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Management Summary 

Introduction 

Instituut Verbeeten provides radiotherapy for cancer patients. Before starting the radiotherapy, 

appointments of the pre-treatment stage must be scheduled. Instituut Verbeeten wants to optimize 

the blueprint schedule of pre-treatment appointments for their patient types with different stages and 

durations. In the Netherlands, access time norms are defined which determine a maximum number of 

days between referral and the start of the treatment. Currently, only 90% of the acute patients is 

treated within 24 hours, 94% of the subacute patients is treated within 7 days and 95% of the regular 

patients is treated within 21 days. Therefore, this study focuses on designing a blueprint schedule in 

which multiple appointments are efficiently scheduled taking the nationwide norm regarding to 

access time in mind. In the literature, outpatient services are frequently studied, and a need for 

coordinated care across multiple departments is acknowledged, but multi-disciplinary appointment 

planning is challenging because there are often more constraints such as interdependency between 

pre-treatment phase appointments. The contribution if this thesis is three-fold: 1. We develop a multi 

appointment blueprint schedule, a problem on the tactical multi appointment/disciplinary side of the 

planning, which is underexposed in the literature. 2. We focus on combining appointments to decrease 

access time and start a patients’ treatment as soon as possible. And 3. We show the working of our 

models in a practical case with Instituut Verbeeten, which shows that the blueprint schedule for pre-

treatment phase appointments can be obtained in their current practise.  

Methods 

We focus on mid-term planning and in particular the design of a blueprint schedule, for a flexible flow 

shop system, as certain patient types do not need all care pathway stages. Patient types have different 

tumour types and radiotherapeutic oncologists (RTO) have different tumour type specializations. All 

care pathways can be summarized to 19 patient types covering 90% of all patients.  The patients of 

Instituut Verbeeten are referred patients from mostly MDOs (multi-disciplinary meeting) in a hospital. 

We have the data of patients referred between September 2020 and February 2021 from the hospital 

information system. The nationwide norm states that all patients with an acute condition are treated 

within 24 hours, patients with a sub-acute condition are treated within 7 days, and patients with other 

conditions (also known as regular patients) are treated within 21 days. 

 We do not take uncertainty into account in the model, because we aim to set a basis for the tactical 

multi appointment/disciplinary side of the planning and combining appointments. The model is static, 

where input parameters can be adapted to analyse the resulting blueprint schedule. The model 



 
 

minimizes the total sum of the starting times of the reserved appointments, such that patients can be 

treated as soon as possible. Constraints make sure appointments are reserved for the right patient 

types and resources. Furthermore, we designed a constraint making sure the sequence of the stages 

is right. We develop both an exact method as well as a constructive heuristic, and the performance of 

the blueprint schedule is measured. The exact method is an ILP, which is solved using Spyder with the 

programming language Python and the software package MIP and solver CPLEX. The constructive 

heuristic is a greedy approach, programmed in Python. The initial sequence of scheduling the patient 

types in the first available slot is from the patient type 0 to 18. However, also other sorting methods 

are analysed, namely starting with the patient type with the highest or lowest number of arrivals and 

a random sequence.  

Experiment design 

To show the working of the methods in practise, we perform experiments which vary in: 

- The number of days of the planning horizon of the experiment (5, 10, 15 or 20 days) 

- The flexibility of taking over tasks by RTOs (one single RTO is assigned to BVB time and first 

consultation for that same patient, or the BVB time can be executed by any RTO with the 

tumour type specialisation) 

- The size of the case mix (the original case mix or a 50% increase in the original case mix) 

Results 

Table 0.1 Summary experiment results 

Experiments 
Exact 
Objective function 

 
Calculation time 

Heuristic 
Objective function 

 
Calculation time 

Flex, initial 77,041.00 2058.36 77,673.00 526.81 

Fix, initial 77,212.00 2894.75 78,084.00 376.37 

Flex, 1.5x 119,309.00 2194.5 120,197.00 851.88 

Fix, 1.5x 119,557.00 2218.54 120,803.00 688.26 

Random   78,005.00 488.42 

High to low   78,394.00 478.62 

Low to high   77.724,00 487.18 

Table 0.1 shows the summary of the experiment results for a planning horizon of 10 days. The exact 

method outperforms the constructive heuristic by 1.36% on average, and can be solved to optimality 



 
 

within 30 minutes. The constructive heuristic also provides good solutions, with an approximation ratio 

of 0.82% and a calculation time of 526.81 seconds. This is four times less than the calculation time of 

the exact solution method. The initial sequence of patient types for the constructive heuristic (as 

displayed in Table 0.1) gives the lowest objective value. Furthermore, the objective function value is 

higher when the BVB time has a fixed RTO, namely the same RTO as the first consultation.  

Currently, Instituut Verbeeten can start the treatment of 94% of the subacute patients within the 

nationwide norm of 7 days and this research achieved to increase this ratio to 100%. These subacute 

patients can be treated with a mean of 3 hours, far within the nationwide norm. Furthermore, 

currently Instituut Verbeeten can start the treatment of 95% of the regular patients within the 

nationwide norm of 21 days and this research achieved to increase this ratio to 100%. These regular 

patients can be treated with a mean of 5 hours, far within the nationwide norm. This means a large 

decrease in processing time and patients can start their treatment earlier.  

Next to this, we show that patients can start their treatment 2 time slots, so 30 minutes faster if the 

BVB time can be executed by any RTO instead of the RTO that performed the first consultation. 

Furthermore, our proposed model still creates a feasible schedule when the case mix is 1.5 times more 

than the original case mix. This however comes at the cost of less available pool time, for example for 

follow up appointments. These follow up appointments can be planned when there are less new 

patients arriving.  

Discussion 

In our work, we show the working of our developed methods for a practical case study with Instituut 

Verbeeten. This research can also be used for similar cases where a blueprint schedule is to be created. 

The important characteristic of this model is that it concerns multi appointment planning including 

different stages and patient types. The limitation of this research is that the model cannot be solved 

exactly for a planning horizon longer than 10 days, for which the constructive heuristic has been 

developed. 

Further research is required to involve the patients’ travel time. For example by including the home 

location of a patient and the location of the resources. We proved that the model gives a better 

solution if the BVB time can be executed by any RTO instead of the RTO that did the first consultation 

of a patient. Therefore, we advise Instituut Verbeeten to reserve the BVB time at any RTO that is 

available to create more flexibility in the planning and to treat patients as soon as possible. We cannot 

start with the new blueprint schedule in one day, because first the backlog needs to be decreased. This 

can be done by increasing the availability of the resources for a couple of weeks, to make sure the 

backlog is decreased before starting with the new blueprint schedule. 



 
 

Finally, consultancy agencies can use this research to execute projects at other companies with similar 

planning issues. To this end, the model can be used and adjusted to other circumstances and 

requirements by changing the input parameters and some constraints. 

  



 
 

List of Abbreviations 

Abbreviation Explanation 

ADM Administration 

BVB The Dutch abbreviation for radiation preparation 

treatment plan (Bestraling Voorbereiding 

Behandelplan) 

IKNL The Dutch abbreviation for Integral Cancer 

Centrum the Netherlands (Integraal Kanker 

Centrum Nederland) 

FU Follow up appointment 

(M)ILP (Mixed) Integer Linear Programming 

Mamma the Latin word for breast 

MDL The Dutch abbreviation of stomach, intestine 

and liver (Maag, Darm & Lever) 

MDO The Dutch abbreviation for multi disciplinary 

meeting (Multi Disciplinair Overleg) 

MR Mould Room, to position a patient in the right 

form for a scan 

NP First consultation of a new patient 

NVRO The Dutch abbreviation for Dutch Association for 

Radiotherapy and Oncology (Nederlandse 

Vereniging voor Radiotherapie en Oncologie) 

RTO the Dutch abbreviation of radiation oncologists 

(Radio Therapeutisch Oncoloog) 
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1 Introduction 

Since the reform of the Dutch health insurance system in 2006, a gradual transformation of the supply 

side of the healthcare market has taken place (Schut & Van de Ven, 2011). The health insurance law 

ensures a basic insurance for citizens and results in more possibilities for them to make their own 

choices from healthcare providers and health insurance policies (Zorgverzekeringswet, 2021). This 

creates competition between healthcare providers and healthcare insurers. They can distinguish 

themselves by creating efficient healthcare systems. A popular way of such development is the use of 

Operation Research (OR), which provides methodologies and solution techniques to improve access 

and reduce costs in healthcare (Ahmadi-Javid, Jalali, & Klassen, 2017).  

Healthcare is divided into outpatient and inpatient care, where outpatient care does not require an 

overnight hospitalization. Outpatient care becomes an essential part of the healthcare system as there 

is a greater focus on preventive medicine practices and shorter lengths of stay (Cayirli & Veral, 2003). 

On top of this, patients develop more complex diseases, creating a need for coordinated care across 

multiple departments (Mutlu, Benneyan, Terell, Jordan, & Turkcan, 2015). Outpatient appointment 

systems (OAS) have been studied for more than a half century, namely since the paper of Bailey (1952). 

Cayirli & Veral (2003) and Gupta & Denton (2008) review the literature and address open research 

questions related to OAS problems, but do not mention the coordinated care across multiple 

departments. Leeftink, Bikker, Vliegen, & Boucherie (2020) look at the multi appointment context and 

conclude that mid-term capacity planning is a promising direction for further research, such as 

blueprint schedule planning, patient admission planning, and temporary capacity changes.  

This research is motivated by Instituut Verbeeten, which provide radiotherapy for cancer patients for 

more than 65 years. Where radiotherapy is the irradiation of mostly malignant diseases. These 

treatments can be performed separately, or in combination with other relevant cancer treatment 

modalities, such as surgery and chemotherapy. Before starting the radiotherapy, several preparation 

steps need to be performed also known as the pre-treatment stage. A couple of healthcare 

professionals are involved in the radiotherapy treatments. Radiation therapy technologists (RTT) image 

the scans, plan the treatment, and perform irradiation sessions. While the radiotherapeutic 

oncologists (RTO) perform the first consultation, tumour contouring, and follow up appointments. The 

research focuses on the pre-treatment patient planning of Instituut Verbeeten, including the first 

appointment, CT scan and preparation time.  

Instituut Verbeeten wants to optimize the blueprint schedule of pre-treatment appointments of their 

patients. A blueprint schedule is a schedule with reserved time slots for certain patient types, given 

that the patients have not arrived yet. In this way, it is easier to plan arriving patients because time 



2 
 

slots are already reserved. These patients have different care pathways, namely a specific sequence of 

operations, which is dependent on the characteristics of the tumour (such as tumour site, level of 

advancement, etc.), urgency level, amongst other factors (Vieira, 2020). The pre-treatment phase 

involves multiple appointments with different healthcare professionals. In an ideal situation, patients 

attend pre-treatment appointments on the same day, if necessary, because this decreases total travel 

and access time. Access time is the time from referral to the treatment. High access time and waiting 

time is generally undesirable in healthcare, but especially in radiotherapy (Simons, et al., 2017). 

Because local tumour control and survival rates are negatively affected by increased waiting time, 

especially for specific tumour sites (e.g., breast, head, and neck cancer) (Mackillop, 2007). 

Furthermore, patients have fear and feel insecure about their process which results in prolonged 

psychological distress, so it is desirable to start the treatment as soon as possible (Mackillop, 2007). In 

the Netherlands, timeliness standards are defined by the Dutch Society for Radiation Oncology (NVRO), 

which determine a maximum number of days between referral and the start of the treatment 

(Normeringsrapport, sd). Currently, only 90% of the acute patients is treated within 24 hours, 94% of 

the subacute patients is treated within 7 days and 95% of the regular patients is treated within 21 days. 

Therefore, this study focuses on designing a blueprint schedule in which multiple appointments are 

efficiently scheduled taking the nationwide norm regarding to access time in mind. 

The problem we look at in this research is unique. First, because it focuses on the tactical side of the 

planning, namely addressing the organization of operations of the healthcare delivery process. In 

particular tactical planning deserves attention, as this level of control is underexposed in practice due 

to its inherent complexity (Hans, Van Houdenhoven, & Hulshof, 2012). Tactical implications of a 

strategic decision should be managed, because otherwise problems are likely to persist. Second, it 

concerns a multi appointment planning including doctors with different combinations of 

specialisations. Research often limit their scope to a single diagnostic resource type or procedure step 

due to complexity constraints (Marynissen & Demeulemeester, 2019). However, the pre-treatment 

includes multiple appointments which should be planned in a short time, to decrease access time and 

start the treatment as soon as possible. Reviews of multi disciplinary planning such as from Vanberkel, 

Boucherie, Hans, Hurink, & Litvak (2009) and Leeftink, Bikker, Vliegen, & Boucherie (2020) compile an 

overview of planning models, but little or no scheduling occurs. The contribution if this thesis is three-

fold: 1. We develop a multi appointment blueprint schedule, a problem on the tactical multi 

appointment/disciplinary side of the planning, which is underexposed in the literature. 2. We focus on 

combining appointments to decrease access time and start a patients’ treatment as soon as possible. 

And 3. We show the working of our models in a practical case with Instituut Verbeeten, which shows 

that the blueprint schedule for pre-treatment phase appointments can be obtained in their current 

practise.  
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The remainder of this paper is organized as follows: Section 2 describes related literature on multi 

appointment planning, followed by the problem description in Section 3. Section 0 elaborates on the 

case study settings and results. Finally, Section 4 describes the conclusion and discussion.   



4 
 

2 Literature 

This section reviews the related literature on the topic multi-disciplinary appointment planning. 

Starting with the introduction of a Lean Six Sigma project of Instituut Verbeeten in Section 2.1. Next, 

Section 2.2 discusses the importance of appointment systems focussed on multi appointment 

planning. Thereafter, Section 2.3 gives an overview of the four-by-four generic framework of 

healthcare planning and control of Hans, Van Houdenhoven, & Hulshof (2012). Section 2.4 includes 

the possible characterstics of a model. Section 2.5 mentions possible solution methods and Section 

Error! Reference source not found. elaborates on the contribution of the literature to the research.  

2.1 Lean Six Sigma 

Currently, Instituut Verbeeten is working on a Lean Six Sigma project. This project aims at optimising 

the distribution of the first appointment across the locations of Instituut Verbeeten. Lean principles 

and tools play an important role in healthcare delivery in the improvement and quality of services 

(Spagnol, Min, & Newbold, 2013). The current Toyota Production System (Lean) has been in existence 

since 1945, so it is developed further in many years. Therefore, there is a high urgency in improving 

healthcare services compared to world-class manufacturing organisations where staff already 

understood the lean principles and the urgency for change (Young & McClean, 2009).  

Lean thinking focusses on eliminating waste (Womack & Jones, 1997). These includes defects, 

overproduction, transportation, waiting, storage (buffers), movement and relocating, doing more than 

necessary and unused creativity and capacity. In the case of healthcare service, especially waiting, 

doing more than necessary and unused capacity are relevant. Waiting belongs to the patient access 

time and waiting time. So, the time until patient’s first consultation and the time between patient’s 

appointments. Doing more than necessary is the case in the patient registration and planning process. 

Sometimes processes can be simplified by eliminating or combining steps in, for example, the planning 

process. Furthermore, resources have to be used efficiently and unused capacity should not be the 

case. Eliminating waste involves five stages (Womack & Jones, 1997):  

1. Specific value must be defined by the customer, in terms of specific products with specific 

abilities at specific prices.  

2. The value stream must be identified with all the actions required to bring the product to the 

customer, with only activities that add value.  

3. Create flow and eliminate the traditional batch process.  

4. Get the customer to pull the product. 

5. Perfection.  
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During the research, the focus is on eliminating waiting, doing more than necessary and reducing 

unused capacity to reach the lean goal to eliminate waste.  

Six sigma identifies and aligns improvement initiatives with strategic objectives and business goals and 

look at key processes across the entire system (Sehwail & DeYong, 2003). Since introducing the initial 

6-step process by Motorola University Design for Manufacturing training programme in 1988 (Watson 

& DeYong, 2010), Six Sigma became an extension to Total Quality Management (TQM) (Green, 2006). 

It became a business strategy focussing on improving understanding of customer requirements, 

business productivity and financial performance (Kwak & Anbari, 2006). The principle took shape in 

the electronics industries and in the last two decades, principles also been implemented in the context 

of, amongst others, hospitals (Sehwail & DeYong, 2003). Especially, the Define, Measure, Analyse, 

Improve and Control (DMAIC) approach works well for processes that can measure response variables, 

because it is an systematic, structured and on facts based method. The approach helps to base 

decisions on facts in stead of feelings or presumptions. During the research, the DMAIC approach is 

used as underlying thought to reach process improvement.  

2.2 Importance of appointment systems 

Healthcare providers differentiate themselves by creating efficient healthcare systems, where the use 

of Operation Research techniques is one way to improve access time and reduce costs. In recent years, 

there is an increased focus on outpatient services and a need for coordinated care across multiple 

departments (Mutlu et al., 2015). There are literature reviews available on outpatient appointment 

systems, such as Cayirli & Veral (2003) and Gupta & Denton (2008). However, these do not address 

multi appointment scheduling. A multi disciplinary care system is defined as a care system in which 

multiple related appointments are scheduled per patient, involving healthcare professionals from 

different facilities or with different skills. Leeftink et al. (2020) and Marynissen & Demeulemeester 

(2019) indicate the relevance of multi-disciplinary/appointment planning, which are becoming 

increasingly popular. 

Although multi-disciplinary appointment planning is considered relevant, multi-disciplinary 

appointment planning is also much more challenging than single appointment planning, or multi 

appointment planning for a single discipline, for multiple reasons. For example, there are more 

constraints, such as precedence relations and resource availability, that must be considered. In 

addition, there is often the bullwhip effect, due to the variability that occurs in early stages of a 

patient’s care pathway, which impacts potential efficiency in later stages (Samuel, Gonapa, Chaudhary, 

& Mishra, 2010). The bullwhip effect is a well-known and much studied inefficient outcome. Different 

involved disciplines often do not use the same information, resulting in the bullwhip effect (Leeftink 
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et al., 2020). It also refers to the observation that the variability of orders in supply chains increases 

the closer one gets to the production source (Wu & Katok, 2006). This is linked to the patient’s care 

multi stage care pathway. For example, Samuel et al. (2010) defined the bullwhip effect as the standard 

deviation ratio between the service rate and patient arrival rate. A care pathway is defined as a 

complex intervention for the mutual decision-making and organisation of care processes for a well-

defined group of patients during a well-defined period of time (Vanheacht, De Witte, & Sermeus, 

2007). Concluding, multi-disciplinary appointment scheduling is more challenging, due to the 

precedence relations and resource availability that must be considered. 

2.3 Healthcare planning and control 

Healthcare planning and control is divided into different hierarchical levels of control and managerial 

areas. Hans, Van Houdenhoven, & Hulshof (2012) introduces this four-by-four generic framework, 

shown by Error! Reference source not found.. The four managerial areas are medical planning, r

esource capacity planning, materials planning and financial planning. This report focuses on resource 

capacity planning, namely dimensioning, planning, scheduling, monitoring, and control of renewable 

resources. Patients must be scheduled with multiple resources, such as staff and MRIs. Furthermore, 

there are four hierarchical levels of control, namely strategic, tactical, and offline/online operational. 

Since the focus is on resource capacity planning, the levels can be depicted in the following way. 

Strategic means long-term and relates to structural decision making, i.e., case mix planning: capacity 

dimensioning and workforce planning. This occurs about a year before patients are scheduled. Next 

comes tactical, which focuses on the implementation of the processes, such as block planning, staffing 

and admission planning. This takes place a few weeks before patients are scheduled. Finally, there is 

operational, divided into offline and online operational. Offline operational focusses on short-term 

decision making related to the implementation of the healthcare delivery process, such as 

appointment scheduling and workforce scheduling which is executed. Typically, this takes place about 

a few weeks before the appointments. Online operational decisions, such as monitoring and 

emergency coordination, are made on the same day or a few days in advance.  
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Figure 2.1 Framework for healthcare planning and control (Hans et al., 2012) 

Patients are referred through MDOs of different hospitals. An MDO is a meeting with doctors from 

multiple disciplines (Multidisciplinair overleg, sd). During this MDO the decision is made if a certain 

patient is treated. The MDOs of the referring hospitals are held every week on the same days, so this 

part of the number of referred patients can be predicted. The goal is to match the planning to the 

schedule of the MDOs, so the focus of this research is on mid-term planning, namely tactical/capacity 

planning, shown by Error! Reference source not found. with the highlighted black border. The main o

bjectives are to achieve equitable access and treatment duration for different kind of patient groups, 

to serve the strategically agreed upon a target number of patients, to maximise resource utilisation 

and to balance the workload (Hulshof, Boucherie, Hans, & Hurink, 2013). Capacity planning considers 

the allocation of resource capacity across specialties, patient groups or time slots by, for example, 

blueprint schedule and patient admission planning (Leeftink et al., 2020). The blueprint schedule 

consists of a description of the number of capacity or reserved time slots for specific patient types. 

These time slots can also be used for combined appointments. The patient admission policy describes 

the number and type of patients that can be admitted from the waiting list.  

To match the planning to the schedule of the MDOs, the focus is on generating a blueprint schedule. 

The factors showed in Table 2.1Table 2.1 can be considered when modelling the key decisions to design 

the blueprint schedule (Hulshof, Kortbeek, Boucherie, Hans, & Bakker, 2012). 
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Table 2.1 Factors to consider when modelling key decisions of a blueprint schedule 

Factor Explanation 

Number of patients per consultation session 

 

To control patient access times and patient 

waiting times. When the number of patients 

increases access times probably decreases, but 

overtime tends to increase.  

Patient overbooking 

 

If patients do not show up, they cause 

unexpected gaps and increases resource idle 

time. To compensate no-show patients, patients 

can be overbooked, so planning more patients 

than the suggested number of planned slots. It 

provides benefits for facilities with high no-show 

rates. 

Length of the appointment interval This decision affects the resource utilization and 

patient waiting times. When the slot length 

decreases, resource idle time decreases, but 

patient waiting times increases.  

Number of patients per appointment slot It was common to schedule all patients in the 

first time slot of a consultation session. 

Nowadays, it became common to distribute 

patients evenly over the consultation session to 

balance resource idle time and patient waiting 

time. 

Sequence of appointments 

 

If there are multiple patient groups, the 

sequence of the appointments influences 

waiting times and resource utilization. 

Therefore, appointments can be sequenced 

based on patient groups. 

Queue discipline in the waiting room The higher the patient’s priority, the lower the 

patient’s waiting time. The queue discipline is 
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often first-come-first-served (FCFS), but if 

emergency patients are involved, they often are 

the highest priority.  

Anticipation for unscheduled patients Some facilities have unscheduled patients, also 

called walk-in and urgent patients. They should 

anticipate on these patients by reserving specific 

time slots. Often, unscheduled patients arrive in 

varying volumes during the day and week.  

There are several possible objectives in designing a blueprint schedule, namely combining 

consultations, minimising waiting time, or minimising access time. In the case of combining 

consultations, Dharmadhikari & Zhang (2011) suggest a simulation-based scheduling policy to benefit 

hospitals with patients requiring multiple appointments on the same day through block scheduling 

with priority (BSP). To minimise waiting time, Liang, Turkcan, Ceyhan, & Stuart (2015) use discrete 

event simulation to model patient flow in the oncology clinic and test the impact of various operational 

decisions on patient waiting times, resource utilization, and overtime. Finally, in the last case in 

minimising access time, Bikker, Kortbeek, Van Os, & Boucherie (2015) developed a model for the 

capacity allocation of physicians to their multiple activities, aligned with demand with capacity 

allocation in sequential stages. Furthermore, efficiency gains are possible when certain tasks can be 

substituted between clinical staff, either horizontally (equally skilled staff) or vertically (lower skilled 

staff) (Smith-Daniels, Schweikhart, & Smith-Daniels, 1988).  

Vieira (2020) concludes that most of the studies presented in the literature about radiotherapy 

treatment focus on the scheduling of the radiotherapy treatment sessions, and only few studies focus 

on optimizing the pre-treatment stage. However, there are potential benefits that can be achieved by 

reducing access times before treatment. Therefore, our research focuses on novel scheduling 

techniques for the pre-treatment stage to reduce access times and start treatment as soon as possible.  

2.4 Characteristics of a model 

This section describes the possible characteristics of a planning model. First, Section 2.4.1 includes an 

overview about the possible uncertainties to consider. Next, Section 2.4.2 elaborates on designing a 

static or dynamic model. Finally, Section 2.4.3 elaborates on the different options in precedence 

relations and the effect on the planning model.  
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2.4.1 Uncertainty 

When optimizing planning processes, not everything can be predicted and aspects including 

uncertainty results in variability. Researchers must decide whether to take this variability into account 

or not. For example, the following aspects can include variability: 

2.4.1.1 Appointment’s durations  

The durations of patients’ appointments can vary because every patient is unique and has other 

requirements for their treatment. Most of the time, this aspect is fixed, and uncertainty is not 

considered. The deterministic approach is often used where durations have for example a low variance 

and when there are multiple appointments per patient on one day, the stochastic approach is used 

(Leeftink, Bikker, Vliegen, & Boucherie, 2020).  

2.4.1.2 Patient arrivals 

The arrival of patients is not always the same. This variability is often considered. The deterministic 

approach results in information gathering before decisions are made and the stochastic approach is 

used when the future arrivals are unknown (Leeftink, Bikker, Vliegen, & Boucherie, 2020).  

2.4.1.3 Resource capacity 

The capacity of a hospital is not always the same due to for example illness and sabbaticals, which can 

have an impact on the utilisation of capacity of interrelated disciplines (Samuel, Gonapa, Chaudhary, 

& Mishra, 2010). The deterministic approach is used when there is enough capacity available and the 

stochastic approach is used where capacity is scarce, specifically for capacity planning problems 

because information concerning resource capacity is not yet known (Leeftink, Bikker, Vliegen, & 

Boucherie, 2020). 

2.4.1.4 Care pathway 

These variations are mostly from situations with long treatments. The deterministic approach is 

suitable for fixed care pathways with information gathered before the decisions are made and the 

stochastic approach is suitable for situations where changes in the care pathway can take place 

(Leeftink, Bikker, Vliegen, & Boucherie, 2020). 

2.4.2 Static or dynamic planning 

Tactical resource and admission planning approaches are static or dynamic (Hulshof, Boucherie, Hans, 

& Hurink, 2013). When planning is static, it results in long-term cyclical plans. However, when a 

planning is dynamic, it results in mid-term plans due to the variability in demand and supply. Hospital’s 

population and treatments should be annually anticipated by hospital managers to redesign blueprint 
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schedules as a hospital’s population and treatments changes over time (Leeftink, Vliegen, & Hans, 

2019). Currently, there is often a planning supervisor who counteracts the problems by manually 

adjusting the planning with constant active and time-consuming monitoring of the planning. However, 

this is very dependent on the expertise of the supervisor and leave days, or illness can lead to a 

significant decrease in resource efficiency. This is solved by a model with parameters that are 

dynamically changed to adapt to the stochastic arrival of patient (Vermeulen, et al., 2009). Other 

aspects with variability are durations of appointment, care pathways or capacity of resources. For 

example, a care pathway may be known upon patient arrival, become clear during the appointments, 

or may be modified during the multiple appointments. However, information on arrivals and care 

pathways is usually not yet available for mid-term decision making, so it must be predicted (Hans et 

al., 2012).  

2.4.3 Flow-shop, open-shop, or mixed-shop 

Section 2.2 mentioned that multi-disciplinary appointment planning must consider constraints and 

precedence relations. Based on precedence relations, three different systems can be distinguished: 

flow-shop, open-shop, and mixed-shop. All three systems are shown in Figure 2.2. A flow-shop system 

(also called one-stop-shop) implies that patients undergo a predetermined sequence of activities at 

multiple facilities (Leeftink et al., 2020). Precedence relations between appointments are strict and 

form a predefined pathway. In the flow-shop context, integer linear optimisation (ILP) evaluated by 

discrete event simulation, and heuristic approaches are often applied. In an open-shop, patient 

appointments can be scheduled in any order and contain zero or only a few precedence constraints. 

The most used solution method for an open-shop problem is the (local search) heuristics. Finally, a 

mixed-shop is the combination of a flow-shop and an open-shop. They often have a fixed sequence, 

but the order is not fixed. This is usually solved by mathematical programming and heuristics. There is 

also a subcategory called flexible flow-shop, where the patient can skip stages and move to the next 

stage, especially relevant for personalised healthcare. However, this system is not reported on and is 

therefore identified as a gap in the literature.  



12 
 

 

 Figure 2.2 Visualisation of flow/open/mixed shop, based on (Leeftink, Bikker, Vliegen, & Boucherie, 2020) 

2.5 Solution methods 

Operation Research (OR) is used to optimize processes using techniques such as computer simulation, 

constructive heuristics, metaheuristics, and mathematical programming (Rajgopal, 2001). All 

techniques are applicable in different situations which will be explained. Typical objectives of the 

design of a blueprint schedule are to minimise patient waiting time, maximise resource utilization or 

minimise resource overtime (Hulshof, Kortbeek, Boucherie, Hans, & Bakker, 2012). When optimizing a 

model, different kinds of solutions can be achieved; feasible, infeasible, and optimal. The model can 

consist of multiple feasible solutions, which all satisfy the linear and non-linear constraints. One of the 

feasible solutions, is the optimal solution for which no better solution can be found. However, when a 

problem is big or complex, it is hard to find an optimal solution in reasonable time. In this case, a 

feasible solution can also be a good solution. When a model cannot be solved, it is infeasible (Feasible 

and infeasible solutions, sd). 

Literature shows that computer simulation is the most popular method for solving strategic and 

tactical problems where patient flow and capacity allocation are the subjects of interest (Vieira, 2020). 

Computer simulation is the process of building an abstract model that mimics the behaviour of a real-

world or theoretical system, executing the model on a computer and analysing the output (Law, 2007). 

Werker et al. (2009), Crop et al. (2015), and Joustra et al. (2012) used discrete-event simulation (DES) 

to model the pre-treatment phase of the radiotherapy process and test what could reduce patients’ 

waiting times. Where Thomas (2003) uses Monte Carlo simulation modeling to calculate the number 

of linear accelerators needed to cover the demand in radiotherapy centers and determine the number 

of spare capacity to keep waiting times low.  
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Metaheuristics and constructive heuristics are used to optimize larger instances of the treatment 

scheduling problem, where the computation time of MILP models becomes intractable. Metaheuristics 

are general-purpose heuristic algorithms that iteratively improve a candidate solution, designed to 

solve a wide range of hard optimization problems without having to deeply adapt to the problem at 

hand (Blum & Roli, 2003). Petrovic et al. (2009) use a genetic algorithm to optimize pre-treatment 

patient flows by scheduling treatment efficiently. Constructive heuristics are heuristic methods to 

create and/or improve a candidate solution, step by step, according to a set of rules defined 

beforehand, which are built based on the specific characteristics of the problem to be solved (Solnon 

& Jussien, 2013). Constructive heuristics allow to build solutions based on empirical knowledge of the 

system. Petrovic & Leite-Rocha (2008) propose four constructive approaches for scheduling treatment 

sessions.  

Furthermore, mathematical programming is most used to address operational problems where 

treatment scheduling problems is the subject of interest. Mathematical programming is an 

optimization method that aims to mathematically represent a decision problem by defining a set of 

constraints that bound the values of a set of decision variables, and an objective function to be either 

minimised or maximised until an optimal solution is found (Bradley, Hax, & Magnanti, 1997). Conforti 

et al. (2010), Castro & Petrovic (2012), and Burke et al. (2011) created mixed-integer linear 

programming (MILP) models to estimate optimal weekly linear accelerator schedules for irradiation 

sessions with a known population of patients. The models can find optimal solutions in a reasonable 

computation time.  

2.6 Summary 

This section includes a summary of the contribution of literature to this research. Lean thinking 

focusses on eliminating waste (Womack & Jones, 1997). These includes defects, overproduction, 

transportation, waiting, storage (buffers), movement and relocating, doing more than necessary and 

unused creativity and capacity. In the case of healthcare service, especially waiting, doing more than 

necessary and unused capacity are important. Furthermore, the Define, Measure, Analyse, Improve 

and Control (DMAIC) approach works well for processes that can measure response variables, because 

it is a systematic, structured and on facts based method. The approach helps to substantiate decisions 

on facts instead of feelings or presumptions. During the research, the DMAIC approach is used as 

process structure to reach process improvement.  

There is a great focus on outpatient services and a need for coordinated care across multiple 

departments. Leeftink et al. (2020) addresses the multi disciplinary appointment context and 

elaborates on why this is an interesting area of research. Multi disciplinary appointment planning is 
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challenging because there are precedence constraints and the bullwhip effect is often present, 

affecting potential efficiency in later stages of the patient’s care pathway. The focus is on mid-term 

planning and in particular the design of a blueprint schedule, where multiple objectives are possible.  

Furthermore, certain aspects should be considered when designing a blueprint schedule. We chose to 

not take uncertainty into account in the model, because we want to set a basis for the tactical multi 

appointment/disciplinary side of the planning and combining appointments. The uncertainty can be 

considered in further research. The model will be static, where input parameters can be adapted to 

analyse the resulting blueprint schedule. Moreover, the flexible flow shop will be considered because 

certain patient types do not need all care pathway stages. The solution of the model will be calculated 

through an exact model and a constructive greedy heuristic.   
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3 Problem description 

This section focusses on the problem description. First, Section 3.1 describes the process of Instituut 

Verbeeten. Section 3.2 elaborates on the assumptions being made and Section 3.3 shows the 

mathematical model. Finally, Section 3.4 explains the constructive heuristic.  

3.1 Process 

This section includes an overview of the process within the case study, namely Instituut Verbeeten. 

Starting with Section 3.1.1 explaining the context. Next, Section 3.1.2 discusses the influx of patients. 

Section 3.1.3 elaborates on the possible care pathways of the case study. Finally, Section 3.1.4 

describes the current situation. 

3.1.1 Instituut Verbeeten 

This research is conducted at Instituut Verbeeten, which provides radiotherapy for cancer patients for 

more than 65 years, where radiotherapy is the irradiation of mostly malignant diseases (Wie zijn wij?, 

sd). These treatments are performed separately, or in combination with other relevant cancer 

treatment modalities, such as surgery and chemotherapy. Radiation therapy technologists (RTT) image 

the scans, plan the treatment, and perform irradiation sessions. The radiotherapeutic oncologists 

(RTO) perform the first consultation, tumour contouring, and follow up appointments. In the 

remainder of this research, we focus on the RTOs. There are 17 RTOs at Instituut Verbeeten, who all 

have different specialisations. Appendix A shows the RTOs, their specialisations, and the total number 

of RTOs per specialisation.  

Almost all RTOs have side activities, such as a study day or meetings of oncology related associations. 

The planning of this side activities is fixed because they are out of scope. In general, RTOs work from 

Monday to Friday and start their day on 8.30AM. In the morning they have appointments until 

12.00AM, followed by a break from 12.00AM to 2.00PM. The first hour of the break is booked for 

meetings with other RTOs to discuss new patients and the second hour is booked for lunch. After the 

break, the RTOs have appointments until 5.00PM. Appendix B shows the division of the type of 

appointments of the even and uneven weeks of the RTOs where the side activities are called 

‘Meetings’. Moreover, the time slots reserved for administration (ADM), days free (RV) and study days 

(Study) are fixed.   

Besides RTOs and RTTs, the Instituut has dieticians, dental hygienists, doctor’s assistants, and social 

workers which are all out of scope. However, it should be kept in mind that some of these 

appointments are combined with appointments of RTOs. The result is that the planning should contain 

a certain level of flexibility to make this possible. 
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Instituut Verbeeten has three locations, in Tilburg, Breda, and Den Bosch (Wie zijn wij?, sd). All three 

locations provide radiotherapy treatment, but only in Tilburg resources concerning the CT scan is 

available. In addition, the radiotherapeutic oncologists (RTO) have consulting hours at the locations 

Gorinchem and Uden. Due to the pandemic starting in March 2020, a fixed division of RTOs to the 

locations of Instituut Verbeeten was introduced. Before the pandemic, the RTOs were flexible and may 

have had appointments at multiple locations. Appendix A shows which RTO is allocated to which 

location. Note that since March 2020, there have been no appointments at the locations Uden and 

Gorinchem.  

3.1.2 Influx 

With the exponential growth and aging of the world’s population, the pressure on hospitals is 

increasing (Fendrich & Hoffmann, 2007). Every year, Instituut Verbeeten estimates the production for 

the next year. This is a prediction of the number of new patients to be admitted to the Instituut. The 

estimation considers the incidence rates of the IKNL (Integrated Cancer Centre the Netherlands). The 

IKNL data show an average growth rate of 2% for the four largest cancer groups of the Instituut, namely 

mamma (breast), lung, MDL (stomach, bowels & liver) and urology. They account for 88% of the 

hospital’s total number of new patients. However, because of the pandemic the growth rate is not 

applicable and the division of the patients over the locations is different. Table 3.1 shows the overview 

of the realised production of 2019 and 2020 and the realised growth rate between 2019 and 2020. 

Table 3.1 Overview realised production 2019, 2020 and growth rate between 2019 and 2020 (hospital information system) 

Location Realised 
production 
2019 

Percentages Realised 
production 
2020 

Percentages Growth 
2019 vs 2020 

Tilburg 3461 66.5% 2898 56.4% -16.3% 

Breda 735  14.1% 1004 19.6% 36.6% 

Den Bosch 698 13.4% 1117 21.8% 60.0% 

Uden 228  4.4% 45 0.9% -80.3% 

Unknown 54 1.0% 62 1.2% 14.8% 

Gorinchem 32 0.6% 8 0.2% -75.0% 

Total 5208  5134  -1.5% 

Table 3.1 shows that in Tilburg with 56.4% the most patients are admitted. Furthermore, because of 

the pandemic there were no consultations in Uden and Gorinchem after March 2020. These patients 

were admitted to the locations Tilburg, Breda, or Den Bosch. This explains the number of new patients 
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at these locations. The patients of Instituut Verbeeten are referred patients from MDOs (multi 

disciplinary meeting) in a hospital or via other routes such as from a general practitioner.  

Due to the fixed schedule of the MDOs, there is a difference in the number of referred patients per 

day of the week. This is also visible in the data of patients referred between September 2020 and 

February 2021. The data shows that 66.6% of the referred patients come from an MDO and the rest 

through other means. Figure 3.1 focuses on this patient group, this are patients referred from an MDO, 

because the variability through the week depends on the fixed schedule of the MDOs. Figure 3.1 shows 

the number of referred patients in an MDO and Figure 3.2 shows all referred patients. A table is added 

below Figure 3.1 and Figure 3.2, to show the difference in referred patients per acuteness category. 

The number of acute referred patients is neglectable.  

 

Figure 3.1 Number of referred patients in a MDO per day of the week per patient type in 6 months (n=1281, Sep. 2020 -  Feb. 
2021, hospital information system) 

Figure 3.1 shows that there is a difference in variability of referred patients by day of the week. When 

patients are referred from an MDO, (sub)acute patients are mostly referred on Mondays and regular 

patients mostly on Thursdays. MDOs are typically scheduled for patient types on fixed days of the 

week, this explains the difference in the amount of referred patients per day of the week.  
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Figure 3.2 Number of referred patients per day of the week per patient type in 6 months (n=645, Sep. 2020 – Feb. 2021, 
hospital information system) 

Figure 3.2 shows the total number of referred patients through other ways than an MDO. We see that 

both subacute and regular patients are frequently referred on Wednesdays.  

Furthermore, we look at the variability in the number of referred patients with specific tumour types. 

For example, Figure 3.3 shows that for example most pulmonary patients are referred in the beginning 

of the week and most Mamma patients are referred in the end of the week. These aspects can be 

considered when designing a blueprint schedule. Currently, Instituut Verbeeten does not consider the 

difference in new patients arriving per patient type and day of the week in the design of their 

appointment system. 
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Figure 3.3 Number of referred patients per day of the week per organ system (n=1926, Sep. 2020 – Feb. 2021, hospital 
information system) 

A new patient must be registered before the first consultation can be scheduled. They are registered 

in two ways: digital (through the doctor) or on paper (through the medical administration). The planner 

receives the registration and fills out the registration form. Sometimes it takes time to collect the 

patients’ information and the planner must wait until this information is available. Some patients ‘shop 

around’ at different hospitals, for example for a second opinion. This means that some information 

must be requested from several hospitals. On average, one planner can handle 8-10 registrations per 

half working day, namely 4 hours. The second planner then focuses on actually planning the first few 

appointments. At this point, the planners reserve the appointments manually. They must check every 

RTO with the tumour type specialisation and search for the best combination of appointments for the 

pre-treatment phase. 

3.1.3 Care pathways 

Before a patient’s radiation treatment starts, there are several stages, as shown in Figure 3.4. After the 

referral, a patient is scheduled for a first consultation with the doctor specialized in the patient’s 

tumour type. The next step depends on whether the patient needs a mould for the radiation therapy. 

This is usually the case for patients who require treatment in the head and neck area. This appointment 

in the mould room can also be executed before the first consultation, as the patient’s tumour type will 

already be known. However, we assume that the mould room can only be executed after the first 

consultation and before the CT scan. Usually the use of the mould room is not necessary and the next 

step for a patient is an appointment on the CT scan. Every patient needs a CT scan before treatment 
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can begin. After the CT scan, the patient’s doctor has time to prepare the treatment plan, also known 

as the radiation treatment plan (BVB). This time includes the contouring of the tumour that serves as 

the basis for the treatment plan, which is a detailed description of the radiation dose and the angels 

of the radiation beams. Almost all the care pathways phases have different durations in minutes, 

resulting in different types of care pathways. 

 

Figure 3.4 Care pathways of patients of Instituut Verbeeten, blue = (sub)acute patients, green = regular patients (n=4344, Jan. 
2019 – Dec. 2019, hospital information system) 

To gain some insight in the distribution of the patients, Figure 3.5 shows the distribution in numbers 

and percentages of the patients when they are (sub)acute or regular and whether they require an 
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appointment in the mould room before the CT scan. This data is from all new patients in 2019. This 

distribution should be considered when designing the blueprint schedule.   

 

Figure 3.5 Distribution of the patients (n=4344, Jan. 2019 – Dec. 2019, hospital information system) 

3.1.4 Current situation 

Currently, there are a few aspects that stand out. As mentioned before, there are nationwide norms 

regarding the time frame in which the treatment of patients must start. However, at Instituut 

Verbeeten this is not always the case. There is no exact policy for the admission of acute and sub-acute 

patients. This means that the secretary does not consider the arrival of the patients who need to be 

treated within a few of days. 

Table 3.2 Number of patients treated within nationwide norm, hospital information system 

Type of patient (80%) of the patients should 
be treated within: 

Percentage treated within the 
nationwide norm: 

Acute 24 hours 90.0% 

Sub-acute 7 days 94.0% 

Regular 21 days 95.0% 

Table 3.2 shows the number of patients seen within the nationwide norm. This is calculated using the 

same data as the charts of referred patients, so patients registered between September 2020 and 

February 2021.  

Instituut Verbeeten wants to put the patient first and therefore strives to combine appointments as 

much as possible. However, there is currently no policy on combining appointments and it requires 

some creativity from the planners to make this possible. At this point, it is hard for the planners to plan 

patients as soon as possible and let the patients start their treatment. It requires some creativity to 

make a efficient combination of multiple appointments. After some discussions with staff members of 
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Instituut Verbeeten, it can be concluded that improvement is possible, by standardizing the planning 

process and make it easier for planners. 

3.2 Assumptions 

Prior to this study, another study was conducted at Instituut Verbeeten focussing on the planning 

process up to the first consultation. For example, deciding where a patient has the first consultation. 

This depends on the location of the patient and which location is available for the tumour type of the 

patient. We do not focus on the allocation of the patient to a specific location, so the locations are out 

of scope and we assume the patients are at one location.  

Moreover, it is assumed that the number per type of RTOs is known and appointment slots cannot be 

double-booked. There is no difference in service duration between different RTOs. The blueprint 

specifies the number of appointment slots in the RTOs’ schedule that can be reserved by a particular 

type of patients.  

It is assumed that appointments with other specialists are not a bottleneck for the planning, such as 

appointments with dieticians. Therefore, these are out of scope. Furthermore, there are a couple of 

appointments which are specific and performed only once a week, such as brachy therapy. This 

appointment is in collaboration with a hospital, so we assume that the planning of this appointment is 

fixed. 

The care pathways showed by Figure 3.4 can be summarized to 19 patient types covering 90% of all 

patients. These patient types are summarized in Appendix C, including the tumour type, acuteness 

category and the duration per stage. The number of arrivals per day per patient type is known and we 

assume that patients arrive in the beginning of the day.  

3.3 Mathematical model 

In this section, the mathematical model is defined. First, Section 3.3.1 discusses the goal of the model 

and the result. Next, Section 3.3.2 defines the model with the sets and elements, input parameters, 

decision variables, constraints, and the objective function.  

3.3.1 Goal 

The goal of this mathematical model is to design a blueprint schedule for the RTOs, CT scans and mould 

room, where the number of visits to the hospital is minimised and the time between the appointments 

on the same day is also minimised. Preferably, (sub)acute and regular patients should start their 

treatment within the nationwide norm. As stated before, 90% of the patients are included in 4 care 
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pathways and the other 10% are exceptions. The exceptions are covered by time slots reserved for 

pool time, which is discussed in Section 3.3.2. 

3.3.2 Model 

The optimization problem is modelled as a Mixed Integer Linear Programming (MILP) model because 

we want to solve the model optimally. We also design a constructive heuristic to compare both 

solution methods and calculation time. This means that some of the decision variables are constrained 

to be integer values as optimal solution. The model consists of multiple parts, namely sets and 

elements, input parameters, constraints, and the objective function. Section 3.3.2.1 discusses the sets 

and elements, then Section 3.3.2.2 elaborates on the input parameters. Next, Section 3.3.2.3 discusses 

the decision variables and Section 3.3.2.4 includes the constraints. Finally, the objective function is 

described in Section 3.3.2.5.  

3.3.2.1 Sets and elements 

The set notation is used, where 𝐷 are the days, 𝑇 are the time slots, 𝑅 are the resources, 𝑃 are the 

patient types and 𝑆 are the stages, shown in Table 3.3. Every day has a fixed number of time slots and 

every time slot contains 15 minutes. The set with the resources covers all RTOs as well as the CT scans 

and mould room. Multiple patient types are created to distinguish between tumour types and 

acuteness. The last set contains the stages of each patient type, which also can be seen in Figure 3.4, 

so the first stage is the consultation, then optionally the mould room, CT scan and ends with BVB time.  
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Table 3.3 Sets and elements of model 

Sets and elements  

𝒅, 𝒅′ ∈ {𝟎 … 𝑫} Days, with 𝐷 the number of days 

𝒕, 𝒕′ ∈ {𝟎 … 𝑻} Time slots, with 𝑇 the number of time 

slots during a day 

𝒓 ∈ {𝟎 … 𝑹} Resource types, with 𝑅 the number of 

resource types 

𝒑 ∈ {𝟎 … 𝑷} Patient types, with P the number of 

patient types 

𝒔 ∈ {𝟎 … 𝑺} Stages of the care pathway, with S the 

number of stages 

3.3.2.2 Input parameters 

The input parameters contain all information regarding resources and patient types, also shown in 

Table 3.4. Starting with the arrivals of patient types per day in input parameter 𝑎𝑟𝑟𝑑
𝑝

. Patients arrive 

during the whole day, but to simplify the problem, it is assumed that the arrivals are known in the 

beginning of the day. Next, the resources are not available every day and time slot, so these capacity 

properties are notated in 𝑐𝑎𝑝𝑑𝑡
𝑟 . Furthermore, every stage of every patient type needs a specific 

number of time slots per resource notated in 𝑠𝑡𝑎𝑔𝑒𝑟𝑝𝑠. The input parameter 𝑡𝑖𝑚𝑒𝑝𝑠 contains the 

number of time slots needed per patient type and stage. 

This research focusses on the pre-treatment phase of the care pathway of patients, so follow up 

appointments are not included. To make sure time slots are reserved for these types of appointments, 

we make use of time slots reserved for pool time. Pool time can be used for all other appointments 

than the pre-treatment phase of the care pathway of patients. The input parameter 𝑀𝑖𝑛𝑃𝑜𝑜𝑙 states 

the minimum number of time slots reserved for pool time.  
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 Table 3.4 Input parameters of model 

Input parameters  

𝒂𝒓𝒓𝒅
𝒑

 Number of patients of patient type p 

arriving on the beginning of day d 

𝒄𝒂𝒑𝒅,𝒕
𝒓  Capacity of resource r on day d and 

time slot t available or not (1=yes, 

0=no) 

𝒔𝒕𝒂𝒈𝒆𝒓,𝒑,𝒔 Number of timeslots needed for an 

appointment at resource r to perform 

stage s of patient type p 

𝒕𝒊𝒎𝒆𝒑,𝒔 Number of timeslots needed for 

appointment for patient type p and 

stage s 

𝑴𝒊𝒏𝑷𝒐𝒐𝒍 The minimum number of reserved pool 

time slots 

3.3.2.3 Decision variables 

The decision variables values are unknown quantities before the model is solved and is estimated as 

an output when solving the model. This model uses four decision variables, shown in Table 3.5. Starting 

with 𝑋𝑑,𝑡
𝑟,𝑝,𝑠 which is a binary variable, so it can be either 0 or 1. This decision variable is 1 if time slot t 

on day d is reserved to start on resource r for patient type p and stage s. However, some constraints 

made it necessary to use an extra binary decision variable, namely 𝑌𝑑,𝑡
𝑟,𝑝,𝑠 which is 1 if the time slot t on 

day d is reserved to take place on resource r for patient type p and stage s. For example, on d = 2 and 

t = 3 the reservation on a resource for a certain patient type and stage starts, then 𝑋2,0
𝑟,𝑝,𝑠= 1 and when 

the appointment duration is 3, then 𝑌2,0
𝑟,𝑝,𝑠 = 𝑌2,1

𝑟,𝑝,𝑠 = 𝑌2,2
𝑟,𝑝,𝑠 = 1. Figure 3.6 shows the example, where 

also a reservation is shown starting on d = 2 and t = 3.  
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Figure 3.6 Example decision variable X and Y 

The next binary decision variable is 𝑃𝑑,𝑡
𝑟 , this variable is 1 when a certain time slot is used as pool time. 

As explained in Section 3.3.2.2, time slots reserved for pool time are used for all other appointments 

except for appointments of the pre-treatment phase, such as follow up appointments. Next, we use 

the decision variable 𝑄𝑝,𝑠 as slack variable. This variable is used in the constraint making sure that 

there are enough reserved time slots for all arriving patients. If there are less time slots reserved than 

the number of arriving patients, the slack increases. To ensure the slack variable is as low as possible, 

it is minimised in the objective function. Finally, the decision variable 𝐴𝑙𝑙𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑇𝑖𝑚𝑒𝑠 is used to 

calculate the sum of the starting times of all reserved appointments.     

Table 3.5 Decision variables of model 

Decision variables  

𝑿𝒅,𝒕
𝒓,𝒑,𝒔

 Stage s of patient type p is reserved to 

start on resource r on day d and time 

slot t (1=yes, 0=no) 

𝒀𝒅,𝒕
𝒓,𝒑,𝒔

 Stage s of patient type p is reserved to 

take place on resource r on day d and 

time slot t (1=yes, 0=no) 

𝑷𝒅,𝒕
𝒓  Resource r is reserved for pool time on 

day d and time slot t (1=yes, 0=no) 

𝑸𝒑,𝒔 Slack factor for patient type p and 

stage s 

𝑨𝒍𝒍𝑬𝒏𝒅𝑻𝒊𝒎𝒆𝒔 To calculate the sum of all the end 

times of the reserved time slots 

d 2 2 2 2 2 2

t 0 1 2 3 4 5

X

Y
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3.3.2.4 Constraints 

The next part of the model consists of multiple constraints, shown in Table 3.6. Starting with the 

capacity constraint (1), which ensures time slots can only be reserved for appointments or pool time if 

there is capacity on the resource. Constraint (2) checks that the number of reserved appointments of 

a certain patient type and stage is not higher than the number of arriving patients of that patient type. 

At the end of the planning horizon, every patient type needs enough reserved time slots to start 

appointments for every stage, this is fixed by constraint (3). Constraint (4) ensures time slots are only 

reserved for a certain patient type and stage if the resource can execute these. For example, the CT 

cannot perform the first consultation, but only the CT scan. Furthermore, as mentioned in Section 

3.3.2.3, there are two decision variables 𝑋𝑑,𝑡
𝑟,𝑝,𝑠 (starting an appointment) and 𝑌𝑑,𝑡

𝑟,𝑝,𝑠 (an appointment 

taking place) concerning whether a time slot is reserved or not. Constraint (5) makes sure that time 

slots are reserved with the right appointment duration, also visualized in Figure 3.6. Constraint (6) 

ensures time slots are reserved completely and not in parts divided over the day. There should be time 

slots reserved for all other appointments, such as follow up appointments. Therefore, constraint (7) 

ensures there are enough time slots reserved for pool time.  

An important characteristic of this model is that we include multiple stages of a patients’ care pathway. 

To ensure the sequence of the stages, we design the following two constraints (8+9). These constraints 

make sure that per patient type there are no more appointments of a certain stage than the previous 

stage. The constraint can be adjusted to the different patient types, because not every patient type 

needs every stage. 

As mentioned in Section 3.3.1, the goal of this mathematical model is to design a blueprint schedule 

for the RTOs, CT scans and mould room, where the number of visits to the hospital is minimised and 

the time between the appointments on the same day is also minimised. To minimise the time between 

every appointment, constraint (10) is used to calculate the sum of the starting times of every 

appointment. Finally, a constraint (11) ensures that all variables should be nonnegative integers.  
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Table 3.6 Constraints of model 

Constraints  

∑ ∑ 𝒀𝒅,𝒕
𝒓,𝒑,𝒔

𝑺

𝒔=𝟎

+ 𝑷𝒅,𝒕
𝒓 ≤ 𝒄𝒂𝒑𝒅,𝒕

𝒓    ∀𝒓, 𝒅, 𝒕

𝑷

𝒑=𝟎

 
Timeslots can only be reserved if there 

is capacity on the resource. If the 

timeslot is not already reserved and 

the capacity is available, the time slot 

can be reserved for pool time (1) 

 

𝒊𝒇 𝒕𝒊𝒎𝒆𝒑,𝒔 > 𝟎: 

∑ ∑ ∑ 𝑿𝒅,𝒕
𝒓,𝒑,𝒔

≤

𝑹

𝒓=𝟎

𝑻

𝒕=𝟎

𝒅′

𝒅=𝟎

∑ 𝒂𝒓𝒓𝒅
𝒑

𝒅′

𝒅=𝟎

  ∀𝒑, 𝒔, 𝒅′ 

There are no more time slots reserved 

as the number of patients arriving per 

patient type and stage (2) 

∑ ∑ ∑ 𝑿𝒅,𝒕
𝒓,𝒑,𝒔

+ 𝑸𝒑,𝒔 = ∑ 𝒂𝒓𝒓𝒅
𝒑

   ∀𝒑, 𝒔

𝑫

𝒅=𝟎

𝑹

𝒓=𝟎

𝑻

𝒕=𝟎

𝑫

𝒅=𝟎

 
Over the whole-time horizon, all 

arriving patients have time slots 

reserved for every stage (3) 

𝑿𝒅,𝒕
𝒓,𝒑,𝒔

≤ 𝒔𝒕𝒂𝒈𝒆𝒓,𝒑,𝒔   ∀𝒓, 𝒑, 𝒔, 𝒅, 𝒕 Only reserve a timeslot if the resource 

can perform the patient type and stage 

and the patient type needs the stage 

(4) 

𝒀𝒅,𝒕
𝒓,𝒑,𝒔

= ∑ 𝑿𝒅,𝒕−𝒕𝒕
𝒓,𝒑,𝒔

   ∀𝒓, 𝒑, 𝒔, 𝒅, 𝒕

𝐦𝐢𝐧 (𝒕+𝟏 ,𝒔𝒕𝒂𝒈𝒆𝒓,𝒑,𝒔)

𝒕𝒕=𝟎

 

Ensure time slots are reserved with the 

right appointment duration (5) 

∑ 𝒀𝒅,𝒕
𝒓,𝒑,𝒔

= 𝒔𝒕𝒂𝒈𝒆𝒓,𝒑,𝒔 ∗ 𝑿𝒅,𝒕
𝒓,𝒑,𝒔

    ∀𝒓, 𝒑, 𝒔, 𝒅

𝑻

𝒕=𝟎

 
Ensure time slots are reserved 

completely (6) 

∑ ∑ 𝑷𝒅,𝒕
𝒓 ≥ 𝑴𝒊𝒏𝑷𝒐𝒐𝒍

𝑻

𝒕=𝟎

   ∀𝒓, 𝒙 ∈ {𝟎,
𝑫

𝟓
)

𝟓∗(𝒙+𝟏)

𝒅=𝟓∗𝒙

 

The total number of time slots 

reserved for pool time per week can 

not be less then the minimum number 

of time slots for pool time per resource 

per week (7) 
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∑(∑ ∑ 𝑿𝒅,𝒕
𝒓,𝒑,𝒔𝟏

+ ∑ 𝑿
𝒅′,𝒕

𝒓,𝒑,𝒔𝟏
) ≥

𝒕′−𝒕𝒊𝒎𝒆𝒑𝒔

𝒕=𝟎

𝑻

𝒕=𝟎

𝒅′

𝒅=𝟎

𝑹

𝒓=𝟎

 

∑(∑ ∑ 𝑿𝒅,𝒕
𝒓,𝒑,𝒔𝟐

+ ∑ 𝑿
𝒅′,𝒕

𝒓,𝒑,𝒔𝟐

𝒕′

𝒕=𝟎

𝑻

𝒕=𝟎

 )  

𝒅′

𝒅=𝟎

𝑹

𝒓=𝟎

 

∀𝒑, 𝒔𝟏 ∈ {𝟎, 𝑺 − 𝟐}, 𝒔𝟐 ∈ {𝟏, 𝑺 − 𝟏}𝒅′, 𝒕′ 

Ensure time slots for patient types with 

mould room are reserved in the right 

sequence of stages, there are no more 

patients in a stage than the previous 

stage (8) 

∑(∑ ∑ 𝑿𝒅,𝒕
𝒓,𝒑,𝒔𝟏

+ ∑ 𝑿
𝒅′,𝒕

𝒓,𝒑,𝒔𝟏
) ≤

𝑻

𝒕=𝒕′

𝑻

𝒕=𝟎

𝒅′

𝒅=𝟎

𝑹

𝒓=𝟎

 

∑(∑ ∑ 𝑿𝒅,𝒕
𝒓,𝒑,𝒔𝟐

+ ∑ 𝑿
𝒅′,𝒕

𝒓,𝒑,𝒔𝟐

𝑻

𝒕=𝒕𝒕+𝒕𝒊𝒎𝒆𝒑𝒔

𝑻

𝒕=𝟎

 )  

𝒅′

𝒅=𝟎

𝑹

𝒓=𝟎

 

∀𝒑, 𝒔𝟏 ∈ {𝟎, 𝑺 − 𝟐}, 𝒔𝟐 ∈ {𝟏, 𝑺 − 𝟏}𝒅′, 𝒕′ 

Same constraint as (8), but in stead of 

checking from start to end of the day, 

this constraint checks the other way 

around, so from end to start of the day 

(9) 

𝑨𝒍𝒍𝑺𝒕𝒂𝒓𝒕𝒊𝒏𝒈𝑻𝒊𝒎𝒆𝒔 ≥ ∑ ∑ ∑ ∑ ∑ 𝑿𝒅,𝒕
𝒓,𝒑,𝒔

𝑻

𝒕=𝟎

𝑫

𝒅=𝟎

𝑺

𝒔=𝟎

𝑷

𝒑=𝟎

 

𝑹

𝒓=𝟎

 

∗ ((𝒅 ∗ 𝑻) + 𝒕)   

Calculate the sum of all starting times 

of the appointments (10) 

𝑿𝒅𝒕
𝒓𝒑𝒔

∈ {𝟎, 𝟏}   ∀𝒓, 𝒑, 𝒔, 𝒅, 𝒕 

𝒀𝒅𝒕
𝒓𝒑𝒔

∈ {𝟎, 𝟏}  ∀𝒓, 𝒑, 𝒔, 𝒅, 𝒕 

𝑷𝒅𝒕
𝒓 ∈ {𝟎, 𝟏}   ∀𝒓, 𝒅, 𝒕 

𝑸𝒑,𝒔 ∈ ℤ   ∀𝒑, 𝒔 

𝑨𝒍𝒍𝑺𝒕𝒂𝒓𝒕𝒊𝒏𝒈𝑻𝒊𝒎𝒆𝒔 ∈ ℤ 

All variables should be nonnegative 

integers or binary values (11) 

3.3.2.5 Objective function 

The objective function is shown in Table 3.7. To make sure the model gives a feasible solution, a slack 

variable is introduced. This variable ensures sure that the model can be solved. We use the slack 

variable in Constraint (3), where we state that the total number of appointments per patient type and 

stage should be the same as the total number of patients arriving of that patient type. To make sure 

that all appointments are reserved, the slack variable is minimised in the objective function.  

Furthermore, the goal of the model is to make it possible to schedule patients as soon as possible with 

minimal number of time between appointments of the pre-treatment phase. Therefore, the objective 

function also consists of the sum of all starting times of the reserved appointments.  
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Table 3.7 Objective function of model 

Objective function  

𝐦𝐢𝐧 (𝟏𝟎𝟎𝟎𝟎𝟎𝟎𝟎 ∗ ∑ ∑ 𝑸𝒑,𝒔 + 𝑨𝒍𝒍𝑺𝒕𝒂𝒓𝒕𝒊𝒏𝒈𝑻𝒊𝒎𝒆𝒔

𝑺

𝒔=𝟎

)

𝑷

𝒑=𝟎

 

 

Minimise the total number of slack, 

this ensures that there are reserved 

time slots for all the arriving patients 

and minimise the starting times of the 

reserved appointments 

The model is implemented in Spyder with the programming language Python and the model is solved 

with the MIP package. The default installation includes the COIN-OR Linear Programming Solver – CLP, 

namely an open-source linear programming solver. This solution method is an exact method and 

results in an optimal solution. 

3.4 Constructive heuristic 

As the computation time of the exact model of Section 3.3 increases with larger problem instances, 

we propose a constructive greedy heuristic to decrease the calculation time for larger instances. A 

constructive heuristic produces a solution to the model that may not be optimal but are sufficient given 

time constraints. We propose a constructive greedy heuristic, which means that the solution is build 

piece by piece. It starts with an empty solution and performs multiple steps to build the solution with 

no backtracking allowed. The solution of the constructive heuristic is used to compare to the schedule 

of the solution of the exact method. The pseudo code of the heuristic is included in Appendix D and 

the flow chart is shown in Figure 3.7.  

The heuristic checks per day and per patient type the number of arrivals. Hereafter, the heuristic loops 

over each arrival and necessary stages and searches per stage the resources that can perform the 

appointment of this stage and patient type. The heuristic chooses the first available resource that can 

start the appointment the earliest and reserves the necessary time slots. It stores the reserved 

appointment in a list, which can in the end be visualized in a schedule. Next, the heuristic continues to 

the next stage of that patient type. When the last stage is reached, it continues to the next arrival of 

that patient type. If the last arrival is reached, it continues to the next patient type and otherwise to 

the next day.  

The initial sequence of checking the patient types is a random approach, starting from patient type 0 

to 18. However, we will also explore other sorting methods, such as starting with the patient types 

that have the highest or the lowest number of arrivals per week.  
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Figure 3.7 Flowchart of constructive heuristic 

  



32 
 

4 Case study settings and results 

This section focuses on the case study settings in Section 4.1. Next, the model is solved for different 

settings and experiments are conducted in Section Error! Reference source not found.. The last part, S

ection 4.3 elaborates on the results of the experiments. 

4.1 Case study settings 

The problem description in Section 3 discussed the characteristics of the case study. The collected data 

is discussed in this chapter. The same sequence is used as the summary of the model in Section 3.3.2. 

4.1.1 Sets and elements 

We run the model for a planning horizon of 4 weeks, which is the same as 20 days, because we only 

consider working days. Each day is divided into 36 time slots of 15 minutes. The start time slot is at 

8:30 AM and the last time slot ends at 5:30 PM. In total we have 20 resources, including 17 RTOs, 2 

CTs and 1 mould room. All patients of Instituut Verbeeten are divided into 19 patient types, exceptions 

not included. Patient types are only included when they have at least one arrival per week. Per patient 

type it is known whether they need the mould room or not. Appendix C shows the used patient types. 

The model focuses on the pre-treatment phase, which starts with a first consultation, optionally 

followed by a mould room, then a CT scan and finishes with time for the RTO to prepare the treatment, 

namely BVB time.  

4.1.2 Input parameters 

The input parameters include all information regarding the number of arriving patients per patient 

type, the capacity per resource, the specialisation per resource and the number of time slots needed 

for each patient type and stage.  

First, we calculated the number of arriving patients per patient type per day, based on historical data 

of Instituut Verbeeten. This historical data includes the number of patients arriving between 

September 2020 and February 2021. For every patient type, we calculate the number of arriving 

patients per day. Patient types arrive on specific days in the week, shown in Appendix E. These patient 

types are divided by tumour type, acuteness category and whether they need an appointment with 

mould room or not. An appointment with mould room is only considered when at least 20% of the 

patients needs it, otherwise it is an exception. 

The second input parameter concerns the capacity of the resources. This parameter states for every 

day, time slot and resource whether there is capacity or not. At Instituut Verbeeten, many RTOs have 

side activities, which means that not every day has the same capacity available. Appendix B shows the 
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availability of the resources, where the time slots reserved for administration (ADM), days free (RV) 

and study days (Study) are reserved and there is no capacity for appointments. 

The third input parameter states per resource, patient type and stage whether they can execute it and 

how many time slots it take. Every RTO has different tumour type specialties, and this can be seen in 

this input parameter and in Appendix A. The fourth input parameter only includes the number of time 

slots needed to execute a stage per patient type and is also shown in Appendix C. 

The final input parameter represents the minimum number of time slots per week and resource for 

pool time. These time slots are meant for all other appointments than the pre-treatment appointments 

which we focus on, such as follow up appointments, because there should be space left for these 

appointments. We assume 10 time slots pool time per week for each resource. 

4.1.3 Constraints 

Almost all constraints can stay the same, after implementing the data of the case study. We only must 

pay attention to the sequence constraints (8+9). Because not all patient types need all stages, the 

constraint is split in two constraints per kind of patient type. The first group of patient types includes 

the patient types that need all stages. Therefore, we have the following combination of stages: 𝑠1 ∈

{0,1,2} and 𝑠2 ∈ {1,2,3}. The left-hand side of the constraint uses stages of 𝑠1 and the right-hand side 

of the constraint uses stages of 𝑠2. The constraint uses three combinations of stages, namely stage 

0&1, stage 1&2, and stage 2&3. For example, the constraint makes sure that the number of 

appointments reserved for stage 0, on the left-hand side, is bigger than the number of appointments 

reserved for stage 1, on the right side.  

Furthermore, there are some patient types that do not need stage 1, namely the appointment in the 

mould room. This means this stage is not included in the constraint. Therefore, we have the following 

combination of stages: 𝑠1 ∈ {0,2} and 𝑠2 ∈ {2,3}. The constraint uses two combinations of stages, 

namely stage 0&2 and stage 2&3.  

Finally, there is one patient type that only need stage 0 and 1, namely no CT scan and BVB time. This 

means we have the following combination of stages: 𝑠1 ∈ {0} and 𝑠2 ∈ {1}. There is only one 

combination of two stages, namely stage 0&1.  

4.1.4 Objective function and KPIs 

The objective function minimizes the sum of all starting times of all reserved appointments. In this 

way, appointments are reserved as soon as possible, and patients can eventually start their treatment 

as soon as possible. Furthermore, the slack variable is minimised, such that there are enough reserved 

appointments to serve all arriving patients.  
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To measure the performance of the blueprint schedule, several KPIs can be designed. One of the KPIs 

calculates for every arrival the time between the arrival of a patient and the end time of the last stage. 

The mean and standard deviation are calculated to measure the performance of the blueprint 

schedule. The model checks for every day the number of arrivals per patient type and the number of 

appointments for the last stage of that patient type. If there are more arrivals than appointments for 

the last stage, it is assumed that the appointment for the last stage is performed the day after the 

arrival. This is included in the calculation of the times. After the calculation of the mean and standard 

deviation per patient type, insight is gained for which patient type patients can be treated earliest. 

Moreover, the standard deviation per patient type is used to gain insight for which patient type it is 

difficult to consequently plan them as soon as possible. 

4.2 Experiment design 

The goal of the model is to design a blueprint schedule in which patients’ pre-treatment phase 

appointments are reserved as soon as possible, such that their treatment can start. We use two ways 

to solve the model; mathematical programming and the constructive heuristic. Section 4.2.2. 

elaborates on how these methods are applied in the experiment. In practise, every week is different 

with different arrivals, so the blueprint schedule should be tested for multiple situations. Section 4.2.2 

discusses all chosen experiment settings. 

4.2.1 Solution methods 

The solution method mathematical programming is executed with the Python MIP-package. All sets, 

elements, input parameters, variables, constraints, and the objective function is given as input to the 

model and the program calculates an optimal solution. However, another way to solve the model is by 

a constructive heuristic. The solution of the constructive heuristic is used to compare with the blueprint 

schedule of the optimal solution calculated by mathematical programming. We expect that the 

calculation time of the constructive heuristic will be lower than the exact method and we want to know 

the difference. The constructive heuristic is explained in Section Error! Reference source not found. a

nd the pseudo code is showed in Appendix D. 

4.2.2 Experiment settings 

The resulting blueprint schedule of both solution methods is tested for the following situations. First, 

if the BVB time should be performed by the RTO responsible for the first consultation or not. At this 

point, we assumed that the BVB appointment can be performed by any RTO with the required 

specialty. However, in practise the RTO that performs the first consultation of a patient, also performs 

the BVB appointment of the patient. We investigate the difference in performance in both situation 
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but think the blueprint performs better when the BVB appointment can be performed by any RTO with 

the required specialty, because there is more flexibility in the planning. Therefore, we design a 

constraint that ensures that there are the same number of reserved appointments for the first stage 

and the last stage. So, we add the following constraint to the model: 

∑ 𝑋𝑑,𝑡
𝑟,𝑝,0 = 𝑋𝑑,𝑡

𝑟,𝑝,3

𝑇

𝑡=0

   ∀𝑟, 𝑝, 𝑑 

Furthermore, we test the model by changing the input parameter responsible for the arrivals per 

patient type per week. Every week does not have the same number of arriving patients. Therefore, we 

adjust the arrivals per patient type per week to 1.5 times the original number of arriving patients. 

Hereafter, we can make a conclusion about the robustness of the planning, specifically if the model 

can still give a feasible solution.  

Appendix F shows the experiment design, namely the settings per experiment. Section 4.2.1 

elaborated on the difference between two solution methods, specifically the exact method and a 

constructive heuristic. Both are applied for all experiments with a maximum calculation time of 3600 

seconds.  

In the constructive heuristic, we also want to use strategies for the sequence of patient types. Initially, 

the constructive heuristic starts with planning patient type 0 on day 0. However, we also want to 

change this sequence. Therefore, the last three experiments (17, 18 and 19) use a different sequence 

of the patient types, namely: 

- Experiment 17: Patient types are picked randomly. 

- Experiment 18: Patient type with the highest arrivals per week is picked first, and the patient 

type with the lowest arrivals per week is picked last. 

- Experiment 19: Patient type with the lowest arrivals per week is picked first and the patient 

type with the highest arrivals per week is picked last. 

These three experiments are conducted with a planning horizon of 10 days, because these include the 

different availability of the resources for the even and uneven weeks. Moreover, we use the original 

case mix and a flexible, as it creates more flexibility in the planning.  

4.3 Results 

Appendix G shows the experiment results for every experiment and Table 4.1 shows a summary of the 

experiment results for the settings with 10 days. The first column of these tables includes the 

characteristics of the experiment, such that it is easily seen which experiment has which settings. These 

have the following options: 



36 
 

- The number of days of the planning horizon of the experiment (5d = 5 days, 10d = 10 days, 

etc.). 

- If the BVB time is executed by the same RTO as the first consultation for that patient (flex = 

BVB time can be performed by any RTO with that specialisation, fixed = BVB time can only be 

performed by the RTO that executed the first consultation). 

- The case mix, i.e., the number of arriving new patients (x1 = one time the original case mix, 

x1.5 = one and a half times the original case mix). 

The objective function value is calculated by the sum of all ending times of all starting times of all 

appointments. By minimising this value, all appointments start as soon as possible. Furthermore, the 

slack variable is minimised, which ensures all appointments of all patient types are reserved. The slack 

variable is multiplied with a very big number, so if the objective function value is big, not all 

appointments are reserved. 

Moreover, Appendix G includes for every experiment the results of the exact method and the 

constructive heuristic. The results are the value of the objective value, the approximation ratio, the 

calculation time, and the mean and the standard deviation of the number of time slots between the 

arrival and the last stage of a patient. 

Table 4.1 Summary experiment results for experiments with 10d 

Experiments 
Exact 
Objective function 

 
Calculation time 

Heuristic 
Objective function 

 
Calculation time 

Flex, initial 77,041.00 2058.36 77,673.00 526.81 

Fix, initial 77,212.00 2894.75 78,084.00 376.37 

Flex, 1.5x 119,309.00 2194.5 120,197.00 851.88 

Fix, 1.5x 119,557.00 2218.54 120,803.00 688.26 

Random sort   78,005.00 488.42 

High to low sort   78,394.00 478.62 

Low to high sort   77.724,00 487.18 
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4.3.1 Difference between exact method and constructive heuristic 

First, we want to know the difference between the solution of the exact method and the constructive 

heuristic. We expected that the exact solution will have a lower objective value and a less number of 

time slots between the arrival of a patient type and the appointment of the last stage, because the 

exact method gives the optimal solution. The experiments confirm these expectations, the objective 

value of the constructive heuristic is always higher than the objective value of the exact method.  

We are also curious about the performance per patient type with the exact method and constructive 

heuristic. Therefore, Figure 4.1 shows the mean processing time per patient type. It shows the 

experiment with a planning horizon of 10 days, flexible RTO and the original case mix, solved with the 

exact method and constructive heuristic.  

 

Figure 4.1 Mean processing times (# time slots) per patient type, planning horizon of 10 days, flexible RTO, original case mix 

The constructive heuristic starts with planning patient type 0 on day 0 and then continues to the next 

patient type on day 0. Therefore, the mean processing times of the first patient types with the 

constructive heuristic is lower than the exact method. The last patient types have the highest arrivals 

per week, this explains why the objective function of the exact method is better, but the mean 

processing times of the exact method are most of the time higher than the mean processing times of 

the constructive heuristic.  

The original constructive heuristic starts with patient type 0 and ends with patient type 18. However, 

we also want to know the effect of this sequence. Therefore, as mentioned in Section 4.2.2, we also 

conduct experiments with different strategies for patient type sequences. We use the original 
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sequence of the heuristic, from highest to lowest number of arrivals, from lowest to highest number 

of arrivals and a random sequence. Then we investigate the mean processing times per patient type 

of these sequences. Figure 4.2 shows the mean processing times per sequence strategy, also shown in 

a table in Appendix H. We also add the mean processing times of the optimal solution with the exact 

method. 

 

Figure 4.2 Mean processing times (#time slots) per sequence strategy 

Figure 4.2 shows that the sequence high to low arrival give higher mean processing times for the first 

couple of patient types, namely the (sub)acute patient types. The (sub)acute patients have less arrivals 

and are planned later and this means that at this moment there are less time slots available, so the 

performance is worse. The lowest objective function value and mean number of time slots is of the 

exact method, namely 77,041.00 and 17.00 respectively. The lowest objective function value for the 

sequence strategies of the constructive heuristic is the original patient type sequence, namely 

77,673.00 and 19.04. The worst solution sequence is the highest to lowest arrival sequence with 

78,394.00 and 20.80.  

There is a significant difference in the calculation time. The exact solution method takes, on average, 

four times the calculation time of the constructive heuristic. Figure 4.3 shows the calculation time per 

experiment, sorted from short to long planning horizon.  
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Figure 4.3 Calculation time (seconds) per experiment, sorted 

Obviously, the calculation times increases when the planning horizon increases, because the problem 

becomes bigger. The calculation time of the constructive heuristic is sometimes four times lower than 

the calculation time of the exact method. Moreover, there is a significant difference in calculation time 

when the constructive heuristic has a flexible or fixed RTO. When the RTO is fixed, the constructive 

heuristic only needs to check the first available time slot of the fixed RTO for the BVB time. However, 

when the RTO is flexible, the constructive heuristic needs to check all RTOs for the first available time 

slot. The size of the case mix has a little influence on the computation time. On average, the calculation 

time is higher when we have one and half times the case mix, simply because the problem is bigger.  

Due to the calculation time limit of 3600 seconds, the exact method cannot be solved to optimality for 

a planning horizon of 15 and 20 days. As within this time there is no feasible solution found for all 

instances, output on approximation ratio and upper bound solutions are not available. 

4.3.2 Difference between fixed and flexible RTO for BVB time 

Second, we want to know the effect of the fixed or flexible RTO for the BVB time. Currently, Instituut 

Verbeeten makes use of a fixed RTO. This means that the RTO that performs the first consultation of 

patient, also performs the BVB time of the patient. We want to evaluate if a flexible RTO will be an 

advantage for the time until a patient can start the treatment.   
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Table 4.2 Difference between fixed and flexible RTO for BVB time 

 
 
Experiments 

Objective function (sum of all  
starting times of all reserved  
appointments) 
5 days                          10 days 

Mean number of timeslots  
between arrival and last stage 
 
5 days                   10 days  

Exact, flex, original 17,402.00 77,041.00 17.00 17.00 

Exact, fix, original 17,800.00 77,212.00 18.00 18.00 

Exact, flex, 1.5 27,705.00 119,309.00 24.00 24.00 

Exact, fix, 1.5 27,739.00 119,557.00 24.00 25.00 

In Section 0 we concluded that the exact method performs better than the constructive heuristic. 

Therefore, Table 4.2 shows the experiments with the exact method. We see that the objective function 

value is worse when the BVB time has a fixed RTO. This is also the case for the mean number of time 

slots between arrival and the last stage.  

The calculation time of the exact method is higher, when the BVB time is performed by the same RTO 

as the first consultation of a patient. However, when the constructive heuristic is used, the calculation 

time is less when the BVB time is performed by the same RTO as the first consultation of a patient. This 

can be explained by the fact that the constructive heuristic only checks the first available time slot for 

the same RTO as the first consultation. If the RTO is flexible, the heuristic must check every resource 

to find the resource than is available first.  

The exact method has a higher calculation time when the RTO is fixed, and the constructive heuristic 

has a lower calculation time when the RTO is fixed. However, when the BVB time can be performed by 

any RTO with the required specialization, this results in a better performance in terms of access times 

and more flexibility in the planning, so we prefer a flexible RTO.  

4.3.3 Difference between original case mix and 1.5 times the case mix 

Third, we want to know the effect of a difference in the arrivals of patient types per week. Therefore, 

we use the original case mix and 1.5 times the original case mix. We use the same distribution per day 

of the week as the original case mix. We expect that the performance of the planning will be worse 

when we use the 1.5 times original case mix, because the planning is fuller, and it is harder to reserve 

time slots as soon as possible for arriving patients.  

The mean number of times slots between arrival and last stage with a original case mix is 17.97 time 

slots. When the 1.5 times case mix is used, it increases to 22.82 time slots. This means there is almost 

a 5 time slot difference in the mean number of time slots between arrival and last stage, representing 
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an additional waiting time of 75 minutes. The standard deviation between arrival and last stage with a 

original case mix is 8.87 time slots and with 1.5 times the case mix, 11.24 time slots. This results in a 

difference of 2 time slots, representing 30 minutes waiting time. Furthermore, there are less time slots 

available for all other appointments, such as follow up appointments.  

4.3.4 (Sub)acute and regular patients and nationwide norm 

To assess the adherence to the access time norms of (sub)acute and regular patients, we evaluate the 

experiment for 10 days, with flexible RTO performing the BVB time and the original case mix. These 

settings reflect the current situation, and are solvable with the exact method. 

The mean number of time slots between arrival and the last stage for subacute patients with the exact 

method is 12.78 time slots, which is the same as 192 minutes or 3 hours. Furthermore, the maximum 

number of time slots between arrival of a subacute patient and the last stage is 48 time slots (720 

minutes/12 hours). With the constructive heuristic the mean number of time slots between arrival 

and the last stage is 7.70 time slots (116 minutes/2 hours), and the maximum number of time slots 

between arrival and the last stage is 12 time slots (180 minutes/3 hours). Therefore, all patients can 

be treated the next day they arrive and within the nationwide norm of 7 days for subacute patients 

with both the exact and heuristic outcomes. The constructive heuristic gives a better performance for 

subacute patients, because the heuristic plans the patient types from patient type 0 to 18 and the first 

8 patient types are subacute patients.  

We also analyse the performance of the blueprint schedule for regular patients. The mean number of 

time slots between arrival and the last stage for regular patients with the exact method is 20.30 time 

slots (301 minutes/5 hours). Furthermore, the maximum number of time slots between arrival and the 

last stage is 32 time slots (480 minutes/8 hours). The mean number of time slots between arrival and 

the last stage with the constructive heuristic as solution method is 20.66 time slots (310 minutes/5 

hours), and the maximum number of time slots between arrival and the last stage is 34 time slots (510 

minutes/8.5 hours). This means all patients can be treated within the nationwide norm of 21 days with 

both the exact and heuristic outcomes.  

We also experimented with a 50% case mix increase. In all experiments and for both patient types 

((sub)acute and regular), all patients can still be treated within the nationwide norm. The highest mean 

amount of time slots between the arrival and last stage of a patient is 25 time slots (100 minutes/6 

hours). However, this also means there are less time slots available for all other appointments, such as 

follow up appointments.  
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4.3.5 Interpretation of results 

Appendix I shows the optimal blueprint schedule of this research and case study. Each type of 

appointment has a different colour in the blueprint schedule, where the yellow time slots are reserved 

for meetings. The breaks and free time are also showed in the planning. We used the solution of the 

exact method because this solution is optimal. Furthermore, the planning horizon of 10 days is used, 

because it includes the different availability of resources for even and uneven weeks. Every RTO should 

be flexible and perform the BVB time of any patient with the tumour type of its specialisation.  

When we focus on the visualization of the planning, a couple of things stand out. First, the CT scan is 

almost always occupied in the beginning of the week. This is due to the number of arrivals per day, in 

the beginning of the week there are more arrivals. The follow up appointments have less urgency than 

the new patients who must start their treatment soon. Therefore, we advice to plan more follow up 

appointments in the end of the week. In this way, the patients arriving in the beginning of the week 

can start their treatment as soon as possible. Another possible solution is that we create an additional 

patient type corresponding to follow up appointments, also including a certain arriving day and tumour 

type. In this way, we create reserved appointments for follow up appointments. Because the CT scan 

are some days fully reserved, it highlights the importance of efficient planning of resources. Currently, 

Instituut Verbeeten checks manually the availability of resources and picks the best day and time slot. 

Sometimes this results in empty time slots of 15 minutes in which no CT scan appointment can be 

planned, because it always takes at least 30 minutes to execute an CT scan.  

Furthermore, the starting times of the appointments is minimised, this automatically results in 

reserving the first appointments in the morning and the BVB time in the afternoon. To create more 

flexibility when planning patients, we can also let patients arrive in the lunch break. This forces the 

model to also reserve first appointments in the afternoon. We only considered patients arriving at the 

beginning of the day, but this could be adapted.  
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5 Conclusion and discussion 

This section concludes this research. Starting with the conclusion in Section Conclusion5.1. Followed 

by the limitations in Section 5.2 and the future research suggestions in Section Error! Reference source n

ot found.. Finally, the recommendations are discussed in Section Error! Reference source not found.. 

5.1 Conclusion 

This research proposes a ILP formulation and greedy heuristic for the tactical multi appointment 

planning problem. This problem is unique, as it focuses on the tactical side of the planning, which 

deserves attention because this level of control is underexposed due to its inherent complexity (Hans, 

Van Houdenhoven, & Hulshof, 2012). Second, it concerns a multi appointment planning including 

doctors with different combinations of specialisations, which deserves attention because researchers 

often limit their scope to a single diagnostic resource type or procedure step due to complexity 

constraints (Marynissen & Demeulemeester, 2019). Third, we show the working of our models in a 

practical case with Instituut Verbeeten, which shows that the blueprint schedule for pre-treatment 

phase appointments can be obtained in their current practise. 

Currently, Instituut Verbeeten can start the treatment of 94% of the subacute patients within the 

nationwide norm of 7 days. However, the goal is to start treatment as soon as possible. This research 

achieved to increase this ratio to 100% of the subacute patients. These subacute patients can be 

treated within a mean of 3 hours, far within the nationwide norm. Furthermore, currently Instituut 

Verbeeten can start the treatment of 95% of the regular patients within the nationwide norm of 21 

days. This research achieved to increase this ratio to 100% of the regular patients. These regular 

patients can be treated within a mean of 5 hours, far within the nationwide norm. This means a large 

decrease in processing time and patients can start their treatment earlier.  

Next to this, we proved that patients can start their treatment faster if the BVB time can be executed 

by any RTO instead of the RTO that performed the first consultation. The objective function is lower 

when the RTO is flexible, and it takes on average one time slot less between the arrival of a patient 

and the last stage. The objective value with a fixed RTO is worse than the objective value with a flexible 

RTO. The mean number of time slots between arrival and last stage with a fixed or flexible RTO is 

respectively 18 and 17 time slots. The research also showed that the model still creates a feasible 

solution when the case mix is 1.5 times more than the original case mix. Consequently, there is less 

pool time available, for example for follow up appointments. These follow up appointments can be 

planned when there are less new patients arriving. 
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The model with a flexible RTO for the BVB time and a planning horizon of 10 days can be solved exactly 

within 30 minutes. The blueprint schedule is a tactical decision, and Instituut Verbeeten adjusts the 

blueprint schedule once every half year. Furthermore, if changes should be implemented such as 

missing RTOs, the model is easily used and does not take a lot of time to run. Finally, the model can 

also be solved by the constructive heuristic and results in a good solution with an approximation ratio 

of 0.82% on average and a calculation time of 526.81 seconds. This is four times less than the 

calculation time of the exact solution method. 

5.2 Recommendations and limitations 

The recommendations and limitations can be divided into three stakeholders. Namely, for science, 

Instituut Verbeeten and the company facilitating the research.  

First, we focus on the recommendations and limitations for science. This research can be used for 

similar settings where a blueprint schedule is to be created. The important characteristic of this model 

is that it concerns multi appointment planning including different stages and patient types. Every 

patient type needs different stages and different durations for these stages. Furthermore, not all 

resources can perform all stages and patient types, because of there specialisation. The limitation of 

this research is that the model cannot be solved exactly for a planning horizon longer than 10 days. 

However, the model can also be solved by the constructive heuristic with an approximation ratio of 

0.82%. This constructive heuristic can also solve the model for a planning horizon longer than 10 days 

within reasonable time. For further research, advanced computers can be used to solve the model 

exactly for a planning horizon longer than 10 days. Moreover, we used a fixed sequence of stages and 

some patient types did not need all stages. It could be interesting to change the sequences, because 

sometimes the CT scan can also be executed before the first consultation. This probably results in more 

flexibility in the planning. Finally, we could not benchmark our greedy heuristic to the best practise 

available in the literature, simply because this research is unique and not researched before.  

Second, we focus on the recommendations and limitations for Instituut Verbeeten. This is the 

environment of the case study and where the blueprint schedule is being implemented. Instituut 

Verbeeten mentioned they first want to focus on subacute patients. This can be implemented by first 

only reserving appointments for patient types with subacute condition. In this case, the model can be 

used to indicate the necessary reserved time slots for each resource. The other appointments are 

reserved as they did before. If this part of the blueprint schedule is implemented and subacute patients 

can be treated earlier, the model can be extended with patients with other conditions (regular).  

As noted, before there is another research conducted to optimize the allocation of patients to locations 

close to their home location. We did not consider the home location of the patients. So, a next step 
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could be including the home location of a patient and integrating the project to this research. 

Therefore, a constraint should be added concerning location constraints. In this way, an allocation of 

patients is taking place. We also need to add some time constraints if we add the location of the 

patients. There should be some time between appointments at different locations. For example, a first 

consultation in Breda and a CT scan in Tilburg cannot be reserved right after each other. Furthermore, 

patients with a certain tumour type or acuteness category need other time constraints, these can also 

be added. 

The research sets a good blueprint schedule to start with and insights can be used to make it work. 

Moreover, this research focuses on the pre-treatment phase of the patient. However, there are other 

appointments, such as follow up appointments, influencing the planning. At this point, the model 

reserves time slots as pool time to reserve for follow up appointments or other appointments, for 

example if there are more arrivals of new patients than expected. The model minimises the starting 

times of the pre-treatment phase appointments. Therefore, these appointments start as soon as 

possible and there are more time slots reserved for pool time at the end of the day. If a patient arrives 

in the middle of the day, there is possibly no space left on the same day. However, we reached 100% 

of the patients starting their treatment within the nationwide norm. The focus of this research is on 

the blueprint schedule of the planning. This means we do not focus on planning the patients but 

consider the consequences when making decisions in the blueprint schedule.  

We proved that the model gives a better solution if the BVB time can be executed by any RTO instead 

of the RTO that did the first consultation of a patient. Therefore, we advice to reserve the BVB time at 

any RTO that is available to create more flexibility in the planning and to treat patients as soon as 

possible. We aware of the fact that the RTOs find it hard to implement this, because RTOs preferably 

execute the first consultation and the BVB time of their patients. However, we know this research gives 

a good insight into the possibilities. We advice to make a plan to convince the RTOs about the 

advantages of a flexible RTO for the BVB time.  

Furthermore, we only consider the case mix with a certain number of arrivals per day per patient type. 

This means the blueprint schedule is also created with this case mix. If the amount of arrivals per 

patient type per day is exactly the same, the blueprint schedule works well. However, we also want to 

know what the blueprint schedule looks like with other arrivals. We varied in the number of patients 

by multiplying the number by 1.5, but we did not change the arrival days of the patient types. Further 

research is required, to experiment with other arrival days of patients and reflect on the results. This 

is also the case with experiments with the blueprint schedule. Further research is needed to measure 

the performance of the blueprint schedule with random arrivals.  
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An important aspect when implementing the blueprint schedule at Instituut Verbeeten is the current 

backlog. Currently, Instituut Verbeeten struggles with planning patients’ appointments within the 

nationwide norm. At this point, it takes sometimes 20 days before the patient can start the treatment. 

We cannot start with the new blueprint schedule in one day, because first the backlog needs to be 

decreased. This can be done by increasing the availability of the resources for a couple of weeks, to 

make sure the backlog is decreased before starting with the new blueprint schedule. As mentioned in 

the beginning of this section, Instituut Verbeeten can first start to implement the blueprint schedule 

for the subacute patients. 

Lastly, we focus on the recommendations and limitations for the company facilitating the research. 

This company is a consultancy agency and can use this research to execute projects at other companies 

with similar planning issues. We stated that multi-disciplinary appointment planning problems are 

becoming increasingly popular and much more challenging than single appointment planning, or multi 

appointment planning for a single discipline. Therefore, the model can be used and adjusted to other 

circumstances by changing the input parameters and some constraints. The software Spyder with the 

programming Python can be used by anyone, because it is an open source software.  

In short, this research can be used for similar instances where a blueprint schedule is created for multi 

appointment planning including different stages and patient types. The model can be solved exactly 

with a planning horizon up to 10 days and a constructive heuristic can be used for a planning horizon 

longer than 10 days. The research can be used at Instituut Verbeeten with predicted improvements of 

100% adherence to the target access times, and a next step could be including location of the resources 

and home location of patients. Finally, the research can be adjusted and used by the company 

facilitating the research to execute projects at other companies with similar planning issues.   
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