
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

HoneyKube:
Designing a Honeypot Using

Microservices-Based Architecture

Chakshu Gupta
Master Thesis

August 23, 2021

Graduation Committee:
Dr.ir. Andrea Continella

Prof.Dr.ir. Roland van Rijswijk - Deij
Prof.Dr. Andreas Peter

Thijs van Ede M.Sc.

Services Cyber Security Group
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

HoneyKube: Designing a Honeypot Using
Microservices-Based Architecture

Chakshu Gupta
University of Twente

P.O. Box 217, 7500 AE Enschede
The Netherlands

c.gupta@student.utwente.nl

Abstract—Since before the pandemic, there has been a grad-
ual rise in the dependency on online applications. Examples
include e-commerce, social media and digital conferencing. This
dependence has become more pronounced during the pandemic.
The user demands from these online platforms also rise with
this increased dependence, which requires these applications to
be agile and continuously evolve. The traditional monolithic
systems do not enable this agility and make it challenging
to meet these rapidly changing demands. Microservices-based
architecture comes to the rescue by providing the required
flexibility and agility. As we see an increase in the popularity of
microservices, there is also a rise in cyberattacks targeting these
environments. Because of the differences between the monolithic
and microservices architectures, the traditional security solutions
are not as effective in the new architecture.

We propose a novel honeypot design with an innovative
monitoring setup to facilitate data collection from cyberattacks
in a system using a microservices architecture. We deploy this
honeypot with a real-world application on top to attract malicious
users. The data collection process with this honeypot involves two
experiments: an open setting, where we expose the honeypot to
the internet, and a controlled one, where we open the honeypot
to a limited network. We collect approximately 850 GB of data
containing the attackers’ interactions with the honeypot in the
two experiment settings. We evaluate the fingerprintability of the
honeypot using a state-of-the-art reconnaissance tool. Moreover,
we show the differences in the attack behaviour when targeting a
microservices-based architecture and provide the data to further
research in understanding these differences.

Index Terms—Microservices, Kubernetes, Honeypots, Service-
Oriented Architecture

I. INTRODUCTION

Over the past few years, we have witnessed a rise in the
popularity of microservices, particularly in the development of
cloud-based web applications, with tech giants like Amazon,
Netflix and Uber adopting and endorsing them. Evolved from
the Service-Oriented Architecture (SOA), microservices fo-
cuses on a modular architecture, breaking one enormous appli-
cation into loosely coupled, independent parts. Microservices
enable easier development, deployment, better maintainability,
and flexible scaling of services. Software containers provide
the needed mechanism for packaging a microservice with its
libraries and dependencies. Containers enable the application
to run reliably in any computing environment. The microser-
vices architecture presents a significantly different setup from
the traditional monolithic one that consists of single-tiered
software. The various components of a monolithic architecture

are interconnected and interdependent, using shared code and
memory. The modular design of the microservices architecture
consists of a significantly higher number of independent parts
and the paths of communications connecting them. More
components in a system, the larger the number of moving
parts, translating to a larger attack surface. Hence securing
these systems becomes much more challenging in comparison
to a monolithic system.

As the popularity of this architecture increases, the at-
tackers become more motivated to develop new and innova-
tive methods to breach these systems. Container-based and
microservices-based systems have witnessed a large number of
attacks in the last few years [1]–[4].These attacks varied from
infecting docker images in the Docker Hub repository [4] to
developing malware that enables breaking out of the containers
to establish backdoors [3]. From these attacks in containerized
environments, it is evident that the approaches used to attack
such systems differ from the traditional methods. Since the
attack patterns differ, traditional intrusion detection systems
(IDS) and firewalls developed for monolithic systems will not
be as effective in identifying attacks in this new environment.
Hence, it becomes vital to have security solutions tailored to
identify threats in containerized and microservices settings.
These solutions require data about the behaviour patterns of
attackers and the tactics they employ when attempting to
compromise such systems.

In 2003, the honeynet project1 developed honeypots to
facilitate data collection from genuine attacks and use it to
identify attack patterns. They defined honeypots as “decoy
computer resources whose value lies in being probed, attacked,
or compromised” [7]. Since they are decoy systems, they
have no production value and hence, any access attempt or
interaction with them is considered a probe, scan or attack.
The ongoing activities on these systems are logged and later
analyzed to improve our understanding of the attackers’ be-
haviour.

Academic researchers and industrial professionals have
used honeypots in their respective use-cases to further their
knowledge of the cyber-criminals, including their approaches
and their motives [8]–[10], [14], [15], [46]–[53]. The gained
insights were vital in advancing the development of defence

1https://www.honeynet.org/

https://www.honeynet.org/

measures. The two use-cases made use of honeypots in
different contexts. In the industrial setting, honeypots are
placed alongside production servers to identify the threats and
vulnerabilities exploited in the wild. Whereas, in the academic
setting, the purpose of the honeypots is to collect data and
analyze it to identify behaviour patterns used by the attackers
and the vulnerabilities exploited by them.

The amount and the quality of the data collected by the
honeypot depend on the level of interaction permitted to
the user in the system: low, medium, and high interaction
honeypots, as well as the resemblance of the honeypot to a
real system. Low-interaction honeypots consist of emulated
protocols or network services without exposing the complete
functionality of the operating system. They are easy to develop
and deploy, but they capture a limited amount of informa-
tion about the attackers’ actions. On the other hand, high-
interaction honeypots are real systems, imitating production
systems, and designed to be vulnerable to attract attackers.
Even though high interaction honeypots provide more insights
into the attackers’ actions, they pose a greater risk of getting
used for a real cyber-attack, e.g. as part of a botnet. Hence,
these can be quite expensive to deploy and maintain.

In this research, we design a honeypot named HoneyKube,
using the microservices-based architecture with a real-world
application on top. We deploy HoneyKube and expose it to the
internet to collect attack data. The application uses Kubernetes
for container orchestration and Google Kubernetes Engine
(GKE) for deploying and exposing the honeypot to the inter-
net. The monitoring system design of this honeypot consists of
capturing interaction activities at multiple observation points to
record data from the attacks. We aim to collect all system calls
executed within the containers and all network interactions
with the honeypot, including communication between the
microservices.

Through this experiment, we collected nearly 850 GB of
data which consists of system trace files, network trace files,
and various types of log files. We recorded roughly 11500
brute-force attempts to access the system, out of which only
12 succeeded. Since all activities recorded by the honeypot
tend to be malicious, the collected data can provide a good
training dataset for Intrusion Detection Systems [20]–[23],
such as KubAnomaly [21]. Analysis of this data will facilitate
future research in understanding attackers’ behaviour and
attack patterns. Subsequently, it will help further the research
in designing adequate defences to secure microservices-based
environments.

In short, our paper makes the following contributions:
• We propose a novel honeypot design that uses

microservices-based architecture. This design provides a
baseline for honeypots imitating different types of real-
world applications that use this architecture.

• We introduce an innovative monitoring and detec-
tion setup to record attacker movements inside a
microservices-based architecture.

• We present real-world attack data collected from the
honeypot. Analysis of this data will enhance our under-

standing of the attackers’ behaviour when compromising
the microservices-based architecture.

To facilitate other researchers in conducting their research
in this area, we will release the source code of the honeypot
on GitHub, and the collected data will be made available on
request.

II. BACKGROUND

In this section, we describe the microservices architecture
and Kubernetes platform, a container orchestrator that auto-
mates the management of microservices.

A. Microservices

Microservices-based architecture is an application devel-
opment approach, where separate components of a software
design are created and deployed as isolated services. Each
microservice is designed to meet a specific functional re-
quirement, such as user management, payments, and sending
emails. These microservices communicate with other services
via network-based interfaces, such as remote procedural calls
(RPC or gRPC for the latest high-performance framework
developed by Google) and API calls. Instead of sharing a
single database, like in a monolithic architecture, in this archi-
tecture, every microservice has its own database, enabling each
service to use the database best suited for its requirements.
This creates a loosely coupled system that allows each service
to be scaled, deployed, managed, and updated independently.
Software containers, with their software packaging capabili-
ties, provide the perfect platform to host the microservices.
These containers share the kernel with the host machine and
use kernel features like namespaces to isolate processes while
controlling resource usages such as CPU and memory. Hence,
allowing each microservice to run in its custom environment,
independent of other microservices.

B. Kubernetes

With the increasing complexity of applications, the number
of microservices required to fulfil all their requirements also
increases. This number can be in thousands, e.g., Uber’s appli-
cation uses more than 2000 microservices [6]. As the number
increases, it becomes essential to automate the management of
the microservices and the containers hosting them. Kubernetes
[41], also known as K8s, is an open-source orchestrating
platform that enables automating the deployment, manage-
ment, and scaling of these microservices. A K8s cluster is
a distributed computing setup consisting of a set of worker
machines called nodes. Figure 1 shows the architecture of
a K8s cluster and its components. A node in K8s is an
abstraction for a machine, and it can be either physical or
virtual. The application containers run on the nodes, as we can
see in Figure 1. The control plane is the cluster orchestrator
that handles workload distribution amongst the nodes and
monitors their health. The core of the control plane is the
K8s API server that enables the cluster administrators and
other users to monitor and manage the state of the cluster.
The control plane is responsible for scaling and scheduling the

2

pod

container

volume

service

ingress

Internet

node

control
plane

10.10.10.3

10.10.10.1

10.10.10.2

Kubernetes Cluster

kub
ele
t

kubelet
process

Service A

Service B

Fig. 1: Detailed architecture of a K8s cluster. The cluster is a combination of nodes and control plane. A Node is an
abstraction for a machine. The control plane is the cluster orchestrator. The dotted lines between them depict the
communication channels between the nodes and the control plane. The application containers run on the nodes. A pod
is an abstraction that groups containers that share network resources and volume. By default, a pod remains isolated
from the outside world and requires a service resource to enable external communication. Ingress is an API object
that facilitates exposing a service to the internet via a load balancer.

application containers within the nodes and rolling out updates.
The control plane communicates with the nodes using the K8s
API to ensure that the containers running on them are healthy
and working properly. Each node consists of an agent running
on it that facilitates this communication with the control plane
called kubelet (shown in Figure 1).

K8s employs an additional abstraction to group containers
that form a microservice called a pod. A pod is an ephemeral
resource and loses its state upon restart. Any data that re-
quires persistence should use persistent volumes within the
pods for storage. All the containers within a pod share the
network resources and storage. The containers inside a pod can
communicate with each other using localhost as though
they were running on the same system while staying isolated
from one another. Each pod is assigned a unique private IP
address. The communication between the pods uses these IPs
within the cluster. By default, the pods remain isolated from
the outside world and require additional abstractions to enable
external communication, such as Service and Ingress. These
abstractions are depicted in Figure 1.

Because of the non-permanent nature of the pods, their
IP address changes with every restart. The ever-changing
IP address becomes problematic when trying to access the
application from inside or outside the cluster. Service is an
abstraction that helps solve this problem. Using a service, we
can define a logical set of pods that work together to fulfil
one design requirement and a policy containing details on
how to access them. This abstraction is commonly known as
a microservice. The IP address assigned to the service does

not change throughout its existence. To expose these services
to the outside world, we need to use Ingress, which is an API
object that handles external access to the services within the
cluster. Ingress provides load balancing, SSL termination, and
name-based virtual hosting capabilities [42]. With Ingress, it is
possible to expose HTTP and HTTPS routes from the internet
to services inside the cluster. Figure 1 depicts the relation
between Ingress and the service within the cluster.

III. THREAT MODEL

The HoneyKube design involves a few assumptions for the
extent to which the attackers can compromise the system.
We use these assumptions to devise a threat model for this
experiment.

• We assume the attackers aim to get access to the host
machines by escaping the containers. We set up security
defences to prevent this escape and any other form of
privilege escalation. We describe these defences in detail
in Section VI. During our evaluation, we observed that
no attackers were successful in breaking out of the con-
tainers. Hence, we are more confident in this assumption.

• We assume the attackers cannot escalate privileges to
gain access to other cloud resources from outside the
cluster, using our Google Cloud Platform account [38],
[39]. Also, we assume that they cannot shut down the
experiment and use the resources for malicious purposes.
We base our assumption on the default Identity and Ac-
cess Management (IAM) in GCP. Every compute engine
or VM in GCP uses a service account to define its

3

access identity, and the default service account has limited
access. And, we do not give this service account any
additional authority.

• We assume the attackers cannot discover or tamper with
our monitoring system for HoneyKube, a common as-
sumption in threat monitoring systems [24], [25]. For the
monitoring setup, we use resources within the cluster to
store the data we collect. Our assumption about tampering
includes any tampering with this data. Even with these
assumptions, we take some precautions (as we mention
in Section V) to keep the damage to a minimum in case
it happens. Hence, we assume the attackers cannot evade
detection inside the system by removing the evidence of
their activities [38], [39] such as clearing container logs
or deleting K8s events.

The focus of HoneyKube is to capture attackers activities
within the cluster on credential access, lateral movement and
the likes. These include using SQL injection or network probes
to retrieve data from services running on different containers.
Hence, by using this threat model, we keep our focus on just
those movements and behaviours.

IV. HONEYKUBE DESIGN

This research aims to devise a honeypot using the microser-
vices architecture and deploy it on a cloud platform for data
collection. The design uses the following objectives as guiding
principles:
Fingerprintability: It is hard to distinguish the honeypot

from a real system, i.e. network reconnaissance tools
such as Nmap [27] and Shodan [31] have a tough time
fingerprinting this system as a honeypot.

Interaction Level: It provides considerable interaction sur-
faces to engage the attackers and enables real data collec-
tion, i.e. that the honeypot is a medium-high interaction
level honeypot.

Monitoring: It monitors and records interactions.
Security Defences: It deploys defences to prevent the misuse

of the system by the adversaries. Recall from Section I
that the higher the interaction level of the honeypot, the
higher the risk of the adversaries taking over the system
and exploiting it to harm other people, e.g. by using the
system to send phishing emails or perform DDoS attacks.

A. Design Overview

We design a honeypot using the microservices architecture
in K8s with a real-world application on top of it. Figure 2
shows a high-level picture of this design. The essence of a
research honeypot is the monitoring and detection setup since
that is responsible for recording the attack data. Recall that
the microservices architecture adopts a distributed computing
setup. Hence, we need to monitor the system from multiple
observation points to ensure the logging of all interactions. To
assist in the future analysis of attacker behaviours, we collect
the data that can provide some crucial information about the
attacks:

a) the source location of the attacker,

b) the vulnerability that provides the gateway into the clus-
ter,

c) the first container that gets compromised, and most im-
portantly,

d) the attackers’ actions after entering the system, varying
from lateral movement within the cluster to privileges
escalation to gain access to the host systems.

The quality of data collected depends on the ability of the
honeypot in deceiving the attackers. To increase the realistic
factor of the honeypot, we took a real-world application code-
base as a baseline. Employing a real-world application reduces
the chances of fingerprinting the honeypot from its system
settings, like seen in HoneyMix paper [16]. We also inject the
honeypot with vulnerabilities to allow the initial breach and
lateral movement within the cluster and increase the interaction
level of the honeypot. Lastly, we employ security defences
such as firewall and K8s security contexts when deploying
the system. The firewall is placed at the network gateway to
control the inbound and outbound traffic from the nodes. The
K8s security measures enable us to restrict the traffic from the
containers. These security contexts also help keep the attackers
from escalating privileges and escaping the containers to the
host systems.

HoneyKube

Node

Node

Node

Node
Data Logs

a)
a)

b)

c)

d)

d)

Fig. 2: Overview of HoneyKube’s design. The image depicts
the high-level placement of all the major components of
the honeypot: a) monitoring and recording, b) a honeypot
using the microservices architecture and resembling a real
system, c) open for attackers to exploit, and d) security
defences in place to prevent misuse of the system.

B. Design Details

With the monitoring infrastructure of the honeypot, we aim
to collect data relevant for future analysis. To identify the
origin of the attack, we need the source IP address of the
attack, which requires capturing the incoming network traffic.
Recall from Section II each microservice design focuses on
a specific function and communicates with other services via
HTTP or gRPC. In that case, attacks such as cross-site script-
ing and SQL injection can propagate within the cluster and
potentially impact more than one microservice. Identifying the
effect of these attacks on the microservices requires capturing
the internal network traffic, i.e. the communication between
the microservices. So, we design a monitoring setup to capture
the inbound and outbound traffic from each microservice. The
captured network traces give us a complete picture of the flow

4

of traffic within the cluster. Since the internet-facing interface
of the application is a microservice as well, with this setup,
we also capture the incoming network traffic from outside the
cluster.

Next, we capture the actions taken by the attacker after
entering the cluster by recording the system calls they execute.
Recall that the microservices architecture consists of many
containers running inside nodes. To get a complete set of
actions performed by the attackers, we need to capture system
call execution inside all the containers and the nodes within the
cluster. Since the system calls are executed in the kernel space,
and the containers share the kernel with the host machines, we
set up the system call monitoring in all the nodes. In addition
to the network traffic and the system calls, we also collect
system logs from all computing units inside the cluster and
audit logs from the K8s control plane.

The real-world application we use as a baseline for the
honeypot is the open-source microservices demo application
developed by Google Cloud Platform (GCP) [26]. This appli-
cation provides a fully functional, deployment-ready imitation
of an e-commerce web application. To keep the fingerprint-
ability of the system low, we change the look and feel of the
application and add new services and capabilities such that it
does not resemble the demo application. With these changes,
we transform an application with 11 microservices to an
application with 14 microservices. Each of these microservices
consists of a single container encapsulated in a pod. Hence,
the application finally consists of 14 pods, each hosting a
microservice.

Remember that a microservices architecture consists of mul-
tiple nodes, pods and containers, among other K8s objects. As
the number of independent components in a system increase,
so does the number of communication channels between them.
With the increasing number of moving parts in a system,
the attackers gain a larger attack surface to exploit. Hence,
increasing the interaction level of the honeypot. To further
increase the interaction level, we inject vulnerabilities into
the system at multiple fronts. These vulnerabilities enable
the attacker to breach the system, gain access to sensitive
information and move laterally within the cluster.

Lastly, when conducting an experiment that requires the
system to be vulnerable by design, it becomes our ethical
and moral responsibility to ensure that it does not get used to
cause harm to others. This harm can come in a comparatively
moderate form as spam emails or a destructive form as a
DDoS attack targeted towards innocent people. So, to prevent
these kinds of mishaps, it is essential to incorporate a few
security precautions in the design as one of the objectives. For
this experiment, we restrict most of the outbound traffic from
the cluster, only allowing it on the internet-facing frontend
microservice of the application. Even on this microservice,
we limit the traffic to the ports required by the microservice
to function. By controlling the outbound traffic and limiting
accessible ports, we block outgoing DDoS attacks and spam
emails.

Since the microservices architecture employs a distributed

setup, we require some additional precautions to ensure com-
plete protection. Access to the control plane of the cluster can
give an attacker administrative access to the entire system.
Hence, we restrict the containers in the nodes from accessing
the control plane by using Role-Based Access Control in
K8s. Next, we remove root access from all the microservice
containers, as with root access, an attacker can escape from
the container and gain root access to the nodes. With that, the
attacker can override the security measures and use the system
for malicious purposes.

C. Challenges

Designing the monitoring setup for the microservices archi-
tecture comes with a few challenges. Here, we dive into these
challenges and how we overcome them.

1) Network traffic capture: In the network monitoring
setup, we capture the inbound and outbound traffic from each
microservice. For this, we need to run a monitoring tool along
with the microservice and capture the network traffic into
(PCAP) trace files. The challenge we face in this scenario is
monitoring the network traffic without the attacker detecting
the presence of the tools or tampering with it in any way.
Any process running within the microservice container can get
easily detected by an attacker scanning for running processes
in the container. Recall that each microservice container is run-
ning inside a pod, and a pod can hold multiple containers that
share resources like the network stack. So, another container
running in the same pod can capture the network traffic of
the pod. We use this to isolate the application process and the
monitoring process and run them in separate containers in a
pod. Containers in a pod that provide supporting features to the
main application container are called sidecar containers. With
a sidecar container, we avoid any detection and tampering of
the monitoring infrastructure by the attacker.

2) System Calls Capture: The multiple levels of abstraction
in K8s architecture with containers running inside pods, which
run on nodes, makes capturing system calls challenging. We
need to capture system calls execution on all the levels to
get a complete picture of the attackers’ activities inside the
cluster. Recall that the containers share the kernel with the
host system, in this case, the nodes. Therefore, we need to
run monitoring tools in each node to capture the executed
system calls into trace files. The challenge in this design
is that this will record all system calls and not just the
anomalies, which, in this case, are system calls executed by
the attackers. So, most of the collected data will be irrelevant,
and identifying and tracking attackers actions in that dataset
will be equivalent to finding a needle in a haystack. Also,
the trace files containing system calls are large (e.g. 400MB
in 3 minutes after compression). Considering the honeypot
will stay active for a few weeks, this will pose a logistics
problem. Extrapolating from 3 minutes to 1 week, we will
collect approximately 1378 GB of trace files per week, which
is not practically feasible for this experiment.

We solve these problems by devising a monitoring setup
that uses a runtime security system that detects unexpected

5

behaviour as a trigger mechanism to identify when we need to
capture the system calls. In this setup, we run the system calls
capture into trace files on each node. The capture process uses
a circular file rotation method to ensure continuous capture and
contain the capture size. On a separate interface, we deploy
the security system to monitor the cluster for anomalies. The
security system raises alerts on detection. We use this alert
as a trigger to notify the capture process on each node to
permanently store the relevant files such that they do not get
lost in the file rotation. These processes keep storing the files
until they receive the notification to stop. With this, we record
data relevant to attackers actions while containing the storage
requirements.

V. IMPLEMENTATION

We can use any deployment platform that provides support
for K8s as a cluster orchestrator to deploy the honeypot. For
this research, we use the Google Kubernetes Engine (GKE).

A. Monitoring Setup

The monitoring infrastructure consists of two independent
setups to collect two different types of data, network traffic
and system calls. These mechanisms require different levels
of access to the system, and hence, we place them at separate
observation points within the cluster. In Figure 3 we see the
placement of these mechanisms on the HoneyKube cluster.

In addition to the network traffic and system calls, we collect
K8s audit logs and system logs from all the containers and
the nodes in the cluster. K8s audit logs are the chronological
record of calls made to the K8s API server. The control plane
records all activities that involve users or applications sending
requests to the K8s API. Container system logs are the logs a
service generates during its lifecycle, based on the requests it
receives from other services. These are the debug logs hard-
coded into the application and meant to give insight into the
functioning of the service. Node system logs are the Linux
audit logs that provide detailed logging of security events on
the system. The Linux systems generate these logs by default.
These logs provide additional information about the attacks
and their effects on the system.

1) Network Traffic Capture: For capturing the raw network
packets, we employ the tcpdump command-line tool, which
is a network packet capture utility. We use a tcpdump
Docker image to set it up in a sidecar container in each
pod. We configure these sidecar containers to start network
capture automatically on pod creation. The tcpdump captures
the network traffic into PCAP trace files inside the sidecar
container. Recall that the pods are ephemeral in nature, which
means we will lose any data or files stored on them upon
restart. So, we define persistent volumes inside the pods,
mount these volumes on the sidecar containers, and use them
to preserve the captured trace files.

The sidecar containers do not communicate with any other
container or service within the cluster. Hence, we assume that
the attackers will not be able to identify their presence. But
there still exists a remote possibility of an attacker identifying

these containers and gaining access to them. In that case, they
will have the ability to delete the collected trace files. So, we
develop a file retrieval process that moves the files from the
containers to the local storage, and to keep our losses to a
minimum, we run it at regular intervals.

2) System Calls Capture: For capturing the system calls,
we use Sysdig, an open-source tool that provides deep system
visibility in Linux and container-based systems. Sysdig, a
combination of several system-level monitoring tools such as
strace and htop, enables capturing system calls into trace
files. We set up the capture process with Sysdig on each node
using a circular file rotation mechanism, such that at any
moment, only n files are on the system. The names of the
trace files end with the date and time of their creation.

We use Falco for the runtime system security to trigger
the system calls capture. Falco is an open-source cloud-native
runtime security tool that consumes kernel events, interprets
them in runtime, and checks them against a list of pre-defined
security rules. This enables Falco to detect suspicious activities
and send out alerts in real-time. Falco operates by running
on a separate pod on each node. The application containers
inside these pods run with privileged access, giving them
access to the kernel events of the host system. We refrain from
using network channels such as HTTP/s or gRPC to send out
Falco alerts to prevent detection by an attacker monitoring the
internal network traffic of the cluster. The problem with an
attacker intercepting this communication is that it gives away
the local IPs of the Falco pods, using which the attacker can
gain access to privileged containers in the cluster. This access
can potentially facilitate escape from the containers to the host
systems. Hence, we poll the standard output logs from all four
Falco pods instead and look for alerts. We use the command-
line tool kubetail, which allows continuous retrieval of logs
from multiple pods at the same time. We set this up on our
local system with a script that takes these logs as inputs and
processes them to identify alerts.

When Falco raises an alert, the script detects it and triggers
all the nodes. The capture process running on the nodes
receives this trigger and enables the storage setting. Once this
setting is enabled, these capture processes start storing a copy
of the trace files to another location as soon as they finish
writing to them to keep them from getting deleted by the file
rotation system. The storing starts from the active file, the one
that is currently capturing system calls. After a pre-configured
period, the script sends another alert from the local system to
the nodes disabling the storage setting.

B. Web Application

The real-world web application we use as a baseline imi-
tates an e-commerce website, and all the microservices in it
facilitate different features in the application. Hence, we keep
the application as an e-commerce website while changing the
product catalogue and revamping the frontend. The baseline
application maintains its product catalogue in a text file. Since
real applications favour storing their product catalogue in a
database, we migrate it from a file to a MySQL database in

6

Kub
elet

application
pod

application
container

persistent
volume

node

control
plane

tcpdump
container

falco
pod

Monitor
Falco
Logs

sysdig
process

Trigger file storage

Falco Logs

HoneyKube Cluster

frontend service

ingress

kubelet
process

Fig. 3: In-depth view of HoneyKube. We have a cluster with four nodes and a control plane. To capture the network
traffic, we run tcpdump on a separate container in each pod, along with the application container. We use persistent
volumes in the pods to prevent the loss of captured trace files. The system calls capture happens in two steps. First,
we run the Sysdig capture process on the node machines using circular file rotation. Then we run Falco on a pod in
each node to detect unexpected behaviour. We monitor the logs generated from Falco on a local system (as depicted
here). When Falco identifies an intrusion, it raises an alert. The local machine uses this alert to send triggers to all
nodes. This notifies the Sysdig processes to start permanently storing the captured trace files.

a separate service to make the honeypot look believable. We
also add features like user registration and user login in the
application. To incorporate the functioning of these features,
we add two microservices. First, a database service that
runs a MySQL database and stores user account information.
Second, an API service that runs a Flask API to access the
user database. These features help make the application look
genuine and in deceiving the attackers. The screenshots of the
frontend of this application are in Appendix B.

C. Vulnerabilities

We increase the interaction level of the honeypot by inject-
ing some vulnerabilities into it. These vulnerabilities facilitate
the attackers in exploiting the system and consecutively im-
proves the quality of the data collected from it. Using the
K8s threat matrix [38], [39] developed by Azure Security
Center, we map these vulnerabilities to the attack surface
of HoneyKube. K8s threat matrix is similar to the MITRE
ATT&CK framework2, consisting of tactics and techniques
used by attackers in a K8s environment. We inject vulnera-
bilities into the HoneyKube cluster to facilitate the attackers
in exploiting the various stages of the threat matrix.

Initial Access. We allow initial access to HoneyKube by
running a web application and exposing it to the internet.
To make the application seem vulnerable to the attacker, we

2https://attack.mitre.org/

mishandle errors and print stack trace information on the user
interface (UI). Even for basic errors like an incorrect password
when attempting user login. With improper coding practices
like this, we portray that the application consists of flaws and
is exploitable. Figure 9 in Appendix B shows an example of
this error trace.

We disclose some information to the attackers by printing
them in the error trace [35]. This information includes the
Golang version we use to develop the frontend microservice
and the name of the user database (Appendix B, Figure 9).

Mapping these vulnerabilities to the K8s threat matrix [38],
[39], we make use of the Vulnerable application technique to
attract attackers.

Execution. We add vulnerabilities that allow the attackers
to execute their code within the cluster. The frontend mi-
croservice runs the UI for the web application. We make this
microservice vulnerable by using an older version (v1.11.5)
of Golang instead of the latest one (v1.16.6) to develop it.
There is a known CVE for this older version of Golang that
makes it vulnerable to CRLF attacks [36]. CRLF refers to
the Carriage Return (ASCII 13, \r) and Line Feed (ASCII
10, \n) characters. These characters note the termination of
a line. A CRLF injection attack involves submitting a CRLF
into an application by modifying either an HTTP parameter
or the URL [37]. This attack can further escalate into more
malicious attacks such as Cross-Site Scripting (XSS) and page

7

https://attack.mitre.org/

injection attacks. By disclosing the Golang version in the error
trace, we inform the attackers that the application is vulnerable
to these attacks.

We accept the user inputs in the user registration and login
forms on the UI without sanitizing them and forwards them
to the user API microservice. This microservice receives the
raw user inputs, directly concatenates them to SQL queries
and propagates them further to the user database service.
The service that hosts the user database executes these SQL
queries and returns the result the same way. Hence, we make
the application vulnerable to SQL injection attacks, enabling
the attackers to move laterally within the cluster and access
sensitive user data.

We establish an SSH server in the frontend microservice and
configure it with easy-to-guess credentials. We use username
admin for the credentials as attackers tend to aim for root or
admin access on the system. The password is easily crackable
by a brute-force attack. We also store this password in a text
file in the static folder of the frontend after hashing it using
MD5 and then encoding it using base64.

Mapping these vulnerabilities to the K8s threat matrix [38],
[39], HoneyKube is vulnerable to Application exploit tech-
nique and the SSH server running inside container technique.

Credential Access. We add vulnerabilities that enable
attackers in accessing credentials. In K8s, service accounts
represent application identity. The configuration of each pod
has an identity bound to it, and the pods use this identity
to send requests to the K8s API. By default, K8s uses the
same service account for all services and mounts its token
on every pod. We create a new service account and give it
authority to retrieve the secrets in the default namespace from
the K8s API. The K8s secrets store sensitive information like
credentials for the user database and service account tokens.
So, by configuring the service account for the frontend service,
we facilitate the attackers in accessing this information.

Mapping these vulnerabilities to the K8s threat matrix [38],
[39], HoneyKube enables List Kubernetes secrets technique
and the Access container service account technique.

Discovery and Lateral Movement. We aid the attackers
in exploring the environment after entering the cluster. We
configure the same service account we use to give attackers
access to credentials to give the attackers the authority to query
the list of services from the K8s API

The list of secrets that the attacker can retrieve includes the
access token of the services accounts. In addition to the new
service account, this also consists of the access token of the
default service account that other services use. We increase
the permissions of the default service account and allow it
to retrieve information about the endpoints and services in
the cluster. Additionally, we also give this service account the
ability to update the services.

The scope of the containers is limited to the libraries and
packages it requires for the application. Hence, we install
command-line tools like curl and wget to the containers of
some microservices to facilitate the attackers in their attack.
With the help of these tools, the attackers can download

tools to probe the network, increase their understanding of
the environment, and move within the cluster.

Mapping these vulnerabilities to the K8s threat matrix [38],
[39], HoneyKube enables discovery through Access the Kuber-
netes API server and the Network mapping techniques. While
HoneyKube enables lateral movement through Container ser-
vice account and Cluster internal networking techniques.

VI. SECURITY MODEL

The higher the interaction level of the honeypot, the higher
the amount of damage an attacker can inflict if they take over
the system. Hence, it becomes essential to ensure the security
of the system to prevent misuse by the attackers.

We add network policies in the K8s system to restrict all
incoming traffic on all services. Then, we allow it only on the
ports essential to keep the application functional, i.e. 22, 80
and 443. Similarly, we restrict all the outgoing traffic from all
services and allow it on ports the frontend service uses, i.e.
ports 80 and 443. Since the frontend service is the only service
we expose to the internet, these policies enable us to restrict
external access to other services. With these policies, we also
restrict traffic on non-necessary ports such as the SMTP port
and prevent the attackers from misusing the system for spam
emails. Restrictions on traffic also reduce the chances of the
system getting used for a DDoS attack.

Due to the large number of components that compose a K8s
architecture, HoneyKube requires some additional defences
to ensure adequate security of the system. As mentioned in
Section III, we need to prevent the attackers from escaping
the containers and gain access to the host system. root is
the default user in containers. Hence, the containers have root
access and privileges, which an attacker can use to gain root
access to the host system (nodes). We prevent their escape
by configuring the microservice containers to use a non-root
user and remove all privileges. We configure all microservices
with these settings in the Pod Security Context [43]. For these
configurations, we set privileged: false, runAsNonRoot: true,
and allowPrivilegeEscalation: false. These settings prevent a
process from gaining more privilege than its parent process.

Next, we allocate fixed resources to each container to
limit the amount of computing power they can use. We use
a conservative strategy when allocating resources like CPU
and memory (RAM) to prevent the attacker from using the
containers to execute resource-intensive programs, such as
crypto-mining and performing DDoS attacks.

The control plane in a K8s cluster has administrative control
over all the resources inside it. Any attacker gaining access to
the control plane can use these resources to launch cyber-
attacks. Hence, it is essential to restrict access to the control
plane from containers in the nodes. We enable the Role-Based
Access Control in GKE to ensure limited access to the control
plane from application containers.

We also configure the cluster to use shielded GKE nodes
to prevent a known vulnerability in GKE [44]. In this vulner-
ability, an attacker can gain control over the entire cluster by
exploiting the kubelet component [44]. With shielded nodes,

8

the control plane cryptographically verifies that each node
is a valid virtual machine running in Google’s data centre.
As mentioned in the GKE documentation: “Without Shielded
GKE nodes, an attacker can exploit a vulnerability in a pod to
exfiltrate bootstrap credentials and impersonate nodes in your
cluster, giving the attackers access to cluster secrets.”. These
secrets can provide administrator access to the GKE control
plane from potentially any pod in the cluster. By enabling the
shielded GKE node feature, we limit the attacker’s ability to
overtake the cluster by impersonating a node inside it.

Lastly, we add firewall policies to limit SSH port access on
the nodes to only authorized IPs. We only allow the system
we use for monitoring and data collection to access the node
systems. These policies prevent attackers from gaining access
to the nodes and escalating the privilege to get root access to
the system.

VII. EXPERIMENTS

For this research, we conduct two experiments: a) open
experiment, where we expose HoneyKube to the internet,
and b) controlled experiment, where we limit the exposure of
HoneyKube to the IPs of the participants.

Environment. We use Google Kubernetes Engine (GKE)
to deploy HoneyKube. The cluster configuration consists of
4 nodes and a control plane, where the node machines use
E2 series high CPU machine that provides 4GB vCPU and
4GB memory along with Ubuntu as their OS instead of the
Container-Optimized OS, which is the default option in GKE.
It is essential to choose Ubuntu OS because it provides support
for Sysdig in GKE nodes.

A. Ethical Practices

The deployment of honeypots comes with some ethical
challenges. We are purposefully deploying a vulnerable system
to lure attackers. In the attempt to look convincing, we may
deceive some genuine users who believe the application is real.
Additionally, the attackers can take over the system and use
it for malicious purposes that harm innocent people.

The security defences we describe in Section VI prevents
the attackers from taking over the system. We incorporate
some features in the UI design of HoneyKube to discourage
genuine users from using the application. Appendix A consists
of the complete list of these features. For the controlled
experiment, we request all the participants to sign a consent
form (Appendix D).

We received approval from the ethics committee for both
experiment settings (Reference number: RP 2021-131).

B. Open Experiment

In this experiment, we expose HoneyKube to the internet
using HTTPS and collect data. To use the secure HTTPS
protocol, we attach a TLS certificate and a domain to the
service. Remember that in K8s, Ingress provides the method
to expose services on HTTP/S protocols. We configure Ingress

[45] to obtain a TLS certificate from the Let’s Encrypt Cer-
tificate Authority(CA) and deploy the frontend service on the
domain https:// techno.net.co. Since the Ingress load balancer
in GKE only allows exposure of HTTP/S ports, we expose the
OpenSSH server on the frontend pod as a separate service. We
add the IP of this service in the robots.txt file to leak it to the
attackers.

C. Controlled Experiment

In this experiment, we restrict access to HoneyKube to the
participants’ IPs. Volunteers from the Twente Hacking Squad
(THS) and the Red Team from Northwave, an intelligent
security operations company in the Netherlands, participated
in this experiment. There is no deception in this experiment,
as the participants were aware that it is a honeypot. With this
experiment, we simulate targeted attacks on the system. The
HoneyKube settings in the two experiments are identical in
terms of system architecture and design. Only one difference
exists between the two systems, the method we use to expose
the frontend service. Since there is no deception, we do not
require a domain to make the application look believable.
Knowing it is a honeypot, the participants will not enter
sensitive information in the web application. So, there is no
need for a CA issued TLS certificate. Hence, we expose the
service directly on the internet, which allows us to keep the
SSH port on the same IP address.

VIII. EVALUATION AND RESULTS

This research aimed to design a honeypot using the
microservices-based architecture and deploy it to collect attack
data to enable future research in identifying attack patterns and
attacker behaviour.

A. Datasets

We deployed the clusters from the two experiment settings
on the GKE platform. The open experiment was active for
two weeks and the controlled experiment for three weeks.
We collected approximately 850 GB of data from the two
experiments combined. The data is a mixture of system trace
files, network trace files, and a combination of various types
of log files. Below we describe the different types of data
collected from these experiments.

1) System Trace Files: The system trace files (.scap files)
generated by Sysdig comprise most of the collected dataset
(∼800 GB). We triggered the collection of these trace files
whenever Falco raised an alert about an intrusion in the sys-
tem. Falco gave the same warning when there was an attempt
to SSH into the system and when there was a successful
entry. Since the open honeypot witnessed recurring brute-force
attacks, we collected a large number of these trace files. With
these trace files, we captured the actions taken by the attackers,
involving system calls, after breaching into the cluster. Hence,
we succeeded in the challenge (mentioned in Section IV) of
capturing the system calls with our monitoring setup and the
chosen observation points.

9

https://techno.net.co

2) Network Trace Files: The network trace files (.pcap files)
were captured and stored in every pod of every microservice.
From both the experiments combined, we collected approxi-
mately 8 GB of network trace files. With these trace files, we
succeeded in capturing all the incoming and outgoing traffic
from every microservice. Hence, our design succeeded in
overcoming the network traffic capture challenge (mentioned
in Section IV).

3) K8s Audit Logs: The K8s audit logs record all the
requests made to the K8s API by users or by components
that use the K8s API like the control plane. Each request to
the K8s API generates an audit event at every stage of its
execution. Hence the collected log files amount to around 40
GB of data. The logs are in JSON format, stored in text files.
With this data, we can identify the effect of attackers’ actions
on the cluster as a whole.

4) Falco Logs: Falco, the tool used to detect intrusions or
unexpected behaviour in the system and alerting the Sysdig
capture process, stored all the events generated by it in log
files. Since Falco is a security tool for cloud-native systems
like K8s, its logs contain details about the components trig-
gering the events like pod name and container image. These
details help in giving a better view of the attackers’ movements
and actions inside the cluster. These logs are in JSON format,
stored in text files.

5) System Logs: We group all the logs generated by all
the containers and the nodes under this category. These are
the default logs generated by the application containers that
we configured to help with debugging. We also collected the
records of all login attempts from the SSH server running on
the fronted service. These logs consist of the username used
in the login attempt and the source IP address. Additionally,
nodes also contain audit logs generated by Linux systems
that log all security-related events. All of these logs are in
text file format. We keep all of these logs to give context to
the attackers’ behaviour identified by processing the collected
data.

B. Fingerprintability

We used the Shodan Honeyscore tool to evaluate the finger-
printability of the HoneyKube. Shodan [31] is a search engine
and crawler for devices connected to the internet and gathers
in-depth information about these devices that traditional search
engines do not, e.g. how many systems get affected by a new
vulnerability. Shodan’s developer API provides an endpoint,
Honeyscore3, that can fingerprint devices and identify whether
they are honeypots or not. The Honeyscore takes an IP address
as input and computes the probability that the host is a
honeypot. The output value ranges from 0.0 (real machine)
to 1.0 (honeypot).

The details behind the computation of Honeyscores are
not publicly available. According to Shodan’s creator, as
mentioned in the HoneyPLC [10] paper, this tool uses the
following criteria when scoring honeypots: a) a large number

3https://honeyscore.shodan.io/

of open network ports, b) active service is not a match for
the environment, e.g. ICS device running on GCP, c) markers
from known honeypots like configuration settings, d) once a
system is identified as a honeypot, it will most likely remain as
a honeypot even after changing its configuration, e) a machine
learning classification algorithm (not disclosed), and lastly, f)
known honeypots use the same configuration.

The Shodan Honeyscore assigned a value of 0.0 to the
HoneyKube honeypot, which means this tool could not dis-
tinguish between our honeypot and a real system. Hence
it demonstrates that this state-of-the-art reconnaissance tool
found it hard to fingerprint HoneyKube as a honeypot. Al-
though, it is important to remember that, as of now, there
are no known honeypots designed using the microservices
architecture. Therefore, we can safely say that this HoneyScore
tool has not yet been configured with fingerprintable markers
to identify honeypots in this environment. So, even though
Shodan HoneyScore does not provide a reliable platform to
measure the fingerprintability of our honeypot, its evaluation
does suggest that HoneyKube is not overtly identifiable as a
honeypot.

C. Observations

We observed differences in the type of attacks witnessed by
the two experiments.

1) Open Experiment: In the two weeks duration that the
open experiment was active, we recorded roughly 11500
login attempts from more than 200 different IPs on the
SSH server. These attempts originated from all around the
world, from 36 different countries. The timestamps and the
haphazard nature of these attempts suggest that these resulted
from brute-force attacks executed by bots scanning the internet
for vulnerabilities. In Table I we list the top five countries
from which we recorded the maximum number of attempts.
The comprehensive list of the countries is provided in Table
II in the Appendix C.

Country Number of Attempts
United States 2114
Vietnam 1946
Russian Federation 757
Pakistan 597
Albania 595

TABLE I: Top countries and the corresponding number of
login attempts recorded on the SSH server

Through the SSH server logs, we recorded the user-
names used for the brute-force attacks. We saw 36 differ-
ent usernames used in these attacks. The most commonly
observed usernames were root, user, tech, demo, and
telecomadmin. The complete list of the recorded user-
names is provided in Table III in the Appendix C.

Out of the roughly 11500 login attempts, only around
12 successfully logged into the SSH server. We observed
that most of these disconnected immediately after successfully
logging in to the server. But a few of them spent some
time inside and performed some actions before disconnecting.

10

https://honeyscore.shodan.io/

The captured system trace files recorded these actions. We
observed varying types of behaviours through these system
calls. One of them attempted to mine Monero bitcoin inside
the container. One just tried to read and delete the system
logs from the /var/log directory. A few others searched
for active crypto mining processes inside the container by
looking for the word ”Miner” or ”miner” in the list of running
processes. Even though these behaviours varied, it is evident
from the timestamps of the executed system calls that these
were mostly automated attacks and did not have any manual
intervention, all except one. The system calls captured from
one of these attacks have a few seconds delay between the
commands, as shown below. Hence there is a possibility that
this attack involved manual intervention.

17:02:00 <NA>) l s − l a
17:02:08 <NA>) sudo − i
17:02:12 <NA>) top
17:02:29 <NA>) . / . dhpcd −o 88.99.2 xx . xx :80
17:02:37 <NA>) dmesg
17:02:37 <NA>) t a i l
17:02:40 <NA>) top −bn1

In addition to the attacks on the SSH server, we recorded
brute force attempts to SSH into the node machines within
the cluster. The login process in Linux logs all login
attempts, whether they are successful or not, in separate files
under the /var/log directory. btmp is a binary file that
records all the unsuccessful login attempts and was part of
the system logs we collected. The btmp files give us the
list of usernames used during these login attempts and the IP
addresses from where the attack originated. We observed that
the attack attempts dated back to the creation of the cluster
and originated from more than 4000 different IPs from 105
different countries. The comprehensive list is provided in Table
IV in the Appendix C.

2) Controlled Experiment: With this setting, we simulated
a targeted attack scenario. A total of 8 participants took part in
this experiment: a) 5 from the Twente Hacking Squad (THS)
and b) 3 from the Red Team from Northwave. Since the
participants were all aware that the application was a honeypot,
they approached it directly by searching for vulnerabilities. We
recorded close to 1500 system calls executed by the partici-
pants in this setting. From the collected data, we observed that
the participants used diverse tactics to breach the honeypot.
These tactics varied from brute-force attacks on the SSH server
to SQL injection on the frontend application.

We recorded breach attempts on multiple interfaces of
the application. The logs from the frontend container show
automated attempts to find hidden web pages in the application
UI. Similarly, the container logs of the user API service show
automated SQL injection attacks on the user database via
the API service. The SSH server logs recorded brute-force
attacks mainly with usernames:root and admin. These logs
also recorded a few login attempts with credentials retrieved
from the user database. The tactics used by the participants to

compromise the honeypot are in line with the Initial Access
and Execution tactics of the K8s threat matrix [38], [39].

We observed that even though different participants used
different techniques once inside the cluster, the purpose of their
actions was the same, to discover the environment they just
entered. We recorded the download of tools like nmap [27],
kubectl [28], peirates [29], and linPEAS [30] script
to assist in the discovery process. Some attempted to map the
internal network using nmap, while others used kubectl for
this purpose. Some manually searched the directory structure
and discovered the service account secrets mounted on the
container. While others used peirates, a K8s penetration
tool, to find those tokens. But, all of them used those tokens
to query the K8s API and get the list of services and secrets.
The K8s secrets contained the credentials for the MySQL
server. After obtaining these credentials, we noted that most
participants attempted to connect to the database server using
several different ways.

D. Discussion of Results

Our research shows that a honeypot developed using the mi-
croservices architecture is invariably different from the regular
monolithic ones. As discussed in the previous section, most
of the attacks recorded in the open setting were automated
attacks. These were most probably executed by bots scanning
the internet for vulnerable systems to add to their botnet or
mine bitcoin. None of the attacks we witnessed in the open
setting targeted the microservices environment. Neither were
they designed to adapt to the environment. Hence, the attack
behaviour observed through the data collected in this setting
does not vary from the monolithic systems.

The attack attempt, which we flagged as a possible manual
attack, attempted to connect the SSH server container to a
DHCP server. From the network interactions captured by
our monitoring system, it appears it successfully established
that connection. DHCP is the Dynamic Host Configuration
Protocol. The dhcpd is a DHCP client that can configure
a system to work on the DHCP server’s network. We took
down the open honeypot the day after this attack. So, there is
no way for us to know how the attacker planned on using this
connection.

The containers in a microservices architecture have a limited
scope of what they can do. And with the security defences that
we deployed on the honeypot, the automated attack scripts
failed to gain root access. Hence, they were not successful in
executing their attacks. An example of an unsuccessful attack
is the one where there was an attempt to delete the system log
files. One cannot execute commands to delete log files from
the /var/log without root access. Similarly, the attempts to
mine bitcoin failed due to the lack of root access and limited
CPU and memory resources containers have at their disposal.
And mining bitcoin is a resource-intensive process.

The data collected from the controlled setting provides a
much better outlook into the different attack patterns required
to exploit a microservices architecture. Even though the initial
access points into the cluster were similar to those from the

11

monolithic system, the actions needed for further exploita-
tion, such as privilege escalation, are remarkably different.
Traditional tools, such as linPEAS are not as effective
in finding vulnerabilities or ways to escalate privileges in
this microservices environment. We observed this from the
system calls captured from the controlled experiment. The
participants using linPEAS switched to K8s specific methods
of discovering the environment after running this script. From
this, we infer that the traditional tools are not as effective in
this environment. The K8s specific penetration tool, such as
peirates were far more effective in obtaining credentials
and enabling lateral movement within the cluster.

We also observed that the numerous components inside a
microservices architecture are a liability in terms of security.
In the open setting, this was evident from the attacks on
the cluster nodes. Whereas in the controlled experiment, this
became evident from the different interfaces used by the
participants to breach the system. This research showed the
large attack surface exposed in microservices architecture and
the differences in the attacker behaviours when exploiting
it. Understanding these differences is essential to developing
tools to defend against attacks. Analyzing the data collected
from this research can help improve our understanding of these
differences and further improve the tools we develop to secure
our system.

IX. LIMITATIONS AND FUTURE WORK

The HoneyKube design proposed in this research contains
a few limitations. In this section, we discuss these limitations
and the different ways this research can move forward in the
future.

1) Interaction Level. The quality of the collected data
depends on the amount of interaction allowed to the attackers.
These interactions are directly dependent on the vulnerabilities
in the given environment that facilitate the attackers’ move-
ments. We injected vulnerabilities into HoneyKube to enable
the attackers to perform various tactics, including but not
limited to credential access, discovery and lateral movement.
Even with the injected vulnerabilities, the attackers were
allowed restricted infiltration into the system. Adding more
vulnerabilities along the entire cyber kill chain will allow for
higher mobility and a deeper infiltration by the attackers. And
it will facilitate the collection of a much better quality of data.

2) Monitoring and Data Collection. The system calls cap-
ture mechanism we designed for HoneyKube requires im-
provement. Firstly, our current design will work if most of
the actions taken by the attackers inside the containers trigger
alerts in Falco. If that is not the case, it is possible to miss
some activities inside the cluster. An example will be if the
attackers stayed inactive after entering, and after some time,
they become active and perform benign commands like ls or
ps. In such a case, the activities will not get captured. Hence,
we will not have a complete record of attacker activity within
the system. Secondly, the trigger mechanism used to capture
system calls can be more efficient by sending triggers only
to the node experiencing activities instead of all the nodes.

This way, we record system calls in just the node hosting
the container where activities are detected and make the data
collection mechanism even more efficient. Additionally, the
implementation of the current design requires some improve-
ments, as we observed some missing system trace files when
the trigger mechanism failed. A more efficient method to
trigger capture and storage of system calls will help improve
the coverage of the collected data.

3) Experiment Duration. The types of witnessed attacks
on the open honeypot indicate that mainly the automated
bots discovered it, with only one of them possibly involving
manual intervention. Hence, the honeypot did not reach its
target audience, i.e. attackers. We can potentially remedy this
problem by collecting the data for a longer duration. Or better
yet, we can distribute the link to the honeypot across the dark
web, similar to the factory honeypot [8] to attract more genuine
attacks and facilitate data collection from targeted or manual
attacks.

4) Future Work. Apart from improving the design to over-
come the limitations of the current approach, as discussed
above, the future of this research consists of identifying attack-
ers’ behaviour patterns. A thorough analysis of the collected
data will assist in identifying attack patterns and tools used by
the attackers in exploiting microservices architecture. We can
cover more ground by repeating this experiment with different
orchestrating platforms and different deployment platforms.
The analysis of data from all of these experiments can assist in
furthering our understanding of the attack surfaces in a generic
microservices architecture, not tied to specific platforms. This
analysis can further the research in devising better security
systems to protect and defend microservices architectures.

X. RELATED WORK

With microservices and K8s taking over the industry in
a storm, the corresponding research to secure these systems
needs to catch up. Hence, an increased requirement for new
research to identify threats and vulnerabilities in these systems.
Even though not much precedence exists in honeypots devel-
oped using microservices, there has been plenty of research
towards new and innovative honeypots to meet the needs of the
ever-evolving new technologies. In this section, we will dive
into some of these honeypot designs. We will also look into
some research that works towards designing security solutions
for microservices-based systems.

There has been quite a lot of innovative research in de-
veloping security solutions to secure microservices and K8s.
One such solution KubAnomaly [21] provides security mon-
itoring capabilities for anomaly detection in a K8s cluster.
KubAnomaly uses neural network approaches to create classi-
fication models that identify anomalies in the system. Another
solution works towards making the microservices resilient to
attacks by monitoring their resources usages [19]. Identifying
abnormal usage, e.g. during a DDoS attack, marks the service
as under attack and quarantines it on a reserve quarantine node
in the cluster. Such that the availability of the service is not
affected for the legitimate users.

12

Some of these solutions used sandboxing techniques to
understand the threat landscape in this microservices envi-
ronment. In 2018, researchers at Palo Alto Networks pub-
lished their research on context-aware sandboxing techniques
native to cloud environment [18]. Their work focuses on
microservices and works towards improving our understanding
of threats and attacks in this environment. In 2019, Sandnet
[17] was proposed to enable the identification of threats and
vulnerabilities in a microservices architecture by confining
the microservice under attack in a sandbox network. Sand-
net works by cloning the suspicious microservice, including
all the microservices it communicates with, to the sandbox
network and redirecting the traffic to the microservice in the
sandbox network from the production network. A novel metric,
Quality of Deception (QoD), is used to evaluate the network
deception mechanisms proposed in this research. Even though
this research comes close to what we tried to achieve with
HoneyKube, it has a few limitations. Firstly, The design covers
only a single point of entry to the cluster to identify intrusions,
and it only handles one intrusion at a time. So, the presence
of multiple adversaries at the same time is out of scope.
Secondly, it only focuses on the network traffic behaviours
of the attackers even after entering the cluster.

There has been rapid growth in the technology sector in
the past few years. With new technologies, there is a rise in
cyberattacks, with attackers targetting new and unidentified
vulnerabilities. Trying to catch up with the ever-evolving
technology, we see researchers designing innovative honeypots
to identify attack patterns in these new systems.

Amidst the various cyberattacks on industries using Indus-
trial Control Systems (ICS) like Stuxnet, Triton and Wan-
naCry, researchers designed honeypots emulating ICS systems
[8]–[13]. One such high interaction honeypot was the factory
honeypot [8] developed by researchers from Trend Micro Re-
search. They emulated a smart-factory solution for a fictitious
company. To make it look believable, they added information
such as a company backstory and employee contact details.
They used real ICS hardware and a mixture of physical
hosts and virtual machines. Once deployed, the honeypot
was active for seven months. The honeypot recorded a large
variety of threats, attacks, and a lot of fraudulent activities.
These activities included cryptocurrency mining as part of
a botnet, multiple ransomware attacks, fingerprinting attacks
with scanners, and many control systems attacks on the PLCs
in the system. This research confirmed that the more realistic a
honeypot appears, the higher the probability of attackers taking
the bait. This honeypot is an example of innovative honeypots
designed to emulate a large and complex architecture. We also
see the underlying risks of using high-interaction honeypots
and the extent of monitoring and resources required to ensure
their security.

Another innovative honeypot is the HoneyPLC honeypot.
It focuses on developing high-interaction honeypots for Pro-
grammable Logic Controllers (PLCs) within ICS [10]. PLCs
play a key role in bridging the cyber world and the physical
world. They are responsible for controlling critical systems

like centrifuge machines in a nuclear power plant. Hon-
eyPLC proposed a solution to overcome the limitations of
existing honeypot implementations for ICSs and PLCs [11]–
[13]. These limitations include lack of complex functions, low
interaction levels, easily fingerprintable as a honeypot and
shallow implementation of network protocols. On evaluation
with Shodan, the state-of-the-art reconnaissance tool, Hon-
eyPLC received a Honeyscore of 0.0. Hence, confirming its
covertness and ensuring that it is hard to differentiate between
the honeypot and real PLCs. The use of this honeypot enabled
the collection of meaningful data from their interactions with
the adversaries.

Since honeypots are baits designed to catch attackers in
action and monitor their activities on the system, they are
effective as long as they manage to deceive the attacker.
If not designed and configured correctly, these honeypots
become vulnerable to fingerprinting attacks [40]. HoneyMix
[16], software-defined networking (SDN) enabled intelligent
honeynet, was proposed to mitigate such fingerprinting tech-
niques. This honeynet makes use of SDN switches to forward
the malicious traffic to the honeypots inside it. HoneyMix uses
a Behaviour Learner to select the most desirable honeypot for
the attack, and the incoming traffic is directed to that honeypot
by SDN. HoneyMix also provided the ability to quarantine
compromised honeypots using SDN switches and recover them
using Network Function Visualization.

J.H. Jafarian and A. Niakanlahiji proposed “honeypots-as-
a-service” (HaaS) [14], taking “software-as-a-service” as a
baseline, to encourage small and medium enterprises to use
honeypots for their security needs. Aside from providing a
scalable and flexible plug-and-play service, they aimed to
design an adequately deceptive honeypot that would be appeal-
ing to the attacker and indistinguishable from the production
servers. They used a team of security experts to evaluate the
generated honeypots.

XI. CONCLUSION

Our research proposed a novel honeypot design that uses
microservices-based architecture. The objectives of the hon-
eypot design were to monitor and record the interactions, be
hard to fingerprint by reconnaissance tools, have an adequate
interaction surface for the attackers to exploit, and secure the
system against misuse by the attackers. To capture attacker
interaction data, we devised an innovative monitoring setup.
Due to the distributed nature of the microservices architec-
ture, our monitoring setup records interactions from multiple
observation points inside the cluster. We deployed a real-
world application on top of our honeypot to make it hard
to fingerprint and injected vulnerabilities into the system to
increase the interaction surface. To protect the malicious use
of our honeypot, we set up security defences and restricted
the attackers’ ability to take over. We deployed the final
product and collected data in two separate experiment settings.
From the collected data, we noted the differences in attack
behaviours employed by the attackers when targeting the
microservices-based system. We also observed how tools built

13

for traditional monolithic systems are not as effective when
used with microservices. By extrapolating this observation to
security tools, e.g. IDS, we deduce that we need specialized
defences to secure microservices-based systems. Although
we collected a large amount of data from our honeypot,
there is room for improvement in design, implementation and
deployment. And the collected data is of no use if it is not
processed and analyzed to gather intelligence from it.

From the trends, it is visible that the microservices are here
to stay and securing them is a challenge. We believe that our
attempt in tackling this challenge is a step towards more secure
microservices-based systems.

REFERENCES

[1] Singer, G., Apr 2020. Threat Alert: Kinsing Malware Attacks Targeting
Container Environments. [online] Available at: https://blog.aquasec.com/
threat-alert-kinsing-malware-container-vulnerability [Accessed 16 July
2021].

[2] Cimpanu, C., Sept 2020. Vast majority of cyber-attacks
on cloud servers aim to mine cryptocurrency — ZD-
Net. [online] Available at: https://www.zdnet.com/article/
vast-majority-of-cyber-attacks-on-cloud-servers-aim-to-mine-cryptocurrency/
[Accessed 16 July 2021].

[3] Threatpost.com. Jun 2021. Windows Container Malware Targets
Kubernetes Clusters. [online] Available at: https://threatpost.com/
windows-containers-malware-targets-kubernetes/166692/ [Accessed 16
July 2021].

[4] Threatpost.com. Apr 2020. Poorly Secured Docker Image Comes
Under Rapid Attack. [online] Available at: https://threatpost.com/
poorly-secured-docker-image-rapid-attack/154874/ [Accessed 16 July
2021].

[5] Google Security Research. 2021. CVE-2021-22555: Turning
\x00\x00 into 10000$. [online] Available at: https://google.github.io/
security-research/pocs/linux/cve-2021-22555/writeup.html [Accessed 16
July 2021].

[6] Gluck, A., 2020. Introducing Domain-Oriented Microservice Architec-
ture. [online] Uber Engineering Blog. Available at:https://eng.uber.com/
microservice-architecture/ [Accessed 10 August 2021].

[7] L. Spitzner. “The honeynet project: Trapping the hackers”. IEEE Security
and Privacy, vol. 1, no. 2, pp. 15–23, Mar. 2003. [Online].

[8] Hilt, Stephan & Maggi, Federico & Perine, Charles & Remorin, Lord
& Rösler, Martin & Vosseler, Rainer. “Caught in the Act: Running a
Realistic Factory Honeypot to Capture Real Threats”. Jan. 2020

[9] Ferretti, Pietro & Pogliani, Marcello & Zanero, Stefano. “Characterizing
Background Noise in ICS Traffic Through a Set of Low Interaction
Honeypots”. 51-61. 10.1145/3338499.3357361, Nov. 2019.

[10] Morales, Efrén López & Rubio-Medrano, Carlos & Doupé, Adam
& Shoshitaishvili, Yan & Wang, Ruoyu & Bao, Tiffany & Ahn, Gail-
Joon. “HoneyPLC: A Next-Generation Honeypotfor Industrial Control
Systems”. ACM SIGSAC Conference on Computer and Communications
Security(CCS ’20), Nov. 2020

[11] Dániel István Buza, Ferenc Juhász, György Miru, Márk Félegyházi, and
Tamás Holczer. “CryPLH: Protecting smart energy systems from targeted
attacks with a PLC honeypot.” In Int. Workshop on Smart Grid Security.
2014. Springer, 181–192.

[12] Stephen Hilt, Github. ”GitHub - sjhilt/GasPot: GasPot Released at Black-
hat 2015”. 2015. [Online]. Available: https://github.com/sjhilt/GasPot.
[Accessed: 22- Aug- 2021].

[13] Arthur Jicha, Mark Patton, and Hsinchun Chen. “SCADA honeypots:
An in-depth analysis of Conpot.” In IEEE conference on intelligence and
security informatics (ISI). 2016. IEEE, 196–198

[14] Jafarian, Jafar Haadi & Niakanlahiji, Amirreza. “Delivering Honeypots
as a Service”. DOI: 10.24251/HICSS.2020.227, Jan. 2020

[15] Dowling, Seamus & Schukat, Michael & Barrett, Enda. “New framework
for adaptive and agile honeypots”. ETRI Journal. https://doi.org/10.4218/
etrij.2019-0155. July 2020.

[16] Han, Wonkyu & Zhao, Ziming & Doupe, Adam & Ahn, Gail-Joon..
“HoneyMix : Toward SDN-based intelligent honeynet”. SDN-NFV Se-
curity 2016 - Proceedings of the 2016 ACM International Workshop
on Security in Software Defined Networks and Network Function Virtu-
alization, co-located with CODASPY 2016. Association for Computing
Machinery, Inc, 2016. pp. 1-6, https://doi.org/10.1145/2876019.2876022.

[17] Osman, Amr & Brückner, Pascal & Salah, Hani & Fitzek, Frank &
Strufe, Thorsten & Fischer, Mathias & Tu. “Sandnet: Towards High
Quality of Deception in Container-Based Microservice Architectures”.
10.1109/ICC.2019.8761171. IEEE International Conference on Commu-
nications (ICC) 2019: 1-7

[18] Xu, Zhaoyan & Luo, Tongbo. “Cloud-Native Sandboxes for Microser-
vices: Understanding New Threats and Attacks”. Blackhat Europe. De-
cember, 2018.

[19] Ataollah Fatahi Baarzi, George Kesidis, Dan Fleck, and Angelos
Stavrou. “Microservices made attack-resilient using unsupervised service
fissioning.” In Proceedings of the 13th European workshop on Systems
Security. EuroSec 2020. Association for Computing Machinery, New
York, NY, USA, 31–36. DOI:https://doi.org/10.1145/3380786.3391395

[20] Modi, Chirag & Patel, Dhiren & Borisaniya, Bhavesh & Patel, Hiren &
Patel, Avi & Rajarajan, Muttukrishnan.“A survey of intrusion detection
techniques in Cloud.” Journal of Network and Computer Applications.
2013. 36. 42–57. 10.1016/j.jnca.2012.05.003.

[21] Tien, Chin Wei & Huang, Tse-Yung & Tien, Chia-Wei & Huang, Ting-
Chun & Kuo, Sy-Yen. “KubAnomaly: Anomaly detection for the Docker
orchestration platform with neural network approaches.” Engineering
Reports. 2019. 1. 10.1002/eng2.12080.

[22] Dewa, Zibusiso & Maglaras, Leandros. (2016).“Data Mining and In-
trusion Detection Systems.” International Journal of Advanced Computer
Science and Applications. 7. 10.14569/IJACSA.2016.070109.

[23] F. Salo, M. Injadat, A. B. Nassif, A. Shami and A. Essex, ”Data
Mining Techniques in Intrusion Detection Systems: A Systematic Lit-
erature Review,” in IEEE Access, vol. 6, pp. 56046-56058, 2018, doi:
10.1109/ACCESS.2018.2872784.

[24] van Ede, T., Bortolameotti, R., Continella, A., Ren, J., Dubois, D. J.,
Lindorfer, M., Choffnes, D., van Steen, M. & Peter, A. (2020, February).
FlowPrint: Semi-Supervised Mobile-App Fingerprinting on Encrypted
Network Traffic. In 2020 NDSS. The Internet Society.

[25] van Ede, T., Aghakhani, H., Spahn, N., Bortolameotti, R., Cova, M.,
Continella, A., van Steen, M., Peter, A., Kruegel, C. & Vigna, G. (2022,
May). DeepCASE: Semi-Supervised Contextual Analysis of Security
Events. In 2022 Proceedings of the IEEE Symposium on Security and
Privacy (S&P). IEEE.

[26] GitHub. 2021. GoogleCloudPlatform/microservices-demo.
[online] Available at: https://github.com/GoogleCloudPlatform/
microservices-demo [Accessed 7 July 2021].

[27] Gordon Fyodor Lyon. 2009. Nmap network scanning: The official Nmap
project guide to network discovery and security scanning. Insecure.

[28] Kubernetes Documentation. ”kubectl”. [Online]. Available: https://
kubernetes.io/docs/reference/kubectl/. [Accessed: 23- Aug- 2021].

[29] InGuardians, Inc., GitHub. ”GitHub - inguardians/peirates: Peirates -
Kubernetes Penetration Testing tool” [Online]. Available: https://github.
com/inguardians/peirates. [Accessed: 23- Aug- 2021].

[30] Carlos Polop, GitHub. ”PEASS-ng/linPEAS at master ·
carlospolop/PEASS-ng”. [Online]. Available: https://github.com/
carlospolop/PEASS-ng/tree/master/linPEAS. [Accessed: 23- Aug- 2021].

[31] John Matherly. 2015. Complete guide to Shodan. Shodan, LLC (2016-
02-25)

[32] GitHub. 2021. draios/sysdig. [online] Available at: https://github.com/
draios/sysdig [Accessed 7 July 2021].

[33] GitHub. 2021. falcosecurity/falco. [online] Available at: https://github.
com/falcosecurity/falco [Accessed 7 July 2021].

[34] The OWASP Foundation. 2010. “OWASP Secure Coding Practices Quick
Reference Guide”. Version 2.0.

[35] Academy, W., n.d. Information disclosure vulnerabilities — Web Secu-
rity Academy. [online] Portswigger.net. Available at: https://portswigger.
net/web-security/information-disclosure [Accessed 26 July 2021].

[36] Cvedetails.com. 2021. “CVE-2019-9741 : An issue was discovered in
net/http in Go 1.11.5. CRLF injection is possible if the attacker controls
a url parameter.” [online] Available at: https://www.cvedetails.com/cve/
CVE-2019-9741/ [Accessed 7 July 2021].

[37] Owasp.org. 2021. “CRLF Injection.” OWASP. [online] Available at:
https://owasp.org/www-community/vulnerabilities/CRLF Injection [Ac-
cessed 7 July 2021].

14

https://blog.aquasec.com/threat-alert-kinsing-malware-container-vulnerability
https://blog.aquasec.com/threat-alert-kinsing-malware-container-vulnerability
https://www.zdnet.com/article/vast-majority-of-cyber-attacks-on-cloud-servers-aim-to-mine-cryptocurrency/
https://www.zdnet.com/article/vast-majority-of-cyber-attacks-on-cloud-servers-aim-to-mine-cryptocurrency/
https://threatpost.com/windows-containers-malware-targets-kubernetes/166692/
https://threatpost.com/windows-containers-malware-targets-kubernetes/166692/
https://threatpost.com/poorly-secured-docker-image-rapid-attack/154874/
https://threatpost.com/poorly-secured-docker-image-rapid-attack/154874/
https://google.github.io/security-research/pocs/linux/cve-2021-22555/writeup.html
https://google.github.io/security-research/pocs/linux/cve-2021-22555/writeup.html
https://eng.uber.com/microservice-architecture/
https://eng.uber.com/microservice-architecture/
https://github.com/sjhilt/GasPot
https://doi.org/10.4218/etrij.2019-0155
https://doi.org/10.4218/etrij.2019-0155
https://doi.org/10.1145/2876019.2876022
https://doi.org/10.1145/3380786.3391395
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://kubernetes.io/docs/reference/kubectl/
https://kubernetes.io/docs/reference/kubectl/
https://github.com/inguardians/peirates.
https://github.com/inguardians/peirates.
https://github.com/carlospolop/PEASS-ng/tree/master/linPEAS
https://github.com/carlospolop/PEASS-ng/tree/master/linPEAS
https://github.com/draios/sysdig
https://github.com/draios/sysdig
https://github.com/falcosecurity/falco
https://github.com/falcosecurity/falco
https://portswigger.net/web-security/information-disclosure
https://portswigger.net/web-security/information-disclosure
https://www.cvedetails.com/cve/CVE-2019-9741/
https://www.cvedetails.com/cve/CVE-2019-9741/
https://owasp.org/www-community/vulnerabilities/CRLF_Injection

[38] Microsoft Security Blog. “Threat matrix for Kubernetes.” 2020. [on-
line] Available at: https://www.microsoft.com/security/blog/2020/04/02/
attack-matrix-kubernetes/ [Accessed 16 August 2021].

[39] Microsoft Security Blog.. “Secure containerized environments
with updated threat matrix for Kubernetes”. 2021 [online]
Available at: https://www.microsoft.com/security/blog/2021/03/23/
secure-containerized-environments-with-updated-threat-matrix-for-kubernetes/
[Accessed 16 August 2021].

[40] Desaster. “Desaster/Kippo.” GitHub, github.com/desaster/kippo.
[41] “Production-Grade Container Orchestration.” Kubernetes, kubernetes.

io/.
[42] “Ingress.” Kubernetes, kubernetes.io/docs/concepts/services-networking/

ingress/.
[43] “Kubernetes: Configure a Security Context for a Pod or

Container.” [online] Available at: https://kubernetes.io/docs/tasks/
configure-pod-container/security-context/ [Accessed 27 July 2021].

[44] Wickenden, M., 2018. Hacking Kubelet on Google Kubernetes En-
gine. [online] 4ARMED Cloud Security Professional Services. Available
at: https://www.4armed.com/blog/hacking-kubelet-on-gke/ [Accessed 27
July 2021].

[45] Google Cloud: Ingress for External HTTP(S) Load Balancing. [online]
Available at: https://cloud.google.com/kubernetes-engine/docs/concepts/
ingress-xlb [Accessed 27 July 2021].

[46] Vasilomanolakis, Emmanouil & Karuppayah, Shankar & Kikiras, Pana-
giotis & Mühlhäuser, Max. “A honeypot-driven cyber incident monitor:
lessons learned and steps ahead”. 10.1145/2799979.2799999, Sept. 2015

[47] Van-Hau Pham & Marc Dacier. “Honeypot Trace Forensics: The Ob-
servation Viewpoint Matters”. 27 Future Generation Computer Systems.
539–546, June 2011.

[48] Sergiu Eftimie. “Honeypot System Based on Software Containers”. doi:
10.21279/1454-864X-16-I2-062, 2017.

[49] Safarik J et al.. “Automatic Analysis of Attack Data from Distributed
Honeypot Network”. 8755 Proceedings of Spie - the International Society
for Optical Engineering, May 2013

[50] Nawrocki, M., M. Wählisch, T. Schmidt, C. Keil and Jochen
Schönfelder. “A Survey on Honeypot Software and Data Analysis”. ArXiv
abs/1608.06249, 2016.

[51] Khattab, Sherif & Melhem, Rami & Mossé, Daniel & Znati, Taieb.
“Honeypot back-propagation for mitigating spoofing distributed Denial-
of-Service attacks”. Journal of Parallel and Distributed Computing -
JPDC. 66. 10.1109/IPDPS.2006.1639674, Mar. 2006.

[52] Fraunholz, Daniel & Zimmermann, Marc & Schotten, Hans. “An adap-
tive honeypot configuration, deployment and maintenance strategy”. 53-
57. 10.23919/ICACT.2017.7890056. 19th International Conference on
Advanced Communication Technology (ICACT) 2017

[53] Pauna, Adrian & Bica, Ion. . “RASSH - Reinforced adaptive SSH
honeypot”. IEEE International Conference on Communications. 1-6.
10.1109/ICComm.2014.6866707. 2014

APPENDIX A
STEPS TO PROTECT GENUINE USERS

We incorporate features in the UI design for the honeypot
to protect any genuine users from getting deceived by the
honeypot.

1) We add an “out of stock” banner to all product descrip-
tions to dissuade legitimate users from trying to place an
order. Figure 7 gives an example of this.

2) The user sign-up form only requires a username and pass-
word, and it does not ask for any personal information.
Figure 5 shows the registration page.

3) The web server uses a secure HTTPS connection to
ensure no sensitive data can be extracted by monitoring
the network traffic.

4) The order checkout form does take credit card informa-
tion, with an option to save the credit card number for
future use. As this is sensitive information, the HTTPS
connection between the client-side UI to the server will
ensure the security of the data. The credit card numbers
get replaced with random values upon being received by
the server, ensuring that all the processes, from here on,
use this randomly generated number. Hence, the card val-
idation function flags every card number as invalid. And
every order placement request is rejected. If the “save for
future” option is selected, this randomly generated credit
card value gets stored in the database. This mechanism
makes the honeypot realistic without actually storing any
sensitive data.

5) Other personal information like email address, home
address, pin-code, city, state, country and CVV (for credit
card) the user might enter in the checkout form will also
get replaced with dummy values upon being received by
the web server. None of the personal information gets
stored in the database, and replacing these values with
dummy values ensures that this data does not appear in
the application logs or the network traffic between the
microservices.

6) The monitoring setup of the honeypot will capture the
user’s IP address and store them in trace files and log files.
For the honeypot, it is essential to identify the location of
the incoming traffic, for which we require the IP address.
Hence, within a week of recording the data, we process
it, and anonymize the IP addresses. The IP addresses in
the network trace files will be hashed and rewritten to the
PCAP files, obscuring the IP addresses and preserving the
TCP flows.

15

https://www.microsoft.com/security/blog/2020/04/02/attack-matrix-kubernetes/
https://www.microsoft.com/security/blog/2020/04/02/attack-matrix-kubernetes/
https://www.microsoft.com/security/blog/2021/03/23/secure-containerized-environments-with-updated-threat-matrix-for-kubernetes/
https://www.microsoft.com/security/blog/2021/03/23/secure-containerized-environments-with-updated-threat-matrix-for-kubernetes/
github.com/desaster/kippo
kubernetes.io/
kubernetes.io/
kubernetes.io/docs/concepts/services-networking/ingress/
kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://www.4armed.com/blog/hacking-kubelet-on-gke/
https://cloud.google.com/kubernetes-engine/docs/concepts/ingress-xlb
https://cloud.google.com/kubernetes-engine/docs/concepts/ingress-xlb

APPENDIX B
USER INTERFACE

For HoneyKube’s frontend application, we replicate an e-
commerce website, selling electronic devices like smartphones
and smartwatches. The various web pages from the application
are given below.

Fig. 4: HoneyKube application UI: Home page and the
Product Catalogue

Fig. 5: HoneyKube application UI: Login/Signup Page

Fig. 6: HoneyKube application UI: User Account Details

Fig. 7: HoneyKube application UI: An example product
description page showcasing the “out of stock” banner.

Fig. 8: HoneyKube application UI: Shopping Cart

Fig. 9: HoneyKube application UI: Error trace and an
example of the Information Disclosure Vulnerability. Here
we can see the Golang version printed on the last line and
the name of the user database printed on top.

16

APPENDIX C
DATA COLLECTED BY OPEN EXPERIMENT

A. Brute-force Attacks on SSH server

The brute-force attacks recorded on the SSH server orig-
inated from 36 different countries. We list these countries,
along with the number of login attempts that we recorded
originating from that country.

Country Number of Attempts
United States 2114
Vietnam 1946
Russian Federation 757
Pakistan 597
Albania 595
Indonesia 595
China 130
Panama 106
Thailand 96
Canada 72
Ecuador 62
Germany 36
Netherlands 36
Egypt 34
France 32
Italy 20
Poland 18
Korea, Republic of 16
South Africa 14
Sweden 14
Australia 12
United Kingdom 10
Greece 8
Tunisia 8
Lithuania 8
India 6
Argentina 6
Moldova, Republic of 4
Ukraine 4
Philippines 4
Colombia 4
Hungary 4
Denmark 4
Brazil 4
Bulgaria 2
Switzerland 2

TABLE II: Complete list of countries the attacks originated
from

These brute-force login attempts used various usernames.
We list these usernames below in the order from most
commonly recorded usernames to least commonly recorded
username.

Usernames
root
user
tech
demo
telecomadmin
profile1
admin1
support
default
ubnt
web
user1
administrator
MikroTik
pi
admin
oracle
usuario
test
ftpuser
test1
test2
fixed
contador
a
duni
baikal
postgresadm
hadoop
a1
a2
a3
aa
jenkins
uploader
sysdbadm

TABLE III: Complete list of usernames used in brute-force
attack

17

B. Failed login attempts on nodes

The nodes in our honeypot are virtual machines using
Ubuntu OS. The login process in Linux records the failed
login attempts in a binary file called btmp. We processed those
btmp files from all the nodes and compiled the list of countries
from where those login attempts originated.

Country Number of Attempts
Vietnam 17680
Indonesia 10389
Thailand 9464
United States 8826
India 5260
Germany 4883
Russian Federation 4834
Brazil 4329
China 2560
Malaysia 2009
Egypt 1981
Colombia 1924
Peru 1666
Romania 1652
Pakistan 1649
Mexico 1563
Turkey 1480
Argentina 1379
Kazakhstan 1206
Netherlands 1186
Philippines 1172
Dominican Republic 1119
Ukraine 864
Venezuela, Bolivarian Republic of 792
Canada 735
Korea, Republic of 726
Poland 644
Spain 594
United Arab Emirates 593
Greece 580
Portugal 574
Saudi Arabia 559
Georgia 554
Guatemala 552
Italy 493
Morocco 386
United Kingdom 384
Kenya 373
Australia 366
Nicaragua 359
Albania 353
Lao People’s Democratic Republic 342
Zimbabwe 330
Belgium 315
Serbia 300
Hungary 289

Country Number of Attempts
Chile 289
Belarus 284
Bangladesh 283
New Zealand 281
Mongolia 281
Costa Rica 281
Bahrain 279
Kyrgyzstan 278
Senegal 278
Nepal 269
Taiwan, Province of China 267
Ecuador 266
Singapore 250
Panama 248
Trinidad and Tobago 228
Algeria 197
Czech Republic 146
France 121
Monaco 80
Sweden 70
Lithuania 57
Japan 44
South Africa 29
Switzerland 19
Tunisia 15
Hong Kong 13
Denmark 13
Norway 13
Austria 11
Croatia 9
Paraguay 7
Cambodia 7
Kuwait 6
Ireland 5
Finland 5
Curacao 4
Uruguay 4
Israel 4
Moldova, Republic of 4
Sri Lanka 3
Bosnia and Herzegovina 3
Palestine, State of 2
Nigeria 2
Iceland 2
Jordan 2
Comoros 2
Malta 2
Cayman Islands 2
Rwanda 1
Uzbekistan 1
Slovenia 1
Uganda 1
Bolivia, Plurinational State of 1

18

Country Number of Attempts
Madagascar 1
Tanzania, United Republic of 1
Ghana 1
Papua New Guinea 1
Azerbaijan 1
Armenia 1
Botswana 1
Ethiopia 1
Honduras 1
Zambia 1
Belize 1
Bulgaria 1
Mozambique 1

TABLE IV: Complete list of countries from where the attacks
on the nodes originated

19

Honeykube
This brochure provides information about the HoneyKube experiment.

1.1 General Information
Dear reader,

On this page, we would like to inform you about the HoneyKube experiment that you have
agreed to participate in. In this research project titled "Honeykube: Design and development
of honeypot for micro-services based cloud architecture", a honeypot emulating a micro-
services based web application will get deployed on the cloud, and all of the activities on it
will be logged and analyzed. As honeypots are decoy computer resources whose value lies in
being probed, attacked, or compromised, this system will not have any production value. This
research aims to collect data from all the interactions with the honeypot. Analyzing this data
will provide insight into the attacker's behaviour when targeting the systems developed using
this architecture and assist further research in designing adequate defences to secure
microservices.

There are some important aspects that you, as participants, should be aware of before taking
part in the experiment. First, the web application (honeypot) you will be interacting with is a
dummy e-commerce website that supposedly sells electronic products like smartphones and
smartwatches. The website emulates a realistic look and feel to increase the chances of
deceiving a malicious user into believing it is a real application. Therefore, it consists of
features such as "add to cart", "user login", "cart checkout", and "payment service". You are
requested to not enter any sensitive or personally identifiable information (PII) on the website
when trying to breach it as that data gets stored in insecure databases. Second, all the
network traffic to and from the application and between the microservices is captured for
further analysis. This might contain your IP address. Since, for the honeypot, it is essential to
identify the location of the incoming traffic, the data will be processed within a week of it
getting recorded. After that, the IP addresses will be randomized and rewritten in the saved
PCAP files, anonymizing the IP addresses in compliance with the GDPR. Finally, participation is
voluntary, and you can decide to stop at any step of the experiment without giving any
reason. Other relevant aspects are that your data will be handled confidentially. We do
everything in our power to anonymize your data. Should you consent to participate in this
research, only an anonymized version of the dataset may be shared with other researchers.

This experiment will be active for 2 weeks, and you are free to participate at any point within
that period.

To participate in this research, the following pre-requisites apply:
 Must be an adult (18 years or older).

The research does not offer any remuneration to participants.

Yours sincerely,
Researcher: Chakshu Gupta, MSc Computer Science, University of Twente. Email:
c.gupta@student.utwente.nl
Supervisor: Dr.ir. Andrea Continella. Email: a.continella@utwente.nl
Supervisor: Thijs van Ede. Email: t.s.vanede@utwente.nl

APPENDIX D
CONSENT FORM

20

Please contact Chakshu Gupta (c.gupta@student.utwente.nl) for any questions regarding the
experiment.

If you have any complaints about this research, please direct them to the secretary of the
Computer Information Science Ethics Committee of the Faculty of Electrical Engineering,
Mathematics and Computer Science at the University of Twente, P.O. Box 217, 7500 AE
Enschede (NL), email: ethicscommittee-cis@utwente.nl).

1.2 Consent Form

I hereby declare that I have been informed in a manner which is clear to me about the
nature and method of the research as described in the aforementioned information brochure
(this document). My questions have been answered to my satisfaction. I agree of my own free
will to participate in this research. I reserve the right to withdraw this consent without the
need to give any reason and I am aware that I may withdraw from the experiment at any
time. If my research results are to be used in scientific publications or made public in any
other manner, then they will be made completely anonymous. My personal data will not be
disclosed to third parties without my express permission. If I request further information about
the research, now or in the future, I may contact Chakshu Gupta, via email
(c.gupta@student.utwente.nl).

Signed in duplicate:

…………………………… ……………………………
Name subject Signature

21

	Introduction
	Background
	Microservices
	Kubernetes

	Threat Model
	HoneyKube Design
	Design Overview
	Design Details
	Challenges
	Network traffic capture
	System Calls Capture

	Implementation
	Monitoring Setup
	Network Traffic Capture
	System Calls Capture

	Web Application
	Vulnerabilities

	Security Model
	Experiments
	Ethical Practices
	Open Experiment
	Controlled Experiment

	Evaluation and Results
	Datasets
	System Trace Files
	Network Trace Files
	K8s Audit Logs
	Falco Logs
	System Logs

	Fingerprintability
	Observations
	Open Experiment
	Controlled Experiment

	Discussion of Results

	Limitations and Future Work
	Related Work
	Conclusion
	References
	Appendix A: Steps to Protect Genuine Users
	Appendix B: User Interface
	Appendix C: Data Collected by Open Experiment
	Brute-force Attacks on SSH server
	Failed login attempts on nodes

	Appendix D: Consent Form

