
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Duckbot
A chatbot to assist students

in programming tutorials

Margot Rutgers
M.Sc. Thesis
August 2021

Supervisors:
Dr. Ansgar Fehnker

Dr. ir. Randy Klaassen
Dr. Khiet Truong

Human Media Interaction Group
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

Drienerlolaan 5
7522 NB ENSCHEDE

The Netherlands

Preface

The basis of this thesis was my many years of working as a teaching assistant
in Creative Technology, close collaboration with the teaching staff and a personal
interest in education. It was a natural next step when working on Atelier, a research
project with a vision of improving education for both students and teaching staff.
Many of our meetings were spent not talking about technology, but talking about our
experiences. What made programming in Creative Technology so unique, and how
could we make it even better?

The Atelier project was lead by Ansgar Fehnker, to whom I am very grateful for
also guiding this project as my supervisor. Although Covid-19 eventually had us
meeting online instead of at Starbucks, it was great working together. Also leading
Atelier was Angelika Mader, my first programming teacher, who encouraged me to
be involved as a teaching assistant and become a programmer. I would also like to
thank those students I worked with during the Atelier project. And of course the TAs
contributed to this research, especially Dennis and Jur, my TA-colleagues for years.

I would like to thank Randy Klaassen and Khiet Truong for their supervision during
the later stages of the project. Their constructive criticism greatly elevated the quality
of my thesis.

I have been lucky enough to have been involved with the development of my bach-
elor, Creative Technology, and master Interaction Technology, throughout my entire
time at the University of Twente. I am grateful to the teaching staff and in particular
programme director Alma Schaafstal, for giving me these opportunities.

Many, many thanks to my family and my friends - especially Joelle, Carmen, Job,
Lieve, Emma, Tom, Joep. You got me through this project, and through lockdown!

Finally, always in my thoughts are to those who were there when I started this,
but who now we miss. Dear Ad, thank you so much for your love, support and
inspiration for everything I do. Opa Marinus and oma Annie, I wish you were here to
see me graduate. I know you would be proud of me graduating in ’Something With
Computers’.

iii

iv PREFACE

Abstract

Projects concerning the creation of an online platform to aid programming courses in
the bachelor study programme Creative Technology are ongoing. A key principle is
to help foster a Community of Practice, where members of the community - teaching
assistants and students - can learn together. This research aims to identify oppor-
tunities where a new online tool can be of aid. Guiding this research is the main
research question: “How can a digital tool enhance the quality of help seek-
ing and giving, between students and teaching staff, in Creative Technology
programming tutorials?”

Concerns raised by TAs during a brainstorm session and a questionnaire included
that students have problems identifying the cause of programming problems, and
as such have a hard time asking the right questions to TAs, sometimes leading to
students not making use of the help available at all. TAs expressed a wish for a
tool that focuses on making time between students and TAs more useful, instead
of completely moving help to an online environment, and nudging students towards
being proactive in their help seeking.

Literature supports that seeking help can be difficult for students because the pro-
cess can feel threatening, and because they do not know how to effectively ask for
help. A computer-based solution can assist in both making the process less threat-
ening, and guiding the student in effective help seeking. Self-talk is a strategy that
can be incorporated as well to support learning.

A conversational agent, in particular a chatbot, was identified as a promising tech-
nology. It can fully guide students step-by-step to ask quality questions, make the
process of asking questions less threatening, allow aspects of explaining and self-
talk and be built into digital platforms currently used.

Inspired by previous research and popular online programming Q&A strategies, a
chatbot was designed. It is named Duckbot, after the self-tack strategy ’Rubber
Ducking’, where people learn more about their problems by elaborating about it to a
human or inanimate partner. Duckbot will ask the student for specific Problem State-

v

vi ABSTRACT

ment Details, such as ’goal statement’, ’actual and expected results’, ’relevant error
messages’, ’relevant code’ and ’steps taken’. It is accessed through TA-Help.me, an
online platform that students currently use to queue up questions when requesting
help from TAs.

A user test of Duckbot yielded favourable results, with students recognising it helping
them communicate problems, it being user friendly, and helping to understand their
own problems more. Opportunities for improvement included technical errors to fix
and Duckbot not fully understanding all user utterances.

It is recommended to do further research with a larger group of participants, add
categorisation of help request types, expand the possible dialogue of Duckbot, and
make it part of a larger social platform.

Contents

Preface iii

Abstract v

1 Introduction 1
1.1 Background . 2

1.1.1 Programming in CreaTe . 2
1.1.2 Atelier & the Community of Practice 3
1.1.3 Engagement & Persuasive design 5
1.1.4 Recommendations for a CoP support tool design 7

1.2 Research Questions . 9
1.3 Overview . 9

2 Ideation 11
2.1 Brainstorm . 11

2.1.1 Conclusion . 13
2.2 TA Questionnaire . 14

2.2.1 Conclusion . 18
2.3 Literature . 19
2.4 Conclusion . 21

3 Specification 23
3.1 Context analysis . 23

3.1.1 Target audience - Personas . 23
3.1.2 Software context . 27

3.2 Product idea . 28
3.2.1 Product requirements/MoSCoW 31
3.2.2 User interaction . 31

3.3 Design . 33
3.3.1 Use case diagram . 33
3.3.2 UI design . 33

vii

viii CONTENTS

3.3.3 Technology stack . 35
3.3.4 Architecture . 36

3.4 Conclusion . 36

4 Realization 39
4.1 Prototype realization . 39
4.2 Original test plan . 41
4.3 New test plan . 43
4.4 Results . 46

4.4.1 During the test . 46
4.4.2 Questionnaire . 47

5 Interpretation 51
5.1 User test interpretation . 51

5.1.1 Usefulness for students . 51
5.1.2 UX Design . 52
5.1.3 Technical flaws . 53

5.2 Requirements fulfilment . 53
5.3 Looking back at the personas . 55
5.4 Conclusion . 57

6 Discussion 59
6.1 Discussion of results . 59
6.2 Limitations . 60
6.3 Recommendations for meeting all requirements 62
6.4 Recommendations for further research 64

7 Conclusion 67
7.1 Answering the research questions . 67
7.2 Final words . 69

References 71

Appendices

A TA Questionnaire 81

B Dialogflow implementation 91

Chapter 1

Introduction

Within the bachelor programme Creative Technology at the University of Twente,
programming is one of the main topics. As it is part of a broader spectrum of com-
puter science, electrical engineering and design topics, programming is taught differ-
ently from other engineering programmes: students look at programming through a
lens of design and creative thinking, and programming assignments are largely self-
defined. For example, knowledge of physics and mathematics can be demonstrated
by programming a landscape with grass and birds moving as in nature. As such,
there is no answer sheet: teaching assistants (TAs) and teachers help students by
diving into their specific challenges, face-to-face.

To support the teaching team, the research project Atelier was founded. It is an on-
line platform that is still in development and offers a way for students and teaching
staff to communicate (about) code. The supporting philosophy is that of the Commu-
nity of Practice: students and teachers should be able to form a community where
the interests of, and interactions between, members are of mutual benefit.

This thesis started out when working on the Atelier platform. Currently the platform
primarily offers a way to upload and discuss code online. However, there are op-
portunities to improve the process of help seeking and giving. For this thesis, we
investigated the concerns of TAs concerning this process. How can we address
these using an digital tool?

Research in topics such as the Community of Practice and Persuasive System De-
sign - can students be motivated to use this tool? - as well as the experiences of
teachers and teaching assistants, became the context for creating a system to be
designed in this thesis. A strong sentiment of the Atelier project, which was echoed
by TAs, was that a digital tool should support, and not replace, quality interaction
with students. The quality of the interaction increases when students are pro-active

1

2 CHAPTER 1. INTRODUCTION

and have skills in question-asking.

From that thought eventually came the idea of a chatbot that would help students
understand the problems they encountered better, which would in turn lead to a
more fruitful help session with a TA if requested.

1.1 Background

In preparation for this thesis, we undertook a literature review linked to the Ate-
lier project, the Community of Practice ideology, and the design of engaging and
persuasive systems. This literature review yielded some interesting insights and
suggestions for designing an online support tool for Atelier. The full literature review
can be found in the report for the “research topics” project. Here, a summary of the
report is given as a background for this thesis.

1.1.1 Programming in CreaTe

Creative Technology has its own view on programming education, differing from
more traditional Computer Sciences study programmes. Its teaching method, tin-
kering in informatics, has been presented in literature by Mader et al. [1] They aim to
support the IT related programme Creative Technology which, unlike programmes
such as computer science, is focused on leveraging various types of technology, as
opposed to focusing on one. Students aim for creative solutions to self-defined prob-
lems. The student population is diverse in terms of gender and nationality, and its
students do not have the sole aim of learning to programming. Instead, they learn
programming as one of their tools. This requires a different approach to teaching
programming than more traditional computer science programmes [1].

Mirroring the overall working method of Creative Technology, tinkering is a method
where students have self-directed programming challenges. They experiment with
the tools available to them, to create original solutions.

For most of their time, students learn to program in the programming language ’Pro-
cessing’. It is syntactically equal to Java, but the accompanying programming en-
vironment makes it especially suitable for graphics and user interaction. Students
learn various algorithms, often representing natural behaviour in graphics.

An example of an assignment could be: Create a program where the physics of a
mass-spring-damper system are showcased. Additionally, flocking behaviour should
be involved. Include interaction between the user and the program. One students
could make a game where a flock of fishes will be steered through waving seaweed.

1.1. BACKGROUND 3

Another will allow the user to control a catapult that catches birds from a flock. Even
completely abstract ’art pieces’ are sometimes made.

Atelier

As part of the Atelier project, the Atelier code platform was developed. When stu-
dents ask a TA for help, they upload their code to Atelier first. That way the TAs can
look at the code in preparation, and if desired, ask other TAs to look at it via the
platform. When TAs help students face-to-face during the tutorial, they are advised
to comment on the submitted code as well, so that the student can review these
afterwards. Additionally, by adding tags, interesting comments and code snippets
may be shared with TAs and fellow students. An example of comments on code is
shown in Figure 1.1.

Figure 1.1: TA’s comments on a student’s code submission

1.1.2 Atelier & the Community of Practice

The Atelier project was founded to make the tinkering teaching method more scal-
able and sustainable. It aims to foster a Community of Practice that has a programme-
specific vision of good software design. As such, the class can be more self-reliant.

4 CHAPTER 1. INTRODUCTION

Wenger [2] defines a Community of Practice (CoP) as ”...groups of people who share
a concern or a passion for something they do and learn how to do it better as they
interact regularly”. Crucial characteristics are (1) a shared domain of interest, (2) a
community of people that interact and learn together, and (3) a practice. A CoP has
benefits internally (shared knowledge) and externally (produced results).

Individuals can use and support the community through various activities, such ask-
ing for assistance for a problem, requesting specific information, discussing devel-
opments, and reusing the the community’s existing assets for new goals. These
activities are applied differently depending on the organisation; for example, coders
might share code with others, while teachers might benefit from each other’s expe-
rience in certain courses [2]. The organisational benefits of CoP can be quantified
by traditional measures such as time and financial cost analysis [3]. Employees that
have a community to share and request information can avoid reinventing the wheel,
saving time.

CoP in education

Education is an interesting application domain of the Community of Practice. Unlike
in other organisations, learning is not there to achieve a business end product -
it is the end product itself. Changing the learning theory to incorporate CoP has
therefore a much greater impact in education, and thus the change requires greater
effort [2].

According to Merriam et al. [4], who stress the importance of community and prac-
tice in learning, ”the classroom itself can be viewed as a community of practice
where knowledge is shared and expertise resides not only with the instructor but
also across the community”. When taking a constructivist approach to learning, it
is suggested that all members - including students - of a learning community are
teachers with their own experiences [5].

CoP in online platforms

When using technology to communicate, a CoP is no longer place- and time- based
[6]. The design of a virtual or online community based on a network technology (e.g.,
the World Wide Web) does not automatically form a CoP, rather a CoP can emerge
from the virtual community by how its participants use it to interact with each other.
A well-designed online community can lead to, but does not guarantee a CoP [7].
Still, there are many examples of successful online CoP, such as in nursing [8].

Schwen and Hara [9] argue technology should be designed to support existing CoP.
They stress that Wegner’s theory around CoP does not offer instructions on how

1.1. BACKGROUND 5

to form one. Therefore, social patterns in an existing CoP should be analysed to
find where technology is suitable to help achieve its goals. Nichani and Hung [10]
also find that virtual environments should complement and not replace non-virtual
communities to function as a CoP.

Four techniques to benefit from technology in CoP corresponding to the C4P frame-
work [11] are (1) connections: linking people in the same practice, (2) content : pro-
vide a shared repository of information resources, (3) conversation: support commu-
nication by providing discussion tools and (4) information context : providing aware-
ness of the information context of resources (e.g. Wikipedia’s editing history and
entry discussions, or web shop recommendations such as ”Others who bought this
book also bought....”) [12].

A benefit of the online community is that group norms are no longer depending
on physical presence, such as voice or visible reactions, enabling introverted and
extroverted people to participate equally [6].

Needing to work around the limitations of the technology can inhibit the growth of a
CoP, and members must be well versed in using the technology [6]. Another major
threat to the online CoP is members disengaging from the online community, after all
the community is not formed around physical presence: the members must actively
use the platform to not fade out [13].

1.1.3 Engagement & Persuasive design

In section 1.1.2, members disengaging from the online community was found to be
a threat to the CoP. While novice members of the community have the direct benefit
of being able to learn from the community, expert members should also find value in
helping others to remain active.

If we design a platform where we use engagement techniques to influence the be-
haviour of students, then the platform would be considered a persuasive system [14].
Features to make such a system successful are mapped in the PSD (persuasive
systems design) model [15]. Figure 1.2 provides an overview of persuasive sys-
tems design features, and parts of the persuasion context that are useful to analyze,
which are further detailed elsewhere [16].

In the most popular online (programming) communities, various features outlined in
the PSD model are implemented in some form of gamification.

For instance, StackOverflow is an example of an important online community for
programmers, with over 11 million users [17]. It is a question-and-answer (Q&A)
site, that keeps users engaged using a reputation system: community-approved

6 CHAPTER 1. INTRODUCTION

Figure 1.2: The PSD model (from Lehto & Oinas-Kukkonen [15])

answers to questions and other forms of contribution to the Q&A database yield
points, badges and levels. Novice users can become core users by improving their
skills and using these to answer questions and share knowledge; in that sense, it
shows characteristics of an online CoP. Studies show that the virtual reward system
of StackOverflow has a positive impact on answering activity [18] [19].

Another major knowledge-sharing website is Reddit [20]. Here, users can post
information or comment on other people’s posts. Redditors give posts and com-
ments points by ’upvoting’ and ’downvoting’. In this context, subforums such as
’/r/processing’ are relevant: Processing coders can share programs they are proud
of, and ask the community questions, similarly to StackOverflow. Research indicates
found ’community building’ to be the foremost reason to participate in online learn-
ing on Reddit, with the second being ’status-seeking’ [21]. This is achieved through
the ’Karma’ system. So, we see that StackOverflow and Reddit both successfully
engage users using a simple point system to indicate rank.

Techniques such as those mentioned are increasingly adopted in education, pri-
marily by computer science/IT educators: the most popular gamification techniques
are points, virtual badges (or achievements) and leaderboards; much like the Stack-
Overflow and Reddit examples [22] [23]. Studies find that these techniques increase

1.1. BACKGROUND 7

user activity in online academic or learning platforms (e.g. [24] [25] [26] [27]). Pit-
falls in gamification mechanics for education include steering behaviour too much to
rewarded activities [28], demotivating intrinsically motivated students (’overjustifica-
tion’) [29], and stimulating compulsive behaviours to the point that getting rewards is
prioritised over high-quality results [30] [31]. Gamification mechanics are therefore
recommended to be optional, and should not be relied on as the only motivation to
learn; the use of gamifying elements does not make low-quality content engaging
on its own [23].

These game-elements are examples of various principles of the PSD model, par-
ticularly praise, rewards (such as rewarding points), and tunneling, tailoring and
self-monitoring by creating various reachable achievements that motivate the user
to do specific actions.

The mentioned game mechanics also correspond to social persuasive design fea-
tures such as social comparison and competition. There are pitfalls attached to
these: some users may feel left out if they do not score as well as their peers and
might even quit using the platform for this reason. These negative effects are recog-
nized in various studies (e.g. [32] [33] [34]).

The Community of Practice is, of course, a social system. If we look beyond mostly
competition-oriented game mechanics, there are other persuasive design features
that support this.

Central to the CoP is cooperation. According to Oinas-Kukkonen and Harjumaa [16],
a system that allows coorperation can motivate users to adopt a target attitude or
behavior by leveraging human beings’ natural drive to co-operate. Social learning
means that users are more motivated to perform a behaviour if they see other doing
it, which means the system should allow the observation of others doing the target
behaviour.

The persuasive design features in the credibility support category are also relevant
for the CoP. Even though a CoP rejects absolute authority for its own sake, learning
from other members with more expertise is central to its structure. Especially in a
CoP, it is therefor useful to make members’ expertise explicit.

1.1.4 Recommendations for a CoP support tool design

Currently, the tool Atelier consists only of a place to upload and comment on code
submitted by students. The research above resulted in recommendations that show
how a tool can help foster the Community of Practice. These are labeled R1-5.

When looking at the C4P framework, the current design of Atelier incorporates con-

8 CHAPTER 1. INTRODUCTION

Source Recommendation
R1 C4P Framework: Con-

nections & Conversation
Allow conversation about code between all mem-
bers of the community

R2 C4P Framework: Con-
text

Let members display their work online, to provide
context for (Q&A) discussions

R3 C4P: Content Store information from discussions and code on
the platform to create a shared repository of infor-
mation by and for members

R4 PSD Take inspiration from the PSD model and popu-
lar online communities to incorporate engagement
and persuasion techniques in the system

R5 Various literature Support the offline existence of the CoP in con-
junction with the online tool

Table 1.1: Recommendations for an online tool to foster the Community of Practice

nections (all students in the programming course are in Atelier) and conversation
(conversation threads are available for every piece of submitted code). The latter
can be extended by allowing conversations between all members of the CoP: stu-
dents should be able to discuss code among each other (R1).

We can place the conversation in context by using a Q&A framework and allowing
students to display their programs online (R2). By saving noteworthy discussions
and programs, we create a repository of information for this content. A wiki is often
used for these purposes and fits framework (R3).

Learning from online engagement techniques - notably, gamification - used on web-
sites such as StackOverflow and Redddit, such techniques (e.g. achievement, point
and rank systems) are suggested to promote the usage of the platform (R4). To
further specify which persuasive design features are most useful in our context, we
can use the PSD process model [16]). This should help keep both novice and expert
users engaged with the system.

Literature also recommends to extend the offline CoP instead of trying to create a
purely online CoP: as such, it is worth looking into technology that facilitates discus-
sion within the classroom in conjunction with online discussion (R5). These recom-
mendations are summarised in table 1.1. They will be incorporated in a proposal for
an online tool in the next chapter.

1.2. RESEARCH QUESTIONS 9

1.2 Research Questions

To give a quick overview of the main research question and sub-questions they will
be summarized below.

The main research question is:

How can a digital tool enhance the quality of help seeking and giving, between
students and teaching staff in Creative Technology programming tutorials?

Subquestions:

• RQ1: What challenges are faced in tutorials concerning interaction between
students and teachers/TAs?

• RQ2: How can these challenges be addressed in an improvement of the online
education platforms?

• RQ3: What is the user acceptability of the design solution prototype?

1.3 Overview

There is a practical problem to solve; the challenges identified in the tutorials. The
solution should be applicable in the practical context, rather than just being inter-
esting in a ‘laboratory’ setting. Stakeholder needs - those of teachers, teaching
assistants and students - have to be taken into account. As such, This research can
be classified as design science, as described by Wieringa [35]. In design science,
the practical problem to solve (RQ1) is part of the research. This means a broader
starting point. Specifically, this thesis consists of validation research; there is no
practical experience with the tool yet and any prediction of its future behaviour will
have some degree of uncertainty [35].

The structure of the thesis is adapted from the Creative Technology Design Pro-
cess [36]: it starts with a design question, then follows the pattern of Ideation, Spec-
ification, Realization and Evaluation. This process is summarized in Figure 1.3.

The overview of the rest of the report is as follows:

Chapter 2, Ideation, starts of with a brainstorm with a focus group TAs about their
concerns about their work, and suggestions for a solution. Additionally, a question-
naire was given to all TAs. The results of the brainstorm and questionnaire form the
basis of further literature research. This chapter concludes with recommendations
for designing a solution.

10 CHAPTER 1. INTRODUCTION

Chapter 3, Specification, details the design of a digital tool using an analysis of the
target audience and the technical context. The target users are illustrated using
persona’s. Combined with the results from chapter 2, this leads to the product idea.
Requirements for the product are presented. The UI, UX and technical design is
given in this chapter.

Chapter 4, Realization, describes the prototype made based on the design in the
previous chapter. User test plans, how the test turned out, and the result of the user
test are also described in this chapter.

Chapter 5, Interpretation, starts by discussing the test results from the previous
chapter. Which requirements were and were not met is also described in this chap-
ter. A look back is taken at persona’s that were introduced in chapter 3.

Chapter 6, Discussion, describes the implication of the results from the previous
chapter. The limitations of the research are also given. Recommendations for meet-
ing unmet requirements, and recommendations for further research are presented.

Finally, the Conclusion to this thesis is chapter 7. The main research questions, as
well as the subquestions as given in section 1.2, are answered in this chapter.

Figure 1.3: Design process of this thesis

Chapter 2

Ideation

In the previous chapter, recommendations were made for creating a platform on
which a Community of Practice can exist (CoP). Some of these recommendations
are already present in the current Atelier design (e.g. uploading and discussing
student’s code).

In this chapter, we use the recommendations to find a design direction for a tool to
enhance Atelier. In order to answer RQ1 (What challenges are faced in tutorials
concerning interaction between students and teachers/TAs?), a brainstorm was or-
ganized with some TAs (section 2.1). In addition, a questionnaire was issued to all
current TAs (section 2.2. The results of these are discussed in this chapter.

Based on the topics raised in the questionnaire and brainstorm, additional literature
research is conducted (section 2.3), in order to give a direction moving forward.

2.1 Brainstorm

A brainstorm with a focus group of teaching assistants (TAs) was organised to learn
their views. Five TAs (all male, average age 24) attended, all of whom had had at
least multiple modules of experience. These TAs were recruited through TA chat
groups. The brainstorm was held offline, in a tutorial classroom1. Notes were taken
by the researcher.

This brainstorm consisted of two parts: first, TAs were asked about their concerns
about their job, second, they were briefed on the research of chapter 1 as inspiration,
and then asked for thoughts and suggestions.

1This brainstorm was held when the Covid-19 preventive measures were not in effect yet

11

12 CHAPTER 2. IDEATION

TAs were given a few minutes to write down problems/concerns. Then, they had
the opportunity to share and discuss these. The following issues came up:

• TAs spend much time answering the same questions

• Students have problems identifying the cause of programming problems, and
as such have a hard time asking the right questions to TAs.

• Some students do not ask questions at all when stuck

• Students isolate themselves from the group by not showing up.

– Students who find the course difficult escape the course temporarily, but
do not have the skills to individually reach the level required to pass the
course

– Students who find the course easy, feel that showing up is a waste of time.
They often overestimate their skills and end up falling of the wagon in later
weeks. Also, these students are often needed to support their peers, but
now cannot do so.

The background of this project, including Atelier, the CoP and the recommendations
of chapter 1 (table 1.1), were then explained to the TAs. With those as inspiration,
the TAs were asked for suggestions. These suggestions were written down and
shown below.

The suggestions given by the TAs were mostly based around question asking pro-
cedures. A first suggestion given by the group was to recreate a StackOverflow-like
environment for students to ask questions, which included gamification techniques
detailed below - very much corresponding to the ideas of chapter 1.

Suggestions to motivate students to use the system were:

• Make it obligatory to ask questions through the online system first

• Using a Reddit-like voting system, teachers should answer the most popular
questions in class in a mini-lecture

• Answering questions properly count towards a bonus for your grade

• Showcasing an individual’s strong points through a ’skill-tree’ system (and not
a comparative ranking)

• Taking gamification further using elements such as:

– Collect Pokemon-like creatures (Rubber Duckies were suggested, after a
famous programming phenomenon) through use of the system

2.1. BRAINSTORM 13

– Earning points for using the system, that can be traded for real-life re-
wards

– Grouping students into large teams, where collaboration leads to higher
scores and one team wins at the end of the course

– Having students check-in at tutorial locations using QR/RFID tags in ex-
change for points

Pitfalls of directing questions to a forum identified were:

• TAs do not want to give up face-to-face interaction

• TAs do not want to become first and foremost a forum moderator

• Increasing the odds of students skipping tutorials in favour of using the forum

• The existence of a forum does not always lead to the class populating it.

– For many courses, a forum exists but is not used. A notable exception,
where it was actively used, was a course where it was obligatory to ask
any question through the forum, which was disliked by some.

• Students putting entire programs out for others to debug, learning nothing in
the process themselves

• Students being unsure of where (online or offline) to ask which question and
to whom (other students or TAs), leading to questions not being asked at all

2.1.1 Conclusion

The suggestions from this brainstorm session will be taken into account in further
design. We can also derive some recommendations from it:

• The tool should focus on making time between students and TAs more useful,
instead of completely moving discussions to an online environment

• Course forums are not being populated without making them obligatory

• The tool should be useful within the tutorial, so as to not encourage students
to skip tutorials

• Gamification elements are favoured by TAs, but they should away from individ-
ual competition

14 CHAPTER 2. IDEATION

2.2 TA Questionnaire

After the brainstorm, an online (Google Forms) questionnaire about help seeking
and giving was issued to a chat group of all (18) of the TAs active at that point in the
module. The aim of the questionnaire was to find out

• Whether interactions are initiated by students or by TAs, in order to determine
more about the workflow when giving or seeking help

• What help requests and answers look like

• What is enjoying or frustrating to TAs

The full questionnaire can be found in appendix A.

10 TAs filled in the questionnaire.

Interaction initiation

First, TAs were asked “When helping students, (approximately) what percentage of
the time was this [started by a student’s help request / started by a TAs initiative /
started by another TA redirecting their student to you]?”. For each of these, they
could freely fill in an estimated percentage, as such it was possible for these to not
fully add up to 100%.

• The average percentage of interaction indicated as started by a student’s
help request: 70.5%

• The average percentage of interaction indicated as started by a TAs initia-
tive: 18.5%

• The average percentage of interaction indicated as started by another TA
redirecting their student to you: 15.5%

Help request

Using a 5-point Likert scale, TAs were asked to rate answers to the question ”What
does a help request from a student typically first look like?”. Every answer was an
example statement of what a help request can first look like. They could be rated
’never’ to ’very frequently’.

These statements, with the results, can be seen in Figure 2.1.

2.2. TA QUESTIONNAIRE 15

For evaluation, the answers are converted to scores (1 for ’never’ and 5 for
’very frequently’) to calculate an average. In the figures below, colours indicate
the share of people voting for each of the 5 categories (dark red for ’never’ and
dark blue for ’very frequently’). The figures also show the average score for
each answer, overlaid on the stacked bar charts with the x-axis ranging from
1 - 5.

Figure 2.1: What does a help request from a student typically first look like?

Notably, we see that the most common help request is ”The student encounters an
error, but does not know how to solve it” (averaging on 4.1 or ’frequently’). Other
frequently encountered help requests are ”The student knows what the problem is,
but does not know how to solve it” (averaging on 3.7) as well as ”The student has
a program that compiles, but behaves unexpectedly” and ”The student needs to
implement a coding principle, but does not know how” (both averaging on 3.6).

In addition, TAs were asked to rate answers to the question ”What details do students
provide to their problem statements on their own initiative?”.

The results can be seen in Figure 2.2.

Frequently given details are ”Actual and expected results” (3.6), ”Goal state-
ment” (3.8), ”Error messages” (3.7), ”Actual and expected results” (3.6) and
”The specific part of the code that seems problematic” (3.6).

Scoring on average negative are ”Description or relevant documentation found”
(1.7) and ”Description of what they Googled” (1.7). While we can not definitely
say that this means that students rarely look at the documentation or Google their

16 CHAPTER 2. IDEATION

Figure 2.2: What details do students provide to their problem statements on their
own initiative?

problem, combined with TA statements, this seems to be the case.

TA help provided

Next, TAs were asked to rate answers to the question ”What details do you ask for?”,
which had the same problem details as the previous question.

The results can be seen in Figure 2.3.

We find that all these details are asked for by TAs, all averaging around 4 (”fre-
quently”).

Additionally, TAs were asked to rate answers to the question ”Which of the below
does a help session further entail?”

The results can be seen in Figure 2.4.

The answers indicated to be most frequently part of a help session are ”You explain
the cause of the problem” (4.4), ”You ask the student questions to get to the
problem statement” and ”You go through the code yourself, in search of the
problem” (both on 4.0). Also a frequent even it that ”While talking/explaining, the
student figures out the solution by themself” (3.7).

In this survey, participants could freely fill in any additional steps that TAs often take.
Among the answers are helping the student get to the documentation or how to
find information on Google.

2.2. TA QUESTIONNAIRE 17

Figure 2.3: What details do you ask for?

Figure 2.4: Which of the below does a help session further entail?

Having a good or bad time as a TA

The TAs were asked: ”Can you describe what might make a tutorial session an
enjoyable one for you as TA?”. This was an open question.

The open answers were labeled and frequently mentioned factors were counted in

18 CHAPTER 2. IDEATION

Factor described Amount of times mentioned by TAs
Pro-Active Students 5
Well-prepared questions from stu-
dents

2

Interaction with students 2
Giving valuable help 2
The right workload 4

Table 2.1: Factors that make tutorials enjoyable for TAs

Factor described Amount of times mentioned by TAs
Students lack interest 5
Students are passive 2
Low workload 2
High workload 2
Students lack knowledge 4

Table 2.2: Factors that make tutorials frustrating for TAs

table 2.1.

Similarly, the TAs were asked ”Can you describe what might make a tutorial session
frustrating for you as TA?”.

The open answers were labeled and frequently mentioned factors were counted in
table 2.2.

2.2.1 Conclusion

From the answers to the questionnaire, we can conclude that

• Interactions between students and TAs are typically started by a student asking
for help, instead of a TA approaching them. This also seems to be favourable,
as pro-active students are found to make TA time more enjoyable.

• There are various types of help requests frequently encountered. The most
common of these are errors, problems the student does not know how to solve,
unexpected behaviour of the program, and students not understanding a cod-
ing principle.

• In a list of problem statement details, we found that while much information is
given by the students, they rarely describe trying to find in documentation or
use Google.

2.3. LITERATURE 19

• All problem statement details, including documentation or Googling efforts, are
liked to be asked by TAs.

• Pro-activeness of students, and having well-prepared questions, make tutori-
als more enjoyable for TAs. The workload is also important; a high workload
is a problem that is encountered, but a low workload (either due to low atten-
dance or passive student) is not appreciated either. Valuable interaction with
students is valued.

From these results, combined with the statements given during the brainstorm, we
may direct our efforts in improving the online tooling for the courses towards

• Nudging students towards being pro-active during tutorials

• Decreasing high workload if necessary

• A tool that encourages TA/student interaction, rather than taking away from
it/digitalizing it away

• A tool that increases the quality of these interactions

2.3 Literature

To investigate the conclusions above themes such as help seeking and giving, in-
teractions with TAs and fellow students, and self-reliance (such as to decrease high
workload), these were researched in literature. The literature research will lead to
conclusions that are helpful in designing a digital tool to be of assistance. This helps
answer RQ2, How can these challenges be addressed in an improvement of the
online education platforms?

If students are better self-reliant problem solvers (debuggers), individually or within
the group, this could have the effect of both decreasing TA workload and increasing
the quality of the interactions between TAs and students.

In a study on novice Java programming students, Ahmadzadeh et al. [37] found
that good debuggers tend to make good programmers, while less than half of good
programmers are good debuggers. Examples like these tell us that debugging is a
skill in itself, and one that can can improve the skills of programming students at
all levels. Keys to becoming a good programmer, according to them, are a good
understanding of the program implementation, as well as the ability to read and
understand other people’s code.

For example, reading and understanding other people’s code can be trained using
pair programming. We have previously mentioned the preference for programming

20 CHAPTER 2. IDEATION

with a network of friends [38], as well as the success of peer assessment strategies
[39] [40] [41] [42]. Pair programmers are also found to ask fewer questions than solo
programmers [43]. Leveraging the power of other people’s knowledge, Hartmann
et al. [44] created a tool that (automatically and within the IDE) would show other
programmers solutions to problems encountered while programming.

During tutorials, students are able to use help from their peers, both fellow students
and teaching staff. Seeking help would be one of the first steps to learn the advan-
tages of using peers to solve problems. In fact, Razzaq et al. found that students
learn reliably more when asking for help themselves, rather than waiting for it [45].

However, seeking help can feel threatening to students, leading to seeking less
help when it is needed [46] [47], for example if it is seen as an admission of failure
or if it requires much effort to effectively seek help [48]. A digital tool might ease
the process of asking for help. For example, in a study on asking for help while
programming, Price et al. [49] found that to their participants, a human tutor seemed
more trustworthy, perceptive, and interpretable, while a computer tutor seemed more
accessible and less threatening to a student’s sense of independence. Roll et al. [50]
recognise that there is a lack of computer tutors that teach metacognition (’What is
my knowledge gap’ and ’How do I overcome it?’) instead of knowledge. Sillito et
al. believe that there are missed opportunities for tools to make use of the larger
context to help programmers more effectively scope their questions [51].

When not knowing how to effectively ask for help - and students often do not [52]
[50] - students may avoid help when they need it, which can impede learning [53].
Nelimarkka & Hellas advise creating a wireframe for social help-seeking, to help
students ask questions that can help to ensure they can engage in a deeper course-
wise discussion. Students could use this to ask more detailed questions, connecting
the exercise and problem to a wider learning context [54].

In a study on adaptive help seeking, i.e. asking for the help needed to learn indepen-
dently, not simply to obtain the correct answer, Newman [55] identifies knowing how
to ask a question that yields precisely the information that is needed, contributes to
adaptive help seeking, and it is advised that teachers give opportunities to learn this
skill.

When studying Q&A sites for programming, Nasehi et al. found that both includ-
ing code examples for the erroneous program and a good explanation to go along
with it, are important to obtaining well-received answers. Making use of question
constraints avoids shortcomings in solutions [56].

There is evidence that students who do not collaborate, but still cooperate, improve
their understanding of their problems by simply explaining them to each other, or

2.4. CONCLUSION 21

even simply to themselves [57] [58]. A famous example in programming, brought up
during the TA brainstorm session, is explaining a program or problem line-by-line to
a rubber duck [59] (or perhaps a cardboard cutout of a dog [60]). StackExchange
referenced this method by creating an online rubber duck to talk to, prompting users
to think twice before asking a question there. This duck would do nothing, except
respond with ’quack’ [61].

In another example, Aleven and Koedinger [62] created intelligent, instructional soft-
ware to which students could explain their reasoning in solving mathematical prob-
lems. They found that students who explained their steps to it, learned with greater
understanding than those who did not. We call this strategy self-explaining [57].

2.4 Conclusion

During the TA brainstorm, it became apparent that there are some concerns in help
seeking and giving during tutorials. Students have problems identifying the cause of
programming problems, and as such have a hard time asking the right questions to
TAs, some students do not ask questions at all or do not show up to tutorials. TAs
favour a digital tool that makes real-life interaction between students and TAs during
tutorials more useful, rather than moving them online. A follow-up questionnaire to
all TAs (also those not present during the brainstorm), supported these sentiments.
Additionally, pro-activeness of students was sometimes found lacking.

From the literature research, we can then conclude that

• Working with peers, such as learning how to read and understand other peo-
ple’s code, pair programming or help seeking, contributes to learning program-
ming.

• Seeking help can be difficult for some students, both because the process feels
threatening, and because they do not know how to effectively ask for help. This
can impede learning.

• A computer-based solution can assist in both making the process less threat-
ening, and guiding the student in effective help seeking. Learning how to ask
the right questions is key. While there are studies into the types of questions
programmers asked, and how tools deal with these questions (e.g. [63] [51]),
literature gives us little information on what a programming-related question
should consist of in order to be an effective one in getting to the answer.

• Self-talk is a strategy that can be incorporated as well to support learning.

22 CHAPTER 2. IDEATION

Chapter 3

Specification

The previous chapter presented a brainstorm and questionnaire to investigate op-
portunities where a digital tool can help improve the tutorial session from the TA’s
perspectives. The literature review discussed more about how these issues can be
resolved from a theoretical point of view, using strategies that are focused on the
student perspective.

In this chapter, we specify the design of a digital tool using an analysis of the target
audience and the technical context. We specify requirements and make a design
based on this.

3.1 Context analysis

3.1.1 Target audience - Personas

In this section, personas based on the target group and literature review are used to
illustrate what different types of students and TAs there are to design for. In chapter
5, we will check back on these ’characters’, to see if our solution would benefit them.

Students

From the literature review in section 2.3, we know that an obstacle to asking ques-
tions for a student is being afraid that they show failure to those who might help
them. This principle is the basis for the persona of Emma, shown in figure 3.1.

In the brainstorm and questionnaire, TAs have named students who do not show a
proactive attitude to problem solving as a problem in tutorials. Students like these
are not necessarily bad students: it can be understandable to behave this way if

23

24 CHAPTER 3. SPECIFICATION

programming is not a favourite course for them. This forms the basis for the persona
of John, see figure 3.2.

Figure 3.1: Student persona 1: ”Emma”

Figure 3.2: Student persona 2: ”John”

A student whose behaviour would be approved of by TAs is illustrated by the persona

3.1. CONTEXT ANALYSIS 25

of Sarah (figure 3.3). She actively wants to learn about programming. The tool we
design should be useful for all students, including those like Sarah.

Figure 3.3: Student persona 3: ”Sarah”

TAs

When a student has difficulty asking for help, this impacts the TAs too. For example,
the persona of Joyce (figure 3.4) shows a TA that is new to the course. These TAs
can be especially nervous about questions she is not able to answer, and this is
more likely if a student cannot communicate their problem well.

In the questionnaire and brainstorm, we found that workloads that are both too high
and too low are a problem for TAs. These are not opposing opinions, as shown by
the persona of Tim (figure 3.5). Tim is experienced and values quality time with his
students, which is hard if they are absent during the module and all show up at the
end.

26 CHAPTER 3. SPECIFICATION

Figure 3.4: TA persona 1: ”Joyce”

Figure 3.5: TA persona 2: ”Tim”

3.1. CONTEXT ANALYSIS 27

3.1.2 Software context

It would be beneficial for the tool to be designed to work with the current software
that is used in the programming courses. This would lower the threshold for users
to to adapt it in their work or study; within a familiar environment it will be easier to
learn, and require less effort to get to the tool. Typically, the following are used:

• TA-Help.me (or similar systems, such as Horus) - Here, a student can sign up
to a digital queue to request help from TAs. In TA-Help.me, it can be made
obligatory to include a question when signing up. See figure 3.7.

• Atelier - A website where students can upload and view their code so that they
may discuss it with fellow students or the TAs whose help they have requested.
The Atelier project is described in chapter 1. See figure 3.6. Uploading to
Atelier is sometimes made mandatory after asking a question on TA-Help.me,
so that the TAs can quickly find the code they are going to work with.

At the time of this research, classes were held online due to the ongoing pandemic.
Videocalling tools such as MS Teams and BigBlueButton were used for this. How-
ever, this is not the normal learning situation, and these tools are therefore not ex-
plicitly taken into account when designing.

Figure 3.6: A student’s submissions on Atelier

28 CHAPTER 3. SPECIFICATION

Figure 3.7: Queues for questions and signoff on TA-Help.me

3.2 Product idea

As presented in section 2.4, there are opportunities for improvement in regard to
help seeking and question asking. In courses, TA-Help.me is where this is done.
Therefore, it would make sense to design/improve a tool within TA-Help.me.

Figure 3.8: Picking a question category on TA-Help.me

When students seek help via TA-Help.me, they are taken to a screen where they
to choose a category for their question (Figure 3.8). The categories can be chosen
and changed by the teaching staff for every tutorial. Then, they are taken to the next
screen where they can ask their question (Figure 3.9).

3.2. PRODUCT IDEA 29

In an effort to improve the quality of help-seeking and giving on TA-Help.me, re-
search by Heleen Kok [64] resulted in question tips displayed next to the field where
questions can be typed, as can be seen in Figure 3.9. Students typing out their
questions and choosing categories were seen as added value by TAs, however the
tool did not improve the quality of questions asked. She also found that the tool
did not cause TAs to better guide students towards good quality questions. In fact,
the suggestions were quite easy to ignore. Therefore, she proposed the following
questions for future work:

• How can a TEL [technology enhanced learning] tool intuitively steer students
to formulate specific questions?

• How should TAs moderate question asking to increase the quality of the ques-
tions the students ask?

Currently, Kok’s addition to TA-Help.me is easy to ignore, which may in part be a
reason for it not improving the quality of questions. Therefore, a solution might be a
feature that students need to directly interact with, to steer them towards formulat-
ing specific questions. A form would be the simplest way to directly steer students.
However, it is very static, and different question types may require different solu-
tions. A question on a program that is stuck requires information such as any error
messages and related code, while a question about an upcoming deadline requires
none of these.

In e-learning, conversational agents have been found a natural and practical in-
terface, that is capable of tailoring the interaction to an individual [65]. There are
various successful examples of conversational agents acting as digital tutors (e.g.
[66], [67]). One example where a conversational agent adds value over simple
means such as forms or menus, is the Geometry Explanation Tutor, which engages
students in a natural language dialogue to help them state good explanations for
problem-solving steps [68]. Students who explained problem-solving steps in a dia-
logue with the conversational agent did learn better to state explanations than those
who were helped by a menu [69]. Mayer [70] found that people learn more deeply
when the words in a multimedia presentation are in conversational style rather than
formal style. To satisfy Kok’s proposal of an intuitive tool, conversational agents in
e-learning have the key feature of being a natural method of communication in e-
learning; dialogue is a medium through which nearly all learners are familiar with
expressing themselves [65]. They can also elicit self-explanation [67], a strategy
found to be of use from the literature research in section 2.3.

So, for us, a conversational agent can

• Fully guide students step-by-step to ask quality questions

30 CHAPTER 3. SPECIFICATION

Figure 3.9: Asking a question on TA-Help.me

• Make the process of asking questions less threatening (recommended from
section 2.4), as computer tutors are seen as less threatening than real tutors,
and leads the student from a computer to a real tutor (section 2.3), and be-
cause students learn how to effectively ask for help.

• Allow aspects of explaining and self-talk (recommended from section 2.4)

• Be built into the existing platform TA-Help.me, thus not adding yet another tool

3.2. PRODUCT IDEA 31

for students and TAs to use. It can easily be a mandatory part of asking a
question.

Specifically, we can call or conversational agent a chatbot. This is a class of conver-
sational agent that receives natural language as input, and gives a conversational
response as output, as well as having the ability to perform (simple) tasks [71].

We propose the concept of Duckbot (named after the programmer self-talk method
’Rubber Ducking’, aka explaining their problems to a rubber duck [59]). Duckbot will
ask the student to refine questions to include important details (from now on called
Problem Statement Details) that will both help the TA understand the problem and
work with it more efficiently, but more importantly help the student understand their
own problem better (an element of self-talk).

The owner of TA-Help.me agreed to work with Duckbot, however they made the
constraint to change as little as possible out TA-Help.me to do so. Redirections to
new pages are OK, changing the layout of TA-Help.me itself is not.

3.2.1 Product requirements/MoSCoW

Based on the chatbot idea ’Duckbot’ proposed in section 3.2, we make product re-
quirements. These are sorted using a MoSCoW analysis [72]. This categorises re-
quirements into four categories, ’Must have’, ’Should have’, ’Could have’ and ’Won’t
have’. These requirements can be found in table 3.1. In chapter 5, we will check
whether our solution has fulfilled the requirements.

3.2.2 User interaction

The chatbot should guide the student into asking a proper question. To see what
makes a question ’good’, we can take inspiration from StackOverflow, that with over
21 million questions is perhaps the most widely recognised Q&A resource for pro-
grammers [73]. They identify the following important parts (’Problem statement de-
tails’) of asking a question:

• Summarize the problem:

– Include details about your goal

– Describe expected and actual results

– Include error messages

• Describe what you have tried

• Include relevant code samples

32 CHAPTER 3. SPECIFICATION

Label Requirement Priority Source
Chat
1 The student can use Chat to communi-

cate with Duckbot
Must Product idea

2 Duckbot will guide the student to a de-
tailed question

Must Brainstorm/Questionnaire

3 Duckbot will ask the student for spe-
cific Problem Statement Details, such as,
’goal statement’, ’actual and expected re-
sults’, ’relevant error messages’, ’relevant
code’, ’steps taken’

Must Literature, StackOverflow in-
spiration

4 DuckBot will feed back gathered Problem
Statement Details to the student

Must Brainstorm/Questionnaire

5 The student can talk to Duckbot in natural
language

Must Literature: Self-talk

6 DuckBot will create a summary of Prob-
lem Statement Details, visible to TAs.

Must Brainstorm/Questionnaire

7 DuckBot will categorize problems Could Literature: Research Kok
8 Duckbot will try to give solutions to prob-

lems
Won’t Brainstorm/Questionnaire

Integration
9 Duckbot will have integration with TA-

Help.me
Should Product idea

10 Duckbot will have integration with the Ate-
lier platform

Could Product idea/Stakeholder:
Atelier

11 The summary of Problem Statement De-
tails will be attached to the relevant code
on Atelier

Could Product idea/Stakeholder:
Atelier

12 TA-Help.me itself does not change in lay-
out

Must Stakeholder: TA-Help.me

Other features
13 The (anonimized) Problem Statement

Details summary will be made public, so
that other students may benefit from it

Could Literature: Community of
Practice

14 If a chat helped a student to find a solu-
tion, the chat may be made public (anon-
imized)

Could Literature: Community of
Practice

Table 3.1: Requirements

3.3. DESIGN 33

Evidence has shown that short questions that contain code snippets are the most
successful. Additionally, the tone should be neutral and focused on relevant facts
(e.g., the problem statement details above) rather than positive or negative utter-
ances (e.g. ’Any help would be really great! :-)’ or ’I have a simple and stupid
problem’) [74]. We can incorporate these recommendations in our chat bot design
by asking for these specific details, while still using natural and friendly conversation
with the student. We have the advantage that this longer chat can be summarised
to be presented concisely back to the student and eventually back to the TA.

It should be noted that, while chatbots can be programmed to have many types of
dialogues, including longer conversations that are purely self-explaining and have
little guidance, for a prototype that is within the scope of this project, we will start
out with a ‘skeleton structure’ of Duckbot. This means that it is primarily focused on
eliciting the problem statement details.

3.3 Design

3.3.1 Use case diagram

Because asking questions is currently done on TA-Help.me, this is a logical place for
Duckbot to ’live’. The use case diagram in figure 3.10 shows a comparison between
the current use case and the suggested new use case.

We can see that the student now asks their question Duckbot, instead of to TA-
Help.me. If they want to refine their question, they can do so with the help of Duck-
bot. Where before a student directly adds their question to the queue, Duckbot now
does this for them at the end of their chat session. TAs can manage the queue as
usual (and remove names/questions once dealt with), as well as read the student’s
questions.

3.3.2 UI design

As mentioned previously in section 3.2, the owner of TA-Help.me did not allow
changes to be made to the layout of their website. They are, however, okay with
redirections to new pages. This means we cannot build the chat window into the
website, but we can make a full-screen chat application that the user is redirected
to when they click ’Add me to the list’ on a question list (see the screenshot in figure
3.9/.

Figure 3.11 shows what the chat could look like on desktop and mobile.

34 CHAPTER 3. SPECIFICATION

Figure 3.10: Use case diagram of Duckbot & TA-Help.me

Figure 3.11: Mock-up of Duckbot chat on desktop and mobile

3.3. DESIGN 35

3.3.3 Technology stack

Chat agent
Because of previous experience with their APIs, products from the Google APIs
were preferred for development. They include one for creating chatbots, namely
Dialogflow. The help of a student experienced with chatbots was enlisted to learn
about Dialogflow.

Dialogflow CX is anatural language understanding platform used to design and inte-
grate a conversa-tional user interface into web applications. Dialogflow takes care of
controlling theconversation in terms of translating the users’ input to a pre-set ‘intent’
(example: ‘I want help on my coding question’) and matching it to a preset response
(example:‘Okay, is it about an error?’).

First work was done in the original Dialogflow API (Dialogflow ES), however a new
version of the API called Dialogflow CX was released during development. This
version allowed building the chatbot much more easily through a graphical interface,
that also supported more complex chat scenarios. However, being in a beta phase,
this gave some restrictions, e.g. no external data imports are possible.

Database
Choosing another Google API solution for our database meant easy integration in
the back end. Cloud Firestore, a NoSQL cloud database, was chosen for this rea-
son.

It should be mentioned that using Google products is free for small amounts of users
(such as for testing prototypes). However, should it be used in greater numbers or
become part of a commercial application, it is no longer a free product. Depending
on the possible budget, this might mean these solutions are not future proof.

Front end framework
ReactJS is an open-source front-end JavaScript library that is especially suitable
for single page applications. Duckbot is designed to be such an application. As
React is only used for state management and rendering of the front page, a backend
framework is still needed for additional functionality.

Back end framework
ExpressJS is a back end web application framework for Node.js. It is lightweight, in
that it is fairly minimal and contains no more features than needed. In our case, we
use ExpressJS only for communicating with the Dialogflow CX API.

36 CHAPTER 3. SPECIFICATION

3.3.4 Architecture

The sequence diagram in figure 3.12 shows an overview of Duckbot’s architecture.

The user (a student) enrolls in the question queue in TA-Help.me as normal, but
TA-Help.me redirects them to the chat interface of Duckbot.

When a message is sent to Duckbot, it is processed by Dialogflow CX, which tries
to match the message to an intent, which in turn gets the appropriate response.
Meanwhile, the message is stored in the Firebase database.

When all necessary information is obtained from the student, Dialogflow creates
an overview with this information, and is shown back formatted to the student in
Duckbot. After approval, it gets sent to TA-Help.me, where it can be seen by the TA.

3.4 Conclusion

Based on TA concerns and previous research in this field, this chapter suggests
the use of a conversational agent - a chatbot - to guide students into asking quality
questions. A design - both in terms of use case, UI and technology, was presented.
For a prototype that is within the scope of this project, we will start out with a ’skeleton
structure’ of Duckbot, primarily focused on eliciting the problem statement details.
The personas and requirements in this chapter will be revisited in chapter 5.

3.4. CONCLUSION 37

Figure 3.12: Sequence diagram of Duckbot

38 CHAPTER 3. SPECIFICATION

Chapter 4

Realization

Based on the specifications in the previous chapter, a prototype was made. This
chapter shows the prototype and the user tests to study its usefulness and possible
flaws.

In section 4.2 we describe our first test plan, including why this did not work out
in reality. Section 4.3 covers the test plan that did succeed and its results. These
results will be discussed for interpretation in chapter 5.

4.1 Prototype realization

In section 3.2.2, it was discussed that the chatbot guides the student towards asking
specific questions. The chatbot can ask for specific problem statement details using
natural language.

Appendix B, a screenshot of the Dialogflow interface, gives an idea of how the con-
versation is ’programmed’, where the student is guided through the different problem
statement details. The conversation is not fully linear: the student can indicate the
type of question they want to ask, whether they are able to provide the details asked
for, and they can make changes during the conversation.

Duckbot also gives some additional troubleshooting help, while never providing di-
rect answers. For example, when the student shares an error message they re-
ceived, we could let Duckbot search for the error message in the documentation
and give them the information about it. Instead, Duckbot encourages the students
to do this themselves, and tells them:

“ The error message does its best to tell you what went wrong. At the very least, it
will tell you what line number it got to in your program before crashing, which gives

39

40 CHAPTER 4. REALIZATION

you a great clue for places to start hunting for bugs.

If you can’t seem to figure out what your error message is trying to tell you, your
best bet is to copy and paste the last line of the stacktrace into Google. Chances
are, you’ll get a few stackoverflow.com results, where people have asked similar
questions and gotten explanations and answers.

Pro-tip: Processing is an extension of Java. Including ’Java’ in your search will make
sure solutions for the right language turn up!

So, have you tried searching for the message? ”

Figure 4.3 shows a screenshot of the chat interface, closely resembling the mockup
in figure 3.11. Instead of designing a mobile and desktop version, Duckbot is fully
responsive and works on any screen size. For some questions, we also provide
some ’shortcut-buttons’, for example where an answer of ’yes’ or ’no’ can be given.
This can make it faster for students to work with Duckbot, and was a suggestion by
the participant of the pilot-test with Duckbot before going into the ’actual’ use tests.

An example where the realisation of the prototype ran into problems, was when a
bug in the beta version of Dialogflow CX occurred that made it impossible to save
”any other input” than preset intents, if preset intents (such as ’yes’ or ’no’) were
available answers.. In the case of the error messages, for example, the following is
the desired flow of the conversation:

Figure 4.1: Desired flow of a ’Yes/No’/”Any other input” question

Because in this case, an immediate answer of an error message to the question
could not be saved, the following workaround was necessary:

4.2. ORIGINAL TEST PLAN 41

Figure 4.2: Workaround to deal with the bug

The shortcut buttons were in this case implemented to make clear that the accepted
answers to this question were ’yes’ and ’no’. Textual input was not removed for these
questions, so that a user may also type these answers out if they prefer not to switch
to using the mouse to click the buttons.

4.2 Original test plan

The original test plan was to test Duckbot in a workshop that closely resembled
an actual tutorial, while the learning material was not part of the actual programme
course. This was because there were no ongoing programming courses at that
point in time, and students could not have an unfair advantage in future courses
over others students by taking part in this workshop.

However, this workshop was organized twice, and both times only one or two stu-
dents showed up. This was likely because of the ongoing Covid-19 pandemic, during
which few students wanted to take extra online classes. In this section, we share the
original setup, of which we do not use the results.

Scope: We test the entire flow as described in the sequence diagram (figure 3.12).
This means that the student is sent from TA-Help.me to Duckbot, and that the TAs
can see the results of their chat sessions in TA-Help.me.

Purpose: The goal of this test is to see 1) if Duckbot improves the student’s un-
derstanding of their problems, 2) if Duckbot improves student’s questions from a TA
point of view, and 3) whether there are any technical or UX flaws in the prototype
design.

42 CHAPTER 4. REALIZATION

Figure 4.3: A screenshot of the prototype of Duckbot

Schedule & Location: Two afternoons (from 13.30 - 16.30) were scheduled, both
online via the messaging and videocall platform used in real tutorials (BigBlueBut-
ton).

Equipment: All participants use their own devices. These are usually laptops. The

4.3. NEW TEST PLAN 43

researcher will be able to store conversations with Duckbot, as well as observe
and transcribe interactions between students and TAs when assistance is given by
joining them on BigBlueButton.

Participants: First and second year students of Creative Technology are recruited
through a) learning management system Canvas, b) the official email announcement
list for these years and c) promotion in the communication channels of the Creative
Technology study association.

Scenarios: The lecturer will give an introductory lecture on the topic of the workshop
(3D graphics in Processing). Afterwards, they get assignments. While completing
them, they can ask questions.

There are 2 scenarios: a student that asks a question is either directed to a normal
TA-Help.me queue, where they ask their question in the usual way (control group),
without Duckbot, OR they are redirected to Duckbot, which helps them refine their
question. The TAs do not know whether the questions they see coming up were
asked through Duckbot or through the old system.

The researcher will join the conversations between TAs and students that follow, and
take notes.

Metrics: From the transcribed conversations, the researcher will label returning con-
versation details, so that the differences between the Duckbot and non-Duckbot sit-
uation can be compared. Additionally, TAs and students will receive questionnaires
after the tutorial for qualitative evaluation of the workflow with/without Duckbot. This
includes the topics ”Successful Task Completion”, ”Likes, Dislikes and Recommen-
dations”, and ”Critical or Non-Critical Errors”.

Support roles: The actual lecturer of the programming courses in Creative Technol-
ogy will provide the lecture. TAs in this workshop are also actual TAs from previous
courses.

4.3 New test plan

After failing to get enough participants for the workshop, a substitute was needed.
In this case we wanted a lower threshold to entry by making it a much shorter test.
Additionally, the test had to be individual, so that we would not depend on multiple
people being there at the same time. The solution used was to give a specific
scenario of programming errors, and ask students to pretend to want to solve these
errors in a tutorial.

Scope: We test the entire flow as described in the sequence diagram (figure 3.12).

44 CHAPTER 4. REALIZATION

This means that the student is sent from TA-Help.me to Duckbot, and that the TAs
can see the results of their chat sessions in TA-Help.me.

Purpose: The goal of this test is to see 1) if Duckbot improves the student’s un-
derstanding of their problems, 2) whether there are any technical or UX flaws in the
prototype design.

Schedule & Location: Students were able to pick from a list of 45 minute timeslots.
Communication was done via Google Hangouts.

Equipment: All participants use their own devices. These are usually laptops. All
conversations between the students and Duckbot are automatically stored. During
the test, the researcher takes notes on any questions that are asked, mistakes that
occur or other events of note.

Participants: First and second year students of Creative Technology are recruited
through promotion in the communication channels of the Creative Technology study
association.

Scenarios:

Students were given a Processing program assignment from a previous tutorial; sim-
ulating raindrops falling on a water surface. To prevent student participants having
to program themselves, they were given 3 versions of the solution code. The first
one was a working version (see figure 4.4) that showed the student what the the
program should look like. The second version had an error in it, and could therefore
not run. The third version did run, but showed behaviour that was unexpected, as
seen in Figure 4.5.

A test for a control group was designed as well. In this test, students would
be shown the same programs with the same errors. Likewise, they would be
instructed to request help in TA-Help.me by asking a question. This would al-
low comparison between questions asked through Duckbot, and those asked
without.
Unfortunately, within the time of the research, only 5 students were found will-
ing to participate. To get as much information on the experience with Duckbot,
it was opted to have all 5 students do the test with Duckbot.

In a staging environment of TA-help.me, a room with a list that redirects to Duckbot
was created. The students were given a link to it (without telling them that enrolling
them in the list would redirect to Duckbot, or what it exactly is).

First, they were shown the working version. Then, they were asked to open the

4.3. NEW TEST PLAN 45

Figure 4.4: Normal behaviour Figure 4.5: Unexpected behaviour

second version, run it, and then ask a question through the Duckbot list, as though
the behaviour of the program was a problem they encountered during the lecture.
This was done twice; for each ’bugged’ version of the program.

They were asked to share their screen with the researcher, so that it could be ob-
served how the participants interacted with Duckbot. Additionally, it made the re-
searcher able to help students who were stuck in a stage of the Duckbot chat (due
to flaws in the system, or the inability of Duckbot to detect intent).

One pilot test was also conducted to test whether this setup worked as expected,
and whether any flaws were immediately found. One suggestion that came out of
the pilot test and was implemented, was to add buttons where specific answers such
as ’yes’ or ’no’ were expected.

Metrics: From the notes taken, the researcher will label returning conversation de-
tails, errors encountered, questions asked and other interesting events.

Finally, with the researcher not present, participants were asked to fill in a short
questionnaire. It contained the following statements, to be rated on a 5-point Likert
scale from ’strongly disagree’ to ’strongly agree’:

• The tool helps me communicate my problem to the TA’s

• I am bothered by having to use this tool to communicate with TA’s

• The tool used to communicate with TA’s is user friendly

• Using this tool in itself would help me understand my problem more

46 CHAPTER 4. REALIZATION

4.4 Results

For this user test, 5 students were willing to participate.

Additionally, 1 student was asked to participate in a pilot test. During this, it was
assured that the exercises were easy to understand. In addition, it gave some extra
phrases that the pilot participant would say to Duckbot in answer to its questions.
These phrases were added to the training phrases, some of which were not under-
stood by Duckbot before.

4.4.1 During the test

During the test, there were several things of note that happened multiple times;

The first question Duckbot asks is: “Do you have a question about your code/program
or about the course itself?” The chatbot expects an answer that either has the intent
’About my code’ or ’About the course’. However, some students interpreted that this
was the time to ask the question already. As Duckbot would not be able to extract
an intent from that, it would reply with for example ’Sorry, what was that?’ which
causes confusion. In this case, the researcher told the student to specifically type
an answer with the intent of ’I have a question about my code’.

Then, the students would move on to the problem statement. Duckbot says: “All
right. Let’s start by stating your problem in one or two sentences.” Responses to
this question varied from very vague statements (“My program does not behave as
it should”) to well-rounded problem statements (“Why do I get an ArrayIndexOutOf-
BoundsException in the for loop in the update() method in class Water?”).

Duckbot moves on to ask: “What did you expect to happen with your current code,
and what happens instead?” In the example of test 1, where the student will en-
counter an error, we can see that the students anwer the question in one of two
general ways:

• Repeat the fact that they receive an error (e.g. “I expected that the for loop
was running but I got an error”), thereby not adding additional information to
the problem statement or

• Diving deeper in the specific part that causes the problem, and what it should
do. Examples are “i expect the force variable to be changed based on that
line.” or “It should run through every water particle and calculate the force on
it”. In this case, additional information is added and shows signs of an existing
or gained understanding of what their problem actually is.

4.4. RESULTS 47

As discussed in section 4.1, due to a bug in Dialogflow, some questions required
very specific intents. To answer a question such as ”Can you pinpoint at what point
in your code the problem occurs”, an answer of ’yes’ was first needed before actually
specifying the location. To indicate this, two buttons appeared above the chat’s
typing field with ’yes’ and ’no’. Only one student understood immediately and clicked
the button with ’yes’ (or typed ’yes’, leading to the same result). The other students
immediately went on to answer the question with the actual line of code where the
error occured. This lead to an answer like “Sorry, what was that?” from Duckbot. In
this case, the researcher needed to step in and explain that they first had to answer
a the question with yes/no.

Similar was the case with the “Do you have any error messages?” section that fol-
lowed, where again the yes/no-intent needed to be given first.

In the ’error’-section, the test participants needed to use a bit of imagination to deal
with questions from Duckbot such as “Have you already tried searching for this mes-
sage on Google?”. While stated beforehand that in case of non-valid questions be-
cause of the test situations, students could use their own imagination to answer the
question as they would during a tutorial, some participants were taken aback by this
question. In this case, the researcher needed to explain them that they could answer
with ’yes’ or ’no’.

The session would always end with an overview by Duckbot, which lists the answers
to their questions where applicable, ending with “Can I send this to the TA’s? You
can also tell me to edit this overview, or end the session altogether.” Most students
did not use the ’edit overview’ option, even if some parts of it were (either due to
user error or a Duckbot bug) clearly unintended.

In some cases, Duckbot would not catch an intent that would be clear to a human
reader. For example, when asked “Do you have a question about your code/program
or about the course itself?” the answers “yes about a error in my code” and “the
question is about the code/program” where not interpreted correctly. Another ex-
ample was the answer “You can send this” to the question “Can I send this to the
TAs?”.

4.4.2 Questionnaire

The students were asked to fill in a short questionnaire after the test was over, the
answers to which were saved anonymously.

The resulting answers to the Likert-scale questions can are shown in table 4.1. To
calculate an average, the Likert-scale was interpreted as a continuous scale from 0

48 CHAPTER 4. REALIZATION

Statement Strongly
dis-
agree
(0)

Disagree
(1)

Neutral (2) Agree (3) Strongly
agree (4)

Average

The tool helps me
communicate my
problem to the
TAs

5 (100%) 3

I am bothered by
having touse this
tool to communi-
cate with TAs

3 (60%) 2 (40%) 1.4

The tool used
to communicate
with TAs is user
friendly

1 (20%) 1 (20%) 2 (40%) 1 (20%) 2.6

Using this tool in
itself would help
me understand
my problem more

1 (20%) 1 (20%) 1 (20%) 2 (40%) 2.8

Table 4.1: Results of questionnaire

(strongly disagree) to 4 (strongly agree).

Additionally, the students made the following statements:

S1: “It seems that the tool didn’t really help to solve a specific problem, but it was
helpful (from student perspective) because the tool let you think about the problem
(what can I do to solve the problem? where in the code is the problem? did I look
on the Internet to solve my problem?). This could be really helpful for a student.
From a TA perspective, I think the tool is also very helpful to improve and fasten the
communication between student and TA. It often happens that a student got stuck
and immediately goes to the TA. If the TA asks the student to pinpoint where it goes
wrong in the program, the student sometimes have no clue and then it takes a lot of
time to help the student.”

S2: “It is a good moment to reflect on what the actual problem actually is and what
should happen. The advice to look it up is not that useful in my opinion.”

S3: “I have a couple of remarks about the tool. First I think it would be better if
the answers are more closed for some questions. For example just a button with
problem with code or question about the course. After one use you kind of know

4.4. RESULTS 49

what the questions will be so i don’t know how helpful the tool will be. I can see it
working as some sort of checklist to go through first and then sending a problem
description to the TA if the student did not fix the issue by going through that list. I
like the concept of the tool though. I can imagine a lot of students who do not google
an error before asking a TA for help. Hopefully this tool can help TA’s help students
more efficiently.”

S4: “This tool makes a student clearly indicate what the problem is and where it
occurs. For TAs this would probably be a great help since some students will find
out on their own what the problem is or have already thought about it. Although
there are still a few bugs in the system I really think this could help improve the way
of contacting a TA!”

S5: “It teaches students to read and understand error messages more and how to
deal with them. In general cases where you do not get an error message I think the
tool is a bit unnecessary. Overall I think it will be an improvement compared to the
current system.”

50 CHAPTER 4. REALIZATION

Chapter 5

Interpretation

In this chapter, the results from the realization phase (chapter 4), i.e. the results of
the prototype user test (section 4.4), are interpreted in terms of usefulness, design
and technical flaws. The requirements presented in table 3.1 are reviewed, as well
as the personas presented in section 3.1.1.

5.1 User test interpretation

In this section we evaluate the results of the questionnaire that was presented in
section 4.4.2, including the textual statements labelled S1-S5.

5.1.1 Usefulness for students

One important aspect of the use of the tool is the communication between students
and TA’s. All test participants answered the question “The tool helps me communi-
cate my problems to the TA’s” with ’Agree’. In all the participant statements, S1 - S5,
we find comments on the usefulness.

Perhaps because of the limited scope of Duckbot right now, for some participants
there was a large focus on the part of the conversation that concerns Googling. For
example in S5: “In general cases where you do not get an error message I think
the tool is a bit unnecessary.” and in S3: “I can imagine a lot of students who do
not google an error before asking a TA for help.” While these thoughts reflect the
idea that Duckbot is mainly useful in case of errors that have not been looked up
by the user, S2 opposes this with “The advice to look it up is not that useful in my
opinion”. Duckbot asks for this question, as it is indicated as often asked by TAs
(see the TA questionnaire in section 2.2), but few times provided by students on

51

52 CHAPTER 5. INTERPRETATION

their own initiative. The question is whether, if Duckbot were larger and had more
varying branches, this would be such a focal point for the users.

A repeated thought was that the tool helps the student understand the problem, e.g.
in S1: “[...] it was helpful [...] because the tool let’s you think about the problem (what
can I do to solve the problem? [...])” and in S2: “It is a good moment to reflect on
what the actual problem actually is and what should happen.” This corresponds with
the high score of 2.8 (Agree) on the questionnaire statement “Using this tool in itself
would help me understand my problem more”. S5 contains: “It teaches students to
read and understand error messages more and how to deal with them. [...] Overall
I think it will be an improvement to the current system”.

These results indicate that the concept of Duckbot is accepted. However, it also
shows that the prototype is limited in scope; it is not intended to have a main focus
on error messages for example. Duckbot does not tailor the conversation to the
individual to a large extent, which is one of the goals of using a conversational
agents. All participants had more or less the same conversation. The participants’
statements show that, even given the same program and the same chat, the opinions
on what is helpful to talk about vary. If anything, this is an indicator that a flexible
conversational agent is a good step forward and could offer value over a more static
form of guidance.

5.1.2 UX Design

The following section discusses the UX related questions in the questionnaire.

The questionnaire ratings on the question “The tool used to communicate with TA’s
is user friendly” averaged out on 2.6, closest to ’Agree’. Only one student disagreed
with this statement.

A clear UX design flaw exists for cases with closed-answer questions, specifically
’yes’/’no’ questions. As explained in section 4.1, right now buttons appear to indicate
possible options, while still leaving the text input box available to type. The user
either does not notice the buttons, or does not realise that those are the expected
answers. A relevant remark by a test participant is “[...] I think it would be better
if the answers are more closed for some questions. For example just a button [...]
” - so omitting the option to input text. From a UX point of view, this could be
a good strategy, as it eliminates the option to give an answer that Duckbot does
not understand. Another option would be to keep the textual input along with the
buttons, but have some indicator that would state, for example, “The buttons show
the possible answers to this question. You can also type these answers manually.”

5.2. REQUIREMENTS FULFILMENT 53

Overall, the participants seemed to have few problems with the format of Duckbot.
Most messages to Duckbot were interpreted correctly. No participant agreed with
the statement “I am bothered by having to use this tool to communicate with TAs”,
averaging out on 1.4 (Disagree - Neutral).

5.1.3 Technical flaws

There are some technical flaws in the tool that should be solved for an official launch.

First, some user messages are not interpreted as the desired intent, such as in the
example Q: ”Can I send this to the TAs?”, A: ”You can send this”, where the answer
was not interpreted as the ”Yes” intent. While Dialogflow CX can intelligently fills out
the phrase list with similar expressions and solves for typo’s, more training phrases
are needed. The training phrases list is now biased by the researcher’s own chat
style. User tests such as this are a valuable source of training phrases to add.

A small flaw noted by most of the participants was that Duckbot contained messages
that should include newlines, but that were simply displayed as \n \n, which caused
some confusion in 2 cases. This can and should be fixed in a new version.

Another flaw was when the Duckbot would ask “Do you have any error messages?”
Any input including ’I do not have one’ was stored as an error message itself, leading
Duckbot to go into a dialogue branch related to error messages. At that point, there
is no way for the user to correct this, and they have to answer Duckbot’s subsequent
questions as though they had an error message, to proceed. An example can be
seen in figure 5.1. This error is related to the Dialogflow bug that was explained in
section 4.1 and figure 4.1. At this point in time, Dialogflow’s technical support has
assisted in creating a fix for this problem that can be implemented in a future version.

5.2 Requirements fulfilment

Table 3.1 presented a list of requirements, as proposed by the researcher. In table
5.1, this list is shown with if the requirement was fulfilled, and if judged as fulfilled
by the researcher; how.

’Musts’: Most of the requirements were fulfilled. Requirement 5, however, needs
some improvement, as there were still some issues with matching the correct intent
to a user’s chat message (see section 5.1.3).

’Shoulds’: The requirement was fulfilled. Integration with TA-Help.me was done by
redirecting to the Duckbot application when signing up to a list.

54 CHAPTER 5. INTERPRETATION

Figure 5.1: A screenshot of the faulty error message dialogue and the displayed \n
\n

5.3. LOOKING BACK AT THE PERSONAS 55

’Coulds’: These requirements were not fulfilled. These features may be imple-
mented in a future version, but they are not part of the core functionality within the
scope of this project.

’Won’t’: This requirement was, according to plan, not fulfilled, as giving solutions
to problems is not the aim of Duckbot.

Any requirements not met are analysed in the discussion, section 6.3.

5.3 Looking back at the personas

In section 3.1.1, 5 personas were presented to represent target users. In this sec-
tion, their characteristics and problems are compared to the offered solution of Duck-
bot, to analyse its effectiveness.

Students

”Emma” (Fig 3.1 in chapter 3) is a well-doing student whose pitfall is asking for help.
Duckbot might help her because

• The threshold of talking to a chatbot first is lower than going to a TA straight
away, thus lowering the chances of not asking for help at all,

• The chatbot takes care of part of the conversation, thereby easing the face-to-
face conversation,

• The chatbot helps her communicate relevant information, thereby lowering the
fair of ’asking dumb questions’.

”John” (Fig 3.2 in chapter 3) is a student who is more interested in getting the ECs
for the course as quick as possible, then the subject matter itself. Duckbot might
help him because

• When asking a question, he is forced to think about his problems more thor-
oughly, thereby making him more able to solve his problems,

• Duckbot streamlines the process of asking questions, making it more efficient.

”Sarah” (Fig 3.3 in chapter 3) is a student who takes the programming course seri-
ously and is looking for knowledge that might be useful in her career. She seems
like the student who could do without the aid of Duckbot, but in fact it might be useful
to her because

• Duckbot guides students into tackling problems in a manner that professional
programmers prefer, and so it helps bridging the gap between the classroom

56 CHAPTER 5. INTERPRETATION

Label Requirement Priority Fulfilled
Chat
1 The student can use Chat to communi-

cate with Duckbot
Must YES (Chat imple-

mented)
2 Duckbot will guide the student to a de-

tailed question
Must YES (See 3)

3 Duckbot will ask the student for spe-
cific Problem Statement Details, such as,
’goal statement’, ’actual and expected re-
sults’, ’relevant error messages’, ’relevant
code’, ’steps taken’

Must YES (All these asked
for during chat)

4 DuckBot will feed back gathered Problem
Statement Details to the student

Must YES (Data recorded by
Duckbot shown to stu-
dent for approval)

5 The student can talk to Duckbot in natural
language

Must YES (Spoken - im-
provement needed)

6 DuckBot will create a summary of Prob-
lem Statement Details, visible to TAs.

Must YES (Summary shown
to student first for ap-
proval, manual editing
by student possible)

7 DuckBot will categorize problems Could NO
8 Duckbot will try to give solutions to prob-

lems
Won’t YES (Won’t)

Integration
9 Duckbot will have integration with TA-

Help.me
Should YES (Duckbot opens

in separate page redi-
rected to when en-
rolling to question list)

10 Duckbot will have integration with the Ate-
lier platform

Could NO

11 The summary of Problem Statement De-
tails will be attached to the relevant code
on Atelier

Could NO

12 TA-Help.me itself does not change in lay-
out

Must YES (Duckbot opens
in separate page redi-
rected to when en-
rolling to question list)

Other features
13 The (anonimized) Problem Statement

Details summary will be made public, so
that other students may benefit from it

Could NO

14 If a chat helped a student to find a solu-
tion, the chat may be made public (anon-
imized)

Could NO

Table 5.1: Requirement fulfilment

5.4. CONCLUSION 57

and professional programming,

• Sarah gets to show preparation effort in the questions themselves, giving her a
chance to stand out even in the TA-Help.me queue, which might be of interest
to her.

This shows that, while simple in its design, Duckbot has many different ways of
helping students depending on their attitude and personality.

TAs

”Joyce” (Fig 3.4 in chapter 3) is a new TA who needs some help overcoming her lack
of experience to deal with difficult to answer questions. Advantages Duckbot offer
her are

• The ability to read through and prepare for the questions asked before going
up to the student,

• Needing less effort figuring out the student’s problem,

• Alleviating some pressure on busy classrooms

”Tim” (Fig 3.5 in chapter 3) is an experienced TA who has little problems with be-
ing able to answer questions, but highly values pro-active students throughout the
duration of the course. To him, the advantages of Duckbot might be

• Seeing prepared questions instead of dreaded ’I don’t know’s and ’It doesn’t
work’s

• Students that are encouraged to deal with their problems in a pro-active man-
ner

• Lowering the threshold to (know how to) ask questions earlier in the course,
which may help spreading the workload throughout the course

5.4 Conclusion

This chapter discussed that overall, Duckbot was found to be a success by its users.
All test participants found that Duckbot helps them communicate their questions to
the TAs. Some students indicated that the tool helps the student understand the
problem.

The user test also helped pointing out flaws in the tool, including some user mes-
sages not interpreted as the desired intent and (ironically) some errors in the dia-
logue branch related to errors.

58 CHAPTER 5. INTERPRETATION

Most of the requirements were met, by redirecting students from TA-Help.me to
a chat that guided students into giving specific problem statement details. Some
requirements - Atelier integration, categorisation of problems and publicising chats -
were not met, and will be discussed in section 6.3.

By looking back at the personas, ways Duckbot could be of use to various students
were identified. These included lowering the threshold to chat to TAs, helping stu-
dents deal with their problems pro-actively and guiding students into tackling prob-
lems in a manner that professional programmers prefer. To TAs, Duckbot is useful
because it gives the TA the ability to better understand and prepare for student’s
questions, seeing pro-active students and easing the workload during busy tutori-
als.

Chapter 6

Discussion

In this chapter, we discuss the implications of the results that are interpreted in
chapter 5. The limitations of the research are discussed, and recommendations for
future work are given.

6.1 Discussion of results

The key result of this thesis is a solution designed to help overcome common chal-
lenges that are faced in programming tutorials concerning interaction between stu-
dents and TAs. TAs expressed a desire for increasing the quality of the interaction.
Helping students take a proactive approach in understanding problems and formu-
lating questions was found to be a key element. As such, the tool Duckbot is a
design solution to answer the main research question: “How can we improve the
online education platforms for Creative Technology programming to enhance the
quality of help seeking and giving, between students and teaching staff?”

The main users of Duckbot are therefore students, as their interaction with it im-
proves the interaction with the TAs in turn. During the user test, they all agreed that
Duckbot helps them communicate their programming problems to TAs. They were
not bothered much by having to use the tool. Overall, the tool was found to be user
friendly and helpful in understanding problems, however opinions on this were more
varied, with 1 student not finding the tool user friendly or helpful to understanding
problems.

This implies Duckbot is on the right track to become a valuable instrument during
tutorials. It adds to existing tutoring tools by not being designed to solve problems,
rather help students do so themselves and with TA’s help. This was an explicit desire
expressed by TAs .

59

60 CHAPTER 6. DISCUSSION

Within the digital environment used already for asking questions, namely TA-Help.me,
Duckbot directly expands its functionality. TA-Help.me already employs some strate-
gies to help ask useful questions, e.g. giving written tips and example questions. In
the research of Heleen Kok, this was found not to help achieve the target behaviour
of asking better questions [64] (see section 3.2).

In the context of Persuasive System Design, Duckbot provides ’tunneling’, which is
“through a predetermined sequence of actions or events, step by step” [75]. Tun-
neling is found to be effective to reduce the cognitive workload of the user, and
helps them to achieve a target behaviour [76]. Duckbot improves Kok’s strategy by
providing direct assistance, which also ’forces’ the student to go through the pro-
cess, to avoid the current situation where they can simply ignore the tips. As such,
Duckbot is a solution to answer Kok’s proposal for future work: “How can a TEL
tool intuitively steer students to formulate specific questions?” and “How should TAs
moderate question asking to increase the quality of the questions the students ask?”
- although it is perhaps a surprising answer to the latter question, in that Duckbot
takes over some of the moderation of questions.

6.2 Limitations

There were various limitations to this research that need to be addressed.

The most important of these is that the user testing of Duckbot could be improved.
The following were limitations in the tests:

• The tool was not used in a real-world scenario (an actual programming tutorial
in Creative Technology). Several attempts were made to organise a workshop
(section 4.2), but a lack of attendance made it impossible to get enough results.
The ongoing Covid-19 pandemic at the time seemed to have played a large
part here, with students less willing then usual to spend time on non-obligatory
workshops, especially since these had to be given fully online. In addition,
recruitment of students was reduced to advertising on digital platforms, instead
of the possibility to recruit face-to-face in area’s such as study association
spaces.

• The alternative test had students work on programming problems that were
not their own, in order to save time and lower the threshold to participate. This
meant that the test was less successful in testing the hypothesis of whether
the students were able to understand their own problems better. Some stu-
dents saw the answer to the problem straight away, and had to pretend to not
understand it to go through with the test (this was encouraged, so as to still be

6.2. LIMITATIONS 61

able to test UX related questions).

• Even with the alternative test having a lower threshold to participation, the
attendance was low (5 participants). Low attendance was a known problem
to various researchers looking for test participants at the time, again quite
probably related to Covid-19. However, time ran out to further postpone testing
until more participants could be recruited. Ideally, the first tests could have
been treated as a pilot test to find and remove more flaws. In the current
situation, only one pilot test was conducted, during which not all flaws were
discovered, as every individual interacts with the chatbot differently.

• The test was also solely student-focused, with the results not validated by TAs.
While we can theorise that Duckbot contributes to alleviating some problems
indicated by TAs, this needs to be tested.

There are also some limitations in the design process:

• Due to privacy concerns, it was not possible to access previously asked ques-
tions in TA-Help.me. Due to no Creative Technology programming courses
being given at the time, it was not possible to collect new questions asked in
TA-Help.me. Had this been possible, the results could have given the design
of the conversations in Duckbot direction - in that there are direct examples
of how students ask their questions, rather than statements from memory by
TAs. It can also help give Duckbot validity: examples of questions currently
asked on TA-Help.me could be used to do a ’before and after’ comparison of
questions asked when Duckbot is being used. Both students and TAs can then
reflect; which method is preferable, both in terms of usability and effect on the
tutorials?

• Studies show that human-computer interface design, an important part of Duck-
bot, can greatly benefit from an iterative design methodology [77] [78]. With
more time, it could be useful to make several versions of Duckbot based on
test results.

• More research is needed into the content of a conversation with Duckbot, e.g.
tone, questions asked and linearity vs. openness of the conversation flow.

Some parts of the tool itself are also limited:

• There are some technical flaws in the tool, as discussed in section 5.1.3. Fix-
ing these might change the user’s opinion on Duckbot. For some, this would
require waiting for an update of the Dialogflow CX API, or considering moving
to a different platform.

62 CHAPTER 6. DISCUSSION

• Due to limited time, the scope and flexibility of the conversation is limited.
Duckbot asks for some specific details, but the conversation could be tailored
to the user’s situation more.

• Duckbot is built in Dialogflow, with storage in Firebase. Both of these are paid
Google services, from a certain number of interactions with them. Whether this
is affordable to the university remains to be discussed with the relevant people.
In case it is not affordable, the database is fairly easy to exchange for a differ-
ent one. As Dialogflow supports the entire conversation, however, it is much
harder to replace. Similar services by different companies include Amazon’s
Lex and Microsoft’s Azure Bot Service. However, company platforms such as
these sometimes elicit questions on privacy by educational institutions [79]. If
an open source platform is preferred, machine learning libraries such as Ten-
sorflow can be used.

Finally, not all requirements as given in section 3.2.1 were met. The next section will
specifically address these, and offer recommendations for future feature implemen-
tations.

6.3 Recommendations for meeting all requirements

The following requirements (labeled according to table 5.1) were not met:

CHAT-7: Duckbot will categorize problems - While Duckbot distinguishes between
questions concerning programs (e.g., errors, class design) and questions concern-
ing the course itself (e.g. deadlines), these categories are not further refined. This
feature exists for asking questions in TA-Help.me the ’normal’ way, where students
first pick a category (such as ’course questions’, ’architecture’, ’errors’, ’design’ and
’concepts). This can help TAs help students more effectively. There are various
ways Duckbot can implement categories:

• Ask the student straight away at the start of the conversation, similar to the
existing feature in TA-Help.me. This has the advantage of then being able to
customise the dialogue. For example, should the student indicate she has a
problem with a concept, Duckbot can offer guidance in figuring out what parts
of the concepts are problematic, instead of asking for any error messages. A
disadvantage is that the student might find it difficult to indicate a category
straight away, while Duckbot should be able to help them figure such things
out.

• Figure out the category automatically from the conversation. For example, cer-

6.3. RECOMMENDATIONS FOR MEETING ALL REQUIREMENTS 63

tain keywords and phrases can be recognized to belong to a certain category.
While Dialogflow is perhaps too limited for this, there are plenty of examples
in NLP literature of categorisation of texts [80] [81]. It has the advantage of
helping out students who may find it difficult to assign their questions to a cer-
tain category. A disadvantage if this part of the process is taking out of the
student’s hands, they may learn less themselves.

• Combinations of these methods are also possible. For example, using NLP
to figure out the appropriate category in case the student is not able to deter-
mine it at the start. Such a method might make the dialog design much more
complex as some possibilities for linearity are lost.

INTEGRATION-10: Duckbot will have integration with Atelier - The Atelier team
expressed an interest in incorporating Duckbot into the Atelier platform. Integration
may mean a higher perceived usefulness of the tools and the ability to work more
efficiently by having to switch between tools less. A possibility for integration is a
redirection to Duckbot when uploading code to Atelier, if the student indicates that
they have a question about it. The code could be used in the chat with Duckbot,
for example to highlight relevant code snippets. Additionally, when the summary
of the conversation with Duckbot is presented to the TA, it could link directly to the
relevant code, so that the student and TA do not need to manually communicate this.
Finally, it may be useful to include this summary to the Atelier page of this relevant
code, for future reference. This would then also fulfil the next unmet requirement:
INTEGRATION-11: The summary of Problem Statement Details will be attached to
the relevant code on Atelier.

OTHER-13: The (anonymized) Problem Statement Details summary will be made
public, so that other students may benefit from it - This research has its root in
Atelier and in turn, in the ’Community of Practice’ (section 1.1.2). This requirement
would be particularly useful in a more elaborate platform where students can discuss
and share code. The brainstorm session in section 2.1 shows some thoughts on a
forum-like platform, where sharing problems might be a good base for discussion.
However, it requires more time, research, and resources to build a well-functioning
platform, which is outside the scope of this project.

OTHER-14: If a chat helped a student to find a solution, the chat may be made
public (anonymized) - Similar to the previous requirement, a feature like this might
be useful in a more elaborate sharing platform. The particular requirement should
be treated with care, as literal conversations are more private than summaries.

64 CHAPTER 6. DISCUSSION

6.4 Recommendations for further research

Duckbot is a solution that contributes a small part to a broader problem. By doing
further research, it can have more impact. There are various topics touched upon in
this thesis that could be further researched.

Sections 1.1.3 and 1.1.4 presents some research on Persuasive System Design
(PSD), which included some recommendations on PSD features to incorporate in
this project.

However, there are opportunities to improve the design in this area. For example,
Duckbot makes use of the PSD element ’tunnelling’, but could improve on ’per-
sonalization/tailoring’. Tailoring has helped chatbots be more successful health
coaches [82] [83] [84] [85], counselors [86], education [87], personal service [88]
and more. The rise of AI-powered ’personal assistants’ on smartphones shows
that chatbots can be capable of providing many different services to many different
people. Researching elicitation strategies for chatbots can help figure out the user
needs [89].

The ability of Duckbot to understand the user now depends on a small set of possible
answers, and the conversation is quite linear. In an ideal case, the student can
talk more freely and casually to Duckbot. Then still being able to extract relevant
information would be an interesting topic for future research. Duckbot can only say
preset phrases, as is dictated by the chosen framework of Dialogflow. However,
using NLG (Natural Language Generation), chatbots can generate output in natural
language based on the user’s input [90] [91] [91]. This would allow a conversation
that is unique every session, which can further assist in self-talk and in general have
more possibilities in conversations than a dialogue system that is limited by a preset
flow.

The PSD element of ’gamification’ was mentioned by TAs during the brainstorm.
Gamification has been combined with conversational agents for education before.
Interesting virtual agents can enhance the learning experience by experiencing the
subject matter in a more interactive, engaging manner [92]. Fadhil et al. [93] de-
signed a system where game elements (quizzes, jokes) are added to a conversa-
tional AI. They chatbots have the advantage of striping away interface complexity
and reduce the interaction to a simple chat and UI, as well as the possibility to
determine the user’s emotions to offer a personalised learning experience. Conver-
sational agents can also improve serious games: In a serious game to teach college
algebra, virtual characters use text and speech to make learning more fun [94]. They
have also, for example, been added to gamified mobile guide applications [95] and
VR learning environments [96]. It is worth investigating whether gamification ele-

6.4. RECOMMENDATIONS FOR FURTHER RESEARCH 65

ments can help Duckbot be a better tutor, for example by making learning more
engaging.

The elements of the PSD category ’social support’ can give guidance for incorpo-
rating Duckbot in a social platform as mentioned in the previous section. Chatbots
have been integrated in social commmunities as peers [97], but can also enhance
community interactions [98] [99]. Researching this can elevate Duckbot to become
than just useful in one-on-one conversations.

There are also topics beyond the scope of PSD. For example, this thesis has the
topic of problem giving and seeking at it’s core. However, the question of what
exactly makes a programming question effective can use more research. In this
research, the ’Problem Statement Details’ asked for by Duckbot were adapted from
Q&A website StackOverflow, but do these cover a problem to a large enough extent?
Such research would be more social then technical in nature, and may be suitable
for research within a different study field.

This research, as discussed in section 6.2 suffered from a lack of user testing to
validate results. Future research should not only test improvements to Duckbot
using tests with students, but should also include the experience of TAs. Comparing
questions asked on TA-Help.me with and without Duckbot can help determine the
usefulness of Duckbot. Duckbot should also be tested in real tutorials.

66 CHAPTER 6. DISCUSSION

Chapter 7

Conclusion

This research set out to improve programming tutorials in Creative Technology. Its
roots are in the digital platform Atelier, that aids student-TA (teaching assistant) com-
munication, and the Community of Practice theory. Based on literature research and
research into the thoughts of TA, eventually the concept of the chatbot ’Duckbot’ was
formed.

In this chapter, the conclusion to this thesis is given.

7.1 Answering the research questions

The main research question was: How can a digital tool enhance the quality
of help seeking and giving, between students and teaching staff in Creative
Technology programming tutorials?

RQ1: What challenges are faced in tutorials concerning interaction between stu-
dents and teachers/TAs?

As part of the Ideation (chapter 2, a brainstorm was held with TAs. Additionally, a
questionnaire was sent out to TAs. From these, it is found that challenges faced in
tutorials concerning interaction between students and TAs are:

• Students putting entire programs out for TAs to debug, learning nothing in the
process themselves

• Students being unsure of where (online or offline) to ask which question and
to whom (other students or TAs), leading to questions not being asked at all

• Some important details of questions are often left out

67

68 CHAPTER 7. CONCLUSION

• Pro-activeness of students, and having well-prepared questions, make tutori-
als more enjoyable for TAs.

• A high workload is a problem that is encountered, but a low workload (either
due to low attendance or passive student) is not appreciated either.

RQ2: How can these challenges be addressed in an improvement of the online
education platforms?

When discussing online tools in the brainstorm, TAs gave some answers to help
answer this question:

• Course forums are not being populated without making them obligatory

• The tool should be useful within the tutorial, to not encourage students to skip
tutorials

• TAs want the tool to nudge students towards being pro-active during tutorials

• TAs want the tool to decrease high workload if necessary

• The tool should encourages TA/student interaction, rather than taking away
from it/digitalizing it away

• The tool should increase the quality of these interactions

From the subsequent literature review, the notion that seeking help can be difficult
for some students, both because the process feels threatening, and because they
do not know how to effectively ask for help. The literature supports that a computer-
based solution can assist in both making the process less threatening, and guiding
the student in effective help seeking. Learning how to ask the right questions is key.
Self-talk is a strategy that can be used as well to support learning.

A tool that, in section 3.2, was theorised to be able to incorporate these concepts
was a chatbot, as it can fully guide students step-by-step to ask quality questions,
make the process of asking questions less threatening, and lead the student from
a computer to a real tutor. With the aid of a chatbot, students can learn how to
effectively ask for help. Additionally, it can allow aspects of explaining and self-talk.
It can be built into the existing platform TA-Help.me, which is currently used to queue
questions for TAs.

The chatbot that was designed for this thesis was named Duckbot (after ’Rubber
Ducking’). Duckbot asks the student to refine questions to include important details
that will both help the TA understand the problem and work on it more efficiently, but
more importantly help the student understand their own problem better (an element
of self-talk).

7.2. FINAL WORDS 69

Technically, the solution consists of a ReactJS front-end, a chat agent built on the
Google product Dialogflow CX, an ExpressJS backend, and the Google product
Firebase as database to save the conversations. Students were redirected to Duck-
bot when asking a question on TA-Help.me, and a summary of the chat with relevant
details of the problem was then made visible to TAs. This is described in sections
3.3.3 and 3.3.4.

RQ3: What is the user acceptability of the design solution prototype?

A user test of Duckbot with students was described in chapter 4. During this test, the
student were given erroneous, pre-made Processing programmes. They were asked
to describe these problems to Duckbot, as though they were in a tutorial wanting to
request help from TAs. The results of these user tests are given in section 4.4, and
analysed in section 5.1.

It can be concluded that overall, Duckbot was found to be a success by its users.
All test participants found that Duckbot helps them communicate their questions to
the TAs. Some students indicated that the tool helps them understand the problem.
However, the limitations of the user test as discussed in section 6.2, such as not
testing with enough stakeholders in a real-world scenario, and the limited scope of
Duckbot, should be taken into account.

7.2 Final words

This project started out with the broad suggestion to improve Atelier and its Com-
munity of Practice. Teaching assistants had a primarily role in determining the focus
of this research. This focus became the question-asking process on the student
side. With Duckbot, the threshold to ask for help becomes lower, and TAs are bet-
ter prepared to deliver quality help. Whether they are keen question-askers or love
to be more self-reliant, Duckbot can offer something to many students, and helps
get them on even ground. With students becoming more confident communicators,
they can not only benefit their community in the classroom, but the community of
programmers as a whole as they take this knowledge into the world.

–

The source code to Duckbot will be made available on Github. Contact the author
for more information.

70 CHAPTER 7. CONCLUSION

Bibliography

[1] A. Mader, A. Fehnker, and E. Dertien, “Tinkering in informatics as teaching
method,” in Proceedings of the 12th International Conference on Computer
Supported Education, INSTICC. SciTePress, 2020.

[2] E. Wenger, “Communities of practice: A brief introduction,” 2011.

[3] D. R. Millen, M. A. Fontaine, and M. J. Muller, “Understanding the benefit and
costs of communities of practice,” Communications of the ACM, vol. 45, no. 4,
pp. 69–73, 2002.

[4] S. B. Merriam, B. Courtenay, and L. Baumgartner, “On becoming a witch:
Learning in a marginalized community of practice,” Adult education quarterly,
vol. 53, no. 3, pp. 170–188, 2003.

[5] A. P. Rovai, “A constructivist approach to online college learning,” The internet
and higher Education, vol. 7, no. 2, pp. 79–93, 2004.

[6] R. M. Palloff, K. Pratt, and D. Stockley, “Building learning communities in cy-
berspace: effective strategies for the online classroom,” The Canadian Journal
of Higher Education, vol. 31, no. 3, p. 175, 2001.

[7] R. Nachmias, D. Mioduser, A. Oren, and J. Ram, “Web-supported emergent-
collaboration in higher education courses,” Journal of Educational Technology
& Society, vol. 3, no. 3, pp. 94–104, 2000.

[8] R. K. Valaitis, N. Akhtar-Danesh, F. Brooks, S. Binks, and D. Semogas, “Online
communities of practice as a communication resource for community health
nurses working with homeless persons,” Journal of Advanced Nursing, vol. 67,
no. 6, pp. 1273–1284, 2011.

[9] T. M. Schwen and N. Hara, “Community of practice: A metaphor for online
design?” The Information Society, vol. 19, no. 3, pp. 257–270, 2003.

[10] M. R. Nichani and D. W. L. Hung, “Can a community of practice exist online?”
Educational Technology, vol. 42, no. 4, pp. 49–54, 2002.

71

72 BIBLIOGRAPHY

[11] C. M. Hoadley and P. G. Kilner, “Using technology to transform communi-
ties of practice into knowledge-building communities,” ACM SIGGroup Bulletin,
vol. 25, no. 1, pp. 31–40, 2005.

[12] C. Hoadley, “What is a community of practice and how can we support it?”
Theoretical foundations of learning environments, p. 286, 2012.

[13] C. Haythornthwaite, M. M. Kazmer, J. Robins, and S. Shoemaker, “Commu-
nity development among distance learners: Temporal and technological di-
mensions,” Journal of Computer-Mediated Communication, vol. 6, no. 1, p.
JCMC615, 2000.

[14] H. Oinas-Kukkonen and M. Harjumaa, “Towards deeper understanding of per-
suasion in software and information systems,” in First international conference
on advances in computer-human interaction. IEEE, 2008, pp. 200–205.

[15] T. Lehto and H. Oinas-Kukkonen, “Persuasive features in web-based alcohol
and smoking interventions: a systematic review of the literature,” Journal of
medical Internet research, vol. 13, no. 3, p. e46, 2011.

[16] H. Oinas-Kukkonen and M. Harjumaa, “Persuasive systems design: Key is-
sues, process model, and system features,” Communications of the Association
for Information Systems, vol. 24, no. 1, p. 28, 2009.

[17] “All sites - stack exchange,” https://stackexchange.com/sites?view=list#users,
(Accessed on 11/08/2019).

[18] B. Vasilescu, A. Serebrenik, P. Devanbu, and V. Filkov, “How social q&a sites
are changing knowledge sharing in open source software communities,” in Pro-
ceedings of the 17th ACM conference on Computer supported cooperative
work & social computing. ACM, 2014, pp. 342–354.

[19] H. Cavusoglu, Z. Li, and K.-W. Huang, “Can gamification motivate voluntary
contributions?: the case of stackoverflow q&a community,” in Proceedings of
the 18th ACM conference companion on computer supported cooperative work
& social computing. ACM, 2015, pp. 171–174.

[20] “reddit: the front page of the internet,” https://www.reddit.com/, (Accessed on
12/11/2019).

[21] C. Moore and L. Chuang, “Redditors revealed: Motivational factors of the red-
dit community,” in Proceedings of the 50th Hawaii International Conference on
System Sciences, 2017.

https://stackexchange.com/sites?view=list#users
https://www.reddit.com/

BIBLIOGRAPHY 73

[22] D. Dicheva, C. Dichev, G. Agre, G. Angelova et al., “Gamification in education:
A systematic mapping study.” Educational Technology & Society, vol. 18, no. 3,
pp. 75–88, 2015.

[23] I. Glover, “Play as you learn: gamification as a technique for motivating learn-
ers,” in EdMedia+ Innovate Learning. Association for the Advancement of
Computing in Education (AACE), 2013, pp. 1999–2008.

[24] J. Hamari, “Do badges increase user activity? a field experiment on the effects
of gamification,” Computers in human behavior, vol. 71, pp. 469–478, 2017.

[25] P. Denny, “The effect of virtual achievements on student engagement,” in Pro-
ceedings of the SIGCHI conference on human factors in computing systems.
ACM, 2013, pp. 763–772.

[26] A. Anderson, D. Huttenlocher, J. Kleinberg, and J. Leskovec, “Engaging with
massive online courses,” in Proceedings of the 23rd international conference
on World wide web. ACM, 2014, pp. 687–698.

[27] A. Iosup and D. Epema, “An experience report on using gamification in techni-
cal higher education,” in Proceedings of the 45th ACM technical symposium on
Computer science education. ACM, 2014, pp. 27–32.

[28] Z. Fitz-Walter, D. Tjondronegoro, and P. Wyeth, “Orientation passport: using
gamification to engage university students,” in Proceedings of the 23rd Aus-
tralian computer-human interaction conference. ACM, 2011, pp. 122–125.

[29] F. Groh, “Gamification: State of the art definition and utilization,” Institute of
Media Informatics Ulm University, vol. 39, p. 31, 2012.

[30] J. Thom, D. Millen, and J. DiMicco, “Removing gamification from an enterprise
sns,” in Proceedings of the acm 2012 conference on computer supported co-
operative work. ACM, 2012, pp. 1067–1070.

[31] G. Zichermann, “Gamification has issues, but they aren’t the ones
everyone focuses on - o’reilly radar,” http://radar.oreilly.com/2011/06/
gamification-criticism-overjustification-ownership-addiction.html, June 2011,
(Accessed on 12/17/2019).

[32] J. Suls, R. Martin, and L. Wheeler, “Social comparison: Why, with whom, and
with what effect?” Current directions in psychological science, vol. 11, no. 5,
pp. 159–163, 2002.

[33] M. M. Engelbertink, S. M. Kelders, K. M. Woudt-Mittendorff, and G. J. Wester-
hof, “Evaluating the value of persuasive technology and the role of teachers in

http://radar.oreilly.com/2011/06/gamification-criticism-overjustification-ownership-addiction.html
http://radar.oreilly.com/2011/06/gamification-criticism-overjustification-ownership-addiction.html

74 BIBLIOGRAPHY

a blended learning course for social work students,” Social Work Education, pp.
1–17, 2020.

[34] J. Hamari, J. Koivisto, and H. Sarsa, “Does gamification work?–a literature re-
view of empirical studies on gamification,” in 2014 47th Hawaii international
conference on system sciences. Ieee, 2014, pp. 3025–3034.

[35] R. Wieringa, “Design science methodology: principles and practice,” in
Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 2, 2010, pp. 493–494.

[36] A. Mader and W. Eggink, “A design process for creative technology,” in DS 78:
Proceedings of the 16th International conference on Engineering and Product
Design Education (E&PDE14), Design Education and Human Technology Re-
lations, University of Twente, The Netherlands, 04-05.09. 2014, 2014.

[37] M. Ahmadzadeh, D. Elliman, and C. Higgins, “An analysis of patterns of de-
bugging among novice computer science students,” in Proceedings of the 10th
annual SIGCSE conference on Innovation and technology in computer science
education, 2005, pp. 84–88.

[38] J. Sheard and D. Hagan, “Our failing students: a study of a repeat group,” in
ACM SIGCSE Bulletin, vol. 30, no. 3. ACM, 1998, pp. 223–227.

[39] E. Williams, “Student attitudes towards approaches to learning and assess-
ment,” Assessment and evaluation in higher education, vol. 17, no. 1, pp. 45–
58, 1992.

[40] M. M. Müller, “Two controlled experiments concerning the comparison of pair
programming to peer review,” Journal of Systems and Software, vol. 78, no. 2,
pp. 166–179, 2005.

[41] C. Hundhausen, A. Agrawal, D. Fairbrother, and M. Trevisan, “Integrating ped-
agogical code reviews into a cs 1 course: an empirical study,” in ACM SIGCSE
Bulletin, vol. 41, no. 1. ACM, 2009, pp. 291–295.

[42] K. Reily, P. L. Finnerty, and L. Terveen, “Two peers are better than one: ag-
gregating peer reviews for computing assignments is surprisingly accurate,” in
Proceedings of the ACM 2009 international conference on Supporting group
work. ACM, 2009, pp. 115–124.

[43] B. Hanks, “Problems encountered by novice pair programmers,” Journal on
Educational Resources in Computing (JERIC), vol. 7, no. 4, pp. 1–13, 2008.

BIBLIOGRAPHY 75

[44] B. Hartmann, D. MacDougall, J. Brandt, and S. R. Klemmer, “What would other
programmers do: suggesting solutions to error messages,” in Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, 2010, pp.
1019–1028.

[45] L. Razzaq and N. T. Heffernan, “Hints: is it better to give or wait to be asked?”
in International conference on intelligent tutoring systems. Springer, 2010, pp.
349–358.

[46] S. A. Karabenick and J. R. Knapp, “Relationship of academic help seeking to
the use of learning strategies and other instrumental achievement behavior in
college students.” Journal of educational psychology, vol. 83, no. 2, p. 221,
1991.

[47] B. E. Vaessen, F. J. Prins, and J. Jeuring, “University students’ achievement
goals and help-seeking strategies in an intelligent tutoring system,” Computers
& Education, vol. 72, pp. 196–208, 2014.

[48] R. Ames and S. Lau, “An attributional analysis of student help-seeking in aca-
demic settings.” Journal of Educational Psychology, vol. 74, no. 3, p. 414, 1982.

[49] T. W. Price, Z. Liu, V. Cateté, and T. Barnes, “Factors influencing students’
help-seeking behavior while programming with human and computer tutors,” in
Proceedings of the 2017 ACM Conference on International Computing Educa-
tion Research, 2017, pp. 127–135.

[50] I. Roll, V. Aleven, B. M. McLaren, and K. R. Koedinger, “Designing for metacog-
nition—applying cognitive tutor principles to the tutoring of help seeking,”
Metacognition and Learning, vol. 2, no. 2, pp. 125–140, 2007.

[51] J. Sillito, G. C. Murphy, and K. De Volder, “Asking and answering questions dur-
ing a programming change task,” IEEE Transactions on Software Engineering,
vol. 34, no. 4, pp. 434–451, 2008.

[52] S. Gross and N. Pinkwart, “How do learners behave in help-seeking when given
a choice?” in International Conference on Artificial Intelligence in Education.
Springer, 2015, pp. 600–603.

[53] S. Marwan, A. Dombe, and T. W. Price, “Unproductive help-seeking in program-
ming: what it is and how to address it,” in Proceedings of the 2020 ACM Con-
ference on Innovation and Technology in Computer Science Education, 2020,
pp. 54–60.

76 BIBLIOGRAPHY

[54] M. Nelimarkka and A. Hellas, “Social help-seeking strategies in a programming
mooc,” in Proceedings of the 49th ACM Technical Symposium on Computer
Science Education, 2018, pp. 116–121.

[55] R. S. Newman, “How self-regulated learners cope with academic difficulty: The
role of adaptive help seeking,” Theory into practice, vol. 41, no. 2, pp. 132–138,
2002.

[56] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes a good code
example?: A study of programming q&a in stackoverflow,” in 2012 28th IEEE
International Conference on Software Maintenance (ICSM). IEEE, 2012, pp.
25–34.

[57] M. T. Chi, N. De Leeuw, M.-H. Chiu, and C. LaVancher, “Eliciting self-
explanations improves understanding,” Cognitive science, vol. 18, no. 3, pp.
439–477, 1994.

[58] S. Ainsworth and A. Th Loizou, “The effects of self-explaining when learning
with text or diagrams,” Cognitive science, vol. 27, no. 4, pp. 669–681, 2003.

[59] D. Thomas and A. Hunt, “The pragmatic programmer,” 2000.

[60] “Cardboard cutout dog,” https://www.sjbaker.org/humor/cardboard dog.html,
(Accessed on 03/11/2020).

[61] “Stack exchange has been taken over by a rubber duck! - meta
stack exchange,” https://meta.stackexchange.com/questions/308564/
stack-exchange-has-been-taken-over-by-a-rubber-duck/308578#308578,
(Accessed on 03/11/2020).

[62] V. A. Aleven and K. R. Koedinger, “An effective metacognitive strategy: Learn-
ing by doing and explaining with a computer-based cognitive tutor,” Cognitive
science, vol. 26, no. 2, pp. 147–179, 2002.

[63] J. K. A. B. R. Robbes, “Asking and answering questions during a programming
change task in pharo language,” 2014.

[64] H. Kok, “Improving the efficiency and quality of help seeking and help giving for
programming tutorials,” Master’s thesis, University of Twente, 2019.

[65] A. Kerry, R. Ellis, and S. Bull, “Conversational agents in e-learning,” in Interna-
tional conference on innovative techniques and applications of artificial intelli-
gence. Springer, 2008, pp. 169–182.

https://www.sjbaker.org/humor/cardboard_dog.html
https://meta.stackexchange.com/questions/308564/stack-exchange-has-been-taken-over-by-a-rubber-duck/308578#308578
https://meta.stackexchange.com/questions/308564/stack-exchange-has-been-taken-over-by-a-rubber-duck/308578#308578

BIBLIOGRAPHY 77

[66] A. C. Graesser, N. Person, D. Harter, T. R. Group et al., “Teaching tactics and
dialog in autotutor,” International Journal of Artificial Intelligence in Education,
vol. 12, no. 3, pp. 257–279, 2001.

[67] C. Conati and K. Vanlehn, “Toward computer-based support of meta-cognitive
skills: A computational framework to coach self-explanation,” International Jour-
nal of Artificial Intelligence in Education (IJAIED), vol. 11, pp. 389–415, 2000.

[68] V. Aleven, K. R. Koedinger, and O. Popescu, “A tutorial dialog system to support
self-explanation: Evaluation and open questions,” in Proceedings of the 11th
International Conference on Artificial Intelligence in Education. IOS Press
Amsterdam, 2003, pp. 39–46.

[69] V. Aleven, A. Ogan, O. Popescu, C. Torrey, and K. Koedinger, “Evaluating the
effectiveness of a tutorial dialogue system for self-explanation,” in International
conference on intelligent tutoring systems. Springer, 2004, pp. 443–454.

[70] R. E. Mayer, “Principles of multimedia learning based on social cues: Person-
alization, voice, and image principles.” 2005.

[71] N. M. Radziwill and M. C. Benton, “Evaluating quality of chatbots and intelligent
conversational agents,” arXiv preprint arXiv:1704.04579, 2017.

[72] J. Kuhn, “Decrypting the moscow analysis,” The workable, practical guide to Do
IT Yourself, vol. 5, 2009.

[73] StackOverflow, “All sites - stack exchange,” https://stackexchange.com/sites?
view=list#questions, (Accessed on 07/05/2021).

[74] F. Calefato, F. Lanubile, and N. Novielli, “How to ask for technical help?
evidence-based guidelines for writing questions on stack overflow,” Information
and Software Technology, vol. 94, pp. 186–207, 2018.

[75] B. Fogg, “Persuasive technology: Using computers to change what we think
and do. morgan kaufmann publishers,” San Francisco, 2003.

[76] C. Calefato, F. Vernero, and R. Montanari, “Wikipedia as an example of posi-
tive technology: How to promote knowledge sharing and collaboration with a
persuasive tutorial,” in 2009 2nd Conference on Human System Interactions.
IEEE, 2009, pp. 510–516.

[77] G. S. Bailey, “Iterative methodology and designer training in human-computer
interface design,” in Proceedings of the INTERACT’93 and CHI’93 conference
on Human factors in computing systems, 1993, pp. 198–205.

https://stackexchange.com/sites?view=list#questions
https://stackexchange.com/sites?view=list#questions

78 BIBLIOGRAPHY

[78] J. Nielsen, “Iterative user-interface design,” Computer, vol. 26, no. 11, pp. 32–
41, 1993.

[79] “Privacywaakhond uit kritiek op gebruik google-diensten in on-
derwijs — rtl nieuws,” https://www.rtlnieuws.nl/tech/artikel/5235222/
toezichthouder-maant-scholen-en-justitie-om-met-google-te-stoppen, (Ac-
cessed on 07/26/2021).

[80] W. Himmel, U. Reincke, and H. W. Michelmann, “Text mining and natural lan-
guage processing approaches for automatic categorization of lay requests to
web-based expert forums,” Journal of medical Internet research, vol. 11, no. 3,
p. e25, 2009.

[81] D. D. Lewis and M. Ringuette, “A comparison of two learning algorithms for text
categorization,” in Third annual symposium on document analysis and informa-
tion retrieval, vol. 33, 1994, pp. 81–93.

[82] A. B. Kocaballi, S. Berkovsky, J. C. Quiroz, L. Laranjo, H. L. Tong, D. Rezazade-
gan, A. Briatore, and E. Coiera, “The personalization of conversational agents
in health care: systematic review,” Journal of medical Internet research, vol. 21,
no. 11, p. e15360, 2019.

[83] T. Beinema, H. op den Akker, L. van Velsen, and H. Hermens, “Tailoring coach-
ing strategies to users’ motivation in a multi-agent health coaching application,”
Computers in Human Behavior, vol. 121, p. 106787, 2021.

[84] S. Zhou, Z. Zhang, and T. Bickmore, “Adapting a persuasive conversational
agent for the chinese culture,” in 2017 International Conference on Culture and
Computing (Culture and Computing). IEEE, 2017, pp. 89–96.

[85] M. Alfano, J. Kellett, B. Lenzitti, and M. Helfert, “Proposed use of a conversa-
tional agent for patient empowerment.” in HEALTHINF, 2021, pp. 817–824.

[86] L. Ring, T. Bickmore, and P. Pedrelli, “Real-time tailoring of depression coun-
seling by conversational agent,” Iproceedings, vol. 2, no. 1, p. e27, 2016.

[87] D. Song, E. Y. Oh, and M. Rice, “Interacting with a conversational agent system
for educational purposes in online courses,” in 2017 10th international confer-
ence on human system interactions (HSI). IEEE, 2017, pp. 78–82.

[88] S. Reig, M. Luria, J. Z. Wang, D. Oltman, E. J. Carter, A. Steinfeld, J. Forlizzi,
and J. Zimmerman, “Not some random agent: Multi-person interaction with a
personalizing service robot,” in Proceedings of the 2020 ACM/IEEE interna-
tional conference on human-robot interaction, 2020, pp. 289–297.

https://www.rtlnieuws.nl/tech/artikel/5235222/toezichthouder-maant-scholen-en-justitie-om-met-google-te-stoppen
https://www.rtlnieuws.nl/tech/artikel/5235222/toezichthouder-maant-scholen-en-justitie-om-met-google-te-stoppen

BIBLIOGRAPHY 79

[89] F. Radlinski, K. Balog, B. Byrne, and K. Krishnamoorthi, “Coached conversa-
tional preference elicitation: A case study in understanding movie preferences,”
2019.

[90] M. Virkar, V. Honmane, and S. U. Rao, “Humanizing the chatbot with seman-
tics based natural language generation,” in 2019 International Conference on
Intelligent Computing and Control Systems (ICCS). IEEE, 2019, pp. 891–894.

[91] K.-J. Oh, D. Lee, B. Ko, and H.-J. Choi, “A chatbot for psychiatric counseling
in mental healthcare service based on emotional dialogue analysis and sen-
tence generation,” in 2017 18th IEEE International Conference on Mobile Data
Management (MDM). IEEE, 2017, pp. 371–375.

[92] D. Economou, I. Doumanis, F. Pedersen, P. Kathrani, M. Mentzelopoulos, and
V. Bouki, “Evaluation of a dynamic role-playing platform for simulations based
on octalysis gamification framework,” in Workshop Proceedings of the 11th In-
ternational Conference on Intelligent Environments. IOS Press, 2015, pp.
388–395.

[93] A. Fadhil and A. Villafiorita, “An adaptive learning with gamification & conversa-
tional uis: The rise of cibopolibot,” in Adjunct publication of the 25th conference
on user modeling, adaptation and personalization, 2017, pp. 408–412.

[94] U. Faghihi, A. Brautigam, K. Jorgenson, D. Martin, A. Brown, E. Measures, and
S. Maldonado-Bouchard, “How gamification applies for educational purpose
specially with college algebra,” Procedia Computer Science, vol. 41, pp. 182–
187, 2014.

[95] I. Doumanis and S. Smith, “A framework for research in gamified mobile guide
applications using embodied conversational agents (ecas),” International Jour-
nal of Serious Games, vol. 2, no. 3, pp. 21–40, 2015.

[96] S. Mystakidis, “Distance education gamification in social virtual reality: A case
study on student engagement,” in 2020 11th International Conference on Infor-
mation, Intelligence, Systems and Applications (IISA. IEEE, 2020, pp. 1–6.

[97] J. Seering, M. Luria, C. Ye, G. Kaufman, and J. Hammer, “It takes a village:
Integrating an adaptive chatbot into an online gaming community,” in Proceed-
ings of the 2020 CHI Conference on Human Factors in Computing Systems,
2020, pp. 1–13.

[98] R. G. Athreya, A.-C. Ngonga Ngomo, and R. Usbeck, “Enhancing community
interactions with data-driven chatbots–the dbpedia chatbot,” in Companion Pro-
ceedings of the The Web Conference 2018, 2018, pp. 143–146.

80 BIBLIOGRAPHY

[99] L. Wang, D. Wang, F. Tian, Z. Peng, X. Fan, Z. Zhang, M. Yu, X. Ma, and
H. Wang, “Cass: Towards building a social-support chatbot for online health
community,” Proceedings of the ACM on Human-Computer Interaction, vol. 5,
no. CSCW1, pp. 1–31, 2021.

Appendix A

TA Questionnaire

On the next page, a printout of the questionnaire that was issued to TAs can be
found.

81

90 APPENDIX A. TA QUESTIONNAIRE

Appendix B

Dialogflow implementation

Figure B.1 shows the dialog that is present in Duckbot, as seen from the Dialogflow
CX Console. Table B.1 gives the actual dialog from Duckbot’s side.

91

92 APPENDIX B. DIALOGFLOW IMPLEMENTATION

Start [Default Dialogflow Greetings]
QuestionType Do you have a question about your code/program or about the

course itself?
ProblemStatement All right. Let’s start by stating your problem in one or two sen-

tences.
ActualExpected What did you expect to happen with your current code, and

what happens instead?
YesNoCode Can you pinpoint at what point in your code the problem oc-

curs?
Code Copy-paste here at what point in your program the error occurs.
YesNoErrorMessages Do you have any error messages?
ErrorMessages What is your error message?
ErrorMessageFollowUp The error message does its best to tell you what went wrong.

At the very least, it will tell you what line number it got to in
your program before crashing, which gives you a great clue for
places to start hunting for bugs.

If you can’t seem to figure out what your error message
is trying to tell you, your best bet is to copy and paste the last
line of the stacktrace into Google. Chances are, you’ll get a few
stackoverflow.com results, where people have asked similar
questions and gotten explanations and answers.

Pro-tip: Processing is an extension of Java. Including
’Java’ in your search will make sure solutions for the right
language turn up!

So, have you tried searching for the message?
PleaseGoogleFirst Okay; please Google it first. Just say ’I did!’ when you did, and

we’ll continue!
IGoogleMyError Okay - do you still need help?

TriedSoFar
What have you tried so far to solve your problem?

Please tell me more!
TroubleshootHelp Would you like some help troubleshooting your issue?
TroubleshootHelp2 Let’s give you some help then!

93

Overview if $session.params.code-sample != null
Okay, let’s review what you did so far.
Your problem statement:
$session.params.problem-statement.
Your expectations and what happened instead:
$session.params.actual-expected.
What you tried so far: $session.params.tried-so-
far.
The relevant code is $session.params.code-
sample.
Can I send this to the TA’s? You can also tell
me to edit this overview, or end the session
altogether.
Okay, let’s review what you did so far.
Your problem statement:
$session.params.problem-
statement.expectations and what happened
instead: $session.params.actual-expected.
What you tried so far: $session.params.tried-so-
far.
Can I send this to the TA’s? You can also tell
me to edit this overview, or end the session
altogether.
endif

Edit What would you like to send to the TA’s instead?
Please make sure to provide all details neces-
sary.

CustomOverviewConfirmation Can I send that to the TA’s?
CourseQuestion Please state your question.
CouseConfirmation I’ll send to the TA: $session.params.course-

question. Is that ok?
EndSession Thank you! You will now be redirected to TA-

Help.me

Table B.1: Duckbot’s dialog

94 APPENDIX B. DIALOGFLOW IMPLEMENTATION

Figure B.1: Dialog tree of Duckbot in Dialogflow

