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Abstract

Visually impaired people are currently severely limited in their ability to navigate their surroundings.

While they have the ability to detect certain objects within the range of their white cane, objects

outside of this range are hard to detect and nearly impossible to identify.

For this purpose, a haptic navigation wearable is proposed which attempts to improve the

mobility of these people by giving them more information on objects outside of their cane’s reach.

This wearable is capable of detecting and identifying objects and can be used by visually impaired

people to find specific navigationally significant objects such as pedestrian crossings, doors, and

stairs..

In order to evaluate such a device, a reliable, reproducible, and safe way of evaluation is

required. This project presents the usage of VR peripherals, digital environments mapped to real life

environments, and automation as a way to test and evaluate such a device.

The evaluation of the haptic wearable using this VR method has shown that, while limited in

scope, this wearable shows a proof of concept, allowing users to better understand their environment.

For future works, it is proposed that more development is done on the haptic language, the

portability of the device, and the implementation of non-euclidean spaces to map large virtual

environments to smaller real life test areas.
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Chapter 1: Introduction

1.1 Context

Visually impaired people are currently limited in their use of senses to navigate around their

environment. While they can use sensory and aural feedback through the use of white canes and their

ears to get around safely, there has yet to be a more definitive technological solution to this problem.

Haptic wearable devices, using micro sensors and actuators, would have the possibility to

both map out the information of their surroundings and communicate this information to the user,

without further adding communication load to the auditory senses. Such haptic wearable solutions

could be used to further help a visually impaired navigate their surroundings in an intuitive way and

improve their navigation capabilities in situations where the sole use of conventional tools such as

white canes fail.

This graduation project is done as part of a larger project in collaboration with other graduation

students. The larger project contains the entire scope of developing this haptic wearable, with each

student handling a different subdomain.

The device that will be developed for this project uses a sensor array, which generates and processes

data on the environment of the user. This data is then passed on to an actuation system consisting of

vibration motors which is able to convey this information to the user using different signals and

patterns. However, the generation of such algorithms and the creation of a system for processing the

data is a time intensive task. Furthermore, testing a novel sensor system in potentially dangerous

environments such as pavements near ditches or train platforms, is undesirable. Due to the scope of

this project, the finished sensor system will not be able to be tested by the end of this project.

Therefore, in order to still be able to test the device during development in semi-realistic situations

and in order to be able to test the concept of the device, a virtual environment system is to be

constructed which will be used as a substitute for the sensor system, but will also be capable of

generating data similar to the data gathered from the sensors of the sensor system. This data will then

be able to be used as dummy data for testing the concept of the device in action.

In order to realistically simulate data and test the system, a virtual environment needs to act

as a replica of the real world. Furthermore, by mapping this virtual world to the real world, it is
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possible to have users test the device in a natural way. As an example, one of the situations which

poses problems for VI people is the occurrence of hanging objects such as extruding storefront signs

[7]. Rather than testing the device in this situation in real life, a virtual environment can be built that

copies this real situation 1 to 1. By having testers stand in an area cleared of obstacles and by tracking

their movements, it is possible to simulate the position of the tester and the device in the virtual

environment. Now, if the tester would accidentally walk into the location where the sign would be in

the virtual world, they would not get hurt as the sign would not exist in the real world. In recent

years, the usage of VR peripherals for this purpose has grown, with recorded academic usage of VR as

an evaluation tool for projects such as autonomous vehicles[1] and eye controlled wheelchairs[2]. In

using these virtual environments rather than real environments, situations can be simulated which

might otherwise be dangerous to test in real life situations.

Furthermore, in iterating and designing a wearable, appropriate evaluation requirements,

measurements of success, and experimental setups should be identified. This will aid the design

process as a whole and adhere to the general standard practices in developing products.

This project specifically will deal with the construction of the virtual environment tool for the

purposes which have been described above and how the end product can be evaluated and tested

using this digital environment.

1.2 Problem Statement

The goal of this project is to develop a VR evaluation tool and to use this evaluation tool in testing

the described haptic wearable and by extension, complete the development of this haptic navigation

wearable. State of the art research needs to be conducted regarding previous projects in the domain of

VI navigation and their methods of evaluation and the usage of VR in simulating real world

environments. Furthermore, research should be conducted with VI people using surveys, interviews,

and user tests in order to identify and test problematic situations in navigation for VI people. The

wearable should be designed to not replace current tools (i.e. white canes), but act as an extension of

the latter. Required functionalities include the detecting and communicating of the direction of

objects relative to the user and object identification.

Due to the nature of the project, thought should be put into the procurement of data from

potential users (i.e. visually impaired people). Through the client and their connections, it should be
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possible to get into contact with this group, although it should be noted that likely due to the

Coronavirus pandemic, there can be issues and limitations in contacting and interacting with

potential users. All equipment, i.e. sensors, actuators and VR peripherals are readily available through

the EEMCS SmartXP lab and will be sourced from either SmartXP, the client, or personal

inventories.

1.3 Research Questions

The goal of this collaborative project is to successfully design, implement and test an assistive

navigation wearable or device, using haptic feedback. As such, the main research question is as

follows.

How to design a wearable which improves the navigation capabilities of visually impaired

people using haptics?

In order to effectively design the evaluation tool, research will be conducted on several fronts.

First, the evaluation methods of previous VI navigation tools will be researched, in order to

gain an understanding of how the wearable could be evaluated. This knowledge will subsequently be

applied for the design of the VR tool.

Second, the shortcomings of VI people in navigation will be identified in order to make the

wearable useful, but also to be able to incorporate these situations into the evaluation. As a result the

following sub research questions are identified.

SQ1:

What are the shortcomings of the current way people with a visual impairment navigate?

SQ2:

What are possible use cases of such a haptic navigation device for people with a visual

impairment.

SQ3:
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What are the testing methods and evaluation criteria for previous navigation devices for

people with a visual impairment?

SQ4:

How can a real world environment be mapped to and interact with a virtual environment?

SQ5:

How to design a tool using a VR environment that allows for the evaluation of a haptic

navigation device for people with a visual impairment?
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Chapter 2: Exploration

The scope of this project concerns two things, the creation of a VR tool for evaluating the actuation

and the design of a test/evaluation plan. In order to execute both, preliminary research is required.

First of all, shortcomings in daily navigation of people with a visual impairment should be

identified. From these shortcomings, the possible use cases of the device should be investigated in

order to determine the scope of the device and to develop a proper test strategy.

Second, previous projects concerning VI navigation should be explored in order to gain an

understanding in common practices for evaluating such systems. This information can then be

synthesized and used to create a more complete evaluation plan for this project and identify the

requirements of both the tool and the plan.

Finally, state of the art should be explored on the usage of VR in HMI evaluations and

particularly on the usage of tracking and mapping of spaces in VR. This information will serve as a

guide to implementing the VR tool.

2.1 Shortcomings in VI navigation

The purpose of the proposed VR tool is to substitute the data from the sensors of the device, by

simulating a real environment. Therefore, the requirements of this tool are directly related to the

requirements of the sensors and the design and limitations of the sensors. In order to identify the

requirements of the sensors, research will be conducted regarding the shortcomings in current

navigation aids, useful features for new navigation aids, and situations where using only a white cane

is not sufficient in effectively navigating. This is done with a focus group and conducted with 3 VI

participants. Further information on the focus group and the result of the focus group is provided in

the sections below.

2.1.1 Focus Group

The goal of the focus group is to identify the shortcomings in daily VI navigation. It consists of 3

people ranging from 28 to 65 years old. Levels of visual impairment range from complete blindness in

a single eye, with 97% blindness in the other, to complete blindness. Main areas of interest include

the problems faced in navigation, the usage and effectiveness of currently used navigation solutions,

and design criteria for the to be designed device.
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Problems in navigation which are found during the interviews are analysed and categorized into

several categories; point to point navigation, orientational navigation, and obstacle avoidance.

Point to point navigation is defined as navigation which deals with long term navigation. An

example of this would be aiding the user in navigating from their house to a bus stop a few streets

down.

Orientational navigation is defined as navigational aspects which deal with navigation

through visible clues. This includes the identification of navigationally significant objects such as

doors and road signs within the field of view of the user.

Finally, obstacle avoidance navigation is defined as navigational aspects which deal with

identifying and avoiding static or moving obstacles in their path.

The usage of navigation aids by the members of the focus group is inquired as well. This information

is subsequently analysed to see if there are any patterns in devices which are deemed useful or

unuseful. This information can then be used to decide whether specific functionalities should be

included or avoided while designing the device.

Lastly, the focus group is asked about their preferences in using and wearing the device, such as

possible locations for carrying the device, i.e. on the head or on the chest, and restrictions on weight.

The focus group is to be conducted using an unstructured interview format. From each interview,

notes are taken and discussed among the project members. The full list of interview questions and

notes for each interview can be found under Appendix A.

2.1.2 Conclusion use cases

People with a visual impairment are relatively capable of navigating known surroundings which are

static and are within reach of a white cane. However, problems arise when they are unfamiliar with

their surroundings. As a result, they will rarely travel to new locations, as the route to go to such a

place will need to be learned with someone who can see. This is due to the fact that VI people tend to

navigate using “orientation points” which they use to determine where on their route they are and

when they need to change directions, etc. These orientation points are usually objects which can be

felt using either the cane or their extremities. However, finding these objects without any pre
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knowledge would be impossible. This is also the case when navigating buildings and open spaces. For

example when navigating towards a shop in a shopping centre, it tends to be hard for VI people to

find the entrance to a shop . While navigation applications such as Google Maps can direct users to

the general location of a shop, the limitations of gps and information gathering, usually result in

Maps directing the user to the general location of the entrance, which is not precise enough for a

person with a visual impairment to find an entrance.

Furthermore, there is also the issue of hard to detect obstacles. In general, hanging objects

and any objects which are not attached at ground level are hard to detect as they cannot be found

with a white cane. Furthermore, objects near the floor with a significant height difference can be hard

to detect as well, such as a drop to the road from the pavement. These objects can result in painful

accidents, which further demoralize these people in exploring the world.

Lastly, outside the realm of navigation, people with a visual impairment have trouble finding

objects in general. In the case an object is placed on a table, and the person forgets where they put

that object, it is hard for them to retrieve said object. The same situation can be found when they

drop something on the floor.

In conclusion, the main areas of shortcomings in VI navigation concerns the finding and

identification of objects which have navigational significance and finding hard to find obstacles.

2.2 Evaluation and Testing

In order to determine how the device should be evaluated and a test plan, a literature review is

conducted in order to find patterns and categorizations in how previous academic projects relating to

VI navigation were evaluated. The research questions followed during this research are focused on

what the goals are of evaluating a navigation device, what type of data is measured when evaluating

these goals, and how this data is obtained. This review has been compacted and summarized in the

sections below.

2.2.1 Categorizing goals of evaluation

When looking at all of the articles, recurring goals can be abstracted from the evaluations described.

To clarify, a goal is defined as the general purpose of an evaluation. Of course, since a paper can

describe multiple evaluations, it is possible that a single paper will contain multiple evaluation goals.
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Among the researched papers, a total of 4 recurring goals can be found. These will be further

described as domains.

The first domain is the evaluation of sensors. Evaluations in this domain focus on the testing

of sensors used in the navigation devices. This evaluation is used to determine whether the

performance of the sensor system is capable enough to fulfill the system's requirements. An example

of this domain of evaluation can be seen in a project report by Singh & Kapoor [5] which describes a

smart cane using ultrasonic sensors to detect its surroundings. For this project, the ultrasonic sensors

were tested. A project can also test multiple sensors separately such as a project by Khan et al. [14]

which evaluated both ultrasonic sensors and cameras using object detection individually.

The second domain is the evaluation of the feedback of a device. These kinds of evaluations

are used to test the method of feedback employed in the system. The goal of this evaluation is to test

the intuitiveness and effectiveness of the feedback, not so much the performance of the actuators

themselves. It does not matter what type of feedback is evaluated. For example, a smart cane devised

by Nasser et al. (2020) [15] uses thermal feedback in order to communicate directional information.

Another project by Alzighaibi et al. (2020) [12], uses haptic feedback on a foot sole to communicate

directional information. Even though the method of feedback is different, both still aim to evaluate

the factors concerning the feedback, therefore both evaluations are categorized as feedback

evaluations.

The third domain is the evaluation of functional effectiveness. Evaluations in this domain

concern the overall effectiveness of the device in real life situations and tests a combination of both

sensors and feedback. Rather than looking directly at the sensors and feedback, the combined

effectiveness is typically measured by looking at variables which are indirectly influenced by these

components. Examples of this can be found in articles by Nair et al. [16] and Giudice at al. [18] where

factors such as average walking speed and the amount of errors in navigation are measured.

The last domain is the evaluation of the user experience. The goal of evaluations in this

domain is to find out what the user thinks of the device and to probe the perceived usefulness of the

device by users. It mostly consists of subjective data collected through surveys and can be found in

nearly all projects testing a full product or MVP.

2.2.2 Types of data measure per domain

In order to get a better overview of the relation between the domains and the type of data that has

been measured, the types of data will be discussed for each previously mentioned domain.
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2.2.2.1 Evaluation of Sensors

With sensors being one of the pivotal parts of any smart device, the evaluation of them would

logically be common among projects involving object navigation.

When evaluating sensors, the goal is to gain insight into the reliability of the sensor. The

accuracy of a device’s sensors is evaluated by comparing the distance measured by the system and the

actual distance as set by the experimental setup [5][14]. Furthermore, projects employing the

evaluation of sensors will typically focus on the placement and combination of sensors on their

device, in relation to the effectiveness of the sensors.

Apart from measuring the accuracy, sensors can also be evaluated in terms of performance

speed. As an outlier, Khan et al. [14]  are the only one to evaluate this, measuring the average frames

per second achieved by their system. This could be explained by the fact that their sensor system

uniquely includes an rgb camera and image recognition. Image recognition inherently takes up more

processing power compared to processing sensor data using one dimensional data like distance

measurements. As a result it is possible that this type of evaluation could be insignificant or

redundant for systems employing less sensor data.

2.2.2.2 Evaluation of Feedback

Given the focus on VI people, the performance of the feedback is another logical thing to test. If

feedback is unintuitive or hard to distinguish, users may make mistakes in navigation or react too late

to the given signals.

Evaluation of feedback can be done by comparing the feedback as experienced by the tester

and the actual feedback sent out by the device [12] [11]. By measuring the difference in perception of

feedback and the actual feedback given, the distinguishability of the feedback and how accurate users

interpret the feedback can be evaluated.

The other approach is to measure the duration of time between the start of the feedback and

the reaction from the tester [6]. This will not test the correctness of the perceived feedback, but

rather seeks to understand how quickly users can react to the signals.

2.2.2.3 Evaluation of Functional Effectiveness

By far the most popular type of measurements are from the domain of functional effectiveness. The

frequent usage of testing the overall effectiveness can likely be attributed to the nature of the project
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which is very much akin to designing a user product. As a result, evaluations end up being similar to

forms of user tests.

In order to gauge the effectiveness of the finished product, the most common method is to

measure the time it takes for a tester to complete a predetermined course. Two variations of this

approach can be found.

First, one can draw conclusions from the average walking speed which is calculated by

dividing the total distance of a predetermined course by the time it takes a tester to complete the

course [7] [14]. On the other hand, one can opt to only record the time it takes to complete a

predetermined course, without calculating average speeds [16] [18]. However, all sources agree on

the importance of testing the movement speed of users, as it gives an important indication on the

improvement in mobility. With mobility being “important for activity and social participation” [7], it

is only logical that mobility is central to the problem being addressed in VI navigation.

Lastly, another indicator of the improvement in mobility is the amount of “events” caused by

the system [16]. Nair et al. define these events as “(1) bumps into walls and other obstacles, (2) wrong

turns, and (3) needed interventions by the authors while using the app”. The amount of these events

is subsequently counted and recorded while users complete the course.

2.2.2.4 Evaluation of User Experience

Lastly, part of any product development process is the usability test. Usability tests are used to

evaluate the acceptability and are considered “paramount to the successful development” of a VI tool

[16].

The performance of a device’s usability is typically defined using either a 5 point likert [14]

[18] or 10 point [15] score based on survey questions. The questions probe a variety of topics and

include the comfort of using/wearing the device [14], the perceived usefulness and helpfulness in

mobility [14] [15] [16] [18], the preference compared to conventional navigation tools [14] [18],

demand of the user [15], the amount of effort exerted or ease of use [15] [16] [18], the amount of

frustration in using the device [15], the general score of the device [15], ease of navigation (with or

without device) [16], and the confidence in using the device compared to without [18].

2.2.3 Measurement methods and setup

For testing objective aspects, systems can be tested in an experimental setup, as done by Alzighaibi et

al. [12] and Bizon-Angov et al. [11], where testers were sat down in a room and were given feedback
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based on simulated input. In other words, rather than testing the feedback in a real life situation using

input from the sensors, the feedback can be tested in a systematic fashion with researchers

controlling when and which feedback signals are sent. However, systems might also be tested in a

more realistic setup, where users will typically complete a course within a real life setting [18], or

within a controlled environment which mimics a real life environment, using objects such as

cardboard boxes to simulate obstacles [7].

In both cases there is a tradeoff between faithfulness to real life situations and the ethicality

of potentially hurting the VI testers either physically or mentally. As Dos Santos et al. [7] explain,

their experiments were designed in a specific way, prioritizing the ethicality of the experiment as

“walking into these obstacles could have caused unpleasant embarrassment among the visually

impaired participants” [7].

Finally, in order to test the subjective aspects, surveys can be conducted. In order to increase

the efficiency of evaluating both the system performance and the user experience, surveys can be

conducted before and after the objective tests [16].

Surveys before the test are used to gather information on the participants and their current

state or situation, i.e. experience with using navigation tools, general difficulty in travel.

On the other hand, surveys after the test are used to gauge the experience of the user during

the test and therefore will typically only contain questions regarding the system itself [15] or

questions comparing the system and the current state of the art [14] [16] [18].

2.2.4 Summary of evaluation methods

In conclusion, there are a few patterns that emerge in evaluating object navigation systems for people

with a Visual Impairment.

Evaluations of such systems typically aim to evaluate either individual aspects or the system

as a whole. Individual evaluations include sensor evaluation, feedback evaluation, and user experience

evaluation. Multiple types of evaluation can also be combined depending on the needs and focus of

the project. A new project for developing a new navigation system should pick at least one of these

goals of evaluation depending on the focus of the project.

Data measured depends on the goal of the evaluation. Evaluations aiming to test the sensors

of a system should include measurements of accuracy and speed. Evaluations testing the feedback of

a system should aim to test the intuitiveness through the accuracy at which users can identify

different feedback signals and how quickly they can do so. User experience evaluation should focus
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on the additional value in using the system, the efforts of using the system, and optionally the

experience of being a VI person. If the whole system is to be evaluated, developers should include

measures that measure the increase in mobility, as this is the main problem addressed in VI

navigation systems.

Finally, developers often have to choose whether they want to use a highly controlled

environment such as a mock course, or a more realistic but less controlled environment. Ethical

responsibility and faithfulness of recreating a realistic environment should be considered when

making this decision.

2.2.5 Conclusion on Evaluation and Requirements

Using the knowledge gained from the literature review, the following conclusions are made regarding

the design and requirements of testing and evaluating this project.

First of all, for the purpose of this project, the domain of functional effectiveness and the

domain of user experience is most relevant, as the division of tasks in this shared project makes it

impractical to evaluate the individual systems.

In the development of the device for this project, an iterative approach will be taken. This

means that there will be several rounds of evaluations throughout the development process. Sensor

systems and actuation systems will be tested separately in the early stages of development to ensure

that the minimum requirements of those components are met. Then, in the later stages of

development, the system as a whole will be evaluated together with the user experience.

Second, where possible, data should be collected by the systems themselves in order to

determine the performance, reliability, and accuracy of the system. This will particularly apply to the

sensor system, which should record data on what objects are identified and their relative location in

order to be checked for accuracy.

2.3 Implementation of VR

Given the requirements of the VR tool determined by the general requirements as identified in 2.1

and the evaluation plan as described in 2.2, the main functionality of the tool will include the

identification of objects and obstacles in the virtual environment, the ability to track movement in

the real world to the virtual environment, and the ability scale the virtual world to fit the real world,
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in order to best simulate the real sensors. In order to gain an oversight of current relevant

technologies, the following section will contain a brief state of the art overview.

2.3.1 State of the art

In the academic world, the usage of VR has mainly been limited to the context of using the headset of

a VR device to create an immersion as done by Shi et al. [1] and Diederichs et al. [3]. However the

usage of tracking real life movement in a virtual environment for research purposes does not appear

to have been practiced yet, or at the very least is still very obscure. On the other hand, there is quite

some popularity of mapping VR to the real world in hi-tech communities. In order to gain an

understanding of the possibilities and devices used, the state of the art will focus on the usage of VR

to map the real world to the virtual world in non-academic settings.

2.3.1.1 Greg Madison - Hand tracking on flat surfaces [19]

Oculus Quest

Greg Madison is an Interaction and UX designer for Unity Technologies. Outside of his work, he

uploads videos on his youtube channel which includes experiments on the mapping of his home

environment to a matching one in VR. In his latest endeavours, he has made use of the Oculus Quest

and its hand tracking capabilities in order to create interactive surfaces inside of his house on real life

surfaces. Of interest is the fact that his entire apartment has been accurately mapped to VR, allowing
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him to move around freely (as the Oculus Quest does not require a connection to a PC) and interact

with real life objects in VR.

This project greatly demonstrates the mobility and flexibility of the Oculus Quest 2. As the

device is wireless and light, it will minimally impair the testers of the wearable. Together with the fact

that the Oculus Quest 2 is readily available for this project, this makes a strong case in using the

peripheral in implementing the tracking.

2.3.1.2 MediaMonks SP - Into The Wild (Singapore ArtScience Museum) [20]

Lenovo Phab 2 Pro

Into The Wild was an interactive experience that was exhibited at the ArtScience Museum in

Singapore. The experience saw visitors use a tablet issued by the museum as a viewfinder and explore

a virtual world depicting a rainforest. This virtual world itself was mapped to the building of the

ArtScience Museum, allowing visitors to walk around the museum while traversing the virtual world

as well. In an article written by the Technical Director of the Team Rene Bokhorst [20], the following

technical aspects were of interest to this project. First of all they needed a device that was capable of

tracking their 3d position and orientation inside of a given space. The tracking was also required to be

accurate and fast enough in order to maintain the immersion. Second, Unity3D was used to create
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and render the virtual environment onto the camera feed of the tablet. Lastly, they discuss the

method of lining up the real world with the virtual world. In order to do this a scale must be set for

the virtual objects to make sure that they are using the same measurements as real life. From there,

both environments are “overlaid” by shifting the position of the virtual world over “anchors”, points

where the real world and the virtual world would take as an origin point.. These anchors needed to be

multiple as a single anchor is not enough to determine a 3d plane such as the ground.

The approach and implementation of this tracking method is useful to this project as it allows

the project to map the virtual environment to a physical space. This is helpful to be implemented as it

will ensure the safety of the tester. By clearing a predefined space in real life and making sure that the

virtual world is contained within that space. The tester will be able to walk around the virtual

environment without having to worry about walking against obstacles.

2.5 In conclusion: implementation of the VR tool and the system

Given all of the specifications, the following design was proposed among the members of the project.

The entire system consists of 3 sub-systems. First there are the sensory sub-systems, these include the

real life sensor system and the VR sensor tool. These systems provide input data to the entire system.

This input is sent to an interface connecting the sensors with the actuation. Each call to the input

represents a “sentence” and is mapped to an appropriate output which calls the actuation system to

create a feedback signal.

The entire system will be attached to a backpack which carries an Intel NUC mini desktop. This

desktop directly connects to the sensor array consisting of the Intel RealSense D435 and will act as

the processing unit for the sensors and the interface. The actuators will consist of an unspecified
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collection of vibration motors which will be controlled by a TinyPICO ESP32. The TinyPICO in turn

will connect with the processing unit and interface through bluetooth.

For this project, VR will be used only as a substitute to real life sensors in the early stages of

development. Due to popularity and accessibility, Unity3D will be used to implement the virtual

environment. For the tracking of movement in the virtual world, the Oculus Quest 2 peripheral will

be used. Subsequently, the virtual environment and the simulation of data will be run in Unity on the

Quest itself. Since the processing unit and interface are housed in a separate hardware unit, the Quest

will connect to the interface using TCP protocol.

The Virtual sensors will be attached to an approximation of a user in the virtual environment

and will be used to supplement the dummy data. With the sensors currently being placed on the

chest of the user, a strap will be created which can mount a VR controller to the chest of a user in

order to track the position in the virtual world. These virtual worlds will contain scenarios which

contain navigational points of interests such as doors and staircases. Also, in order to simulate the

intended functionality of the sensors, the virtual environment will simulate the sensors by using

raycasts within the field of view of the real sensors to check whether the point is visible by the

simulated sensor. If so, this data will be processed and outputted in the same way as the real sensor

system, which will cause the actuation to generate a signal. This setup will be used when testing the

actuation of the system without the real life sensors. Full system requirements can be found in 2.1.3

2.5 In conclusion: evaluation plan

At least one evaluation should be done at the end of the project, containing both the evaluation of

functional effectiveness and the evaluation of user experience (see Chapter 2.2). As described in the

previous sections, measurements of time, the amount of incidents, and the user’s opinion should be

recorded to this extent.

In general, all evaluations should follow the same structure. In both cases, the tester will be placed in

an empty space in the real world. From there, the virtual environment will be mapped to the

constraints of the space and the tester will be blindfolded. Next, they will be led to a specific starting

point and given a specific object/orientation point which they will need to find. While they are

walking around looking for these orientation points, they will attempt to avoid other obstacles as

indicated by the device. After each found object, the time between the finding this object and leaving

21



the starting point will be recorded. Afterwards, users will fill in a survey pertaining to their thoughts

on the experiment and the device. A full overview of all the measurements and survey questions is

given below.

Measurements for experimental test simulating real life situations

● Measuring time between leaving the starting position and reaching the goal.

● Measuring the total number of incidents while navigating the course.

○ Incidents include collisions with obstacles, or walking outside of the designated test

zone

Questions for evaluation Survey (7 point Likert scale) conducted after test

● Measuring the perceived usefulness of the device.

○ How would you rate the device overall?

○ How safe do you feel when using the device?

○ How useful is the device for navigating, compared to only using the white cane?

● Measuring the effort in using the device.

○ How much physical effort did it take to use the device?

○ How much mental effort did it take to use the device?

○ How tiring was it to navigate this situation?

○ How frustrating was it to use the device?

○ How confident are you in interpreting and recognizing information from the device?

Further questions specific to subparts of the project may be appended to this questionnaire by other

project members.
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Chapter 3: Ideation

3.1 Design of the product and Use Cases

From the shortcomings identified in 2.1, three use cases are proposed after careful consideration.

These use cases determine the initial requirements of the sensor system and the actuation system.

Subsequently, from the requirements of the sensor system in combination with the evaluation plan

for the device, the requirements and the design for the VR tool are determined.

3.1.1 Use case ideation

From the focus group interview a total of 3 use cases are considered. Two of these use cases are tied to

a specific subtype of navigational problems identified during the interviews. The last one is identified

as a solution to a recurring problem related to the topic of visual impairment, but which is outside of

the scope of navigation. A short overview of all the use cases will be given in the sections below.

3.1.1.1 Orientational context navigation and “Last few metres”

This use case is conceived as a result of a recurring problem within the focus group of identifying

orientationally significant objects.

People with a visual impairment are unable to detect anything outside of their range, as they

can only identify objects using touch and sometimes sound. As a result, objects which are outside of

their reach are hard to find and identify. In many situations it is useful to know whether a specific

object is in the vicinity of the user and if so, where that object is located in relation to the user. This

can be useful as VI people will use certain objects for which they know the location of, in order to

navigate. However, it can sometimes be difficult to find those objects if the context is lost, i.e. when

the person loses their bearing. Furthermore, this situation is also relevant in the phenomenon of “the

last few metres”. Due to the limitations of GPS and data storage, pedestrian navigation applications

such as Google Maps will bring you to the general vicinity of an intended destination. However, if

this destination is a shop or another building with an entrance. The user would still need to navigate

towards this entrance. In this case, it is useful for users to be able to find doors in the vicinity as the

nearest door would likely be the entrance to the intended location. In order to further increase the
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scope of the device, it is also proposed that the device would keep track of obstacles in front of the

user in order to make sure that the user can avoid those on their way to the desired location.

3.1.1.2 Waypoint navigation

This use case is further tied to the topic of finding objects with orientational significance.

As mentioned earlier, VI people use “orientational objects” in order to keep track of their

location. When they want to go to a certain location, this will mean that they first need to learn the

route to this location by remembering objects en route which they can use to determine when to turn

into a new street, etc. To this use, previous devices exist which can save the GPS coordinates of

locations which the user can set. When the user then approaches one of these locations, and thereby

the orientational object, the device will tell the user the name of the current location and possible

instructions as programmed by the user. The goal of this use case is to further improve on this

concept by combining the usage of setting GPS coordinates with object avoidance and guidance

towards a location. Where the user was given no directions previously on where the location was, but

only was told they were at a saved location if they arrived, this new device would be able to direct the

user to a chosen GPS location. This would also be useful in situations where the user would be lost

and need to navigate back to a known location.

3.1.1.3 Object location

Finally, this last use case is tied to a recurring problem outside of the navigational scope of this

project. Nonetheless, this use case will be discussed as it is an interesting idea which would still allow

for the development of a haptic sensor device.

Understandably, it is difficult for people with a visual impairment to find objects in their

vicinity. This is the case in navigation, but also in more domestic areas. For example, accidentally

dropping your keys, and subsequently having to pick them up is a relatively straightforward

procedure for people with sight. However, for people without sight, this would be a problem as they

would need to “scan” the ground with their appendages in order to feel and find the keys. The same

applies for misplacing things. People with sight would be able to look around in order to look for the

misplaced item. However, for people with a visual impairment, finding the object would be a tedious

and time consuming task. For this use case, the device would specifically be aimed at tracking the

position of objects and classifying them, subsequently outputting that information to the user.
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3.1.2 Final use case

After deliberation with both the supervisors of this project and when considering the use case with

the most potential for future development, the first use case of “Orientational context navigation” has

been chosen.

While the second use case seems very interesting and relevant to the scope of the project, it

has eventually been decided that this project did not have enough potential for furthering the current

state of the art in navigational aids. The intended device for this use case, while effective, is deemed to

be too similar to current state of the art solutions. Furthermore, it did not present any clear ideas on

how to improve this solution. In conclusion, the orientational context currently seems as the most

useful and promising solution in filling out the gap in the current state of the art.

Lastly, the non-navigation use case of finding objects has been dismissed as it is deemed that

the usage of a haptic device for such usage would be too unintuitive as informing users on precise

locations in 3d using only haptics would be very complex and better reserved for different types of

actuation, outside the scope of this project.

3.1.3 Use case scenarios

From the selected use case, a number of use scenarios are constructed. These use scenarios are

constructed by analysing the interviews from the focus group interviews mentioned in Chapter 2 and

looking at recurring themes for problematic situations.

As mentioned before, while looking through the interviews, it becomes clear that there is a recurring

theme of not being able to find “orientationally significant objects” or “orientational objects”. These

are objects which can be used by visually impaired people to navigate their surroundings.

Orientational objects can be used and identified in different ways by people of varying visual

impairment. In interviewees with a partial visual impairment, orientational objects are mostly things

such as stairs and elevation changes such as transitions from road to pavement, city infrastructure

such as traffic lights, and doors in large buildings. In interviewees with a full visual impairment,

orientational objects are often objects which do not have any direct navigational significance, such as

trash bins or bumps in the road. However, these objects are still useful to them, as they use these

objects to tell when and where to perform certain actions such as turning around or changing

direction.
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However, finding these objects can be difficult, and it is possible that the user may lose track

of them. It was found that this especially was the case in situations where incomplete information was

given, most commonly when Google Maps was used to navigate to a specific location, such as a shop.

While Maps is capable of bringing you close to the entrance of the shop, there is often still a few

metres between the user and the entrance. This recurring theme serves as the base of the design goal

of the device. As such, the chosen use case has also been dubbed as the “Last Few Metres” use case

within this project. The user scenarios as shown in the following sections have all come from this

starting point.

The following scenarios will be used as base scenarios on which to test the functionality of the device.

○ A user walks along a street on the pavement and needs to cross the road at an unmarked

traffic light pedestrian crossing.

○ A user is at the entrance of a train station and needs to climb several stairs in order to reach

the train platform.

○ A user walks along a road which is adjacent to a steep ditch.

○ A user navigates through a shopping centre, with benches and plants placed throughout the

path and multiple entrances to different shops.

○ A user walks in a park on a curved path.
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Fig. 3.1.3a: A user walks along a street on the pavement and needs to cross the road at an

unmarked traffic light pedestrian crossing.

27



Fig. 3.1.3b: A user is at the entrance of a train station and needs to climb several stairs in order

to reach the train platform.

28



Fig. 3.1.3c: A user walks along a road which is adjacent to a steep ditch.
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Fig. 3.1.3d: A user navigates through a shopping centre, with benches and plants placed throughout

the path and multiple entrances to different shops.
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Fig. 3.1.3e: A user walks in a park on a curved path.
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Chapter 4: Specification

4.1 Sensor system Requirements

Due to the scope of the project, only three of the user case scenarios described above are taken into

considerations for the specification. These scenarios are scenario 1, 2, and 4. From the use case and

these user scenarios, it becomes clear that in order to better let the user understand their

surroundings, they require knowledge of two things. First, they require knowledge of where they

cannot go. Therefore, the system needs to be able to identify and locate obstacles in a 3d

environment. Second, users should be able to identify and locate orientationally significant objects.

Therefore, the system should be able to identify and classify specific objects which can hold

orientational significance. The final requirements of all scenarios are described below.

● Sensors should be able to detect obstacles and orientationally significant objects which

include:

○ Pedestrian traffic lights

○ Roads

○ Stairs going up

○ Stairs going down

○ Doors

○ Normal obstacles

○ Hanging obstacles at head height.

● Sensors should be able to determine the location and distance to the detected objects.

In order to effectively communicate this information to the actuation subsystem, an interface and

corresponding protocol is designed by all members of the entire project team. This interface dictates

that data on obstacles is stored using a two-dimensional grid, which represents the area in front of the

user. When projected onto the floor, the location of these grids is akin to a cone, with divisions made

along the circumference of the cone. A circular part at the origin of the cone up till a certain radius is

ignored as this area is covered by the white cane, rendering the sensing of obstacles there redundant.
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Fig 4.1a: visual representation of the two dimensional grid and the location and size of its cells relative

to the user.

Each cell inside the grid stores information on any objects that intersect with the cell, or the absence

of objects.. This information includes:

● The type of object, which includes

○ Nothing

○ An obstacle

○ An orientationally significant object

● The classification of an object, if it is orientationally significant, which includes

○ Pedestrian traffic lights

○ Roads

○ Stairs going up

○ Stairs going down

○ Doors

○ Normal obstacles

○ Hanging obstacles at head height.

While initially it was thought that normal obstacles and hanging obstacles would be useful to

distinguish, tests showed that showing anything but orientationally significant objects would act as

noise. Users would typically get confused by the many obstacles in their surroundings, while there

was actually no need to distinguish between those non-significant obstacles. Therefore, the last two
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classifications of objects, “Normal obstacles” and “Hanging obstacles at head height” were

subsequently removed.

4.2 Requirements of VR tool

From these requirements, the project concerning the sensor system designed a system which

included an Intel RealSense D435, which is a normal colour camera combined with an infrared

sensor, allowing for the capture of depth data. Furthermore this camera has a vertical field of view of

57 degrees for colour images and 42.5 degrees for depth images, both at an aspect ratio of 16:9.

Finally, the initial design is for the sensors to be worn on the chest. Therefore, in order to faithfully

recreate the capabilities of the sensors, the following requirements were identified for the VR tool in

addition to the requirements stated above.

● The VR tool is able to provide data in the same format as the sensor system.

● The VR tool is able to emulate a virtual environment on the same scale as a real life

environment

● The VR tool is able to track movement in real life in order to move the position of the sensors

in the virtual environment.

● The VR tool is able to simulate vertical movement in the virtual environment (for example

when the user is walking at a location which should contain stairs in the virtual environment)

● The VR tool is able to simulate the location, rotation and field of view of the sensors in VR to

mimic the limitations of the real sensors.

In iterating the design of the actuation part of the device, an extra functionality was requested for the

VR tool, which was the inclusion of a “pointer sensor”, which would be able to tell where the user

was pointing, using the controllers of the VR headset. Therefore, a few additional requirements were

added. The iteration process is further described in Chapter 6.

● The VR tool is able to track what the controller of the headset is pointing at.

● The VR tool is able to send information on what the controller is pointing at through the

existing interface.
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4.2 Testing requirements

For the testing of the device, two distinct domains should be considered. First of all, the creation of

new environments should be facilitated. Second, the automated collection and evaluation of data

should be facilitated. Both of these domains should be in the scope of the project as both

functionalities further justify the usage of digital tools for evaluation. Both of these domains can be

split up into separate tools which are discussed below.

4.2.1 Requirements of Environment Creation Tool

As multiple scenarios have been identified which will serve as the starting point for the device, these

scenarios should also be used when testing and evaluating the device. Therefore, multiple virtual

environments need to be created. Furthermore, in order to maintain flexibility and better

accommodate the iterative process of design, it makes sense for anyone to be able to easily and

quickly create new virtual environments which can be used for testing. This also allows for better

reproducibility, as the virtual environments can be stored digitally and be used for future usage. This

tool should be separate from the VR tool so that people do not need VR headsets (which can be

scarce) to create test scenarios. Users should also be able to easily transfer the environment files to

the VR headset and the VR tool should be able to read these files without needing to alter any of the

program itself. The above section gives the following requirements.

● The creation tool is able to create files which can be edited again by the tool and which can

be read by the VR tool in order to generate a testing environment.

● The creation tool is able to read files created by itself in order to load in previously created

environments.

● The creation tool is able to set and save the scale of the scene.

● The creation tool is able to set and save objects in the scene with custom shapes.

● The creation tool is able to set and save roads and walls in the scene by drawing lines.

● The creation tool is able to set and save small objects with predetermined shapes.

● The creation tool is able to set the scale of objects with predetermined shapes.

● The creation tool is able to set the 3D position and height of objects with predetermined

shapes, roads and walls.
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Furthermore, in order to integrate the functionality of the VR headset with the environment tool, the

following additional requirements are identified for the VR tool.

● The VR tool is able to load files created by the creation tool, without alteration of the VR tool

itself.

● The VR tool is able to create environments, from said files which contain objects and

obstacles which can be sensed with the VR tool.

4.2.2 Requirements of the Evaluation Tool

As the VR tool allows for the automated collection of digital physical data, a strong case can be made

for the inclusion of a specific tool for evaluating this data within the scope of this project. In order to

maximize the flexibility of analysing later data, it makes sense to store the location and rotation of

the headset and the controller, rather than any specific measurements. By storing this data in

combination with which environment is being tested, it is possible to recreate the scene virtually after

the tests. This decreases the processing load of the VR tool, as it does not require live processing of

data and also allows for new measurements which can be applied after having tested the device using

the VR tool. Subsequently, the measurements defined in Chapter 2 for the evaluation of the device

should be implemented in a tool that can read out the stored locations and rotations and

subsequently derive the measurements. It is also important that researchers are able to replay the

experiments exactly in order to get better insights into the test results and the user’s behaviour. All of

this gives the following requirements.

● The evaluation tool should be able to read out positions and rotations from a file.

● The evaluation tool should be able to read out the environment which is being tested.

● The evaluation tool should be able to recreate and replay the test as it played out by showing

the headset and controller inside of the tested environment in 3D.

● The evaluation tool should be able to automatically derive the duration of the test.

● The evaluation tool should be able to automatically derive the amount of incidents that

occurred during the test.
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Subsequently, in order to integrate this with the VR tool, the following requirements are added to the

VR tool.

● The VR tool should be able to start and stop recordings.

● The VR tool should be able to create recordings of the position and rotation of the headset

and controller.

● The VR tool should be able to save these recordings in a file which can be read by the

evaluation tool.

37



Chapter 5: Implementation

The implementation of all tools developed will be discussed in the following sections. A total of 3

separate tools will be discussed as indicated in the previous chapter, with two of those tools

corresponding to the implementation of the VR tool, one corresponding to the implementation of

the Environment tool, and one corresponding to the implementation of the Evaluation tool..

5.1 VR Tool

The VR tool consists of two programs, the first one running on the Oculus Quest 2 and the second

running on the pc or device which is connected to the actuation’s ESP32. In the following sections, a

brief overview will be given of the implementation of both programs.

5.1.1 Unity3D on the Oculus Quest 2

For the program running on the Oculus Quest 2, the unity game engine is used to implement the

simulation of the sensors. Within this scope, the program deals with identifying and storing objects,

assigning objects to the corresponding grid, loading in objects and environments, and safety

measures.

5.1.1.1 VR in Unity

Unity has been chosen to implement the simulation of the sensors as it is a capable 3D engine which

has excellent support for VR implementations. As the VR headset used for this project is the Oculus

Quest 2, it is possible to use the Oculus Integration SDK, which is available for Unity for free on the

Oculus Developer website[21]. This package allows for easy implementation of VR spaces, and

already implements some of the more rudimentary necessities for VR tracking, such as creating the

virtual cameras and making sure that all the movements in real life are tracked to the virtual

environment.

In order to make sense of some of the implementation details for the following sections, a brief

overview of the way Unity handles coordinates is given. Unity uses 3-dimensional vectors to express

coordinates in the virtual world. All objects inside of Unity will have a position. Furthermore all

objects have a “parent object”, which can be either null or another object. Child objects will
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automatically move with their parent object, if a parent object is moved. Any object that exists in the

environment will have a “Global Position”, which is the position relative to the world origin, and a

“Local Position”, which is the position relative to the parent object of the object. If the parent object is

null, the local position will be equal to the global position. Lastly, in order to implement

functionalities in Unity, one generally needs to write a script deriving from the Monobehaviour

implementation and then “attach” an instance of this script to an object in the scene. Effectively, this

means that almost all functionalities in Unity can be linked to an object, and subsequently a position.

The first step to being able to map the real world to the virtual environment, is by matching the

“floors” of both environments. Oculus will already track the floor of the real world environment, so

this process can be done quite easily. Using the Oculus SDK, we can set it so that all of the positions

of the VR peripherals are calculated from the floor’s origin. The Oculus SDK is implemented through

a Monobehaviour script attached to an object. So, by making sure that the coordinates of the object

related to this script are on the same height as the virtual floor, it is possible to synchronize the floors

of the real and virtual spaces.

Fig 5.1.1.1a: Tracking Origin Type is set to “Floor Level” in order to ensure that the real life floor aligns

with the virtual floor.

Secondly, we need to be able to align the boundaries of the virtual environments to the boundaries of

the real life test space. By making it so that all of the objects in the environment are children of a

single object, it is possible to easily move, scale, and rotate all of the objects in a scene at once by only

manipulating the parent object. From there, we only need to determine how the parent object should

be changed in order to align with the real life environment. This is done by setting the origin of the

real life environment in the virtual environment and then setting the first connected corner of the

real life environment going clockwise. In practice this is done by having a script attached to the right

controller of the Quest 2 and detecting presses to the Primary Button (A). In practice, the researcher
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will walk over to a set corner of the testing space and put their controller in the middle of this corner.

They then press the A button to set the origin. The process is repeated after putting the controller in

the middle of the first clockwise corner. A third press confirms the position of both corners and will

instruct Unity to position the parent object of all the objects in the environment at the origin point,

and then rotate it by the angle of the vector going from the origin to the first clockwise corner. As the

floor is already set by the Oculus SDK, the parent object is only rotated in the Y-axis.

Fig 5.1.1.1b: Schematic representation of the corners used for calibrating the environment. User puts

the controller right on the center of each corner and presses the A button of the right controller.

5.1.1.2 Simulation of objects in the scene

In order to simulate objects, Unity objects are simply used. This way, the position, rotation, and scale

of box-shaped objects are already implemented. Each object has its own collider, which determines

the bounds of the object. For box-shaped objects, this collider simply has the same size as the scale of

the Unity object. For other objects, this collider is determined by the mesh that is attached to the

Unity object. In order to store what kind of objects are, each object has an “Environment Object”

script attached to it which stores what the shape type of the object is (either complex or box-shaped)
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and what the object type is (i.e. Traffic lights, Doors, etc.). This script also automatically adds an icon

in the middle of the object’s bounds to indicate the object type.

Fig 5.1.1.2: Inspector view of an Environment Object object on the left and an example of a staircase

and railing expressed using box-shaped objects on the right.

5.1.1.3 Simulation of sensors in the scene

In order to simulate the sensors and fill a 2-Dimensional grid with objects a relatively simple

approach is taken. Unity allows for something called an “OverlapBox” which is part of its physics

implementation. This method checks for any objects with colliders within a box given by the

implementer.

Initially, a similar approach to the real life sensor system was taken. This approach would use a big

OverlapBox to detect all objects within the range of the grid and subsequently calculate the angle and

the distance between the object and the user’s current position. From there the object could be

assigned to the appropriate cell. However, it was found that larger objects would often span multiple

cells. This, combined with the initial implementation meant that objects would only be assigned to

one cell based on their center point, while they could span multiple objects. This would cause

“accidents” since the user would walk towards a cell that was considered to be clear, while in actuality
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the object would still span that cell. Therefore, it was chosen to change the implementation to the

one described below.

Instead of assigning objects based on the position of their origin, it is possible to create an array of

positions, rotations, and sizes of boxes which can represent the grid which is to be filled, and

subsequently call Physics.OverlapBox for each cell to determine whether there is an object inside that

cell. Furthermore, the necessary details of the box such as object type are loaded into the grid at the

same time. General specifications of the sensors such as the angle of detection, the detection range,

and the size of the grid, can be set through the Unity UI.

In order to accommodate the programming of the actuation, it was agreed that the amount of objects

that are assigned to one cell can be limited. This parameter can be set in the UI as well.

There is also an implementation for storing the object which the user is pointing at, which was added

after iteration (see Chapter 4.2). This is done by simply casting a rectangular ray from the front of the

controller and looking at whether it collides with any environment objects. The object which acts as

the controller is assigned through the UI.

Finally, it was found during tests that participants would often become confused if they were

standing inside of an object as the system would just ignore that object. This was a problem unique to

the VR tests as preliminary tests with the actual sensor system were done with real boxes. Therefore,

if testers would collide with a box, they would already understand that they had hit an obstacle. Since

there is no physical object in the real world for the VR tests, testers would have no feedback on

whether they had just hit an obstacle. To solve this issue, an implementation has been added which

checks whether the user of the headset is currently standing inside of any objects. This works by

using the Physics.OverlapCapsule method to check for objects within a certain radius of the headset,

as it is assumed that generally, the majority of the user’s body is contained below their head. For the

radius of this check, an average adult male’s radius has been estimated at around 36 centimeters. The

radius of the check can be set in UI in meters. If a user has been determined to be inside of an object,

the actuation sends a special signal to indicate that they have hit an object.
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Fig 5.1.1.3: a view of the Cell Grid script which implements the sensors and an aerial view of the boxes

which are used to detect objects.

5.1.1.4 Loading and generating environments from files (further discussed in 5.2)

The VR Tool implements a “summonable” menu which can be called by pressing the joystick of the

right controller. This menu contains buttons, with each button representing a scene that can be

loaded from the local data folder. Users can then use their controllers to “press” buttons, which will

load the corresponding scene. Further explanation on how environments are stored and loaded will

be given in 5.2.

Fig 5.1.1.4: Main menu with buttons for loading scenes in the VR tool
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5.1.1.5 Safety Measures

To ensure the safety of people using the VR tool, a virtual blindfold was implemented. The Oculus

Quest 2 uses the Oculus Guardian system, which allows users to set the floor and the boundaries of

their usable space. If any of the peripherals come too close to the edge of the spaces, a rastered wall

representing the edge will appear, warning users that they are close to exiting the safe space. For

testing purposes, researchers can set these boundaries to the edges of the testing space.

Since the device is only tested with non visually impaired people, it is possible to only disable the

rendering of all objects, but still allow the user to see the Oculus Guardian boundary. This way users

can still see the edges, warning them from exiting the safe space.

5.1.1.6 Starting and stopping a test run and recording positions and rotations

When a user starts a test run, the blindfold is activated using the Secondary Button (B) of the right

controller. This starts the recording of the positions and rotations of the headset and the controller

used for pointing. This data is then stored inside of a single file, at an interval of 25 times per second,

and can be copied individually from the headset back to a local computer. At the end of the test run

the user presses the B button again to disable the blindfold and stop the recording. More details on

this procedure can be found in Chapter 5.3.2.

5.1.2 C# Console application for the device computer and communication

In order to communicate with the ESP32 used for the actuation, serial communication is used.

However, as the headset only has a single micro USB port and the ESP32 needs a 5V charge to

function, it is more practical to have the ESP32 communicate with a laptop which can be put in a

backpack to be carried by the user. This means that the headset needs to communicate with the

laptop through some other means in order to communicate with the actuation. For this purpose, a

small C# console application has been programmed which communicates with the ESP32 through

serial communication and with the Quest 2 through a rudimentary TCP client server connection. In

short, the VR tool acts as a TCP server, with the IP address being displayed on the left controller. The

laptop can then fill in the IP and port arguments when running the program, and attempt a

connection with both the VR tool and with the ESP32. Once a connection has been established, the

console application will await requests from the ESP32 over serial communication and relay these to
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the VR tool through TCP. The VR tool then sends the corresponding data back to the console

application, which in turn relays the exact same message to the ESP32.

5.1.2.1 Communication protocols

As determined through discussion with the actuation project, the information on the cells in the grid

in the final version are communicated through single strings which represent one of the columns in

the grid. Columns of the grid are enumerated from left to right in capital letters. I.e the leftmost

column is represented by an “A”, with the next column directly to the left being represented with “B”,

then “C”, etc. Each row in the grid is represented by small letters, starting from the row closest to the

user, moving outwards. Also see Fig. 4.1a for a diagram of the cells in the grid and their names. The

actuation has been programmed to request columns one by one from the sensors by sending the

capital letter representing which column should be sent. The sensors then send back all of the cells in

the column from closest to the user to furthest. Each representation of a cell starts with the letter

representing the row of the cell, followed by a number denoting whether the cell is empty “0”, filled

with an obstacle “1”, or whether the user is standing inside of an object “2”. If there are any objects

which are considered to be orientationally significant, the types of the objects will be appended

behind the number representing the type as a 3 digit number. In later versions of the program, the

object type is only appended if the user points at the object with their controller. Orientationally

significant objects and their enumerations are the following.

● Pedestrian traffic light 001

● Road 002

● Stairs up 003

● Stairs down 004

● Doors 005

An example of the communication is given below for different scenarios with a grid size of 3 columns

by 3 rows.

Actuation requests “A” column, obstacle in middle cell and traffic light in furthest cell

Actuation: “A”

Sensors: “a0b1c1001”
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Actuation requests “B” column, traffic light and door in middle cell

Actuation: “B”

Sensors: “a0b1001005c0”

Actuation requests “C” column, user is clipping through an object

Actuation: “C”

Sensors: “a2b0c0”

Alternate versions were also programmed for several specific tests requested by the actuation project,

such as a version where the entire grid is sent at once, and a version where instead of columns, rows

are requested. They in essence work with the same protocol as the standard version with only slight

modifications which are discussed in Chapter 6.

5.2 Environment Creation Tool

The environment creation tool is a program made with Unity 3D for Windows systems. It is used to

create, load, and edit test environments which can be read by the VR Tool to generate test

environments.
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Fig 5.2: the main menu of the environment tool.

5.2.1 Creating new environments

Initially the tool was intended to utilize 3D map APIs such as the Google Maps SDK or the WRLD

SDK which are compatible with Unity, in order to generate 3D environments automatically.

However, initial tests showed that unfortunately, most of the time the APIs were either too limited in

functionality, which hindered implementation of adding additional environment objects, or were

inaccessible behind a paywall. A workaround solution was devised to still allow for using real life

locations as references for creating scenes, using Google Maps to serve as a reference image. Users

would be able to pan and zoom the image, and then save and rotate it to match the specifications of

the environment. However, due to time constraints and the fact that most available test spaces were

not big enough to support environments the size of a street, this approach was abandoned in favour

of the focus on the environment creation process itself.
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Fig 5.2.1a: original workflow concept for creating environments using Google Maps from left to right

top to bottom: “Choose an environment and right click to choose measure distance”, “Left click to

draw a line representing the horizontal wall of the environment”, “Rotate the image to align the

horizontal wall with the screen”, “Finally, draw a rectangle by dragging the right mouse button to set

the test area and set the scale from the measured distance”

When a new environment is created, the program will request the intended size of the test

environment. Once this has been filled in, it will generate a green plane representing the new

environment. From there, the user is able to add new objects. The user is also able to move and rotate

the camera to get a better view of the environment by dragging with the left mouse button and the

left alt key.
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Fig 5.2.2: snapshot of the environment creator after having created a 6 by 6 meter environment and

adding an obstacle.

5.2.3 Adding and editing objects

There are 3 different types of object shapes which can be used to define the bounds of an object.

● Custom objects are objects which have a custom, rectangular shape. While the edges of the

rectangle can be set manually, it is currently not possible to adjust the height or position of

the custom objects.

● Line objects are objects which consist of one or multiple lines of which the heights and

widths can be adjusted.

● Box objects are the standard object type which consist of a box object which can be moved,

scaled and rotated. Each new object’s initial object type can be set using the dropdown menu

at the top of the UI.
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Fig 5.2.3a: from left to right, a line shaped door object, a custom shaped traffic light object, and a box

shaped obstacle object.

Objects can be added through the UI buttons on the right side of the screen (see Fig 5.2.2) by clicking

the button and following the instructions in the bottom left of the screen. Mainly, the right mouse

button is used to select the position of the object or corners. Once an object has been placed in the

scene it can be selected by pressing the right mouse button when hovering over said object. From

there, a new UI appears which shows the position, rotation, scale, and type of the object. These UI

elements are also interactable, allowing the user to set those parameters through the UI manually.

Arrows will also appear over the selected object, allowing the user to drag the object.
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Fig 5.2.3b: snapshot of the program after having selected an obstacle object.

5.2.3 Storing and loading environments to files

In order to store environments with their objects, a rudimentary file writer has been implemented.

Each environment is saved in a single file which contains the following information.

● Width of the test environment

● Length of the test environment

● The scale of the test environment

● All of the objects in the test environment

The width, length and scale are stored using converted float values. Each object that is stored contains

the following information.

● The object type (i.e. Traffic Light, Door, etc.)

● The shape type (i.e. Custom, Line, or Box shaped)

● The coordinates of the
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○ corners for custom shapes

○ line points for line shapes

○ origin for box shapes

● The

○ height for custom and line shapes

○ width for line shapes

○ scale for box shapes

● The rotation for box shapes

Fig 5.2.3: example of file containing a digital version of the environment presented in use scenario 1

(see Fig 3.1.3a)

All data is stored on a single line, with different parameters being delimited with several different

delimiters, depending on the type of parameter. It should be noted that while this implementation is

fully functional, a better approach is to save the environment by using Unity’s JSON Serialization

implementation. However, the existence of this implementation was only found after the project

ended.

Loading files works by reading out these files and parsing the test environment and environment

objects from these files and then spawning these into the Unity world. The test environment is

confined with 4 walls in order to contain the users within the test environment. These walls have

been marked as obstacles so that the actuation will also tell the users to stay clear from the walls. For
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each environment object stored an environment object is spawned using the structure described in

Chapter 5.1.1.2.

5.3 Evaluation tool

Finally, the evaluation tool is a part of the program for the Environment Creation Tool. It is used to

evaluate the data containing positions and rotations stored by the VR tool during test runs, and allow

for the analysis of individual and multiple test runs and the export of analyses to CSV tables.

Fig 5.3: Main menu of the evaluation tool

5.3.1 Loading and storing position and rotations from files.

For storing positions and rotations, a simple implementation is used which stores the positions and

rotations of the headset and the controller used for pointing. However, since the VR tool usually

needs to be calibrated using the methods described in 5.1.1.1, positions and rotations are saved relative

to the parent object which contains all the environment objects, i.e. the origin of the test area. If only

the world position is saved, it is possible that the coordinates do not match up with the environment,

as the environment is always spawned in the world origin in the environment and evaluation tools,

while the position of the environment in the VR tool can be changed during calibration.
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Fig 5.3.1a: Diagram showing the issue with saving global positions. In order to ensure that coordinates

are correct regardless of the position of the Test area, the relative position to the test area's origin

should be stored.

The positions and rotations are written to the file using the default Vector3.ToString() and

Quaternion.euler.ToString() methods at an interval of 25 times per second. This set interval has been

chosen as a compromise between the size of the files stored and the performance of the VR tool.

Furthermore, it ensures that the timing of the positions and rotations remain consistent, as the

interval is not timed to the framerate of the program, which can be susceptible to lag spikes. Each

position and rotation is stored on a new line, with each new frame of data being appended on a new

line. The following structure is maintained.

● Line 1: Headset position

● Line 2: Headset rotation

● Line 3: Controller position

● Line 4: Controller rotation

Fig 5.3.1b: excerpt from the coordinates file of one of the test runs.

Additionally the environment that is being used for the test run is written at the start of the file. This

way, it is possible to recreate the obstacles in the environment as well by simply loading in the

corresponding environment and its objects.
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5.3.2 Recreating test environments

Files that have been stored by the VR tool can be transferred to the PC using USB or other methods

such as file sharing applications. These files can then be placed in the work folder for the evaluation

tool, allowing the program to read the files. In order to recreate an environment, first the objects in

the scene and the test area are loaded in by loading the environment file that corresponds to the

filename at the start of the coordinates file. This requires the evaluation tool and the VR tool to both

have the same environments in their work folder, as the evaluation tool is only able to load in

environments which are also saved in the working directory and the coordinates file does not store

any environment data. Afterwards, all of the positions and rotations of the coordinates file are loaded

into arrays.

Once the entire file has been read, an UI will appear which allows the user to replay the test run as it

played out by pressing the play button on the UI. Users also have the option of playing through the

test run backwards, pausing the playback, skipping ahead or back, and moving and rotating the

camera in the same way as with the environment tool..

Fig 5.3.2: snapshot of the evaluation tool when analysing a single test run.
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5.3.3 Measuring data from recreated scenes

When a coordinates file is being loaded into the program for replay, the program simultaneously

analyses the test run with the measurement methods described in Chapter 4.2.2, namely the

measurement of time in order to determine the mobility and effectiveness and the measurement of

incidents in order to determine the safety and reliability.

Time measurement is done in quite a rudimentary manner. Since it is known that positions and

rotations are stored at an interval of 25 fps, it is possible to calculate the length of the test run in

seconds by multiplying the amount of positions stored in the file by 1 divided by 25.

Incident measurement is done by checking whether the headset collides with any object within a

certain radius for each stored position. This radius can be set within the Unity UI and represents the

average radius of a human body. When a collision occurs, the system counts the amount of frames

that the sensor is still colliding with the object. If this count exceeds a certain threshold, which can be

set through the UI, the system registers this as a single incident. The system will also create an

indicator at the location of the collision in the scene.

Fig 5.3.3a: snapshot of test run with an incident where the user walked into the road. The red

exclamation mark marks the position of the collision.
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After the entire coordinate file has been read, the details of the test run can be found in the console at

the bottom of the screen. A test is marked as a successful test if the tester has finished the course

within the maximum allotted time, which can be set in the UI.

Fig 5.3.3b: UI with controls for playback and console showing test run details.

5.3.4 Analysing multiple test runs and data export

As part of the implementation for automating data measurements, a functionality has also been

implemented which allows for the analysis of all available data in the work folder in order to generate

insights and statistics for each scene. This is done by effectively running through all of the test runs

one by one and performing the same measurement process described for analysing single test runs.

This data is then grouped into data for each scene and exported to a csv file in the work folder.

Fig 5.3.4: CSV file exported from analysis of final test runs
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Chapter 6: Evaluation and Testing

As part of the iterative development, multiple tests have been conducted throughout the project to

informally test the device, with a final formal test being conducted at the start of July. Each test that

has been performed using the VR tool or the Environment Creation tool will be discussed in the

following sections.

6.1 Actuation tests

One of the main purposes of this project is to enable quick implementation of sensor systems,

allowing the actuation project to test their device and the haptic language during earlier stages of the

project. These tests will be described in the following sections, outlining their purpose, the setup, and

the changes made to the VR tool that came from observations during these tests or changes that were

made before to accommodate this test. The results of these tests will not be discussed, as they fall

under the scope of the actuation project.

6.1.1 Stationary Resolution test

In order to determine whether the current proof of concept worked, the first test conducted was a

test where the tester was sat down on a chair and only allowed to move their head to look around.

Two objects were placed on set locations in front of the user with two different setups required, with

each setup being used for one test. Each test would compare two versions of the sensor system, with

different field of view angles, number of columns, number of rows, and radiuses.

Setup one:

● Box 1: 1 meter to the left and 2 meters to the front

● Box 2: 2 meters to the right and 3 meters to the front
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Fig 6.1.1a: setup one

Setup two:

● Box 1: centered and 2 meters to the front

● Box2: centered and 4 meters to the front

Fig 6.1.1b: setup two

Furthermore, the different setups required different parameters for the sensor system for each test. As

a result the design of the VR tool was altered to allow for the quick tweaking of values, by

implementing these values in the Unity UI.
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6.1.2 Stationary Continuous haptic feedback test

After the previous test, the actuation project sought to find out whether the chosen approach of

haptic feedback could be improved. Originally, the feedback would trigger for each column of the

grid one by one. As a result, data from the cells was requested per column. However, in an effort to

try something different, it was decided to test out a feedback which would trigger for each column,

but simultaneously. In order to do this, it was requested by the actuation project that the protocol be

reworked in order to minimize the number of requests from the actuation. As a result, a new protocol

was devised. Using this protocol, the actuation would send a request for the entire grid, and the VR

tool would output the 1-based index of the closest object in each column, with 0 being reserved for

empty columns.

Actuation requests grid with content:

Fig 6.1.2: diagram representing the example grid state. All empty cells represent an absence of objects

and all forbidden signs represent an obstacle.

Actuation: “Request”

Sensors: “A0B2C2”

While this test was successful, it was later decided by the actuation project that this approach was too

unreliable in terms of haptic perception. Subsequently, the old communication protocol was restored.
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6.1.3 Walking box obstacles test

The first test done with a fully functional portable prototype was used to test the concept of the

device and probe the intuition. In order to achieve this, a setup was devised that was different from

the final test in order to test the calibration functionality of the VR tool. It was decided that in order

to test the accuracy of the calibration, real life cardboard boxes were scattered around the test

environment. These boxes were then measured and an implementation was used to place virtual

boxes with the same measurement manually inside of the VR tool. As the measurement of the boxes

were the same, the positioning of the boxes would be the same if the calibration of the VR tool

worked as expected. This was indeed the case and this environment with boxes in both the real and

the virtual environment was used for the test with the actuation.

The goal of the test was simply to have a participant walk from one side of the testing area to the

other while avoiding the boxes. A person would be standing at the opposite side and would

periodically call out, giving the tester an indication of where they needed to go.

During the test it was observed that participants would often be unable to sense objects once they got

too close to the object. This was due to the fact that the system was designed to be used in

combination with a walking cane, which is why there is a set amount of space in front of the user

which is ignored by the VR tool. Since this test was not done with VI people, and due to later tests

being unable to be done with VI people, it was decided to remove this margin and stop ignoring the

objects directly in front of the participant.

It was also found that due to the fact that boxes could span multiple columns, testers would often run

into boxes as the system was designed to only store one obstacle in one cell of the grid. This meant

that users would only feel the box in one column, while in reality it spanned multiple. To combat this,

a new implementation was used for the VR tool sensors, of which more information can be found in

Chapter 5.1.1.3.
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Fig 6.1.3: combined footage from real life and virtual environment during one of the test runs.

6.1.4 Stationary device variations test

Finally, a test was requested by the actuation project to test out different configurations for the

current feedback concept. The current concept used a vest with haptic motors on the back to indicate

objects. However, multiple other configurations were to be tested, one of which required an

implementation of a protocol where columns, rows were to be requested. Subsequently, this

implementation was made for this test only, as later devices reverted back to the vest design using the

original protocol.

6.2 Final Evaluation

For the final evaluation of the entire device, the original test setup as described in Chapter 2.5 has

been executed. It should be noted that the final evaluation has been attempted twice, as the first

attempt yielded unusable results, due to the fact that a bug in the actuation device caused users to

experience the wrong feedback signals. A second test has subsequently been run and completed, of

which the results and setup will be discussed below.
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6.2.1 Evaluation design

As discussed in Chapter 2.5, the evaluation of the entire device is focused on 2 components. Firstly,

the overall effectiveness is evaluated by measuring the amount of time it takes to run through the test

and the number of incidents and collisions that have occurred. Secondly, the user experience is

evaluated using a post-survey with as goal the measurement of perceived usefulness and effort in

using the device. As a result, the entire evaluation consists of a practical part, where the user has to

walk through a test environment, and a non-practical part, where users fill in a survey concerning

their experience during the practical part.

6.2.2 Participants

Participants for this final evaluation include two non visually impaired students from the UT, due to

issues in contacting visually impaired people. Testers have no prior experience with the device and

are instructed on the usage for the first time before starting the practical part of the evaluation. There

are no further requirements for participants.

6.2.3 COVID-19 Coronavirus Disease considerations

In light of the Coronavirus pandemic, measures were taken per recommendations by the government,

in order to prevent the spread of COVID-19. Participants are to wear masks, only being able to take

them off during the practical part of the evaluation. Disinfectants and sanitizers will be present on

site, with the headset being disinfected and wiped clean after each use.

6.2.4 Procedure

At the start of the test, the participant is seated with the actuation project member who explains the

usage of the actuation vest and glove. The user is then instructed on the test procedure for the

practical part and the safety features. In the following sections the test procedure is explained for each

part of the evaluation.

6.2.4.1 Functional Effectiveness: Environment simulation

The practical part consists of three test runs, with each run being dedicated to one test environment.

The three test environments are based on the three chosen user case scenarios as mentioned in

Chapter 4. For each environment, the user has 5 minutes to move from their starting position to a
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given goal, while trying to avoid obstacles. The given goal is a specific type of environment object,

such as a door or a traffic light. If 5 minutes have passed without the participant having round the

goal, the test is ended and considered a failed run. Before the test run, the participant will be led to

the starting point, and the environment and the goal will be described to the participant in words.

Then, they will put on the VR headset facing away from the environment. Once the participant is

ready to start the run, they will press the B button on their controller, enabling the blindfold and the

storing of coordinates, and starting the test run. If the participant has successfully reached their

destination, they will be instructed to press the B button again, and the run will end. From the data

stored during the test run, the measurements for the test time and number of incidents will be taken

afterwards. All participants run through the environments in the same order; scenario one, scenario

two, and last scenario four (see Chapter 4).

Fig 6.2.4.1a: Scenario one, contains a road with a pedestrian crossing and two traffic lights on each

side.
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Fig 6.2.4.1b: Scenario two, represents a train station with tracks, a door representing the train door,

and a staircase.

Fig 6.2.4.1a: Scenario three, consists of a street with two wide obstacles in the middle and entrances to

shops on either side of the street..
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6.2.4.2 User Experience: User survey

After the last test run, the participant is seated next to a laptop and given a survey to fill in through

Google Forms.  The survey consists of a mixture of open and multiple choice questions and takes

approximately 10 minutes to fill out. A snapshot of the entire survey including questions belonging to

the actuation project is included in Appendix A5.

6.2.5 Results

6.2.5.1 Functional Effectiveness results

Fig 6.2.5.1a: raw output from the evaluation tool showing statistics for each environment

Fig 6.2.5.1b: average test time across all runs per scenario in seconds
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Fig 6.2.5.1c: average number of incidents across all runs per scenario

Fig 6.2.5.1d: ratio of failed runs to successful runs of all runs per scenario in percentages
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Results show that during the practical part of the experiment, the first environment that was tested

generally has the worst performance with none of the users reaching the intended goal and the

highest number of average incidents being 2. However, the two scenarios that were tested afterwards

show an increase in performance with all of the subsequent runs being successful and an average

number of incidents being 0 and 1 respectively for scenario three and scenario two.

6.2.5.2 User Experience results

Fig 6.2.5.1: average of results from evaluation survey. Scores range from 0, denoting negative

experiences, to 7, denoting positive experiences.

In general the device scored slightly above average. Overall experience and ease of physical effort are

rated considerably well, with safety, confidence, and usability rating okay. Mental effort is considered

to be the biggest flaw of the system, being rated at an average score of 3 towards high effort. In open

questions, participants mainly commented on the difficulty of understanding and recognizing

patterns on the hand device and sometimes the vest. They also noted that especially at first the device
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can be overwhelming and that it “takes time to properly understand all the information that the

device gives you”.

6.2.6 Conclusion

In general the evaluation of the device shows that it can be effective, with a relatively low number of

accidents and a solid proof of the fact that people are able to recognize objects through haptic signals.

However, considering the usability and the effort of the device, many improvements can still be

made, especially in lightening the mental load and improving understanding of the feedback. It

should also be noted that for such a complex device, a case could be made that it takes time to

properly learn the device. This could also be indicated by the fact that the first test run went relatively

bad compared to the later runs for both of the participants.
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Chapter 7: Discussion

7.1 Limitations of this project

7.1.1 COVID-19 and test participation

At the start of the project, much time was spent and lost on finding visually impaired people for the

focus group. This led to a decreased scope in the project as implementation and design decisions were

moved forward, being delayed by the lack of user input. Eventually, visually impaired people were

contacted through personal channels, though the majority of these people subsequently would not be

able to participate in the final evaluation as they did not live in the Netherlands. Due to this, it was

decided to only use students at the UT for testing purposes, as this would also minimize risk of

potential COVID-19 spread outside of the University bubble.

7.2 Reflection on current state and improvements

Due to the diminished scope of the project, some features could not be implemented into the final

product. A compilation of suggestions for future improvements is given below.

7.2.1 Usage of non-euclidean virtual environments

In using an enclosed real life environment for testing, problems can arise when needing to test larger

virtual environments. If an entire street or route were to be tested in the real world, this would

require an enormous amount of space which would need to be cleared and monitored. Instead, the

usage of virtual environments allows for non-euclidian environments, which would be able to

increase the perceived real life space by warping the space around the user. A practical example can

be seen in the VR game Tea For God[22] which uses this technique to allow the user to walk without

artificial locomotion. In practice, this effect can be achieved by creating certain areas at the edges of

the test area which force the user to walk past a corner. The moment the user passes through that

corner, the scene can then be altered so that another part of the scene is loaded in front of the player.
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7.2.2 Usage of bluetooth communication between device and actuation

Due to the scope of the project, it was chosen to use Serial communication between the sensors and

the actuation. However, the initial plan was to use bluetooth communication for this purpose. Using

bluetooth would remove the need for physical connections between the actuation and the sensors,

allowing the system to be more modular and portable.

7.2.3 Using Oculus Guardian functionality for audio warnings

Since the tests were performed with non visually impaired people, it was possible to have the

blindfold implementation, which allowed testers to still see safety boundaries of the Oculus

Guardian. However, for blind people this is different. Instead it is possible through the Oculus SDK to

get the boundaries from the Oculus Guardian manually and implement a safety feature based on

audio. This would be possible by playing a certain audio cue when testers are approaching the edge of

the test environment.

71



Chapter 8: Conclusion

SQ1

In conclusion, people with a visual impairment have trouble navigating new environments as they are

unfamiliar with new routes and rely on orientationally significant objects to navigate.

SQ2

One of the ways to alleviate this problem is by helping visually impaired people better

understand their environment by giving them a bigger range of vision and allowing them to find and

identify objects of interest.

SQ3

In designing and developing a device to solve this problem, one should measure the

effectiveness of the device through measures that directly relate to the problem and the people

involved. In this case, the mobility, safety, and experience that comes from such a device is most

important to the users. This can be measured by looking at the time it takes to complete certain

courses, counting the times where the device fails, and probing users through surveys.

SQ4

In order to test such a device, Virtual Reality peripherals can be used to map virtual

environments onto real environments by tracking the floor of both environments, aligning these and

then subsequently using points in the environment which act as the axes of the environment. By

aligning all of these axes, it is possible to reliably track a virtual environment onto a real environment.

SQ5

Lastly, by gathering information on the limitations of real life sensors and careful

communication it is possible to rebuild both real life environments and real life sensors and their

functionality into a virtual environment.. Furthermore by automating the evaluation process as much

as possible and allowing for flexibility through the easy changing of variables, the external creation of

scenes, and cross platform support, it is possible to effectively use digital tools and VR together to

evaluate such haptic devices.

This project, while flawed, has been proven to be functional during testing and evaluation of the

device. Considering its limitations, more focus should be put on developing a haptic language itself in

order to minimize the mental effort in understanding haptic signals. Great potential lies in finding

ways to abstract and minimize the data that is sent to the user. All in all this project should be
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considered as a proof of concept for the usage of haptics in assisting the visually impaired to navigate

their surroundings.
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