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1. Introduction 
 

 This document represents the final report of my Master thesis which concludes the 2 years 

Master program at University of Twente, Dependable Integrated Systems Master of Sciences.  

The main subject of this thesis represents a new method of integrative clustering for disease 
subtyping of cancer patients, which is based on recent advancements in multi-omics clustering. 
According to Pfeifer and Schimek [1] this method’s behavior has the potential of aiding in cancer 
progression and eventually treatment, due to the advantage of individual contribution of each omic to 
the data fusion process. This technique, called HC-fused, alongside other state-of-the-art data 
integration methods, were applied to data sets from TCGA (The Cancer Genome Atlas) [2]. HC-fused 
proved superior performance to some types of cancer, best results being obtained for KIRC (kidney 
renal clear cell carcinoma) and SARC (sarcoma).  

 
Based on information from Pfeifer and Schimek [1] and Nie et al. [3] one goal of integrative 

analysis of datasets is to involve features from different sources. Each source (e.g. DNA sequence or 
RNA expression) comes with its own specific properties which may result in a more effective clustering 
performance. By working with these different sources of data, heterogeneous datasets are being 
formed. However, the clustering methods which act upon these datasets present a major challenge 
due to their inadaptability to large scale multi-view data. This challenge can be observed in the 
numerous computations that are needed to perform the integrative clustering algorithms, which are 
completed in a very long execution time.  
 

1.1 Motivation 
 The goal of this project is to improve the overall execution time of the HC-fused algorithm 

through the implementation of a faster C++ code which will be further used in designing an efficient and 

compatible hardware using High-Level Synthesis which will decrease even more the execution time of 

the algorithm. 

 Through the application of HC-fused or other similar algorithm, Pfeifer and Schimek [1] state that 

the cancer progression of patients may be better understood and thus disease subtypes for each 

individual patient will be highlighted and eventually better treatments can be found. One major 

advantage that this method presents is the individual contribution of each omic (such as DNA or RNA) 

to the final output of the method – a fused network which integrates the similarities of patients into 

clusters. It has been observed that a much better and conclusive clustering result is yielded by an 

increased number of algorithm iterations, 10 iterations being the minimum amount and 100 being the 

recommended one. As a consequence a long time is taken by the numerous and repetitive 

computations from inside the HC-fused method. This time also adds up with the relatively slow 

performance that R programming language has to offer. Additionally, the way the algorithm is able to 

scale with the number of patients and the number of omics will also be assessed. 

The motivation of this work is to overcome the algorithm’s slow execution to enable more 

iterations per method run, a better clustering performance and further, a more accurate disease subtype 

discovery. In order to perform this, the slow execution and poor scalability with the number of patients 

and omics problems will be addressed. The overall goal is accomplished by optimizing the HC-fused 

algorithm by means of both software and hardware techniques. The initial target R code, which is 

presented by Pfeifer and Schimek in [1] will be adapted, translated to C++ and further used in designing 



 
 

a hardware via high-level synthesis, capable of improving even more the efficiency of the method. The 

final result should present a major improvement in execution time, while also being able to scale 

accordingly with the number of patients and the number of omics. 

Although R represents an efficient programming language for data analysis and statistics, it still 

has the disadvantage of being rather slow in execution time. Converting the algorithm to C++ and 

applying a series of optimizations should indicate a large improvement in terms of execution time, the 

C++ compilers being able to translate the code directly into machine code. As a consequence, this 

project will report on the potential performance of porting the R code to C++. Additionally, it was 

observed that the R code also scaled poorly with the input data types. Increasing the number of patients 

or the number of omics from the network caused a substantial growth in the execution time, making it 

inefficient to test large datasets. Due to this, this report will assess the scaling efficiency of the C++ 

method with the number of patients and data types. Furthermore, once it is sensed that the software 

optimizations no longer can greatly affect the execution speed of the algorithm, the C++ code will be 

used in developing a hardware accelerator via an FPGA using High-Level Synthesis. Finally, the impact 

of the hardware acceleration on the execution time will be measured and discussed. 

1.2 Scientific contribution 
The HC-fused [1] hierarchical clustering and data fusion algorithm’s performance was improved 

during this project. The software optimizations that were implemented after the translation of the method 

to C++ have greatly decreased the execution time. The two datasets that were fed to the algorithm for 

testing were made of 105 patients with 2 types of omics and 849 patients with 3 types of omics 

respectively. Running the latest and most improved version of the method showed an execution time 

784 times faster for the smaller dataset and 3384 times faster for the larger one. The difference between 

the two results indicate that the scaling of patients and number of omics is no longer considered a 

problem, based on the tests.  

Using an adapted version of the fastest C++ implementation, an accelerator hardware 

architecture was designed, capable of improving the execution time of the method even more. Prior to 

the design of the hardware, the profiling process has indicated the two functions that occupy the 

majority of execution time for the algorithm. Based on these results and on further considerations, three 

different hardware designs were being created, the user having the possibility to use them individually 

as separate IP cores. Running the algorithm using these accelerators for the designated parts should 

show great benefits in terms of efficiency. The first accelerator helped in speeding up the computation 

of the Similarity Matrix by 1.36 times, while the other two were used in accelerating the extraction of 

indexes from the Similarity Matrix. The resulting estimated time was added up for these two designs 

since only their combined functionality can be compared with the software one, the acceleration ratio 

being for this case 1.5 times faster. By combining the software and hardware results, for the dataset of 

105 patients and two omics, the algorithm now executes 10 iterations 965 times faster.  

 

1.3 Thesis organization 
This chapter offered a small overview of the thesis premises and results, indicating the scope of 

the project, assessed research questions and main improvements implemented at the end of working 

period. The Chapter 2 presents the starting point of this project – the HC-fused algorithm. It will cover 

the workflow of the method alongside preliminary results and comparisons with other similar methods 

of this type. Furthermore it revises the necessities of the algorithm and the potential promising benefits 



 
 

that it is capable of. Chapter 3 will shortly go over projects similar to this one, offering a broad view of 

the current computational stage and the results that can be obtained using some hardware techniques. 

It will offer short overviews of the method’s applications and results in terms of either timing, resources 

or both. Chapter 4 will fully describe the software optimizations that were implemented and the results 

in time for each stage. This section also includes the interface between the initial R algorithm and the 

hardware platform, C++ being compatible with both of them. The fastest version is being further used 

in HLS in designing the hardware capable of accelerating the algorithm. Furthermore, chapter 5 

describes the hardware architecture that was chosen in the design process, presenting reasons and 

potential benefits for the selected hardware. It includes the profiling results of the code which show the 

most time-consuming functions and the additional reasoning for the developed architecture. Chapter 6 

firstly presents the software implementation which describes the used softwares and libraries and then 

continues with the hardware implementation that show the capabilities of HLS and the workflow of Vitis 

HLS. Chapter 7 offers a full overview of the obtained results from the software and the hardware 

optimizations and lastly, chapter 8 discusses the entire project and its results, offering guidance for 

future work, such as potential improvements and useful applications of the algorithm and the design. 

 

1.4 Research questions 
 R language represents an extremely viable option for bioinformatics applications that deal with 

statistics and data analysis. It presents a lot of advantages such as being open-source, having 

numerous available packages and libraries, many plotting options and more. On the other hand 

it is slow due to its expressions being interpreted at runtime, instead of being compiled and 

translated into machine code. In addition to that, existing frameworks for High-Level Synthesis 

target languages such as C, C++ and C#. Based on this, the first questions that raises is: 

What is the performance potential of porting the R code to C++? 

 The algorithm written in R proved to scale poorly with the number of patients and the number of 

omics included in the input dataset. Tests have showed that increasing these numbers affected 

greatly the execution time of the algorithm, making it inefficient for large datasets. Due to this 

issue, the second research question is formulated: 

How does the C++ code version of the algorithm scale with the number of patients 

and the number of omics? 

 Having the algorithm written in C++ allows for a design of a hardware capable of speeding up 

the algorithm even more by using High-Level Synthesis. At some point the software 

optimizations will reach a certain saturation where the algorithm will no longer be able to have 

significant improvements in terms of execution time. One viable option to overcome this is the 

use of dedicated hardware accelerators which allow the execution in parallel of the code and the 

efficient usage of the available resources. This project explores the potential of FPGA as an 

accelerator technology. As a result the next research question is constructed: 

What impact does the hardware acceleration via an FPGA have on improving the 

execution time of the clustering algorithm?  

 



 
 

2. Background 
This chapter will present an overview of the hierarchical clustering and data fusion algorithm and 

its functionality and performance. It will start with describing each major step from the method and it 

will indicate an example of a final outcome of the method. Furthermore, this chapter will additionally 

offer a short example with a dataset containing only 5 patients and 2 omics, with states being illustrated 

after each merge of clusters. 

2.1 HC-fused algorithm 
The method of Bastian Pfeifer and Michael G. Schimek [1] allows the grouping of cancer patients 

into relevant clusters based on characteristics such as proteins and genes. This clustering may aid into 

discovering a new perspective on how the cancer evolves for these patients and how they should 

receive a better treatment. One of the main challenges of this kind of methods is to integrate as many 

different data types, usually from the TCGA (The Cancer Genome Atlas) and use them as input to these 

algorithms in order to get a better insight. However the usage of several omics types comes with the 

cost: an intensive computation. This requirement naturally has to be overcome as through the means 

of integrative clustering, so by clustering patients using data from different biological areas, some more 

complex disease subtypes may be discovered.  

The algorithm called HC-fused by Pfeifer and Schimek [1] was written in R – an open source 

programming language, similar to Matlab and Python, generally used in statistical modelling and 

analysis and capable of providing several packages, plotting options and data wrangling facilities. HC-

fused is one of the algorithms that works with different types of data, each type contributing to the final 

outcome of the method. More than that, the main advantage of this specific algorithm is that each 

individual view is taken into consideration in the data fusion process. This means that a greater number 

of views will provide a better and more exact clustering and fusion between patients. 

 

 

Figure 2. 1 HC-fused algorithm divisions 

 

 The first part of the algorithm consists of the Data preprocessing. Here data is normalized and 

imputed in order to add missing values across all patients. Patients and features with a percentage of 

more than 20% missing data are being removed at this stage. The remaining ones are being imputed 

using the k-Nearest Neighbor algorithm. Here data from TCGA [2] is being read from files and converted 

via a series of functions from Pfeifer and Schimek [1] which are included in the acceleration plan of this 

project. The result of this sequence of functions is the Structured Network which holds all the necessary 

information needed in clustering and fusing the data. 

 The Structured Network represents the main input to the HC-fused algorithm that needs the 

acceleration. It is structured as a binary matrix with dimensions based on the number of omics and the 

number of patients and it is obtained by performing a series of 3 steps: 



 
 

 Transform each view into a connectivity matrix using Ward’s hierarchical clustering 

algorithm, according to Murtagh and Legendre [4]. 

 Infer best number of clusters using the Silhouette Coefficient – a method used to calculate 

the correctness of the performed clustering, as described by Aranganayagi and 

Thangavel [5] 

 The resulting binary matrices are multiplied element-wise, the result being stored into a 

matrix that indicates the connectivity between patients. 

An example of such a structured network having a number of two omics and two patients is 

illustrated in Figure 2.2: 

 

Figure 2. 2 Structured network with two omics and two patients 

For generating the Similarity matrix, the binary matrices from the previous step are used in a 

bottom-up hierarchical clustering method, alongside the forming clusters of patients from this algorithm. 

Each iteration merges two clusters (initially these clusters have only 1 patient) based on a minimal 

distance calculated at this point. Afterwards this matrix is normalized. This similarity matrix can also be 

used in other hierarchical clustering algorithms besides the one used in this method. The document 

from Pfeifer and Schimek [1] also provides an insightful pseudocode for generating the Similarity 

matrix. In the pseudocode, Gi represent the network views, di comprise the distances between clusters 

for each view, S corresponds to the source matrix which indicates the contribution of each view and 

lastly, P signifies the fused similarity matrix. The entire pseudocode can be observed in Figure 2.3. 



 
 

 

Figure 2. 3 Similarity matrix pseudocode  

(Figure from Pfeifer and Schimek [1]) 

Each View represents an outcome state of the fusing network per method iteration and further 

indicates how many times a patient has been used in the fusion process. It is important to mention that 

a minimum of 10 iterations is recommended for the algorithm due to the random factor that appears in 

case of equal minimal distances. For each iteration, each view contribution is being tracked. 

The Fused Network represents the final and main outcome of the HC-fused algorithm. An 

example of a Fused Network is displayed in Figure 2.4. 

 



 
 

 

Figure 2. 4 Fused network example  

(Figure from Pfeifer and Schimek [1]) 

 

 The above picture presents a fused network containing a total of 12 patients represented as 

nodes. Each color indicates a different cluster for a total number of 3 clusters in this case. The edges 

between nodes indicate the minimal distances between patients computed in the Similarity Matrix. 

 The HC-fused method was tested on 9 types of cancer. These are: glioblastoma multiform 

(GBM), kidney renal clear cell carcinoma (KIRC), colon adenocarcinoma (COAD), liver hepatocellular 

carcinoma (LIHC), skin cutaneous melanoma (SKCM), ovarian serous cystadenocarcinoma (OV), 

sarcoma (SARC), acute myeloid leukemia (AML), and breast cancer (BIC). From these types, 

according to Pfeifer and Schimek [1], HC-fused proved superior performance and results for KIRC, 

LIHC, SKCM, OV and SARC types. During tests, multi-omics data from TCGA was applied to the 

algorithm which efficiently took advantage of the contribution of each omic to the data fusion process. 

Results of these tests showed that HC-fused represents a great competitor to other state-of-the-art 

algorithms such as SNF by Wang et al [6], PINPLUS by Nguyen et al [7] or NEMO by Rappoport and 

Shamir [8]. 



 
 

2.2 Method example 
This subsection will present a short example of how the algorithm works. It will offer the initial 

configuration of the method and the states of the fusing network after each merging of clusters. 

Given a number of only 5 patients and 2 types of omics for them, a network is being formed. 

This will act as the input for the HC_fused top function. Initially, there are 5 clusters, each one having 

only 1 patient. This initial configuration is presented in Figure 2.5 in pseudocode. 

 

Figure 2. 5 Algorithm’s initial configuration example pseudocode 

The top function uses the network as input to sequentially calculate distances between patients, 

identify merging clusters based on computed distances, merge clusters and finally update the fused 

network based on that merging – the earlier the merging of a patient, the higher its corresponding value. 

In the end only one cluster will remain as illustrated in Figure 2.10. In Stage 1, as seen in Figure 2.6, 

the initial structure of the clusters is shown on the left side and the fusing network is shown on the right 

side – initialized with 0. Afterwards, based on the similarities between Patient1 and Patient4, clusters 

1 and 4 merge, the cluster 5 becoming the forth remaining cluster in Figure 2.7. This merge is recorded 

in the fusing network with the color green. At each stage current and previous merges are incremented 

in the fusing network. For a better visualization, a darker color signifies an older pair of merging patients 

– thus a larger number. The third stage from Figure 2.8 presents the merging of cluster 3 with the forth 

cluster containing only Patient5. At this point, only 3 clusters remain. In stage 4, as seen in Figure 2.9, 

clusters 2 and 3 merge, thus Patient3 and Patient5 will become part of cluster 2 which already included 

Patient2. Finally the remaining two clusters merge into only 1 cluster which contain all of the patients. 

Once the Fused Network is updated – which represents the output of this method – the algorithm 

concludes. 

Stage 1  

Figure 2. 6 Initial state of clusters and network 



 
 

Stage 2  

Figure 2. 7 First merge of clusters and network update 

 

Stage 3  

Figure 2. 8 Second merge and continuous update of fusing network 

 

 

 

 



 
 

Stage 4        

Figure 2. 9 Last merge of clusters 

     Stage 5        

Figure 2. 10 Final state of fused network 

The way the clusters merge, as illustrated in Figure 2.7, is a result of the computations that take 

place inside the HC_fused function. The algorithm is shortly presented in a pseudocode version in 

Figure 2.11, using the initial configuration from Figure 2.6.  

 

Figure 2. 11 Top HC-fused function pseudocode 



 
 

3. Literature review 
In this section several papers related to the topic of this project will be reviewed. This chapter 

will offer a broad overview of similar hardware implementations and their capabilities in accelerating 

algorithms, such as ones that perform hierarchical clustering, obtain propensity score, do match 

grouping minimize differences and others. By analyzing the results, new perspectives upon the 

expected results for this project are being formed, finally aiding in the hardware optimizations process. 

In Wibowo et al. [9] the authors propose a design analysis of the K-Means clustering algorithm 

further implemented on FPGAs. This method is widely used in data mining – Berkhin [10], learning 

applications – Ahuja et al [11], object tracking – Keuper et al [12], pattern recognition – Baraldi and 

Blonda [13] and it is based on assigning objects from the dataset as centroids and then merging each 

object with the cluster with the closest centroid, either by partitioning or by hierarchical clustering. The 

paper states that using a symmetric multiprocessing (SMP) and an FPGA is slightly less efficient than 

using it with a graphical processing unit (GPU), however the FPGA allows data movements and 

decoupling accelerator computation and communication, which finally offers a great performance. The 

hardware implementation offered an acceleration of 50 times compared to the software one (where the 

functions were handled by the microprocessors) when processing different datasets for a server 

problem. The design used FPGA Xilinx Artix7 with a clock frequency of 50 MHz and was implemented 

in VHDL using mostly comparators for the K-means algorithm. The total memory usage of an 8-bit 

design was of 344672 KB, out of which 48 Slice LUTs, 48 LUT Flip Flop pairs and 40 Bonded IOBs. 

The design was run in about 13 seconds real-time and 12.78 second CPU time. 

An efficient way of performing hierarchical agglomerative clustering (HAC) using high-end GPUs 

is presented in Shalom et al. [14]. The main focus here was to reduce runtime and memory bottlenecks 

of the algorithm through the use of partially overlapping partitions (PoP) as parallelism method and 

acceleration of computations. HAC algorithm is generally used in data mining applications, such as 

research in microarrays, sequenced genomes and bioinformatics. Initially, each object is considered a 

cluster and will further merge to the closest pair until only one cluster remains. The acceleration is 

mainly needed in calculating the distances and identifying the closest pair. The paper shows the 

benefits in terms of time reduction and memory complexity of transitioning the HAC implementation 

from the CPU to the GPU, mainly due to the GPU parallel features. The PoP idea resides in the fact 

that the closest pair is found for each individual cell, independent of the others. Three different 

implementations are presented: the traditional HAC on the GPU, the CUDA (Compute Unified Device 

Architecture) based PoP HAC on GPU and lastly the parallelization of the PoP computations on the 

GPU using CUDA. The final measurements for a data set of 15 thousand data points show that PoP 

GPU version is 6.6 times faster than the traditional one on the GPU and about 443 times faster than 

the one on CPU – due to the sequential nature of it. Memory-wise, the PoP HAC implementation on 

the GPU also requires far less memory than the traditional one: about 67 MB for 100,000 data points 

compared to 28 GB. The steps performed in the parallelization of computations are described as 

follows: 

 Identify the tasks that can be parallelized and break down code into simpler tasks. 

Perform profiling to discover execution times for these tasks and the bottlenecks; 

 Parallelize by breaking down tasks into executable multi-steps such as inner loops and 

coding the kernels to access multiple memory locations simultaneously; 



 
 

 Integrate with main control program after parallelizing the tasks and check for runtime 

improvements. Redo first steps until the target speed gain is obtained and further evaluate 

and select the implementation; 

 Implement and test the result comparing it with the sequential CPU version; 

 

From Legorreta et al. [15] a novel hardware implementation for a hierarchical clustering 

algorithm is described. This method was mainly being used for text documents – based on text similarity 

- further adapted to acceleration and lastly implemented on a Field-programmable Port Extender (FPX) 

platform. This clustering algorithm focuses on enlarging intracluster similarity to the detriment of the 

intercluster one, based on a similarity metric. As in other hierarchical clustering algorithms, the clusters 

will iteratively be clustered. Here, the clustering via Hierarchical Partitioning, as implemented by 

Behrens et al. [16], is described as getting as input a set of N multidimensional points in a binary space 

and outputting a binary tree in which each leaf corresponds to only one point. The Liquid Architecture 

Platform by Jones et al [17] has been used to extend the FPX and allows an efficient reconfiguration of 

the architecture. It also provides the necessary interface in which an FPGA hardware is able to 

communicate with SRAM, SDRAM and high speed network interfaces. This platform alongside the 

Leon processor, containing a co-processor interface and which allows a parallel execution, obtain an 

increased performance in execution. Three different stages are included in this method. The first one 

computes the bitwise sum, the second one – the dot product and the last one returns the score for each 

document. For N k-dimensional vectors, where k = 4000, the unaccelerated method will take 12000*N 

operations, while the accelerated one will only take 0.023*4000*N + 0.31*4000 + 4*N = 99*N +125 

operations, thus a large speedup factor. 

Another similar accelerator, this time for biomedical applications is described in Page et al. [18]. 

It comes as a necessity for health monitoring systems which require accuracy, security and a low 

processing time while dealing with a large amount of data. The processing time consists mostly of 

feature extraction, data fusion and classification via the usage of kernels, which are mapped and 

executed by a manycore accelerator called Power Efficient Nano Clusters (PENC). As most biomedical 

applications, there is a crucial need to process in parallel the input data and often a large number of 

digital signal processing blocks and machine learning techniques are being used. In the paper, the 

capabilities of Atom and ARM are discussed alongside FPGAs, stating the need to use the latter due 

to their flexibility and parallel nature, the downside being the requirement of low-level logic writing and 

the higher leakage power. The PENC accelerator consist of processors with 6 stage pipeline, RISC 

instruction set for the DSPs and a Harvard memory model, having a 16-bit data path. For the Artix-7 

FPGA, the implementation was performed in Verilog. The design was performed by taking into 

consideration area, power and latency and through the dedicated synthesis tool from Xilinx, the RTL 

was generated. Optimizations were performed with respect to bit resolution, parallelism and pipelining. 

For this implementation, power and timing results were generated from the Xilinx XPower and Xilinx 

Timing analyzer. The results showed that the PENC proved to have a faster development time 

compared to the FPGA by allowing Assembly implementations and later C ones and performing 

simulations on existing hardware. The PENC accelerator also showed faster results than the FPGA, 

Atom and NVIDIA TK1 implementations (10x, 15x, 7x faster respectively), for processing one window 

of Electroencephalogram (EEG) data. 

 



 
 

 

In Sekhon’s paper [19] the software optimizations of the Matching package from R language are 

described, alongside different computation variants for executing the code in either sequential or 

parallel way. In this article, the R functions available in the package, namely Match, GenMatch and 

MatchBalance were translated into a C++ code capable of efficiently dealing with the intense 

computations that take place in the algorithms. These functions consist of several matching algorithms 

capable of obtaining propensity score, inverse variance, group of matches able to minimize differences 

and much more. The results of the subject data are showed prior and post the usage of the algorithms, 

indicating the positive impact of the matching methods. By also using the Simple Network of 

Workstations R package, the Genmatch function can be parallelized on multiple CPUs or clusters of 

computers. This comes in really helpful due to the large number of computations needed for these 

datasets. The results show the benefits in terms of run time of a parallel structure, the timing indicating 

an acceleration of more than 3 times when using 4 CPUs instead of 1 for example. The article also 

indicates the observation that the execution time of the algorithm did not increase linearly with the 

sample size, but instead in a polynomial way. Another interesting fact is the observation that the Intel 

C++ compiler was not able to create a faster code, as did the GNU g++ compiler which successfully 

carried the task of optimizing the package. 

In this project, a similar approach to Legorreta et al. [15] will be taken, the design being for an 

FPGA instead of for an FPX. Since the implementation will be using High-Level Synthesis, there will be 

no need of Verilog or VHDL as done by Page et al. [18]. The software optimizations will be performed 

after the R translation of the package containing the algorithm to C++, as was done by Sekhon [19], 

however this time by taking advantage of the capabilities of the Rcpp library. The hardware acceleration 

will be made for the computation of the Similarity Matrix and for the identification of the merging pairs 

of clusters. It is expected that by exploiting and exploring the parallelism available through the use of 

FPGAs, the algorithm will show great improvements in its execution time. To the best of the author’s 

knowledge, this project presents the first attempt to accelerate the HC-fused algorithm for disease 

subtype discovery using a dedicated computer architecture mapped to FPGA. 

 



 
 

4. Software design 
This chapter describes entirely the process which aimed to fully and correctly translate the 

functionality of the R version algorithm to a series of improved and adapted C++ 

implementations. The methodology of this section is shortly presented below, each step being 

further described in the following subsections. 

 Methodology 

 Successfully translate it to a C++ version then measure performance and verify functional 
correctness. 

 Interface the R software with the C++ source files. 

 Improve the C++ code iteratively by implementing optimizations in successive versions. 

 Create an R package with all the C++ versions. 

 Apply changes to the compiler settings. 
 

4.1 Conversion to C++ 
This subsection will cover the first performed conversion of the algorithm from R to C++.  

To better understand the algorithm and the further presented code, an overview of the method 

is presented. The arguments that are fed to the method are a list of binary matrices (stored in MAT 

variable) of size equal to the number of patients times the number of patients (n_patients x n_patients) 

and the number of iterations of the hierarchical clustering. The number of the binary matrices is given 

by the number of omics and is stored in a variable called n_elems, while the number of patients is 

stored in the n_patients variable. Based on this number the variable that holds the clusters of patients 

is declared. Also the returned value of the top function, the NETWORK variable is of size n_patients 

x n_patients. Based on the input argument matrix MAT and on the object containing the clusters, the 

similarity matrix, here called distances is being computed. Afterwards via the successive calls of a 

series of functions (including which_is3 and which_vec_mat functions), the indices of the 2 clusters that 

are going to merge per iteration are being saved in the map_info_pair and further used in the merging 

and erasing of them from obj – object that contains the clusters of patients. Lastly, the NETWORK 

output is being updated based on this and previous merges. 

Starting off with the first translation of the R code to C++, this version has the longest execution 

time out of all others, including the R one. This is mainly because the code was written in a way to 

mimic as much as possible the code style specific to R. As a result, a large overhead was obtained 

leaving a lot of room for further improvement in the next versions. The code consists of a total of 9 

functions, including the top one.  

The main benefits of this version are:  

 The final result returned from the top function was verified and proved to be correct. 

 The integration between R and C++ was checked. 

 Further implementation no longer needed the R code as a reference. 

 

 



 
 

4.2 Software optimizations 
This subsection will present an overview of the successive created C++ version and each stage 

of optimizations performed. Every optimization stage will first be described in a more scientific manner 

and afterwards the technical details behind them will be assessed. The resulting execution time will be 

presented for each of the method’s versions including the R one. The chapter will conclude with an 

overview of the performance for each version. Either pseudocode or C++ code is presented for the 

optimizations, depending on the functionality of the enhanced code. 

At this stage of the project, two datasets were used to check the functionality and execution time 

of the code. The first and smaller one is made of 105 patients and includes two types of omics: mRNA 

and Methy. This dataset was applied as input to all of the presented C++ versions and to the R one. 

The other dataset containing 849 patients and an additional set of omics compared to the first one 

(miRNA) was only applied to the R version and to the last two best C++ versions, due to timing reasons. 

In order to have a timing result as close as possible to the correct one, the hardware upon which the 

algorithm was running was not used for other purposes during the execution. 

4.2.1 Improved code organization and decreased number of computations  
The next implementation showed a much better result, having an execution time for the same 

dataset of only 17.44 seconds for 10 iterations. This means an improvement of 16.12 times faster than 

the previous version and 4.5 times faster than the R version, thus the C++ integration an R already 

showing its benefits. Some of the major per stage improvement will be further presented using code 

snippets and described. 

Improvements from the first C++ version to the second one are the following: 

 The data structure containing the clusters of patients has been declared with the 

maximum potential size needed to cover all possible scenarios. In this way the memory 

allocation for it is deterministic. The data structure, called obj, contains the clusters that 

merge over time and has been declared as an n_patients x n_patients matrix (n_patients 

being the number of patients from the input dataset) instead of an n_patients x 1 matrix 

that grew over time. This declaration also prepares the code for the hardware design, as 

the maximum size is already allocated and known from the beginning. This 

implementation can be observed in Figure 4.1. 

 

 
 

 

Figure 4. 1 obj declaration with maximum allocation for worst-case scenario 

 Before (top) and after (bottom) 



 
 

 The actual number of patients from each cluster is identified using an additional vector 

variable called obj_sizes. This additional data structure comes a support to the one 

containing all the clusters of patients and it identifies the actual number of patients from 

each cluster. This is kept for all the following versions of the C++ code, as in Figure 4.2. 
 

 
Figure 4. 2 obj_sizes declaration and initialization 

 Based on these previous improvements, the way the clusters data was updating has been 

adapted. 
 The data structure called obj_sizes which holds the valid number of patients from each 

cluster has also been adapted to the current implementation. Both this and previous 

upgrade can be seen in Figure 4.3. 
 

 
 

 
 

Figure 4. 3 obj and obj_sizes merging and erasing 

 before (top) and after (bottom) 

 

 

 In the function that computes the similarity matrix – the distances – an inner function 
called mean_matrix_elem_selection was substituted with a much faster getmean 

function. Both functions are used to compute a mean value of elements from a given 

selected matrix and can be seen in Figure 4.4. Only two for loops are used instead of 

four, fact that provides an increased efficiency in the total computation time for the 

similarity matrix. 
 



 
 

 

 

 

Figure 4. 4 mean_matrix_elem_selection (top) and improved getmean function with reduced number 
of loops and conditions (bottom) 

4.2.2 Removed redundancy and converting 3D data to 2D 
 The next two versions of C++ code presented in this subsection were executed in 16.14 seconds 

and 5.25 seconds, respectively for 10 iterations, the first one being just a slight improvement compared 

to the previous one – only 1.08 times faster and compared to the R version, 4.8 times faster. The major 

change that occurred in this version is the swapping of a 3D vector with a 2D one in the process of 

selecting the merging clusters. The simple change is illustrated in Figure 4.5: 

 

 

 



 
 

 

 

Figure 4. 5 3D (top) to 2D (bottom) vector declaration and assignment improvement by using less 
memory and less loops 

The next version on the other hand provoked a much significant improvement, running 10 

iterations in only 5.25 seconds, thus being 3.07 faster than the aforementioned one and having an 

overall execution time of 15 times faster than the original one.  

The following improvements have been made to this version compared to the previous one: 

 Removed combn2 function and used 2 for loops instead for creating a matrix with all 

possible combinations between numbers based on a certain input object length. The 

result of the two for loops is assigned to the pairs variable, as in Figure 4.6 

 

 

 

 

 

 

 



 
 

  

 

Figure 4. 6 Pairs improvement instead of combn2 function 

 before (top) and after (bottom) 

 Eliminated the necessity of using MAP_matrix_2 by directly assigning the results from the 

two new for loops. Now the map_info_pairs will be directly assigned values from the pairs 

variable, as shown in Figure 4.7. 

 

 

 

Figure 4. 7 Updating map_info_pairs improvement 

 before (top) and after (bottom) 



 
 

4.2.3 Improved data declarations, network update and functions 
 Although this version does not have a significant impact on the execution time of the algorithm, 

it provided a lot of beneficial enhancement and room for further optimizations. The execution time for 

10 iterations was registered to be of about 4.65 seconds, 1.13 times faster than the previous version 

and 17 times faster than the original one.  

 The major upgrades applied to this version are presented below: 

 Improved the way matAND variable is created in the top function. This variable stores 

the bitwise logic and operation for the MAT input matrix. Both implementations are 

shown in Figure 4.8 

 

 

Figure 4. 8 matAND declaration improvement 

 before (top) and after (bottom) 

 The update of the output of the algorithm, the NETWORK matrix has been improved the 

way NETWORK is getting updated at the end of the method. Functionality has been 

kept while using less code, as seen in Figure 4.9. Only 3 for loops are now being used 

instead of 5. 



 
 

 

 

Figure 4. 9 Network update improvement with less loops and conditions 

 before (top) and after (bottom) 

 Created a function get_ij that returns the map_info_pair required in selecting the clusters 

that will merge. Figure 4.10 illustrates the functionality of the get_ij function, written in 

C++. 



 
 

  

Figure 4. 10 get_ij function implementation and call 

4.2.4 Function merge and converting 2D data to 1D 
 This stage also greatly contributed to the efficiency of the method, making the algorithm execute 

10 iterations of the small dataset in only 1.3 seconds. In other words, compared to the initial R one this 

is already 60 times faster, while also being about 3.57 faster than the previous optimized version.  

 The main improvements performed at this stage are the following: 

 Combined two of the functions (which_vec and which_mat – shown in Figure 4.11) that 

aided in computing the merging clusters into one single function called which_vec_mat, 

which can be seen in Figure 4.12. 

 

 

Figure 4. 11 which_vec and which_mat functions, used for extracting the indexes of merging clusters 



 
 

 

Figure 4. 12 which_vec_mat function which extracts both the 1D and 2D indexes of merging clusters 

 Created a new struct containing a one-dimensional and a two-dimensional vectors, 

needed for the return phase of the new function. Having this additional data structure was 

helpful in being able to call only one function while also sharing some computations an 

eventually decreasing the execution time. Also the struct, called ids_vec_mat was 

wrapped in order for R to know how to handle it. The code is indicated in Figure 4.13. 

 

Figure 4. 13 ids_vec_mat struct declaration and wrapping 



 
 

 Data types were converted from double to int were possible, offering an overall reduced 

memory allocation size. 

 Removed the to_matrix function (shown in Figure 4.14) and maintained all elements of 

the input argument matrix MAT as vectors instead of matrices. The code was adapted for 

this change, meaning that the functions now worked with 1D vectors instead of 2D ones. 

 

Figure 4. 14 Removed to_matrix function 

 Removed the break from the previous-stage created function get_ij, by creating a bool 

variable indicating that the wanted result has been found. A disadvantage is that the loop 

iterates through all its elements now permanently. The advantage is that the number of 

iterations for the for loop is always known. The C++ implementation of the upgraded 

function is shown in Figure 4.15. 

 

Figure 4. 15 Improved get_ij function for selecting the two merging clusters 



 
 

4.2.5 Removing dispensable code 
 The results of this stage were satisfying enough to declare that the software optimizations can 

be concluded. However another stage was further required to adapt the code to the HLS requirements, 

details being described in the section 4.2.6. 

 This version of code was able to run 10 iterations of the small dataset of 105 patients and two 

omics in only 0.61 seconds on average. Compared to the previous version this one became only 2.13 

times faster. On the other hand, compared to the initial R version this is 128 times faster. Due to this 

increased performance, another dataset was tested using this version. The new set consisted of data 

from 849 patients and included 3 types of omics: mRNA, Methy and miRNA. The initial R version was 

firstly tested with this dataset, being able to run only 1 iteration in about 11 hours. In contrast to this, 

this stage of optimizations made the current version run 10 iterations in only about 11 minutes, thus 

accelerating the algorithm by a factor of 604 times. This result is very promising, showing that the code 

is able to scale greatly with the number of patients and omics. 

 The notable improvements that were made in this stage are further presented: 

 All lists were swapped with vectors, performing the same functionality. Functions have 

been adapted to this change. 

 which_vec_mat function has been improved, using a total of 2 for loops instead of 5. It 

identifies the 1D and 2D indexes from the similarity matrix that are equal to the 

maximum element from it. The pseudocode implementation is seen in Figure 4.16. 

 

 
Figure 4. 16 Improved which_vec_mat function for extracting indexes of merging clusters 

4.2.6 Memory preallocation and pointer-based access 
 This stage of optimizations provided great enhancement to the software part of the project, 

offering a satisfying result in which the execution time of the code improved even more. Compared to 

the initial R code which ran 10 iterations in about 78 seconds, for the smaller dataset, this version is 

able to run in only 0.1 seconds, being 784 times faster. Relatively to the previous stage this is 6.1 

seconds faster. As was done with the previous version, the large dataset was also applied to this one. 

It ran 10 iterations in only 1.95 minutes, being 3384 times faster than the initial one.  

 Below, the software optimizations that were applied at this stage are indicated: 



 
 

 All vectors were removed from the source code. Instead pointers to allocated memory 

were created and passed as arguments. Memory space has been allocated using malloc, 

as shown in the example from Figure 4.17. 

 

Figure 4. 17 Pointers declaration using malloc example 

 Removed the ids_struct due to the usage of pointers. The corresponding function which 

returned the created data structure now returns void, the relevant data being assigned 

value with reference. 

 Adapted the entire functionality to working with pointers. The which_is3 function which 

return the lines indexes of elements equal to dist_size is implemented as illustrated in 

Figure 4.18. 

   
 

 

Figure 4. 18 Adapted functionality of which_is3 function for selecting merging clusters indexes  

 before (top) and after (bottom) 

 Swapped while loops with for loops. The number of iterations is now known every time. 

 

 

 

 



 
 

 This version, identified in this report as Cpp v8, showed the best results in terms of timing and 

complexity and was further used in the project. Some main performed optimizations include: 

 The removal of redundant code. 

 the decreased number of functions and data transfers 

 the conversion of multidimensional to one dimensional data 

 the preallocation of memory space and usage of pointers  

These optimizations among others have all been gathered in this final software version of the 

hierarchical clustering algorithm written in C++. 

In Chapter 5 the process through which this C++ code was used to design an accelerator 

hardware architecture is going to be presented. Furthermore, this version of the algorithm was 

additionally used in tests which used diverse datasets consisting of different numbers of patients and 

omics. These tests naturally took advantage of the increased efficiency in terms of execution time of 

the fastest implemented C++ method. 

 

 

 



 
 

5. Accelerator design 
This chapter focuses on the architecture of the hardware implemented using High-Level 

Synthesis and mapped onto an FPGA. It will firstly offer an introduction to High-Level Synthesis, then 

the reasoning for accelerating only certain parts of the algorithm and finally it will present the developed 

architectures and their parameters. 

5.1 Introduction to High-Level Synthesis 
Logic synthesis represents an important process from the electronic circuit design cycle. 

Through a synthesis tool, an RTL design is being translated to an implementation consisting of logic 

gates. Generally these RTLs are being described using a Hardware Description Language such as 

Verilog or VHDL, which describe at an abstract level a targeted behavior.  

High-Level Synthesis allows the synthesis of a design at a more abstract level. Coussy et al [20] 

indicate that even from the beginning, HLS tools were able to deal with relevant design options and 

parameters such as timing estimations, interfaces and partitioning, communication, synthesis and lastly 

co-simulation. The functional specification which is written in a High-Level Language involves 

consuming the input data all at once, performing calculations and further outputting the data 

simultaneously. This data is usually stored in structures of either floating point or integer types, the user 

not having to specify the bit-accurate sizes. Additionally, the tools are able to transform the untimed 

design into a timed one, taking into account the communication interfaces to generate an efficient 

hardware architecture. 

From Coussy et al [20] the following specific HLS tasks have been extracted: 

 

Figure 5. 1 High-Level Synthesis capabilities 



 
 

 In figure 5.1 The HLS capabilities are being enumerated and will be further detailed here. The 

specification compilation is a step in which the high-level language is being translated into a formal 

representation. At this point usually optimizations are being performed upon the code. Next is the 

allocating of hardware resources, step in which the necessary hardware such as functional units or 

storage elements are being reserved for the current architecture. The number depends on the 

constraints that have been imposed by the user. These elements are being selected from an RTL library 

capable also of providing information about area, timing and power which is further used in synthesis 

results. The scheduling of operations represents a process in which each computation is being 

scheduled accordingly to clock cycles. This involves reading the sources and bringing it to a functional 

unit, perform the computations and finally send the result to the destination. Depending on the operation 

involved, the operation may be scheduled in one or more clock cycles. Furthermore, the binding of 

operations to functional units is done in order to efficiently exploit the functional units’ potential of 

executing an operation. Efficiency is gained due to the selection chosen by the binding algorithm in the 

case that several functional units are capable of executing a certain task. The next step exposed is the 

binding of variables to storage elements, representing the assigning of each variable to a viable 

container. In addition to that, through HLS, transfers are being bound to buses with an increased 

efficiency in communicating, due to the necessity of assigning each transfer between component to a 

bus or a multiplexer. Finally, the generation of RTL design represents the conclusive design produced 

through the HLS based on decisions made in the previous tasks. 

5.2 Profiling 
In order to better identify the algorithm’s tasks which needed the most the hardware accelerating, 

a profiling process has been made to have a better understanding upon the execution time of these 

parts. This allows for a greater focus on designing hardware for the most time consuming inner 

functions or code blocks. 

The profiling was performed upon the software version of the code and using the Chrono library, 

more specifically the steady clock from this library. The time was measured for all the functions starting 

from the call of that function and ending with the return from it, after each iteration the resulting time 

being accumulated. Once the algorithm finished its work, the conclusive times were printed in order to 

see their values.  

The top function calls a total of 5 functions per iteration then updates the patients’ clusters and 

the final output network. The profiling results showed that two of these functions occupy the majority of 

time, namely HC_fused_calc_distances() and which_vec_mat(). The first one is used to compute the 

Similarity Matrix based on the input Structured Network and the forming clusters. The latter one is used 

in identifying clusters that can merge from the Similarity Matrix – however only two of these clusters will 

merge per iteration. 

 

Function name 105 patients and two omics 
Execution time percentage 

849 patients and three omics 
Execution time percentage 

HC_fused_calc_distances() 55% 63% 

which_vec_mat() 35% 31% 

Table 1 Main profiling results 

 Further measurements have been made on the HC_fused_calc_distances() function. Based on 

the number of omics and the number of patients, the inner function getmean() is called several times 



 
 

and it was found out that it occupies about half of its the execution time, thus around 28-31% of the 

total execution time. As a result, the getmean() function as a standalone also represents a high priority 

in the hardware acceleration process. 

Table 1 shows that the two functions occupy 90% of the execution time for the smaller dataset 

and 94% for the larger one. These results clearly indicate that the two functions are of most importance 

in the accelerating process of the algorithm as improving their execution time will have the most effect 

on the overall method execution time. 

5.3 Architecture 
Based on the profiling results, the first two priorities for creating RTL using the HLS tool were 

the functions which computed the Similarity Matrix and the one that helps in the initial discovery of the 

clusters that are going to merge in the current iteration. In subsections 5.3.1 and 5.3.2 the architectures 

of the two solutions that were found to accelerate the algorithm are presented. 

For each of the architectures design space exploration will be performed in order to find the 

optimal solutions. The constraints that will decide this optimal solutions will be the hardware resources 

available on the target device, the memory bandwidth which is considered to be of 10-12 GB/s, an 

initiation interval of 1 – meaning that data can be feed every clock cycle to the designed hardware and 

finally, of course, the overall execution time of the designed hardware. For the purpose of this project, 

the power consumption of the designs was not assessed.  

5.3.1 Accelerator architecture for the computations of the Similarity Matrix  
The calculation of the Similarity Matrix represents the top priority in developing an efficient 

architecture for the hierarchical clustering algorithm, based on the profiling results from section 5.2. 

Results have showed that the execution time of this function which computes the Similarity Matrix also 

increases with the number of patients and omics included in the datasets. As a result, there are several 

reasons why this method needs hardware acceleration. 

In order to obtain the first synthesis results and an initial architecture for this method, the 

numbers of loop iterations had to be fixed to a constant value representing the maximum potential 

value. This change affected almost all of the loops inside the method. The consequence was the 

extremely increased execution time of the whole method and thus the whole algorithm. In order to avoid 

some of the introduced overhead created by this constraint, hardware was generated for the getmean 

function, method which was called repeatedly from the function Similarity Matrix calculation function. It 

was measured that this function was taking about 50% of outer one, so around 30% of the total 

execution time. 

The software version was measured to execute this function in about 146 ns on average (an 

average was needed since the number of iterations for the loops and also the sizes of the variables 

were not constant). Based on this, the hardware design should provide a faster result to be viable for 

usage. However, even after generating hardware for the inner-most function, the initial execution time 

was of about 79 ms, thus being more than 500 000 times slower than the software version, making it 

really inefficient for future design improvements. Furthermore, measurements have been made and it 

was found out that for about 96% of the time, the outer loop only iterates once, compared to the 

hardware version which iterated every time for a number equal to the total number of patients. In other 

words, many additionally computations were performed and their result were not useful for the 

functionality of the algorithm.  A decision was made on this matter, and a new inner function was created 



 
 

named getmean_inner which is called from the getmean one. Since the latter is no longer considered 

part of the hardware, its number of iterations was reset to a variable one, thus decreasing the overall 

execution time.  

The architecture which was created for this subsection is detailed in the block diagram illustrated 

in Figure 5. 2. In order to improve the execution time of the method, the architecture will allow the 

execution in parallel of the necessary operations. For this reason, a parallelism parameter P is being 

introduced, indicating the level of parallelism of the architecture. For each level of parallelism additional 

hardware is being allocated for computing a part of the method at the same time with other hardware 

resources. For each iteration each block of resources will be getting 2 patients at a time, it will process 

the data and then select a memory location from the input network to add up to the local accumulator. 

After the loop is finished all of the parallel accumulators are being synchronized and summed in a final 

accumulator which is then stored back to the memory.  

 

Figure 5. 2 Architecture for computing the Similarity Matrix 



 
 

5.3.2 Accelerator architecture for computing the merging clusters indexes 
Based on the results from the profiling section, this function occupies about a third of the total 

execution time of the algorithm. Additional measurements were made on the software of this part and 

it was found out that on average this function runs once in about 60 microseconds. An average upon 

these runs was necessary because of the variable number of iterations that are present inside of one 

of the two for loops. This variable number of iteration is based on the number of available clusters from 

the current iteration from which this function is called. The first change that affected the architecture of 

this hardware was to swap this variable number with a constant one, more exactly the maximum 

potential number that may arise during these computations. After applying this change and also some 

directives for indicating the trip count, the first synthesis results became available. The timing related 

parameters are presented in Table 2, while the resources usage is presented in Table 3. 

Estimated 
period 

Initiation 
Interval 

Total interval Latency 
[cycles] 

Pipelined Bandwidth 
[GB/s] 

6.721 ns 1 32766 32765 Yes 1.48  

Table 2 Initial timing results for the merging clusters index finding function 

 In this initial version of the code, input can be fed each clock cycle. The total number of cycles 

and the latency are mainly given by the number of iterations for the two loops, indicated via the trip 

count directive, these being equal to 5460 and 3. Additionally, both of the loops have been pipelined 

successfully during synthesis. The bandwidth has been calculated based on the memory accesses that 

are needed during runtime and the latency of the execution. During each iteration there are 4 memory 

accesses for reading and 3 memory accesses for writing, these 3 memory spaces being 3 out of the 4 

memory locations from which data is being read. In total per iteration 160 bits are being transferred 

through the interface per one iteration. 

BRAM DSP FF LUT URAM 

0 2 217 836 0 

Table 3 Initial resources results for the merging clusters index finding function 

 The block diagram of the initial fully sequential architecture is showed in Figure 5.3. In this 

diagram the method part which computes the maximum number is fed only the Similarity Matrix from 

the memory. Based on it, it further sends out the maximum element found in the matrix towards the 

second part of the function which extracts the one-dimensional and two-dimensional indexes. This part 

is also reliant on the Similarity Matrix, but also on the computed indexes from the previous iterations, 

which also are being obtained from the memory. The result of this part consists of the update of the 

elements’ indexes, the function ending with them being stored back into the memory. 



 
 

 

Figure 5. 3 Block diagram of initial architecture of the indexes extraction method 

 In order to speed up the execution using the available hardware, parallelism should be applied 

to the function so that data can be processed at the same time by different hardware elements. Since 

the computation of the maximum value from the Similarity Matrix and the extraction of indexes could 

not execute in parallel, the function was further divided into two parts: one that computes the maximum 

value from the Similarity Matrix and one that uses this value to extract the indexes of elements which 

match it. The division is naturally needed to get the correct indexes based on the correct maximum 

found in the Similarity Matrix. As a result two design space explorations were made in this section, one 

for each part necessary in finding the indexes of the merging clusters. The architecture of the first part 

will be presented in section 5.3.2.1, while the other one will be described in section 5.3.2.2. 

5.3.2.1 Accelerator architecture for extracting the maximum value from the 

Similarity Matrix 
For the search of the maximum value for the Similarity Matrix, a separate function has been 

created in order to exploit as much as possible the potential parallelism and available hardware, while 

maintaining a memory bandwidth of around 10-12 GB/s for the required memory transfers. This function 

involves going through the Similarity Matrix and simply comparing elements to find the maximum value.  



 
 

The block diagram for this architecture is further presented in Figure 5. 4. The architecture of 

this method was made capable of executing in parallel by dividing into equal chunks the Similarity 

Matrix and finding local maximum values which are ultimately compared with each other to find the 

overall maximum value of the matrix. Each part of the matrix is read and compared, after which the 

method outputs 3 maximum values, 1 for each line of the Similarity Matrix. This is done for P number 

of times, P representing the parallelism parameter of the architecture. 

 

Figure 5. 4 Parallel architecture for maximum value search of the Similarity Matrix 



 
 

5.3.2.2 Accelerating the extraction of indexes from the Similarity Matrix 
This subsection describes the architecture of the designed hardware capable of extracting the 

1D and 2D indexes of elements from the Similarity Matrix that are equal to the previously computed 

maximum value from the design showed in subsection 5.3.2.1. This method basically iterates through 

the Similarity Matrix and compares each element with the previously found maximum value. In case 

the values match, then it stores the one dimensional index into a variable and the two dimensional 

index into another one. These indexes are further used in selecting the clusters that are going to merge 

in the current iteration. 

The block diagram of this architecture is presented in Figure 5. 5. The parallelism parameter P 

indicates the amount of copies needed for memory locations of necessary input data and for actual 

blocks that perform the comparison and computations needed for updating the indexes. After each 

block the same memory locations which held the indexes and were read are now being assigned the 

updated values. As a result of this parallelism, separate chunks of the Similarity Matrix are being 

checked at the same time by the computational blocks, thing which decreases the overall execution 

time at the expense of more hardware resources. The functionality of this architecture depends on the 

prior computation of the overall maximum from the Similarity Matrix. 

 

Figure 5. 5 Architecture of merging clusters indexes finder method 

 



 
 

6. Implementation 
This chapter focuses on the implementation of both software algorithm and hardware design. It 

will begin with the performed implementation of the software part, indicating the used software 

programs and libraries, including their interface with the user and their functionality. Afterwards, the 

hardware implementation will be discussed, starting with the HLS adaptations of the code and the Vitis 

HLS software which was used for developing the hardware design. Finally, the required directives used 

to implement the chosen hardware architecture will be assessed.  

6.1 Software implementation 

6.1.1 R and Rstudio 
The algorithm described by Pfeifer and Schimek [1] was written in R programming language and 

can be found on GitHub (pievos101/HC-fused) Pfeifer. According to Venables et al.[21] R represents 

an integrated environment which offers: 

 great options for handling data; 

 several calculation possibilities for vector and matrix operators; 

 statistic modeling and analysis; 

 many graphical display options; 

 loads of packages and libraries with easy integration; 

 well performed data wrangling; 

R can be seen as an extension of the S language, created by Rick Becker, John Champers and 

Allan Wilks at Bell Laboratories. In general documentation of the S language also applies to R. Besides 

being already an extension of S, R is rapidly improving itself through its large community which have 

extended it through the creation of packages. Any user can upload a new package to CRAN if the 

submission passes the CRAN Repository Policy requirements. The majority of files required to use R 

can be found on the official website (at https://CRAN.R-project.org). At this website precompiled 

binaries can be downloaded to install R on either Windows, macOS, Linux, Debian, Fedora/Redhat or 

Ubuntu. Also, older versions of R alongside R packages can be downloaded from CRAN. 

In this project, R was successfully downloaded, installed and used on Windows and Linux. There 

were not any notable differences in the execution time for R on the two different operating systems. 

Although R can be used directly in a command prompt, Rstudio was also installed in order to run 

R in a friendlier environment. Rstudio is open-source and it is made available at 

http://www.rstudio.com/. It has been chosen and used as main R working environment during this 

project. The interface consists of: 

 console/terminal/jobs – used as input commands and output results and shown in Figure 

6.1. 

https://cran.r-project.org/
http://www.rstudio.com/


 
 

 

Figure 6. 1 Example of Rstudio console perspective 

 

 environment – overview of data, values and functions; 

 history – presents the history of run commands; 

 connections – allows the connection to separate data; 

 tutorial – offers learning opportunities using the learnr package prior installed; 

 

Figure 6. 2 Aspect of the Rstudio Environment 

 Source overview – displays the Rscripts, source files and data and allows the user to run 

and source code. An example is shown in Figure 6.3; 



 
 

 

Figure 6. 3 Example of an R script in Rstudio 

(Figure from Pfeifer [1]) 

 Files – displays the folders from the working directory; 

 Plots – displays the available plots; 

 Packages – indicates installed or ready-to-be-installed packages. Examples of such 

packages are shown in Figure 6.4; 

 Help – used to understand R related topics; 

 Viewer – used to access content from local web; 

 

Figure 6. 4 Example of available R packages from Rstudio 

 A working version of the R algorithm was written in an R script and loaded on the Rstudio 

platform. Some of the steps required in fetching and preparing the data from the TCGA are further 

presented.  

Firstly, the necessary packages and libraries were installed and loaded on R. Devtools 

represents a general package used in installing other packages such as Rcpp as presented in the next 

section of this chapter. Once the packages are installed, the library() function performs the loading of 

them, from this point the user being able to use the functionality of the libraries. These instructions can 

be observed in Figure 6.5. 



 
 

 

Figure 6. 5 Walkthrough for how to install and load packages in R 

Next, the data from the TCGA, which was prior downloaded and saved in the same folder as the 

working directory from R, is being read and saved in the Rstudio Environment. Afterwards it is being 

fed as an argument to the HC_fused_calc_network() function which will not be included in the 

acceleration process. This function returns a binary matrix – a structured network which will act as an 

input to the hierarchical clustering algorithm discussed in this project. The steps are written in Figure 

6.6. 

 

Figure 6. 6 Reading the datasets and obtaining the binary network 

The actual functionality of the algorithm written in R will be assessed in the following sections, 

where a C++ translation of it will also be available.  

Lastly, an example of a call to the top function of the method is shown, altogether with one of 

the ways that the timing of the function was computed during this project. The result of the function was 

saved in the res variable and then saved as a .csv file to be further compared to the other versions of 

the code. It is important to mention that the code was made deterministic from the beginning of the 

project, by removing the random factor from the method. As a result, a certain output is always expected 

and easily checked with other versions. A call example is displayed in Figure 6.7. 

 

Figure 6. 7 Calling top function and recording the time 

 

 



 
 

6.1.2 Rcpp library 
One of the disadvantages of R is the execution time of the code, which is also longer than 

similar programming languages that are capable to perform the same statistical analysis, plotting and 

operations such as Matlab and Python. In order to overcome this, R had to be combined with another 

programming language which was able to speed up the execution process.  

C or C++ natively offer the improvements that the algorithm needed in order to decrease the 

execution time of the method, while also scaling accordingly with the number of patients and types of 

data. The main improvement comes from the compilers which transform the C/C++ code into 

machine code, process which greatly improves the execution time of a code.  

 Amongst others, C is a language in which R was initially created. Naturally, C code can already 

be created inside R without the need to extend it with external packages and libraries. However, a great 

downside to this, is the necessity to also create wrappers in order to invoke certain data types and 

functions, besides the actual C code. These wrappers basically tell R how to deal with the code written 

in C. This capability of integrating C inside R is usually used to improve execution time of certain parts 

of R code that are running slow, such as for loops. 

 One specific library, Rcpp, deals elegantly with the interface between R environment and C++. 

Similar to C, C++ is able to greatly accelerate the computations that R struggles with. In addition, Rcpp 

solves the integration problem between the two programming languages by automatically creating 

wrappers for the existing data types and for the user-created functions. However, any additional data 

type, such as structs and classes, require manual wrapping to R. In some of the versions that will be 

presented in the next subsections of this chapter, a struct was created. In order to allow the integration 

with C++, it was wrapped as in the following snip of code from Figure 6.8: 

 

Figure 6. 8 Example of wrapping a newly created struct using the Rcpp namespace 

 Firstly, prior to using Rcpp capabilities, it needs to be downloaded and installed from the CRAN 

website. This was performed for Windows and Linux operating systems in this project and both 

installations were successful. Afterwards the following header files and namespace respectively can be 

used in the C++ source file: #include <Rcpp.h>, #include <RcppCommon.h>, using namespace Rcpp. The 

library also needs to be loaded inside the R script that calls the C++ functions. This is done by simply 

running the following command in R: library(Rcpp). 



 
 

Once the Rcpp library is loaded, there are two possible ways to call C++ functions inside R. The 

first method is to directly write the code as an argument to the cppFunction() directly in the R script that 

needs it. The second method is to create a separate .cpp file and source it using sourceCpp() function. 

Due to the relatively large number of functions that should be called, the second option was chosen for 

this project. Both variants are illustrated in Figure 6.9 and Figure 6.10: 

 

Figure 6. 9 Example of using cppFunction() for implementing a function 

 

Figure 6. 10 Example of using sourceCpp for sourcing a C++ file for further use 

Another necessary aspect is the requirement of indicating R which C++ functions need to be 

exported. A function that is not exported should only be called internally inside the C++ source and 

cannot be further called from an R script. Above the function that needs to be exported, the following 

code line must be written: “// [[Rcpp::export]]”. An example is shown in Figure 6.11: 

 

Figure 6. 11 Example of exporting a function to R 

Through the Rcpp library, the user has also the possibility to change the C++ compiler options. 

Such a thing a performed by creating an R package. For this project, the Rcpp.package.skeleton library 

was used to create such a package. The structure of the package includes among other files a 

DESCRIPTION file used to indicate details about the usage and creation of the package, an R folder 

in which all relevant R scripts can be found and a source file containing the C++ source files and an 

optional Makevars file. This latter one is responsible for allowing the user to change the compiler 

settings, such as C++ version and optimization flags. 

 

 

6.2 Hardware implementation 
This section describes the process which aimed to develop a hardware capable of further 

improving the execution time of the HC-fused algorithm. It will present relevant hardware related 

implementation decision which were taken at certain points during the workflow of designing the 

hardware accelerators. It will firstly cover the HLS adaptations that took place at the beginning of the 

hardware design phase, then it will shortly describe the HLS tool which was used to generate the 

RTLs. Afterwards the design implementation of the 3 IPs will be discussed. 

 



 
 

6.2.1 HLS adaptations 
The majority of High-Level Synthesis coding constraints were extracted from Xilinx 

documentation [22] and [23]. The most efficient version of software code was additionally adapted to 

be integrated inside the HLS software. Firstly the code was divided into a source code and a testbench. 

The source code is made out of all of the implemented functions, starting with the top one and going to 

the inner-most ones. The vector library and all of the R and Rcpp ones were removed from the source, 

as they are not supported. Also the source code file should not contain any allocation of variable size, 

so nothing based on the input network in this algorithm’s case. As a result, every memory space was 

allocated in the testbench and through the use of malloc and pointers from the partially adapted code 

coming from the software optimization stage, the data is being transferred as arguments to the top 

function. Additionally, the top function of the algorithm is being called from the testbench and the 

returning result is also being printed there. For all of the architectures, only one universal testbench 

was used, the difference between them being only the select top function of the architecture. Other 

unsupported elements in Vitis HLS include: 

 No system calls inside the source file. Printing is done from the testbench only in this 

project. 

 No dynamic memory usage in the source file. This has been handled by allocating 

everything in the testbench, thus the required resources are prior specified. 

 Limited pointer usage and no function pointers. Vitis only allows pointer casting only 

between native C++ types. 

 Recursive functions are not supported since they are not synthesizable. In this project 

while loops were converted into for loops. 

 Standard Template Libraries which contain recursion or dynamic memory allocations are 

not supported. 

High-level synthesis can be viewed as an efficient alternative to HDLs such as Verilog and 

VHDL, however taking into account the restrictions above. Some of the advantages of HLS were 

extracted from [22]: 

 Developing and validating algorithms at C-level, having an abstract level of hardware 

implementation. 

 Using C-simulation to check design, thus being more quickly than validating the traditional 

RTL design. 

 Using directives (pragmas) to control the synthesis and create performant 

implementations. 

 Ability to create several solutions based on the source code and the pragmas and find 

optimal solution based on the design space exploration. 

 Ability to quickly recompile source in order to target different hardware’s. 

The workflow of HLS software’s such as Vitis is presented in Figure 6.12. It illustrates how the 

HLS software is fed the algorithm altogether with the viable C++ libraries and user-defined pragmas 

and it produces multiple solutions which include scheduling, RTL designs and resources utilization. 

 



 
 

 

Figure 6. 12 HLS workflow 

 Besides the above workflow, according to Xilinx [22], an HLS software also includes the following 

3 stages: 

 Scheduling – clock cycles are assigned an operation based on dependencies, clock 

frequency, operation execution time, available resources and user defined directives. 

 Binding – scheduled operations are assigned hardware resources. 

 Control logic extraction – generates a finite state machine that sequences operations 

based on the schedule. 

 

 

6.2.2 Vitis HLS 
 Given the document from Xilinx [22], Vitis HLS represents a novel software which allows through 

the use of its high-level synthesis tool, the generation of RTL based on C, C++ or OpenCL source code. 

It deals with most of the changes required to implement and optimize the source code while also having 

the overall goal of achieving a high throughput.  

The 2020.2 software version was used for this project. After creating an HLS project and 

uploading the source files and testbench file, the usual sequence of processes is the following. Perform 

C simulation and verify that the source code acts as expected after applying the HLS constraints. If the 

results are correct then HLS should be run in order to generate the RTL files and synthesis reports. 

These output files have to be analyzed and the following parameters assessed: 

 Latency – amount of clock cycles needed to output all values. 

 Initiation Interval (II) – amount of clock cycles needed to initiate a new set of input data 

and restart the computation process. 

 Loop iteration latency – amount of clock cycles each loop iteration requires. 

 Pipelined – indicates if the function or loop are pipelined in the design. 

 Slack – timing slack for the function or loop. A negative slack signifies that the design 

cannot work correctly. 

 Tripcount – indicates a loop’s number of iterations. 

 Resource Utilization – indicates the hardware consumption: number of BRAM, DSP, LUT 

and FF implemented. 

Generally many iterations of C-Simulation and HLS synthesis are needed to increase the 

performance of the solutions. Changes may occur either in the C++ source file or testbench or in the 

available directives that are applied to the code, such as loop unrolling or memory interfaces. 



 
 

6.2.3 Implementing the Similarity Matrix calculation design 
Initially, a hardware design was to be made to the outer function – the one which was calculating 

the distances between patients and which was calling the inner function to obtain a mean value based 

on the selected patients. In order to get relevant synthesis results, the number of iterations for each of 

the 12 loops involved in the function had to be fixed to a constant highest potential value instead of a 

variable one. Unfortunately, the results were extremely poor in terms of execution time and as a result 

it was decided to generate hardware for the inner function which now was going to be called the exact 

necessary amount of time. After proceeding with the same approach, the results were still not good 

enough to be able to accelerate the design compared to the software version. The final solution found 

to this problem was to implement an additional function inside the previously inner-most one to have 

only 1 loop altered with a maximum number of iterations possible instead of 2.  

After setting up the optimal top function for this method in the synthesis settings, memory 

interfaces were selected using the HLS INTERFACE pragma which allows the user to choose from a 

series interface protocols with memories, such as FIFOs, AXI4 or RAMs. For this implementation the 

RAM memories were selected due to the increased performance that was observed compared to the 

others. The directive for such an interface is: 

#pragma HLS INTERFACE ap_memory port=network 

Afterwards, the target was to decrease the execution time of the design as much as possible, 

while fulfilling the constraints presented in the Architecture design section 5.3. Consequently, different 

directives were tried for the loops which contained the majority of computations, for example unrolling 

or pipelining them.  

One of the lasts and most efficient directive that was applied is the DATAFLOW one which 

allowed the execution in parallel. As a requirement however, all of the declarations had to be made 

before the pragma and all of the computations after it. Another additional necessity was the creation of 

copies for variables used inside those computational blocks – this being the main reason why 

incrementing the parallel level also increased the amount of hardware resources. Lastly, the 

computations were divided between the additionally created loops in order to share the workload and 

obtain a faster execution. 

6.2.4 Implementing the merging clusters indexes extraction designs 
For this method, two different designs were implemented. This was done so as to exploit at 

maximum the parallelism potential and to fulfill the memory bandwidth requirement. These two parts 

could not work in parallel altogether since the latter one depends on the results of the first one, thus a 

parallel execution would cause an incorrect output if not done in a sequential manner. 

The first design has the scope of going through the Similarity Matrix, find the maximum value 

out of it and store in inside the memory. Furthermore, the second one has to use this value and compare 

it to all of the elements from the Similarity Matrix. If a match is found, then the results are stored using 

pointers inside the memory. 

The interface with the memory was set to a RAM one for both designs, proving the best results 

compared to others. Concerning the hardware optimizations, the loops were pipelined and parallelized 

using the PIPELINE and DATAFLOW pragmas, respectively. Similar to the previous design, copies of 

variables were needed so as to achieve execution parallelism between the separated loops which were 

splitting the workload. 



 
 

7. Performance evaluation 
In this section the overall performance improvement of the HC-fused hierarchical clustering 

algorithm is presented. It will first describe the experimental setup of the project. Afterwards it will 

discuss the software results that were obtained through the aforementioned designs and 

implementations and it will continue with the hardware ones. Finally, the efficiencies of the software 

implementation and the HLS accelerator design are being combined to obtain the potential total 

acceleration of the method. Since HLS designs were only implemented for the smaller dataset, only 

this acceleration will be assessed. 

 

7.1 Experimental setup 
For the measurements performed during this project only two datasets were used. The data 

was first collected from the TCGA [2] and then adapted to be further used in this algorithm, as done 

by Pfeifer in [1]. The first dataset, the smaller one, consisted of 105 patients and two types of omics, 

namely mRNA and Methy. The larger one contained 849 patients and three types of omics: mRNA, 

Methy and miRNA. 

These datasets were applied to the hierarchical clustering and data fusion algorithm. The 

software performance was recorded for both the R and the C++ versions. These versions were run on 

an x64 based Intel Core i7-4720HQ CPU with a frequency of 2.60 GHz. Furthermore, the targeted 

device for the hardware implementation was the Zynq Ultrascale+ ZCU102 evaluation board. This 

board is characterized by a quad-core Arm Cortex-A53, dual-core Cortex-R5F real-time processors, 

and a Mali-400 MP2 graphics processing unit. 

 

7.2 Software performance 
This subsection will create an overview of the entire software design process, indicating the most 

relevant results obtained, the fulfilled tasks during this process and it will shortly revise the required 

softwares or libraries that were needed in order to perform the software implementation. 

The R version of the hierarchical clustering and data fusion algorithm was successfully converted 

to C++. Using the Rcpp library, the C++ source files were integrated with the R software, datasets being 

able to be fed to the algorithm from a different environment than C++. All of the C++ versions were 

checked for the correct results and their timing was measured.  

An R package was created, containing all of the C++ versions, R usage examples, tested 

datasets and more. Afterwards the package was loaded into R and successfully showed the correct 

functionality. An additional Makevars file was created in the source file of the package, allowing different 

compiler options to be chosen. The differences could be seen when loading up the package. The 

package was tested directly in the command prompt console but also in the Rstudio. Additionally, its 

functionality was tested on Windows OS and Linux, both successful. 

All of the results from the software optimization stages have been summarized in Table 4. The 

first 5 versions of code were only fed the smaller dataset of 105 patients and two omics. The R version 

together with the last two versions of C++ code – which showed the best overall results in execution 

time – were also fed as input the larger dataset consisting of 849 patients and three omics. From each 



 
 

version to the other, a short description of the improvements applied is shown. Also the execution time 

of all versions is indicated and compared to the initial one. Additionally, to have a better view of each 

stage’s improvement, the forth column of the table shows the relative acceleration compared to the 

previous version of the algorithm. These results show a continuous improvement for the C++ versions 

for the execution time of the method. 

 

Version Language Improvements Performance 
improvement 

per stage 

105 
patients 
mRNA, 
Methy 
time 

105 patients 
Acceleration 
relative to R 

version 

849 
patients 
mRNA, 
Methy, 
miRNA 

time 

849 patients 
Acceleration 
relative to R 

version 

Initial R R - 1x 78.45 
sec 

1 x 10.98 
hours for 
1 iteration 

1 x 

Cpp v1 C++ R to C++ 0.28 x 281.14 
sec 

0.28 x  - - 

Cpp v2 C++ Less and faster 
functions 

16.12 x 17.44 
sec 

4.5 x  - - 

Cpp v3 C++ 3D and 2D 
variables, 

Less for loops 

1.08 x 16.14 
sec 

4.8 x  - - 

Cpp v4 C++ For loops 
instead of slow 

function 

3.07 x 5.25 sec 15 x  - - 

Cpp v5 C++ Improved 
clusters merge 
and network 

update 

1.13 x 4.65 sec 17 x  - - 

Cpp v6 C++ Merged 
functions, 
2D to 1D 
variables 

3.57 x 1.3 sec 60 x  - - 

Cpp v7 C++ Lists to vectors 
Less for loops 

2.13 x 0.61 sec 128 x 10.91 
minutes 
for 10 

iterations 

604 x  

Cpp v8 C++ Adapt to HLS 
Use of malloc 
and pointers 

6.1 x 0.1 sec 784 x  1.95 
minutes 
for 10 

iterations 

3384 x  

Table 4 Software results overview 

 

 

 

 



 
 

7.3 Hardware results  
The HLS design phase has produced three separate IP cores. The first one is able to 

accelerate a part of the function which computes the Similarity Matrix in the algorithm, namely the 

getmean_inner function, being able to run 1 execution in 107 nanoseconds and having a nominal 

acceleration ratio of 1.36.  

For this architecture, the parallelism parameter P was set to values ranging from 1 to 6 in order 

to increase performance. During the performance measurements the timing, required memory 

bandwidth and resources consumptions were observed to correctly identify the optimal design point. In 

Table 5 the timing related values are indicated. Since the software was executing on average in about 

146 ns, each design point capable of running in less than that represents an improvement for the scope 

of this project. 

Parallelism 
parameter 

P 

Estimated 
period 

[ns] 

Initiation 
Interval 

Total 
interval 

Latency 
[cycles] 

Pipelined Bandwidth 
[GB/s] 

Time 
[ns] 

P = 1 2.007 1 108 108 Yes 5.81 216 

P = 2 2.854 1 56 56 Yes 7.88 159 

P = 3 2.569 1 38 38 Yes 12.90 98 

P = 4 3.585 1 30 30 Yes 11.71 107 

P = 5 3.300 1 24 24 Yes 15.90 79.2 

P = 6 3.585 1 21 21 Yes 16 75.2 

Table 5 Timing of designs for computing the Similarity Matrix. The optimal design point is marked with 
the color green, while the exceeding bandwidths are marked with the color red 

The results from Table 5 indicate that the optimal solution is represented by the design point 

with the parallelism parameter P equal to 4, offering an execution time of 107 us. This value, compared 

to the average software execution is only 1.36 times faster. The main disadvantages that did not allow 

for a faster execution time were the constraint of having a constant number of iteration, equal to the 

nominal possible value (constraint which caused more functional-unnecessary computations) and the 

bandwidth which limited the number of transfers with the memory during one second.  

Parallelism 
parameter 

P 

BRAM DSP FF LUT URAM 

P = 1 0 0 595 546 0 

P = 2 0 0 1078 1080 0 

P = 3 0 0 1482 1526 0 

P = 4 0 0 1884 1983 0 

P = 5 0 0 2287 2428 0 

P = 6 0 0 2691 2888 0 

Table 6 Hardware utilization for computing the Similarity Matrix. The optimal design point is marked 
with the color green 



 
 

The resources utilization for all of the six design points are described in the Table 6 and 

illustrated in the bar chart from Figure 7. 1. For this architecture the resources utilization did not 

represent a constraint in choosing the optimal solution as the percentage of utilized resources was 

around 1% of the total hardware available. This is mainly due to the relatively small designs and large 

number of iterations that are required for this method.  

 

 

Figure 7. 1 Resources utilization of the architecture computing the Similarity Matrix 

 

The second and third accelerators deal with the indexes extraction from the Similarity Matrix, 

the which_vec_mat function. Both of the designs execute in a total of 40 nanoseconds, being able to 

improve execution time of the method 1.5 times.  

The first out of this two deals with the computing of the maximum value from the Similarity Matrix. 

The design space exploration was made for the parallelism parameter P to find out which design point 

is optimal for executing the operations while maintaining a frequency below the selected memory 

bandwidth of 12 GB/s. Below, in Table 7 the timing results of this subsection are being presented. The 

parallelism parameter P does not seem to affect greatly the estimated working frequency of the 

hardware, which is of about 158 MHz. Additionally the architecture allows for data to be feed every 

cycle to the input. An improvement is observed in the total interval and latency of the hardware, as 

increasing P steadily causes these factors to decrease and thus making the computations faster. 

However the cost of this speed is the additional hardware that it is needed to perform such operations 

in parallel. In the case of this function, an additional port of 64 bits is added up for each incrementing 

of the parallelism parameter P. This alongside the decreasing latency of the design points directly affect 

the required Bandwidth of the memory which is supposed to support these transfers. It was found that 

a value of P equal to 4 causes a bandwidth of about 15.82 GB/s, value which exceeds the imposed 

constraints of the memory. Consequently, this makes the design point with the parallelism parameter 

equal to 3 the optimal one. 
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Parallelism 
parameter 

P 

Estimated 
period 

[ns] 

Initiation 
Interval 

Total 
interval 

Latency 
[cycles] 

Pipelined Bandwidth 
[GB/s] 

Time 
[us] 

P = 1 6.056 1 5464 5463 Yes 3.96  33 

P = 2 6.343 1 2738 2733 Yes 7.58 16 

P = 3 6.343 1 1827 1823 Yes 11.31 11 

P = 4 6.343 1 1373 1368 Yes 15 8 

Table 7 Timing results of accelerated function finding the maximum value from Similarity Matrix. The 
optimal design point is marked with the color green, while the exceeding bandwidth is marked with 

the color red 

 Table 8 describes the hardware utilization of the design. Naturally, increasing the parallelism 

parameter also increases the amount of utilized hardware. Even though the amount of flip-flops and 

look-up tables has increased, the total usage of resources is extremely low due to the relatively small 

design. Additionally, no block RAMs, DSPs or URAMs were needed for this architecture. 

In Figure 7. 2 the resources utilization of the 4 design points are illustrated in a bar chart. 

Parallelism 
parameter 

P 

BRAM DSP FF LUT URAM 

P = 1 0 0 975 1277 0 

P = 2 0 0 1849 2621 0 

P = 3 0 0 2777 3956 0 

P = 4 0 0 3710 5245 0 

Table 8 Resources of the accelerated function finding the maximum value from Similarity Matrix. The 
optimal design point is marked with the color green 

 

Figure 7. 2 Resources usage of the maximum value search architecture 
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The last accelerator is used to obtain the indexes of the potential merging clusters. The design 

space exploration was made for this architecture, having the same constraints as the previous two 

architectures. The results for each design point are presented in Table 9. The software version was 

executing this method in about 60 us on average. Since in the hardware design process this method 

was divided into two separate blocks (one finding the maximum and one finding the indexes) their times 

have to add up and still be less than the 60 us in order to be qualified as an acceleration. Similar to the 

other two architectures, a critical downside was the requirement to set a constant number of iterations 

for one of the loops of the method. In other words, instead of only going through the relevant part of the 

Similarity Matrix and perform those computations, the hardware design is required to always go through 

all of it and compute operations which are unnecessary, thus decreasing its time efficiency. 

Nevertheless, the optimal design point, the one with a parallelism parameter of value 4, shows good 

performance in terms of timing, being able to execute in only 29 us while also maintaining the memory 

bandwidth requirements.   

Parallelism 
parameter 

P 

Estimated 
period 

[ns] 

Initiation 
Interval 

Total 
interval 

Latency 
[cycles] 

Pipelined Bandwidth 
[GB/s] 

Time 
[us] 

P = 1 7.024 1 16383 16383 Yes 2.84 115 

P = 2 7.085 1 8193 8194 Yes 5.64 58 

P = 3 7.088 1 5463 5464 Yes 8.45 39 

P = 4 7.088 1 4098 4099 Yes 11.27 29 

P = 5 7.088 1 3279 3280 Yes 14.09 23 

Table 9 Timing results of the indexes extraction design points. The optimal design point is marked 
with the color green, while the exceeding bandwidth are marked with the color red 

 The resources utilization of these design points are showed in Table 10 and illustrated in the 

bar chart from Figure 7. 3. As in the other two architectures, the number of flip flops and look-up 

tables increase concurrently with the increment of the parallelism parameter. On the other hand, the 

design points from this architecture are the only ones who also involve digital signal processors, 

these being in number equal to the parallelism parameter. 

Parallelism 
parameter 

P 

BRAM DSP FF LUT URAM 

P = 1 0 1 503 852 0 

P = 2 0 2 993 1586 0 

P = 3 0 3 1483 2303 0 

P = 4 0 4 1970 3022 0 

P = 5 0 5 2461 3747 0 

Table 10 Resources utilization of the indexes extraction design points. The optimal design point is 
marked with the color green 



 
 

 

Figure 7. 3 Bar chart for resources utilization of the indexes extraction design points 

By combining the results from the profiling process and the ones from the accelerators designs 

the overall execution time of the top function HC-fused will decrease. The method for computing the 

Similarity Matrix will run 10 iterations of the algorithm in 17.3 milliseconds instead of 23.6 milliseconds, 

while the one responsible for extracting the indexes equal to the maximum value from the Similarity 

Matrix will run 10 iterations in 24.6 milliseconds instead of 37 milliseconds. 

By summing up these differences, a total of 18.7 milliseconds are saved for 10 iterations which 

were recorded to run in the software version in about 100 milliseconds. This difference is directly 

proportional with the number of iterations which the algorithm runs. As a result, the hardware 

acceleration will also scale with the number of iterations that the algorithms runs. 

 

7.4 Overall timing improvement 
After the software implementations, the fastest software version written in C++ was able to run 

10 iterations of the dataset containing 105 patients and two types of omics in 0.1 seconds, being 784 

times faster than the original version. 

By summing up all of the execution times now, the execution time is of only 81.3 milliseconds, 

thus being 965 times faster than the initial algorithm’s execution time of 78.45 seconds. 

Given the fact that the software optimizations improved greatly the scaling of the method with 

the number of patients and number of omics, the overall execution time for larger datasets should show 

better results in terms of efficiency by also combining the acceleration. The newly designed hardware 

accelerators provide the main advantage of parallelism of computation and the main disadvantage of 

performing several additional computations which are not further used in the algorithm’s functionality.  
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8. Conclusions and future work 
 

In this report, a series of optimizations were proposed, having the scope of increasing the 

execution time efficiency of a performant hierarchical clustering and data fusion algorithm. In 

order to reduce the execution time of the algorithm, the code was first ported to a C++ version 

which was gradually improved using different software optimizations. With the aim of designing 

hardware accelerators to further improve the speed of the method, the C++ code was adapted 

to be used in generating RTL via High-Level Synthesis. The hardware designs were made 

compatible with the dataset of 105 patients and 2 omics, the resulting execution time being 

almost 1000 times faster than the original one. 

8.1 Addressing the research questions 
Initially, the algorithm was implemented in R language, a programming language with the 

disadvantage of interpreting the code at runtime, causing it to execute slowly. To overcome this, 

it was decided to implement the code in C++ instead, in order to make us of its compilers and 

faster execution. Based on this proposed solution, the following research questions was 

formulated: 

What is the performance potential of porting the R code to C++? 

The software conversion from R to C++ proved to be extremely beneficial to the overall execution 

time of the algorithm. Due to the C++ compiler and the successive stages of optimizations 

performed upon the code, it was possible to run the algorithm in far less time than in the previous 

state. For the two datasets, acceleration ratios of 784 and 3384 were obtained when applying 

the small datasets and the large dataset, respectively, to the hierarchical clustering algorithm.  

 

For the purpose of achieving great efficiency for the future tests and applications of the C++ 

implementation of the algorithm, the method’s scalability had to be taken care of. Ultimately, the 

algorithm will be involved with large datasets and its execution time should be relatively efficiently 

appropriate in terms of execution time, to the data size. Consequently, the ensuing research 

question was made:  

How does the C++ code version of the algorithm scale with the number of patients 

and the number of omics? 

Based solely on the execution results of the available two datasets, the scaling with the number 

of patients and the number of omics seems to no longer represent an impediment to the 

utilization of the algorithm. Measurements of the initial R version show the execution time 

inefficiency when applying large datasets to the method. However, now using the C++ version, 

tests of the algorithm were easily obtained for the same large dataset. 

 

 

 

 



 
 

At some point, the software optimizations will no longer be able to greatly affect the execution 

time of the algorithm. As a consequence, a hardware architecture capable of executing the code 

in a faster manner using various hardware techniques was made. Based on this, the next 

research question was formed: 

What impact does the hardware acceleration via an FPGA have on improving the 

execution time of the clustering algorithm?  

The hardware optimizations proved to be only slightly beneficial to the goal of decreasing the 

execution time. A total of 3 architectures were created, 1 for the computing of the Similarity 

Matrix and 2 for generating the indexes of merging clusters. Using the optimal designs of these 

architectures, the execution time of these computations were decreased by 1.36 times and 1.50 

times, respectively. The relatively small accelerations were a consequence of the limitation 

imposed by the memory bandwidth, as the nature of the algorithm involved lots of memory 

accesses and not too many computations. These architectures were chosen to be created based 

on the profiling process which showed which inner functions were executing in the most time. 

The profiling results also showed that the percentages of execution time for these functions 

increased with the number of patients and omics. As a result, the scaling efficiency is also 

improved by using the designed accelerators. 

8.2 Future work and improvements 
Regarding future work perspectives, a better understanding of the scalability potential of the 

improved algorithm may be obtained by applying more diverse datasets, containing increased 

numbers of patients and data omics. Additionally, to take advantage of the hardware 

acceleration capabilities, a fixed number of patients can be found in order to make the 

accelerators universal to all future applied datasets. It is important that this number of patients 

is always considered enough to provide an accurate and performant clustering result. 

Furthermore, additional investigation should be made upon how to increase the acceleration of 

the algorithm using hardware techniques. One great disadvantage in terms of speed was given 

by additional computations caused by the fixed number of iterations of the loops, a necessary 

step for implementing the design. Moreover, the bandwidth requirements could be fulfilled with 

more parallelism involved by assigning data to reduced-size data types which are capable of 

performing the same functionality, while decreasing the transfers’ sizes with the memory.  

Since the original algorithm obtained the greatest results for kidney renal clear cell carcinoma, 

liver hepatocellular carcinoma, skin cutaneous melanoma, ovarian serous cystadenocarcinoma 

and sarcoma, it comes naturally that the implementations resulted from this project will also be 

applied to the same causes. This is due to the unaffected functionality of the algorithm, which 

produces the same output but in a much shorter execution time – a result of the software and 

hardware optimizations performed in this project. 
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Appendix 1 
 In this Appendix, the fastest software version of the algorithm written in C++ is being presented. 

This version was further used in the developing of the accelerator hardware architecture, but also for 

additional tests with various datasets of patients and omics, due to its increased efficiency in time.It 

consists of a total of 7 functions which are called several times during the run of the method. For each 

of the functions, its functionality and arguments are being described. 

1. HC_fused_cpp (MAT, n_iter) 

 

 This is the top function of the algorithm, which is given the input for the algorithm 

and which returns the fused network. It directly calls the function that computes the 

similarity matrix (HC_fused_calc_distances_cpp) and the functions which identify 

and select the clusters that will merge (which_vec_mat, which_is3, get_sample 

and get_ij). 

 MAT – argument which represents the input structured network to the top function 

of the algorithm. It is stored as a binary matrix with the first dimension given by the 

number of omics from the dataset and the second one given by the number of 

patients included in the dataset. It is passed as an argument via a pointer. 

 n_iter – argument which represents the number of iterations that the algorithm will 

run before outputting the final fused network. It is recommended for better results 

that this number to be chosen around 100. 

 

2. HC_fused_calc_distances_cpp (obj, MAT, matAND, obj_sizes, distances, 

mat_distances, n_elems, n_patients, n_clusters, col_nr) 

 

 This function is used to compute the Similarity Matrix between patients and 

represents the first important stage of the algorithm. It makes use of the input 

binary network and the current clusters and its result is further passed to compute 

the new merging clusters. 

 Obj – argument representing the dynamic clusters of patients. It is passed as a 

pointer to the memory locations containing the updating clusters. 

 MAT – argument identical to the input binary matrix that is fed to the top function 

of the algorithm. This data is only used inside this function, being further passed 

to the getmean function to generate the distances between patients. 

 matAND - argument passed as a pointer, containing the bitwise logic and operation 

of the elements from MAT. This data aids in creating a more stable result for the 

similarities matrix. 

 obj_sizes – argument passed as a pointer which indicates the number of patients 

in each cluster. 

 Distances – argument passed as a pointer representing the Similarity Matrix 

between patients. Elements for this allocation are of type double. This is the main 

output of this function which will be further used in calculating the merging clusters. 

 mat_distances – argument passed as a pointer, also of type double, used to store 

the intermediate results from the getmean function.  

 n_elems – argument indicating the number of omics from the input network. 



 
 

 n_patients – argument which represents the number of patients from the dataset. 

 n_clusters – argument representing the dynamic number of clusters from the 

current iteration 

 col_nr – argument of integer type, representing the shortcut result of combinations 

of n_patients taken by 2. It is used to go through the columns of the Similarity 

Matrix 

 

3. getmean ( i, j, MAT, elem, obj, obj_sizes, n_patients) 

 

 The getmean is called several times inside the HC_fused_calc_distances_cpp 

function and is able to calculate an average value from a matrix formed by two 

vectors representing elements from lines and from columns respectively. 

 i – Integer argument used to indicate the selected line used together with obj and 

obj_sizes. 

 j – Integer argument used to indicate the selected line used together with obj and 

obj_sizes. 

 MAT – argument passed as pointer, representing the input binary matrix. 

 elem – integer argument used to select data for a specific omic from the input 

binary matrix. 

 obj – argument passed as pointer, containing the dynamic clusters of patients.  

 obj_sizes – argument passed as pointer, containing the actual sizes of clusters. 

 n_patients – integer argument indicating the number of patients from the dataset. 

 

4. which_vec_mat (distances, res_vec, res_mat, ids_valid_size, n_clusters, n_elems, 

col_nr) 

 

 This function is able to return the 1D and 2D indexes of elements from the 

Similarity Matrix equal to the maximum element from it. It uses the result stored 

in distances and updates the res_vec and res_mat with the correct indexes. 

 distances – argument passed as pointer and gone through to extract the 

elements with the maximum values. 

 res_vec – argument passed as pointer, receiving the one-dimensional indexes of 

elements equal to the maximum one from the Similarity Matrix. 

 res_mat – argument passed as pointer, receiving the two-dimensional indexes of 

elements equal to the maximum one from the Similarity Matrix. 

 ids_valid_size – integer argument which gets updated based on the number of 

elements found that fulfil the equal to maximum condition. 

 n_clusters – integer argument indicating the dynamic number of clusters. 

 n_elems – integer argument representing the number of omics from the dataset. 

 col_nr – integer argument used to go through the column of the Similarity Matrix. 

 

 

 



 
 

5. which_is3 (res_mat, ids_valid_size, n_elems, is3, is3_valid_size) 

 

 This function returns the line numbers of elements from res_mat which are equal 

to the number of rows from the Similarity Matrix. In other words it searches for 

elements equal to the maximum value from the Similarity Matrix and additionally 

looks for the ones that were computed based on the matAND matrix containing 

the results from the bitwise logic and operation of the input network. 

 res_mat – argument passed as pointer, which contains the 2D indexes of 

elements equal to the maximum value from the Similarity Matrix. 

 ids_valid_size – integer argument indicating the valid size that should be used 

when going through res_mat. 

 n_elems – integer argument showing the number of elements. 

 is3 – argument representing the resulting vector of values that fulfil the 

aforementioned conditions. 

 is3_valid_size – integer argument that gets updated with the correct size of the 

is3 vector. 

 

6. get_sample (vec, randomize, vec_valid_size) 

 

 This function return one single element from a given vector. 

 vec – argument passed as a pointer, indicating a vector of elements – either is3 

or res_vec. 

 randomize – bool argument which selects either a deterministic or a non-

deterministic selection of the element. During the testing, the deterministic option 

was chosen in order to check the functionality of the algorithm. 

 vec_valid_size – integer argument used to know the number of elements to go 

through.  

 

7. get_ij (id_min, obj_size, map_info_pair) 

 This last function is used to finally identify the pair of clusters that will merge in 

the current iteration.  

 id_min – integer argument returned from the get_sample function, which is 

further used to find the pair of clusters that will merge, based on a series of 

computations. 

 obj_size – integer argument representing the dynamic number of available 

clusters for merging. 

 map_info_pair – argument passed as pointer that will be updated with the 

indexes of the merging clusters. 

 


