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ABSTRACT

We propose the Video Identity-Consistent Emotion Generative Ad-
versarial Network (VICE-GAN) model for video generation. The
proposed model is able to generate realistic videos of six emotional
expressions while allowing the identity of the individual to be pre-
served. This was achieved by introducing (i) a pre-trained autoen-
coder which produces a compressed representation of the individual
present in an input video and therefore preserves the content of the
video and (ii) a content consistency loss to further enforce identity
consistency by extracting and comparing the content representa-
tions between the generated and real frames of a video. In addition,
we experimented with three variables in order to determine their
impact on model performance. Eight model variants were evaluated
based on visual quality, emotion generation and identity consist-
ency. Overall, models which were exposed to the test subjects before-
hand for a limited number of emotions produced video sequences of
higher visual quality and identity consistency when compared to
models in which the test subjects were removed from the training
data entirely. Using the content representation of the first frame for
all subsequent frames in contrast to using a unique representation
for each frame appears to benefit identity consistency only. There
is also evidence to suggest that freezing autoencoder weights dur-
ing GAN training results in improvements for visual quality and
emotion generation.

KEYWORDS

Generative adversarial networks, Video-to-video translation, Emo-
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1 INTRODUCTION

Deep generative models, such as generative adversarial networks
(GANs), have received an increasing amount of attention for
their ability to generate realistic images and videos for various
vision applications such as rendering, synthesis, recognition and
augmentation. While there has been significant progress in the
application of GANs for image tasks such as generation [15],
editing [8], translation [23] [13] and super resolution [36], video
applications have received relatively less attention. Furthermore,
GANs which have been developed for video applications [9]
[25] have tended to focus on scenes and long-distance human
activities such as actions and poses, illustrating the need to focus
on close-up human faces as well.

A common approach that has been employed in recent work [30]
[18] [29] [28] towards video generation tasks is to decompose
a video into its objects (content) and the actions they perform
(motion), after which the latent variables obtained from each
sub-space are combined to produce videos. Through this ap-
proach, promising efforts have been made primarily towards
video-prediction, -generation and video–translation using both
paired and unpaired data. Paired data refers to a one-to-one re-
lationship between training examples in a dataset. For example,
a dataset containing input examples from domain X would re-
quire the same examples with the desired modifications as the
expected output in domain Y. However, these studies indicate
that there are still several challenges that need to be overcome,
namely (a) content consistency throughout the video, (b) gener-
ating (uncertain) motion, as well as modeling of spatio-temporal
consistency.

Given the myriad of domains in which video generation can be
useful, we select emotion generation as a use case to develop a
deep video generative model that can generate accurate videos
of different emotions being expressed by specific individuals in
an unpaired manner. Despite emotion recognition (ER) systems
being successful when classifying emotions, recent work [20] [1]
indicates that deep-learning emotion-recognition systems can be
enhanced and improved further. A major technical challenge that
these systems face is the lack of appropriate emotion databases.
This could be solved by manually creating a dataset for the task
at hand but it is a very expensive and time-consuming approach.
GANs in general are geared towards tackling data augument-
ation problems so it would be interesting to observe how the
model would handle the task of emotion generation. It is import-
ant to note that while the generative model is being developed
specific to the emotion generation, it can be adapted not only to
tasks involving human faces but also other objects and domains.

1.1 Our Contributions

In this paper, we propose the VICE-GAN for video translation
and focus on the task of transferring emotion-specific facial
expressions within the same individual. The VICE-GAN has
been adapted to leverage the benefits of the two-step method
i.e. the decomposition of content and motion while addressing
the two challenges listed above by incorporating the following
properties:
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(i) Input frames are encoded to form compressed representa-
tions of the human face present in the video, which is used to
inform the content space of video generation.

(ii) The identity of the selected face is enforced using a content
consistency loss to ensure that the same individual is gen-
erated when generating a different emotion-specific facial
expression.

Additionally, we explore the influence of three experimental vari-
ables on model performance based on preliminary experiments:

(i) Composition of Training Data
One of the aims of this work is to preserve the identity of the
individual present in the video when generating to different
emotions. A common approach to evaluating such a model
is to select a subset of subjects for testing, and these subjects
are not seen by the GAN model during training (Unseen
condition). However, it is plausible that the model may need
to have been trained on the test subjects’ faces in order to
achieve this goal. Therefore, an alternative approach would
be to train the model on the test subjects. Specifically, it can
be explored whether exposing the model to the test subjects
but only for certain emotions allows it to preserve identity
while still being capable of generating to different emotions
(Seen condition).

(ii) Content Encoding Method
Content encoding method refers to the way in which content
vectors are used to represent the individual face present in
each video before being fed into the generator. One way to
achieve this is to apply the autoencoder to each individual
frame of a video, thus producing a unique vector for each
frame (All Frames). Alternatively, the autoencoder can pro-
duce a unique vector for the first frame as a reference and
this vector is then repeated across all frames (Single Frame).

(iii) Fine-Tuning Autoencoder Weights
Assuming that the autoencoder is pre-trained, it was hypo-
thesized that autoencoder can be further fine-tuned by un-
freezing weights during the training of GAN. Alternatively,
the autoencoder weights are frozen and the weights are not
updated while training the GAN model.

1.2 Research Questions

Through the development of the VICE-GAN, this paper focuses
on the following overarching research question "Given an input
video of an individual expressing a given emotion, to what extent
and quality can we generate videos of the same individual express-
ing different emotions?" The research question can be formulated
in the following sub-questions:

(1) What are the current state-of-the-art models that are ap-
plicable for image-to-image and video-to-video genera-
tion/translation tasks?

(2) How can we ensure that during video-to-video translation,
a network is able to preserve the content of the input video
(e.g. the identity/face of an individual expressing a certain
emotion)?

(a) To model the content space, which autoencoder architec-
ture produces the most accurate, high-quality compressed
representations of human faces?

(b) Can identity consistency be additionally enforced through
the use of a content consistency loss?

(3) What are the influences of the following experimental vari-
ables on model performance in terms of (i) visual quality,
(ii) accuracy of generated emotions and (iii) identity consist-
ency?

(a) Allowing the GAN model to train on samples depicting the
test subjects for a limited number of emotions (Seen), or re-
moving the test subjects from the training data completely
(Unseen)

(b) Content encoding method, where the autoencoder either
produces a unique content vector for each input frame, or
repeats the content vector obtained for the first frame for
all subsequent frames

(c) Unfreezing or freezing the autoencoder weights while
training the GAN model

(4) Which of the model configurations perform best in terms of
(a) visual quality and (b) identity consistency and (c) accur-
acy of the generated emotions?

The remainder of the paper is structured as follows. In Section 2,
we provide the background on the existing methods that are used
for image-to-image and video-to-video generation/translation
related tasks. Section 3 presents the methodological frame-
work that is being used to address the problem. In Section 4,
we propose the VICE-GAN model as a solution to address the
challenges encountered by existing methods. In Section 5, we
describe the dataset used as well as the experiments and evalu-
ation metrics conducted in the study. The results of the research
are explained in Section 6 followed by a discussion in Section 7
which addresses the findings and answers the research questions
introduce earlier in this section. We further discuss the shortcom-
ings of the model and suggest some improvements. Finally, the
paper is concluded in Section 8.

2 RELATEDWORK

2.1 Image-to-Image translation

Unpaired image-to-image translation approaches have been
proposed to address the lack of paired data. Paired data refers
to a one-to-one relationship between training examples in a
dataset. For example, a dataset containing input examples from
domain X would require the same examples with the desired
modifications as the expected output in domain Y. CycleGAN
[38] uses two generative models and cycle consistency loss to
perform regularisation.

Assuming two domains A and B, generator A performs transla-
tion from domain B to A while generator B performs translation
from domain A to B. The two corresponding discriminator mod-
els determine whether the generated data is real or fake, and
update the generator models accordingly. Cycle consistency is
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centred on the premise that images generated by a given gen-
erator can be fed into the other generator to reconstruct the
original image.

Figure 1: Examples of translation tasks performed by
CycleGAN [38]

From left to right: between (a) Monet and natural scenes, (b) horses
and zebras, and (c) summer and winter scenery

The corresponding cyclic consistency loss is used to push the
generators to be consistent with each other. CycleGAN has there-
fore successfully been used to perform a variety of translations
which can be observed in Figure 1. These findings led to the
growth of CycleGAN-inspired models for unpaired translation
tasks which will be discussed below.

To overcome the challenge associated with unpaired multi-
domain transfer, StarGAN [11] proposes a single generator-
discriminator network that can learn multiple mappings sim-
ultaneously, resulting in both efficiency and flexibility. This ar-
chitecture and its subsequent version [12] have been successfully
applied to a range of image-to-image translation tasks involving
human faces such as facial attribute transfer, facial expression
synthesis tasks and gender swapping Figure 2. Other methods
such as RelGAN [35], AttGAN [16] and attribute-guided con-
ditional cycleGAN [24] have also been found to be remarkably
flexible for a variety of image-based translations such as change
in gender, hair colour and facial emotion whilst addressing multi-
domain image translation.

Figure 2: Examples of emotion-specific facial expressions
generated using StarGAN [11]

2.2 Video generation approaches

A natural extension of image generation or image-to-image trans-
lation tasks is addressing videos, although this has proven to be a
challenging topic. An intuitive approach to video translation and
generation is to apply image-to-image translation methods on
each frame. However, such methods result in a lack of continuity
between frames, resulting in unrealistic motion and temporal ar-
tifacts such as distortions and flickering [5] [25]. In other words,
the goal is to prevent perceptual mode collapse by considering
both spatial and temporal constraints. Unsupervised video repres-
entation learning tasks can be classified as prediction, generation
or translation.

Figure 3: Examples of facial expressions generated using
MoCoGAN [29]

Video prediction refers to the inference of subsequent frames of
a video given a single or several input frames acting as context.
A dual motion GAN was found to be successful for predicting
future frames of various natural scenes [22], which enforced
generated frames to be consistent with real input on the basis of
pixel-wise flows in the video, and additionally addressed motion
uncertainty using a probabilistic motion encoder.

Video generation generally requires that the model is able to
generate desired videos without providing any input. A two-
step method is often used here, which assumes that videos com-
prise of objects (content) performing actions (motion), and by
combining latent variables from each sub-space, a sequence of
spatio-temporal consistent frames can be generated. For example,
temporal generative adversarial nets (TGAN) [26] use a temporal
generator to produce a set of latent variables, and these which
are fed into an image generator to produce a video where the
number of variables is equal to the number of frames. Cai and
colleagues [7] proposed a GAN model that is able to flexibly
switch between video prediction and generation. This was done
by using a similar two-step framework in which human-skeleton
pose sequences are first generated, producing the motion and
then translated into images to produce human action videos.

Perhaps the most representative of the two-step approach for
video generation is the motion and content decomposed gen-
erative adversarial network (MoCoGAN) [29]. The MoCoGAN
architecture has been used to generate short, motion-consistent
videos depicting different human actions and shape motions and
facial expressions (Figure 3). Additionally, it is capable of learn-
ing how to generate videos belonging to more than one category
through the use of one-hot vectors. The framework is based on
the assumption that video frames can be represented by a lat-
ent space of images, which can be further decomposed into, and
therefore reproduced by selectively sampling from, the content
and motion subspaces. Sampling a single point in the content
subspace and multiple trajectories in the motion subspace can
generate the same object performing different motions, and vice
versa. However, MoCoGAN generates random content instead
of using input videos and is not currently capable of performing
tasks in which videos must be generated while preserving the
identity of the individual.
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Video-to-video translation has the goal of transforming a
video from source domain A to the style of target domain B. In-
spired by CycleGAN and Pix2Pix, Recycle-GAN [4] was proposed
as an unsupervised video retargeting method that translates
content from one domain to another but preserves the style (or
motion) from the source domain. In addition to cycle loss, the au-
thors also implement recycle loss, which refers to updated cycle
loss values across domains and over time as well as a recurrent
loss, which is produced by a recurrent temporal predictor that is
trained to predict future samples given past samples. The spatio-
temporal 3D translator was proposed [25] to improve video-to-
video translation by addressing the semantic inconsistencies
and temporal artifacts that tend to be observed in the above ap-
proaches. Based on a conditional GAN, this method treats inputs
and outputs as three-dimensional tensors such that the network
takes in a volumetric image from domain A and produces a cor-
responding volume of the same shape in domain B. This is done
with the help of a recurrent generator which consists of an im-
age generator, a flow estimator and a fusion block. Similar to the
CycleGAN, it uses two generator-discriminator pairs with the
addition of cycle consistency loss. A similar approach is also out-
lined by [9] in their Motion-guided CycleGAN (Mocycle-GAN),
which addresses the imposition of spatio-temporal constraints by
explicitly modeling the motion across frames using optical flow.

3 METHODOLOGICAL FRAMEWORK

3.1 MoCoGAN

This work will build on the work conducted by Tulyakov and
colleagues [29], namely the Motion Decomposed Generative
Adversarial Network (MoCoGAN) for video generation. The
MoCoGAN architecture is able to generate videos depicting dif-
ferent motions such as facial expressions, human actions and
shape motions, and can do so across multiple categories of mo-
tion by conditioning the GAN using one-hot vectors. For this
purpose, three inputs are fed into the MoCoGAN generator: (a)
content, (b) motion and (c) categories. Both content and motion
vectors are generated from random noise, while category labels
are provided if more than one category of motion is present.

While the model is able to successfully generate short video
sequences of individuals expressing different emotions, there
are several challenges that can be addressed. First, MoCoGAN is
a video generation method and uses noise to generate the face
of a random individual displaying the required emotion – this
means that it is currently not capable of generating videos in
which the identity of a specific individual must be preserved. The
authors discuss an extension of their model for image-to-video
translation but the corresponding code was not made available to
the public unlike the previous model. Additionally, preliminary
experiments using the MoCoGAN indicated that the identity
of the randomly generated individual was sometimes lost or
distorted across certain frames of the videos produced, such that
another individual appeared entirely, and artifacts were observed
in the form of facial features (such as facial hair and hairstyles)
that were added or removed.

3.2 Enforcing Identity Consistency

This work aims to address the task of identity consistent-video
generation by building upon the MoCoGAN architecture. Videos
can be thought of as a human face (content) that makes a given
facial expression (motion) that corresponds to a particular emo-
tion (category). The proposed video generator therefore requires
that the content, which in this case refers to the human faces
depicting one of six emotions, be fixed for each generated video.
This is to ensure that the identity of the individual is preserved
throughout the video across the different generated emotions and
reduces the likelihood of artifacts. The main goal of the proposed
model is to therefore enforce identity consistency.

3.2.1 Autoencoder.

For this, an autoencoder is trained and used to inform the con-
tent sub-space of the generated videos. More specifically, input
frames are encoded to form compressed representations of the
human face present in the video and used to produce the con-
tent. Autoencoders are unsupervised deep learning models that
are used for the task of representation learning. They can be
trained to encode or compress data, and then reconstruct it back
from the encoded representation such it resembles the original
as closely as possible. One of the main advantages of the au-
toencoders is the ability to capture low-dimensional features by
learning to ignore the noise in the data, making them suitable for
dimension reduction tasks and thus are commonly used in applic-
ations such as anomaly detection [10], image denoising [31] [32]
and image reconstruction [37].

3.2.2 Content Consistency Loss.

The above-mentioned autoencoder is used to encode the con-
tent representation present in each video. In addition, a content
consistency loss is proposed to enforce the content, or identity
of the selected face to ensure that the same individual is gener-
ated regardless of the emotion that is being generated. This is
implemented by applying the pre-trained autoencoder on pairs
of real and generated frames after which the resulting encoded
representations are mapped onto each other for consistency.

4 PROPOSED METHOD

The goal of this framework is to flexibly generate videos repres-
enting different emotion categories given an input while retain-
ing the identity of the individual in the video. We make similar
assumptions to that of MoCoGAN [29] and adopt the premise
that in a latent space of images 𝑍𝐼 , each vector 𝑧 represents an
image while a video is represented by [𝑧 (1) , 𝑧 (2) , ..., 𝑧 (𝐾) ] con-
taining K frames. In order to disentangle motion and content
from a video, 𝑍𝐼 is further decomposed into a content 𝑍𝐶 and
motion subspace 𝑍𝑀 . Below, we discuss our proposed method for
how an autoencoder is used to produce content representations
for each frame in the generated videos. The rest of this section
describes the architecture, training and implementation of the
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proposed VICE-GAN network, which comprises of a generative
adversarial network, autoencoder and recurrent neural network.

4.1 Utilizing Autoencoders for Encoding
Content

4.1.1 Overview.

In order to preserve the identity or content throughout the video
across the different generated emotions or motion, an autoen-
coder was used to produce the content representations for the
input frames of a video.

4.1.2 Implementation.

Autoencoders were either standard (convolutional) [27] or vari-
ational [21], and each type of autoencoder had three varying
architectures increasing in size (small, medium and large). In the
standard autoencoder, the encoding network produces a single
value of an encoding dimension for every incoming observation.
In contrast, the encoder of the variational autoencoder provides
a probability distribution for each observation in the latent space,
giving the network the added benefit of learning latent repres-
entations with disentangled factors [17]. The standard and vari-
ational autoencoder contains the same number of convolutions
per architecture in order to make the results comparable. Six au-
toencoder models were trained based on the configurations in
Table 1.

Type
Small Medium Large

#Conv #Deconv #Conv #Deconv #Conv #Deconv

Standard 2 2 4 3 5 4

Variational 2 2 4 3 5 4

Table 1: Autoencoder Model Configurations

4.1.3 Training details.

The small standard autoencoder (SAE) contains two convolution
layers in the encoder block, followed by two max pooling layers
for downsampling. The linear layer succeeding this is respons-
ible for encoding the compression. The decoder block contains
another linear layer which decompresses the features from the
previous layer, which is followed by two fractionally-strided
convolutions for upsampling. The medium and large SAEs were
investigated to see if there was an improvement on reconstruc-
tion performance (see Table 1). The same configurations were
implemented for the variational autoencoder (VAE) with the ex-
ception being that the linear layers were replaced with a mean
and standard deviation layer allowing it to sample across a con-
tinuous space based on the data it has learned.

The models were trained on 6 emotions from the MUG Facial [2]
dataset, and a train-test split of 80-20 is performed on the dataset.
All models were trained from scratch for 50 epochs using the
adam optimizer with a learning rate of 0.005 and a batch size of
32. The SAE and VAE models use a reconstruction loss function
to measure the error between the original and the reconstructed

data. Additionally, the VAE models also use a regularization term
namely the Kullback-Leibler divergence [21] which forces the
encoder layer to distribute close to normal distributions and
thereby allowing the model to create more general latent spaces.
Mean square error is the reconstruction loss function which is
used during the training of all the models.

The network details of the autoencoders can be found in the
Appendix A.

4.2 Proposed Approach: VICE-GAN

Towards achieving our goal, we propose a framework (Figure 4)
that consists of the following 5 sub-networks: (i) Autoencoder
𝐼𝑒 , that encodes each input frame and produces the content rep-
resentation 𝑍𝐶 , (ii) Recurrent neural network 𝑅𝑚 , that generates
a set of motion vectors which represent the motion dynamics
𝑍𝑀 in a video, (ii) Generator 𝐺𝐼 , that accepts 𝑍𝐶 (content), 𝑍𝑀
(motion) and 𝑍𝐴 (category) as inputs and generates the video
sequences, (ii) Image discriminator 𝐷𝐼 that determines whether
a generated image is real or fake, and (iii) Video discriminator
𝐷𝑉 , that determine whether a set of frames in a video are real or
fake and in addition evaluates the authenticity of the generated
category-specific motion.

4.3 Network Architecture

4.3.1 Autoencoder for encoding content.

As we are dealing with visual data, the autoencoder is tasked
with encoding 𝐾 frames which represent the content aspect of a
video.

𝑍𝐶 = 𝐼𝑒 (𝑋 )

where, 𝑋 is an input video that contains a set of input frames
[𝑥1, 𝑥2, ...𝑥𝐾 ] and 𝐼𝑒 is the trained autoencoder which encodes 𝐾
frames belonging to a video 𝑋 .

Two content encoding schemes were introduced for producing
the content vectors in a video. In the Single Frame scheme, the
autoencoder takes the first frame of the video and produces a rep-
resentation for it (𝑧 (1)𝑐 ) and then fixes the same representation
for 𝐾 frames in a video.

While in the All frames scheme, the autoencoder produces a
individual content vector for each frame in a video. In other
words, 𝑍𝐶 contains a set of content vectors [𝑧 (1)𝑐 , ..., 𝑧

(𝐾)
𝑐 ] that

represent the respective frames of a video.

4.3.2 Recurrent Neural Network for modelling motion.

As the identity of the individual remains the same in a video
with only motion changing between the frames, it is import-
ant to model this change between frames. RNNs [19] are useful
for modelling sequence of data such that each sample in the se-
quence is dependent on, or correlated with, the previous one.
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Figure 4: Model pipeline for video generation
This figure illustrates the model pipeline for video generation. On the left are a sequence of extracted and concatenated frames of an individual
from one of six emotion categories obtained from the MUG facial database e.g. happiness. These frames are fed into the selected autoencoder
model AE to produce a 50-dimensional representation of the human face and constitutes the content Zc. An additional recurrent neural net-
work is used to transform random noise into a sequence of correlated variables that represent themotion Zm, or in this case facial expression,
which the content will be performing Finally, the input is augmented using a one-hot vector encoded variable category Za that represents the
target emotion category. The above components are concatenated and fed into a 2D decoder architecture that generates a sequence of frames
depicting the same individual expressing the target emotion e.g. anger. The image discriminator randomly samples single frames from real
and generated videos, while the video discriminator randomly samples T consecutive frames.

𝑍𝑀 = 𝑅𝑚 (𝜖)

where, 𝜖 is a vector that is sampled from a gaussian distribution,
𝑅𝑚 is the recurrent neural network which generates motion vec-
tors from the noise vectors and 𝑍𝑀 is the motion representation
or space that contains a set of motion vectors.

The recurrent neural network 𝑅𝑚 is a one-layer GRU network
which is responsible for generating the vectors [𝑧 (1)𝑚 , ..., 𝑧

(𝐾)
𝑚 ]

in 𝑍𝑀 which constitutes the motion representation in a video.
Similar to [29], noise is injected at every iteration to model uncer-
tainty of the ensuing motion at each step.

4.3.3 Image and Video Discriminators.

The network uses two types of discriminators - an image discrim-
inator 𝐷𝐼 and a video discriminator 𝐷𝑉 . 𝐷𝐼 is based on a stand-
ard CNN architecture that provides criticism to the 𝐺𝐼 based on
randomly-sampled individual images or frames. The purpose
of 𝐷𝐼 is to determine whether a frame is sampled from a set of
real or fake videos. Based on the findings of [29], it was found
that the addition of 𝐷𝐼 improved the overall training of the GAN
model since focusing on stationary appearances is relatively
easier.

𝐷𝑉 is of a spatio-temporal type architecture that samples the
frames from a video clip in order to determine if the set of frames
was sampled from the real or fake videos. 𝐷𝑉 penalizes the mo-
tion aspect of the video and sends the feedback back to 𝑅𝑚 . In
addition, the 𝐷𝑉 also attempts to learn the different categories
present in the training data. By doing so, it generates category
labels for generated videos which are then compared to the ori-
ginal labels to enforce accurate category-specific generations.

4.3.4 Generator.

The generator model 𝐺𝐼 is fed two components, the content
vectors 𝑧𝑐 in 𝑍𝐶 and the motion vectors 𝑧𝑚 in 𝑍𝑀 in order to
capture the dynamics of a video. Additionally, a categorical one
hot vector is also added so that the generator can produce video-
specific emotions. The goal of 𝐺𝐼 is to produces realistic genera-
tions based on the criticisms provided by the discriminators 𝐷𝐼
and 𝐷𝑉 . The generator is of a decoder type architecture so by
concatenating the 𝑧𝑐 , 𝑧𝑚 and 𝑧𝑎 and providing this as input to
𝐺𝐼 , it will attempt to generate a video sequence. The model has
a generator network composed of 4 transposed convolution lay-
ers for upsampling. Batch normalization is used in the generator
network.
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During training, we experimented with two types of content
encoding schemes in the generator. In the first scheme i.e., single
frame method, we fix the content once and repeat it 𝐾 times and
this is shown in the following equation.



𝑧𝑎

𝑧
(1)
𝑚

𝑧𝑐

 ....

𝑧𝑎

𝑧
(𝐾)
𝑚

𝑧𝑐




Alternatively in the second scheme i.e., all frame method, we
produce independent content vectors for 𝐾 frames and this is
represented by the below equation.



𝑧𝑎

𝑧
(1)
𝑚

𝑧
(1)
𝑐

 ....

𝑧𝑎

𝑧
(𝐾)
𝑚

𝑧
(𝐾)
𝑐




The network configurations of the above sub-networks can be
found in the Appendix A.

4.3.5 Objective functions.

Full Objective loss.

The full objective loss function contains an adversarial loss 𝐿𝑎𝑑𝑣 ,
a content-consistency loss 𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡 and a category loss 𝐿𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 .
The loss can be formulated as follows:

𝐿𝑜𝑏 𝑗 = 𝐿𝑎𝑑𝑣 (𝐺𝐼 , 𝐷𝐼 , 𝐷𝑉 , 𝑅𝑚) + 𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (𝐺𝐼 ) + 𝐿𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝐺𝐼 , 𝐷𝑉 )

Adversarial loss.

In order to generate videos which are difficult to distinguish
from the real videos, an adversarial loss [14] is adopted. The ad-
versarial loss generally, refers to the simultaneous optimization
of the two networks namely, the generator and the discriminator.
The generator is encouraged to generate realistic data that can
fool the discriminator while the discriminator seeks to distin-
guish the real data from the generated data. The training of the
generator and discriminator networks is achieved via a min-max
manner.

The adversarial objective for our model 𝐿𝑎𝑑𝑣 (𝐺, 𝐷𝐼 , 𝐷𝑉 , 𝑅𝑚) can
be expressed as follows,

E𝑣∼𝑝𝑣 [− log𝐷𝐼 (𝐺𝐼 (𝑍𝐶 , 𝑍𝑀 ))] + E𝑣∼𝑝𝑣 [− log(1 − 𝐷𝐼 (𝐺𝐼 (𝑍𝐶 , 𝑍𝑀 )))]
+E𝑣̃∼𝑝𝑣̃ [− log𝐷𝑉 (𝐺𝐼 (𝑍𝐶 , 𝑍𝑀 ))] + E𝑣̃∼𝑝𝑣̃ [− log(1 − 𝐷𝑉 (𝐺𝐼 (𝑍𝐶 , 𝑍𝑀 )))]

Here the first and second terms in the loss function encourage
the image discriminator 𝐷𝐼 to classify the individual frames
from the real 𝑣 and fake 𝑣 videos. Based on the third and fourth
terms, the video discriminator 𝐷𝑉 is encouraged to distinguish
a consecutive set of frames from 𝑣 and 𝑣 . The generator 𝐺𝐼 and
recurrent neural network 𝑅𝑚 attempt to produce realistic video
sequences based on the second and fourth terms in the equation.

Content-consistency loss.

It was initially hypothesized that the addition of a reconstruction
loss between the real and fake videos might be sufficient enough
to achieve identity consistency. However, this approach was
found to be unsuccessful. This may have arisen from the model
not being able to differentiate between the content and motion
aspects of the video when measuring the reconstruction loss.

To address this, a content consistency loss was proposed. As the
generated videos contained motion and content, it was theor-
ized that reproducing the content representations of the real and
fake videos and computing the loss between the two represent-
ations would be able to enforce the identity when generating to
different domains.

To carry this out, we leverage the autoencoder, which produces
a content representation for each frame for all pairs of real 𝑧𝑐 (𝑣)
and fake 𝑧𝑐 (𝑣) videos. The loss is computed as the mean squared
error between each pair of real and fake feature representations.

𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = E[𝑧𝑐 (𝑣) − 𝑧𝑐 (𝑣)]

where 𝑧𝑐 is a content representation produced by the pretrained
autoencoder.

Category loss.

To model the categorical dynamics (aspects) of a video, the input
to the generator is conditioned with a categorical random vari-
able 𝑧𝑎 , where each category is represented by a one hot vector,
and the dimensionality of this vector is equal to the number of
categories present. The addition of the one-hot vector allows
the model to perform multi-domain generation with a single
network, and more specifically, allows the generator to gener-
ate videos corresponding to the six different emotions present
in the dataset. Since the frames in a given video belong to the
same category, we keep the realization fixed for all frames in that
video.

The category loss is represented as follows, 𝐿𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝐺𝐼 , 𝐷𝑉 ).
𝐷𝑉 attempts to learn the categories from the training video while
𝐺𝐼 tries to generate categories that are recognizable from the
video discriminator.

5 EXPERIMENTS

The following section describes the utilized dataset and exper-
imental set-up, followed by an overview of the planned experi-
ments and the evaluation measures that will be used in the study.

5.1 Dataset

The MUG Facial Expression Database [2] consists of videos from
86 Caucasian subjects (35 women and 51 men), although only
data from 52 participants is available to authorized users. Sub-
jects were seated in front of a blue background and on a chair
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in front of a single camera (examples can be seen in Figure 5).
Videos were captured at 19 frames per second. Subjects were
requested to perform six basic expressions corresponding to the
following emotions: anger, happiness, disgust, fear, sadness and
surprise. The video sequences start and end at neutral state and
follow the onset, apex, offset temporal pattern. In addition, for
each subject a short video sequence depicting the neutral state
was recorded. The distribution of data with respect to the num-
ber of videos and participants is shown in Figure 6

Figure 5: Examples of participants from MUG Database
displaying the six emotions [2]

5.1.1 Pre-processing. All frames were extracted from each video,
and were resized to 64x64 for practical reasons. Videos with
less than 64 frames were removed in order to comply with the
selected frame-sampling method from [29]. The resulting dataset
comprised of 50 participants, and a total of 548 videos.

Figure 6: MUG Facial Database
The graph shows (a) number of subjects (blue) and (b) number of
videos (orange) present for each emotion category

5.2 Experimental Setup

The training of the GAN models occurs on a single TITAN X
12GB GPU machine located in the CTIT cluster at the University

of Twente. In all the experiments, the image and video batch
were set to the size of 32. The adam solver was used for training,
with a learning rate of 0.0002. The 𝛽1 and 𝛽2 were equal to 0.5
and 0.999 respectively. The models were saved every 10,000 steps
in order to observe the generation of the video sequences.

5.3 Experimental Overview

Four GAN variants are described below in Table 2, which dif-
fer along two variables: the content encoding method and fine-
tuning of the autoencoder. All models were also trained on the
basis a third variable, namely composition of training data, giv-
ing rise to eight model variants which are compared using the
evaluation measures listed in section 4.2.

Model Loss functions Content Encoding Fine-Tuning

1 Adv+Category+Content-consistency All Frames ✓

2 Adv+Category+Content-consistency All Frames -

3 Adv+Category+Content-consistency Single Frame ✓

4 Adv+Category+Content-consistency Single Frame -

Table 2: Overview of VICE-GAN variants

5.3.1 Composition of Training Data.

First, given a 80-20 train-test split, we devised two approaches to
testing the model. First, all videos pertaining to the test subjects
were removed from the training data such that during testing,
the model would be seeing these faces for the first time (Un-
seen). In the second strategy, videos of the test subjects were
included in the training data but only for two out of the six emo-
tions. Therefore, the model would have seen these faces before
but would not have seen emotion-specific training data corres-
ponding to the remaining four emotions which will be generated
during testing (Seen). On the basis of preliminary experiments,
it was hypothesised that (a) the model may need to see an indi-
vidual during training in order to reproduce that individual, and
(b) that allowing the model to be trained on atleast two emotion-
specific samples would allow the individual’s identity to be re-
produced effectively while still being able to flexibly generate
unseen emotions for those individuals.

5.3.2 Content Encoding Method.

Using the autoencoder model, content can be encoded in two
ways: (1) all 16 frames of a given video are encoded to produce
sixteen content vectors (All Frames) and (2) only the first frame
of a given video is encoded to produce a single content vector
which is then repeated sixteen times to produce sixteen content
vectors (Single Frame). While the first approach may provide
some variation between the content vectors, the second approach
may keep the content more constant and increase content con-
sistency across frames.

5.3.3 Fine-Tuning Autoencoder Weights.
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Third, we hypothesise that allowing the pre-trained autoencoder
to continue training alongside the GAN may result in better res-
ults regarding identity consistency. While the weights of the
autoencoder are normally frozen during GAN training, the al-
ternative is that the weights will be updated according to, and
could benefit from, the generator loss.

5.4 Evaluation

SSIM MSE ACD CAS - M CAS - H

Quality ✓ ✓ - - -

Identity - - ✓ - -

Emotion - - - ✓ ✓

Table 3: Overview of evaluation measures

5.4.1 Structural Similarity Index Measure.

The single-scale structural similarity index measure (SSIM) [34]
is a well-characterized perceptual similarity measure that aims to
discount aspects of an image that are not important for human
perception. It compares corresponding pixels and their neigh-
borhoods in two images using three quantities i.e., luminance,
contrast and structure. The three quantities are combined to form
the SSIM score.

To evaluate the autoencoder, the SSIM score was computed to
measure the similarity between the real and reconstructed im-
ages. A high SSIM score indicates that the reconstructed image
was similar to the real images, and by extension, that the com-
pressed representation produced by the encoder was of good
quality.

To evaluate the frames generated by VICE-GAN, the SSIM score
was computed to measure the similarity between the real and
generated frames. A high SSIM score indicates that the gener-
ated frames are similar to the actual frames, suggesting that the
generated frames are of high quality.

5.4.2 Mean-squared error.

Mean-square error (MSE) is another measure which is widely
used to assess image similarity [6]. It is calculated as the aver-
age of the squared differences between the actual and predicted
target values.

To evaluate the autoencoder, MSE was computed to measure the
similarity between the real and reconstructed images. A low MSE
indicates that reconstructed image was similar to the real images,
and by extension, that the compressed representation produced
by the encoder was of good quality.

To evaluate the frames generated by VICE-GAN, the MSE was
used to calcuate the error between the real and generated frames
in a video. A low MSE indicates that the generated frames are
more likely to resemble the real frames, suggesting that the gen-
erated frames are of high quality.

5.4.3 Average Content Distance.

Average Content Distance (ACD) proposed by [29] measures
the content consistency of the videos, and refers to the average
L2 distance among all consecutive frames in a video. A feature
vector is produced for each frame in a generated video using the
pretrained autoencoder, and then the ACD is computed using
an average pairwise L2 distance of the per-frame vectors in a
video. A reference ACD is also computed on the real videos that
correspond to the test subjects, which allows a direct comparison
between the reference and generated frames.

A smaller ACD means that the generated frames in a video are
perceptually more similar, and vice versa. As the result, the iden-
tity of the individual is more likely to be preserved between
frames.

5.4.4 Classification Accuracy Score - Machine.

A pre-trained classifier was obtained from [3], which consists of
a convolutional neural network that was trained on the FER-2013
in-the-wild emotion dataset. The model achieved 66% classifica-
tion accuracy. The classifier was used to categorize the generated
videos into the six emotion classes (anger, happiness, disgust,
fear, sadness, and surprise), and compare the inferred labels with
the labels of real data.

5.4.5 Classification Accuracy Score - Human ratings.

10 videos were generated for each emotion, which resulted in 60
videos per model. Only videos generated in the Seen condition
were selected as it performed superior to the Unseen condition
for both visual quality and emotion generation, and produced
videos of sufficient quality to be rated by humans. Participants
were shown a random set of 60 video sequences and were asked
to indicate which emotion they would assign to each sequence.
Participant responses were compared with the true labels and
percentage accuracies were computed for each emotion and were
averaged to produce an overall score for each model.

6 RESULTS

In this section, the autoencoder selection is presented followed
by an in-depth evaluation of the VICE-GAN. The generated video
sequences are evaluated along (a) visual quality, (b) identity con-
sistency and (c) emotion generation quality, and are interpreted
both quantitatively and qualitatively.

6.1 Autoencoder Selection

Table 4 shows MSE and SSIM scores for the small-, medium-
and large-variants across standard and variational autoencoder
models. The largest standard autoencoder was found to perform
best, as indicated by the highest MSE and SSIM scores.
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Type
Small Medium Large

MSE SSIM MSE SSIM MSE SSIM

Standard 0.001156 0.909136 0.000984 0.937786 0.00086 0.961358

Variational 0.002331 0.872967 0.001905 0.9062063 0.001277 0.938729

Table 4: Performance of autoencoder variants

6.2 VICE-GAN Evaluation

6.2.1 Visual Quality.

Quantitative

Quantitatively, visual quality was evaluated using structural
similarity index metric (SSIM) and mean squared error (MSE).
Figure 7 and Figure 8 show the SSIM and MSE values obtained
using the four models.

Figure 7: Structural Similarity Index Measure

Comparing the performance of the models based on composition
of training data, it can be seen that the Seen condition resulted in
higher SSIM and lower MSE values, indicating higher similarity
between the real and generated frames, and therefore increased
visual quality.

Figure 8: Mean Squared Error

Given that the models in the Seen condition were more likely
to produce higher quality videos, the results were further ana-
lyzed within this strategy. Considering the SSIM scores (Figure 7),

Model 2 resulted in the highest value, indicating higher qual-
ity, while Model 1 resulted in the lowest value, indicating lower
quality. The scores for Models 3 and 4 were comparable. Over-
all, Models 2 and 4 indicated higher visual quality than Models
1 and 3. These pairs of models differed in the way the autoen-
coder weights were frozen, with the latter having the weights not
frozen.

Considering MSE scores (Figure 8), Model 3 resulted in the low-
est value, indicating higher quality, while Model 1 resulted in the
highest value, indicating lower quality. That said, the perform-
ance of Models 2, 3 and 4 were comparable. As MSE is computed
pixel-by-pixel and tends to be insensitive to differences in in-
ternal structure, it is to be expected that the values across the
models are similar to one another and high - this is because in
each video, all frames represent the same individual with only
slight changes to their facial expressions. In contrast, SSIM has
been shown to be more meaningful when applied to images and
videos as it measures perceptual similarity by modelling similar-
ity as a combination of structure, luminance and contrast.

Qualitative

Figure 9 shows examples of video sequences for a selected indi-
vidual who is expressing the same emotion (Happiness) in the
Seen condition, and illustrates the visual quality obtained using
the four model variants, allowing us to make qualitative obser-
vations. In Models 1 and 3, the individual’s face is distorted, and
therefore the facial features which allow us to detect emotions
are unclear. Model 2 appears to have produced frames in which
the visual quality achieved is moderate despite the ambiguous
emotion which resembles disgust. In contrast, Model 4 resulted
in high visual quality, which allows us to identify the individual
and the corresponding emotion clearly.

Figure 9: Comparison of generated video sequences across
model variants
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6.2.2 Identity Consistency.

Quantitative

Figure 10 shows the average content distance (ACD) for the four
model variants in comparison to the reference (computed using
training data) across the two types of training data composition.
In the Seen condition, the ACD values are higher than in the
Unseen condition, indicating good identity consistency between
frames. Looking at the models in the Seen condition, Models 1
and 2 were found to exhibit the highest ACD values, indicating
low identity consistency between frames. In contrast, Models 3
and 4 resulted in the lowest ACD values, indicating high identity
consistency between frames, with Model 4 performing the closest
to the reference. These pairs of models differed in their content
encoding method, with the latter encoding the first frame and
using it as the content vector for all subsequent frames.

Figure 10: Average Content Distance

Qualitative

Figure 11 shows examples of several video sequences generated
in the Unseen and Seen conditions. To reiterate, in the Unseen
condition, the test subjects were removed completely from the
training data, whereas in the Seen condition, test subjects were
retained in the training data but only for two random emotions
such that the remaining emotions were generated during evalu-
ation.

It can be seen that in the Unseen condition, the correct emotion
is captured but the identity of the individual has been lost when
compared to the original video. Instead, the model appears to
have retrieved the individual that it has encountered before
which is most similar to the input received. This phenomenon
is not observed in the Seen condition, which suggests that the
identity of the individual is more likely to be preserved if the
model has seen the individual before, even if it has not seen them
make the same emotion expression. This is consistent with the
findings presented in the previous section, in which the Seen
condition resulted in improved identity consistency.

Figure 11: Comparison of generated video sequences based
on composition of training data - (A) Unseen condition (B)

Seen condition

6.2.3 Emotion Generation.

Emotion generation was evaluated using two types of classi-
fication accuracy scores (CAS): using a pre-trained classifier
(CAS-M) and using human subjective ratings (CAS-H).

Quantitative

Figure 12 shows overall CAS scores for the four models achieved
using the pre-trained classifier on the generated video sequences.
Based on Figure 12, Models 1 and 4 resulted in the highest and
comparable CAS scores in the Unseen condition while Model 2
resulted in the highest CAS score Seen condition. However, the
differences in performance on the basis of training data composi-
tion were not noteworthy. CAS scores obtained for each emotion
across the four models in the Seen condition can be found in
Appendix A.

Figure 12: Classification Accuracy Score (CAS-M) - Using a
Pre-Trained Classifier

Qualitative

Figure 13 shows overall CAS scores for the four models obtained
using subjective ratings provided by human participants who
were shown video sequences generated in the Unseen condition
(in dark blue). Model 2 outperformed the other models with
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the highest CAS-H score with regards to generating accurate
emotions, followed by Model 4 while Models 1 and 3 resulted
in noticeably lower CAS scores. These pairs of models differed
in the way the autoencoder weights were frozen, with Models
2 and 4 having the weights not frozen. CAS scores obtained for
each emotion across the four models in the Seen condition can be
found in Appendix A.

Figure 13 also shows the comparison between CAS scores ob-
tained using the pre-trained classifier (CAS-M) and using human
subjective ratings (CAS-H). Looking at CAS-H scores, Model
2 resulted in the highest CAS scores, and therefore performed
better than the other models with regard to emotion generation.
Comparing CAS-M and CAS-H scores, it can be seen that the
CAS scores were on average higher when using human ratings
when compared to the pre-trained classifier.

Figure 13: Classification Accuracy Score - Comparison
between Pre-Trained Classifier (CAS-M) and Human

Ratings (CAS-H)

This suggests that the generator is indeed performing at an ad-
equate level, and that the low CAS scores obtained using the
pre-trained classifier can be explained by the quality of the clas-
sifier itself. Therefore, the CAS-H scores, and therefore the use
of human ratings, can be considered more robust and valid as an
evaluation measure in this context.

6.2.4 Holistic Qualitative Evaluation.

Figure 14 presents several short video sequences from differ-
ent model variants in the Seen condition in order to provide ex-
amples of good and poor generations produced by VICE-GAN.

The generated frames are shown as falling along two dimensions:
visual quality, which refers to clarity and presence of distortions,
and emotion generation, which refers to the discernibility and
accuracy of emotional expressions. In the top-left corner are
instances of low visual quality but discernable and correct emo-
tional expressions - this is in contrast to the examples presented
below that, in which low visual quality is also accompanied by
poor emotion generation. On the right are examples of frames
characterized by high visual quality, although the instances in
the bottom-right corner show that it is possible to obtain clear
frames without the appropriate emotion.

Figure 14: Examples of low and high quality generated
video sequences

While these examples can be found across all model variants,
frames of low visual quality were often produced by Model 1,
while Models 2, 3 and 4 were overall found to generate frames of
higher visual quality and discernible emotions. These qualitative
observations are also consistent with the quantitative measures
discussed earlier in this section.

The results of this section are summarized below (Table 5), where
the influence of the three chosen experimental variables is shown
as either present (✓) or absent ( - ) on the three evaluation as-
pects - visual uality, identity consistency and emotion genera-
tion.

Experimental Variable Visual Quality Identity Consistency Emotion Generation

Training Data Composition ✓ ✓ -

Content Encoding Method - ✓ -

Autoencoder Fine-Tuning ✓ - ✓

Table 5: Overview of VICE-GAN Results
based on Experimental Variable

7 DISCUSSION

The present study sought to develop a deep generative model
that is applicable for generating video sequences of individuals
expressing different emotions whilst retaining the individual’s
identity. Throughout this thesis, We have discussed the different
methodological and experimental questions and the previous
section presents the results. In this section, these results will
be interpreted and discussed, and by doing so, each research
question presented at the start of this thesis will be answered.

RQ2a: To model the content sub-space, which autoencoder architec-
ture produces the most accurate, high-quality compressedrepresent-
ations of human faces?
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Six autoencoder variants were trained on the MUG facial dataset
and evaluated using mean squared error (MSE) and structural
similarity index measure (SSIM). For the purpose of selecting an
autoencoder, the standard autoencoder with the largest architec-
ture was found to outperform the other variants and was used in
the subsequent experiments to model the content sub-space. That
said, the difference in performance between the variants was
sufficiently small that a smaller architecture may have also been
used for computational efficiency. While resource constraints lim-
ited experimentation to one autoencoder, the variational autoen-
coder may have been useful for encoding content as it models
the distribution of faces it has been trained on, therefore being
able to generalize better to unseen individuals and by extension,
preserving identity more effectively.

RQ2b: Can identity consistency be additionally enforced through
the use of a content consistency loss?

Preliminary experiments indicated that encoding the content rep-
resentation of the input frames alone was insufficient to enforce
identity consistency. The addition of a regular reconstruction loss
function computed using real and generated sequences did not
additionally improve the results. The loss function was refined
by applying the autoencoder to the real and generated sequences
to produce content representations which were then used to
compute content consistency loss. The addition of the refined
loss function was successful in reproducing the identity of the
test subjects, and was therefore implemented in the final models.
Identity consistency was evaluated using average content dis-
tance (ACD) and qualitative observations, and it was found that
individual identity was preserved to a large degree across mod-
els, and on average, they performed comparably to the reference
videos. Thus, the addition of the content consistency loss was
instrumental for this purpose.

RQ1(a): How do the following experimental variables influence the
generated video sequences: (1) composition of training data?

It was observed that in the Seen condition, the models were able
to produce higher quality video sequences. Moreover, the com-
position of training data influenced identity consistency, such
that Seen condition, the models were able to reproduce the iden-
tity of the individual more successfully. To reiterate, the Seen
condition allowed the model to see examples of the test subjects
during training but only for two emotions while the remaining
four emotions were generated during testing. This suggests that
identity consistency is better achieved if the model has seen the
individual before. This could be a limitation of the standard au-
toencoder model used in this study, and as mentioned previously,
a variational autoencoder can be investigated in future work in
order to circumvent the issue of identity consistency for individu-
als that the model has not yet seen.

RQ2(b): How do the following experimental variables influence the
generated video sequences: (2) content encoding method

In order to determine the influence of content encoding method,
Models 1 and 2 are compared to models 3 and 4. For both visual
quality and emotion generation, Model 2 consistently performed

well but in contrast, Model 1 generally performed poorly. On the
other hand, Models 3 and 4 generally performed comparably for
visual quality but Model 4 outperformed Model 3 for emotion
generation using human ratings. In line with our hypothesis,
Models 3 and 4 outperformed Models 1 and 2 with regards to
identity consistency. These pairs of models differed in their con-
tent encoding method, with Models 3 and 4 using the content
encoding method in which the first frame is encoded and the
resulting content vector is used for all subsequent frames of the
video. If unique content vectors are produced for each frame, it
is possible that the identity is not preserved across all frames,
leading to a loss of identity in the generated video. As expected,
fixing the identity by using only the content vector produced for
the first frame may have allowed increased control over reprodu-
cing the identity as desired.

RQ3(c): How do the following experimental variables influence the
generated video sequences: (3) fine-tuning the autoencoder

In order to determine the influence of freezing autoencoder
weights during GAN training, Models 1 and 3 are compared
to Models 2 and 4. Model 2, and to an extent, Model 4, outper-
formed Models 1 and 3 on the basis of visual quality and emotion
generation. This suggests that utilizing the pre-trained autoen-
coder without fine-tuning it during GAN training resulted in
higher quality video sequences and more accurate emotion ex-
pressions. In other words, allowing the autoencoder to continue
training alongside the GAN provided no measurable benefit and
may have even negatively impacted the results. It was initially
hypothesized that fine-tuning the autoencoder may allow it to
benefit from the generator loss and produce better representa-
tions. However, negative transfer may have occurred due to the
category loss of the generator that was back-propagated to the
autoencoder as it was not designed to learn multiple emotion
categories.

RQ3(d):Which of the model configurations perform best in terms
of (a) visual quality and (b) identity consistency and (c) accuracy of
the generated emotions?

The model (Model 2), which was configured to use a unique
content vector for each frame and to freeze autoencoder weights,
seemed to exhibit superior performance for both visual quality
and emotion generation as seen by SSIM, MSE and CAS scores.
The model (Model 4), which was configured to repeat the first
content vector for all frames and to freeze autoencoder weights,
performed closely to Model 2 for visual quality and emotion
generation, but outperformed it for identity consistency.

7.1 Limitations and Future Work

It was observed that the current models had difficulty generaliz-
ing to fully unfamiliar or unseen individuals, and this is an area
which requires further work. One potential solution is the use
of software such as OpenFace, which can be used to map out fa-
cial landmarks and generate features which can then be used to
train the autoencoder and generator instead of the raw videos.

13



This may aid in more accurate emotion generation but could also
improve the model’s ability to generalize to unseen faces.

Another limitation that was observed was the lack of motion, or
changes between frames in several video sequences. One way to
improve this would be to focus on pre-processing the training
data more effectively. For example, a metric such as SSIM can
be used to discard frames with the least change in a pairwise
manner, and a video classifier can be used to validate the train-
ing data and only select video takes that accurately represent
each emotion. Another approach could be to include a temporal
generator or predictor and implement an additional motion con-
sistency loss that enforces dynamic changes between frames [4].
It is also plausible that a one-step approach to videos may be
more suitable for producing better results, in contrast to the two-
step approach that was taken in this project. Specifically, instead
of decomposing video into content and motion, the two can be
considered simultaneously using a spatiotemporal 3D generator
as suggested by Wang and colleagues [33].

8 CONCLUSION

We presented the VICE-GAN model for generating identity-
consistent emotion-specific videos. With an appropriate training
strategy, VICE-GAN is able to retain the identity of a chosen in-
dividual when producing videos belonging to different emotion
categories by fixing the content subspace.

This was achieved through the introduction of a trained autoen-
coder and an additional content consistency loss in order to en-
force the mapping between the content present in the input and
generated videos. Each frame is defined by a vector containing
two parts: content and motion. Specifically, the content refers to
the compressed representation produced by the autoencoder on
the input video, and the motion is a series of correlated vectors
produced by a recurrent neural network that models motion dy-
namics across frames. Additionally, the generator is conditioned
on one of six emotions during training to enable multi-domain
generation with a single generator-discriminator network.

Our mixed-method evaluation supports the ability of VICE-GAN
to produce videos of desired individuals that are of good quality
and can accurately capture six different emotions. Importantly,
this work also investigated the role of three experimental vari-
ables on model performance to inform subsequent studies. Over-
all, model variants resulted in higher visual quality and increased
identity consistency if they were trained on videos containing
the test subjects for two emotions than if the models were not
exposed to these individuals at all. It was also found that freezing
autoencoder weights during GAN training often produced higher
quality videos and improved emotion generation while repeating
the content vector obtained for the first reference frame across
all frames instead of producing a unique content representation
for each frame resulted in improved identity consistency.

Avenues for future work are discussed, with an emphasis on im-
proving pre-processing techniques and efforts to model temporal
dynamics, or motion more effectively. While emotion generation

was chosen as the application for the VICE-GAN in this study,
it is important to note that the model can be adapted to other
domain-specific generation tasks as well.
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A APPENDIX

A.1 Autoencoder network configurations

Encoder

0 Conv-N32, K3, S2, P1, BN, ReLU

1 Conv-N64, K3, S2, P1, BN, ReLU

2 Conv-N128, K3, S2, P1, BN, ReLU

3 Conv-N256, K3, S2, P1, BN, ReLU

4 Conv-N512, K3, S2, P1, BN, ReLU

Fully-connected Linear Layer (𝑁=50)

Decoder

0 Deconv-N256, K3, S2, P1, BN, ReLU

1 Deconv-N128, K3, S2, P1, BN, ReLU

2 Deconv-N64, K3, S2, P1, BN, ReLU

3 Deconv-N32, K3, S2, P1, BN, ReLU

Table 6: Autoencoder - Large architecture

Encoder

0 Conv-N32, K4, S4, P1, BN, ReLU

1 Conv-N64, K4, S4, P1, BN, ReLU

2 Conv-N128, K3, S3, P1, BN, ReLU

3 Conv-N256, K3, S3, P1, BN, ReLU

Fully-connected Linear Layer (𝑁=50)

Decoder

0 Deconv-N128, K3, S2, P1, BN, ReLU

1 Deconv-N64, K3, S2, P1, BN, ReLU

2 Deconv-N32, K3, S2, P1, BN, ReLU

Table 7: Autoencoder - Medium architecture

Encoder

0 Conv-N16, K3, S1, P1, BN, ReLU

1 Conv-N4, K3, S2, P1, BN, ReLU

2 MaxPool, K2, S2, P1

Fully-connected Linear Layer (𝑁=50)

Decoder

0 Deconv-N4, K2, S2, P1, BN, ReLU

1 Deconv-N16, K2, S2, P1, BN, ReLU

2 Deconv-N64, K2, S2, P1, BN, Sigmoid

Table 8: Autoencoder - Small architecture
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Note: The Variational autoencoder configurations are the same as that of the standard autoencoder with the only exception being that the
linear layer is replaced with a mean and standard deviation layers.

A.2 VICE-GAN network configuration

Generator 𝐺𝐼
0 DeConv-N512, K6, S0, P0, BN, LeakyReLU

1 DeConv-N256, K4, S2, P1, BN, LeakyReLU

2 DeConv-N128, K4, S2, P1, BN, LeakyReLU

3 DeConv-N64, K4, S2, P1, BN, LeakyReLU

4 DeConv-N3, K4, S2, P1, BN, LeakyReLU

Image Discriminator 𝐷𝐼
0 Conv-N64, K4, S2, P1, BN, LeakyReLu

1 Conv-N128, K4, S2, P1, BN, LeakyReLu

2 Conv-N256, K4, S2, P1, BN, LeakyReLu

3 Conv-N1, K4, S2, P1, Sigmoid

Video Discriminator 𝐷𝑉
0 Conv3D-N64, K4, S1, P0, BN, LeakyReLu

1 Conv3D-N128, K4, S1, P0, BN, LeakyReLu

2 Conv3D-N256, K4, S1, P0, BN, LeakyReLu

3 Conv3D-N1, K4, S1, P0, Sigmoid

Table 9: VICE-GAN architecture
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A.3 VICE-GAN: Supplementary Results

Figure 15: Emotion-Specific Classification Accuracy Score (CAS-M) - Using a Pre-Trained Classifier

Figure 16: Emotion-Specific Classification Accuracy Score (CAS-H) - Using Human Ratings
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