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Abstract

Image registration is the task of finding a transformation that aligns given images. Typically,
this is solved using discrete image registration algorithms. These discrete algorithms are inher-
ently limited by the resolution of the images. Rather than representing (3D-) images explicitly
using a discrete set of pixels (or voxels), they can also be represented implicitly by a neural
network. Not only the images can be implicitly represented, but also the transformation itself.
One of the advantages of the implicit representations in registration models is that the resulting
transformation is defined on any coordinate in the continuous image domain, rather than only
on a discrete set of coordinates. This means there is no need for interpolation anywhere, and
the image derivatives can easily be computed analytically rather than through finite differences.
Also, both the transformation and the images can be sampled at arbitrarily high resolutions. In
this thesis, we propose two models for medical image registration in a continuous setting, a
small deformation model and a diffeomorphic model. For both models, the image-pair and the
transformation are continuous differentiable functions parametrized by neural networks. The
models are evaluated on a dataset of 3D CT scans with manually identified landmarks.

Keywords: medical image registration, neural implicit representations, unsupervised learning,
diffeomorphism, periodic activation functions
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Chapter 1

Introduction

1.1 Medical image registration

Medical image registration is the practice of spatially transforming one image in such a way
that the underlying anatomical structures align with a given reference image. Aligning two (or
more) images can be useful for several tasks in the medical field. Registering multiple scans
from one particular patient taken in the span of a few seconds can be used for modeling the
spatio-temporal behavior of certain tissues. This behavior is especially important for detecting
complications regarding, for example, cardiac and respiratory motion. Registration can also be
useful to model long-term deformations. For instance, the growth or shrinkage of lesions can
be measured by registering scans taken multiple days apart.

The images do not necessarily have to be of the same patient, or even of the same modality.
For instance, different modalities can depict different aspects of a certain tissue. Registering
these images makes it possible to accurately combine information derived from these different
modalities. For this thesis, however, we consider the scenario of intra-patient single-modal
registration.

In this thesis, we look at medical image registration through a continuous lens. In order to
facilitate a continuous approach, the images need to be represented in a continuous way. For
this, we use neural implicit representations.

1.2 Neural implicit representation

Generally, any digital image is represented as a discrete grid of pixels. A color (or inten-
sity/density) is assigned to each of these pixels and together they form the image as it appears
on a screen. Even though the images themselves are discrete, they represent a continuous real-
world scene. In image analysis, it is common to work with this underlying continuous real-world
distribution of which the digital image is a discretization. Dealing with a continuous distribu-
tion rather than a discrete set offers many advantages. This continuous setting allows spatial
derivatives of the images to exist. Also, the fact that the image is defined everywhere on the
continuous domain makes it possible to perform operations such as a coordinate transforma-
tion.

However, this continuous distribution is unknown in practical cases. So in order to apply any
knowledge gained from the analysis of the continuous distribution, techniques such as interpo-
lation and finite differences are necessary. These techniques generally introduce errors and
properties in the continuous setting do not always directly translate to the discrete setting, es-
pecially when the discrete sampling is diffuse. This incentivizes the usage of a continuous
representation of images, i.e. a map of any coordinate in the continuous image domain to a
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color (or intensity/density).

Since, of course, the images have to be stored in finite memory, these continuous maps need to
be described by finitely many parameters. A natural way of designing a parametrized function
is by using a neural network. By the universal approximation theorem [1], any well-behaved
function can be described with arbitrarily high accuracy by an appropriate neural network. So,
in this thesis, the implicit representations are parametrized by neural networks. These implicitly
defined signal representations parametrized by neural networks are referred to as neural im-
plicit representations.

Neural implicit representations offer several advantages over the traditional discrete represen-
tation. Since the image is defined on the continuous domain it can be sampled at an arbitrary
resolution, even allowing resolutions higher than the one of the original image. Furthermore, the
memory required to store the image depends solely on the complexity of the signal, whereas
discrete images are limited in efficiency by the grid resolution. So, for neural implicit repre-
sentations, the memory requirement is determined by the size of the network that is necessary
to represent the image accurately. This required size can vary significantly between differ-
ent images and will largely depend on the presence of fine details. Another advantage is that
continuous derivatives exist, as long as differentiable activation functions are used. As will be
demonstrated later, this allows the image derivatives to be computed analytically in a straight-
forward manner, without having to resort to finite difference methods as is required for discrete
images.

This neural implicit representation is not only useful for representing images, but can be used
to represent any type of signal. It can, for instance, be used to represent vector fields, which is
useful for describing the transformation in the image registration problem.

1.3 Related work

Recently, there has been some research into the usage of neural implicit representations for
novel view synthesis for 3D scenes. Most of the recent papers in this area build on the work of
NeRF (neural radiance fields) [2]. This work proposes learning (implicit) neural radiance fields
from 2D data from limited camera angles. Constructing novel 2D views of the 3D scene is done
by integrating along light rays. Since this is done in a differentiable way the whole process is
compatible with gradient descent methods for optimization.

One of the papers that build on the idea of neural radiance fields is NeRF in the Wild [3]. Here
the NeRF model is extended to work with unconstrained photo collections. Since the data used
is uncontrolled, the objects in the images do not always look the same. The discrepancies
include things such as differences in lighting and people walking in front of the object. To allow
the model to function in this setting it is used in conjunction with a separate model which is able
to handle the photometric discrepancies.

Furthermore, several papers address the extension of NeRF models to a dynamic setting in
which the scene is allowed to change over time. These models can be used to produce videos
of non-static scenes in which the camera angle can be set to any arbitrary value within a certain
domain after the data has already been collected. Two of the papers that address this challenge
are D-NeRF [4] and Nerfies [5]. Both of them propose similar ideas where a neural network is
used to (implicitly) capture a deformation field, which allows for a dynamic (time-dependent)
scene. This has a close connection to image registration, where we are interested in finding a
deformation field that aligns images.
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1.4 Contribution

In this thesis, we propose to use neural implicit representations for images as well as the trans-
formation in image registration, thereby allowing resolution-agnostic small deformation and dif-
feomorphic registration models. We provide two models that use these neural implicit repre-
sentations and evaluate their performance on a 3D CT scan dataset.

1.5 Thesis outline

In the next chapter, we start by giving a mathematical overview of medical image registration.
We describe several options for the loss function, including regularization, and describe the op-
timization process. We close off the chapter by briefly discussing what it means for registration
to be diffeomorphic.

In the third chapter, we discuss the neural implicit representation. Then we describe two solu-
tions for overcoming the low-frequency bias of standard MLPs. We conclude the chapter with
some experiments.

The fourth chapter contains our models for the registration of medical images. We separate
between a small deformations model and a diffeomorphic model.

In the fifth chapter, we break down the experiments performed using our models and present
the results.

Finally, in the last chapter, we present the main conclusions and discuss the possible limitations
of our approach. We conclude this thesis by presenting some ideas for future work.
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Chapter 2

Image Registration

2.1 Overview

Image registration is the task of finding the optimal spatial transformation that aligns two images.
By convention, the two images that are registered are called the moving image and the fixed
image. The moving imageM is the image that is to be transformed. The fixed image F , on the
other hand, serves as the target of the transformation on the moving image. After applying the
transformation on the moving image, the goal is a perfect correspondence with the fixed image.

Both images can be described by a function that maps image coordinates to intensity or color
values. For this thesis we only consider grayscale images, so both functions F (x) and M(x)
map the n-d image coordinates to intensity values in the interval [0, 1]. This leads to the following
description of the images:

M : ΩM ⊂Rn → [0, 1]

F : ΩF ⊂Rn → [0, 1] .
(2.1)

Here, ΩM and ΩF denote the domain of image coordinates of the moving and fixed image
respectively. In this thesis, we consider the normalized image domain [−1, 1]n for both ΩM and
ΩF . Consequently, ΩM and ΩF are the same and will be referred to as the image domain Ω.
In practice, the images are only defined on finitely many coordinates within this domain, as
there are only finitely many pixels. However, we assume the image to be defined on the entire
domain. In general, this is realized by using spline interpolation, but in this thesis we use neural
implicit representations to define the images on the entire image domain. We discuss these
neural implicit representations in more detail in chapter 3.

For image registration the objective is finding a transformation Φ on the image coordinates:

Φ : ΩF → ΩM . (2.2)

The objective of image registration is finding an optimal Φ̂ such that the object located at co-
ordinate x in image F corresponds to the object at coordinate Φ̂(x) in image M . Assuming all
objects look the same in both images, and that the transformation Φ̂ perfectly describes the
correspondence between objects across the images, we have that:

(
M ◦ Φ̂

)
(x) = F (x) ∀x ∈ Ω. (2.3)

In general, there are some cases where objects are not expected to have the same appearance
across different images. For example, in multi-modal image registration the appearances of the
two images are not the same. However, for this thesis, we focus on the cases where the moving
and fixed image have a similar appearance, which is most often the case for single-modal intra-
patient registration.
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2.2 Loss functions

To find the optimal transformation Φ̂ one could define the following minimization problem:

Φ̂ = argmin
Φ

L (M ◦ Φ, F ) . (2.4)

Here L denotes the loss function. In this case, the loss function can be any function that mea-
sures similarity, i.e. a function that is low when M ◦ Φ and F are similar, and high when they
are dissimilar. An example of such a function is the Lp-norm.

This problem is, in general, ill-posed in the sense that no unique solution can be provided. A
famous example highlighting this ill-posedness is the ’aperture problem’. This problem refers to
the fact that the motion of a homogeneous contour is locally ambiguous. A common approach
for solving ill-posed problems is to use regularization. For this particular problem, we can add
a regularization term to the loss function that penalizes unrealistic transformation:

Φ̂ = argmin
Φ

L (F ,M,Φ)

= argmin
Φ

Ldata (M ◦ Φ, F ) + αLreg (Φ)
(2.5)

Here, α is a tunable regularization parameter that determines the proportionality between the
data term and the regularization term. The higher the α, the smoother the solution, but this
smoothness may come at the cost of violations in the data term.

For the data term we can use the mean squared error (MSE), which is a commonly used simi-
larity measure. This term is defined as follows:

SMSE (M◦ Φ, F ) = 1

|Ω|

∫

Ω
[F(x)− (M◦ Φ) (x)]2 dx. (2.6)

One thing that should be noted is that this only works because we use fixed and moving images
that are similar in appearance. In other cases the intensity values can not be compared directly.
In these cases, other similarity measures can be used such as cross-correlation and mutual
information. These similarity measures do not require very similar appearances and hence are
robust to variations in intensity between images.

2.3 Regularization

The goal of the regularization terms is to enforce smoothness on the solution to make it more
realistic, and to disambiguate the solution. There are several possibilities for regularization.
Here we present several regularization terms that we have considered. Several terms use the
deformation u. This is simply the difference vector between the original and the transformed
coordinate. So, the transformation can be described as adding the deformation to the input
coordinate:

Φ(x) = u(x) + x. (2.7)

For clarity we omit the input x of the functions Φ and u everywhere inside the integrals, e.g. Φ
is written to denote Φ(x).

A simple regularization term is S jac, which uses the Jacobian determinant:

S jac[Φ] =

∫

Ω
|1− det∇Φ|dx. (2.8)
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A negative Jacobian determinant indicates folding and the loss of invertibility. A Jacobian de-
terminant is also an indicator for expansion and shrinkage, where the Jacobian determinant is
exactly the expansion factor. In practice, shrinkage and expansion occur, however, we want to
limit great deviations from 1. This regularization term enforces smoothness and also penalizes
the solution for not being diffeomorphic.

Several more complex regularization terms are proposed in the work of Ruthotto [6], the first
one being the diffusion term Sdiff:

Sdiff[Φ] =
1

2

d∑

i=1

∫

Ω
|∇Φi − xi|2 dx =

1

2

d∑

i=1

∫

Ω
|∇ui|2 dx. (2.9)

A limitation of this regularization term is that the components of the transformation are decou-
pled, so solutions might not be physically meaningful. The next term is the elastic term Selas:

Selas[u] =

∫

Ω
ν(trV )2 + µ tr

(
V 2

)
dx, (2.10)

with V = V (u) =
(
∇u+∇u⊤

)
/2.

In contrast to the previous term, here there is some interplay between the different components
of the transformation. However, its functionality is limited to small strains ∥u∥ ≪ 1. A term that
works better with larger displacements is Squad:

Squad[Φ] =

∫

Ω
ν(trE)2 + µ tr

(
E2

)
dx, (2.11)

with E = E(u) =
(
∇u+∇u⊤ +∇u⊤∇u

)
/2.

The fact that this term works significantly better than the previous term in cases of large dis-
placements comes at the cost that a unique optimal solution is not guaranteed to exist anymore.
Unlike S jac, both Selas and Squad do not control tissue compression and expansion in any way.

The following term SOgden, on the other hand, does take into account the compression and
expansion of volume:

SOgden[Φ] =

∫

Ω

1

2
α1|∇u|2 + αa∥ cof∇Φ∥2F + αvψO(det∇Φ)dx. (2.12)

Here, ∥ · ∥2F is the squared Frobenius norm. For αa > 0 there is a bias towards transformations
that reduce the surface areas, while αa = 0 would complicate existence theory. Since in general
ψO(v) ̸= ψO(1/v) this functional is not inverse consistent. Swapping the moving and fixed image
changes the transformation between the two, which is not desirable.

The final regularization term is the hyper-elastic term Shyper:

Shyper[Φ] =

∫

Ω

1

2
α1|∇u|2 + αaϕc(cof∇Φ) + αvψ(det∇Φ)dx, (2.13)

with the convex functions:

ϕc(C) =

3∑

i=1

max





3∑

j=1

C2
ji − 1, 0





2

and ψ(v) = (v − 1)4

v2
.

This regularization term covers all the drawbacks that are previously mentioned.
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2.4 Optimization

There are many software packages dedicated to iteratively optimizing the transformation Φ
given an image pair F and M , e.g Elastix [7] and FAIR [8]. In general, this transformation
is discretely defined, so the optimization comes down to finding the optimal deformation vectors
at all pixel coordinates. A commonly used optimizer is gradient descent, in which steps are
taken repeatedly in the opposite direction of the gradient of the loss function.

For this thesis, the transformation is implicitly represented. So, instead of directly optimizing the
output of Φ(x) on a finite set of points, we optimize it across the entire domain Ω by adapting the
weights of the network used to describe the transformation. For the optimization we use Adam
[9], an extension to stochastic gradient descent. Adam uses adaptive per-parameter learning
rates, adapted based on the first and second moment of the gradient.

Even though we use stochastic gradient descent to optimize a neural network, this method is
not like typical deep learning methods, as it does not generalize to unseen images. The net-
work is ’trained’ for one specific image pair. There is still a generalizing aspect, in the sense that
the network predicts the transformation even for coordinates that do not appear in the training,
i.e. the coordinates in between pixel locations. However, when faced with a new image pair, a
previously trained network is not useful, as its only use is describing the transformation for the
image pair that it is optimized for.

2.5 Diffeomorphic image registration

Diffeomorphic image registration is important for many medical applications. In diffeomorphic
image registration, the solution space of the transformation is constrained to the space of dif-
feomorphisms between ΩF and ΩM This constraint ensures certain desirable properties, such
as the preservation of topology.

A map f between two manifolds is called a diffeomorphism when f is a bijection and both f and
its inverse f−1 are differentiable. In general, a solution Φ to equation (2.4) is not necessarily a
diffeomorphism, so extra measures have to be taken to ensure a diffeomorphic solution.

In order to limit our feasible solutions to the set of diffeomorphic transformations between the
two images, we look at transformations induced by a velocity field v. Let t = 0 describe the time
at which the moving image is taken, and t = 1 the time at which the fixed image is taken. Now
let v(x, t) describe the velocity of the object located at location x at time t, defined for all x ∈ Ω
and t ∈ [0, 1]. A temporal dependency is added to Φ as well, so now Φ(x, t) is used to describe
the movement on the interval t ∈ [0, 1], where Φ(x, 1) represents the full deformation between
the moving image and the fixed image. Note that v(x, t) is nothing more than the derivative of
Φ(x, t) with respect to time. This allows the following reformulation of the problem:

M (Φ (x, 1)) = F (x) (2.14)

with dΦ

dt
(x, t) = v (Φ (x, t) , t)

and Φ(x, 0) = x.

For clarity the temporal inputs can be moved to the subscript position:

dΦ

dt
(x) = (vt ◦ Φt) (x). (2.15)
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By taking the integral it can be written as:

Φt (x) = x+

∫ t

0
(vτ ◦ Φτ ) (x)dτ. (2.16)

Looking at Φ defined in this manner, it is possible to construct the inverse function Φ−1:

Φ−1
t (x) = x−

∫ t

0

(
vτ ◦ Φ−1

τ

)
(x)dτ. (2.17)

So, there exists an inverse for any x ∈ Ω. Under the condition that Ω is closed under the
operation Φ, the existence of the inverse implies that Φ is a bijection. When, for instance, the
deformation is 0 at the boundary of Ω, we have that Ω is closed under Φ, hence Φ is a bijection
from Ω onto itself.

A discrete approximation of the integral in equation (2.16) can be computed as follows:

Φ(0) = Id

Φ(t) = Φ(t−1) +
1

T
v(t−1)

(
Φ(t−1)

)
for 1 ≤ t ≤ T.

(2.18)

In this discrete context Φ(t) is used to denote Φ(x, t
T ), meaning Φ(T ) forms an approximation of

the final transformation Φ(x, 1).

A popular alternative for the integration of velocity fields is scaling and squaring, and several
papers report good results using this technique, such as DARTEL [10] and VoxelMorph [11].
It relies on scaling down the velocity field and repeatedly squaring it. This method requires
the velocity field to be static (time-invariant) and gives the exact same approximation as the
scheme in (2.18). However, scaling and squaring only requires log2 (T ) steps to compute the
final solution, where the regular scheme requires T steps. It leverages the fact that for static
velocity fields the transformation satisfies the following equation: Φ(t)◦Φ(s) = Φ(t+s). For scaling
and squaring the scheme looks like:

Φ(1) = Id+
1

T
v

Φ(2t) = Φ(2t−1) ◦ Φ(2t−1) for 1 ≤ t ≤ log2(T ).
(2.19)

So, the main advantage of scaling and squaring is that it is very fast, however, it only works for
static velocity fields.

Regularization for the velocity field

When using time-dependent velocity fields without any further constraints, the solution is defi-
nitely not unique. So, we can use regularization to disambiguate the solution and enforce the
velocity field to change as little as possible over time. This results in the following definition of
S time, as a function of the velocity field v:

S time[v] =

∫ 1

0

∫

Ω
∥ ∂
∂t
v(x, t)∥2dx dt. (2.20)
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Chapter 3

Neural Implicit Representation

3.1 Overview

Generally, any digital image is represented by a discrete set of pixels. This offers only a dis-
cretized view of the real-world scene that is continuous. To represent images in a continuous
way we have to parametrize a function that maps any image coordinate from the continuous im-
age domain to an intensity value. For this, we use a fully connected feedforward neural network,
which is often referred to as amultilayer perceptron (MLP). An example of an MLP for the implicit
representation of an image is depicted in Figure 3.1a. Not only images can be represented by
an MLP, but also the coordinate transformation Φ that we wish to find in the image registration
problem. Figure 3.1b shows an example of an MLP that can represent such a transformation.

By learning an implicit representation we get a function that is defined on the entire continuous
image domain. Also, since we use MLPs, we automatically end up with a differentiable function
and its derivatives can be easily computed. Since we now have a continuous and differentiable
representation instead of a discrete one, techniques such as interpolation and finite differences
become completely redundant.

Completely omitting techniques such as interpolation and finite differences offers a big advan-
tage, as these techniques introduce errors. With implicit representations, the discrepancy be-
tween theory and practice depends solely on how accurately the implicit representation de-
scribes the true underlying distribution.

(a) MLP for implicit representation of a
grayscale 3D image.

(b) MLP for implicit representation of a
coordinate transformation.

Figure 3.1: Visualization of example MLPs for the implicit representation of (a) im-
ages and (b) coordinate transformations.
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(a) Target

PSNR: 18.7PSNR: 18.7PSNR: 18.7PSNR: 18.7PSNR: 18.7PSNR: 18.7PSNR: 18.7PSNR: 18.7PSNR: 18.7PSNR: 18.7PSNR: 18.7PSNR: 18.7PSNR: 18.7PSNR: 18.7PSNR: 18.7PSNR: 18.7PSNR: 18.7

(b) Standard MLP

PSNR: 24.7PSNR: 24.7PSNR: 24.7PSNR: 24.7PSNR: 24.7PSNR: 24.7PSNR: 24.7PSNR: 24.7PSNR: 24.7PSNR: 24.7PSNR: 24.7PSNR: 24.7PSNR: 24.7PSNR: 24.7PSNR: 24.7PSNR: 24.7PSNR: 24.7

(c) Positional encoding

PSNR: 37.5PSNR: 37.5PSNR: 37.5PSNR: 37.5PSNR: 37.5PSNR: 37.5PSNR: 37.5PSNR: 37.5PSNR: 37.5PSNR: 37.5PSNR: 37.5PSNR: 37.5PSNR: 37.5PSNR: 37.5PSNR: 37.5PSNR: 37.5PSNR: 37.5

(d) SIREN

Figure 3.2: Implicit representations of an image using different networks. Figure
(a) displays the target image. Figures (b), (c) and (d) display the output using a
standardMLP, a standardMLPwith basic positional encoding, and a SIREN network
respectively. All networks were optimized for 500 iterations over the full image. The
peak signal-to-noise ratio (PSNR) is given in the top-left corner of the images. A
higher PSNR indicates a higher similarity to the target image.

3.2 Overcoming the low-frequency bias

In Figure 3.2b we see the result of fitting an image using a standard MLP with ReLU (rectified
linear unit) activation functions. Clearly, the result is a low-frequency approximation of the im-
age and it lacks high-frequency details. There are several papers that address this spectral
bias, such as the work of Rahaman et al. [12]. The conclusion is that, in general, standard
MLPs are inherently biased towards a low-frequency output making them unsuitable for implic-
itly representing signals of higher frequency without any adaptations.

In the work of Tancik et al. [13], this spectral bias of MLPs is studied using knowledge from the
neural tangent kernel literature. They claim that as the width of the layers tends to infinity and
the learning rate tends to zero, a standard MLP converges to the solution of kernel regression
using a neural tangent kernel (NTK). It is shown that in kernel regression using the NTK, the ith
component of the absolute prediction error in the eigenbasis of the NTK decays approximately
exponential at the rate αλi, where α is the learning rate and λi is the ith eigenvalue. Since
high-frequency components correspond to the lower eigenvalues, they will converge slower.
For standard MLPs the eigenvalues decay rapidly, causing extremely slow convergence for the
high-frequency components.

We discuss two different solutions for overcoming the spectral bias, namely positional encoding
and periodic activation functions.

Positional encoding

In NeRF [2] and many other subsequent works, positional encoding is used to overcome the
spectral bias. With positional encoding the input of the network is transformed using a so-called
positional encoding layer. This layer uses a Fourier feature map to map the input x of the
network onto the surface of a higher dimensional hypersphere. The output p(x) of a positional
encoding layer is defined as follows:

p(x) = [p1(x1), · · · pn(xn)]ᵀ ,
pi(xi) = [sin(Bi,1xi), cos(Bi,1xi), · · · , sin(Bi,Lxi), cos(Bi,Lxi)]

ᵀ .
(3.1)

Here, B ∈ Rn×L is a parameter, and L ∈ N determines the dimensionality of the output of the
positional encoding layer. The output of this layer functions as the input for the original neural
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network. The size of the input for the neural network effectively goes from n to 2L · n. We can
see that the positional encoding layer does indeed map the input to the surface of a 2L · n-
dimensional hypersphere, as ∥p(x)∥2 =

√
L regardless of x and B.

For standard positional encoding, as is used in NeRF [2], the value of B is chosen as Bi,j =
2jπ. In the work of Tancik et al. [13], another option for B is proposed that yields improved
results compared to the standard B. Here each entry of B is sampled from a zero-mean normal
distribution.

Figure 3.2c depicts the implicit representation of an image with the help of positional encoding.
It already gives a significant improvement compared to a standard MLP, however it is still easily
distinguishable from the original image.

Periodic activation functions

A commonly used activation function is the ReLU activation function. A typical neural network
Φ using this activation function is defined as follows:

Φ(x) = (ϕn ◦ ϕn−1 ◦ . . . ◦ ϕ1) (x), ϕi (x) = max(Wix+ bi, 0). (3.2)

Here ϕi represents the ith layer of the network, with weight matrixWi and bias vector bi. As pre-
viously mentioned, these networks have an inherent bias to low-frequency solutions. However,
this bias can be combated by changing the activation function. In SIREN [14], the usage of a
sine as periodic activation function is proposed. This yields the following function for the neural
network Φ with input x:

Φ(x) = (ϕn ◦ ϕn−1 ◦ . . . ◦ ϕ1) (x), ϕi (x) = sin (ω (Wix+ bi)) . (3.3)

Here, the ω is a hyper-parameter that can be tuned. For values of ω that are close to 1, this net-
work performs quite similarly to the ReLU-network. However, increasing ω lets high-frequency
components of the solution converge faster. The optimal value will differ depending on the
problem, but SIREN reports ω = 30 to work well across a wide range of different tasks.

These periodic activation functions allow neural networks to learn higher frequency details in a
similar manner as positional encoding. With positional encoding, we have a positional encoding
layer at the start of the network where the input is passed through several sine functions. In the
network of SIREN, every single layer of the network resembles the positional encoding layer.

A big advantage of SIREN is that it can represent infinitely many higher-order derivatives. On
the other hand, the derivatives of order 2 and higher of an MLP using a ReLU activation function
are always 0.

In Figure 3.2 we see that SIREN performs way better than a standard MPL, and is able to
capture the high-frequency details of the target image. Even compared to the approach with
positional encoding, the periodic activation functions offer a big improvement. For this reason,
we use SIREN-networks for the neural implicit representations in this thesis.

3.3 In practice

In Figure 3.3, we see the evolution of the output of the network during optimization. Every
iteration the output resembles the target image more closely. Already within 100 iterations, the
output is difficult to distinguish from the target image. Only the details of the highest frequency
are not yet fully present at that time.
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(a) Target (b) 1 iteration (c) 3 iterations (d) 10 iterations (e) 30 iterations (f) 100 iterations

Figure 3.3: Evolution of the implicit representation during optimization, using
SIREN.

The implicit representation must match the original image on the coordinates of the grid on
which the original image is defined. However, it is also important that the implicit representation
generalizes well, i.e. the implicit representation should reasonably predict the intensity value
for points that do not lie exactly on the grid.

Figure 3.4 visualizes how well the network generalizes to unseen coordinates. We can see
that the capability of generalizing heavily depends on the value of ω. For high values of ω the
network overfits on the image used for training. In Figure 3.4f we see that for ω = 70 the output
of the network is basically noise that happens to correspond to the training image at the training
coordinates.

For low values of ω, the high-frequency details take a long time to converge. But as discussed
previously, a value for ω that is too high leads to overfitting. The optimal value for ω depends
on the training image. For the example in Figure 3.4, the training data is of very low frequency,
as it is limited by its low resolution. For practical applications, the optimal value will generally
be higher than the optimal value for this example.

(a) Ground truth (b) Training data (c) ω = 10 (d) ω = 30 (e) ω = 50 (f) ω = 70

Figure 3.4: Implicit representation on unseen coordinates for different values of ω.
Figure (a) shows the ground truth image and (b) shows a lower resolution version
of the same image that is used for the training. Figures (c), (d), (e) and (f) display
the learned implicit representations for different values of ω, using the training data
from Figure (b). All of these representations are practically indistinguishable from
the training data (b) when sampled only at the training coordinates, all having a
mean squared error < 10−5. However, when sampled at a higher resolution, as
is done in the figures, we see that not all representations are very similar to the
ground truth in (a). Especially for higher values of ω the network overfits on the
training coordinates and does a poor job at generalizing to unseen coordinates.
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Chapter 4

Mathematical models

In this chapter, we explain the architectures of the registration models used for the experiments
in this thesis. Each model acts as a deformation function Φ : Ω → Ω that maps a spatial coor-
dinate x from the image domain Ω ⊂ Rn to another spatial coordinate y in the same domain Ω.

We differentiate between two types of models. For the first model, we use an MLP to directly
represent the deformation u. The transformation Φ is then given by Φ(x) = u(x) + x. We call
this model D. For the second model, we use an MLP to represent a time-dependent velocity
field instead. This velocity field is then integrated to produce the deformation. This model will
be denoted by V.

As discussed in section 3.2, standard MLP’s inherently struggle to represent high-frequency
details. Even though the general motion between images can often be captured by a deforma-
tion of a low frequency, there are many occasions of very detailed local motions which require
a higher frequency to be described. In order to adequately describe these local motions, we
need our MLP to be capable of representing high-frequency details. For this, we use a SIREN-
network as previously discussed in section 3.2.

4.1 Small deformation model

The model D that uses a network to directly represent the deformation u is displayed in figure
4.1. The model is straightforward and consists of only a single network. The input coordinate
x is fed directly to the network ΨD. The output gives us the deformation u which gives us the
transformation Φ after adding the identity, Φ = u+ Id.

The network takes only a singular coordinate x as input, instead of a whole grid. However, in
practice, a batch of coordinates is propagated through the network simultaneously in order to
compute multiple outputs in parallel.

This model does not necessarily provide a diffeomorphic registration. There are regularization
techniques that will reduce the likelihood of violating the diffeomorphic properties in the pre-

Figure 4.1: Registration-model D.
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dicted Φ. However, a perhaps more effective method of obtaining a diffeomorphic registration
is predicting a deformation through integrating a velocity field, as discussed in section 2.5. This
is what prompts the next model.

4.2 Diffeomorphic model

For a diffeomorphic approach to image registration we want to predict the deformation Φ by
integrating a velocity field. For this purpose we use an MLP ΨV to describe the time-dependant
velocity field. The network takes as input a spatial coordinate x and a time t and it will return
the prediction of the velocity field v(x, t) at this coordinate. By doing this we obtain an implicit
representation of the velocity field v, that is defined for any x ∈ Ω and t ∈ [0, 1]. Using this
representation of the velocity field we can compute the solution of the following scheme for a
discrete approximation of the integral, as previously defined in section 2.5:

Φ(0) = Id

Φ(t) = Φ(t−1) +
1

T
v(t−1) ◦ Φ(t−1) for 1 ≤ t ≤ T.

(4.1)

For our model, we opt to not use scaling and squaring. The main reason for this is that it re-
quires spatial interpolation. When the velocity field is only defined on a grid, spatial interpolation
is required regardless of the integration method. However, since we have a velocity field that is
defined for any spatial coordinate, spatial interpolation is not a requirement anymore. Hence we
prefer to stay away from spatial interpolation, as the lack of interpolation is one of the big advan-
tages of using implicit representations. Another advantage of not using scaling and squaring is
that it allows us to use dynamic (time-dependant) velocity fields. This puts less of a restriction
on the solution space, as it does not limit us to solely deformations that can easily be expressed
using a static velocity field.

An overview of the model is displayed in figure 4.2. In essence, the MLP ΨV(x, t) is evaluated
T times in a row. For each MLP the input is slightly different. The input for the ith MLP is
(xi−1, ti−1). The t-component of the input is gradually increased each step, with ti = i/T . The
x-component of the input for the MLPs is determined by the scheme in (4.1), with xi = Φ(i)(x0),
or in other words, the predicted transformation of the coordinates up to time ti. The output of
each MLP is the velocity field v(x, t), which is used in the scheme to determine the input for the
next MLP.

Propagating through the network multiple times to compute the final transformation is very slow,
so implementing the model like this is not very practical. It is, however, interesting to see how
the results compare to the small deformations model.

Figure 4.2: Registration-model V.
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4.3 Implementation

What separates our models from existing ones is that the images are implicitly represented by
neural networks. This allows us to use arbitrary coordinates during training, instead of only the
coordinates of pixels. Also, a major advantage of the neural implicit representations lies in the
implementation of regularization. The regularization depends on derivatives of the images, so
traditional models require numerical methods such as finite differences to compute the regular-
ization terms. On the other hand, for our model the image derivatives can be easily computed,
as neural networks are designed to be easily differentiable. This makes the implementation of
regularization trivial. For instance, the Jacobian matrix ∇u can be computed per row using the
automatic differentiation package from PyTorch as follows:

for i in range(n):
jacobian[i, :] = torch.autograd.grad(network_output[i], image_coordinate)

Here n denotes the dimensions of the data. For our experiments we have n = 3, since we
consider 3D CT scans. Since Φ(x) = u(x) + x, the Jacobian matrix ∇Φ can be computed by
adding the n × n identity matrix to ∇u. All the regularization terms mentioned in section 2.3
follow directly from these two Jacobian matrices.

17



Chapter 5

Results

In this section, we present the results of our registration models on 3D CT scan data. Before
evaluating the performance of the model on this data, we motivate our choice for the value of ω
based on an experiment. We also take a look at the visual results of regularization in our model.

When measuring the similarity between images, the error is better visualized on the logarithmic
scale. That is why we use the peak signal-to-noise ratio (PSNR) instead of the MSE in the
figures. For images with a maximum intensity of 1 the PSNR is defined as:

PSNR = −10 log10 (MSE) . (5.1)

A high PSNR value indicates a low MSE, i.e. a great similarity between the images.

5.1 Implementation

We implemented our model using PyTorch, making use of the automatic differentiation package.
For the implicit representations of the images, we opt for an MLP with 3 hidden layers of width
512. We set the learning rate to 10−4. The batch size is 106 coordinates. For both registration
models the MLPs have 3 hidden layers of width 512, a learning rate of 10−6 and a batch size of
5000. For model V, we compute the integral of the velocity field in 16 steps, i.e. T = 16.

The training is done on an NVIDIA Quadro RTX 6000 24GBGPU. For the implicit representation
of the images the training occurs at a rate of 20.1 iterations per second, or 2,010,000 coordinates
per second. RegistrationmodelD has a rate of 16.9 iterations per second, or 84,500 coordinates
per second. Finally, model V has a rate of 2.3 iterations per second, or 11,500 coordinates per
second.

5.2 Implicit representation

As mentioned in section 3.3, it is important to choose the correct value for ω when using SIREN
to represent a signal. This ω depends on the data, most importantly on the presence of high-
frequency details in the data. For the sake of our experiments, we are interested in a value of
ω that works well for representing CT scans of the lungs.

In order to find the optimal value for ω, we trained neural networks using a scaled-down ver-
sion of a 3D CT scan of the lungs, part of the DIR-Lab data set. By scaling down the image
we optimize the network using only a subset of the available voxels. The voxels that are not
used during this optimization give us the ground-truth information that we can use to evaluate
the ability of the network to generalize. We scaled down the image by a factor of 2 in all three
dimensions, meaning only an eighth of the original image is used during optimization.
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(a) Train and test loss after 1000 iter-
ations for different values of ω.

(b) Train and test loss over time for dif-
ferent values of ω.

Figure 5.1: Performance of SIREN on both the training and the test data for different
values of ω.

In Figure 5.1a we see the performance of a SIREN network on both the training and test coor-
dinates after 1000 iterations. We can see that training performance is increasing in ω, but the
performance on the test coordinates does not improve by increasing ω to a value higher than
40. However, this graph does not necessarily tell us anything about the convergence of the
networks.

For the convergence behavior we look at Figure 5.1b. For all three values of ω depicted in the
figure, the network converges to the same PSNR-value. A higher value of ω seems to increase
the rate of convergence. The actual results for the different values of ω are depicted in Figure
A.1 in the appendix.

In conclusion, the results are very similar for many different values of ω and there is no clear
reason to deviate from ω = 30, which was reported in the SIREN paper as a value that generally
works well.

5.3 Regularization

Now, we look at the effects of the different regularization terms by registering two simple images
from the MNIST data set of handwritten digits [15]. These images are, of course, very different
from the data set of 3D CT scans that we use for the other experiments. However, using these
simple images gives us a rough idea of the effect of the regularization terms. We chose an
image of the digits 3 and 4 for the moving and fixed image respectively, both depicted in Figure
5.2.

We intentionally picked fixed and moving images that do not have an obvious transformation
between them. This way we can get a good indication of the behavior of the regularization
terms. Does it allow unrealistic transformations in order to be able to fit the data, or does it
enforce smoothness at the cost of not fitting the data perfectly?

In Figure 5.3 we see the registration results for all regularization terms, using model D and
several different values for α. A grid overlay is placed on the images to show how the images
are deformed. The grid is colored using a color gradient. If, for instance, the registration algo-
rithm would flip the image the colors would indicate this, while a unicolored grid would not. The
original coloring of the grid can be inferred from the right-most column, where deformations are
minimal.
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(a) Moving image. (b) Fixed image.

Figure 5.2: Fixed and moving image from MNIST data set of handwritten digits [15].

The left-most column shows the results for α = 0, which are, of course, the same for all terms. In
this column, the moving image is perfectly recreated by transforming the moving image. How-
ever, the manner in which the image is transformed is very chaotic, and the colored overlay
does not at all resemble a grid anymore. It is clear that this is undesired behavior for the reg-
istration. On the other hand, in the column for α = 1 the transformations are overly smooth, to
the point where the moving image is barely deformed at all. The optimal value of alpha for all
terms lies somewhere in between.

α = 0 α = 0.0001 α = 0.001 α = 0.01 α = 0.1 α = 1

SJac

Sdiff

Selas

Squad

SOgden

Shyper

Figure 5.3: A visualization of the effects all regularization terms.
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We can see that for many of the regularization terms there is unwanted local behavior. Most no-
tably apparent with SJac and Squad. For these terms, there are some irregular artifacts present,
even for values of α as high as 0.1. Furthermore, with exception of the Shyper, many of the
resulting deformations contain unwanted and unnecessary oscillations.

As motivated in section 2.3, Shyper covers certain weaknesses that the other terms have. Also,
the behavior of this term in Figure 5.3 looks more realistic compared to other terms. The so-
lutions with the hyper-elastic regularization term approach the fixed image while maintaining a
realistic transformation. Especially the global behavior of this term seems more desirable than
most other terms. Consequently, we use the hyper-elastic regularization term Shyper for the rest
of our experiments.

The smoothness of the solution is clearly influenced by the regularization term, but also by the
parameter ω. In Figure 5.4 we see the interplay of ω and α, when using hyper-elastic regular-
ization. We can see that the solutions do depend on the choice of ω, especially for low values
of α. However, for higher values of α, changes in ω do not change the solution as much. Later,
we evaluate the optimal values for α and ω based on the performance on a 3D CT scan data
set.

In figure 5.5 we see an example of the impact of regularization in an example of registering
3D CT-scan data. It shows the solution that model D gives us with and without the use of
hyper-elastic regularization. Without regularization, the transformation is not realistic at all. The
transformation is not smooth and has very strange local behavior in some places.

By looking at the determinant of the Jacobian in 5.5b we see that it is far from 1 at many places.
It reaches values up to 4 on this particular slice, indicating extreme expansion. This determinant
is even negative in some regions, meaning that folding is happening there.

On the other hand, the registration with regularization gives a transformation that looks much
more natural. Also, the determinant of the Jacobian is much more stable. In this slice the Jaco-

α = 0. α = 0.0001 α = 0.001 α = 0.01 α = 0.1 α = 1.

ω = 10

ω = 20

ω = 30

ω = 40

Figure 5.4: Effect of hyper-parameters α and ω.
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bian determinant is close to 1 in most places, indicating that only slight expansion and shrinkage
occurs. So, even though the similarity betweenM ◦Φ and F is comparable across both depicted
solutions, the solution with regularization is much more realistic.

(a) Registration WITHOUT regularization
(b) Jacobian

(c) Registration WITH regularization
(d) Jacobian

Figure 5.5: Example showing the impact of regularization on real 3D CT scan data
from the Learn2Reg Challenge [16].

5.4 Evaluating performance

For evaluating the performance of the registration models we use the DIR-Lab data set [17],
containing 3D CT scan data of the lungs. We specifically use the 4DCT data set, containing
10 sets of thoracic CT images, acquired as part of the radiotherapy planning process for the
treatment of thoracic malignancies at the University of Texas M. D. Anderson Cancer Center
in Houston, TX. The first five sets contain images with a resolution of 256×256×100 and the
resolution of the images in the last five sets is 512×512×128. Along with this data set, 300
manual landmarks are provided that can be used to evaluate the accuracy of the registration.
For more details, see the DIR-Lab website: https://www.dir-lab.com/.

The average registration error in millimetres e is computed in ”snap-to-voxel” fashion, round-
ing the predicted landmark position to the nearest integer voxel position. Using ⌊x⌉ to denote
rounding x to the nearest integer voxel position, the average registration error of the predicted
transformation Φ is computed as follows:

e =
1

N

N∑

i=1

√
d2x

⌊
Φ(x

(F )
i )− x

(M)
i

⌉2
+ d2y

⌊
Φ(y

(F )
i )− y

(M)
i

⌉2
+ d2z

⌊
Φ(z

(F )
i )− z

(M)
i

⌉2
. (5.2)

Here, x(F )
i and x(M)

i denote the x location of the ith landmark in the fixed and moving image
respectively. The constants dx, dy and dz are the voxel dimensions in millimetres.
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First, we are interested in the best values for both α and ω. In order to make an appropriate
choice for these hyper-parameters, we perform a grid search. For both model D and V we test
various combinations of α and ω by optimizing the network for 1000 iterations on the first image
pair in the data set. The goal is to find the optimal combination of these hyper-parameters.

Tables 5.1 and 5.2 display the average registration error e for registration models D and V
respectively, after 1000 iterations, for the different combinations of α and ω. The values reported
in Tables 5.1 and 5.2 are visualized in Figure 5.6. We can see that for both model D and V, the
surfaces are almost completely convex. Also the results in both tables are very similar. Only for
low values of α there is a significant difference, where the model V performs better. This makes
sense, as the architecture of model V inherently regularizes the solution.

For both models, the optimal values for α and ω based on this experiment are 0.01 and 30
respectively. These are the values that we use for evaluating the models on the entire data set.

For comparison, we consider two different models of which the performance on the DIR-Lab
data set is known. We refer to these models as isoPTV [18] and CNN [19].

The model isoPTV is a variational method that uses isotropic total variation as the regularization
term. A numerical solution is computed using the alternating direction method of multipliers
(ADMM). This solution consists of a displacement vector for every pixel in the image. For more
details on this method we refer to [18].

The model CNN uses a convolutional neural network to predict the transformation between two
images. The network takes two images as input and gives as output three maps for the x, y,

ω = 10 ω = 20 ω = 30 ω = 40 ω = 50 ω = 60

α = 0 2.09(1.33) 2.04(1.44) 2.11(1.40) 2.07(1.49) 2.19(1.63) 2.40(1.87)
α = 0.001 1.97(1.29) 1.84(1.42) 1.77(1.24) 1.82(1.33) 1.88(1.56) 2.14(1.72)
α = 0.0025 1.94(1.29) 1.68(1.40) 1.65(1.27) 1.71(1.30) 1.75(1.58) 2.03(1.68)
α = 0.005 1.91(1.26) 1.58(1.32) 1.56(1.28) 1.61(1.30) 1.73(1.56) 1.99(1.70)
α = 0.01 1.86(1.28) 1.54(1.31) 1.48(1.28) 1.62(1.33) 1.74(1.57) 2.02(1.76)
α = 0.025 1.86(1.30) 1.57(1.31) 1.51(1.29) 1.70(1.42) 1.85(1.65) 2.42(2.08)
α = 0.05 1.92(1.38) 1.69(1.37) 1.64(1.39) 1.94(1.54) 2.20(1.91) 2.79(2.22)
α = 0.1 2.03(1.50) 1.91(1.49) 1.90(1.54) 2.19(1.75) 2.64(2.16) 3.47(2.57)

Table 5.1: Landmark error: α versus ω, registration model D after 1000 iterations.
The reported value denotes the average error in millimeters (and standard devia-
tion).

ω = 10 ω = 20 ω = 30 ω = 40 ω = 50 ω = 60

α = 0 1.92(1.21) 1.61(1.31) 1.70(1.40) 1.79(1.49) 1.89(1.54) 2.17(1.80)
α = 0.001 1.89(1.23) 1.56(1.28) 1.62(1.39) 1.72(1.45) 1.76(1.52) 2.06(1.76)
α = 0.0025 1.88(1.23) 1.52(1.28) 1.57(1.38) 1.67(1.38) 1.75(1.54) 2.00(1.71)
α = 0.005 1.86(1.24) 1.53(1.30) 1.50(1.33) 1.65(1.40) 1.72(1.52) 1.99(1.66)
α = 0.01 1.84(1.25) 1.54(1.31) 1.49(1.32) 1.64(1.38) 1.79(1.55) 1.98(1.72)
α = 0.025 1.88(1.32) 1.62(1.31) 1.55(1.38) 1.73(1.41) 1.89(1.67) 2.16(1.93)
α = 0.05 1.97(1.40) 1.71(1.38) 1.69(1.44) 1.90(1.51) 2.06(1.79) 2.48(2.16))
α = 0.1 2.08(1.48) 1.91(1.47) 1.94(1.53) 2.04(1.68) 2.49(2.12) 2.92(2.18)

Table 5.2: Landmark error: α versus ω, registration model V after 1000 iterations.
The reported value denotes the average error in millimeters (and standard devia-
tion).
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(a) Model D (b) Model V

Figure 5.6: Surface plots of the performance for different values of α and ω, visual-
ization of Tables 5.1 and 5.2

and z components of a thin-plate spline transformation grid. The network is trained on random
synthetic transformations that have been applied to CT images of the lungs. For more details
regarding this method we refer to [19].

The registration error for our modelsD and V are shown alongside the models isoPTV and CNN
in Table 5.3. The models D and V are trained for 100,000 iterations on each of the 10 image
pairs in the data set. The results of models D and V are nearly equal on all the data. Only on
4DCT8, the model with the largest displacement, there is a significant difference, where model

Model D Model V isoPTV1 CNN2 Displacement3 Observers4
4DCT1 1.18(1.20) 1.19(1.21) 0.76(0.90) 1.65 (0.89) 4.01 (2.91) 0.85 (1.24)
4DCT2 1.31(1.52) 1.30(1.53) 0.77(0.89) 2.26 (1.16) 4.65 (4.09) 0.70 (0.99)
4DCT3 3.01(2.70) 2.98(2.71) 0.90 (1.05) 3.15 (1.63) 6.73 (4.21) 0.77 (1.01)
4DCT4 2.93(2.66) 2.93(2.68) 1.24 (1.29) 4.24 (2.69) 9.42 (4.81) 1.13 (1.27)
4DCT5 2.69(2.77) 2.69(2.77) 1.12 (1.44) 3.52 (2.23) 7.10 (5.14) 0.92 (1.16)
4DCT6 4.46(3.29) 4.42(3.26) 0.85 (0.89) 3.19 (1.50) 11.10 (6.98) 0.97 (1.38)
4DCT7 6.52(5.63) 6.51(5.62) 0.80 (1.28) 4.25 (2.08) 11.59 (7.87) 0.81 (1.32)
4DCT8 9.52(8.31) 9.32(8.29) 1.34 (1.93) 9.03 (5.08) 15.16 (9.11) 1.03 (2.19)
4DCT9 4.37(2.73) 4.38(2.76) 0.92 (0.94) 3.85 (1.86) 7.82 (3.99) 0.75 (1.09)
4DCT10 3.59(3.58) 3.57(3.66) 0.82 (0.89) 5.07 (2.31) 7.63 (6.54) 0.86 (1.45)
Average 3.96 3.93 0.95 4.02 8.52 0.88

Table 5.3: Landmark error: models evaluated for all ten image sets from the DIR-Lab 4DCT
data set. The reported values denote the average error in millimetres (and standard deviation).
1Algorithm using isotropic total variation regularization [18]. 2 Model using supervised learning
with convolutional neural networks [19]. 3The displacement column displays the average dis-
placements of the objects in the fixed and moving images. 4The observer column shows the
average repeat registration error of the experts.
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V performs slightly better.

When we compare our models to the other models, we see that our performance is comparable
to the performance of model CNN. On the entire data set, our models perform on average slightly
better than model CNN. Especially for the cases of small displacements, our model compares
favorably.

In general, our models perform reasonably well on the data with small displacements. However,
both models struggle on the data with the larger displacements. Especially compared to the
model isoPTV, the average registration errors of our models are significantly larger. The model
isoPTV gets very close to the repeat registration error of the experts that provided the landmark
information, reported in the ’Observers’ column.

To possibly improve the performance for larger displacements, in-between images can be used.
The DIR-Lab data set provides a sequence of six images. The first and last images of this
sequence constitute the moving and fixed image respectively. The other four images still can
be used to guide the registration between the moving and fixed image. We can also incorporate
this into model V by adding the following term to the loss:

S in−between = γ
4∑

i=1

∫

Ω

[
Ii(x)−

(
M◦ Φ(i·T/5)

)
(x)

]2
dx. (5.3)

Here Ii denotes (the implicit representation of) the ith in-between image and γ is the hyper-
parameter deciding how heavily dissimilarities to these images are punished. Recalling equa-
tion (2.18), Φ(T ) denotes the final deformation between the moving and fixed image. The term
S in−between enforces that the deformation Φ(t) is similar to the in-between images for appropriate
values of t.

Using the in-between images for either model did not significantly improve the performance.
This leaves model V as our best performing model, slightly edging out D on average. Figure
5.7 depicts the registration resulting from this model on 4DCT1. See the appendix for more
figures regarding the experiments.

(a) M (b) M◦ Φ (c) F (d) Φ

Figure 5.7: Images of Φ from model V.
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Chapter 6

Discussion and future work

6.1 Conclusion

In this thesis, we proposed to use neural implicit representations in image registration for both
the images and the transformation. We presented two simple models that use these implicit
representations, a small deformations model D and a diffeomorphic model V. These models
yield differentiable images and transformations that can be sampled at arbitrarily high resolu-
tions. The neural implicit representations allow derivatives to be computed analytically which
makes the implementation of regularization trivial.

The goal was to explore the idea of integrating neural implicit representations into models for
medical image registration, not to provide a method performing on par with current state-of-the-
art image registration methods. The neural implicit representations of the images used in our
experiments did not represent the image perfectly. The data in the dataset that we used was
too detailed for our specific implementation. Despite this limitation, our model does provide an
improved alignment with average errors lower than half of the average displacement in most
cases.

6.2 Discussion

The neural implicit representations make it so that there are no errors introduced due to inter-
polation or the approximation of derivatives. For any coordinate, we can analytically compute
its contribution to the loss. However, one thing that still has to be taken into account is how well
the implicit representations of the images approximate the scene in reality. In the experiments,
these approximations were far from perfect, as there was a significant loss. The fact that there is
a significant loss in the representation of the images leaves room for improvement. Because of
limitations in time and GPUmemory, the images are represented using neural networks with ap-
proximately 500,000 weights, while the images in the experiments contain between 6,000,000
and 33,000,000 voxels. Within our implementation, this compression does cause the loss of
some information. We tested deeper neural networks with a similar amount of weights, this did
however not improve the performance.

Using neural implicit representations for image registration could overcome the limitations of
discrete image registration. Discrete methods are inherently limited by the resolution of the
data. Consequently, the potential for continuous methods is higher than discrete methods can
ever be. Also, the fact that interpolation is required for transforming the images means that
information can get lost between transformations. In the discrete case, given a perfectly ac-
curate inverse transformation Φ−1, performing Φ and Φ−1 in succession would, in general, not
give back the exact original image due to interpolation. In the continuous setting, however, the
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result would be the exact original image.

The potential of the accuracy of registration is very high for neural implicit representations. How-
ever, the speed of registration is a point of concern. Without conditioning a network on other
data, optimizing a model per image pair is very time-consuming. Also, the requirement for learn-
ing an implicit representation for every image slows down the registration. Doing these things
more efficiently is crucial for the speed of registration.

6.3 Future work

Generalizing the model for one-shot registration

For several medical tasks real-time registration is useful. This would require generalizing the
model so one could one-shot register any input image-pair. In VoxelMorph [20], a model is pro-
posed for this purpose. The model takes two images as input and gives the deformation field
as output. Doing this in a continuous setting would require the model to output the weights of
a neural network that represents the deformation. Also, the input images should be replaced
with implicit representations, i.e. the inputs for this model are the weights of the networks rep-
resenting the respective images.

Generalizing the model also opens up the opportunity for semi-supervised learning, using the
landmark information during training where available.

Coarse to fine

The registration models presented in this thesis performed relatively poorly on data with large
displacements. Aside from improving the neural representations, a possible improvement could
be made by mimicking a pyramid scheme, as often used in traditional variational methods for
image registration. In a setting with implicit representations, one could start training with a very
low value for ω. A low value for ω will lead to a low-frequency solution, so this way the network
would be able to catch the general large motions, but struggle to represent the smaller details
in the transformation. During training the ω can be gradually increased, allowing the network
to represent smaller details every iteration. Ideally, this would improve the registration of the
larger movements. However, it could be the case that implementing a scheme like this would
not lead to an improvement in the learning of the larger movements, while slowing down the
learning of the smaller details for no benefit at all.

Integrating without discretizing

The diffeomorphic approach discussed in 2.5 does in reality not guarantee the preservation of
topology because of the discretization in time. Since the implicit representations allow us to
work in a continuous setting it might be interesting to think about ways to analytically compute
the integral of the velocity field. Ideas similar to AutoInt [21] might be interesting, however, for
our problem the integral is not along a straight line, which complicates the integration.

Finding a better way of integrating the velocity field could also speed up the training process
significantly, as the current implementation is very slow.
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Appendix A

Supplementary figures

(a) Ground truth (b) Training data

(c) ω = 10 (d) ω = 20 (e) ω = 30 (f) ω = 40

(g) ω = 50 (h) ω = 60 (i) ω = 70 (j) ω = 100

Figure A.1: Implicit representation on unseen coordinates for different values of ω.
Figure (a) shows the ground truth image and (b) shows a lower resolution version
of the same image that is used for the training for this particular figure. Figures (c)
- (j) display the learned implicit representations for different values of ω, using the
training data from Figure (b). For a very low value of ω as in (c) the result is too
smooth and lacks high-frequency details. For higher values the results do contain
details of higher frequency. However, as ω keeps increasing the results become
more ’grainy’, especially visible in (j).
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(a) Moving image. (b) Fixed image.

Figure A.2: Evolution of the PSNR during the optimization of the neural implicit
representations, for both the fixed and the moving image from 4DCT1.
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(a) Original image. (b) Original image, zoomed in.

(c) Neural implicit representation of
the image.

(d) Neural implicit representation of
the image, zoomed in.

Figure A.3: First image of 4DCT1 from the DIR-Lab dataset compared to the neural
implicit representation of this image that is used for the experiments in chapter 5.
Especially in the zoomed-in views it becomes apparent that there is no perfect cor-
respondence between the images and their neural implicit representations within
our implementation. The PSNR of this implicit representation is 39.1. The image
contains 6,160,384 voxels, whereas the neural implicit representation is described
by 526,336 weights.
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Figure A.4: Evolution of both the loss function and the average registration error
during optimization for model V, optimized for predicting the deformation between
the images of 4DCT1. The loss is plotted on a logarithmic scale.
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(a) M (b) M◦ Φ (c) F (d) Φ

(e) M (f) M◦ Φ (g) F (h) Φ

(i) M (j) M◦ Φ (k) F (l) Φ

Figure A.5: Images of Φ from model V from different angles. (a) - (d) Axial, (e) - (h)
coronal, (i) - (l) sagittal.
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(a) Distribution of the determinant of
the Jacobian.

(b) Visualization of the determinant of
the Jacobian for an axial plane.

Figure A.6: Images of the determinant of the Jacobian of Φ from model V.
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