, “Transarterial chemoembolisation and
radioembolisation for the treatment of primary liver cancer and secondary liver cancer: A review of the
literature,” Journal of Medical Imaging and Radiation Oncology, vol. 58, no. 3, 6 2014.

[52] R. Stubbs and S. Wickremesekera, “Selective internal radiation therapy (SIRT): a new modality for
treating patients with colorectal liver metastases,” HPB, vol. 6, no. 3, 9 2004.
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Appendix A

Right Hepatic Artery: initial wrong
results

In the figures below, the results for the initial wrong small angle vasculature model are given. These plots
contain errors like the boundary placement, tracking and asymmetry which are all explained in the text. A
very fine mesh is used for these simulations with about 300 million elements.

Figure A.1: Velocity field in mm/s at the start of the cardiac cycle
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Figure A.2: Tracked volumetric outflows over one cardiac cycle

Figure A.3: Tracked inflow and outflows compared
to the prescribed inflow during the cardiac cycle

Figure A.4: Velocity differences between the sym-
metric outlets during the cardiac cycle
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Appendix B

Right Hepatic Artery: more scalar and
vector field results

In the figures below, the velocity fields for all 6 time instances identified in figure 6.4 are given. The full
range of the velocity fields is displayed.

Figure B.1: Velocity magnitude field at the start of
the cardiac cycle, in mm/s

Figure B.2: Velocity magnitude field during the ac-
celeration phase of the cardiac cycle, in mm/s
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Figure B.3: Velocity magnitude field at peak systole
in the cardiac cycle, in mm/s

Figure B.4: Velocity magnitude field during the de-
celeration phase of the cardiac cycle, in mm/s

Figure B.5: Velocity magnitude field at peak diastole
the cardiac cycle, in mm/s

Figure B.6: Velocity magnitude field at the end of
the cardiac cycle, in mm/s
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In the figures below, the gradient fields for 4 time instances identified in figure 6.4 are given. The other 2 time
instances are already given in the text. The gradient magnitude fields are scaled by the velocity magnitude.

Figure B.7: Gradient magnitude field in 1/s during
the acceleration phase in the cardiac cycle

Figure B.8: Gradient magnitude field in 1/s at peak
systole in the cardiac cycle

Figure B.9: Gradient magnitude field in 1/s at peak
diastole in the cardiac cycle

Figure B.10: Gradient magnitude field in 1/s at the
end of the cardiac cycle
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In the figures below, the y components of the vorticity for 4 time instances identified in figure 6.4 are given.
The other 2 time instances are already given in the text. The vorticity is scaled by the velocity magnitude.

Figure B.11: y component of the vorticity field in
mrad/s during the acceleration phase in the cardiac
cycle

Figure B.12: y component of the vorticity field in
mrad/s at peak systole in the cardiac cycle

Figure B.13: y component of the vorticity field in
mrad/s at peak diastole in the cardiac cycle

Figure B.14: y component of the vorticity field in
mrad/s at the end of the cardiac cycle
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Appendix C

Comparison to Ansys Fluent simula-
tion results

In the figures below, a comparison between the LBM simulations and Ansys Fluent simulations performed at
Ghent University can be found based on the outflows. The results are valid for the final small angle model.
As can be seen in figure C.2, the outflow deviations from the average outflow are smaller in the Ansys Fluent
simulations. Still, both results have quite an even flow distribution.

Figure C.1: volumetric outflow comparison Figure C.2: Outflow deviation comparison to Ansys
Fluent simulations
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Appendix D

Catheter study: more results

In the figures below, more results from the catheter study can be found.

Figure D.1: Catheter observed ’leaking’: velocity magnitude field in mm/s

Figure D.2: Catheter velocity at
probe 2 in mm/s

Figure D.3: Catheter velocity at
probe 3 in mm/s

Figure D.4: Catheter velocity at
probe 4 in mm/s
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