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Abstract

Radioembolization is a non-ablative selective procedure that is used for the treatment of advanced stage liver
cancer and liver metastases. In this procedure, radioactive microspheres are administered to blood flow in the
liver arteries by catheter injection, which embolize in narrower vessels near the malignant tissue. This study
focusses on radioembolization in the right hepatic artery with Holmium-166 microspheres. More insight into
microsphere distribution and factors that could influence this can improve Holmium-166 radioembolization
and enhance patient lives.

The Lattice-Boltzmann method is used to study flow in a simplified model of the right hepatic artery. The
Lattice-Boltzmann method is a CFD method that originates from statistical mechanics, in which a version
of the Boltzmann transport equation is solved. The method is very suitable for simulating flow in complex
geometries and with its high parallelization capabilities, interest in the method is increasing with the ongoing
evolution of High Performance Computing (HPC). The general flow distribution is predicted in this study by
analysing the flow behaviour during the cardiac cycle. Flow results are obtained that are in agreement with
in-vitro experimental work that is also conducted at the university. A foundation is laid for future research
on the behaviour and distribution of active particles like the Holmium-166 microspheres, with initial results
showing that some particle distributions can already be predicted using simulations.

Next to the flow behaviour analysis, a qualitative study into catheter injection has been conducted by ana-
lysing the impact of catheter angle and injection location. In the analysis it is shown that the catheter setup
changes the streamlines. It is expected that the catheter setup will have a large impact on the distribution
of microspheres.

Keywords: Lattice Boltzmann Method; Radioembolization; Right Hepatic Artery; Computational Fluid
Dynamics; Musubi; Streamlines; Distribution Maps; Catheter Injection;
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Nomenclature

Abbreviations

BTE Boltzmann Transport Equation

CFD Computational Fluid Dynamics

CRC Colorectal Cancer

CT Computed Tomography

FEM Finite Element Method

FVM Finite Volume Method

GUI Graphical User Interface

HCC Hepatocellular Carcinoma

LBM Lattice Boltzmann Method

MD Molecular Dynamics

MRI Magnetic Resonance Imaging

PDE Partial Differential Equation

RHA Right Hepatic Artery

SIRT Selective Internal Radiation Therapy

SPECT Single Particle Emission Computed Tomography

Physical parameters

µ Dynamic viscosity [Pa · s]

ν Kinematic viscosity [m2/s]

νL Kinematic lattice viscosity [−]

ω Collision frequency [−]

ωi Weight factor [−]

ρ Density [kg/m3]

τ Relaxation factor [−]

c Lattice velocity [−]

c/u Velocity [m/s]

c2
s Lattice speed of sound [−]

F Force [N ]

f Distribution function [−]
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feq Equilibrium distribution function [−]

kB Boltzmann constant [s]

L Length of the model [m]

m Mass [kg]

N Number of elements [−]

NA Avogadro’s number [1/mol]

P Pressure [Pa]

R Gas constant [J/(K ·mol)]

r Radial position [m]

Rsp Specific gas constant [J/(kg ·K)]

Re Reynolds number [−]

T Temperature [K]

t Time [s]

u Macroscopic velocity [m/s]

uL Lattice velocity [−]
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Chapter 1

Introduction

Primary liver cancer is the fifth most common cancer worldwide and the second leading cause of cancer
mortality [1]. Surgical resection of the liver tumour is preferable and shows an increase in survival rate and
life expectancy, however this is not always possible. Only 30% of patients with this diagnosis is eligible for
surgery, so a large group still relies on alternatives [2]. Next to the primary form of liver cancer, a large group
of cancer patients is diagnosed with secondary liver cancer, or liver metastases, with a median survival rate of
less than 8 months [3] [4]. Due to its location, size and amount of metastases, only 15% of patients with this
prognosis is eligible for surgical resection. The group of patients diagnosed with non-resectable primary and
secondary type liver cancer is increasingly treated with the loco-regional therapy called radioembolization [5].
Radioembolization is a non-ablative selective procedure in which radioactive microspheres are administered
to blood flow in the liver arteries by catheter injection, which embolise in narrower vessels near the malignant
tissue. Radioembolization is minimally invasive and most of the healthy tissue is spared, which makes this
the preferred treatment type if the outcomes are favourable with respect to other treatments.

A better understanding of the flow behaviour and the flow distribution could form the basis for improving
microsphere distribution in radioembolization. This improved distribution knowledge can contribute to en-
hance anti-tumour efficacy and could reduce nontarget embolization, which is defined as the unintentional
delivery of microspheres, mostly to extrahepatic regions [6]. For the prediction of microsphere distributions,
a pre-treatment in-vivo simulation is currently applied with surrogate particles. The comparison of pre-
treatment predictive and post-treatment measured dosimetry shows some good results [7]. However, changes
in hemodynamics and catheter setup still result in a difference between the two procedures. Patient specific
in-silica simulations are non-invasive and allow more freedom in optimising the distribution, which might
improve or even replace the pre-treatment procedure in the future.

In most radioembolization procedures yttrium-90 microspheres are used, which have proved to extend the life
expectancy of patients where surgery is not an option [8]. From a medical imaging perspective, microspheres
of a new type have been developed at the University Medical Center Utrecht (Utrecht, Netherlands) that are
visible by other imaging techniques. These particles consist of Holmium-166 which are highly paramagnetic,
a property that makes the particles visible by MRI [9]. While yttrium-90 particles only emit beta radiation,
holmium-166 microspheres also emit gamma radiation which allows for gamma scintigraphy imaging. The
particle behaviour for both particles is still unknown and should be studied to improve radioembolization
outcomes. In practice, many other uncertainties in the procedure still exist regarding the catheter type,
configuration and method of injection with respect to timing and applied pressure.

In this thesis work, flow in a representation of the Right Hepatic Artery will be analysed using the Lattice
Boltzmann Method. The Lattice-Boltzmann method is method for CFD that originates from statistical
mechanics, in which a version of the Boltzmann transport equation is solved. Compared to other more
conventional CFD methods that solve the Navier-Stokes equations like the Finite Element Method or Finite
Volume Method, the Lattice Boltzmann Method offers great capabilities for the simulation of flow in complex
geometries. The method makes use of a structured grid and allows for fast simulations on fine grids using High
Performance Computing, which makes flow simulations in accurate representations of vasculature networks
possible. With the ongoing improvements in High Performance Computing, the relatively simple algorithm
used in the Lattice Boltzmann Method gives a high degree of parallelisation, an important aspect in the
possibility of using multiple cores for simulations. Due to its origin from statistical mechanics, the Lattice
Boltzmann Method also offers relatively easy ways to implement particle coupling which will be interesting

8



for future research in this project and also substantiates the choice of the Lattice Boltzmann Method for this
preliminary numerical work.

1.1 Research question

The central research question in this report states: To what extent can we predict and identify the clinical
aspects that influence the microsphere distribution in the liver vasculature using computational modelling?
Several sub questions are stated below to help answer the main research question:

1. How does the Lattice Boltzmann Method compare to in-vitro experiments conducted on the same
model?

2. Can computational modelling be used to identify aspects that influence microsphere distribution?

3. Can the microsphere distribution be predicted by using pure flow streamlines?

4. What is the influence of the position of the catheter on the deviations in flow streamlines?

1.2 Scope

In this thesis, the microsphere distributions are predicted by studying the flow in a simplified Right Hepatic
Artery model. The simplified model could serve as a foundation for studies on other vascular networks
near the liver or near other surrounding organs, as long as the dimensions of the vessels are roughly the
same. Results in this thesis could aid in the improvement of both holmium-166 radioembolization as well
as yttrium-90 radioembolization. Also, research on similar loco-regional therapies with intra-arterial drug
administration, like intra-arterial chemotherapy might benefit from the results in this report.

This thesis is conducted in the context of the ULTIMO project. In-vitro experiments are conducted on the
same models at the University of Twente, which are used for comparison. At Ghent University, in-silica
simulations are performed using Ansys Fluent on the same models, which are also used for comparison.

1.3 Approach

The approach consists of various steps that are required to answer the research questions. First, the Lattice
Boltzmann Method is studied to develop the required knowledge to run the simulations with the software
package Musubi. The literature study in the thesis consists of the Lattice Boltzmann Method analysis and the
radioembolization treatment analysis. The latter also includes a study on the liver anatomy and physiology,
which is required to understand radioembolization treatment of liver tumours. Next to the literature study,
a couple of benchmark cases are studied for which the analytical solutions are known. By practising with
the software and analysing the results, characteristics in simulations and results can be identified and the
simulation software is tested. Also, some initial findings might already give a part of the answer on research
question 2. The main part of this thesis consists of the flow simulations and analysis of the simplified liver
vasculature model. With these results, questions 1, 2 and 3 can be answered. Lastly, a qualitative catheter
study will be conducted to answer question 4.
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1.4 Outline

The outline roughly follows the steps mentioned in the approach, with each step as a separate chapter.
The literature study consists of two chapters, the theory of the Lattice Boltzmann Method in chapter 2
and the theory of the anatomy and physiology of the liver together with radioembolization statistics and
characteristics in chapter 3. In chapter 4, the used software in this thesis and some important aspects of
the implementation of the simulation theory are discussed. To develop more insight into these simulations,
a preliminary study on pipe flow is conducted, which can be found in chapter 5. Chapter 6 contains most of
the results that can answer the research questions and it can be seen as the main work in this thesis. The
model is expanded in chapter 7, where a catheter is added to the model and the impact is examined. In the
closing part of this thesis, chapter 8, the discussion, conclusions and recommendations can be found.
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Chapter 2

Lattice Boltzmann Method

The Lattice Boltzmann Method (LBM) is a relatively new Computational Fluid Dynamics (CFD) method.
Most of its development only started about 20 years ago, but its use has rapidly increased due to some
of the advantages it has over conventional CFD methods like Finite Element Methods (FEM) and Finite
Volume Methods (FVM). One of the biggest advantages of the method is that it allows for a high level
of parallelization, which means that the problem can be split into multiple domains which can be solved
separately. While the amount of computations can be much higher than for another method, the algorithm
that is used LB methods is a bit simpler than in other methods and thus computations are faster. The method
also has a high potential for parallelization due to the nature of the algorithm, which can give relatively fast
LB simulations by using multiple CPU cores.

The derivation of the LBM comes from a di�erent approach of solving the transport equations of mass,
momentum and heat. A blob of uid can be considered to be a continuum, where the individual particles
are not considered. By applying the conservation laws on an in�nitesimal control volume, sets of Ordinary
Di�erential Equations (ODE) or Partial Di�erential Equations (PDE) are obtained, a famous example being
the Navier-Stokes equations [10]. This continuous approach results in a problem on macroscopic scale. One
can imagine that this works for many problems, however problems do exist where the assumption of a
continuum could form a problem, for example when inter molecular interactions play a more dominant role.

A discrete approach considers the separate particles, resulting in a complete change of physics. For each
particle, the location and velocity are considered and the system is solved by applying momentum conservation
for the collisions between molecules and the boundaries. On this microscopic scale, macroscopic properties
like pressure and temperature do not exist explicitly, but are derived from the kinetic energy of the particles.
Simulation methods that use these principles are called Molecular Dynamics (MD) methods. Inter molecular
interactions are now taken into account, which should mean that an even broader range of problems could
be solved with such methods compared to the conventional CFD methods. One of the largest disadvantages
of these methods is however the scale. For macroscopic problems, these methods are computationally-wise
too demanding, since computations for all the individual particles are required. Here, a typical time step is
of the order femto seconds (10� 15s) and the total simulation time is of the order pico seconds (10� 12s) [11].

Now, what if we would like to solve a problem at macroscopic scale, but still desire the advantages that a
particle interaction approach gives us? One of the possible solutions is applying statistical mechanics to the
transport equations, which was done by Ludwig Boltzmann. He derived the Boltzmann transport equation,
which forms the basis of Lattice Boltzmann Methods. In this chapter, the derivations and assumptions are
given which eventually give us the framework for the Lattice Boltzmann Method. A single particle will be
analysed in section 2.1, which forms the basis of most molecular dynamics methods. Then in section 2.2, it
will be shown that using statistical mechanics, an equation for the whole system can be obtained called the
Boltzmann Transport Equation (BTE). While this equation can be used for some applications, its discrete
variant is better applicable. The derivation of this discrete equation is given in section 2.3. This discretization
only works for a special type of elements called lattice elements. The basic principles of these elements and
the resulting equations are given in section 2.4. The last part in this chapter will give the relation between the
discrete BTE and the Navier-Stokes equations by using the Chapman-Enskog expansion, which shows that
the obtained equation is indeed capable of producing similar results to conventional CFD methods regarding
incompressible ow problems.
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2.1 Kinetic theory of gases

In the introduction of this chapter, it was already stated that the Lattice Boltzmann Method uses statistical
mechanics to describe uid behaviour. Before statistical mechanics are applied, a system is considered from
a particle or molecular perspective. We consider a particle that is moving in free space, that obeys the
conservation laws. One of the conservation laws is conservation of momentum, also known as Newton's
second law:

F = m
dc
dt

= m
d2r
dt2 (2.1)

In the equation, F is the applied force, m is the mass of the particle,c is the velocity vector and r is the
position vector. Now, we consider a particle at a positionr with a velocity c at a time instant t that is
subjected to a forceF at that time instant. In �gure 2.1 the result for the position and velocity vectors can
be seen.

Figure 2.1: Position and velocity vector of a particle subjected to a force [12]

This is already the basis for MD methods. For each particle in the system, only the position and velocity
vectors have to be saved. This representation is called phase space. Together with the information of the
particles, like molecular structure, size and mass, we have su�cient information to macroscopic values like
the temperature and pressure. It can be shown that the pressureP is linked to the kinetic energy of the
particles, see equation 2.2.

P =
2
3

~nE kin (2.2)

In the equation, ~n is the number of particles per unit volume andEkin is the kinetic energy given by equation
2.3. In the equation, c is the total velocity, which is the sum of the squared velocities in all three spatial
directions.
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Ekin =
1
2

mc2 (2.3)

The kinetic energy on the microscopic level can also be used to obtain the temperature. For example for a
gas, the assumption of an ideal gas relates the kinetic energy to the temperature, as can be seen in equation
2.4. If the amount of interactions between particles is too high, a result at high pressure, then the ideal gas
law does not hold [13]. Also, the type of interactions is important for the validity of the law: only particle
collisions are taken into account. If other interactions become more dominant, the law does not hold, which
happens at low temperatures. This is however only a problem in extreme cases, for normal room temperature
conditions the equation results in the following relation:

T =
2Ekin

3kB
=

mc2

3kB
(2.4)

Where kB is the Boltzmann constant, which is related to the gas constantR = 8 :314 J � K � 1mol� 1 and
Avogadro's number NA = 6 :02214� 1023mol� 1.

kB = R=NA = 1 :38� 10� 23 J=K (2.5)

The full derivations are left out here, the equations are given to show that it is possible to link the particles
with only momentum conservation to macroscopic quantities. However, this is an impossible task for many
types of problems if the information of all particles is required to obtain a solution. Now, it turns out that
in many cases the information from the individual particles is not required to acquire accurate macroscopic
quantities. By introducing statistical mechanics, the number of computations can be reduced drastically,
which results in a more feasible method that still has some of the advantages of this particle perspective
approach. This approach forms the basis of the Boltzmann transport equation, which will be derived in the
next section.

2.2 Boltzmann Transport Equation

Like the Navier-Stokes equations in CFD, the discrete version of the Boltzmann Transport Equation (BTE)
is the workhorse in LBM simulations. The continuous variant of this equation can be derived by taking a
statistical approach for describing a system. In the equation, a distribution function is solved that describes
the state of the particles in the system. This distribution function is a type of Probability Density Function
(PDF), which is a function of the six variables that are saved in the phase state (three position components
and three velocity components), and the time.

We again consider the two states of a particle that were discussed in the particle kinetics theory (section 2.1),
that is before and after being subjected to a force. These two states are given by �gure 2.1. From this �gure,
we will now take a look at a group of particles, which can be represented by the distribution function. The
distribution of molecules before and after applying the force is the same, but only if no collisions take place.
This gives the following conservation equation, where a distribution function f is introduced to include all
the particles in the system:

f (r + cdt; c + Fdt; t + dt) dr dc � f (r ; c; t)dr dc = 0 (2.6)

In the equation, the function f is a function of the position r , the velocity c and the time t. If collisions
do take place, we do not have an equilibrium. Instead, the right hand side becomes equal to the collision
operator, denoted by 
, which also depends on the chosen distribution function.
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f (r + cdt; c + Fdt; t + dt)dr dc � f (r ; c; t)dr dc = 
( f )dr dcdt (2.7)

Dividing this equation by drdcdt and taking the limit dt ! 0 yields the total rate of change for the distribution
function:

df
dt

= 
( f ) (2.8)

Since the distribution function is a function of variables in the phase state, which means we can expand the
rate of change and express it in multiple components:

df
dt

=
@f
@r

dr
dt

+
@f
@c

dc
dt

+
@f
@t

= 
( f ) (2.9)

In this equation, the derivative of the position r with respect to time is the velocity c and the derivative of
the velocity with respect to time is the acceleration, which is rewritten by using Newton's second law. This
yields the Boltzmann Transport Equation:

@f
@t

+ c �
@f
@r

+
F
m

�
@f
@c

= 
( f ) (2.10)

The above equation is the general form of the BTE, with external forces. For the remaining derivations in
this chapter, we will use a form of the BTE without external forces. In the discretized version of the equation,
most cells are in general not subjected to external forces, which substantiates this choice of representing the
general equation. The equation without external forces is given by equation 2.11, where the@f

@r term is
rewritten by using the r (nabla) operator:

@f
@t

+ c � r f = 
( f ) (2.11)

In this equation, the collision function 
 should be known if the equation is to be solved. If this function
is known, the equation can be solved for the distribution function f . Then, macroscopic quantities can be
obtained from this equation, like the density and velocity of the uid:

� (r ; t) =
Z

mf (r ; c; t)dc (2.12)

u(r ; t) =
1

� (r ; t)

Z
mcf (r ; c; t)dc (2.13)

However, these macroscopic quantities can only be obtained in this way if equation 2.11 can be solved
analytically. This mainly depends on the analytical solution possibilities for the collision function, which
is an integro-di�erential function. For some very speci�c cases it is possible to do this and comprehensive
and complex papers have been written on these subjects [14][15][16]. This is interesting mainly from a
mathematical perspective and not useful for most engineering applications.

From a practical and engineering perspective, the discrete version of this equation is much more interesting.
The discrete version of the equation can be derived by approximating the collision function 
. In the next
section, the collision function will be addressed by introducing the Bhatnagar, Gross and Krook (BGK)
approximation. The approximation makes use of a known distribution function for particles in equilibrium,
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which can be chosen depending on the problem that has to be solved. In this thesis, incompressible uid
ows are solved, which make use of a speci�c equilibrium distribution function called the Maxwell-Boltzmann
distribution function, which will also be discussed in the next section.

2.3 The BGK approximation and Maxwell-Boltzmann distribu-
tion function

In the transport equation, the collision function 
 is a very complicated function, which makes it di�cult
to solve the equation. A simple approximation was made by Bhatnagar, Gross and Krook (BGK), which
replaces the collision function with a term that su�ces for single phase ows. The approximation eventually
makes the BTE solvable, while the simplicity of the approximation results in a discretized version of the
equation that is able to give accurate results.


 =
1
�

(f eq � f ) = ! (f eq � f ) (2.14)

In the equation, � is the relaxation factor and ! is the collision frequency. For the collisions, the di�erence
between the local equilibrium distribution function f eq and the actual distribution function f is taken for
the collisions. If the di�erence between the two distributions is large, the term has a larger value, which
means that more collisions take place in order to reach the equilibrium faster. The di�erence is multiplied by
the relaxation frequency ! which dictates how fast equilibrium is reached. This relaxation frequency can be
seen as a form of viscosity: for lower values of! , equilibrium is reached slower and the uid is more viscous.
Another way to look at it is by comparing it to a proportional action in a PID controller. For a larger P
action, the the system moves faster to the equilibrium, however this can also result in a larger overshoot and
more severe initial uctuations.

The local equilibrium distribution function f eq that is used in the majority of LB simulations is the Maxwell-
Boltzmann distribution function. For the derivation of this function, four assumptions are made regarding
the behaviour of the particles [17][18]:

ˆ The diameters of the molecules are much smaller than the distance between them.

ˆ The collisions between molecules conserve energy.

ˆ The molecules move between collisions without interacting, with a constant speed in a straight line.

ˆ The position and velocities of the molecules are initially random.

From a particle perspective and by using these assumptions, the Maxwell-Boltzmann distribution function in
equation 2.15 can be obtained. The Maxwell-Boltzmann distribution in this form is obtained by considering

the speed instead of the velocity, which is the resultant of the individual components, orc =
q

c2
x + c2

y + c2
z .

In phase space, this corresponds to the surface area of a sphere which is 4�c 2. The surface area of this sphere
accounts for all particles with exactly that speed. This means that the Maxwell-Boltzmann distribution
function describes the possibility of a particle being in a certain velocity state.

f eq(c) = 4 �c 2
�

m
2�k B T

� 3
2

e� mc 2
2k B T (2.15)

In the equation, m is the mass of the molecule in [kg], T is the temperature of the system in [K ] and
c is the velocity of the particle in [m=s]. The Maxwell-Boltzmann distribution function depends on the
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temperature of the system and the mass of the molecules. In �gure 2.2, the distribution functions of both
helium (u = 4 g=mol) and oxygen (u = 16 g=mol) at room temperature (T = 293K ) and at elevated
temperature (T = 393K ) can be found, which is computed by using equation 2.15. The molecular massu
can be converted to the mass of one molecule by multiplying the molecular mass with Avogadro's number.

Figure 2.2: Distribution functions of Helium and Oxygen

In the �gure, it can be seen that the mean velocity and the maximum velocity of helium are higher than
those of oxygen. This is the expected result since generally lighter molecules move faster. The dimension of
the probability density is in [ s=m], such that the area under any section of the curve is dimensionless [19].

The Maxwell-Boltzmann distribution function is the basis for the BGK approximation, which can replace
the complex collision term in equation 2.11. With the BGK approximation, we get equation 2.16.

@f
@t

+ c � r f = ! (f eq � f ) (2.16)

The left hand side of the equation represents the streaming process and the right hand side of the equation
represents the collision process.

In the collision term, f eq is a another form of the Maxwell-Boltzmann distribution function, where the
individual components of the velocity are taken into account. To transform the equation, we consider the
probability of �nding a particle on a spherical shell with radius c and width dc. For the individual components,
we then get the following transformation [20]:

f eq
box (cx ; cy ; cz ) 4�c 2dc = f eq

sphere (c)dc (2.17)

This transformation gives equation 2.18. Note that the velocity in the equation is now a vector.

f eq(c) =
�

m
2�k B T

� 3
2

e� m c 2
2k B T (2.18)

Equation 2.18 is multiplied by the macroscopic density� , to scale the normalised distribution function and
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make it speci�c for the system. When we consider a gas that has a non-zero macroscopic velocity, we obtain
the equation below:

f eq =
�

(2�R spT)3=2
exp

�
�

(c � u)2

2RspT

�
(2.19)

In the equation, Rsp is the speci�c gas constant in [J kg� 1 K � 1], given by the equation below:

Rsp =
kB

m
(2.20)

First, the exponential in equation is rewritten to allow for a Taylor expansion:

f eq =
�

(2�R spT)3=2
exp

�
�

c � c
2RspT

�
exp

�
2 (c � u) � u � u

2RspT

�
(2.21)

The second term in the equation is now approximated:

f eq =
�

(2�R spT)3=2
exp

�
�

c � c
2RspT

� "

1 +
2 (c � u) � u � u

2RspT
+

(2 (c � u) � u � u)2

8 (RspT)2 + : : :

#

(2.22)

Now, the substitution below is used to get rid of the exponential term:

W (c) =
1

(2�R spT)3=2
exp

�
�

c � c
2RspT

�
(2.23)

With some rewriting and ignoring all terms of order O(u3) in the approximation of the exponential, we
get the second order accurate equilibrium distribution function that is most commonly used in the BGK
approximation:

f eq = �W (c)

"

1 +
2 (c � u) � u � u

2RspT
+

(c � u)2

2 (RspT)2

#

+ O
�
u2�

(2.24)

With the equilibrium distribution function known, the collision term can now be discretized on its own, which
allows for discretization of the full BTE. This discretization is done by using a special type of element, called
a lattice element. In these elements, speci�c directions are de�ned for the ow directions. The discretization
using these lattices and the results for a type of lattice will be explained and discussed in the next section.

2.4 Discretization: lattice elements

The BTE with the BGK approximation that is given by equation 2.16 can be discretized by introducing lattice
elements. A lattice element is a unique kind of element that is used in LB methods, where possible directions
of ow are determined by the type of lattice element. Lattice elements evolved from cellular automata, which
o�er some insights into the working of lattice elements. The working principles of cellular automate are well
explained by Sukop et al., however they are however mainly interesting from a historical perspective and will
not be discussed here. [21].
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In a lattice element, discrete probability functions are used to indicate the probability of a particle moving
in a certain direction with a microscopic velocity c. Lattice element type is denoted by DnQm, with n giving
the dimension of the lattice and m giving the number of ow directions. The simulations that can be found
in this report all use the same D3Q19 stencil. In this section, the 2 dimensional D2Q9 stencil given by �gure
2.3 will be used as an example, which is better for visualisation purposes.

Figure 2.3: D2Q9 lattice arrangement [12] Figure 2.4: D2Q9 distribution function example [21]

In the �gure, it can be seen that for this stencil 9 streaming directions are possible, where the streaming
direction with index 0 indicates a particle at rest. The streaming directions are given by the discrete velocity
vectors ci :

ci =

8
<

:

(0; 0) i = 0
(1; 0); (0; 1); (� 1; 0); (0; � 1) i = 1 ; 2; 3; 4
(1; 1); (� 1; 1); (� 1; � 1); (1; � 1) i = 5 ; 6; 7; 8

(2.25)

The discrete probability distribution function f i can be seen as direction speci�c densities, or particle popu-
lations. An example of the distribution can be found in �gure 2.4. Next to a discrete probability distribution
function f i for each streaming direction, a weight factorwi is introduced. The weight factors for this stencil
are given by equation 2.26.

wi =

8
<

:

4=9 i = 0
1=9 i = 1 ; 2; 3; 4
1=36 i = 5 ; 6; 7; 8

(2.26)

These weight factors are obtained from applying the rules that a lattice model has to obey. For this model,
the equation is given by equation 2.27. The equation below has the same form as the equation for the moment
of a probability distribution function, which will be used later in the Chapman-Enskog expansion in section
2.6. The moment is mentioned here to clarify that the equation below is not arbitrarily chosen and has a
signi�cance in statistical mechanics. For example, the zeroth and �rst order central moments of a PDF are
equal to 1 and 0 respectively, by de�nition.

E (n ) =
8X

i =0

! i ci;j 1 ci;j 2 � � � ci;j n (2.27)

This equation can be expanded for values ofn, with the �rst 5 equations given below, where cs is the lattice
speed.
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E (0) =
8X

i =0

! i = 1

E (1) =
8X

i =0

! i ci;j 1 = 0

E (2) =
8X

i =0

! i ci;j 1 ci;j 2 = c2
s � j 1 j 2

E (3) =
8X

i =0

! i ci;j 1 ci;j 2 ci;j 3 = 0

E (4) =
8X

i =0

! i ci;j 1 ci;j 2 ci;j 3 ci;j 4 = c4
s (� j 1 j 2 � j 3 j 4 + � j 1 j 3 � j 2 j 4 + � j 1 j 4 � j 2 j 3 )

(2.28)

The �rst line in equation 2.28 gives the sum of the weight factors is equal to 1, which corresponds to both
the de�nition of the zeroth order moment of a PDF and the de�nition of the sum of the weight factors. The
second line can be seen as a symmetry condition, which is required for a balanced lattice element, where
streaming directions do not have a preference. The second to fourth order moments are obtained by applying
isotropy conditions to the lattice element. In the Navier-Stokes equations, isotropy of the environment is
automatically conserved, as the physical properties that are independent of the orientation are also invariant
by orthogonal changes in the spatial frame [22]. For a lattice element, this means that rotation of the lattice
element by 90 degrees in an arbitrary direction around an axis should not change the result. It is known that
the higher order isotropic tensor has the form of an 'isotropic delta function', which is the sum of Kronecker
delta functions over all distinctive permutations of its sub-indices, by Chen [23]. In this paper, it is stated
that full rotational symmetry is impossible for lattice element with a �nite number of vectors. The choice of
a lattice element is very important here, as it can guarantee isotropy up to a speci�c order. For the problems
in the thesis, lattice elements that give up to fourth order isotropy su�ce, which is the case for the used
D3Q19 elements.

With the lattice elements, the discrete version of the BTE that is valid along these speci�c directions can be
obtained, given by equation 2.29:

@fi
@t

+ ci � r f i = ! (f eq
i � f i ) (2.29)

The equilibrium distribution function in the equation is now also discrete. The discrete distribution function
can be derived from 2.24, which uses the substitution below:

c2
s = RspT (2.30)

Here, c2
s is the lattice speed of sound, which depends on the lattice element that is chosen and can be derived

from equation 2.28. The general discrete equilibrium function is given by equation 2.31. In the equation, it
is assumed that the basic speed on the lattice is 1lu ts � 1.

f eq
i = �w i

"

1 +
2 (ci � u) � u � u

2c2
s

+
(ci � u)2

2c4
s

#

+ O(u2) (2.31)

This approximation is again second order accurate. For both the D2Q9 and D3Q19 lattice elements, the
lattice speed of sound is given byc2

s = 1=3. For these lattice elements, equation 2.32 is the equilibrium
distribution function.
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f eq
i = �w i

�
1 + 3 (ci � u) �

3
2

(u � u) +
9
2

(ci � u)2
�

+ O(u2) (2.32)

For an incompressible uid ow, the density is constant. It is however di�cult to constrain the density in
LB methods, which remains a topic of research [24]. One option is to replace the density by equation 2.33,
proposed by He and Luo [25].

� = � o + �� (2.33)

In the equation, the average density of the uid � 0 is a constant, which is a uid property. The �� term
accounts for small density uctuations. The incompressible equilibrium distribution function for the earlier
mentioned two lattice types can now be written as equation 2.34.

f eq
i = wi

�
� + � 0

�
3 (ci � u) �

3
2

(u � u) +
9
2

(ci � u)2
��

+ O(u2) (2.34)

In most LB methods, the streaming step takes place �rst, followed by the collision step. This process is nicely
visualized by Yuanxun Bill Bao & Justin Meskas [26]. The streaming step is given by the left hand side of
equation 2.16, which can be found in �gure 2.5.

Figure 2.5: Streaming step for a D2Q9 lattice [26]

After the streaming step, the particles have moved in directions speci�ed by the lattice, which is the new
location if no collisions take place. Since the lattices are surrounded by other lattice elements and sometimes
walls, collisions do take place. This means that the moving particles are initially in a sort of imaginary
state, denoted by f �

i . For the collision step, the information of the streaming step is used by calculating the
macroscopic density and speed from this step. This can also be seen in equation 2.31, where the density�
and the velocity u are the only unknowns in the equation. These macroscopic values can be calculated by
using equations 2.37 and 2.38, which is a sum over allN streaming directions in the lattice. To derive these
equations, we �rst take the mass and momentum conservation over the lattice for the discrete BTE [27]:

NX

i =0

f eq
i =

NX

i =0

f i (2.35)

NX

i =0

ci;j f eq
i =

NX

i =0

ci;j f i (2.36)
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In equation 2.36, the vector ci is replaced by the vector componentsci;j , since we have momentum conser-
vation in all spatial dimensions. Now for the equilibrium distribution function, we can use equation 2.32
to obtain the equations for the density and velocity as a function of the calculated particle density func-
tions. It is logical that the sum of the distribution functions is equal to the density, since the normalised
Maxwell-Boltzmann distribution function was multiplied by the density in equation 2.19.

� =
NX

i =0

f i (2.37)

u =
1
�

NX

i =0

f i ci (2.38)

For the collision step, we have particle-particle collisions and particle-wall collisions. When looking at the
streaming process, one could expect interactions between the distribution functions coming from neighbouring
lattice elements. For example, we take the lattice element in �gure 2.5 and imagine another lattice element on
the right side of this element. If this lattice element has the same numbering convenience, a collision might be
expected between distribution function f 1 and f 3. The particle-particle collisions however take place inside
the distribution function and the collisions can be seen as a purely local process. For a single-phase ow, the
distribution functions are simply interchanged after the time step.

These local collisions are taken into account by the distributions moving to the local equilibrium. The new
distribution functions are obtained by using the distribution function after the streaming step f �

i .

f i = f �
i � ! (f �

i � f eq
i ) (2.39)

For the particle-wall collisions, extra information is needed to calculate the updated distribution functions.
These collisions are actually taken into account in the streaming step, which means that the collisions in the
LB method are a bit di�erent than for molecular dynamics models. At the walls, a boundary conditions is
imposed that dictates how these collisions take place. These boundary conditions will be explained in the
next section. In the BGK BTE version that is given in the report, the external force term is not included.
The main reason for this is that in the problems in this report, external forces like the buoyancy, gravity or
magnetic forces do not have to be applied to solve the problems. The impact on the derivations is often not
treated in literature, however the complexity of the implementation of the external forces can become quite
large depending on the problem [28].

One of the largest advantages of LB methods is the possibility for parallelization, which can be explained by
the streaming and collision in each time step. The collisions take place locally, which means that interactions
between the lattice cells only happen due to streaming. At the next time step, only the information from
the direct neighbouring cells is required to update the distribution functions in the cell. The streaming and
collision steps in the LB method can thus be solved separately for each element, before updating the cells
based on the distributions coming from the neighbouring cells. This in turn allows for parallelization, since
all elements can be computed separately, which is often done by dividing the tasks over multiple CPUs.
Also, in Navier-Stokes based solvers like FEM and FVM, the pressure �eld has to be solved explicitly from
a pressure Poisson equation. In equation 2.37 it can be seen that the density is derived locally. In LBM, the
pressure and density are related by equation 2.40:

P = �c 2
s (2.40)

From this equation, it becomes clear that the pressure can be calculated from the density which means that
the pressure Poisson equation does not have to be solved explicitly in LB methods.
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