
University of Twente

Master thesis

Hardware acceleration of sweep
detection using Clash.

Computer Architecture for Embedded Systems
By Lucas Bollen

Graduation Committe:

Chairman dr.ir. S.H. Gerez
Supervisor 1 dr.ir. N. Alachiotis
Supervisor 2 ir. H.H. Folmer
External Member dr.ir. V. Zaytsev

August 27, 2021

Abstract

With technologies for whole genome sequencing becoming more affordable and com-
mon place in bio-informatics, there has been an increasing interest in processing
genomes to extract valuable information. The hitchhiking effect is the tagging along
of neighbouring mutations when a beneficial mutation is selected due to natural se-
lection. This leads to a local reduction in genetic variation known as a selective
sweep. Multiple tools have been developed that can process whole genome data
to detect selective sweeps, each with their pros and cons. Sweep Detector [1] finds
the location of the most likely recent selective sweep based on changes in the Site
Frequency Spectrum (SFS). As shown during the SARS-CoV-2 pandemic, detecting
and localizing selective sweeps can help us track the evolution of viruses and an-
swer important questions regarding its evolution. One of the main problems with
selective sweep detection is that depending on data set size and required precision,
processing data sets is very time consuming. This thesis presents a flexible device
independent hardware design for FPGAs that can aid in significantly accelerating
selective sweep detection.

A combination of profiling and manual analysis was used to determine which part of
Sweep Detector should be accelerated. Sweep Detector makes use of double precision
floating point operators which require lot of resources on FPGA, we found that up
to 64 bit fixed point values could not be used as replacement. However, Using single
precision floating point operators did not significantly affect the precision of Sweep
Detector. The accelerator heavily relies on data access to arrays that can not be
stored on chip, for this thesis we assumed ideal memory to first focus on the design
of the accelerator. The likelihood calculations performed by Sweep Detector con-
tain four selected loops which contain loop carried dependencies and data dependent
repetition. Loop carried dependencies make it impossible to concurrently process
multiple iterations of the same loop and data dependent repetition makes batch
processing of iterations inefficient. This has been solved by unrolling the outermost
loop which contains neither of these properties and by combining custom variations
of the merge and branch circuit presented by Styles et al. [2] with a decentralised
control method that aims for maximum throughput of this accelerator regardless of
configuration.

By utilizing the high level abstractions offered by Clash we created a parametrized
design that allows us to easily control the level of parallelism in the design based
on the resources available on the target device to maximize the performance. Syn-
chronisation of data is ensured on a type level such that the user does not need
to worry about synchronisation issues. Furthermore a decentralised control method
is applied that aims to maximize the throughput of this accelerator regardless of
configuration. The design was configured for a Cyclone V FPGA that allowed for
14 times parallelism, compared to the C implementation we found a maximum the-
oretical speedup of up to 93 times for the same functionality on a single core Xeon
Gold 6126 processor. At this rate the accelerator would be processing 195 gigabits
of data per second from these large arrays, further showing dire need for a high
performance tailored memory management system.

i

Contents

List of figures iv

List of tables v

Abbreviations 1

1 Introduction 2
1.1 General introduction and Problem statement 2
1.2 Proposed solution . 3
1.3 Research questions . 3
1.4 Outline . 4

2 Background 5
2.1 Genetic Background . 5

2.1.1 DNA, RNA and genomes . 5
2.1.2 Mutations, SNP Data and selective sweep 5

2.2 Sweep Detection with Sweep Detector 7
2.3 Clash . 10

2.3.1 Designing in Clash . 11
2.4 Pipelining nested loops . 14

3 Related work 18
3.1 Different methods of Sweep Detection 18
3.2 Hardware acceleration in Selective sweep detection 19

4 Design space exploration 21
4.1 Determining what to speed up . 21
4.2 Profiling SweeD . 21
4.3 Manual analysis of likelihood calculations 23

4.3.1 Loops and expensive functionality 23
4.3.2 Data dependencies of the getAlpha function 27
4.3.3 Memory access patterns . 29

4.4 A suitable datatype . 29
4.5 Relevant flexibility parameters . 32

4.5.1 Additional parallelism . 32
4.5.2 Controlling operation resources 33

5 Design and implementation 34
5.1 Data path design . 34

5.1.1 Packaging data . 34
5.1.2 Data synchronisation . 35
5.1.3 Floating point operators . 35

5.2 Base architecture . 38
5.2.1 Interfacing with the accelerator 38
5.2.2 getAlpha structure . 39
5.2.3 getAlphaLoop Structure . 41
5.2.4 getLikelihood structure . 42

5.3 Proposed memory access method . 44
5.4 Tunable parameters . 46

5.4.1 Controlling data types . 46

ii

5.4.2 Controlling parallelism . 47
5.5 Decentralised automatic flow control 49

6 Evaluation 51
6.1 Functional correctness . 51

6.1.1 Synthesizing the design for different parameters 53
6.2 Estimating speedup upper limit . 54

7 Discussion 57

8 Conclusion 58

9 Recommendations 61
9.1 Memory management system . 61
9.2 Floating point operators in Clash . 61
9.3 Generator Accumulator loops . 62
9.4 Combining input / output FIFOs . 63

References I

A Alternative implementations IV

B Profiling results V

C Data dependencies of getAlpha VIII

D Record structure of PipeData X

iii

List of Figures

1 Visual representation of DNA, RNA and their bases, adapted from
R. Mackenzie [3] . 6

2 Visual representation of how hitchhiking occurs when a beneficial
mutation (red) spreads among a population. 6

3 How the window of SNPs included in the CLR calculation is determined 9
4 How SweeD iteratively calculates CLRs for α values between a mi-

nAlpha and maxAlpha and adjusts minAlpha and maxAlpha based
on the highest CLR. 10

5 Visualisation of the structural description for poly with a factor vector
of length 4. 12

6 Example of LCD operation pipeline 15
7 Example of implementing efficient pipelining method. 16
8 DFGs for normale scheduling and Unroll-and-squash 17
9 Clock cycle distributions with grid 80% 22
10 Overview of array accesses in different loops. 27
11 Interface between the host PC and accelerator 38
12 Structural description of getAlpha function 39
13 Structural description of getAlphaLoop 41
14 Structural overview of getLikelihood function without parallelism . . 42
15 Frequencies of deviations between direct neighbouring SNPs, data set

length 1000, samples 100 . 45
16 Frequencies of deviations between direct neighbouring SNPs, data set

length 10000, samples 1000 . 45
17 getLikelihood 1 instance . 47
18 getLikelihood 4 instances . 48
19 getAlphaLoop 4 instances of getLikelihood with 4 instances. 49
20 Linear pipeline enable control . 50
21 Nonlinear pipeline enable control . 50
22 Visualisation of the internals of function D. 50
23 The generator / accumulator circuit proposed to eliminate storage of

unused variables for all stages of the likelihood calculation pipeline. . 62
24 Method of using a multi purpose FIFO that stores the output of the

loop when an input is consumed. Shown are 7 cycles wherein the first
three cycles an input is consumed and replaced by the output of the
circuit. In the next three cycles the outputs are sent to the output of
the FIFO. 64

25 Clock cycle distributions with grid 20% VI
26 Clock cycle distributions with grid 50% VI
27 Clock cycle distributions with grid 80% VII

iv

List of Tables

1 Example of a small genetic data set consisting of 3 individuals and a
reference with 12 SNPs . 7

2 Binary representation of small data set capturing genetic differences . 7
3 Summary of loop characteristics . 23
4 Arrays accessed by getAlpha function 28
5 Comparison between SweeD single and SweeD double 30
6 Comparison between F32.32 and double. 31
7 Comparison between fixed24.40 and double. 31
8 Comparison between fixed12.52 and double. 31
9 Table of represented data with corresponding types and ranges. . . . 33
10 Required floating point operators and their latencies as generated by

Quartus . 36
11 Custom data types for SweeD . 46
12 Functional correctness results for all circuits regarding presence of

data loss and deviations of calculated likelihoods. 52
13 Synthesis results for different configurations for the amount of par-

allelism in the design with FIFOs only at the inputs and outputs of
L4. Resource usage is a percent age of the total resources available
on the device. 53

14 Maximum frequencies for different PVT models with different two
different parallelism configurations 54

15 Execution time estimation of the getAlpha function based on execu-
tion time and profiling results. 55

16 Estimating the execution time of the accelerator to determine the
speedup with a Cyclone V FPGA. 55

v

Abbreviations

ALM Adaptive Logic Module
CLR Compisite Likelihood Ratio
DFG Data Flow Graph
DNA Deoxyriboneoclic Acid
DNB Dynamic Binary Instrumentation
DSP Digital Signal Processing
FIFO First In First Out
FPGA Field Programmable Gate Array
GPU Graphics Processing Unit
HDL Hardware Description language
HLS High Level Synthesis
IP Intellectual Property
LCD Loop Carried Dependency
LD Linkage Disequillibrium
PVT Process, Voltage, Temperature
RAiSD Raised Accuracy in Sweep Detection
REPL Read Evaluate Print Loop
RNA Ribonucleic Acid
RSQ Rate Smoothing Queue
RTL Register-Transfer Level
SFR SNP Frequency Range
SFS Site Frequency Spectrum
SNP Single Nucleotide Polymorphism
SweeD Sweep Detector
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit

1

1 Introduction

1.1 General introduction and Problem statement

With the technology of whole genome sequencing becoming more affordable and
widespread over time, processing this type of data (whole genome sequences) be-
comes more and more important. One of the ways that we can use this technology
is to detect and localize recent mutations [4] [1]. As of writing, the world is at the
mercy of the global SARS-CoV-2 pandemic. Detecting mutations in the RNA of
SARS-CoV-2 can help to monitor the evolution of the virus [5] and keep track of dif-
ferent strains [6]. When a beneficial mutation occurs, it will become more frequent
in the population due to natural selection. This increase in frequency will locally
reduce genetic variation among the population due to the hitchhiking effect [7]. The
hitchhiking effect is the hitchhiking, or tagging along, of genetic information that
surround a beneficial mutation as the beneficial mutation spreads among the popu-
lation due to natural selection. The local reduction in genetic variation that can be
observed as consequence of a beneficial mutation spreading among the population
is called a ”selective sweep”.

Detecting selective sweeps can be used to answer important questions regarding
human evolution over a longer period of time [8], but can also give insights in hu-
man evolution present in current day and age [9]. The detection of selective sweeps
on whole genome data is a relatively new field and few tools have been developed
that can perform this task. Nielsen et al. [4] developed a method of detecting
these selective sweeps in whole genome data and implemented it in a tool called
”SweepFinder” which processes whole genome data and calculates the location of
the most probable selective sweep among the genome. SweepFinder proved to be a
useful tool, but contains numerical instabilities that severely limited the maximum
samples a data set could have to be processed by SweepFinder [1]. Besides the fact
that SweepFinder contained instabilities it is also relatively slow [1].

SweepFinder was the first tool that could be used to process whole genome data, but
since its release multiple new tools have been created that are capable of selective
sweep detection in large data sets. A new effort to create an improved implementa-
tion of SweepFinder was done in 2013 and resulted in Sweep Detector (SweeD) [1].
This new effort fixed the numerical instabilities and showed improved performances
compared to SweepFinder, speedups up to 22x were achieved, but the performance
improvement significantly decreased as the length of the genomes grew (down to
2.3x faster than SweepFinder).

Where SweepFinder and SweeD both rely on changes in the Site Frequency Spec-
trum (SFS), other methods of detection selective sweeps already exist. Tools such
as OmegaPlus [10] rely on the correlation between different mutations to detect
selective sweeps. A recurring theme in the researches that present tools for selec-
tive sweep detection is the fact that due to the large data set sizes and relatively
complex calculations, running these tools can take a long time. Pavlidis et al. [11]
compared a multitude of tools and found that for large scale analysis, high perfor-
mance computing solutions are required to reduce computation times. One of the
most recent tools that was released for detection positive selections is RAiSD [12],
which makes use of a new method for sweep detection that requires significantly less
computational power. The authors of RAiSD later presented RAiSD-X [13], which
is a hardware accelerated version of RAiSD that reported execution times over a

2

thousand times lower than SweeD. This system was designend with Xilinx Vivado
HLS. While SweeD is still faster than SweepFinder, processing big data sets of large
genomes can take an incredible long time with runtimes up to 8.25 hours measured
[1]. In this report we will explore a different method of creating flexible hardware
accelerators by accelerating SweeD using the functional HDL Clash [14] (previously
known as Cλash). We chose to accelerate SweeD because of the fact that has been
widely adopted and the fact that its low false positive rate makes it a valuable ad-
dition to the bio-informatics toolbox. Furthermore acceleration of SFS based sweep
detection methods have not been attempted before.

1.2 Proposed solution

The aim of this project is to create a flexible design for accelerating selective sweep
detection. For this research we will focus on FPGA implementations. Given the fact
that there are many different FPGAs with different kinds and amounts of resources,
the flexibility should allow the user to quickly tailor their design to the available
hardware. As a case study we will accelerate SweeD because SFS based selective
sweep detection requires a lot of computational power and has not been accelerated
before. Furthermore SweeD contains a lot of repetition which is a great indicator
that dedicated hardware could speed up the process significantly. We accelerate
SweeD by off-loading repetitive calculations to a platform that is capable of mass
parallel computation such as GPU or FPGA.

Given the mathematical nature of the problem at hand, we used the functional
programming language Clash. Using Clash has multiple advantages such as the
fact that the functional nature of Clash is closer to mathematics than conventional
HDLs or other programming languages such as C that are often used for high level
synthesis. Also Clash offers high level functionality such as polymorphic typing,
pattern matching and higher order functions which makes it easier to create flexible
designs. Usually testing hardware designs is a very time consuming process, but
Clash offers an interactive environment that can be used to very quickly prototype
and test functionality.

1.3 Research questions

This section describes the research questions that provide guidance to the project
and are aimed at the most important aspects of the results. The first and foremost
goal is to design a hardware accelerator for selective sweep detection that can be used
for any FPGA. It is not possible to consider every FPGA, so we try to stay indepen-
dent of specific technology solutions to prevent e.g. vendor lock-in. This hardware
accelerator should deliver a significant speedup compared to the already existing C
implementation.To achieve this we would need to maximize the throughput of the
design. Increasing the throughput of FPGA designs is mostly done through intro-
ducing parallelism in the design. The amount of parallelism that can be introduced
depends mostly on the available resources. If we can reduce the amount of resources
required, we can introduce more parallelism. The aspects that we just discussed are
captured in the research questions presented below:

1. How can we design a technology-independent hardware accelerator that sig-
nificantly speeds up SweeD using Clash?

a Which part of the algorithm should be accelerated?

3

b How can we reduce the area of the implementation without significantly
impacting the precision?

2. How can we create flexibility in our design such that it is easily adjustable for
different target devices?

a Where can we introduce extra parallelism in the design?

b Which parameters can we offer to easily tune the design?

1.4 Outline

Chapter two discusses the background information regarding genetics, sweep detec-
tion with SweeD, Clash and method of pipelining nested loops with LCDs that is
necessary to understand the rest of the work. Chapter three presents the litera-
ture study regarding the related work with other methods of sweep detection and
hardware acceleration for sweep detection. Chapter four contains the design space
exploration where we discuss how we determined what to accelerate, how the mem-
ory requirements of the likelihood calculations interfere with the accelerator, what
the memory access patterns look like and how we determined that we use single
precision floating point rather than fixed point instead of double precision floating
point. Also discusses options regarding how we introduce flexibility in our design.
Chapter five discusses the implementation, how we use Clash for packaging data
and ensuring the related variables are synchronised. Discusses how we implemented
floating point operators. It also discusses the proposed memory access method.
Chapter six discusses how we tested the functional correctness of the accelerator
and how we adjusted the design for a target FPGA, maximizing the parallelism
that can be fitted on the device. It discusses the maximum theoretical speedup that
can potentially be gained with this device under the assumption of ideal memory.
Chapter seven discusses the testing methods and results. Chapter eight presents
the conclusion by answering the research questions and chapter nine recommends
additions and changes to the method.

4

2 Background

This section discusses the background information necessary to interpret this work.
Section 2.1 discusses all relevant information about genetics and section 2.2 describes
how SweeD processes whole genome data to perform selective sweep detection. Sec-
tion 2.3 introduces Clash and presents some simple examples of hardware design in
Clash. Lastly Section 2.4 presents a method of pipelining nested loops, which is
partially adopted in this work.

2.1 Genetic Background

2.1.1 DNA, RNA and genomes

All genetic information that describes what an organism looks like is called the or-
ganism’s genome and is stored in the form of DNA (deoxyribonucleic acid). Together
with RNA (ribonucleic acid) and proteins, DNA is one of the three major macro
molecules that are essential for life. DNA consists of 2 strains of genetic bases. Each
strain is a sequence of different bases. The bases that occur in DNA are: Cytosine,
Guanine, Adenine and Thymine, typically referred to by C, G, A and T, respec-
tively. RNA Consists of a single strain made up of the bases Cytosine, Guanine,
Adenine and Uracil where Uracil is typically referred to with U. The strains in DNA
form a double helix structure where the bases of the two strains form pairs. Two
different pairs are possible, A with T and G with C. Figure 1a shows the DNA bases
and figure 1b shows visually the helical DNA structure where the individual bases
are visible. Figure 1c shows the RNA bases and figure 1d shows visually the single
strain of RNA with visible bases.

2.1.2 Mutations, SNP Data and selective sweep

A mutation is a change that occurs in a DNA or RNA sequence and can have a
variety of causes. These changes introduce genetic variation and can have different
effects. Mutations can have a negative effect, a positive effect or neutral effect based
on where they happen in the DNA / RNA sequences. A positive mutation is a
mutation that enables the species to better survive in its environment. A negative
mutation would have the opposite effect where the individual with this mutation
has a lower chance of survival in its environment. A large portion of our DNA is
non-functional and does not encode for anything. When a mutation occurs in this
non-functional DNA it has no effect and we call it a neutral mutation. Currently
one of the biggest driving forces in human natural selection is the malaria disease
[15]. Hedrick et al. [15] gave an insight in how positive mutations in humans lead
to higher malaria resistance, increasing the chances of survival.

When such a positive mutation occurs and it increases chances of survival, a selec-
tive sweep can occur. Figure 2 shows neutral mutations in blue and a beneficial
mutation in red. It is clearly visible how the beneficial mutation spreads among the
population. As can be observed from the figure, the neighbouring genetic informa-
tion is also spreading among the population together with the mutation. This effect
is known as hitchhiking or genetic draft [7]. The consequence of hitchhiking is a
local reduction in genetic variation among the population. A selective sweep is the
region in the DNA that is affected by hitchhiking as a consequence of a beneficial
mutation spreading through a population.

5

(a) DNA Bases (b) Strain of DNA (c) RNA Bases (d) Strain of
RNA

Figure 1: Visual representation of DNA, RNA and their bases, adapted from R.
Mackenzie [3]

Figure 2: Visual representation of how hitchhiking occurs when a beneficial mutation
(red) spreads among a population.

When we compare genetic sequences from different people to each other, we’ll notice
that our DNA is similar, but has subtle differences. Most of us have two arms, two
legs, a human-like face, but what these exactly look like is vastly different. Genetic
variation among individual humans today is about 0.1% on average [16]. The po-
sitions in our genetic sequences where we differ as a population are called Single
Nucleotide Polymorphisms, commonly referred to as SNPs (Pronounced ”snips”).
When we compare a current population to a genetic ancestor, we can encode the

6

differences in binary. In this binary representation a ’0’ is the same as the ancestral
reference and ’1’ means that the individual differs on this position from the ancestral
reference. Table 1 shows a small data set with an ancestral reference and 3 indi-
viduals. Table 2 shows the same data set, but now sites of the derived individuals
are encoded in binary. We can determine the SNP frequencies and the amount of
samples included per site. We keep track of the amount of samples per site in case of
missing or misaligned data. Data sets greatly differ in size, varying from thousands,
to tens of thousands to millions of sites per genome.

Sites -> 1 2 3 4 5 6 7 8 9 10 11 12
Reference AT GC GC AT GC AT AT CG AT CG CG CG
Individual 1 AT AT AT CG GC AT AT CG AT AT AT CG
Individual 2 AT GC GC AT GC AT CG CG AT AT AT CG
Individual 3 AT AT AT CG GC CG AT AT AT CG CG AT

Table 1: Example of a small genetic data set consisting of 3 individuals and a
reference with 12 SNPs

Sites -> 1 2 3 4 5 6 7 8 9 10 11 12
Reference AT GC GC AT GC AT AT CG AT CG CG CG
Individual 1 0 1 1 1 0 0 0 0 0 1 1 0
Individual 2 0 0 0 0 0 0 1 0 0 1 1 0
Individual 3 0 1 1 1 0 1 0 1 0 0 0 1

Frequencies 0 2 2 2 0 1 1 1 0 2 2 1
Samples 3 3 3 3 3 3 3 3 3 3 3 3

Table 2: Binary representation of small data set capturing genetic differences

2.2 Sweep Detection with Sweep Detector

Researchers are interested in finding selective sweeps among certain populations.
Multiple algorithms have been developed to detect these selective sweeps, but only
few of these algorithms are designed for analyzing whole genome data. One that is
designed for analyzing whole genome data is Sweep Detector (SweeD) [1]. SweeD is
an open-source tool for detection of selective sweeps in whole genomes. This tool is
based on the widely used SweepFinder program [4]. SweepFinder is limited to an-
alyzing up to 1,027 sequences. SweeD is a scalable implementation of SweepFinder
that allows for analyzing thousands of genomes. However, the speedup of SweeD
(with respect to SweepFinder) with datasets of genomes with 1,000,000 SNPs is sig-
nificantly lower (2,9x instead of 22x) compared to data sets of genomes with 10,000
SNPs. Currently, running the SweeD algorithm can take a long time depending on
the amount of samples and the size of these samples.

SweeD uses the method presented by Nielsen et al. [4] to detect selective sweeps.
This method is based on considering the way the spatial distribution of frequency
spectra along the chromosome is affected by a selective sweep. Before a selective
sweep, the site frequency spectrum of the population will be p = (p1, p2, ...pn−1).
As a first approximation, a selective sweep can be modeled by assuming that each

7

ancestral lineage has an independent and identically distributed probability of es-
caping a selective sweep (probability Pe). Based on this, Nielsen et al. [4] concluded
that when a beneficial mutation occurs on a chromosome carrying a particular copy
of a neutral allele, 1 - Pe is the expected frequency of descendants from that neutral
copy at the end of selective sweep. Nielsen et al. [4] shows that the probability Pe
has the following functional form:

Pe = 1− e−αd, (1)

where α depends on the rate of recombination, effective population size and the
selection coefficient for the selected mutation and d is the distance from the location
of the sweep to the sampled SNP location. By multiplying these we obtain the
alphadistance αd. The probability that k lineages escape the selective sweep is
given by the binomial distribution:

Pe(k) =

(
n

k

)
P k
e (1− Pe)n−k. (2)

In the case that k lineages escape the sweep, the ancestral sample right before
the sweep contains H = min{n, k + 1} lineages. Consider that the site frequency
spectrum before a selective sweeps is p = (p1, p2, ..., pn−1) then the probability of
observing j mutant lineages in an ancestral sample of size H is

pj,H =
n−1∑
i=j

pi

(
i
j

)(
n−i
H−j

)(
n
H

) . (3)

If in a sample size of k+1 lineages, there are j mutant lineages with the derived
mutation, then the probability that the most recent common ancestor of the lineages
that did not escape the selective sweep is of the mutant type, is j/(k + 1). This
implies that observing a mutant site of frequency B out of n in the sample after a
selective sweep is

pB = Pe(n)pB +
n−1∑
k=0

Pe(k)

(
pB+1−n+k,k+1

B + 1− n+ k

k + 1
+ pB,k+1

k + 1−B
k + 1

)
. (4)

For a more elaborate explanation regarding the formulas we refer to Nielsen et al.
[4]. The expression above enables us to process whole genome data and calculate
the composite likelihood ratio (CLR) for a location on the genome by assuming a
value of α. SweeD scans a location for a selective sweep by determining an initial
lower bound (minAlpha) and upper bound (maxAlpha) for α and calculating the
CLR for a certain amount of α values in between minAlpha and the maxAlpha. It
keeps track of the α value for which the returned CLR is the highest and readjusts
minAlpha and maxAlpha to encapsulate all possible α values that could lead to the
highest CLR. This method is applied iteratively until the boundaries converge to a
single value for α for which the CLR is the highest.

8

Figure 4 shows an example of 3 iterations of finding the highest CLR within alpha
boundaries, every tick represents the calculation of a CLR for a certain alpha, but
only the highest result for the iteration is shown. Calculating the CLR for a position
on the genome with a given α is done by calculating the probability pb of observing
an SNP with frequency b at alphadistance αd from the position for which we cal-
culate the CLR. For each calculated probability, SweeD takes log(pb), corrects for
a base likelihood and accumulates the results. The amount of SNPs for which pb is
calculated depends on the alphadistance αd from the SNP to the location for which
the likelihood is being calculated (αd <= 12.0). Figure 3 shows an example of the
SNPs for which pb is calculated with α = 3.14. Since pb is calculated for the same
combination of n and B many times and αd is within a limited range, the results
of pb are precalculated and stored in a lookup table. Since αd is a real number, it
is not suitable for indexing in a lookup table. Instead, the lookup table stores 300
values for different discrete αd values and linear interpolation is used to obtain the
result for a certain αd.

Position 141 2 3 4 5 6 7 8 9 10 11 12 13

alpha = 3.14

Pb =
0.0

ad ~
0.03

ad ~
3.14

ad ~
6.28

ad ~
9.42

ad ~
3.14

ad ~
6.28

ad ~
9.42

ad ~
12.56

ad ~
12.56

Pb =
0.1

Pb =
0.23

Pb =
0.15

Pb =
0.0

Pb =
0.1

Pb =
0.13

ad <= 12

ad > 12

Figure 3: How the window of SNPs included in the CLR calculation is determined

9

1.0 1200.0

CLR =
1.5

alpha
~215

~200.2 ~231.1

CLR =
1.62

minAlpha maxAlpha

minAlpha maxAlpha

alpha
~209.8

iteration 0

iteration 1

~204.8 ~214.9

CLR =
1.63

minAlpha maxAlpha

iteration 2 alpha
~209.8

Figure 4: How SweeD iteratively calculates CLRs for α values between a minAlpha
and maxAlpha and adjusts minAlpha and maxAlpha based on the highest CLR.

2.3 Clash

Developing designs for FPGAs is normally done using Hardware Description Lan-
guages (HDLs) such as VHDL and Verilog. These conventional HDLs can be very
cumbersome to work with when implementing complex or abstract functionality,
but in the last decade a lot of research has been done regarding the use of high level
languages for design of hardware circuits. High level languages offer a higher level
of abstraction that eases the implementation of complex problems. Tools like Vitis
HLS [17] and Catapult [18] are capable of processing C and C++ code to create
RTL descriptions which can speed up the development of hardware designs. This
chapter aims to provide a basic understanding of what Clash is, together with some
examples how one could approach system design in Clash.

The Clash language is a HDL of which the syntax is a subset of the func-
tional programming language Haskell. Where imperative programming languages
are based on sequential execution of instructions that alter the state of the program,
functional programming languages are based on lambda calculus where we mainly
write code using pure functions. Clash allows us to do structural hardware design in
a functional way, the code written in Clash is mostly implementation independent
which allows the code to target a wide range of different devices. The subset of
Haskell functionality implemented in Clash includes polymorphic typing, function
application, user-defined higher order functions and pattern matching allowing for
very concise code for complex functionality.

10

The Clash compiler translates the Clash language into synthesizable VHDL or
Verilog code, allowing it to be processed by synthesis tools such as Intel’s Quartus
or Xilinx’ Vivado.

2.3.1 Designing in Clash

When we describe hardware in Clash, we mostly design functions on a register to
register basis. For example, imagine we need to implement hardware that solves
polynomials such as y = 3x2 − 2x+ 5 and y = 0.5x4 − 6x2 + x. We could write the
polynomials that we need to execute as

y = f4 ∗ x4 + f3 ∗ x3 + f2 ∗ x2 + f1 ∗ x+ f0 (5)

One possible implementation in Clash is shown below:

1 poly x factors = sum $ multResults ++ f0
2 where
3 xs = scanl (*) x (repeat x)
4 multResults = zipWith (*) (tail factors) xs)
5 f0 = take d1 factors

Line 3 calculates the results of the exponents of x used in the polynomial by se-
quential multiplication. Line 4 multiplies xs (xs = (x, x2, x3, ..., xn)) with the cor-
responding factors (factors = (f0, f1, f2, f3, ..., fn)). Note that f0 is not included in
this multiplication since it is a constant in the equation. Lastly the output at line
1 shows that we return the sum of the multiplication results and f0 to obtain the
result. One of the advantages of using Clash is the fact that this function is polymor-
phic, the type of poly is (KnownNat n, Num a) => a -> Vec (1 + (1 + n)) a -> a,
meaning it works on any data type in the Num class for all factor vectors of the
same type with a known length greater than 2. This enables poly to be used on
for example signed and unsigned integers of various lengths, but also signed and
unsigned fixed point values. Figure 5 shows a visual representation of the structure
of poly for a factor vector with a length of 4 (e.g. for y = 3x3 − 2x2 + x− 1).

While we can make use of polymorphic functions for the design of the hardware, the
Clash compiler requires our final hardware description to be monomorphic. This
means that the types of all input arguments, intermediate functions, intermediate
variables and the result must be either explicitly defined or can be derived such that
the system can only have a single form. The current design is purely combinational,
but we can not simply create an entire design based on combinational logic because
this would severely limit the operating frequency, we need to add some registers.
Clash has an applicative type named Signal dom a that enables us to create syn-
chronous systems. Here dom is a domain that contains a clock, reset and enable
signal. Usually when we design hardware for synchronous systems, we do not alter
the clock, reset and enable signals. For that reason, these signals are usually applied
implicitly such that we do not need to apply them to every function explicitly over
and over again. However, the clock, reset and enable signals can be applied explicitly
by exposing them, this technique will be utilized later in our design. The advantage
of exposing these signals is that we can control them, for example for clock gating
or stalling logic by controlling the enable signal.

11

* *

x x

x x2 x3

x2

*
f1

*
f2 *

f3

f0

y

x

+

+

+

scanl (*) x (repeat x)

zipWith (*) (tail factors) xs

sum $ multResults ++ f0

Figure 5: Visualisation of the structural description for poly with a factor vector of
length 4.

Clash offers multiple functions that return or can be applied to Signal dom A. A
couple of examples are:

• register :: a -> Signal dom a -> Signal dom a – Receives an initial value
and an input signal and returns an output signal. This function is simply a
register that stores the input signal and returns it the next cycle.

• mealy :: (s -> i -> (s, o)) -> s -> Signal dom i -> Signal dom o – This
function can be used to create mealy machines, systems with an input that
alters a state and an output that depends on both the state and the input.
The first argument is a function that takes a state and an input and returns a
tuple with a state and an output (s -> i -> (s, o)). The second argument
is the initial state of the system and the third argument is the input signal.
The mealy function turns the input function into a mealy machine, connecting
the output state to the input state with a register in between such that the
output state becomes the input state in the next clock cycle.

12

To make the types more compact we are going to be using the following standard
type synonyms.

type Clk = Clock System
type Rst = Reset System
type En = Enable System
type Sig = Signal System

A minimal example of a synchronous system would be adding a register to the
input of our poly function. Remember that the type of poly is (KnownNat n, Num a)

=> a -> Vec (1 + (1 + n)) a -> a, but the register function returns data of type
Signal dom a. To apply the poly function to the output of the register we have to
map it over the Signal dom a argument returned by register. To do this, we use the
following functions

• <$> :: Functor f => (a -> b) -> f a -> f b

This function takes a function (a -> b) as first argument, the second argu-
ment can be any a in context f (in our case this f is often Signal dom a) and
returns f b (the result of (a -> b) applied to f a).

• <*> ::Applicative f => f (b -> c) -> f b -> f c

Some functions take multiple arguments. However, since Clash borrows its
syntax from Haskell, functions are curried. Meaning that a function which
takes two arguments, first takes the first argument and returns a function
which takes the second argument. Thus when we use <$> to map a function
of type (a -> b -> c) over f a, it returns f (b -> c). This function enables
us to apply this returned function to the second input argument f b to obtain
f c.

Mapping the data over an input with register looks as shown in line 7 below:

1 poly x factors = sum $ multResults ++ f0
2 where
3 xs = scanl (*) x (repeat x)
4 multResults = zipWith (*) (tail factors) xs)
5 f0 = take d1 factors
6

7 poly' x factors= poly <$> (register 0 x) <*> factors

This code enables us to utilize poly’ to calculate the result of a different polynomial
every clock cycle. Now consider we want to calculate the result of the constant
polynomial y = 3x2 − 2x+ 5. We can do so using a lambda function as follows:

1 poly x factors = sum $ multResults ++ f0
2 where
3 xs = scanl (*) x (repeat x)
4 multResults = zipWith (*) (tail factors) xs)
5 f0 = take d1 factors
6

7 polyConstant :: HiddenClockResetEnable System
8 => Sig (SFixed 16 16)
9 -> Sig (SFixed 16 16)

10 polyConstant x = (\ x -> poly x (5 :> (-2) :> 3 :> Nil)) <$> register 0 x

13

Simulating hardware in Clash is relatively easy and straightforward. There are two
main functions that we can utilize:

• simulate :: (KnownDomain dom, NFDataX a, NFDataX b) => (HiddenClockRe c
setEnable dom => Signal dom a -> Signal dom b) -> [a] -> [b]

This function can be used to simulate the hardware for a list of inputs [a] and
returns a list of the generated outputs [b].

• sampleN :: (KnownDomain dom, NFDataX a) => Int -> (HiddenClockResetEn c
able dom => Signal dom a) -> [a]

This function can be used to simulate hardware for a certain amount of clock
cycles for a constant input.

Using the simulate function we can simulate our design for a list of inputs as follows:

*PolyDesign> simulate @System polyConstant [-2,-1,-0,1,2]
[5,21,10,5,6,13]

The first result is the initial value of the circuit. The result for the last input does
not reach the output during the simulation due to the latency of the circuit.

2.4 Pipelining nested loops

One of the obstacles encountered in this thesis is the fact that SweeD contains many
nested loops with different properties. The first important property is data depen-
dent repetition, meaning we can not determine the amount of iterations before the
loop starts. The second important property is containing loop-carried dependencies
(LCDs), meaning that the functionality inside loops require results from the previ-
ous iteration. The main benefit of FPGA architectures is the fact that computations
can be performed in parallel. However, these loop iterations have to be executed
sequentially due to their data dependencies. Consider a 100 stage pipeline that is
part of a loop. The computations inside the loop that is executed have a latency
of around 100 clock cycles. If we have to wait ∼100 cycles before starting the next
iteration it would severely affect performance. Styles et al. [2] present a method
of efficiently pipelining loops with LCDs. This paper introduces 5 mechanisms that
can be used to make optimal use of all stages in the pipeline. Consider the following
algorithm consisting of two loops:

Algorithm 1: somethingUsefull(b)

1: initialize result[0..100] to 0.0
2: for i in [0..100] do
3: a = array[i]
4: for j in [0..b] do
5: result[i] = result[i] + j ∗ a2
6: end for
7: end for
8: return sum of result

The iterations of the outer loop contain no LCDs since every iteration with iterator
i uses data from only array[i]. The iterations of the inner loop do contain LCDs
since every iteration both reads from- and writes to result[i]. We can not perform
the iteration of j = 1 before the iteration of j=0 is completed, because iteration j=0
writes to array[i], which is required in j=1. If we consider the operations in line 5
we can construct the hardware description shown in Figure 6. The latencies of the

14

operators are presented as delays in clock cycles. Assume the different inputs are
properly delayed such that they are synchronised at the inputs of the operations.
The example has an accumulated latency of 17 cycles. If we were to wait for the
result of the previous cycle to start the next, the performance would be reduced
significantly.

input output

output = input^2

a
output

output = a * b

b
a

output

output = a + b

b
delay = 5

delay = 7

delay = 5

delay = 17

a

j
result[i]

result[i]'

Figure 6: Example of LCD operation pipeline

The mechanisms that are introduced in the paper enable us to create a hardware
description that fully utilizes the pipeline by performing multiple iterations of the
outer loop at the same time. These mechanisms are described below:

• Tagged token - The tagged token identifies the outer loop iteration and is
used to later reorder the inputs. It is assumed that this can be accomplished
by using a large enough memory bank that can store the output for every
concurrent call. After completion of all iterations, the data can be obtained
from this memory bank in order. It is also assumed that the circuit is placed in
between memory banks such that the input also comes from a memory bank.

• Merge circuit - The merge circuit has two data inputs and a single data
output. If one of the inputs contains valid data it is routed to the output.
If both inputs contain valid data the inputs are blocked in an alternating
round-robin fashion.

• Blocking - The blocking of a data stream is achieved by a ready signal that
allows the circuitry of a valid data stream to be stalled while it is not selected
by the merge circuit. By stalling the circuitry, the data is not while not selected
by the merge circuit.

• Branch circuit - The branch circuit has a single data input and two data
outputs. The circuit makes the valid data at the input available at one of the
outputs depending on a secondary control input.

• Rate smoothing queues - The rate smoothing queues are simple FIFO
Buffers that are used to smooth out variations (bursts) of data at the input
of the merge circuit. The FIFOs also use a ready signal to indicate when they
are full.

When we implement these mechanisms in our example algorithm we can create the
structural description shown in figure 7. Here RSQ refers to Rate Smoothing Queue,
M refers to the merge circuit, j<b refers to the break condition of the loop and B
refers to the Branch circuit. The merge circuit emits a low ready signal to the RSQ
whenever the input is not selected. The RSQ emits a low ready signal whenever the
buffer is full to indicate that it cannot accept more inputs. Note how due to the fact
that the amount iterations depends on b, the input to output delay is variable. With
this design, the hardware can process 17 iterations of the outer loop concurrently.

15

result[i]+j*a^2
delay = 17

M B
RSQ

ready

ready

j < b
data In

delay depends on b

for j in [0..b]

output
memory bank

input
memory bank

Figure 7: Example of implementing efficient pipelining method.

Petkov et al. [19] presents a method of pipelining nested loops by rearranging
functions in such a way that increases parallelism and reduces clock cycles. This
method is aimed to increase the throughput of signal processing systems that are
being designed with high level programming languages in combination with high
level synthesis to map abstract designs into silicon. Consider the code in altgorithm
2 with the corresponding DFG in figure 8a. By applying the unroll and squash
method, multiple outer loop iterations can be processed concurrently as shown in
algorithm 3. The corresponding DFG is shown in figure 8b.

Algorithm 2: Normal scheduling

1: for i in [0..M] do
2: a = data in[i]
3: for j in [0..N] do
4: b = f (a);
5: a = g (b);
6: end for
7: data out[i] = a;
8: end for

Algorithm 3: Unroll-and-squash factor 2 scheduling

1: for i in [0..M], increments of 2. do
2: a1 = data in[i] ; a2 = data in[i+1]
3: for j in [0.. (2N-1)] do
4: b2 = f (a2) ; a1 = g (b1);
5: a2 = a1 ; b1 = b2
6: end for
7: a1 = g (b1);
8: data out[i] = a2 ; data out[i+1] = a1;
9: end for

16

f

g

register

(a) DFG for Normal scheduling

fg

f

g

(b) DFG for Unroll-and-squash factor 2 scheduling

Figure 8: DFGs for normale scheduling and Unroll-and-squash

17

3 Related work

3.1 Different methods of Sweep Detection

In this section we will discuss the various methods that are available for selective
sweep detection. The method deployed by SweeD is based on the method used by
SweepFinder which has already been discussed in section 2.2. Years after the release
of the original SweepFinder, DeGiorgio et al. [20] released SweepFinder 2, which is
an extension of SweepFinder with increased sensitivity and robustness. One of the
major additions here is that SweepFinder 2 accounts of the effects of negative selec-
tion on diversity when searching for adaptive alleles [20]. SweepFinder, SweepFinder
2 and SweeD base their method on how a selective sweep affects the Site Frequency
Spectrum, but this is not the only indicator of a selective sweep. There are three
distinct signatures that are the consequence of a selective sweep. The first is a lo-
cal reduction of polymorphism levels due to hitchhiking [21], the second is a shift
in the site frequency spectrum due to hitchhiking [22] and the third is a localized
pattern of Linkage Disequilibrium (LD) values [23]. The Linkage Disequilibrium is
the nonrandom association of alleles at different positions on the genome [24].

One of the first tools to deploy the ω-statistic from [23] based on LD values is
OmegaPlus [10]. The authors of OmegaPlus compared it to SweepFinder and man-
aged to process a data set of 500 sequences and 70 000 SNPs in just 71.8s, where it
took SweepFinder over 783.2s. OmegaPlus was the first tool to be able to use the
ω statistic to detect selective sweeps so quickly. OmegaPlus was also the first tool
that makes use of parallel threads to speed up the ω-statistic calculations. Pavlidis
et al. [11] and Crisci et al. [25] both compared SweepFinder, SweepFinder 2, SweeD
and OmegaPlus to eachother. Crisci et al. [25] mainly focuses on the type-I and
type-II error rates of methods and found that OmegaPlus is best able to reject the
neutral model under assumptions regarding the equilibrium of the population and
suggests that the LD-based method may be more fruitful for detecting selective
sweeps. Pavlidis et al. [11] also found that OmegaPlus remained the best tool to
detect selective sweeps due to its comparable false positive rate, but higher true
positive rate. However, when the assumption of a population at equillibrium is
violated and the data sets are derived from bottlenecked populations (populations
which size is reduced by 99%), the false positive rate of OmegaPlus significantly
increases. For this situation, Crisci et al. [25] reported a false positive rate between
0.05 and 0.91 and Pavlidis et al. [11] reported a false positive rate between 0.07 and
0.69 for OmegaPlus. The SFS-based methods fared significantly better in this situ-
ations with false positive rates between 0 and 0.08 and 0 and 0.13 for SweepFinder
and SweeD respectively according to Crisci et al. [25]. Pavlidis et al. [11] showed
false positive rates between 0 and 0.18 and 0 and 0.12 for SweepFinder and SweeD
respectively. Besides the ability of the tools to detect selective sweeps, Pavlidis et
al. also considered the execution times of SweepFinder, SweeD and OmegaPlus on a
single core processor and found that SweeD is significantly faster than SweepFinder
while requiring the same computations. The execution time of OmegaPlus was or-
ders of magnitude lower for larger data sets which was mainly attributed to the fact
that it requires limited floating point operations and the majority of operations are
performed on integers.

18

In 2018, Alachiotis and Pavlidis [12] introduced RAiSD (Raised Accuracy in Sweep
Detection), which offered a new method of sweep detection. The authors introduced
the µ-statistic which is a composite evaluation test that uses changes in the SFS,
changes in LD levels and amount of genetic diversity to detect selective sweeps.
RAiSD utilizes a sliding window approach that reuses calculated data between over-
lapping windows. Their new method of calculating selective sweeps is less compute
intensive than the methods deployed by other tools despite relying on three differ-
ent characteristics. The authors compared RAiSD to SweepFinder2, SweeD and
OmegaPlus and found that in all cases RAiSD had a higher true positive rate than
SweepFinder and SweeD. In most cases RAiSD also outperforms OmegaPlus in this
aspect, but the authors found that in the case with the highest recombination in-
tensity which was considered, OmegaPlus showed a slightly higher success rate than
RAiSD (59.9% vs 59.1%). In the presence of background selection, SweeD and
SweepFinder2 showed the lowest false positive rate of 0.3% where OmegaPlus and
RAiSD showed a significantly higher false positive rate of 8.4% and 37.1% respec-
tively. However, in this case RAiSD showed a significantly higher true positive rate
of 97.5% compared to SweepFinder2, SweeD and OmegaPlus (59.9%, 56.5% and
21.1% respectively). The authors also compared the execution times of the tools
and found that in their runs, RAiSD has 1 000x, 628x and 32x lower executions
times compared to SweepFinder2, SweeD and OmegaPlus, respectively, utilizing a
single thread. Note that unlike RAiSD, SweeD and OmegaPlus are capable of mul-
tithreading and that SweepFinder2, SweeD and OmegaPlus can process a data set
arbitrarily faster or slower depending on the grid size parameter. The data sets used
by the authors to obtain these results are relatively small. They contain 1 000 sets
with an average of 2 215 SNPs and only 20 sequences per set.

3.2 Hardware acceleration in Selective sweep detection

Algorithms for sweep detection contain relatively complex computations, but the
first efforts to use hardware acceleration for selective sweep detection have recently
been made. Bozikas et al. [26] presented an FPGA-based architecture to accelerate
the calculations of LD values. Bozikas et al. [26] acknowledges that calculating
these values is intrinsically a memory bound operation and maximizing the amount
of operations per memory access is critical for the performance of the accelerator.
Two memory layout transformations are utilized to increase the information density
of individual memory accesses. Initially each word contained the state of a single
base while the minimum amount of bits required to represent the state is 4 bits. The
first transformation packs 4 bases corresponding to a single SNP in a single memory
address. The second transformation enables the utilization of multiple memory con-
trollers that utilize multiple memory ports to increase parallel data fetching. With
the accelerator mapped to 4 FPGAs Bozikas et al. [26] managed to support the
processing of large data sets and measured speed ups of LD calculations from 12.7x
(4 FPGAs vs 12 cores) up to 134.9x (4 FPGAs vs 1 core)1.

1Virtex 6 LX980 FPGAs versus Intel Xeon E5-2630 6-core @2.6 GHz with 32 GB RAM

19

Alachiotis et al. [27] managed to create a system level hardware solution for positive
selection inference in whole genome data that utilizes an out of core algorithm that
mainly handles fetching data in parametrized chunks combined with a Decoupled
Access/Execute Reconfigurable (DAER) [28] architecture. The accelerator is based
on the µ-statistic [12] and only needs to analyze the data set once, enabling the
authors to utilize a memory efficient sliding window approach. Furthermore the
hardware description for this implementation is generated with Xilinx Vivado HLS.
The authors compared their implementation to SweeD and OmegaPlus and mea-
sured a speedup of 36.8x and 29.7x, respectively, for the sequential implementations
of SweeD and OmegaPlus and a speedup of 5.3x and 4.9x, respectively, for parallel
implementations2. Later, Alachiotis et al. [13] presented RAiSD-X, an optimized
FPGA-based accelerator system for fast and accurate detection of positive selection.
This work utilizes the design methodology presented in their previous work [27] to
implement a hardware accelerated version of RAiSD [12] with improved scalability
and accelerated performance. The authors compared the results of RAiSD-X to
SweeD and measured that the runtime of RAiSD-X was 1 051x lower than SweeD
for their data sets and parameters3. Besides a reduced runtime on their accelerated
platform, RAiSD-X also measured a higher detection accuracy of up to 75.9% for
data sets where SweeD reached a detection accuracy of 46.1%.

We present the first hardware accelerated sweep detector that makes use of SFS-
based CLR computations in order to detect selective sweeps, compared to LD-based
method SFS-based methods show a lower false positive rate which makes them a
suitable extension of the bio-informatics toolbox. In our method we explicitly focus
on the flexibility of the system to apply the design to different types of FPGAs,
which should allow for easier adaptations. Because of the use of Clash as hardware
design language it is also easy to alter the implementation in case new studies offer
valuable additions to SweeD.

2SweeD was executed on a Dell PowerEdge R530 rack server with two 10-core Intel Xeon E5-
2630v4 CPUs running 20 threads per CPU at 2.2GHz. Accelerator was executed on the following
hardware platform: Intel Core i7-5930K 6-core @3.5GHz host processor with 32GB DDR4 Memory,
an AC-510 SuperProcessor Module with 4GB Hybric Memory Cube and a Xilinx Kintex UltraScale
XCVU060 FPGA.

3See footnote 2.

20

4 Design space exploration

4.1 Determining what to speed up

SweeD contains two very computationally expensive parts: Data preparation and
likelihood calculation. The run-time of data preparation mainly depends on the
amount of samples in the data set and the run-time of likelihood calculations mainly
depends on the length of the samples in the data set. The data preparation phase
pre-calculates probabilities for all possible combinations of SNP frequency, samples
and 300 alpha distance values. These probabilities are pre-calculated because their
result is generally accessed significantly more often than the amount of possible
combinations. The second computationally heavy part, the likelihood calculations,
aims to process the whole genome. The genome is processed on a per grid point
basis. Reducing the grid size reduces run-time at the cost of accuracy. To make a
hardware accelerator it is important to know which part of the program should be
accelerated to create the highest speed up. The highest speed up can be achieved
by accelerating the part that requires most computational power. We will deter-
mine which part to accelerate with 2 approaches, the first approach is profiling to
measure which part requires most processing power. We can use this to isolate
computationally expensive functionality and gain insights how the runtimes change
for different data sets. The second approach is on a lower level, manually analysing
the C implementation of SweeD and reasoning about the code to determine which
functionality is fit to be accelerated using dedicated hardware. Here we specifically
pay attention to expensive functions, different kinds of loops and data dependencies.
The data dependencies will be discussed seperately in section 4.3.2.

4.2 Profiling SweeD

Profiling of SweeD is done using Valgrind [29]. Valgrind is a dynamic binary instru-
mentation framework (DBI), which makes it easy to make checkers and profilers.
The profiler that we deployed is Callgrind [30]. Callgrind records function calls,
caller callee relations, and can estimate the amount of clock cycles spend on each
function. Callgrind can perform branch prediction and simulate cache to determine
cache hits and misses for better cycle estimation. We use Callgrind to determine
which parts of the program requires most computational power. A couple of pa-
rameters influence the execution time of SweeD. The parameters that mostly affect
runtimes are:

• Sequence length

• Amount of sequences

• Amount of gaps in sequences

• Grid size

The sequence length, amount of sequences and amount of gaps are characteristics
of the data set at hand. The grid size can be set by the user, where a larger grid
size will lead to a more accurate result at the cost of computation time. The user
defined grid size is always a discrete amount of positions. The grid size is smaller
than the sequence length and these points are evenly spaced along the entire length
of the genome. In profiling we determine the grid size based on a percentage of the
sequence length (e.g a sequence length of 1 000 with a grid percentage of 50% would

21

result in a grid size of 500). This ensures that the interval between grid points is the
same for every profiling run. Using Hudson’s ms [31], we can generate different data
sets with different combinations of sequence length and amount of sequences to be
used as input for SweeD. It is already known that the sequence length and amount
sequences are most significant in determining the run-time of SweeD. SweeD has
been be profiled with every combination of the following parameters.

• Sequence length - 100, 1 000, 10 000.

• Amount of sequences - 10, 100, 1 000.

• Grid percentage - 20%, 50%, 80%.

The output of callgrind will be processed with kCachegrind to estimate the amount
of cycles spent on each function. Figure 9 shows the distributions of clock cycles
spend by SweeD for runs with a grid of 80%. In this figure we show that most
clock cycles are spent on the 3 functions createProbs, createSFS and getAlpha. The
createProbs and createSFS functions are part of the data preparation phase and
the getAlpha function contains the likelihood calculations. The createSFS function
creates the Site Frequency Spectrum and createProbs creates the three dimensional
probability grid that contains probabilities for every available combination of SNP
frequency and amount of samples for 300 alphaDistance values. Appendix B shows
the complete profiling results.

100 1000 10000

10

100

1000

sa
m

p
le

s

genome length

13.4%
2.3%

82.9% 1.5%

84.2%

11.5%
4.1%0.2%

94.0%
5.9%
0.0%0.0%

0.4%0.1%99.2% 0.3%

23.6%

5.6%

70.5%
0.4%

85.4%

13.0%
1.6%0.0%

0.0%0.0%99.9% 0.0%

0.4%0.1%99.4% 0.1%

37.9%7.5%

54.4%
0.1%

createProbs

createSFS

getAlpha

other

Figure 9: Clock cycle distributions with grid 80%

22

From figure 9 it can be deducted that if we increase the amount of samples in the
data set, the proportion of runtime dedicated to the data preparation functions
(createProbs and createSFS) is increased. Data sets with longer sequences result in
a higher runtime for the likelihood calculations (getAlpha). Ideally both cases would
be accelerated. Considering the fact that the speedup achieved by SweeD compared
to SweepFinder significantly decreased for data sets with longer sequences, the choice
has been made to first focus our efforts on accelerating the getAlpha function.

4.3 Manual analysis of likelihood calculations

In section 4.2 we determined that our efforts will be focused on the likelihood cal-
culations and that accelerating the getAlpha function would significantly speed up
SweeD for data sets with longer genomes. During the manual analysis we analysed
the loops, data dependencies and computationally expensive functions. We separate
our findings in two parts, first we present the loops and expensive functionality, sec-
ondly we present the data dependencies in context of the loops. For the each loop we
identify two different characteristics, whether the loop has loop carried dependencies
and whether the amount of iterations is data dependent. Loop carried dependencies
are data dependencies defined out of the scope of the loop that contain write after
read behaviour, in essence, an iteration of the loop alters the variable that will be
used in the next iteration (Example shown in section 2.4).

4.3.1 Loops and expensive functionality

Table 3 shows a summary of the different loops that are relevant for accelerating
the getAlpha function. For each loop, we keep track of the nesting depth which
indicates how deeply nested the loop is in higher level loops, we also keep track of
the type of the loop. While loops are generally used for data dependent repetition
and for loops are generally used for loops with data independent repetition. For
loops can contain conditional break statements, which makes their repetition data
dependent. The first loop can be found in main and simply iterates over all points
in the grid, for which it calls the getAlpha function. The rest of the loops will be
explained in their respective function in the rest of this section.

Function Nesting depth Loop type Contains
LCDs

Data dependent
repetition

main 0 for No No
getMinMaxAlpha 1 for No Yes
getMinMaxAlpha 1 for No No
getClosestSNPIndex 1 while Yes Yes
getAlpha 1 while Yes Yes
getAlpha 2 for Yes No
getLikelihood 3 for Yes Yes
getLikelihood 3 for Yes Yes

Table 3: Summary of loop characteristics

23

getAlpha
A pseudo code variant of the getAlpha function can be found in algorithm 4. The

highlighted parts represent functions that contain loops. The getAlpha function
finds the alpha parameter for which the calculated likelihood of this position is the
highest and returns this likelihood with the corresponding alpha. The first 2 loops
encountered are in separate functions: getMinMaxAlpha and getClosestSNPIndex,
as shown in algorithm 5 and 6 respectively. The first loop of getMinMaxAlpha (line
2 to 7) does not contain LCDs, but the amount of iterations depends on the con-
tent of the positionsInd array. The second loop in getMinMaxAlpha (lines 8 - 17)
iterates over every value in the positionsInd array, this array can be very large as
data sets can contain millions of segsites (SNPs). The loop in getClosestSNPIndex
(lines 2-9) contains the LCDs rightInd and leftInd and the amount of iterations is
data dependent. The main loop of the getAlpha function (lines 4-16) requires both
minAlpha and maxAlpha, which are recalculated at the end of every iteration. The
variables minAlpha and maxAlpha are LCDs as well as part of the break condition,
which implies that the amount of iterations can not be determined beforehand. The
secondary loop of the getAlpha function (lines 6-13) contains multiple LCDs for
tracking the highest alpha and likelihood combination and accesses to the sweep-
Width array. The amount of iterations executed by the for loop is known beforehand
since it depends on localGridSize, which is not altered in the loop.

Algorithm 4: Pseudo code variant of getAlpha

1: localGridSize = 100
2: Calculate minAlpha and maxAlpha (call getMinMaxAlpha)
3: Calculate startPosition (call getClosestSNPIndex)
4: while minAlpha and maxAlpha have not converged do
5: Calculate interval.
6: for i in [0..localGridSize] do
7: Calculate alpha based on minAlpha, i and interval.
8: if i == 0 or sweepWidth[i-1] > 0 then
9: Calculate likelihood for this position, startposition and alpha (call

getLikelihood).
10: end if
11: Update sweepWidth[i].
12: Keep track of highest likelihood and alpha for this position.
13: end for
14: update minAlpha and maxAlpha based on highest likelihood.
15: localGridSize = 5.
16: end while
17: return the highest likelihood and corresponding alpha.

24

Algorithm 5: Pseudo code variant of getMinMaxAlpha

1: maxAlpha = 1300.0, counter = 0, totDist = 0
2: for i in [0..segsites] do
3: if positionsInd[i] != -1 then
4: minDist = abs (positionsInd[i] - sweepPosition)
5: Break for-loop
6: end if
7: end for
8: for i in [0..segsites] do
9: if positionsInd[i] != -1 then

10: counter++
11: distDif = abs (positionsInd[i] - sweepPosition)
12: totDist += distDif
13: if distDif < minDist then
14: minDist = distDif
15: end if
16: end if
17: end for
18: if minDist !=0 then
19: maxAlpha = 13 / minDist
20: end if
21: minAlpha = 12 * (counter / totDist)
22: return minAlpha and maxAlpha

Algorithm 6: Pseudo code variant of getClosestSNPIndex

1: leftInd = 0, rightInd = Sequence length
2: while rightInd - leftInd > 1 do
3: index = (rightInd + leftInd) / 2
4: if positionIndex[index] > sweepPosition then
5: rightInd = index
6: else
7: leftInd = index
8: end if
9: end while

10: return leftInd

25

The getLikelihood Function The purpose of the getLikelihood function is to
calculate a composite likelihood ratio (CLR) for a position on the genome with a
given α. Algorithm 7 shows pseudo code of the getLikelihood function.

Algorithm 7: Pseudo code variant of getLikelihood

1: for i in [startPosition..0] do
2: Calculate alphaDistance
3: if alphaDistance < 12.0 then
4: Interpolate probability (call splint ())
5: Process folded spectrum
6: update likelihood
7: else
8: break for-loop
9: end if

10: end for
11: for i in [startPosition+1..SNPs] do
12: Calculate alphaDistance
13: if alphaDistance < 12.0 then
14: Interpolate probability (call splint ())
15: Process folded spectrum
16: update likelihood
17: else
18: break for-loop
19: end if
20: end for
21: return likelihood

The amount of iterations for both sequential for loops (lines 1-10 and 11-20) is data
dependent since they both contain a data dependent break condition (line 8 and
18). These loops both contain an LCD since they require the likelihood calculated
in the previous iteration to calculate the new likelihood. The inner iterations of
these loops are computationally expensive and repeated excessively. These are the
calculations that should be accelerated. For this project we only consider data sets
that are not folded, so the processing of the folded spectrum will for now not be
included.

26

4.3.2 Data dependencies of the getAlpha function

nn[i]
xx[i]

gridProbs[x-C][n-C][index]
gridProbs[x-C][n-C][index+1]

gridAds[lind]
gridAds[lind+1]

positionsInd[i]

positionsInd[i]

positionsInd[i]

getMinMaxAlpha

getClosestSNPIndex

getLikelihood

baseLikelihood[i]

Figure 10: Overview of
array accesses in different
loops.

Unfortunately ideal memory that can provide all data
instantly does not exist. SweeD uses multiple arrays of
which the size is data dependent and too large for stor-
age on an FPGA. Because we have to make sure that the
data will be available at the right place at the right time,
we need to analyze the data dependencies. In the previ-
ous section we determined that a high speedup could be
gained by accelerating the getAlpha function. In this sec-
tion we give an overview of the data dependencies found
in getAlpha, focussing on accesses to arrays that are de-
fined out of getAlpha’s scope. A visual overview of these
data dependencies is shown in figure 10. A complete
overview of all data dependencies can be found in ap-
pendix C. Table 4 shows all arrays involved in the getAl-
pha function and their corresponding datatypes, entries
and contents. The sizes of these arrays depend on char-
acteristics of the data set, these characteristics are as
follows:

• SNPs /segregating sites / segsites - Amount
of polymorphic sites of the genome. Realistically
this characteristic could range from for example 30
thousand for a SARS-CoV-2 data set to millions for
a human genome.

• SNP Frequency Range (SFR) - Range of the
SNP frequencies of the data set, maximum range is
0 to the amount of samples. Realistically this value
is close to the amount of samples in the data set.

• Gaps - For some data sets, not every sample con-
tains data for every position which introduces a
gap. This characteristic is the maximum amount
of gaps for a single position in the data set.

Hardware design is structural, so reading data in various
locations of the design occurs both over area and time.
This requires us to make the data available at the right place at the right time.
Considering the size of these arrays and the memory available on consumer FPGAs,
not all of these arrays can be stored on chip and some external memory unit is
required. When we look at the arrays in table 4, we notice that the gridAds array
is small and of constant size, making it easy to store this on chip. The other arrays
are all of variable size, it depends on the data set whether or not they can be
stored on chip. Using off-chip memory has the advantage of large capacity, but the
disadvantage of increased latency.

27

Array name Array size Data type Access type Contents
positionsInd segsites Int Read only Position on genome of

this index
nn segsites Int Read only Amount of samples for

this index
xx segsites Int Read only SNP Frequency of this

index
gridProbs SFR *

(Gaps+1)
* 300

Float Read only probability for this
SNP Frequency,
amount of samples
and alphaDistance

gridAds 300 Float Read only alphaDistances
baseLikelihood segsites Float Read only base likelihoods

Table 4: Arrays accessed by getAlpha function

We could simply use only external memory to fetch the data when needed, but the
increased latency of every access would significantly impact performance. To mini-
mize stalling of our circuit caused by fetching data, we can use multiple techniques.
The techniques considered are:

• Caching

• Recalculation

• Prefetching

Caching is widely used in computing, this simple principle relies on the assump-
tion that a large percentage of consecutive data accesses have a high locality in the
address space. For computers that execute programs containing loops, this is often
the case. In our case, many of the access patterns are data dependent and consecu-
tive accesses do not necessarily have high locality. The simplest caching mechanism
stores the result of a previous access, such that when in the future it is requested
again, it is still in cache and does not need to be fetched from external memory.

Recalculation can be used for all arrays containing data that can be calculated
on the FPGA. It becomes interesting for larger arrays where the amount of resources
required for recalculation is smaller than the amount of resources required for storage
of the array. Especially when access patterns are unpredictable this option is worth
considering. Whether or not we can recalculate values depends on the complexity
of the calculation. The arrays positionsInd, nn and xx can not be recalculated since
they are part of our input data.

Prefetching attempts to predict future data accesses based on known patterns.
To be able to do this we must find predictability in often unpredictable access pat-
terns. When applied correctly, prefetching can prevent stalling caused by waiting
for memory. This method can be applied to all kinds of data, as long as the access
patterns can be predicted.

Since it is not feasible to design and implement an external memory access system,
the first iteration of the design will rely on the assumption of ideal memory for data

28

that can not be stored on chip. Section 4.3.3 describes a conceptual solution for
prefetching the required data.

4.3.3 Memory access patterns

The patterns of the memory accesses performed by functions seen in figure 10 are
explained below:

• getMinMaxAlpha – Every call to this function will access all elements of
positionsInd in order. For datasets with many SNPs, this will result in many
memory accesses.

• getClosestSNPIndex – When this function is called, index starts at segsites/2
and each iteration positionsInd[index] is accessed. The next access index is
always either in the middle of leftInd and index or in the middle of index and
rightInd.

• getLikelihood – The indexes of the accesses to positionsInd, xx, nn and base-
Likelihood are directly related to the iterator of the loops in the getLikelihood
function (Algorithm 7). The iterator of the loop starts at startPos and every
next iteration decrements the iterator by 1 (startPos, startPos-1, startPos-2
etc.) untill the break condition has been met. After the break condition for
the first loop has been met, the iterator is set to startPos+1. The direction
is changed such that every next iteration increments the iterator by 1. This
pattern makes the accesses to positionsInd, xx, nn and baseLikelihood highly
predictable. The gridProbs array is 3 dimensional and contains 300 values for
every possible combination of SNP frequency(first dimension) and amount of
gaps(second dimension). The index of the third dimension depends on the
calculated alpha distance.

4.4 A suitable datatype

The current C implementation of SweeD makes use of the double datatype which
is a 64-bit floating point number capable of representing values from approximately
1.795 ∗ 10308 all the way down to 4.95 ∗ 10−324 [32]. However, if we want to offload
functionality to an FPGA this might limit performance. An alternative could be
using fixed point numbers instead of floating point numbers, fixed point implemen-
tations will consume fewer resources and less power4. Up to 50% power and area
savings are not uncommon when a design is migrated to fixed point [33]. We ap-
proach this problem by first checking whether we could use single precision float
instead of double precision float. Changing all doubles to floats in SweeD is error
prone, so we will be focussing on the getLikelihood function. The data types of the
inputs and outputs of the getLikelihood function will remain the same, but under
the hood all values will processed as single precision floats. The original version of
SweeD with double precision floating points will be referred to as SweeD double,
the altered version of SweeD with the float implementation will be referred to as
SweeD single. Implementation details of SweeD single can be found in appendix A.

The likelihoods and alphas calculated by SweeD are stored in an output file, by
running SweeD double and SweeD single on the same input data and comparing
the output files we can determine whether floating point values are sufficient.

4If both implementations have the same amount of bits.

29

This test will be executed on multiple data sets. Processing the SweeD output files
is done by a python script. This script reads the output files and determines the
following values:

• Likelihood deviation - The deviation between highest likelihoods found by
SweeD double and SweeD single.

• Position deviation - The deviation between the positions of the highest
likelihoods on the genome found by SweeD double and SweeD single.

• Alpha deviation - The deviation between the alpha parameters for which
the highest likelihoods where found by SweeD double and SweeD single.

• Maximum likelihood deviation - Maximum of the deviations in likelihoods
calculated by SweeD double and SweeD single for all positions.

The results from comparisons between SweeD single and SweeD double are shown
in table 5.

Dataset length 10 000 10 000 1 0000 10 000 50 000
Dataset samples 200 500 1 000 1 200 2 500
Likelihood deviation 9.999e-07 1.000e-06 1.000e-06 0.0 1.000e-06
Position deviation 0.0 0.0 0.0 0.0 0.0
Alpha deviation 2.000e-05 2.000e-06 4.999e-04 3.000e-05 5.000e-06
Maximum likelihood
deviation

1.097e-04 2.999e-06 3.470e-06 1.100e-05 1.000e-05

Table 5: Comparison between SweeD single and SweeD double

From these results it seems that the highest calculated likelihood and corresponding
alpha parameter are not significantly affected by changing the getLikelihood func-
tion from using doubles to using floats. Besides the suitability of single precision
floating point values, we are mostly interested in the suitability of fixed point val-
ues. The suitability of fixed point is tested in the same way as the suitability of
floating point. C offers no native support for fixed point data types. However, some
libraries are available that offer this functionality. These libraries offer 32 bit fixed
point values or 64-bit fixed point values. The maximum integer value that must be
representable is 1200.0 since this is the maximum possible value of alpha, Thus we
require at least 12 bits to represent the whole number leaving 20 bits and 52 bits
for the fractional part in the 32 bit and 64-bit implementation respectively.

The fixed point tests have been executed by using fixedptc library which supports
both 32 bit and 64-bit fixed points [34]. Variations included in this report are:

• Fixed32.32 - Range = (-2147483648, 2147483647), resolution = 2.3283064e-
10.

• Fixed24.40 - Range = (-8388608, 8388607), resolution = 9.094947e-13.

• Fixed12.52 - Range = (-2048, 2047), resolution = 2.220446e-16.

30

Dataset length 10 000 10 000 10 000 10 000
Dataset samples 200 500 1 000 1 200
Likelihood deviation 2.2855e04 3.7165e04 3.9153e04 3.9286e04
Position deviation 4.0824e03 1.4711e03 6.8548e03 4.2534e03
Alpha deviation NaN NaN NaN NaN
Maximum likelihood devia-
tion

2.2855e04 3.7165e04 3.9153e04 3.9291e04

Table 6: Comparison between F32.32 and double.

Dataset length 10 000 10 000 10 000 10 000
Dataset samples 200 500 1 000 1 200
Likelihood deviation 1.7204e04 2.9276e04 3.1557e04 2.85724e04
Position deviation 4.0824e03 1.4711e04 6.854e03 4.2534e03
Alpha deviation NaN NaN NaN NaN
Maximum likelihood devia-
tion

2.2855e04 3.7165e04 3.9153e04 3.9291e04

Table 7: Comparison between fixed24.40 and double.

Dataset length 10 000 10 000 10 000 10 000
Dataset samples 200 500 1 000 1 200
Likelihood deviation 2.0438e03 2.0439e03 2.0436e03 2.0430e03
Position deviation 3.5621e03 1.4011e02 5.7039e02 1.3811e03
Alpha deviation 2.0791e01 1.4501e00 2.7635e02 1.4650e01
Maximum likelihood devia-
tion

2.0479e03 3.7165e04 2.0479e03 2.0479e03

Table 8: Comparison between fixed12.52 and double.

When we take a look at these deviations it can be observed that the likelihoods
that are being calculated heavily deviate from the likelihoods calculated from the
reference implementation. For example, table 6 shows in the last colom a deviation
of ∼39 286, which is a result of the fact that with F32.32, SweeD reported a highest
likelihood of 39 291, while SweeD double reported a highest likelihood of 4.9. This
leads to nonsensical results for all likelihoods that are selected by the algorithm
as highest likelihood for that position. This could be attributed to the resolution
of the fractional part of the fixed point number, for that reason we tested up to
52 bits resolution. Also this high resolution lead to nonsensical results where the
highest likelihood was always near the maximum value that could be represented.
From these results we conclude that using fixed point values up to 64-bits with the
fixedptc library did not produce meaningful results and for this project, is not the
way to go. Single precision floating point will be used in the rest of this project.
In later stages, the precision of the floating point values could be adjusted where
needed.

31

4.5 Relevant flexibility parameters

In this section we discuss which parameters should be available to tune the hardware
design. In the original implementation, there are some command line options that
can be used to alter the functioning of SweeD. Most of these parameters are not
relevant to the part of SweeD that is being accelerated. The ones that are relevant
are:

• -folded – Incorporates additional computation for SNPs where the ancestor-
derivative relation is not know. During this thesis we decided to not include
this part due to time constraints.

• -threads – In the parallel version of SweeD, this flag determines that amount
of POSIX threads that are used.

While the calculations for folded data sets will not be included in our design, this
could later be incorporated as a flag where pattern matching can be used to select
which implementation to use. By changing this flag, one of either implementations
would be generated by the clash-compiler. Besides these parameters the user has
not much control regarding the functionality of SweeD in the C implementation.
However, when people design hardware implementations, they often have to make
choices for which there is not an obvious best solution. A lot of choices relate to
limited time-area trade offs and parallelism. In this section we discuss which kinds
of parameters we can introduce to enable a user to quickly adjust the design to their
available resources, enabling them to squeeze as much performance out of their setup
as possible.

4.5.1 Additional parallelism

One of the main advantages of using FPGA is that the fabric allows for a lot of
parallelism. To make use of this advantage we need to find points in the algorithm
where we can introduce parallelism. Extra parallelism can only be introduced when
we have multiple data streams that we can process. In our case, we can obtain these
multiple data streams from the loops that are described in section 4.3.1. In section
4.3.1 we also described how most loops that are relevant for this accelerator contain
loop carried dependencies and data dependant repetition. The consequence of loop
carried dependencies is that iterations have to be executed in a sequential fashion,
not allowing for parallel execution of the iterations of the loop. The consequence of
data dependant repetition is that we can not know beforehand how many iterations
the loop will execute, making it hard to map it to parallel hardware. Normally
with a for-loop of e.g. 100 iterations without loop carried dependencies, we can
instantiate 100 parallel instances that execute the entire loop in parallel, or choose
to process the loop in smaller chunks of e.g. 10 iterations to save area. With data
dependent repetition it is not possible to do either of those without knowingly sacri-
ficing the maximum utilization due to the fact that we might be calculating results
that will not be used. Consider a for-loop that iterates over values from 0 to 99, but
contains a data dependent break condition. We could instantiate 100 instances of
the calculations, but if the code breaks after 10 iterations, we calculated 90 results
that will not be used. If we process the loop in chunks of e.g. 10 iterations, we
would be lucky when the loop executes multiples of 10 iterations, but if it has to
execute 11 iterations, the utilization would drop to 55% (11 useful results, for 20
calculations). Conventional methods of introducing parallelism are not ideal. By

32

implementing the pipelining method presented in section 2.4, we create an archi-
tecture that can process the iterations of the outermost loop in our system. While
this architecture processes the iterations of the lower loop, the inputs are stalled
creating a bottleneck. We can instantiate multiple instances of the hardware that
bottlenecks the system to process more of these outer loop iterations concurrently.

4.5.2 Controlling operation resources

The Clash compiler allocates resources for operators based on their type, calculating
the result of Signed 16 addition requires less resources than calculating the result
of Signed 32 addition. By creating custom data types based on what the data is
supposed to represent, the user can control the boundaries of the data sets that can
be processed by the accelerator. The advantage of this is that you can tune the data
types to the minimum required for the application, reducing the required area and
potentially allowing for more parallelism. Table 9 shows the different types of data
that can be represented in the getAlpha function and what the range relies on.

Represented data Data type Data depen-
dent range?

Range

SNP Frequency Unsigned integer Yes 0 - amount of samples
Samples Unsigned integer Yes 0 - amount of samples
Genome index Signed integer Yes 0 - segsites
Alpha Floating point No 0 - 1200.0
alpha Distance Floating point Yes 0 - alpha times distance
Local grid index Unsigned integer No 0 - 99
probability Floating point Yes unbound to unbound
likelihood Floating point Yes unbound to unbound

Table 9: Table of represented data with corresponding types and ranges.

We can offer the user to set a maximum for segsites and amount of samples to
determine the size of the corresponding data types. However, we must consider the
operations that are applied to the variables to determine whether or not the results
or intermediate results of the operation require a larger range (e.g. the result of
multiplying two integers will in most cases be larger than the individual inputs).

33

5 Design and implementation

In the previous section we described how profiling was used to find the most com-
putationally expensive functionality of SweeD. We also discussed how we analysed
SweeD based on repetition, data dependencies and generally expensive functionality
to determine which parts are most suitable for acceleration. The previous section
also described how we determined to use single precision floating point values in the
design instead of the double precision floating point values in the original implemen-
tation. We described the data dependencies with the corresponding access patterns
in the getAlpha function and how this can be handled in the final implementation.
This section describes how we implemented floating point operators in Clash, how
we manage to keep all data synchronised and describes the architecture of the pro-
posed design. Due to time constraints, memory access could not be implemented
in the design, but section 5.3 describes a possible method that could potentially
provide a solution for the data dependencies. Section 5.4 discusses the introduced
parameters that can be used to control the data types, the amount of parallelism
present in the design and the size and presence of FIFO buffers to tailor the design
to the available resources of the target device.

5.1 Data path design

When designing hardware that processes multiple variables, it is important that
variables that belong together stay synchronised throughout the design and are
easy to manipulate. In this section we will discuss how the data is packaged to
enable us to easily access and manipulate the data. We also discuss how we make
sure the data stays synchronised and the implementation of floating point operators
in Clash.

5.1.1 Packaging data

Clash offers different methods of coupling data, to handle the large amount of vari-
ables used in our algorithm we need a method to encapsulates all data that belongs
together and make it easily accessible. One method could be to use tuples to store
the data. However, if the amount of variables grows this method quickly becomes
confusing to design with. A better approach is using record syntax. An example of
using the record syntax could be creating a data type for a person, where you want
to store their names, age, height and phone number as can be seen below:

data Person = Person { firstName :: String
, lastName :: String
, age :: Int
, height :: Float
, phoneNumber :: String} deriving (Show)

One of the main benefits of this syntax is that you automatically get functions to
extract information from this type. For example, if you want to retrieve the full
name of a person, you can simply use the automatically generated ”firstName” and
”lastName” functions.

34

An example for a fullName function is shown below:5

author = Person {firstName = "Lucas",
lastName = "Bollen",
age = 24,
height = 1.92,
phoneNumber = "MightNotWantToDiscloseThis"}

fullName person = firstName person ++ " " ++ lastname person

In the example above, applying the function fullName on author would return ”Lucas
Bollen”.

5.1.2 Data synchronisation

Clash offers a type based method to enforce synchronisation of our data in the form of
the DSignal dom n a context. This context is the same as the Signal dom a context,
but with the addition of having accumulated delays encoded in the type. Functions
that work with DSignal dom n a, do not work with arguments of Signal dom a (and
vice versa) without converting them from one to another. When a DSignal dom n a

is converted to Signal dom a, the delay annotation is simply stripped, but when a
Signal dom a is converted to DSignal dom n a, the delay is set to zero such that
it becomes DSignal dom 0 a. Consider an operator that takes two arguments, it
is important that both arguments arrive at the inputs of the operator in the same
clock cycle. In the case that the first argument is delayed (e.g. has an accumulated
delay of 3 cycles) and the second argument is not delayed (e.g. accumulated delay
of 0 clock cycles), we need to explicitly delay the second argument such that its
delay matches the first argument. Delaying variables can be done in multiple ways,
one of which is explicitly delaying a variable for a certain amount of clock cycles. A
second way to is to use a function that derives the required delay from context. For
example, in the case where we need to delay the second input argument to match
the first, Clash can derive the required delay from context, because it knows the
required delay based on the first input argument.

5.1.3 Floating point operators

For the design of the accelerator we require floating point precision. However at time
of writing, Clash can not generate any floating point operators. For every operation
on floating point values we have to either design our own operators or use available
IP cores. For this project we chose to use external IP cores. To use these IP cores
in Clash we must make sure that the IP cores are easy to use in our design and
that the simulation behaviour matches the behaviour of the IP core. To instantiate
external IP cores from Clash we use black boxes. A black box describes a piece of
HDL code (VHDL or Verilog) that instantiates the IP and correctly connects all the
inputs as they are applied in the Clash code. In our case we will be focussing on
VHDL and the inputs and outputs of the IP cores for floating point values will be
of type std logic vector (31 downto 0). For that reason we define our own datatype
called Decimal, which is simply a BitVector 32.

5Technically, Strings are lists of characters and the (++) function is defined for vectors in
Clash, so one would have to import (++) from the Data.List module, however this example works
in Haskell.

35

The IP cores that will be instantiated by our Clash implementation will be generated
with Quartus, but any other source of IP cores can be used. Each floating point
operator has their own latency. The operators for which functions are defined,
together with its latency are shown in in table 10.

Operatore Latency
Multiplication 5 cycles
Addition 7 cycles
Subtraction 7 cycles
Comparisions (>, >=, ==) 1 cycle
Integer to float conversion 6 cycles
Float to integer conversion (truncation) 6 cycles
Division 7 cycles
Natural logarithm 21 cycles
Exponential 17 cycles
Absolute value 0 cycles

Table 10: Required floating point operators and their latencies as generated by
Quartus

As example of how such operators are implemented, we will discuss the imple-
mentation of the multiplication operator. The functions required for implementing
multiplication for floating point are shown below:

1 type MUL = 5
2 mult_sim :: (HiddenClockResetEnable System) =>
3 DSignal dom n Float ->
4 DSignal dom n Float ->
5 DSignal dom (n + MUL) Float
6 mult_sim a b = dLay 0 ((*) <$> a <*> b)
7

8 mult_block
9 :: KnownDomain dom =>

10 Clock dom ->
11 Reset dom ->
12 Enable dom ->
13 DSignal dom n (BitVector 32) ->
14 DSignal dom n (BitVector 32) ->
15 DSignal dom (n+MUL) (BitVector 32)
16 mult_block clk rst en dataa datab = pack <$> (exposeClockResetEnable result clk rst en)
17 where
18 result = (mult_sim (unpack <$> dataa) (unpack <$> datab))
19 {-# NOINLINE mult_block #-}
20

21 mult_f :: (HiddenClockResetEnable System) =>
22 DSig n (Maybe (Decimal)) ->
23 DSig n (Maybe (Decimal)) ->
24 DSign (n + MUL) (Maybe (Decimal))
25 mult_f in_a in_b = mux cond (Just <$> mult_result) (pure Nothing) where
26 mult_result = mult_block hasClock hasReset hasEnable mult_a mult_b
27 cond = dLay False ((&&) <$> (isJust <$> in_a) <*> (isJust <$> in_b))
28 mult_a = (fromMaybe 0b0) <$> in_a
29 mult_b = (fromMaybe 0b0) <$> in_b

36

The mult_f function shown in line 21 to 29 is the IP core interface for the program-
mer, here line 21 to 24 show the type of the function and line 25 to 29 show the imple-
mentation. The function is designed to work with DSignal dom n (Maybe Decimal)

arguments because all floating point variables in the accelerator are of the Maybe
Decimal type (section 5.2 discusses the relevant data structures). The mult_f func-
tion calls the mult block function, lines 8 to 15 show the type of mult_block and
lines 16 to 18 the implementation. This function represents the generated IP, its
inputs and outputs must correspond to the inputs and outputs of the IP (the clock,
reset and enable signals are applied explicitly). The mult_block calls the mult_sim

function described in line 2 to 6 where line 2 to 5 describe the type of the function
and line 6 describes the behaviour of the IP. The behaviour is simulated by executing
the corresponding operation (in this case multiplication) and delaying the output
based on the latency of the generated IP. The latency of the IP is set with the
MUL type shown on line 1. Line 19 shows {-# NOINLINE mult_block #-} , which is
required for the Clash compiler to process mult_block as a separate component. It
will either look for a black box for this function or create a separate .vhd file for it.
In our case we want to use a black box to instantiate the IP. The black box for the
multiplier is shown below:

1 { "BlackBox" :
2 { "name" : "Float.mult_block"
3 , "kind" : "Declaration"
4 , "type" : "mult_block :: KnownDomain dom
5 > Clock dom
6 -> Reset dom
7 -> Enable dom
8 -> Signal dom (BitVector 32)
9 -> Signal dom (BitVector 32)

10 -> Signal dom (BitVector 32)"
11 , "template" : "~GENSYM[Mult_Block][0] : block
12 signal tmp : std_logic;
13 begin
14 tmp <= '1' when ~ARG[3] else '0';
15 ~GENSYM[Mult_Inst][1] : SweeD_Mult PORT MAP (
16 aclr => ~ARG[2],
17 clk_en => tmp,
18 clock => ~ARG[1],
19 dataa => ~ARG[4],
20 datab => ~ARG[5],
21 result => ~RESULT);
22 end block ~SYM[0];"
23 }
24 }

The black box shown above contains 4 entries, these entries contain:

• name - Name of the function, in our case mult_block in the Float module.

• kind - Can be either a declaration or an expression, in our case it is a decla-
ration.

• type - The type of the function.

• template - The code that will be inserted, the arguments such as ARG[0]
relate to the arguments of the function. The constraints are also included as
arguments, thus ARG[0] relates to the KnownDomain dom and ARG[1] is the
clock signal.

37

5.2 Base architecture

This section describes the structural architecture that forms the basis of the ac-
celerator. The tunable parameters and how we create parallelism is discussed in
section 5.4. Based on the profiling of SweeD we know that we will accelerate the
getAlpha function. The getAlpha function can be split into three big subparts, the
getMinMaxAlpha function, the getClosestSNPIndex function and the nested loops
that call the getLikelihood function. Based on the design space that was presented
in section 4 we have decided to only accelerate the nested loops for the following
reasons:

1. The access patterns to the positionsInd array performed by getMinMaxAlpha
and getClosestSNPIndex are expected to significantly increase the load on the
external memory interface while offering little speedup possibilities.

2. The getLikelihood function uses ∼99% of the clock cycles used by the getAlpha
function in profiling runs with longer data sets.

Including getMinMaxAlpha and getClosestSNPIndex in the accelerator would in-
crease the required area, which reduces the amount of area available for parallelising
nested loops.

5.2.1 Interfacing with the accelerator

When getAlpha is called in the C code, the only argument that is passed is a
position for which the likelihood of a sweep will be calculated (sweepPos). Based on
sweepPos, getMinMaxAlpha is used to calculate minimum value of alpha (minAlpha)
and the maximum value of alpha (maxAlpha) and getClosestSNPIndex is used to
determine a starting position startPos. For the accelerator design, we assume that
the accelerator is controlled by a host PC which can communicate to the accelerator.
Due to the fact that we split the getAlpha function, the host PC is responsible
for providing inputs for the accelerator (getAlpha calls with a sweepPos, startPos,
minAlpha and maxAlpha). The accelerator contains an input buffer to store this
data to be able to continuously provide input to the getAlpha circuit. The size of
this input buffer has yet to be determined. The accelerator also contains an output
buffer where the results of the getAlpha calls will be stored, these results will contain
sweepPos with corresponding likelihood and alpha. The host PC is responsible for
monitoring this buffer. A visual overview of the minimal communication between
the host PC and the accelerator is shown in figure 11.

Input
FIFO

Host PC

sweepPos
startPos
minAlpha
maxAlpha

Accelerator

Output
FIFO

sweepPos
startPos
minAlpha
maxAlpha

sweepPos
likelihood

alpha

sweepPos
likelihood

alpha

Figure 11: Interface between the host PC and accelerator

38

5.2.2 getAlpha structure

As described in section 5.2, the accelerator design is only implementing the nested
loops of the getAlpha function. The getAlpha function contains two nested loops, we
isolate the inner loop of the two loops in a seperate function such that any function
contains no more than a single loop, we call this new function the getAlphaLoop
function. The structural description of the getAlphaLoop function will be discussed
in the next section. The C implementation of getAlpha uses arrays with 100 elements
to keep track of the highest likelihoods with corresponding alpha for a single position
and to keep track of the amount of probabilities calculated by the previous iteration
of the inner loop. The latter will be discussed in the next section. The alpha
values are used to determine the minAlpha and maxAlpha for the next while loop
iteration of the getAlpha function. The C implementation of SweeD is designed to
be executed on personal computers, these devices are in modern days well equipped
with memory and storing this information in arrays is no problem. However for our
FPGA design, we will be working on hundreds or thousands of getLikelihood calls
concurrently. If we would use the same system, we would have to store these array
for every call that we are concurrently processing. For that reason we introduce the
following alterations:

• Instead of keeping track of 100 likelihoods and an index which indicates the
highest likelihood (maxPos), we explicitly keep track of the highest likelihood.

• The C implementation requires 4 alpha values to calculate the new minAlpha
and maxAlpha, the indexes of these alpha values are: maxPos - 2, maxPos - 1,
maxPos and maxPos + 1. Instead of deploying large arrays and keeping track
of the index maxPos, we keep track of the values that correspond to maxPos
- 2, maxPos - 1, maxPos and maxPos + 1 explicitly.6

The accelerator has been designed such that every call to getAlpha creates large
record structure with all relevant variables in Maybe context. Putting the variables
in Maybe context allows them to always be Nothing in stages where the values are
not required. The complete record structure is shown in appendix D. A visual
representation of the structural description designed in Clash is shown in figure 12.

newMax
newMincalcInterval getAlphaLoop

A B C D E

Figure 12: Structural description of getAlpha function

6These values represent the alpha values of the two iterations before the iteration in which
the highest likelihood was found, the iteration in which the highest likelihood was found and the
iteration after the highest likelihood was found.

39

The different functions implemented in getAlpha are explained below:

A - Merge circuit
This is the merge circuit, it contains 2 inputs for valid data and prioritizes valid

data from one input over the other. We refer to the prioritized input as input 1,
and the other is input as input 2. Input 1 is connected to the output of the branch
circuit in section E. When valid data is present at both inputs, only one of them will
be selected. This circuit returns a signal that indicates whether input 2 is selected
which enables us to stall the circuit that produces this data such that the data will
not be lost.

B - calcInterval
The calcInterval circuit calculates the interval between consecutive alphas for the

getAlphaLoop. The equation used by calcInterval shown in equation 6.

newInterval =
log
(
maxAlpha
minAlpha

)
localGridSz

(6)

C - getAlphaLoop
The getAlphaLoop structure represents the inner loop of the getAlpha function

and will be discussed in section 5.2.3.

D - newMax newMin
This circuit calculates the new minAlpha and maxAlpha based on the results of

the getAlphaLoop. The equations to calculate the new minAlpha and maxAlpha
are shown in equation 7 and 8 respectively.

minAlpha =

{
maxPos == 0 = exp(log(minAlpha)− (localGridSz ∗ interval))
otherwise = alphas[maxPos− 1]

(7)

maxAlpha =

{
maxPos == localGridSz − 1 = maxAlpha+maxAlphaDelta
otherwise = alphas[maxPos+ 1]

(8)
maxAlphaDelta = alphas[maxPos− 1]− alphas[maxPos− 2] (9)

E - Branch circuit
The branch circuit routes its input to one of the outputs based on whether or not

the condition for the next iteration has been met. The condition for this branch
circuit is based on equation 10 is true.

(maxAlpha−minAlpha)/((maxAlpha+minAlpha) ∗ 0.5) > 0.5 (10)

If the condition has been met, valid data will be sent back to the merge circuit in
section A. If not, valid data will be sent to output of getAlpha.

40

5.2.3 getAlphaLoop Structure

As discussed in the previous section, SweeD utilizes a large array to keep track of
the amount of probabilities calculated for each iteration of the getAlpha for loop.
If there were no probabilities calculated in the previous iteration, the loop will skip
likelihood calculations for the remaining iterations (For the first iteration, the likeli-
hood calculation will never be skipped). Instead of keeping track of the sweepWidth
for 100 localGridSz indexes, we use the Maybe type to check if the getLikelihood
function has returned a likelihood. If no likelihood is returned, it is treated as
equivalent for no probabilities calculated. In our implementation we break the loop
with use of the branch circuit. Figure 13 shows the structural description of the
getAlphaLoop hardware.

getLikelihoodcalcAlpha
update highest
likelihood and

alphas

A B C D E

update i

Figure 13: Structural description of getAlphaLoop

A - Merge circuit
This is the merge circuit as explained in section 5.2.2.

B - calcAlpha
Function that calculates a new alpha for this iteration between minAlpha and

maxAlpha. The equation used to calculate a new alpha is shown in equation 11.

newAlpha = exp(log(minAlpha) + (i ∗ interval)) (11)

C - getLikelihood
The getLikelihood function which calculates a likelihood for a position based on

an alpha value. This circuit will be described in the next section.

C - update i
Updates the iterator for the next iteration.

D - Update highest likelihood and alphas Based on the result of the getLike-
lihood function, multiple variables are updated. These variables are:

• The highest likelihood with corresponding alpha

• The alpha trackers: maxPos -2, maxPos -1, maxPos and maxPos +1 which
will be required to update minAlpha and maxAlpha in the getAlpha function7.

7These values were introduced in section 5.2.2

41

E - Branch circuit
The branch circuit as described in section 5.2.2. In this case the condition is that

either the calculated CLR is Nothing, or the iterator has reached its limit. If the
condition has been met, valid data will be sent back to the merge circuit in section
A. If the condition has not been met valid data will be sent to output.

5.2.4 getLikelihood structure

We learned from profiling SweeD that the getlikelihood function uses about 99%
of the clock cycles spent by getAlpha for data sets with long genomes. The get-
Likelihood function does most of the computations of the likelihood calculations
and the highest speedup can be gained by accelerating this. From manual analysis
we know that one of the reasons for this is the fact that getLikelihood contains
two sequential loops that perform computationally expensive operations. Since the
calculation performed by both loops in the getLikelihood function is the same, but
only the iterator changes in a different way, we combine these loops into a single
structure. The latency of this structure is 100 clock cycles (based on the latency of
the current floating point operators). We can apply the efficient pipelining method
described in section 2.4 to increase the performance of the nested loops. Recall
that the efficient pipelining method uses the merge and branch circuits described in
section 5.2.2 to concurrently process multiple iterations of the outer loop. We can
apply this method because the highest likelihood has to be calculated for all grid
points and these calculations contain no loop carried dependencies for different grid
points. The application of this method has the added benefit that the data depen-
dent repetition of the loops does not degrade performance. The structural overview
of how the getLikelihood function is implemented in Clash is shown in figure 14.

likelihoodIteration

prepIteration

prepIteration1

A B C D E F G

Figure 14: Structural overview of getLikelihood function without parallelism

42

All structural parts of architecture shown in figure 14 have been labelled and will
be discussed below:

A - prepIteration
This function calculates the alpha distance for the first iteration of the first loop

and checks if the conditions are met. If these conditions are not met, it calculates the
alpha distance for the first iteration of the second loop and checks if the conditions
are met. This function returns the data in one of 3 states:

• Data has met conditions for the first iteration of the loop.

• Data has met conditions for the first iteration of the second loop.

• Data has not met conditions for the first iteration of the first or the second
loop.

The conditions that the data must meet are the following: The alpha distance must
be below 12.0 and the iterator must be greater or equal to 0 and smaller than the
amount of SNPs. In case that the condition is not met the first time, the input of
the circuit must be stalled to calculate the alpha distance for the second loop.

B - Multiplexer
Based on the state of the data at the input, this hardware routes the data to the

merge circuit in section C, or it bypasses the likelihood calculations in C, D, E and
F and sends the data to the demultiplexer in G. The likelihood calculations are only
bypassed if the conditions for both loops were not met.

C - Merge circuit
This is the merge circuit as described in section 5.2.2.

D - likelihoodIteration
This hardware performs a single iteration of the loops in the getLikelihood func-

tion, consisting of probability interpolation and accumulation and preperation for
the next iteration. It can be considered as a ∼100 stage pipeline with a latency of
∼100 cycles.

E - prepIteration1
This hardware is similar to A - prepIteration in the sense that it performs the

same task, however, this version is designed such that it calculates the alpha dis-
tance for the next iteration of the current loop and the first iteration of the second
loop concurrently. This enables us to select the correct output rather than stalling
likelihoodIteration to improve throughput.

F - Branch circuit
The branch circuit as described in section 5.2.2.

G - Priority demultiplexer
Functionally this hardware does the same as the merge circuit in section C, here

it prioritizes the output of the branch circuit in section F.

43

5.3 Proposed memory access method

From profiling SweeD we know that the amount of iterations executed by the loops in
getLikelihood is significantly higher than there are positions in our data set (based
on calls to splint divided by length of data set, results in 11 thousand calls per
position on average in our profiling runs). This means that on average every value
in the positionsInd, nn, xx and baseLikelihood array is accessed ∼11 thousand times,
suggesting that a lot of values are reused. Based on the access patterns described
in section 4.3.3, we propose a way of prefetching the data of the arrays. Predicting
indexes for consecutive accesses to positionsInd, xx, nn and baseLikelihood is rather
straight forward, the proposed method for prefetching these values is as follows:

• We use blockRams as temporary storage for the contents of the positionsInd,
xx, nn and baseLikelihood arrays. These blockRams are grouped into memory
blocks and we keep track of an address book containing entries that specify
which data is held in which memory block (e.g memory block 0 holds data for
0 <= i <= 10).

• We monitor the output of the merge circuit. From this output we take the
iterator and the direction of the sweep, if the current iterator or the next
iterator is not in one of the memory blocks (e.g. next iterator is 11), the
oldest address book entry will be cleared and filled with a certain window of
values (e.g 11 <= i <= 21).

The gridProbs array contains 3 dimensions, the accesses to this array rely on three
things: the first index relies on the frequency of this SNP, the second index relies
on the amount of samples for this SNP and the third index relies on the alpha
Distance, which results in an index from 0 to 299. For a decrementing sweep, we
know that in the current iteration xx[i] will be accessed. It is likely that in the next
iteration xx[i-1] will be accessed. By analysing multiple datasets that were used for
profiling SweeD, we found that the data in xx (the SNP frequencies) seem to have
some degree of spatial locality. Figures 15 and 16 show graphs of the frequencies
of the deviations between neighbouring SNPs. Mainly observe the frequency peak
near a deviation of 0. This result was achieved with a python script that executes
the following steps:

1. For each SNP, calculate the difference between itself and both neighbouring
SNPs and store both differences in a list.

2. Determine the frequency of each difference in the list (e.g a difference of 0
occured 218 times in the data set that belongs to figure 15).

This means that there’s a significant chance that the deviation of xx[i-1] and xx[i]
is close to zero, thus there is spatial locality, meaning that prefetching data in a
certain range based on xx[i] could prove to be useful.

44

0 10 20 30 40 50 60 70 80
0

50

100

150

200

Deviations

F
re

q
u
en

ci
es

of
d
ev

ia
ti

on
s

Figure 15: Frequencies of deviations between direct neighbouring SNPs, data set
length 1000, samples 100

0 100 200 300 400 500 600 700
0

200

400

600

800

1,000

1,200

Deviations

F
re

q
u
en

ci
es

of
d
ev

ia
ti

on
s

Figure 16: Frequencies of deviations between direct neighbouring SNPs, data set
length 10000, samples 1000

45

A method of prefetching gridProbs values could be as follows:

• We use blockRams as temporary storage for the contents of the gridProbs
arrays. These blockRams are grouped into memory blocks and we keep track
of an address book containing entries that specify which data is held in which
memory block (e.g memory block 0 holds data for 37 <= i1 <= 48, i2 = 100,
0 <= i3 <= 299 where i1 corresponds to the first index of gridProbs, i2 to the
second index and i3 to the third index.).

• We monitor the values that are being prefetched from the xx[] and nn[] arrays,
for each pair of values we check if it is stored in our address book. If it is not
stored in our address book, we clear the oldest address book entry and prefetch
a window of values around the missing entry (e.g. xx[i] = 63, nn[i] = 100 is
not in our address book, fetch 57 <= i1 <= 68, i2 = 100, 0 <= i3 <= 299).

5.4 Tunable parameters

In section 4.5 we discussed methods of introducing flexibility in our design which we
categorized in two categories: parameters controlling the data types that are used
and parameters that control the amount of parallelism. In this section we discuss
how we implemented both types of parameters.

5.4.1 Controlling data types

The variables that are used in the accelerator are either unsigned integer values or
floating point values. Determining the required amount of bits for the mantissa and
exponent of floating point numbers is no trivial task and changing this would require
all floating point operators to be regenerated. For now the floating point variable
will remain single precision 32 bit floating point. Based on table 9 we create four
data types, these data types are shown in table 11. The size of these data types
can be controlled using the parameters SampleBits and SitesBits which represent
the minimum amount of bits required to represent the amount of sample and the
minimum amount of bits required to represent the amount of SNPs respectively. We
also defined the function bitsRequired to easily enable the user to determine how
many bits are required to represent certain values. The bitsRequired function uses
equation 12 to determine the amount of bits required.

Type name Type Description
SNPFreq Unsigned SampleBits Represents the SNP Frequency of an SNP.
Samples Unsigned SampleBits Represents the amount of samples of an

SNP.
GenomeIndex Signed (SitesBits+1) Represents the index that is used to iter-

ate over the SNPs.
LocalGridIndex Unsigned 7 Represents the iterator in getAlphaLoop
Decimal BitVector 32 Can be used for all floating point variables

Table 11: Custom data types for SweeD

bitsRequired =

⌈
log(x− 1)

log(2)

⌉
(12)

46

While applying this method will enable us to reduce the size of some operators. The
saved area is expected to be insignificant due to the fact that most operators are
floating point operators. Due to the limited time, we stick to the Signed 32 type for
all signed bit variables in this thesis.

5.4.2 Controlling parallelism

To make further use of the resources offered by FPGAs we can introduce more
parallelism into our design. In section 4.5.1 we discussed the problems that arise with
introducing parallelism for designs with data dependent repetition and loop carried
dependencies. However design presented section 5.2 presents new opportunities to
introduce parallelism. The opportunity offered by this implementation is that we can
concurrently process iterations of the outer loop which contains no data dependent
repetition or loop carried dependencies. The biggest bottleneck in the design without
parallelism arises at the merge circuit of the getLikelihood function (Figure 17 shows
an abstraction of the architecture of the getLikelihood function). In our profiling
runs there was an average of 358 likelihood iterations per getLikelihood call, meaning
that on average every piece of valid data propagates around 358 times through the
merge circuit, stalling the circuitry at its low priority input.

pre

iteration

getLikelihood
Loop_gL

Figure 17: getLikelihood 1 instance

We introduce parallelism by creating multiple instances of the loop such that if the
input of the first instance is stalled, valid data can be sent to the second instance.
An example with 4 instances is shown in figure 18, here we use a demultiplexer to
send data to one of the multiple instances and a multiplexer to select one of the
outputs of the instances based on which instance holds valid data.

Observe how the output of the demultiplexer can only produce a single valid data
input for the instances per clock cycle. In the event that multiple Loop gL instances
are ready to accept input data, only one of these instances will receive the input.
This significantly impacts the performance of the accelerator since the utilization of
the other Loop gL instances drops. To prevent this drop in utilization we use FIFO
buffers.

The FIFO buffers at the input of the instances prevent data starvation by accumu-
lating sets of valid input data. These FIFO buffers have a large enough capacity to
smooth out large variations in data consumption which should maximize the utiliza-
tion of each loop gL instance. Observe in figure 18 that the outputs of all instances
are connected to the same multiplexer which can only process one set of valid data
per clock cycle. The FIFO buffers at the output are used to prevent stalling in the
case that multiple instances produce valid data concurrently. These FIFO buffers

47

have a large enough capacity to smooth out bursts of data production from the
Loop gL instances, this should prevent stalling of the loop gL instances.

The amount of loop instances we can create depends on the resources available on
the target device. Without parallelism, the bottleneck of this design is the amount
of results Loop gL can deliver, but as we increase parallelism the bottleneck will
shift to the amount of results we can concurrently return from the getLikelihood
circuit (1 result per cycle).

This concept of parallelism can also be applied at a higher level to the loops in the
getAlpha function and getAlpaLoop function. Doing so enables us to increase the
amount of parallelism further when the output of getLikelihood is nearing the maxi-
mum capacity (can not handle the outputs produced by the Loop gL instances). An
example of applying this method to getAlphaLoop is shown in figure 19. We identify
four levels of tuning parameters, the first level controls the amount of instances of
getAlpha and the second level controls the amount of instances of getAlphaLoop in
each getAlpha. The third level controls the amount of instances of getLikelihood in
each getAlphaLoop. The fourth level controls the amount of instances of loop gL
in getlikelihood. These parameters can be controlled by changing the parameters
presented in listing 1. Currently the FIFOs are implemented with a constant size
of 100 elements, however we propose to later enable the user to control the size of
the FIFOs per level. We can also control the presence of the FIFOs, e.g. FIFOs are
not required at levels with no extra parallelism. This can be a consideration when
choosing one combination of parameters over the other.

loop_gL

loop_gL

loop_gL

loop_gLFIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

getLikelihood, 4x loop_gL

pre

Figure 18: getLikelihood 4 instances

type L1Parallelism = 1
type L2Parallelism = 2
type L3Parallelism = 2
type L4Parallelism = 3

Listing 1: Parameters for controlling the amount of parallelism

48

loop_gL

loop_gL

loop_gL

loop_gLFIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

getLikelihood, 4x loop_gL

pre

loop_gL

loop_gL

loop_gL

loop_gLFIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

getLikelihood, 4x loop_gL

pre
loop_gL

loop_gL

loop_gL

loop_gLFIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

getLikelihood, 4x loop_gL

pre
loop_gL

loop_gL

loop_gL

loop_gLFIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

getLikelihood, 4x loop_gL

preFIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

pre_gL post_gL

getAlphaLoop, 4x getLikelihood

Figure 19: getAlphaLoop 4 instances of getLikelihood with 4 instances.

Concluding design remarks
Our implementation of the merge circuit can be described as a priority multiplexer
that prioritizes one input over the other. Combined with stalling the circuitry that
holds valid data when the input does not accept any data, this results in a data path
that automatically controls the flow of data. This automatic decentralised control
methodology has both advantages and disadvantages. The first great advantage of
this approach is that we do not require a complex control mechanism that controls
individual circuits. The second great advantage of this approach is that with the
FIFOs at the input and output of each parallelised circuit, the throughput of the
hardware accelerator can be maximized. The disadvantage of of this decentralised
approach is that finding bottlenecks may become cumbersome. We propose to ex-
plicitly monitor the enable signals that are produced by the priority multiplexers.
This could be done by counting the amount of clock cycles that each enable signal
is low.

5.5 Decentralised automatic flow control

The implementation of the architecture requires a lot of stalling due to the use of the
merge circuit which is in our case implemented as priority multiplexer. The priority
multiplexer prioritizes its feedback input (the input it receives from the branch
circuit) over the other input whenever it holds valid data. However, when both
inputs contain valid data, the circuitry that produces data for the non prioritized
input must be stalled in order to prevent data loss. Figure 20 shows a linear pipeline
with function A, B and C, none of which contain feedback or conditional stalling.
All enable inputs are controlled by the ready signal from the succeeding hardware.
This ready signal is high when the succeeding hardware of function C can consume
its output or when the output of function C does not hold valid data. However
our architecture contains a circuit that consumes an enable signal and produces
its own ready signal. Figure 21 shows an abstraction of this hardware as function
D which clearly shows how function D controls the enable signal of the preceding

49

ready

Function A Function B Function C
enable enable enable

Valid data

Figure 20: Linear pipeline enable control

hardware. It is unknown when function D will produce a valid output and unknown
when function D will consume a valid input. Figure 22 shows an abstraction of the

ready

Function A Function C
enable enable

Valid data
Function D

enable ready

Figure 21: Nonlinear pipeline enable control

internals of function D. Function A and C are the same as in figure 20 and figure 21.
The input dataIn can hold valid data or no data, the output dataOut can hold valid
data or no data. Input enable indicates whether succeeding circuitry accepts data
from dataOut in the next cycle. The output ready indicates whether function D
reads data from dataIn in the next cycle. Assume that function E always consumes
an input whenever it produces valid data. The enable of function C is high in the
following cases: enable is high, output of function C does not contain valid data,
function E produces valid data and dataOut does not produce valid input data. We
have to be very careful to not create a circular combinational dependency where the
enable of function E depends on its own ready signal while its ready signal depends
on its enable signal (The latter is a given since there are cases where it can only
consume data whenever it produces data).

Function E

enable ready

Function A
enable

Function C
enable

enable'
enable'' ready

dataIn dataOut

enable

Function D

enable ready

Figure 22: Visualisation of the internals of function D.

50

6 Evaluation

6.1 Functional correctness

To be able to use the hardware accelerator it is important that it works as expected.
We test the hardware implementation by comparing it to the C implementation.
The entire accelerator consists of the getAlpha circuit with input and output FIFO
buffers. In the design we identify four separate circuits, the splint circuit, the get-
Likelihood circuit, the getAlphaLoop circuit and the getAlpha circuit. We test the
correctness of these circuits by running the C implementation of SweeD for a small
data set, collecting inputs for these circuits and collecting the results that correspond
to these inputs. The accelerator requires access to certain lookup tables, to make
these in Clash we write the contents of these lookup tables to a text file and load
them into Clash. We simulate each circuit in the interactive environment with the
inputs that were recorded from the C implementation. For each output we receive,
we compare it to the output that was originally produced by the C implementation
and calculate the deviations. We also count the amount of outputs to make sure
that every input results in a single output. From all the deviations we determine
the average and maximum deviation for each function. The data sets that were used
for verification are generated with Hudson’s ms [31]. All tests are performed on the
version without parallelism to be able to verify the correctness of the calculations
and whether or not data is lost. The simulations of the Clash design require a lot of
memory and are not feasible on personal computers. The simulations were all exe-
cuted on a server with two Xeon Gold 6126 processors and 251 gigabytes of RAM.
The highest RAM usage measured exceeded 200 gigabytes, this is expected to be
either a result of the feedback loops of the design or the lazy evaluation nature of
Clash.

Functional correctness of likelihood interpolations
The likelihood interpolation circuit (splint) takes 3 input values and returns 1

output value. The inputs are a SNP frequency (x), amount of samples (n) and an
alphaDistance (ad). The output is a probability. Given the fact that the splint
circuit contains no loops, we know when to expect the result (in the test case, the
result is present at the output of splint after 65 clock cycles). The splint circuit
has been tested for a data set with 25 sequences of length 25. With 1525 calls to
splint, an average deviation of 2.487e-8 was measured with a maximum deviation of
3.79e-5. These deviations are to be expected given that the values from the lookup
tables are copied with limited precision from the C implementation to Clash and
given that floating point arithmetic is non associative.

Functional correctness of getLikelihood
The getLikelihood circuit contains a loop with data dependent repetition, so the

order in which the results are present at the output may be different from the order
that data was sent to the getLikelihood circuit. This circuit will occasionally return
negative likelihoods, these are the result of a logarithmic function. As the input of
the logarithmic function approaches 0, the output approaches -infinity. Small devi-
ations in the calculations that result from the non associative property of floating
point arithmetic can lead to large deviations as result of this logarithmic function.
The SweeD implementation ignores negative likelihoods and for this comparison we
will change negative likelihoods to 0.0. For 13 215 inputs, we received 13 215 outputs,
indicating that no data was lost. For these inputs the accelerator implementation

51

produced 5 543 likelihoods larger than 0.0. The average deviation that was calcu-
lated is 1.6455122e-7 and a maximum deviation is 3.4794211e-6. This indicates that
the likelihoods that SweeD is trying to find are being found and the implementation
will provide sufficiently similar results to the C implementation. The differences are
mainly attributed to how data from the arrays in the C implementation are copied
to Clash and the non associative property of floating point arithmetic.

Functional correctness of getAlphaLoop
The getAlphaLoop circuit contains multiple nested loops. The order in which the

results are received from this circuit may be different from the order in which the in-
puts are supplied to the circuit. For each input we return the highest likelihood and
compare it to the highest likelihood in the C implementation for that getAlphaLoop
cycle. In a simulation of 1 000 000 clock cycles, getAlphaLoop was provided 1480
inputs and returned 1009 results with an average deviation of 1.9127324e-2 and a
maximum deviation of 0.27449661. Some data is lost after the priority multiplexer
when the new alpha must be calculated. This seems to be caused by incorrect ap-
plication of the enable signals. A maximum deviation of around 0.27 seems too high
to attribute to the non associative property of floating point arithmetic, unfortu-
nately there was no time to investigate the root cause of this deviation. The current
implementation of the getAlphaLoop circuit is currently not functionally correct.

Functional correctness of getAlpha
The functional correctness of the getAlpha function is hard to test due to the

long simulation durations and the high memory requirements of the simulations.
The main reason for the long simulation durations is the fact that the accelerator
contains three nested loops of which the iterations are executed sequentially. The
accelerator can process many data points concurrently, but it takes a long time be-
fore the results appear at the output of the accelerator. Simulating the accelerator
for 500 000 cycles with 80 inputs resulted in 30 results with an average deviation
of 9.640486e-2 and a maximum deviation of 1.074974. We already know that the
getAlphaLoop circuit contains bugs that results in data loss, so it is no surprise
that not every input results in an output. Some maxAlpha values present in the
output became NaN. It is suspected that the tracking system that is applied for the
alpha values instead of the tracking arrays contains bugs and leads to false results.
Unfortunately there was not enough time to correct the implementation.

A summary of the evaluation is shown in table 12.

Table 12: Functional correctness results for all circuits regarding presence of data
loss and deviations of calculated likelihoods.

Circuit Supplied
inputs

Received
outputs

Data loss average
deviation

maximum
deviation

splint 1 525 1 525 0 2.487e-8 3.79e-5
getLikelihood 13 215 13 215 0 1.645e-7 3.479e-6
getAlphaLoop 1480 1009 471 1.913e-2 2.745e-1
getAlpha 80 30 50 9.640e-2 1.075

52

6.1.1 Synthesizing the design for different parameters

In this section we will show the results of synthesis with different parameters for
a target device. Due to the limited amount of time we only perform synthesis
runs with different amounts of parallelism. As target device we chose a Cyclone
V 5CGXFC9E7F35C, which offers 113,560 adaptive logic modules (ALMs), 1220
RAM blocks providing 12,49Mb of memory and 342 DSP blocks. Table 13 shows an
overview of synthesis runs with varying configurations for the amount of parallelism
present in the design. The amount of parallelism is indicated by the different levels
(L1, L2, L3 and L4), L4 being the most fine grained level of parallelism. For each run
we recorded the resources used as percentage of the amount available and whether
the Fitter succeeded in fitting the design on the FPGA. The task of the Fitter is
to map the compiled design to the hardware components on the chip. For all these
runs we only included the FIFO buffers at level L4. The other levels contain no
FIFO buffers.

L1 L2 L3 L4 ALMs % Memory bits % DSPs Fits?
1 1 1 1 12,51 2,42 66 (19,30%) Yes
1 1 1 2 17,85 4,08 122 (35,67%) Yes
1 1 1 4 28,47 7,41 108 (31,58%) Yes
1 1 1 8 49,96 14,05 164 (47,95%) Yes
1 1 1 16 92,77 27,32 276 (80,70%) No
1 1 1 15 87,08 25,69 262 (76,61%) No
1 1 1 12 71,14 20,71 220 (64,33%) Yes
1 1 2 8 94,73 27,36 227 (66,37%) No
1 2 2 4 97,39 27,62 294 (85,96%) No
2 2 2 2 112,64 28,52 342 (100,00%) No
1 1 1 13 76,58 22,37 234 (68,42%) Yes
1 1 1 14 81,75 24,03 248 (72,51%) Yes
1 1 2 7 82,37 24,08 249 (72,81%) Yes
1 2 2 3 74,78 21,05 238 (69,59%) Yes

Table 13: Synthesis results for different configurations for the amount of parallelism
in the design with FIFOs only at the inputs and outputs of L4. Resource usage is a
percent age of the total resources available on the device.

From this table it can be observed that the highest level of parallelism can be
achieved by setting the levels to L1 = 1, L2 = 1, L3 = 1, L4 = 14 or L1 = 1, L2 = 1,
L3 = 2, L4 = 7. Quartus also reports information regarding the highest frequency
(FMax) that can be used for the design in varying circumstances. Quartus reports
the FMax for 4 PVT (Process, Voltage, Temperature) models, these models take
in consideration the speed grade of the chip (Process), the voltage the chip runs
at and the temperature of the chip. All models considered assume a voltage of
1100mV. From table 14 it can be observed that the design which utilizes multiple
levels of parallelism offers a higher maximum frequency that enables us to reach
higher performance. Furthermore, the ability to introduce parallelism at a higher
level reduces the risk of data congestion where multiple lower level instances produce
valid data at the same time that have to be processed individually, this could result
in stalling.

53

Parallelism Maximum clock frequencies
L1 L2 L3 L4 Slow 85C Slow 0C Fast 85C Fast 0C
1 1 1 14 20.6 MHz 20.5 MHz 46.9 MHz 51.83 MHz
1 1 2 7 29.7 MHz 29.6 Mhz 63.47 MHz 72.8 MHz

Table 14: Maximum frequencies for different PVT models with different two different
parallelism configurations

A direct consequence of adding parallelism and FIFOs to our design is that the
accelerator will process more grid points concurrently. We estimated that the design
with the highest frequency processes around 3100 grid points concurrently8. A direct
consequence of this concurrency is that the accelerator can only reach full utilization
when there are enough grid points to be processed.

6.2 Estimating speedup upper limit

In this section we estimate the upper limit of potential speedup of the design by
estimating the throughput of our accelerator for a set of parameters and comparing
it to the throughput of the C implementation. The throughput of the hardware
accelerator is based on the maximum amount of parallelism that we can achieve.
To estimate the upper limit for the throughput on this accelerator, we make the
following assumptions:

• Maximum utilization of fine grained loops - Due to the processing bot-
tleneck imposed by the fine grained loops, valid data can accumulate at the
inputs in the FIFO buffers. We assume that the direct consequence of this
is the fact that there is always valid data available at the inputs, preventing
data starvation. We also assume that the FIFO buffers at the outputs of the
fine grained loops have enough capacity to prevent the necessity of stalling.
Under these assumptions we can obtain the maximum throughput where each
instance of a level 4 loop can produce one valid iteration per clock cycle due
to its pipeline design.

• Ideal memory - To estimate the maximum theoretical speedup we will as-
sume ideal memory such that there is no performance restriction imposed by
a memory subsystem. Each valid iteration mentioned above requires six vari-
ables that need to be fetched from memory. With 14 times parallelism this
would result in 84 accesses per iteration. At a maximum frequency of 72.8
MHz this ideal memory would be supplying 195 Gigabits of data per second.

The throughput of the hardware accelerator will be compared to the throughput
delivered by the C implementation. We will estimate the throughput of the C im-
plementation by using the profiling results to determine amount of clock cycles spent
on the same functionality and using the total execution time of a separate run with
the same parameters to determine the time spent on this functionality. Unfortu-
nately, the computational cost of the functions in getAlpha that where excluded
from the accelerator design (getMinMaxAlpha and getClosestSNPIndex) can not be

8Consider the design to be a pipeline with feedback loops and stalling capacity. L4 contains
112 stages, L3 contains (L4Parallelism * L4) + 12 stages, L2 contains (L3Parallelism * L3) + 46
stages, L1 contains (L2Parallelism * L2) + 80 stages, total contains (L1Parallelism * L1) stages, it
is unlikely that all FIFOs will be filled at one point, so our estimate is aimed at full input buffers
and empty output buffers as a heuristic.

54

explicitly retrieved. Instead we will consider the computational cost used by the
whole getAlpha function. Given the fact that in the profiling runs, the getLikeli-
hood function consumed >99% of the clock cycles spent by getAlpha this is not
expected to have a significant impact. Table 15 shows the estimated time spent on
the likelihood calculations by the processor. The sequential version of SweeD was
used which ran on a system that contains two Xeon Gold 6126 CPUs running at
2.6Ghz with 256 GiB RAM.

Sequences Samples Exec.
Time(s)

Total
cycles

getAlpha % getAlpha
time (s)

10000 10 41,38 2,86E+11 99,9 41,36
10000 100 43,16 2,80E+11 99,4 42,91
10000 1000 69,78 4,99E+11 54,4 37,97

Table 15: Execution time estimation of the getAlpha function based on execution
time and profiling results.

The accelerator has been designed such that under the assumptions presented above
we can perform one iteration of the level 4 loop per clock cycle per level 4 instance.
Given the fact that we can instantiate 14 instances on a Cyclone V 5CGXFC9E7F35C
at 72.8 MHz in the best case, we can process up to 1.02 ∗ 109 iterations per second.
Table 16 shows the time estimated for the accelerator to process these iterations. We
know that each iteration results in one call to the splint function and from profiling
we know how many calls to the splint function were made each run. Thus based
on the amount of calls to splint we know the amount of iterations to process and
based on the amount of iterations we can process per clock cycle and the maximum
clock frequency of 72.8 MHz we can estimate an upper bound for the runtime of
the accelerator on this chip. This estimate is based on the assumption that we can
maintain maximum utilization for the whole duration of the likelihood calculations.
However, we know that this will never be the case since at the beginning of the like-
lihood calculations since the FIFO buffers and pipeline stages are all empty. How
fast the utilization will rise to the maximum will depend on the speed at which the
accelerator can be supplied data to process. The utilization is also expected to drop
at the end of the likelihood calculations from the moment that the accelerator stops
receiving new input data. The speed and intensity at which the utilization will drop
is currently unknown. The upper limit of the speedup is calculated by dividing the
estimated time of the processor by the estimated time of the accelerator (e.g. 41,36

0,46
≈

89) .

Sequences Samples grid points splint calls est. time (s) speedup
upper limit
(x)

10 000 10 8 000 472 045 078 0,46 89,30
10 000 100 8 000 468 975 078 0,46 93,25
10 000 1 000 8 000 469 663 644 0,46 82,40

Table 16: Estimating the execution time of the accelerator to determine the speedup
with a Cyclone V FPGA.

The Cyclone V FPGA for which the design was synthesised was released back in
2011 (∼10 years before time of writing) and integrated circuit design has come a long
way since then. The reason the design was synthesized for this chip is a limitation

55

of the available Quartus license. One of the most recently released FPGAs from
Intel is the Stratix 10 GX 10M FPGA (released in 2019), which offers ∼ 30 times as
many ALMs, ∼24 times as much memory and ∼10 times as many DSPs, we can not
blatantly expect to be able to introduce 10 times as much parallelism to this chip,
this would need to be researched. However it is reasonable to expect a significant
improvement on newer chips. Furthermore the accelerator design has not yet been
analysed for potential frequency bottlenecks, potentially a higher FMax could be
reached with some modifications. At the beginning of the section we assumed ideal
memory. The feasibility of this accelerator design heavily relies on the memory
management system which has not been implemented.

56

7 Discussion

The likelihoods that are being calculated by the getLikelihood circuit are expected
to deviate due to the non associative nature of floating point arithmetic [35]. The
getLikelihood circuitry shows no data loss, indicating that the method of stalling
and using loops works. However, when simulating the getAlphaLoop circuit the first
indications of data loss appear that could not be fixed. Completely simulating the
hardware accelerator for larger data sets still proves to be rather difficult due to
the high memory consumption and long runtimes of the simulations, the reason for
this is still unknown. The interactive Read Evaluate Print Loop (REPL) offered by
Clash is otherwise still very capable at providing a way to quickly test new func-
tionality separately. Also the method of stalling circuitry to preserve valid data has
been shown to work through testing on the getLikelihood function (since we received
an output for each input that was given). However, correctly controlling all enable
signals for circuits with nested loops still proved to be rather difficult.

Adjusting the amount of parallelism in the system is nearly effortless. However,
the user has to synthesize the design multiple times to check whether the configu-
ration fits on the target device. Unfortunately even after extensive testing in the C
implementation, no suitable fixed point representation was found. For this project
we chose to use floating point operators which are implemented through IPs. It
is relatively easy, though time consuming to generate new IPs, but the method is
not vendor bound. The design makes use of BlockRam, while this is a specific tech-
nology, it is expected to not pose a problem due to the fact that it is widely adopted.

We managed to determine an upperbound of the speedup that can be offered by
this accelerator on a Cyclone V FPGA, the upperbound is around ∼86 times faster
than the sequential version of SweeD running on a Xeon Gold 6126 running at
2.6 GHz. This is a significant speedup, especially considering the fact that the
FPGA is ∼10 years old at the moment of writing. Note that this only concerns
the likelihood calculations since the other functionality is not accelerated. Using
other target devices is possible, but then IP cores must be generated for the target
device. The actual great advantage of this design is the fact that you can freely
and easily change the amount of parallelism without losing synchronisation. The
estimated upper limit assumes ideal memory that does not take up space, does not
have latency and has infinite capacity. Of course in the real world no such thing
exists. A memory access solution has been proposed, but implementing an actual
memory interface was outside the scope of this thesis. The final speedup of the
accelerator will depend on how the data from the arrays is provided.

57

8 Conclusion

Software tools for selective sweep detection have become important in the bio-
informatics toolbox to analyze genetic data. The goal of this thesis was to ac-
celerate selective sweep detection with dedicated hardware due to the long typically
long runtimes of these types of tools. The tool that was accelerated is Sweep De-
tector (SweeD) which makes use of SFS based CLR calculations. One of the main
focuses of this thesis was to create a flexible design that can be adjusted to differ-
ent FPGA setups such that it is usable with available setups. The functional HDL
Clash was used because of the mathematical nature of the problem and the ease
of implementing flexibility due to its high level abstractions. To guide the project,
research questions have been formed. We will be answering these questions based
on the findings in this thesis. For each research question we will first answer the
sub-questions.
Research sub-question 1a:

1a. Which part of the algorithm should be accelerated?

It is trivial that, to gain the highest speedup while making an accelerator, we must
accelerate the part that consumes most time. By profiling SweeD with Callgrind
we managed to identify the two most computationally expensive parts. These parts
were data preparation and likelihood calculations. Ideally both should be acceler-
ated given the fact that they both require a lot of computation time, but for this
thesis we chose to accelerate the likelihood calculations. The main reasons for this
are the large amount of time consumed by the likelihood calculations as shown by
the profiling results and the great amount of repetition. Within the likelihood cal-
culations we found parts that were suitable for acceleration and parts that were
not suitable for acceleration. We found that the parts that should be accelerated
are calculating likelihoods for given a alpha value and finding the alpha value that
results in the highest likelihood for points on the genome. The part that should not
be accelerated is finding the starting point of the selective sweep and finding the
minimum and maximum alpha. These functions did not significantly contribute to
the runtime of SweeD and their memory access patterns would introduce a signifi-
cant load on the memory interface.

Research sub-question 1b:

1b. How can we reduce the area of the implementation without significantly
impacting the precision?

The data type that is used for real numbers in SweeD is the double precision floating
point data type. This uses 64 bit floating point values. It is already known that
floating point operations do not map well to FPGA fabric compared to fixed point
operations. Furthermore, double precision floating operators in FPGAs require a
significant amount of resources as consequence of this. Hardware designers often
use the concurrent nature of FPGAs to create multiple instances of the same hard-
ware to process multiple data streams in parallel. This leads to a higher resource
usage based on how much resources a single instance requires. If we can reduce
the resources required for a single instance, we can create more parallelism with the
same amount of resources. We found that the data type of the decimal values can be
reduced to at least single precision floating point without significantly affecting the
precision of the results. Ideally we use fixed point values, but we determined that
this was not a suitable solution because we were not able to produce meaningful

58

results with up to 64 bit fixed point values.

Main research question 1:

1. How can we design a technology-independent hardware accelerator that
significantly speeds up SweeD using Clash

One of the main obstacles encountered while accelerating SweeD is that the likeli-
hood calculations contain multiple nested loops with loop carried dependencies and
data dependent repetition. By implementing tailored versions of the merge circuit,
branch circuit en blocking concept presented by Styles et al. [2] we were able to
concurrently process iterations of the outermost loop which contains neither data
dependent repetition or loop carried dependencies. By stalling the circuitry at the
non prioritized input whenever it holds valid data but is not selected, we ensure
that data is not getting lost. We applied this method at any point in the hardware
that may require stalling to create an automatic decentralized control system for
the hardware. The main question remains partly unanswered because the hardware
accelerator requires a memory management system that can provide the hardware
with data with minimum stalling. While there is a proposed solution that utilizes
prefetching to minimize stalling, no such memory system has been implemented. An
estimate for the upper limit speedup was made assuming ideal memory. For a Cy-
clone V FPGA (2011) we were able to instantiate 14 parallel instances of the lower
level loops with an maximum achievable clock frequency of 72.8 MHz. Based on
this we estimated a speedup of around 89 times compared to the sequential version
of SweeD running on a Xeon Gold 6125 (2017). Whether this speedup is actually
achievable highly depends on the memory management system. The ideal memory
that was assumed would be supplying 195 gigabits of data from the arrays, since
no single data bus can provide that kind of throughput it is definitely necessary to
create a temporary on chip storage solution.

Research sub-question 2a:

Where can we introduce extra parallelism in the design?

Usually parallelism can be introduced at points where the same function has to be
executed for multiple data sets. In our case the only place where this occurs are the
loops. The data dependent repetition and loop carried dependencies prevent effi-
ciently processing multiple iterations of the same loop at the same time. However,
we can concurrently process outer loop iterations. We know that the inner most
loop stalls the non prioritized input of the multiplexer most of the time, this creates
a bottleneck. We can create parallelism at these bottlenecks where we can process
even more outer loop iterations in an efficient manner.

Research sub-question 2b:

Which parameters can we offer to easily tune the design?

Determining which parameters to offer is important because it defines how the user
can adjust the design to its preference. We found that initially there is not much
for the user to control regarding the functionality of the algorithm. The most im-
portant parameters that we introduced are for varying the amounts of parallelism
at different granularities and controlling the presence and sizes of the FIFO buffers
to achieve the highest speedup.

Main research question 2:

59

How can we create flexibility in our design such that it is easily adjustable for
different target devices?

We create flexibility by enabling the user to control the amount of parallelism at
different granularities to obtain the highest throughput possible with the available
resources. Every parallel instance contains FIFOs of which we can control the pres-
ence and the size. We managed to create a design for a Cyclone V FPGA where
we could instantiate 14 parallel instances of the inner most loop, combined with the
highest possible FMax and some assumptions regarding the availability of data we
determined an upper limit of speedup of around 86 times for this FPGA compared to
the sequential version of SweeD. The current implementation utilizes floating point
operator that are generated by Quartus for a certain chip FPGA family. However,
any other set of pipelined FPGA operators can be used to adjust the design for
different FPGAs. The latency of the operators can be set per operator in Clash and
Clash will automatically ensure that all data is synchronised when the latency is
changed.

60

9 Recommendations

9.1 Memory management system

As discussed in the conclusion, the final performance of the accelerator will heavily
rely on the memory management system. It is recommended to develop a system
that uses a smart tailored method using for example caching or prefetching to tem-
porarily store data on chip. It is recommended to consider the prefetching concept
described in section 5.3. Section C goes into depth regarding the most relevant data
dependencies.

9.2 Floating point operators in Clash

At the moment of writing, floating point operators are not supported by Clash. This
problem was circumvented by generating IPs with the vendor tool that is used for
synthesized and making adjustments to Clash such that these can be used in the
code. How these are currently implemented is shown in section 5.1.3. A more general
solution could be to use FloPoCo [36]. FloPoCo is a project aimed at creating a
generator for floating point operators for FPGAs. At a glance, this project seems to
be highly suitable for replacing the vendor generated IP cores. However, recent Clash
documentation files regarding version 1.5.0 mentions a ”-fclash-float-support” flag
that hints at upcoming floating point support. When it will actually be released and
whether or not it will be suitable for the current implementation is unknown. When
going forward with the current approach of using custom IP cores, it is proposed
to use visible type application to delay one of the inputs to match the others for
operators with two inputs. This will eliminate the need to explicitly delay variables
in equations as Clash will handle all of the delays appropriately. An example of
applying visible type applications to a delayed multiplication is shown below:

multiply ::
forall m n dom a .
(Num a, HiddenClockResetEnable dom, NFDataX a, KnownNat m, KnownNat n) =>
DSignal dom m a ->
DSignal dom n a ->
DSignal dom (Max m n + 3) a

multiply a b = result
where

result = delayN d3 0 ((*) <$> inA <*> inB
inA = delayI @(Max m n - m) 0 a
inB = delayI @(Max m n - n) 0 b)

For example when m = 3 and n = 1, inA will be delayed ((Max 3 1) - 3) = 0
cycles. inB will be delayed ((Max 3 1) - 1) = 2 cycles. Using this method will
make designing a lot easier because it will not be necessary anymore to explicitly
delay the different inputs of functions that take multiple inputs.

61

9.3 Generator Accumulator loops

One of the main problematic aspects of the likelihood calculations are the loop
carried dependencies. The only loop carried dependency present in the level 4 loop
is the accumulation of likelihoods. The accumulator variable is not necessary for
the majority of the operations and only accumulates the calculated likelihoods. The
circuitry that calculates the likelihoods can be considered as a pipeline with about
112 stages. Through the pipeline we route all variables that are required in the
accelerator, which can lead to high area usage due to the fact that we route a lot
of variables through these stages without them being required for the computation.
We propose a conceptual generator accumulator hardware loop for the level 4 loop
in which the generator circuit iterates over positions of the genome similarly to the
C implementation, propagating to the left from the starting position and later to the
right of the starting position. For each position it generates an alphadistance value.
As long as the alphadistance is below 12.0 and the iterator is within range, calls
will be made to perform a likelihood calculation for this position. These calls will
be accumulated in the accumulator. As long as the circuit is working on the same
sweep position, the values that are not required for the calculation can be stored in a
dedicated register, eliminating the need to store values for every stage. When there
are no more likelihoods to be calculated (the conditions are not met), the iteration
generator starts working on the next iteration. When a new sweep position arrives
at the input of the accumulater, the accumulater produces an output containing
the total likelihood alongside the variables that belong to the pipe. This method
could severely reduce area and potentially allow for more parallelism, improving
performance. A visual representation of the circuit is shown in figure 23.

Iteration
generator Calculating a new likelihood Accumulator

Storage of variables
not used for

calculating likelihoods

pre-loop
computations

Figure 23: The generator / accumulator circuit proposed to eliminate storage of
unused variables for all stages of the likelihood calculation pipeline.

62

9.4 Combining input / output FIFOs

Currently the loop circuits feature a FIFO buffer at their input and at their output
to be able to constantly provide input data and to minimize stalling. Due to the
design of the priority multiplexer and branch circuit we know that each time the
loop circuit produces a new output, it also consumes an available input from the
FIFO. We can reduce the amount of FIFO buffers that is required by combining the
input and output buffer. The way we can do this is by writing the output to the
position of the consumed input as shown in figure 24. In this FIFO we use three
trackers that keep track of the first element of a set of valid inputs, valid outputs
or empty addresses. The empty tracker is used to keep track of the next address
where input data can be written to. The valid input tracker keeps track of the first
address containing valid input data. The valid output tracker keeps track of the
first address containing valid output data. By combining these FIFOs we expect to
be able to make a significant reduction in required resources.

63

Valid
output
tracker

Valid
input

tracker

Empty
tracker

cycle n

cycle
(n+1)

cycle
(n+2)

cycle
(n+3)

cycle
(n+4)

cycle
(n+5)

cycle
(n+6)

valid
input
data

valid
output
data

empty

Figure 24: Method of using a multi purpose FIFO that stores the output of the
loop when an input is consumed. Shown are 7 cycles wherein the first three cycles
an input is consumed and replaced by the output of the circuit. In the next three
cycles the outputs are sent to the output of the FIFO.

64

References

[1] P. Pavlidis, D. Živković, A. Stamatakis, and N. Alachiotis, “Sweed: likelihood-
based detection of selective sweeps in thousands of genomes,” Molecular biology
and evolution, vol. 30, no. 9, pp. 2224–2234, 2013.

[2] H. Styles, D. B. Thomas, and W. Luk, “Pipelining designs with loop-carried
dependencies,” in Proceedings. 2004 IEEE International Conference on Field-
Programmable Technology (IEEE Cat. No.04EX921), 2004, pp. 255–262.

[3] “Dna vs. rna – 5 key differences and comparisons, author = Ruairi J Mackenzie,
Technology Networks, howpublished = https://www.technologynetworks.com/
genomics/lists/what-are-the-key-differences-between-dna-and-rna-296719,
note = Accessed: 17-06-2021.”

[4] R. Nielsen, S. Williamson, Y. Kim, M. J. Hubisz, A. G. Clark, and C. Busta-
mante, “Genomic scans for selective sweeps using snp data,” Genome research,
vol. 15, no. 11, pp. 1566–1575, 2005.

[5] L. Kang, G. He, A. K. Sharp, X. Wang, A. M. Brown, P. Michalak, and
J. Weger-Lucarelli, “A selective sweep in the spike gene has driven sars-cov-
2 human adaptation,” bioRxiv, 2021.

[6] N. K. Biswas and P. P. Majumder, “Analysis of rna sequences of 3636 sars-cov-
2 collected from 55 countries reveals selective sweep of one virus type,” The
Indian journal of medical research, vol. 151, no. 5, p. 450, 2020.

[7] N. H. Barton, “Genetic hitchhiking,” Philosophical Transactions of the Royal
Society of London. Series B: Biological Sciences, vol. 355, no. 1403, pp. 1553–
1562, 2000.

[8] Å. Johansson and U. Gyllensten, “Identification of local selective sweeps in
human populations since the exodus from africa,” Hereditas, vol. 145, no. 3,
pp. 126–137, 2008.

[9] M. Pybus, P. Luisi, G. M. Dall’Olio, M. Uzkudun, H. Laayouni, J. Bertranpetit,
and J. Engelken, “Hierarchical boosting: a machine-learning framework to de-
tect and classify hard selective sweeps in human populations,” Bioinformatics,
vol. 31, no. 24, pp. 3946–3952, 2015.

[10] N. Alachiotis, A. Stamatakis, and P. Pavlidis, “Omegaplus: a scalable tool for
rapid detection of selective sweeps in whole-genome datasets,” Bioinformatics,
vol. 28, no. 17, pp. 2274–2275, 2012.

[11] P. Pavlidis and N. Alachiotis, “A survey of methods and tools to detect re-
cent and strong positive selection,” Journal of Biological Research-Thessaloniki,
vol. 24, no. 1, pp. 1–17, 2017.

[12] N. Alachiotis and P. Pavlidis, “Raisd detects positive selection based on multiple
signatures of a selective sweep and snp vectors,” Communications biology, vol. 1,
no. 1, pp. 1–11, 2018.

[13] N. Alachiotis, C. Vatsolakis, G. Chrysos, and D. Pnevmatikatos, “Raisd-x: A
fast and accurate fpga system for the detection of positive selection in thousands
of genomes,” ACM Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 13, no. 1, pp. 1–30, 2019.

I

[14] C. Baaij, M. Kooijman, J. Kuper, A. Boeijink, and M. Gerards, “C? ash: Struc-
tural descriptions of synchronous hardware using haskell,” in 2010 13th Euromi-
cro Conference on Digital System Design: Architectures, Methods and Tools.
IEEE, 2010, pp. 714–721.

[15] P. W. Hedrick, “Population genetics of malaria resistance in humans,” Heredity,
vol. 107, no. 4, pp. 283–304, 2011.

[16] N. M. o. N. H. Smithsonian, “Genetic evidence,” https://humanorigins.si.edu/
evidence/genetics, accessed: 04-05-2021.

[17] Xilinx, “Vitis unified software development platform 2020.2 doc-
mentation,” https://www.xilinx.com/html docs/xilinx2020 2/vitis doc/
introductionvitishls.html, accessed: 10-06-2021.

[18] T. Bollaert, “Catapult synthesis: A practical introduction to interactive c syn-
thesis,” in High-Level Synthesis. Springer, 2008, pp. 29–52.

[19] D. Petkov, R. Harr, and S. Amarasinghe, “Efficient pipelining of nested loops:
unroll-and-squash,” in Proceedings 16th International Parallel and Distributed
Processing Symposium, 2002, pp. 6 pp–.

[20] M. DeGiorgio, C. D. Huber, M. J. Hubisz, I. Hellmann, and R. Nielsen,
“Sweepfinder2: increased sensitivity, robustness and flexibility,” Bioinformat-
ics, vol. 32, no. 12, pp. 1895–1897, 2016.

[21] J. M. Smith and J. Haigh, “The hitch-hiking effect of a favourable gene,” Ge-
netics Research, vol. 23, no. 1, pp. 23–35, 1974.

[22] J. M. Braverman, R. R. Hudson, N. L. Kaplan, C. H. Langley, and W. Stephan,
“The hitchhiking effect on the site frequency spectrum of dna polymorphisms.”
Genetics, vol. 140, no. 2, pp. 783–796, 1995.

[23] Y. Kim and R. Nielsen, “Linkage disequilibrium as a signature of selective
sweeps,” Genetics, vol. 167, no. 3, pp. 1513–1524, 2004.

[24] M. Slatkin, “Linkage disequilibrium—understanding the evolutionary past and
mapping the medical future,” Nature Reviews Genetics, vol. 9, no. 6, pp. 477–
485, 2008.

[25] J. L. Crisci, Y.-P. Poh, S. Mahajan, and J. D. Jensen, “The impact of equilib-
rium assumptions on tests of selection,” Frontiers in genetics, vol. 4, p. 235,
2013.

[26] D. Bozikas, N. Alachiotis, P. Pavlidis, E. Sotiriades, and A. Dollas, “Deploying
fpgas to future-proof genome-wide analyses based on linkage disequilibrium,”
in 2017 27th International Conference on Field Programmable Logic and Ap-
plications (FPL). IEEE, 2017, pp. 1–8.

[27] N. Alachiotis, C. Vatsolakis, G. Chrysos, and D. Pnevmatikatos, “Accelerated
inference of positive selection on whole genomes,” in 2018 28th International
Conference on Field Programmable Logic and Applications (FPL). IEEE, 2018,
pp. 202–2027.

II

[28] G. Charitopoulos, C. Vatsolakis, G. Chrysos, and D. N. Pnevmatikatos, “A
decoupled access-execute architecture for reconfigurable accelerators,” in Pro-
ceedings of the 15th ACM International Conference on Computing Frontiers,
2018, pp. 244–247.

[29] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight dynamic
binary instrumentation,” ACM Sigplan notices, vol. 42, no. 6, pp. 89–100, 2007.

[30] V. Developers, “Callgrind: a call-graph generating cache and branch prediction
profiler,” https://valgrind.org/docs/manual/cl-manual.html, accessed: 10-06-
2021.

[31] R. R. Hudson, “ms a program for generating samples under neutral models,”
2004.

[32] A. N. Hirani, “Fine precision,” https://faculty.math.illinois.edu/∼hirani/cbmg/
precision.html, accessed: 01-02-2021.

[33] A. Finnerty and H. Ratigner, “Reduce power and cost by converting from float-
ing point to fixed point,” https://www.xilinx.com/support/documentation/
white papers/wp491-floating-to-fixed-point.pdf, 2017, accessed: 05-02-2021.

[34] I. Voras, “Fixed point math library for c,” https://sourceforge.net/p/fixedptc/
code/ci/default/tree/, accessed: 04-02-2021.

[35] D. Goldberg, “What every computer scientist should know about floating-point
arithmetic,” ACM computing surveys (CSUR), vol. 23, no. 1, pp. 5–48, 1991.

[36] F. de Dinechin and B. Pasca, “Designing custom arithmetic data paths with
FloPoCo,” IEEE Design & Test of Computers, vol. 28, no. 4, pp. 18–27, Jul.
2011.

III

A Alternative implementations

The C version of SweeD That operates with floats in the getLikelihood function as
made by the following changes:

• A new data structure called ”alignment f” has been made that contains the
following all data from the ”alignment” structure that is stored as doubles and
used in the getLikelihood function. The ”alignment f” data structure however,
stores this data in the float format.

• Memory allocation for the ”alignment f” data components is done for each
component directly after memory allocation for its corresponding ”alignment”
component. (Same goes for freeing memory)

• Filling the ”alignment f” data structure is done through a function named
”Fill Alignment” which is called before the for loop where the getAlpha func-
tion is called.

• The getLikelihood function is adjusted to use the floating point values from
”alignment f” and change all functions to their floating point version (mainly
changing log(x) to log f(x)).

• The result of the getLikelihood function is cast to double for the rest of the
program to process.

IV

B
P

ro
fi
li
n
g

re
su

lt
s

M
ai

n
C

re
at

eP
ro

b
s

cr
ea

te
S

F
S

ge
tA

lp
h

a
ge

tL
ik

el
ih

o
o
d

sp
li

n
t

L
en

gt
h

S
am

p
le

s
G

ri
d

ca
ll

s
%

cy
cl

es
ca

ll
s

%
/

M
ai

n
cy

cl
es

ca
ll

s
%

C
y
cl

es
cy

cl
es

ca
ll

s
%

/
M

ai
n

cy
cl

es
cy

cl
es

/c
al

l
ca

ll
s

%
/

ge
tA

lp
h

a
cy

cl
es

cy
cl

es
/c

al
l

ca
ll

s
%

/
ge

tA
lp

h
a

cy
cl

es
cy

cl
es

/c
al

l
10

0
10

20
1

10
0

4,
15

E
+

07
1

33
,5

9
1,

39
E

+
07

1
5,

68
2,

36
E

+
06

20
58

,4
4

2,
43

E
+

07
1,

21
E

+
06

3,
70

E
+

03
94

,6
1

2,
29

E
+

07
6,

20
E

+
03

4,
42

E
+

04
44

,2
9

1,
02

E
+

07
23

0
10

0
10

50
1

10
0

7,
34

E
+

07
1

19
,0

0
1,

39
E

+
07

1
3,

21
2,

36
E

+
06

50
76

,0
6

5,
58

E
+

07
1,

12
E

+
06

9,
09

E
+

03
94

,2
5

5,
26

E
+

07
5,

79
E

+
03

1,
03

E
+

05
44

,8
6

2,
36

E
+

07
23

0
10

0
10

80
1

10
0

1,
04

E
+

08
1

13
,3

7
1,

39
E

+
07

1
2,

26
2,

36
E

+
06

80
82

,8
6

8,
65

E
+

07
1,

08
E

+
06

1,
46

E
+

04
94

,0
5

8,
13

E
+

07
5,

57
E

+
03

1,
58

E
+

05
44

,6
6

3,
63

E
+

07
23

0
10

0
10

0
20

1
10

0
1,

37
E

+
09

1
86

,9
2

1,
19

E
+

09
1

11
,8

9
1,

63
E

+
08

20
1,

07
1,

47
E

+
07

7,
34

E
+

05
3,

32
E

+
03

91
,2

9
1,

34
E

+
07

4,
03

E
+

03
2,

52
E

+
04

43
,3

4
5,

81
E

+
06

23
1

10
0

10
0

50
1

10
0

1,
39

E
+

09
1

85
,4

9
1,

19
E

+
09

1
11

,7
0

1,
63

E
+

08
50

2,
67

3,
71

E
+

07
7,

42
E

+
05

8,
37

E
+

03
91

,3
6

3,
39

E
+

07
4,

05
E

+
03

6,
29

E
+

04
42

,8
0

1,
45

E
+

07
23

0
10

0
10

0
80

1
10

0
1,

41
E

+
09

1
84

,2
1

1,
19

E
+

09
1

11
,5

3
1,

63
E

+
08

80
4,

11
5,

80
E

+
07

7,
24

E
+

05
1,

33
E

+
04

91
,1

3
5,

28
E

+
07

3,
97

E
+

03
9,

61
E

+
04

41
,9

5
2,

22
E

+
07

23
1

10
0

10
00

20
1

10
0

2,
01

E
+

11
1

94
,0

7
1,

89
E

+
11

1
5,

92
1,

19
E

+
10

20
0,

01
1,

50
E

+
07

7,
48

E
+

05
3,

07
E

+
03

91
,4

5
1,

37
E

+
07

4,
46

E
+

03
2,

62
E

+
04

44
,1

5
6,

04
E

+
06

23
0

10
0

10
00

50
1

10
0

2,
01

E
+

11
1

94
,0

6
1,

89
E

+
11

1
5,

92
1,

19
E

+
10

50
0,

02
3,

61
E

+
07

7,
23

E
+

05
7,

53
E

+
03

91
,1

6
3,

30
E

+
07

4,
38

E
+

03
6,

23
E

+
04

43
,5

4
1,

43
E

+
07

23
0

10
0

10
00

80
1

10
0

2,
01

E
+

11
1

94
,0

5
1,

89
E

+
11

1
5,

92
1,

19
E

+
10

80
0,

03
5,

64
E

+
07

7,
05

E
+

05
1,

21
E

+
04

90
,9

4
5,

13
E

+
07

4,
22

E
+

03
9,

62
E

+
04

43
,2

4
2,

22
E

+
07

23
1

10
00

10
20

1
10

0
9,

20
E

+
08

1
1,

51
1,

39
E

+
07

1
0,

32
2,

99
E

+
06

20
0

97
,5

5
8,

97
E

+
08

4,
49

E
+

06
3,

19
E

+
04

98
,2

0
8,

81
E

+
08

2,
76

E
+

04
1,

59
E

+
06

41
,5

0
3,

66
E

+
08

23
0

10
00

10
50

1
10

0
2,

25
E

+
09

1
0,

62
1,

39
E

+
07

1
0,

13
2,

99
E

+
06

50
0

98
,8

5
2,

23
E

+
09

4,
45

E
+

06
8,

03
E

+
04

98
,1

9
2,

19
E

+
09

2,
72

E
+

04
3,

98
E

+
06

41
,8

0
9,

14
E

+
08

23
0

10
00

10
80

1
10

0
3,

54
E

+
09

1
0,

39
1,

39
E

+
07

1
0,

08
2,

99
E

+
06

80
0

99
,1

7
3,

51
E

+
09

4,
39

E
+

06
1,

29
E

+
05

98
,1

6
3,

45
E

+
09

2,
67

E
+

04
6,

21
E

+
06

41
,3

9
1,

43
E

+
09

23
0

10
00

10
0

20
1

10
0

2,
35

E
+

09
1

50
,6

0
1,

19
E

+
09

1
11

,9
7

2,
81

E
+

08
20

0
36

,9
6

8,
67

E
+

08
4,

34
E

+
06

3,
24

E
+

04
98

,1
3

8,
51

E
+

08
2,

62
E

+
04

1,
50

E
+

06
40

,7
3

3,
47

E
+

08
23

1
10

00
10

0
50

1
10

0
3,

69
E

+
09

1
32

,2
0

1,
19

E
+

09
1

7,
61

2,
81

E
+

08
50

0
59

,7
9

2,
20

E
+

09
4,

41
E

+
06

8,
07

E
+

04
98

,1
6

2,
16

E
+

09
2,

68
E

+
04

3,
83

E
+

06
40

,8
3

8,
84

E
+

08
23

1
10

00
10

0
80

1
10

0
5,

04
E

+
09

1
23

,5
6

1,
19

E
+

09
1

5,
57

2,
81

E
+

08
80

0
70

,5
2

3,
55

E
+

09
4,

44
E

+
06

1,
30

E
+

05
98

,1
8

3,
49

E
+

09
2,

69
E

+
04

6,
18

E
+

06
40

,8
3

1,
43

E
+

09
23

1
10

00
10

00
20

1
10

0
9,

20
E

+
08

1
1,

51
1,

39
E

+
07

1
0,

32
2,

99
E

+
06

20
0

97
,5

5
8,

97
E

+
08

4,
49

E
+

06
3,

14
E

+
04

98
,2

0
8,

81
E

+
08

2,
81

E
+

04
1,

49
E

+
06

39
,2

7
3,

46
E

+
08

23
2

10
00

10
00

50
1

10
0

2,
20

E
+

11
1

85
,8

7
1,

89
E

+
11

1
13

,1
1

2,
89

E
+

10
50

0
0,

99
2,

19
E

+
09

4,
38

E
+

06
7,

97
E

+
04

98
,1

4
2,

15
E

+
09

2,
69

E
+

04
3,

78
E

+
06

40
,8

5
8,

77
E

+
08

23
2

10
00

10
00

80
1

10
0

2,
22

E
+

11
1

85
,3

5
1,

89
E

+
11

1
13

,0
3

2,
89

E
+

10
80

0
1,

58
3,

51
E

+
09

4,
38

E
+

06
1,

26
E

+
05

98
,1

5
3,

44
E

+
09

2,
73

E
+

04
6,

08
E

+
06

41
,0

7
1,

41
E

+
09

23
2

10
00

0
10

20
1

10
0

7,
09

E
+

10
1

0,
02

1,
39

E
+

07
1

0,
00

3,
40

E
+

06
20

00
99

,9
0

7,
08

E
+

10
3,

54
E

+
07

3,
71

E
+

05
99

,3
0

7,
03

E
+

10
1,

89
E

+
05

1,
17

E
+

08
38

,2
5

2,
69

E
+

10
23

0
10

00
0

10
50

1
10

0
1,

78
E

+
11

1
0,

01
1,

39
E

+
07

1
0,

00
2,

99
E

+
06

50
00

99
,9

4
1,

78
E

+
11

3,
56

E
+

07
9,

27
E

+
05

99
,3

0
1,

77
E

+
11

1,
91

E
+

05
2,

93
E

+
08

38
,1

8
6,

75
E

+
10

23
0

10
00

0
10

80
1

10
0

2,
86

E
+

11
1

0,
00

1,
39

E
+

07
1

0,
00

3,
40

E
+

06
80

00
99

,9
5

2,
86

E
+

11
3,

57
E

+
07

1,
48

E
+

06
99

,3
0

2,
84

E
+

11
1,

92
E

+
05

4,
72

E
+

08
38

,2
6

1,
09

E
+

11
23

0
10

00
0

10
0

20
1

10
0

7,
10

E
+

10
1

1,
67

1,
19

E
+

09
1

0,
40

2,
82

E
+

08
20

00
97

,7
8

6,
94

E
+

10
3,

47
E

+
07

3,
32

E
+

05
99

,2
9

6,
89

E
+

10
2,

08
E

+
05

1,
16

E
+

08
38

,9
0

2,
68

E
+

10
23

1
10

00
0

10
0

50
1

10
0

1,
76

E
+

11
1

0,
68

1,
19

E
+

09
1

0,
16

2,
82

E
+

08
50

00
99

,0
8

1,
74

E
+

11
3,

48
E

+
07

8,
24

E
+

05
99

,2
9

1,
73

E
+

11
2,

10
E

+
05

2,
91

E
+

08
38

,8
9

6,
72

E
+

10
23

1
10

00
0

10
0

80
1

10
0

2,
80

E
+

11
1

0,
42

1,
19

E
+

09
1

0,
10

2,
82

E
+

08
80

00
99

,4
1

2,
79

E
+

11
3,

48
E

+
07

1,
32

E
+

06
96

,0
6

2,
68

E
+

11
2,

03
E

+
05

4,
69

E
+

08
40

,4
2

1,
08

E
+

11
23

1
10

00
0

10
00

20
1

10
0

2,
95

E
+

11
1

64
,0

8
1,

89
E

+
11

1
12

,7
1

3,
75

E
+

10
20

00
22

,8
2

6,
74

E
+

10
3,

37
E

+
07

3,
27

E
+

05
10

0,
00

6,
74

E
+

10
2,

06
E

+
05

1,
17

E
+

08
40

,2
7

2,
71

E
+

10
23

2
10

00
0

10
00

50
1

10
0

3,
97

E
+

11
1

47
,6

2
1,

89
E

+
11

1
9,

44
3,

75
E

+
10

50
00

42
,7

7
1,

70
E

+
11

3,
40

E
+

07
8,

19
E

+
05

99
,2

7
1,

69
E

+
11

2,
06

E
+

05
2,

93
E

+
08

40
,3

9
6,

82
E

+
10

23
2

10
00

0
10

00
80

1
10

0
4,

99
E

+
11

1
37

,9
2

1,
89

E
+

11
1

7,
52

3,
75

E
+

10
80

00
54

,4
2

2,
72

E
+

11
3,

40
E

+
07

1,
31

E
+

06
99

,2
7

2,
70

E
+

11
2,

06
E

+
05

4,
70

E
+

08
40

,4
5

1,
09

E
+

11
23

2

V

100 1000 10000

10

100

1000

sa
m

p
le

s

genome length

33.6%
5.7%

58.4%
2.3%

86.9%

11.9%
1.1%0.1%

94.1%
5.9%
0.0%0.0%

1.5%0.3%97.5% 0.6%

50.6%

12.0%
37.0%

0.5%

1.5%0.3%97.5% 0.6%

0.0%0.0%99.9% 0.1%

1.7%0.4%97.8% 0.2%

64.1%

12.7%
22.8%

0.4%

createProbs

createSFS

getAlpha

other

Figure 25: Clock cycle distributions with grid 20%

100 1000 10000

10

100

1000

sa
m

p
le

s

genome length

19.0%

3.2%

76.1% 1.7%

85.5%

11.7%
2.7%0.1%

94.1%
5.9%
0.0%0.0%

0.6%0.1%98.8% 0%

32.2%
7.6%

59.8%
0.4%

85.9%

13.1%
1.0%0.0%

0.0%0.0%99.9% 0.1%

0.7%0.2%99.1% 0.1%

47.6%

9.4%
42.8%

0.2%

createProbs

createSFS

getAlpha

other

Figure 26: Clock cycle distributions with grid 50%

VI

100 1000 10000

10

100

1000

sa
m

p
le

s

genome length

13.4%
2.3%

82.9% 1.5%

84.2%

11.5%
4.1%0.2%

94.0%
5.9%
0.0%0.0%

0.4%0.1%99.2% 0.3%

23.6%

5.6%

70.5%
0.4%

85.4%

13.0%
1.6%0.0%

0.0%0.0%99.9% 0.0%

0.4%0.1%99.4% 0.1%

37.9%7.5%

54.4%
0.1%

createProbs

createSFS

getAlpha

other

Figure 27: Clock cycle distributions with grid 80%

VII

C Data dependencies of getAlpha

• getAlpha(sweepPosition)

– val[] – Array with loop carried dependencies, size = 100, can be replaced
by tracking some values

– lik[] – Array with loop carried dependencies, size = 100, can be replaced
by tracking some values.

– SweepWidths – Array with loop carried dependencies, size = 100, can be
replaced by tracking some values.

– getMinMaxAlpha(sweepPosition, &minAlpha, &maxAlpha)

– getClosestSNPIndex(sweepPosition)

– getLikelihood(sweepPosition, alpha, &sweepWidth, startPos)

• getMinMaxAlpha(sweepPosition, *minAlpha, *maxAlpha)

– segsites – Constant integer value

– positionsInd[0] – First item of array positionsInd.

– positionsInd[] – Array of size segsites consisting of constant integer values.
All indexes of this array will be accessed in order.

• getClosestSNPIndex(sweepPosition)

– positionsInd[] – Array of size segsites consisting of constant integer values.
Access of this array in this function is rather predictable.

• getLikelihood(sweepPos, alpha, startPos)

– segsites – Constant integer value

– positionsInd[] – Array of size segsites consisting of constant integer val-
ues.9

– xx –list containing frequencies x for all SNP’s.9

– nn – list of amount of samples for all SNP’s.9

– gridProbs – 3 dimensional array of size (max of xx - min of xx) * (max
of nn - min of nn) * 300.
Accesses patterns of this array are data dependent and thus hard to
predict.

– splint(x, n, ad)

– baseLikelihood[] – Array of size segsties consisting of constant floating
point values.9

• splint(x, n, ad)

– gridADs[0] – first element of gridAd’s array

– gridSz – Constant integer value

– logAD0 – Constant floating point value

– interval – Constant floating point value

– minn – Constant integer value

VIII

– startSFS – Constant integer value

– gridADs – Array size 300 floating point values, this could be calculated
instead in 35 cycles, require 2 neighbouring values.

– gridProbs – 3 dimensional array of size (max of xx - min of xx) * (max
of nn - min of nn) * 300.
At least 2 accesses per function call, these accesses are neighbours in the
third dimension.

9Access is based on startPos, amount of accesses is data dependent, but semi predictable due
to the incrementing and decrementing indexes that are used.

IX

D
R

e
co

rd
st

ru
ct

u
re

o
f

P
ip

e
D

a
ta

t
y
p
e
V
a
l
u
e
=
S
i
g
n
e
d
3
2

t
y
p
e
D
e
c
i
m
a
l
=
B
i
t
V
e
c
t
o
r
3
2

t
y
p
e
G
e
n
o
m
e
I
n
d
e
x
=
S
i
g
n
e
d
3
2

t
y
p
e
S
N
P
F
r
e
q
=
S
i
g
n
e
d
3
2

t
y
p
e
A
l
p
h
a
I
n
d
e
x
=
S
i
g
n
e
d
3
2

d
a
t
a
D
i
r
e
c
t
i
o
n
=
I
n
c
r
e
m
e
n
t
i
n
g
|
D
e
c
r
e
m
e
n
t
i
n
g
d
e
r
i
v
i
n
g
(
G
e
n
e
r
i
c
,
N
F
D
a
t
a
X
,
E
q
,
S
h
o
w
,
B
u
n
d
l
e
)

d
a
t
a
L
o
c
a
l
G
r
i
d
S
i
z
e
=
H
u
n
d
r
e
d
|
F
i
v
e
d
e
r
i
v
i
n
g
(
G
e
n
e
r
i
c
,
N
F
D
a
t
a
X
,
E
q
,
S
h
o
w
,
B
u
n
d
l
e
)

d
a
t
a
P
i
p
e
D
a
t
a
=
P
i
p
e
{

s
w
e
e
p
P
o
s

:
:
M
a
y
b
e
G
e
n
o
m
e
I
n
d
e
x
,

-
-
g
l
o
b
a
l

m
i
n
A
l
p
h
a

:
:
M
a
y
b
e
D
e
c
i
m
a
l
,

-
-
g
e
t
A
l
p
h
a

m
a
x
A
l
p
h
a

:
:
M
a
y
b
e
D
e
c
i
m
a
l
,

-
-
g
e
t
A
l
p
h
a

s
t
a
r
t
P
o
s

:
:
M
a
y
b
e
G
e
n
o
m
e
I
n
d
e
x
,

-
-
g
l
o
b
a
l

l
o
c
a
l
G
r
i
d
S
i
z
e

:
:
M
a
y
b
e
L
o
c
a
l
G
r
i
d
S
i
z
e
,

-
-
g
e
t
A
l
p
h
a

a
l
p
h
a
I
n
d
e
x

:
:
M
a
y
b
e
A
l
p
h
a
I
n
d
e
x
,

-
-
g
e
t
A
l
p
h
a
L
o
o
p

a
l
p
h
a
I
n
t
e
r
v
a
l

:
:
M
a
y
b
e
D
e
c
i
m
a
l
,

-
-
g
e
t
A
l
p
h
a

a
l
p
h
a

:
:
M
a
y
b
e
D
e
c
i
m
a
l
,

-
-
g
e
t
A
l
p
h
a
L
o
o
p

p
r
e
v
A
l
p
h
a

:
:
M
a
y
b
e
D
e
c
i
m
a
l
,

-
-
g
e
t
A
l
p
h
a

p
r
e
v
p
r
e
v
A
l
p
h
a

:
:
M
a
y
b
e
D
e
c
i
m
a
l
,

-
-
g
e
t
A
l
p
h
a

l
i
k
e
l
i
h
o
o
d
I
n
d
e
x

:
:
M
a
y
b
e
G
e
n
o
m
e
I
n
d
e
x
,

-
-
g
e
t
L
i
k
e
l
i
h
o
o
d

a
l
p
h
a
D
i
s
t
a
n
c
e

:
:
M
a
y
b
e
D
e
c
i
m
a
l
,

-
-
g
e
t
L
i
k
e
l
i
h
o
o
d

d
i
r
e
c
t
i
o
n

:
:
M
a
y
b
e
D
i
r
e
c
t
i
o
n
,

-
-
g
e
t
L
i
k
e
l
i
h
o
o
d

t
o
t
a
l
L
i
k
e
l
i
h
o
o
d

:
:
M
a
y
b
e
D
e
c
i
m
a
l
,

-
-
g
e
t
L
i
k
e
l
i
h
o
o
d

h
i
g
h
e
s
t
L
i
k
e
l
i
h
o
o
d

:
:
M
a
y
b
e
D
e
c
i
m
a
l
,

-
-
g
e
t
A
l
p
h
a

h
i
g
h
e
s
t
A
l
p
h
a

:
:
M
a
y
b
e
D
e
c
i
m
a
l
,

-
-
g
e
t
A
l
p
h
a

h
i
g
h
e
s
t
A
l
p
h
a
L

:
:
M
a
y
b
e
D
e
c
i
m
a
l
,

-
-
g
e
t
A
l
p
h
a
L
o
o
p

h
i
g
h
e
s
t
A
l
p
h
a
L
L

:
:
M
a
y
b
e
D
e
c
i
m
a
l
,

-
-
g
e
t
A
l
p
h
a
L
o
o
p

h
i
g
h
e
s
t
A
l
p
h
a
R

:
:
M
a
y
b
e
D
e
c
i
m
a
l
,

-
-
g
e
t
A
l
p
h
a
L
o
o
p

c
a
p
t
u
r
e
A
l
p
h
a
R

:
:
M
a
y
b
e
B
o
o
l
,

-
-
g
e
t
A
l
p
h
a
L
o
o
p

}
d
e
r
i
v
i
n
g
(
G
e
n
e
r
i
c
,
N
F
D
a
t
a
X
,
E
q
)

X

