
The Playfulness

of Modsy.

Graduation Project Thesis

Olivier Mathijssen, s2079607

09-07-2021

Supervisor: Wouter Eggink

Critical observer: Erik Faber

Bsc Creative Technology

University of Twente

The creation of a more playful music production

controller

2

Abstract

Play is an important aspect of life. Playful behaviour might be a vital element in human creativity,

learning, development and much more. Music production and performance is an activity that is highly

intertwined with play behaviour and play might be essential in the successful creation or reproduction

of music. This thesis will describe the design optimization of a tool that can be used during this process,

the Modsy controller, with focus on one specific design aspect, its playfulness. This thesis will assess

whether playfulness can effectively be used in the design of the Modsy controller and how this can

impact the user experience with this controller. In this thesis report, a variety of literature related to

playfulness and product design will be analysed. Thereafter, a theoretically more playful Modsy

controller will be created through the use of the Creative Technology design process and eventually

evaluated on its playfulness and user experience. Results of this evaluation suggest that the created

prototype was only slightly more playful in form, not more playful in interaction and not directly

positive for the user experience compared to the current Modsy controller. However, the potential of

designing for playfulness has been established and its implementation remains very flexible. Future

research could help to assess how this playfulness could alternatively be implemented in the design

of the Modsy controller and provide value for the customers of Modsy.

3

Acknowledgements

I would like to thank Wouter Eggink and Erik Faber for their support and feedback throughout this

thesis project. I would also like to thank the Modsy boys Bram van Driel and Robbert-Jan Berkenbos,

for their support and collaboration throughout this process. Lastly I would like to thank Lars

Wintermans and Leon Groothaar for the occasional games of tennis to help keep the brain sane.

4

Glossary

This glossary describes terms relevant to this thesis. Reading from top to bottom is recommended, as

some definitions make use of other definitions.

1. Digital Audio Workstation (DAW)

A software application used by producers and performers to record, arrange, compose, mix

and master audio. This software application can be compared to a digital version of a physical

studio filled with music gear.

2. MIDI (Musical Instrument Digital Interface)

Musical Instrument Digital Interface (MIDI) is a standard technical communication protocol

for the communication between instruments, computers and other audio devices. The MIDI

protocol can be used to communicate musical data like the note on/off messages or control

changes.

3. MIDI Controller

A MIDI controller is a hardware or software device that can be used to control MIDI

parameters. The controller uses the MIDI protocol for communication. A MIDI controller can

take different shapes for different purposes. Within music production, the most well-known

are keyboards, control surfaces or beat pads.

4. Ableton Live (Live)

Ableton Live is a popular DAW used by both music producers and performers. Ableton Live is

relevant for Modsy since Modsy will exclusively function within this DAW during the first years

of production.

5. Device (Ableton Live)

The term device is used as an umbrella term to describe all instruments, audio effects or MIDI

effects that can be used in Ableton Live.

6. Plugin (Ableton Live)

A software component that enhances music production functionality. This component is

“plugged in” to a DAW to add extra functionality, for instance for digital sound synthesis or

processing.

5

7. Mapping

The connection between a software parameter in Ableton and the physical Modsy controller.

The word ‘mapping’ can refer to a single parameter that is mapped or refer to a group of

software parameters that is mapped to the Modsy controller.

8. Control surface (for a DAW)

A control surface is a hardware device (MIDI controller) that a musician can use to control his

DAW environment. This controller concerns itself primarily with functionalities for DAW

navigation, transport buttons and editing of notes and samples.

6

Index

Abstract ... 2

Acknowledgements ... 3

Glossary ... 4

List of figures ... 9

Chapter 1 – Introduction ... 11

1.1 - General Introduction .. 11

1.2 – Play and music .. 12

1.3 - The current status of music production ... 13

1.4 - Modsy ... 14

1.5 - Project goal and research questions ... 16

1.6 - Report structure.. 16

Chapter 2 – Background research ... 17

2.1 - literature research .. 17

2.1.1 - Play ... 17

2.1.2 - Playfulness ... 18

2.1.3 - The playfulness of products ... 20

2.1.4 - The effect of play and playfulness ... 22

2.1.5 - Conclusion literature research ... 24

2.2 - State of the art .. 26

2.2.1 - Direct competitors ... 27

2.2.2 - Inspirational products .. 35

2.2.3 - Lessons learned .. 42

Chapter 3 – Methods and Techniques .. 43

3.1 - Creative Technology Design process .. 43

3.2 - Stakeholder analysis ... 44

3.3 - PACT analysis .. 44

3.4 - PLEX brainstorm .. 45

3.5 - PLEX scenario .. 45

3.6 – Mind Mapping .. 46

3.7 - Rapid ideation ... 46

3.8 - MoSCow Method .. 47

7

3.9 - Sketch ideation ... 47

3.10 - Mood boarding ... 47

3.11 - SUS analysis ... 48

3.12 - Flow Short Scale (FSS) ... 48

Chapter 4 – Ideation ... 49

4.1 - Stakeholder analysis ... 49

4.2 - Modsy product analysis .. 53

4.3 - PACT analysis .. 55

4.3.1 - People .. 55

4.3.2 - Activities ... 58

4.3.3 - Context ... 59

4.3.4 - Technologies .. 60

4.4 - Playfulness Ideation .. 62

4.4.1 - Group brainstorm #1 - Diverging ... 62

4.4.2 - Mind mapping - Diverging ... 65

4.4.3 - Assessment of PLEX categories - Converging .. 66

4.4.4 - Group brainstorm #2 - Diverging ... 68

4.4.5 - Rapid ideation - Diverging .. 69

4.4.6 - Individual grouping - Converging ... 69

4.4.7 - Weirdly Wired / User feedback - Converging .. 70

4.5 – Defining the final concept .. 71

4.6 - Preliminary concept .. 73

4.7 - Use scenario .. 73

4.8 - Preliminary requirements ... 75

Chapter 5 – Specification .. 77

5.1 - Spaceship control .. 77

5.2 - Game mechanics ideation... 78

5.3 - Storyboarding ... 79

5.4 - Modsy system ... 80

5.5 - Controller Design .. 84

5.6 - User interaction .. 85

5.7 - Instrument / effect parameter control ... 89

5.8 - Final Concept .. 92

5.9 - Final requirements .. 92

Chapter 6 – Realisation ... 95

6.1- Initial prototyping .. 95

8

6.2 – Altered prototyping .. 95

6.2.1 - Game mechanics .. 96

6.2.2 – Hardware ... 101

6.2.3 – Software .. 103

6.3 - Parameter control ... 104

Chapter 7 – Evaluation .. 106

7.1 - Testing methods ... 106

7.2 - Test procedure .. 107

7.3 - Results ... 108

7.4 - Discussion ... 112

7.5 - Evaluation of requirements .. 113

Chapter 8 – Conclusions and future work .. 118

8.1 - Conclusion ... 118

8.2 - Future work ... 119

9 - References ... 121

10 – Appendix ... 128

A – SUS questionnaire ... 128

B – Flow Short Scale questionnaire ... 130

C – Mind map ideation .. 133

D – PLEX concept assessment ... 135

E – Form assessment cards ... 135

F – PLEX analysis state of the art .. 138

G – Consent form .. 140

H – Information brochure ... 141

I – Processing program code ... 143

J – Arduino program.. 176

J1 – Normal Modsy controller ... 176

J2 – Playful extension Modsy controller ... 205

9

List of figures

Figure 1 - Example of DAW Ableton Live .. 13

Figure 2 - Current Modsy controller design .. 14

Figure 3 - Main Modsy functionality ... 15

Figure 4 - Current Modsy prototype ... 15

Figure 5 - Using hair comb as nail holder .. 20

Figure 6 - Ableton Push controller .. 27

Figure 7 - Komplete Kontrol software environment ... 29

Figure 8 - Komplete Kontrol controller ... 29

Figure 9 - Softube Console 1 ... 31

Figure 10 - Console 1 with Softube software .. 32

Figure 11 - MP Midi ... 33

Figure 12 – OP-1 Controller .. 35

Figure 13 - OP-1 Display Visualizations ... 35

Figure 14 - Moog Minimoog Model D ... 37

Figure 15 - LEGO .. 38

Figure 16 - Blipblox synthesizer .. 40

Figure 17 - Example of PLEX cards, captivation and challenge ... 45

Figure 18 - Plex Scenario cards ... 46

Figure 19 - Modsy software plugin ... 54

Figure 20 - Current Modsy controller design .. 54

Figure 21 - Image of Boris ... 56

Figure 22 - Image of Josh .. 57

Figure 23 - Image of Nina .. 57

Figure 24 - Image of Robert .. 58

Figure 25 - Automation in Ableton Live .. 59

Figure 26 – Execution of PLEX brainstorm method .. 63

Figure 27 – Execution of PLEX scenario method ... 64

Figure 28 - Part of mind map Modsy with PLEX categories .. 66

Figure 29 - Part of the PLEX analysis for sub-concepts ... 73

Figure 30 - Sketch ideation ... 77

Figure 31 - Mood board spaceship game .. 78

Figure 32 - Storyboarding of spaceship concept ... 79

file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740278
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740279
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740280
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740281
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740282
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740283
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740284
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740285
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740287
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740288
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740289
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740290
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740291
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740292
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740293
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740294
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740295
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740296
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740297
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740298
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740299
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740300
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740302
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740303
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740306
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740307
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740308

10

Figure 33 - Overview of Modsy system architecture .. 81

Figure 34 - Overview of Modsy controller architecture ... 82

Figure 35 - Ableton Live system overview .. 82

Figure 36 - Modularity of the Modsy controller ... 85

Figure 37 - Modsy display and LED layout for user feedback ... 86

Figure 38 - Possible spaceship visualization ... 87

Figure 40 - Possible asteroid visualization .. 87

Figure 39 - Possible enemy ship visualization ... 87

Figure 41 - Fix visualization ... 87

Figure 42 - Illustration of the final concept .. 88

Figure 43 - Closeup of spaceship visualizations .. 88

Figure 44 - Modsy spaceship software realisation ... 96

Figure 45 - Modsy playful attachment realisation .. 96

Figure 46 - Asteroid and enemy spaceship realisation ... 97

Figure 47 - Mission completion implementation .. 98

Figure 48 - Parameter pop-up implementation .. 98

Figure 49- Image of fuel ship indication ... 99

Figure 50 - Fuelled in time feedback ... 99

Figure 51 - Fuel parameter not twisted in time .. 99

Figure 52 - Image of fire / shield button ... 100

Figure 53 - Shield of Spaceship activated ... 100

Figure 54 - Realised version of the theoretically more playful Modsy controller 101

Figure 55 - Wiring playful extension ... 102

Figure 56 - Software communication structure .. 103

Figure 57 - Excluded parameters playful interaction .. 104

Figure 58 - Form analysis Modsy controller .. 108

Figure 59 - Example of appearance grouping normal Modsy controller .. 109

file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740309
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740310
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740311
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740313
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740314
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740316
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740317
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740320
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740321
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740322
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740323
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740324
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740325
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740326
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740327
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740328
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740329
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740330
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740331
file:///D:/Documenten/School/Year%203/Graduation/GP%20-%20Olivier%20Mathijssen%20-%20Playfulness%20of%20the%20Modsy%20controller.docx%23_Toc76740332

11

Chapter 1 – Introduction

1.1 - General Introduction

Play is a way for humans to solve problems, learn, and create. An activity that can bring joy and

pleasure and can be seen throughout human life, from children running around in a playground to 80-

year-old man pranking each other during a game of chess.

The benefits of play can be seen throughout the internet, research papers, and company strategies.

Organisations like UNICEF or the LEGO group state play as one of the key aspects in the learning

process of children (UNICEF, 2018; Zosh et al, 2017). And with good reason, research shows that play

is a very important aspect in this process (Singer, Golinkoff & Hirsh-Pasek, 2006). Even for adults there

seems to be a huge benefit that play can have. Play could help with worry, anxiety, strengthen

relationships and make people more creative (Wignall, 2019; Bateson, 2015). What is this panacea

called play and how could we use it in everyday practice?

Some activities seem to embody play more than others. Especially creative disciplines seem to rely

heavily on the aspect of play. A painter, for example, might not find himself creating a new

masterpiece if he does not have a playful attitude in the process. The discipline relevant for this paper,

music production, also seems to draw great benefit from the act of play. The relevance of play in music

production will be discussed shortly after the introduction, but we can state that playful behaviour

might be a key element in music production and performance.

This thesis is aimed to improve the design of a music production controller called the Modsy controller.

Since play is an important factor to consider during the music production process the tools used during

this process should then also suit this playful behaviour. One important requirement is that the

controller should provide musicians the right playful experience. Therefore it should be considered

what a playful experience actually is and how the Modsy controller can be designed to enhance such

an experience. This thesis will dive into the potential that playfulness can have in the design of the

Modsy controller.

This first chapter will provide an introduction into the topic of playfulness within the context of the

Modsy controller and provide an outline for the remainder of the report.

12

1.2 – Play and music

How important is play within music production? There will be an in-depth analysis of play and

playfulness in the background research section, but before this formal analysis the importance of play

in regards to music production and performance should be addressed. Because if play is of no

importance, why even bother?

First of all, play is known to be important for creativity and innovation. Research from Bateson and

Martin (2013) shows how both play and playfulness can facilitate creativity and innovation in both the

natural world and human society. Further analysis of Bateson (2015) connects a playful attitude to the

creativity seen in many well-known scientists, musicians, and other creatives. Other research supports

this by stating that even for students gifted in more scientific disciplines like mathematics personal

playfulness can have a positive influence on creativity (Chang, 2013). Creativity and music production

go hand-in-hand, depending on who you ask creativity might be one of the most important

characteristics of a good artist. Creative use of voice, instruments or effects could make or break an

artist.

Furthermore, Csepregi (2013) ascribes play as one of the elements that brings life to music. In his

research he states that play may be very important in the reproduction of music and musical

composition. As stated by Csepregi:

It is, in part at least, his sense of play that fills the music with life because, by “sharpening

notes”, or “putting a little accent” or introducing “a slight change in tempo”, the performance

is accomplished with a certain degree of unpredictability, individuality, and spontaneity.

(Csepregi, 2013, p108)

Many artists state the importance of play in their music production process (Telekom Electronic Beats,

n.d.). This might differ slightly for different genres of music, but overall it can be stated that play has

large importance in the creation and performance of music. A playful attitude and mindset seem to

be at the centre of creative music production. Without some form of playfulness music production

and performance could become rather dull. This is the reason why it is so important to consider during

the design of a product in this field. A music production controller should suit this playfulness, not

disrupt it, and hopefully produce great value along the way.

13

1.3 - The current status of music production

Music production has changed a lot over the last 20 years. The rise of computers created a new way

to create and manipulate music. Where musicians used to need whole rooms of equipment to create

a song, musicians nowadays can record whole albums with the use of their phone (Pierce, 2017). While

a phone might be slightly inconvenient, a laptop or computer is a perfect basis for music production

and most modern musicians rely on software for music creation and manipulation. The software

program at the core of this music production is called a Digital Audio Workstation, or DAW for short.

An example of such a DAW called Ableton Live can be seen in figure 1. This software can be seen as

the studio of a music producer. Inside a DAW a musician can use different digital instruments and

effects that can be used within music production. A DAW also allows for the composition into a song

and ways to mix, master and finalize your music.

Figure 1 - Screenshot of DAW Ableton Live

Music production has become more accessible, flexible, and cheaper. However, there is also a

downside to computer based music production. This is due to the fact that musicians can only use

their mouse and computer keyboard to manipulate the sounds of instruments and effects. This is far

from the original feeling of analog instruments and effects. Analog instruments and effects create a

workflow that is more expressive, creative and it’s a whole lot more fun. Tweaking multiple parameter

at once, making mistakes that turn out to be masterpieces and collaborating with peers in musical

jams are examples of the pros of this analog control.

14

1.4 - Modsy

This is where Modsy steps in. Modsy is a product by Weirdly Wired. A start-up founded by Olivier

Mathijssen, Bram van Driel, and Robbert-Jan Berkenbos. All are Creative Technology students from

the University of Twente. Modsy creates a way for musicians to get an analog feeling over their digital

instruments and effects. Modsy is a hardware and software solution that creates an environment that

allows musicians to instantly take physical control over any digital instrument or effect inside of their

DAW. Figure 2 shows the current design of the Modsy controller, figure 3 on the next page shows how

the Modsy controller works.

The controller will be connected to the DAW of a user. The controller has 32 parameters to control an

digital instrument or effect, with a display above each of these parameters. When a user selects a

digital instrument or effect in his DAW (as can be seen in Image 3.1) and presses the mapping button

on the controller (as seen in image 3.2), the controller automatically maps itself to the digital

instrument or effect. All of the parameters will be linked to software parameters of the digital

instrument or effect and the musician can start manipulating the sound right away. The displays above

each parameter will then show the parameter’s name and value. This is essentially what the Modsy

controller does, it provides direct analog control to digital instruments and effects and ensures that

the manipulation of these parameters is fully intuitive. This creates an analog workflow for any digital

music production tool. The current prototype of Modsy can be seen in figure 4 on the next page.

Figure 2 - Current Modsy controller design

15

The unique selling points or Modsy are:

- Automatic mapping to any digital instrument or effect within a DAW

- Display for each parameter with parameter name and value feedback

- Enough parameters for complete analog control

Figure 3 - Main Modsy functionality

Figure 4 - Current Modsy prototype

16

1.5 - Project goal and research questions

The goal of the project is to determine how playfulness can be used in the design of the Modsy

controller and develop a prototype that can be used to evaluate how playfulness affects the user

experience with the Modsy controller. This will help to identify ways in which Weirdly Wired can utilize

playfulness for future products. This thesis will try to answer the following main research question:

How can the playfulness of the Modsy controller be optimized to improve the overall user

experience?

Different sub questions have been created in order to answer this main research question. These

questions will be answered with the use of literature research, prototyping and user testing.

- What is play and playfulness in the context of a music production controller?

- How can playfulness be used in the design of a music production controller?

- How can playfulness be evaluated?

- How does the playfulness of a product affect the user experience?

1.6 - Report structure

The report will be structured in the following way: Chapter 1 provided introduction to the problem

and structure of the thesis. Chapter 2 includes an analysis of literature and state of the art. The

literature review will cover play and playfulness within the context of a music production controller.

Through literature analysis practical tools will be derived that can be used in the design of a more

playful Modsy controller. In the state of the art section of chapter 2 both competitive and inspiring

products will be analysed with tools derived from literature. Chapter 3 provides an overview of the

methods and techniques that will be used in the remainder of the report. The ideation of a more

playful Modsy controller is described in chapter 4, which will result in a preliminary concept that will

be specified in chapter 5. Chapter 6 describes the realisation of this concept into a final prototype and

chapter 7 the evaluation of this created prototype. Finally, the thesis will be concluded in chapter 8

and future work will be addressed. This report can be read in any way that suits the reader, however

for the understanding of certain methods and techniques please see the method section.

17

Chapter 2 – Background research

The background research chapter is made up of two sections: literature research and state of the art.

In the literature research section different topics will be analysed to frame play and playfulness in the

context of product design and see how one can design for these concepts. The state of the art section

will provide an understanding of the playfulness of products related to the Modsy controller and

analyse inspirational products.

2.1 - literature research

The aim of this literature research is to analyse how playfulness can be used in product design

and how this can affect the overall user experience. This literature research will look at the collective

understanding of play and playfulness and determine how these elements can be applied in product

design. This section will be structured in the following way: First, the concept of play and playfulness

will be analysed. A definition will be derived that can be used in the remainder of the thesis.

Thereafter, practical ways to analyse and design playful products will be discussed. Lastly, there will

be an analysis of the effect of play and playfulness on individuals.

2.1.1 - Play

Due to different perspectives within the field of play, it has become a complex term that needs

proper framing before usage. There are a lot of different definitions of play since play is ambiguous,

complex, and context-specific (Shahri, 2014) Therefore, a clear distinction should be made in its

meaning to prohibit confusion and conceptual problems (Starbuck & Webster, 1991). A good way to

define play is to look at relevant literature within the context in which the term of play will be used.

This method is applied by a variety of different researchers within the field of play (Gray, 2017;

Starbuck & Webster, 1991; Arrasvuori et al, 2011).

Throughout history, there have been different ways to interpret play and describe its

characteristics. One of the first theories about play was formed by Friedrich Schiller who explains play

through the view that humans have certain abundant energy that they need to get rid of (Schiller,

1795). The first evolutionary theories of play were formed around 1893 by Karl Groos. His perception

of play was that natural selection played a big part and play was seen as an activity that would help

practice the skills needed to survive (Groos, 1898). In the years that followed play theories became

more elaborate, Huizinga (1938) describes play as:

18

A free activity standing quite consciously outside "ordinary" life as being "not serious", but at

the same time absorbing the player intensely and utterly. It is an activity connected with no

material interest, and no profit can be gained by it. It proceeds within its own proper

boundaries of time and space according to fixed rules and in an orderly manner. (Huizinga,

1938, p13)

Certain characteristics of play start to arise: absorbing the player, no profit can be gained, according

to fixed rules. Huizinga also goes on to state that play plays an important role in the culture and

construction of civilizations.

Modern-day play research builds further on these types of characteristics, with different

researchers proposing different sets of characteristics to describe play behaviour. These

characteristics are similar but differ slightly in framing and description. Most notable are the five

characteristics proposed by Sandelands et al (1983) and the characteristics proposed by Peter Gray

(2017), which were analysed but will not be discussed within the scope of this paper. William H.

Starbuck and Jane Webster (1991) analysed different definitions of playful activities and found two

elements to be consistent throughout all definitions, which is that playful interactions elicit

involvement and provide pleasure. These two elements can also be found in more practical research

that deals with play in design (Arrasvuori et al, 2011). Since there is only a need for a conceptual

understanding of play within the scope of this thesis the analysis of Starbuck and Webster can be

utilized. Within the scope of this thesis, play will be seen as a form of activity that elicits involvement

and provides pleasure.

2.1.2 - Playfulness

Playfulness is a term that can be used to describe organisms, products or interactions, its

meaning is dependent on the perspective that is used. Playfulness could be seen more like an attitude

or modality, where we can take ‘the attitude of play’ without the activity (Sicart 2014). Playfulness can

be used to describe organisms, or more specifically humans (Bateson, 2014; Proyer, 2013). In this

context, the term can be used to describe a state of mind (Webster et al, 1993) or a character trait

(Lieberman, 1977; Yager, Kappelman, Maples & Prybutok, 1997). Both perspectives could be valid

approaches to playfulness (Webster, 1991). Playfulness could also be used in the context of products

or interactions (Shahri, 2016; Arrasvuori, Korhonen & Boberg, 2010; Hong, 2012). Here, the term takes

on a different role, it is used to describe the ability of these products or interactions to alter the state

or trait of playfulness in humans.

19

Playfulness as a trait in children and adults can be described by different characteristics.

Describing playfulness as a trait means that it can be seen as a distinguishing quality or characteristic

of an individual. According to Nina J. Liebermann (1977) playfulness in children can be identified

through the following 5 characteristics: physical spontaneity, manifest joy, sense of humour, social

spontaneity, and cognitive spontaneity. These five character traits have been verified in research by

Lynn A. Barnett (1990) and were supported by Susan E. Yager et al (1997). Playfulness in adults has

been identified through slightly different characteristics. Glynn and Webster (1992) developed an

adult playfulness scale that can be used to assess playfulness in adults. The scale uses five different

facets of playfulness: spontaneous, expressive, fun, creative, and silly. This playfulness scale is used

and supported in later research (Proyer, 2012).

Playfulness as a state of mind that can be described and measured with the use of flow theory.

Many researchers have defined playfulness as a state of mind (Arrasvuori et al, 2011; Webster et al,

1993; Apter, 1989). Which can be described as a person’s emotional state (Merriam-Webster, 2021).

Within certain conditions, this state of playfulness can be enhanced (Proyer, Gander, Braeuer & Chick,

2021). The state of playfulness is highly related to flow theory by Csikszentmihalyi (1975). As described

by Csikszentmihalyi: “Flow is a state in which people are so involved in an activity that nothing else

seems to matter; the experience is so enjoyable that people will continue to do it even at great cost,

for the sheer sake of doing it.” (Csikszentmihalyi, 1990, p4) Csikszentmihalyi describes flow to be

characterised by total focus, engagement and altered sense of time. Flow is an established concept

that is used in a variety of game design and interaction research to describe optimal playful behaviour

(Klarkowski, Johnson, Wyeth, Smith & Phillips, 2015). This claim is supported by Shahri (2016) who

describes flow as the ultimate state of any sort of play. Flow and playfulness are highly related and

have a positive relationship with one another (Reid, 2004). This means that the level of flow

experienced during an interaction could provide good inside into the playfulness of that interaction

(Webster et al, 1993). Measuring flow can be performed through interview questionnaires, experience

sampling methods, and self-report questionnaires (Lonczak, 2020). Most notable are the Flow State

Scale by Jackson & Eklund (2002) and Flow Short Scale by Rheinberg, Vollmeyer, and Engeser (2003).

 Playfulness as a state or trait can both be relevant within the context of product design. In the

next section of this paper, there will be more attention as to why certain products or interactions are

seemingly more playful than others. For now, it can be stated that while using certain products or

partaking in certain interactions humans can feel an enhanced sense of playfulness (Webster et al,

1993). During the usage of a product or interaction, this playfulness can be described as a state of

mind (Arrasvuori et al, 2011), or the long term effect of playfulness intervention can be assessed on a

trait level (Proyer et al, 2021). Since playfulness expresses itself in humans, it can be assumed that the

20

experienced playfulness of a product is related to the change in the playfulness of an human due to

product interaction. The way playfulness is used within product design is entirely dependent on the

scope of the design problem and the preferred outcome. Within product design, it could be interesting

to look at both playfulness as a state during product interaction or the effect on playfulness as a trait

after product interaction.

2.1.3 - The playfulness of products

The playfulness of products can be described through form and function. Playfulness is an

important attribute of products. Blijlevens, Creusen & Schoormans (2009) were able to show that

playfulness was one of the main attributes that consumers used to distinguish between product

appearances. Analytic tools can be used to better understand the root of this playfulness. Different

products can, and should, be analysed, since many sources point out that playfulness can be best

studied through examples (Shahri, 2016; King & Chang, 2015; Hong, 2012). Shahri (2016) proposes a

taxonomy for this purpose, which can be seen as a way to group certain elements based on specific

factors. In his taxonomy, two elements are used to describe the playfulness of a product: form and

function. Products focussed around form can be described as having a “distinct/concrete quality of

visual engagement” (Shahri, 2016, p84) that some people associate with being playful. Products

focussed around function show their playfulness upon interaction with these product, as Shahri states:

“This category is about creativity and play in which users can instigate” (Shahri, 2016, p95). This is

most evident in products such as toys, but also a hair comb can have a certain level of functional

playfulness when used to hold nails in place to drive into a wall. It is important to identify both

elements since together they could provide the full scope of the playfulness of a product.

Analysis based on form and function is

rather subjective. It is dependent on the type of

user how both of these elements are interpreted

(Townsend, Montoya & Calantone, 2011).

Furthermore, it is dependent on the experience

of the observer how the playfulness of a product

is perceived. If a user discovers new functionality

of a product his sense of playfulness about this

product might increase. We can take the hair

comb example of Sharhi (2016). If a user knows he can use a hair comb to hold a nail in place to drive

into a wall, as can be seen in figure 5, he might judge the hair comb more playful than somebody who

Figure 5 - Using hair comb as nail holder (Conna, 2016)

21

does not know this. Thus, one has to be careful when analysing products or ideating about

functionality.

Underneath this perceived visual and function playfulness lie different aspects that contribute

to the playfulness of a product. Design frameworks have been developed for identifying and designing

for these playful aspects. One of these frameworks is the Playful Experiences framework (PLEX

framework), which has been established through the analysis of different literature sources and

performing empirical investigation (Korhonen, Montola, Arrasvuori, 2009). The PLEX framework is

meant to provide an understanding of what kind of aspects play a role in playful products and

interactions and how to apply these aspects in design.

The framework defines the following categories for playful interactions: Captivation,

Challenge, Competition, Completion, Control, Cruelty, Discovery, Eroticism, Exploration, Expression,

Fantasy, Fellowship, Nurture, Relaxation, Sensation, Simulation, Subversion, Suffering, Sympathy,

Thrill. This framework was later expanded to make it more widely applicable, two more categories

were added: Humour and Submission (Arrasvuori et al, 2010). The categories of this framework can

be seen in table 1 below.

PLEX category Explanation

Captivation Forgetting one’s surroundings

Challenge Testing abilities in a demanding task

Competition Contest with oneself or an opponent

Completion Finishing a major task, closure

Control Dominating, commanding, regulating

Cruelty Causing mental or physical pain

Discovery Finding something new or unknown

Eroticism A sexually arousing experience

Exploration Investigating an object or situation

Expression Manifesting oneself creatively

Fantasy An imagined experience

Fellowship Friendship, communality or intimacy

Humour Fun, joy, amusement, jokes, gags

Nurture Taking care of oneself or others

Relaxation Relief from bodily or mental work

Sensational Excitement by stimulating senses

22

Simulation An imitation of everyday life

Submission Being part of a larger structure

Subversion Breaking social rules and norms

Suffering Experience of loss, frustration, anger

Sympathy Sharing emotional feeling

Thrill Excitement derived from risk, danger

Table 1 - PLEX category description

The framework was developed in relationship to digital games but can be applied to

interactive product experiences as well (Arrasvuori et al, 2010). Further research provided insight into

the practical implementation of the framework which included the creation of PLEX playing cards

together with different methods to apply the PLEX framework in the design process (Arrasvuori et al,

2011). Other frameworks have been analysed, but show less relevance within the field of product

design. Examples include the framework of Costello and Edmunds (2007) and the playfulness model

developed by Garris, Ahlers & Driskell (2002).

The PLEX framework can be practically implemented in ideation or product analysis. In design

ideation, the PLEX cards could serve as a source of inspiration (Lucero & Arrasvuori, 2010). The PLEX

cards, and thus the PLEX categories, could serve as a way to come up with more playful concepts. The

different PLEX categories can also assist in a heuristic evaluation of certain products or interactions

(Lucero, Holopainen, Ollila, Suomela & Karapanos, 2013). The different categories can help to identify

the amount in which playfulness is involved in a product or interaction. However, it should be noted

that such an evaluation has reported flaws and should be done with caution (Lucero et al, 2013).

2.1.4 - The effect of play and playfulness

Play and playfulness seem to have a real effect on humans and their environment, but the

root of this effect is difficult to scientifically determine. As Bekoff states “methodological

insufficiencies do not allow an experimental manipulation that deprives an organism solely of play

experience." (Bekoff, 1972, p. 422). Meaning that measuring the results of play deprivation is

seemingly impossible since organisms cannot simply shut off their play factor. However, the effect of

play seems to be undeniable. While observing playfulness in design we could derive many reasons

why we would design for playfulness, including amusement, delight, evaluation, emotional boost and

behaviour change (King & Chang, 2015). However, it is harder to scientifically proof that playfulness is

23

the cause of these changes. Scientific sources have to be analysed to find the actual effect of

playfulness.

Positive effects

Playfulness seems to have the most effect on the aspects of learning, pleasure, and

involvement. Learning and play seem to be highly related to one another. Organizations like UNICEF

and the LEGO group describe play as one of the major important aspects in the education of children

(UNICEF, 2018, Zosh et al, 2017). Other research supports the importance of play-based learning, with

Samuelsson & Johansson (2016) stating that play is a very important part of the life of children and

their creation of meaning. Singer, Golinkoff & Hirsh-Pasek (2006) even go as far as to state that play is

equal to learning, stressing the importance of play in diverse areas of child development. Even for

adults, the importance of play behaviour in learning has been stated and has shown positive outcomes

(Diaz-Varela & Wright, 2019; Tanis, 2012).

Pleasure is at the very root of playfulness. As stated earlier in the paper, play itself can be

described with the characteristic that it provides pleasure. This is best reflected in research by Bridget

Costello and Ernest Edmonds (2007) who constructed the pleasure framework around the subject of

playfulness exploring the many ways in which playful interaction can lead to pleasure. Research by

Guitard, Ferland & Dutil (2005) supports this by stating that pleasure is highly related to play

behaviour.

Involvement is a strong effect of playful interaction. As both Csikszentmihalyi (1975) and

Starbuck & Webster (1991) point out, playfulness can highly affect task involvement. Modern research

by Chan & Ma (2014) support this by concluding that playfulness is a key determinant in the

involvement and focussed attention with the use of social media. Next to these main positive effects,

play has shown to affect productivity, product quality and job satisfaction (Starbuck & Webster, 1991).

Furthermore, playful interaction can be a significant expressive motivational factor (Sandelands et al,

1983).

Negative effects

Playfulness may also lead to negative effects, most notably over-involvement and task

completion. Strong involvement could create unpleasant tensions and worries that offset immediate

pleasures (Webster et al, 1993). Webster states that due to over-involvement playful experiences

could enhance short-sightedness, concentration and persistence which could negatively impact task

completion. To support this, Pang (2012) points out that playful interactions which resemble a flow

state could lead to over-involved behaviour like gambling-addiction or game addiction.

24

Task completion may also be affected when applying playful interactions. Sandelands et al

(1988) found that merely labelling a task as play results in people taking longer to complete a task.

Starbuck & Webster (1991) point out that the higher levels of involvement and pleasure during playful

interaction might result in a longer continuation of these tasks. They point out that people that

perform very playful tasks enjoy what they are doing and concentrate on their immediate activities

and the pleasure those return. They feel less inclined to think about longer term goals and can

underestimate the passing of time. Next to this, they might not want to switch tasks if deemed

necessary. The severity of the consequence of these longer task completion times is then dependent

on the task that needs to be completed (Starbuck & Webster, 1991).

2.1.5 - Conclusion literature research

The goal of this literature research is to analyse how playfulness can be used in product design

and how this can affect the overall user experience of a product. In order to discuss the elements of

play and playfulness both were analysed and their meaning discussed. This resulted in play being able

to be expressed as a form of activity that elicits involvement and provides pleasure. Playfulness can

be expressed as a term that can be used to describe a state or trait of an individual, or as a product or

interaction that has the ability to alter the playfulness state or trait of an individual. Next to this,

different sources were analysed to define methods for playful design. This resulted in a framework

and taxonomy that can be used in both analysis and ideation. The framework that could be used is the

PLEX framework with 22 categories that could enhance playfulness. The taxonomy allows distinction

in form and functional aspects that could enhance playfulness. With the use of both methods,

designers should be able to form a good conceptual idea of playfulness within their field of design and

be able to ideate possible playful design solutions. Lastly, the analysis of literature provided possible

positive and negative effects that playfulness could have on user experience. Possible positive effects

could be an increase in involvement, pleasure and learning ability, of which all could have a strong

effect. Possible negative effects include over-involvement and longer task completion, where the

severity of the consequence of both is dependent on the task or interaction at hand.

The main limitations of this literary research are the interpretation of both play and

playfulness and the analysis of playfulness frameworks. During the analysis of both play and

playfulness many different perspectives could be derived within the field of play research. In the

context of this research, the essence of both aspects was analysed and described, but a more

structural analysis could have been performed to derive a more precise definition within the scope of

this thesis. Next to this, the analysis of different playfulness frameworks for product design is

25

dependent on personal interpretation of these frameworks, since there is limited literature on the

application and comparison of these frameworks.

Future research could focus on the impact of products on playfulness as state or trait

phenomenon. According to the analysis in this research there is serious potential in the use of

playfulness within the field of product design. There is a need for a better understanding of both the

state and trait of playfulness within the context of product design. Future research could investigate

what products could alter the state or trait of playfulness and in what way this could be applied.

Furthermore, there is a need for more research into the implementation of playfulness frameworks in

product design.

Within the context of Modsy

The knowledge gained from this literature research can directly be applied to the Modsy controller.

Playfulness as a state of mind is of most interest within the scope of this research since the controller

should have the ability to trigger a certain playful state during usage. As discussed in the literature

review playfulness as a state of mind can be assessed with the use of flow theory. Flow is positively

correlated to the state of playfulness of an individual and has been used in research to determine the

amount of playfulness experienced. Playfulness as a trait could be interesting for future research, but

is of no interest within the scope of this thesis. Next to this, the PLEX framework and taxonomy

proposed by Shari can be used in the ideation and analysis phase of the project. Both of these could

be good tools to identify potential playful aspects of products and reasons why products are seemingly

more playful. Lastly, the identified effects of playfulness on user experience might be useful when

discussing certain outcomes of playfulness enhancement. Some of these effects might not be

applicable for the Modsy controller since for instance the negative influence on task completion could

be less troublesome within the activity of music production. This could depend on the type of

producers and performers, while some producers and performers do not value efficiency and

effectiveness other producers and performers do.

26

2.2 - State of the art

This section of the thesis will provide an analysis of different products. These products will be analysed

with the use of two tools identified in literature research for the assessment of playfulness. This

assessment of playfulness will concern the ability of these products to enhance the state of playfulness

of a user.

The two tools that will be used are the PLEX framework and a taxonomy used by Shahri. The PLEX

framework proposes 22 categories that could influence the playfulness of a product or interaction.

These categories are listed in table 1 in chapter 2.1 together with their description. The taxonomy

allows a distinction between playfulness in both form and function.

How will analysis with both items be performed?

The products will be analysed on both playfulness in form and function based on their features and

appearance through tutorials, online documentation and reviews. This will provide a good sense of

the product its playfulness in form and function.

Analysis based on PLEX categories will also be performed by an assessment of the feature and

appearance of the products. During this analysis all 22 PLEX categories will be considered and their

importance and presence within the product will be noted in an excel sheet. The most relevant and

interesting PLEX categories have been described in detail in this report. An example of the full analysis

has been included as item F in the appendix.

The use of tutorials, online documentation, and reviews of both analysis does allow the possibility of

biased interpretation of the product its features and characteristics. Thus, the analysis should be

interpreted with caution.

User experience

As stated in the literature research, analysis based on playfulness in form and function can be rather

subjective. This is due to the experience certain users have with products. However, the user group of

certain products is likely to have similar experience. This shared experience could lead to a similar

view on the playfulness of these products. The user group of the Modsy controller is advanced and

professional music producers and performers. The analysis of the playfulness of various products will

be based on the experience of the intended user group of that product.

27

2.2.1 - Direct competitors

Some products can be seen as direct competitors of the Modsy controller. These direct competitors

will also be analysed based on their competitive advantages in the market and possible weaknesses.

Ableton Push

Description

Ableton Push (Ableton n.d.) is a control surface for

the DAW Ableton Live. This means that this controller

has both a hardware interface and software element

that makes it well-integrated within a DAW, in this

case, Ableton Live. The hardware controller can be

seen in figure 6. This controller is meant to give direct

tactile control over the Ableton Live environment.

This control includes Ableton navigation, functions,

and direct control over a variety of Ableton native

instruments and effects. The controller is hard to learn due to the many functions that are available

on the controller and the way that this controller can be operated. It is generally stated that the

advantages of the controller only arise after a longer period of usage (Romanwave, 2020).

Competitive analysis

The Ableton Push has similar functionality to the Modsy controller. This is mainly related to the

instrument and effect control inside of Ableton Live. Next to this, the Modsy will also be an Ableton

exclusive product in first years of production. The price point of the Push, 600 euros, is very similar to

that of the Modsy controller. The pros and cons compared to the Modsy controller have been listed

in table 2 below.

Pros Cons

Great Ableton integration Steep learning curve

OLED display with detailed visualizations Can only be used effectively with Ableton Live.

High quality build Device mapping does not work well for third

party devices.

Table 2 - Competitive analysis Ableton Push

Figure 6 - Ableton Push controller (Kytary.nl, 2021)

28

Playfulness analysis

Playfulness analysis was performed for both the form and function of the product and included a

general PLEX category analysis as stated in the beginning of this state of the art section. Both are

described below.

- Form

Playfulness in form can be seen in the OLED display and LEDs located on the controller. During

the usage of different instruments or effects the user receives playful feedback through these

elements. Both elements respond in relation to the music that is being created and could be

seen as playful visual feedback. It should be noted that this only occurs during actual usage of

the controller.

- Function

The functionality of the Ableton Push provides greater and more direct control of music

production tools. The control over these music production tools is directly related to play

behaviour and thus the controller has strong functionally playful aspects. As will be explained

through the use of PLEX categories the Push can function in a very playful way.

Analysis with PLEX categories indicates the following most prominent categories:

- Captivation, users can completely lose themselves in the environment of the Push and the

control that is possible with the controller.

- Discovery/ Exploration, within the menus and functionalities available on the controller there

is a lot of different functionality to discover and further explore. Possible software updates

can further elaborate features, and has done so in the past (Ableton, 2017).

- Sensational, the visualizations, auditive feedback and led feedback trigger a lot of senses in

the users of the controller.

Overall for the user group of the Ableton Push the perceived playfulness is moderate to high.

29

Native Instruments Komplete Kontrol

Description

Native instruments is one of the

heavyweights within the digital

music production industry. The

company develops both hardware

and software for the music

production process. Most relevant

within the scope of this research is

the Komplete Kontrol line of

products (Native Instruments, 2021).

One of these products named the Komplete Kontrol S49 Mk2 can be seen in figure 7. These products

provide direct control over different digital instruments and effects within the Native instrument

environment which can be seen in figure 8. This environment can be used inside different DAWs. The

controller has relatively low costs and high functionality.

Figure 8 - Komplete Kontrol controller (Thomann, 2021-a)

Figure 7 - Komplete Kontrol software environment (Native Instruments, 2021)

30

Competitive analysis

The Komplete Kontrol series can be seen as a direct competitor of the Modsy. However the controller

addresses slightly different user needs. Instead of providing the user more analog control the

Komplete Kontrol series is aimed at quick musical results and providing an efficient music production

experience. The product line provides keyboard functionality next to device control, which broadens

the scope of potential customers. The controller can automatically be linked to digital instruments and

effects, however this only works within the Native Instruments environment. The pros and cons

compared to the Modsy controller have been listed in table 3 below.

Pros Cons

Good value for money Device control only works well for NSK devices

Large amount of control available. Including

keys, instrument control and DAW control.

A lot of extra control users might not need

Big display with colour for feedback. Cheaper build quality

Works within all DAWs

Table 3 - Competitive analysis Komplete Kontrol

Playfulness analysis

Playfulness analysis was performed for both the form and function of the product and included a

general PLEX category analysis as stated in the beginning of this state of the art section. Both are

described below.

- Form

A visual playful aspect is less present in the design of the Komplete Kontrol controller. The

visual cues are very straightforward. Some playfulness can be found in the LEDs related to the

keyboard of the controller.

- Function

A user can have full control over instruments and effects directly from the controller, this

creates a very playful environment during usage. Due to Keys, DAW control, and parameter

control a music producers should have a lot of functionality to discover and create sounds.

Analysis with PLEX categories indicates the following most prominent categories:

- Captivation, due to the integrated keyboard and extended functionality it is possible to fully

control instruments and effects from the controller itself. This makes it easier to lose yourself

in certain instruments or effects.

31

- Expression, Due to the extended control and integrated keyboard the controller is very suited

for expression of your musical ideas.

- Control, there is high control due to the scope of the functionality directly available on the

controller.

Overall for the user group of the Komplete Kontrol series the perceived playfulness is moderate to

high.

Softube Console 1

Description

The Softube Console 1 aims to improve

workflow, decision making, and save time

(Softube, 2021). The controller can be seen

in figure 9. The controller can be coupled

with a software environment that allows all

of the software parameters to be instantly

mapped to the hardware controller, this

software environment can be seen in figure

10. This can provide a more analogue feeling

for the tools used by music producers. The

controller is more focused on the mixing

tasks of music production process, which

could be seen as a more formal part of music production.

Competitive analysis

The Console 1 can be used with software from Softube. This provides a hardware-software ecosystem

that works very well for people that use these tools. The controller can be seen as a direct competitor

since the functionality is similar to that of Modsy. The pros and cons compared to the Modsy controller

have been listed below in table 4.

Pros Cons

Very intuitive control due to the fixed controller

layout.

Device only works for the Softube environment,

only with Softube plugins.

Figure 9 - Softube Console 1 (Baxmusic, 2021)

32

High quality build Limited amount of control for plugins

 Not all digital parameters have a physical

representation.

Table 4 - Competitive analysis Softube Console 1

Figure 10 - Console 1 with Softube software (Softube, 2021)

Playfulness analysis

Playfulness analysis was performed for both the form and function of the product and included a

general PLEX category analysis as stated in the beginning of this state of the art section. Both are

described below.

- Form

The form of the controller is very basic. The controller is not especially focussed on providing

playful engagement upon observation. During usage the controller becomes more visually

engaging, the LED on the controller will provide direct feedback for the user.

- Function

The functionality of the controller is again related to music production, thus directly related

to playful behaviour. However, the control with the Console 1 will be more focussed around

33

more formal aspects of the music production process. Since the controller will be used more

in the mixing and mastering stage of music production and less in the instrumental / creation

phase of music production. This means that the usage of the controller will most likely be used

in less play based activities.

Analysis with PLEX categories indicates the following most prominent categories:

- Control, a major aspect of the controller is the high and direct amount of control that is

provided over your environment. However, professional reviews of the controller state that

this control is limited since not all functionality can be directly changed from the controller.

(White Sea Studio, 2019)

- Challenge, there is certain challenge with the use of a hardware for music mixing and

mastering which differs in feeling from solely digital music production. This is especially

evident in the mixing and mastering stage and this controller suits challenge very well, it

creates a more analog environment for the producer which the producer has to get used to.

- Sensational, A user will be provided with direct audible feedback upon his interactions with

the controller.

Overall for the user group of the Console 1 the perceived playfulness is moderate.

MP MIDI

Description

The MP MIDI controller is a product from

a start-up in Cyprus. The controller

provides direct physical control over

digital instruments and effects. These

digital instruments and effects can be

loaded directly onto the controller

which can be seen in figure 11. The

controller is made up of a large touch

screen with 32 rotary encoders that can

be used to control these digital instrument and effects.

Figure 11 - MP Midi (Interface, 2020)

34

Competitive analysis

The MP MIDI controller is a direct competitor of Modsy since it provides direct analogue control over

different digital instruments and effects. The software allows the usage of different software formats

like VST, AU or AAX and can be used with a variety of different DAWs. The touchscreen functionality

allows control over every element of a plugin in an instant, which could be a potential advantage over

the Modsy. The price point of the controller is slightly higher than that of the Modsy, 720 euros. The

pros and cons compared to the Modsy controller have been listed in table 5 below.

Pros Cons

Works for different DAWs Less of an analogue feeling due to the display

and encoders.

Touchscreen for full control Uses cumbersome solution for direct mapping of

software.

Large amount of parameter control Price is slightly higher than that of the Modsy

controller.

Table 5 - Competitive analysis MP MIDI

Playfulness analysis

Playfulness analysis was performed for both the form and function of the product and included a

general PLEX category analysis as stated in the beginning of this state of the art section. Both are

described below.

- Form

The form of the product is not very playfully engaging. Most elements are static and even with

the display turned on there are no elements that can provide an engaging playful experience

upon observation.

- Function

The functionality of the controller is very playful. The product allows for direct playful

manipulation of parameters with the use of the touch screen or physical knobs. This direct

functionality allows a musician to fully focus on an instrument or effect and get fully engaged

in its features.

Analysis with PLEX categories indicates the following most prominent categories:

- Captivation, the controller can provide a fully immersed experience with an instrument or

effect

35

- Control, the controller provides high level of control with the use of both touch and encoder

control. This creates an environment where the user feels he can playfully control all

elements.

- Exploration, the different way of using instrument or effects provides a way to explore its

features in an even more extensive way. The controller allows for better exploration of synths

and effects inside of your DAW.

Overall for the user group of the MP MIDI the perceived playfulness is moderate to high.

2.2.2 - Inspirational products

As stated in the background research, playfulness can be best studied through examples. It could be

very beneficial for a designer to assess the playfulness of inspirational products (King & Chang, 2015).

This section of the state of the art is used for this purpose, an analysis of playfulness in interesting and

inspirational products.

Teenage Engineering OP-1

Description

The OP-1 is a product by Teenage Engineering

(Teenage Engineering, 2021). A company that

seems to benefit from playful design and

interactions in its products. A good example of this

is the OP-1 controller, which can be seen in figure

12. This controller is a synthesizer, drum machine

and overall music production tool that can be used

to create music from the ground up. The product is

respected and loved by musicians even though it

has a higher price tag (1000 euros).

A particular interesting feature is the interface design

of the OP-1 as can be seen to the right in figure 13.

There are different visualizations of effect / parameter

settings and these have been created in a seemingly

‘playful’ way. An example would be the boxer that can

Figure 12 – OP-1 Controller (Thomann, 2021-b)

Figure 13 - OP-1 Display Visualizations
(Tombolare, 2012)

36

be seen on the middle right of the image, twisting parameters would increase the punch of the sound

and this is made clear through this seemingly playful visualization.

Playfulness analysis

Playfulness analysis was performed for both the form and function of the product and included a

general PLEX category analysis as stated in the beginning of this state of the art section. Both are

described below.

- Form

The form of the controller is very playfully engaging. The controller creates this visual

engagement through the use of different types of colours, buttons and keyboard layout the

controller. Next to this, the visualisations throughout the use of different effects, sounds and

menus within the controller is highly playful.

- Function

The functionality of the controller is very playful as well. The controller can be used as a stand-

alone music production station. This means that users can create sound on the controller,

alter these with on board manipulations and effects, and put them into an arrangement. This

enables users to quickly ideate and create musical ideas and loops while experimenting with

their sounds.

Analysis with PLEX categories indicates the following most prominent categories:

- Captivation, Since the controller can be used as a stand-alone music station an artist can

completely loose him or herself in the process for a long period of time.

- Discovery / Exploration, there is a lot of different functionality to discover and further explore

upon discovery. This includes different instruments, effects and ways of song creation.

- Humour / Fantasy, the controller is unique in the way that it deals with user feedback for

setting changes. This can be seen in the display interface from image 13. Humour and fantasy

are used to convey a message, this is unlike many other controllers.

- Sensational, with the use of both audible and visible feedback the controller can provide a

very sensational experience.

Overall for the user group of the OP-1 the perceived playfulness is high.

37

Moog Minimoog Model D

Description

This analogue synthesizer is one of the most

iconic electrical instruments (Moog, n.d.).

Many artists can recognize this machine and

feel an urge to start playing with its

parameters. Even though the design of the

controller is very straightforward, as can be

seen in figure 14, there are many ways in

which the settings of the machine can be

changed in other to generate new sounds.

What is particularly interesting about the Model D is the fact that the Model D was one of the first

portable synthesizers and has been used since the 1970s. This resulted in the Model D being used by

a lot of different artists over the years including Herbie Hancock, Kraftwerk, and Funkadelic. The users

of the Model D can create the sounds of these artists (Reverb, 2019).

Playfulness analysis

Playfulness analysis was performed for both the form and function of the product and included a

general PLEX category analysis as stated in the beginning of this state of the art section. Both are

described below.

- Form

The form of the Model D is not particularly playful. Due to the layout of the knobs and design

of the controller there is some visual playful engagement into how these button relate, but

there are no specific items that are highly visually playfully engaging.

- Function

The functionality of the Model D is very playfully engaging. The machine can be used to create

a variety of sounds and by twisting different parameters the relationship to other parameters

changes, thus creating a never ending array of sounds. As stated in the description the

synthesizer can also be used to create sounds of artists that used the machine in their

recorded music. This creates another layer of functionality and could add additional challenge

to the use of the product.

Figure 14 - Moog Minimoog Model D (Music Store, 2021)

38

Analysis with PLEX categories indicates the following most prominent categories:

- Captivation, the Model D can be very captivating during usage. The controller can be used to

create a variety of sound and has enough functionality to fully captivate users during usage.

- Discovery / Exploration, the Model D has different functionalities that can be discovered

during usage, each of these functionalities changes the behaviour of the parameters on the

instruments. This creates a wide variety of possibilities and options to explore.

- Challenge, as stated in the playful functionality of the Model D, the controller can be used to

create sounds of artists that have used the instrument before. This could create the challenge

to mimic or discover ways to create these sounds.

- Thrill, one element that comes with the territory of old analogue synthesizers is the change

of the controller breaking or developing certain quirks during usage. It can provide a certain

risk and danger during music production that could add to the playfulness of the experience

of using the instrument.

Overall for the user group of the Minimoog the perceived playfulness is moderate to high.

LEGO

Description

Every kid has touched a Lego block at some point in their

life. The company behind the Lego blocks, the LEGO Group,

finds play extremely important and has stated play as a key

role in the development of children (LEGO, 2021; Zosh et

al, 2017). Lego is commonly understood as being a playful

product, so it is interesting to see where this playfulness

comes from and find ways to apply it within the design

process. An example of a LEGO creation can be seen in

figure 15.

Playfulness analysis

Playfulness analysis was performed for both the form and function of the product and included a

general PLEX category analysis as stated in the beginning of this state of the art section. Both are

described below.

Figure 15 – LEGO (IKEA, 2021)

39

- Form

The form of Lego is very visually engaging. When gazing upon a pile of Lego blocks one can

imagine what can be build or altered to improve or change a Lego creation. The different

colours, options and styles allow for many ways one can get visually engaged with the Lego

blocks.

- Function

The function of the Lego blocks is highly playful as well. The act of playing with Lego allows for

exploration, discovery and changes as we will describe with the use of PLEX categories. The

act of building something new from existing blocks and being able to change and swap at any

time is very free and playfully engagement.

Analysis with PLEX categories indicates the following most prominent categories:

- Captivation, users can get completely captivated in the building process of Lego or the play

that can be performed with the Lego.

- Discovery, users can keep discovering new ways to use the Legos and different ways to apply

these Lego creations.

- Exploration, after finding new ways to use the Legos, users can explore different colours,

shapes, or types of characters to use for similar projects.

- Fantasy, users can get lost in a fantasy Lego world due to the different product lines of Lego.

They can create whole worlds of Lego to get lost in for hours. One glance at the Lego world

event will provide understanding into the possibility of this (LEGO world, n.d.).

What is very interesting about Lego is the versatility of the product, since there are many different

products under the Lego name and they can be used in different ways, the following categories are

also of interest

- Competition, Lego can be used for competitive purposes. There are different competitions

around the world based around Lego (LEGO education, n.d.). There is even a Dutch TV show

centred around the building of Lego structures (Endemol Shine Group, 2021).

- Completion, there can be a real sense of completion after finishing a Lego build. It depends

on the type of build and the user if this is seen as true completion.

- Humour, Lego uses humorous pieces and constructions in their products. This can support the

playfulness of these products.

- Simulation, users can choose to simulate scenarios of daily life, movies or their fantasy worlds.

They can buy Lego versions of elements of these world and simulate this environment.

40

Overall for the user group of Lego the perceived playfulness is high.

Blipblox

Description

The Blipbox is a synthesiser designed

for children (Playtime Engineering,

2021). The controller is made of

plastic and has a variety of differently

coloured knobs, handles and triggers

to create sounds. The controller can

be seen in figure 16. Since the

parameter names are not displayed

on the product itself it is up to the

user to find out what each knob does.

Even though the controller is meant

for children, a lot of older music producers that want something different end up buying this controller

(O’Brien, 2020). This is very interesting behaviour since this would normally not be considered a

qualitative good instrument. The playfulness of the controller might play a key part in the acceptance

of musicians.

Playfulness analysis

Playfulness analysis was performed for both the form and function of the product and included a

general PLEX category analysis as stated in the beginning of this state of the art section. Both are

described below.

- Form

The form of the Blipblox is very playful. This is due to the colours, arrows and shape of the

device, these elements create some playful visual engagement into the meaning and

functionality of the controller.

- Function

The functionality of the controller is highly playful as well. As will be pointed out in the PLEX

analysis, the discovery and exploration during usage result in a high level of playful interaction

with the device. Users can only hear the change of audio when twisting a knob.

Figure 16 - Blipblox synthesizer (Thomann, 2021-c)

41

Analysis with PLEX categories indicates the following most prominent categories:

- Discovery, this controller has a high amount of discovery upon first usage, this is due to the

lack of parameter names and the strange layout of the controller itself. It can take a user quite

some time to discover all features of the controller.

- Exploration, through usage of the controller the user explores all of the features present on

the controller itself and can find new combinations when exploring all parameters.

- Challenge, it can be a real challenge to figure out what functionality knobs are linked to.

During usage it can be a good challenge to find out more and more what the synth does and

remind this for future usage.

- Sensational, due to audible feedback, Bright lights and movements the controller is very

sensational in usage. Since the feedback might also be unexpected this further strengthens

the sensation of using the controller.

Overall for the user group of Blipbox the perceived playfulness is high.

42

2.2.3 - Lessons learned

Different things can be learned from the analysis of both competitors and inspirational products. The

main takeaways are listed below.

- Baseline for music production controllers

Some PLEX categories seem to be related to most of the music production controllers. These

are Captivation, Discovery and Exploration. This makes sense since this might be at the core

of a good music production controller. A good controller may have to captivate a musician in

its usage and allow him to discover and explore new elements that might lead him to the

production of new music. When designing a music production controller these elements seem

to be important in the playfulness of the controller.

- Design for unique categories

Some categories where less frequently identified but provided huge playful value for a variety

of the products. These include Humour, Challenge, Fantasy. These categories could for

instance be seen in the OP-1 controller. Challenge could be seen in the Moog controller, which

is an often overlooked aspect of the appeal of this instrument.

- Untapped markets

Some categories of the PLEX framework where never identified during the analysis of direct

competitors of the Modsy, these could be potential categories that can be used in the ideation

phase of the Modsy controller to create a unique design. They included: Fellowship,

Submission, Subversion, Suffering, Sympathy, Completion, Eroticism. Some of these

categories may be very difficult to effectively include in the design of a controller without the

disruption of functionality or focus of the product. But these categories do pose unique design

aspects and will be taken into account for the ideation phase.

- Form and function

Functionality and form seem to be well reflected in the analysis with PLEX categories. Analysis

based on form and function does make some of the categories somewhat more concrete and

allows the distinction of precise design features. We can look at the example of the OP-1

controller. Plex categories identifies Humour and Fantasy to be important, the form analysis

proposes the Oled Display to be one major visual aspect that contributes to this playfulness.

So, thinking about form and function could be useful to make plex categories more concrete

and transform these to actual design features. This could be useful in the ideation phase.

43

Chapter 3 – Methods and Techniques

This chapter describes the methods and techniques that will be used throughout the remainder of the

report.

3.1 - Creative Technology Design process

The Creative Technology Design process can help with the development of new and innovatie

products, applications and services (Mader, Eggink, 2014). This method describes 4 different phases

that can be used during the design process: ideation, specification, realisation, evaluation. The phases

follow after eachother and end with a definied set of intermediate results.

- Ideation

The ideation phase establishes new concepts or ideas. This is done through the gathering of

user data through, e.g. user interviews or observation, and the creation of concepts, e.g.

sketching, storyboarding and prototyping. The ideation phase allows for the diverging and

converging of ideas. At the end of the ideation phase one or more preliminary concepts have

been created, these concepts form the starting point of the specification phase.

- Specification

The specification phase elaborates and explores the preliminary concepts carried over from

the ideation phase. The specification of these concepts relates to the use of different methods

and techniques to further establish the concept and make it more concrete in its form and

function. At the end of the specification phase the final concept is proposed that can be used

in the next phase of the design process.

- Realisation

In the realisation phase the final concept carried over from the specification phase is realised.

This includes the creation of hardware components, software development and wiring of

electrical components. At the end of the realisation phase the final concept has been realised

to a functional and testable prototype.

- Evaluation

In the evaluation phase the prototype is tested. Both functional and non-functional testing

could take place during this phase. User testing is most likely to be involved during this phase

in order to evaluate and reflect on the realised design.

44

3.2 - Stakeholder analysis

A stakeholder analysis is the process of identifying the individuals, groups or organisations that have

a certain interest or influence within a project (Smith, 2000). Throughout the stakeholder analysis

these groups can be describes and have both their influence and interest analysed within the scope

of the project. A stakeholder analysis can help to understand the impact that a certain project can

have.

3.3 - PACT analysis

PACT analysis is a framework that can help and think about human centred design. The framework

allows for the analysis of people carrying out certain activities in context using certain technologies

(Nayanathara, 2020). The PACT analysis can be used to derive requirements for a system. In the PACT

analysis four elements can be analysed and are listed below.

- People

During analysis of people all possible physical and metal characteristics of the users of the

product will be taken into account. Within the scope of this thesis people are explored and

explained through user interviews, user research and personas. Personas provide detailed

descriptions of the users of a product.

- Activities

Analysis of activities allows for the distinction between different tasks or interactions that a

user performs with a system. These tasks can differ in length, complexity, or any other

relevant factor.

- Context

The context is related to the situation in which the product will be used. This can for instance

describe the environment, social context or organisational context in which the product is

used.

- Technologies

The technologies relate to all the technology that is used in the operation of the system. This

could relate to certain input devices that are needed such as keyboards or touchpads, or

certain output devices like displays or speakers. Next to these two elements the

communication of this technology should also be considered.

45

3.4 - PLEX brainstorm

The PLEX brainstorm technique stems from the Playful Experiences framework (Lucero, Arrasvuori,

2010). The PLEX framework has been discussed during the literature research in chapter 2. The PLEX

brainstorming technique can be used to quickly come up with large amounts of playful concepts. The

method can be performed by groups of two. This technique uses the PLEX cards, these cards hold the

names and visualization of different PLEX categories. An example of these PLEX cards can be seen in

figure 17. As discussed in chapter 2, these PLEX categories are related to playful interaction. PLEX

brainstorming can be performed in the following way:

1. First, one card is drawn randomly form the deck of PLEX cards and placed face-up on the table.

This card is called the Seed card.

2. Then both players pick three extra cards from the deck of PLEX cards.

3. Thereafter, the user which placed the Seed card should explore the product or idea using the

PLEX category on the Seed card.

4. Both players listen and consider the cards in their hand and when they feel that they can

elaborate on the idea placed on the table they put it on the table. They explain how the initial

idea is changed or evolved.

5. The idea is developed

further by picking and

placing cards from the

hands of the participants.

6. After all cards have been

used the players can

conclude their PLEX

brainstorm session.

During the PLEX brainstorm the

ideas can be recorded on paper.

3.5 - PLEX scenario

The PLEX scenario technique is also related to the PLEX framework. This technique can be used to

create more elaborate ideas using the PLEX cards (Lucero, Arrasvuori, 2010). This technique can be

performed by two participants. One deck of PLEX cards is used.

Figure 17 - Example of PLEX cards, captivation and challenge
(funkydesignspaces, n.d.)

46

1. One pair of participants draw 3 PLEX cards. These cards are placed face up on the table.

2. Thereafter a scenario is formed by the participants using a PLEX scenario template as can be

seen in figure 18 below. There are 3 stages to the scenario, one card can trigger the beginning

of the scenario, another card the continuation, and the third card should provide the ending

to the scenario.

The ideas can be written or sketched on the PLEX scenario template.

3.6 – Mind Mapping

Mind mapping is a technique that can be used to map out different ideas or options in a structured

manner (University of Adelaine, 2014). The method is mainly used to analyse associations that certain

elements or topics have with each other. Within the scope of this thesis mind mapping will be used to

provide structure in a brainstorming exercise. A central theme can be placed in the middle of a page

or view and other elements can be connected to this theme using lines or branches.

3.7 - Rapid ideation

Rapid ideation is an brainstorming method that can be performed by a group or individual to quickly

come up with a lot of different ideas (Belyh, 2019). During this method a group or individual has to

come up with as many ideas as possible within a certain time limit. The rapid ideation performed

Figure 18 - Plex Scenario cards (funkydesignspaces, n.d.)

47

during this thesis does not include no direct reflection on feasibility. Within the scope of this thesis

this method is only used individually.

3.8 - MoSCow Method

The MoSCoW method is a prioritization technique that can be used to manage requirements of a

product (ProductPlan, 2021). The method uses four different categories to define difference in

priority: Must haves, should haves, could haves, and will not haves. These categories are shortly

described below:

3. Must have, non-negotiable product needs that are mandatory for the successful realisation

of the product.

4. Should have, Important needs that are not vital, but can provide significant value to the

product.

5. Could have, Nice to have initiatives that will have a small impact if left out.

6. Will not have, Initiatives that are not a priority for the time frame of this thesis.

The MoSCoW method will be used at the end of the ideation and specification phase to form the

requirements of the final product.

3.9 - Sketch ideation

Sketch ideation is a method to discover and explore ideas (Patel, 2020). The method uses sketching

on paper, whiteboard or other material to materialize and give form to ideas. The method can be

performed by an individual as well as a group.

3.10 - Mood boarding

A mood board is a physical or digital collage of ideas that can help with the ideation of a new product

(Canva, 2021). During the method a user can use different images, materials, text or other design

elements to ideate about a product. Within the scope of this thesis a digital mood board will be created

using a variety of digital images.

48

3.11 - SUS analysis

The System Usability Scale (SUS) provides a quick way to measure the usability of a system

(Usability.gov, 2020). The SUS consist of 10 different questionnaire items with 5 response options. The

SUS can be analysed in a specific manner which will result in a SUS score on a scale from 0 to 100. This

score then relates to the overall usability of the system. A score above 68 would indicate an above

average usability score, a SUS score of above 80.3 would indicate that people are very positive about

the usability of the system (Thomas, n.d.).). The SUS questionnaire as used during the evaluation

phase of this thesis has been included in the appendix as item A. The SUS score can be calculated in

the following way:

- For all odd numbered questions 1 should be subtracted

- For all the even numbered questions their value should be subtracted from 5

- All the new values should be added up and multiplied by 2.5

3.12 - Flow Short Scale (FSS)

The Flow Short Scale has been developed by Rheinberg, Vollmeyer, and Engeser (2003). The Flow

Short Scale can be used to analyse flow after completed activities or during experience sampling

method based assessments. The Flow Short Scale consists of 13 items, with items 1 – 10 measuring

the components of flow experience. Items 11, 12 and 13 measure perceived importance or perceived

outcome importance (Engeser, 2012). The Flow Short scale as used during the evaluation phase of this

thesis has been included in the appendix as item B.

49

Chapter 4 – Ideation

This chapter describes the ideation phase of the creative technology process. It will include the

analysis of stakeholders, analysis of the Modsy controller, PACT analysis and finally, the actual ideation

of more playful Modsy controller concepts. At the end of this chapter the preliminary concept will be

described together with a list of preliminary requirements.

4.1 - Stakeholder analysis

This stakeholder analysis will discuss individuals or groups that could have interest or influence in the

graduation project.

4.1.1 - Potential users of Modsy

The users of the Modsy controller could have significant influence and interest in this graduation

project. The users of Modsy are producers and performers that use a DAW. We can segment these

potential users into 2 potential user groups: advanced and professional producers and performers and

beginner producers and performers. It is important to segment the user group of Modsy since research

shows that advanced and professional producers and performers are most likely to be interested in

the product and could benefit most from the Modsy controller (Mathijssen, Driel, Berkenbos,

Wintermans, 2020). This resulted in a focus on advanced and professional producers and performers

for Modsy its features and design. Both groups are described below with their interest and influence.

Advanced and professional producers and performers

Advanced and professional producers & performers are individuals that have significant skill within

music creation or performance with the use of a DAW. These users are familiar with DAW functionality

and know the relevant terms when it comes to music production or performance.

Interest Influence

High

These users will derive high benefit from the

Modsy system, thus the interest in the Modsy

controller will most likely be high.

Moderate

These users are the target audience of the

Modsy. The Modsy design will be fitted to this

user group and feedback of the user group will

directly be used in design choices. Thus, the

influence that these users have is moderate.

Table 6 - Influence / Interest advanced and professional producers and performers

50

Beginner producers and performers

Beginner producers & performers that use a DAW can be defined as: Individuals who are relatively

new to music creation and performance with the use of a DAW and still have a lot to learn in this

process.

Interest Influence

Low

Since these users will derive less benefit from

the Modsy controller it will be most likely that

the interest in the controller will be lower.

Low

These users are not the direct target audience

of Modsy, thus the influence that these users

will have is low.

Table 7 - Influence / Interest beginner producers and performers

4.1.2 - Weirdly Wired

Weirdly Wired is the start-up behind the Modsy controller. This group consists of Bram van Driel,

Robbert-Jan Berkenbos, and Olivier Mathijssen. Decisions about the Modsy controller are influenced

by this team as design problems or company strategy is discussed between team members.

Interest Influence

High

Since there is a high interest in successful

development of the product there is high

interest in the design of the Modsy controller.

High

All of the individuals within the Weirdly wired

team have the influence to drastically change

the design of the Modsy controller. So all have

significant influence in this graduation project.

Table 8 - Influence / Interest Weirdly Wired

4.1.3 - DAWs

The Modsy controller is used in combination with a DAW (Digital audio workspace). Without a DAW

the Modsy cannot function. This means that the design of a DAW and their actions can have a

significant amount of influence on the graduation project. The software structure of this DAW could

limit functionality and possible features of the Modsy controller.

51

Ableton Live

The DAW that is initially of most importance is Ableton Live since the first iteration of Modsy’s will

only be functional in combination with this DAW. Through the course of the graduation project

Ableton Live will be used in combination with the Modsy controller.

Interest Influence

Low

There is no direct benefit that the Modsy

controller will have for a DAW. However, there

could be some interested for the design of the

Modsy controller since this could provide

benefit for users of a DAW.

Moderate

The structure of Ableton Live could influence

the development of the Modsy controller, but

this does not apply for all aspects of the

development. It merely concerns the digital

features of the Modsy controller, e.g. the

mapping of the Modsy controller to digital

instruments and effects. This will be further

explained in the product analysis during this

ideation chapter.

Table 9 - Influence / Interest DAW

4.1.4 - Music production controller manufacturers

Other music production manufacturers could have influence in the design process. Decisions made by

this group could influence the current status of the music production and performance controller

market. The most important parties to be considered are the direct competitors of the Modsy

controller as described in the state of the art section, namely Native Instruments, Ableton Push,

Softube and MP MIDI. To differentiate the product from these controller the Modsy design should

differ from that of these controller, to some extent this has to be considered throughout this

graduation project.

Interest Influence

Low

This group is not very interested in the

development phase, but could be interested in

the outcome of the project.

Low

This group could have influence during the

converging of design concepts, however within

the scope of this thesis competitive advantage

is not the highest priority.

Table 10 - Influence / Interest music production controller manufacturers

52

4.1.5 - Production partners

For the actual realization of the design into a real-world product it could be important to consider the

different production partners needed in this phase. Even a good design could pose potential design

problems in a later stage due to production complications. Thus the influence and interest of this

group should be assessed.

Interest Influence

Low

There is a low interest into project course and

outcome. The interest is mostly financial.

Low

For the graduation project the influence is low.

This could increase when implementing

potential design solution for a new product

since elements might need to be altered in

order to suit production.

Table 11 - Influence / Interest production partners

4.1.6 - Project supervision

Possible decision influencers include Erik Faber and Wouter Eggink. Both are supervisors of this

graduation project. They will provide feedback throughout the project and will eventually assess and

grade the work. In the course of the graduation project these two individuals can have significant

influence in the steps that are taken.

Interest Influence

Moderate

There is no high interested in the outcome of

the graduation project itself, this interest is in

correct execution of the project steps. This

creates an moderate element of interest in the

project.

Moderate

Both supervisors have the ability to change the

course of the graduation project. This is mostly

through feedback and advice on the course of

the graduation project.

Table 12 - Influence / Interest project supervision

53

4.2 - Modsy product analysis

To ideate about a potentially more playful Modsy controller this controller should be analysed on

essential features and potential requirements for design improvement. The users and context of the

Modsy controller will be analysed using a PACT analysis, however specific product features will be

analysed beforehand to get a sense of the goals, purpose and essential features of the controller. This

will help with the development of design requirements.

4.2.1 - Essential Modsy aspects

As stated in the first chapter, the Modsy controller will be able to provide an analogue feeling to digital

tools. The controller can be used to instantly take full control over different digital instruments or

effects. There are different elements in the current design of Modsy that form the essential

functionality of the product, these elements have been analysed together with Bram van Driel and

Robbert-Jan Berkenbos of the Weirdly Wired team and are listed below:

- 32 parameter control elements

The current Modsy controller has 32 parameter control elements. These control elements

include both potentiometers and buttons. They are used to take control over different digital

instruments and effects and bring the analogue feeling to these digital devices. A choice has

been made for direct control over 32 parameter since this gives users the same amount of

control they would have over a real analog instrument or effect. This has been derived from

synthesizers like the JUNO-106 and Moog Minimoog as described in the state of the art

section. The control elements of the Modsy can be seen in figure 19 on the next page.

- Parameter feedback

It is essential for a user to receive feedback of the currently mapped instrument or effect.

When providing analog control it is essential that the user can instantly recognize what

parameter he or she is controlling and how the value changes when he or she alters a

parameter. This parameter feedback will be provided through little displays above each

parameter, these displays can also be seen in figure 19 on the next page.

- Modsy plugin

There is a digital element that is always used together with the hardware controller. This is

the Modsy plugin. The Modsy plugin can be loaded inside of Ableton live and allows for the

creation and editing of mappings that are used to link the controller to different instruments

and effects inside of Ableton. This plugin can be seen on the next page in figure 20.

54

- Ableton control

Lastly, an essential element of the Modsy controller is the Ableton control. Ableton control

relates to the triggering of certain functionality within the Ableton Live environment such as:

start/stop, records, and quantize. The controller has an encoder, 2 displays, and 6 buttons

that can be used for Ableton control. These elements can be seen at the top of the controller

in figure 19.

All these features are essentials for the proper functioning of the Modsy system and should be

included in a future design as well.

Figure 20 - Current Modsy controller design

Figure 19 - Modsy software plugin

55

4.3 - PACT analysis

A PACT analysis was performed to analyse the context in which the Modsy controller will be used. As

explained in chapter 3, the PACT-analysis is a useful framework to think about a design problem by

considering people, activities, contexts and technologies. The purpose of such an analysis in the

context of this thesis is to derive requirements for the design of a Modsy controller. This analysis has

been performed together with members of the Weirdly Wired team.

4.3.1 - People

The people aspect of the PACT analysis will analyse the characteristics of the users of Modsy. Both

user interviews and personas will be used to analyse Modsy users.

User interviews

At an earlier stage of development Weirdly Wired has performed research into user requirements

(Mathijssen, Driel, Berkenbos, Wintermans, 2020). Different user interviews and tests were

conducted to explore the desires of the potential customers of Modsy. This resulted in an assessment

of the main benefit of the Modsy system, the following aspects were stated to be most important:

- A way to explore digital instruments and effects

- A way to gain more creative control

- A way to gain more expression

- A way to automate parameters, this will be explained in the activity section of the PACT

analysis.

All these potential benefits are essential for the Modsy system and should be present in a future design

of Modsy. In the context of a playful Modsy controller 3 unstructured user interviews were conducted

with users familiar with the Modsy controller. During these interviews the goal was to identify user

requirements that would be important if design improvements were to be made related to the Modsy

system. The following two requirements could be derived:

- The parameter control should be non-disruptive for the music production process.

This requirements relates to the way that parameters can be altered on the Modsy controller.

This should not disrupt the music in unexpected ways. When a music producers alters a

56

parameter he or she would like to know what is changing and this should be adjustable if the

change is disruptive to the music that is created.

- The controller should keep the ability to fully focus on music production process.

This means that when a user is using the Modsy system the controller should still allow

complete focus on the music production process. Within the scope of this thesis that is

relevant since some playful solutions might make the music production process more complex

or distracting and this is, at least not always, what a music producer or performer wants.

Personas

Within the scope of this thesis personas are used to explore and describe the different characteristics

of a variety of Modsy users. In total four personas have been described. These personas were created

together with the other members of the Weirdly Wired team.

Boris, male, professional producer, 28 years old, Amsterdam, DJ/Producer

Boris is a 28 year old DJ and producer. He has an apartment in

Amsterdam together with this girlfriend. Boris is signed to a

electronic music label based in Amsterdam and can utilize a

studio owned by this label. An impression of Boris can be seen in

figure 21, created with thispersondoesnotexist.com (Karras et al.

(2019). Next to this Boris has different music production

equipment in his apartment. This equipment consists of good

speakers, a synthesizer and a keyboard. In the studio he has

different synthesizers, drum-computers and mastering

equipment at his disposal. Boris has been making music for a

long time and has always been a digital music producer. Musical concepts are mostly created in his

apartment. Finalizing these concepts, so the mixing and mastering stage of his music production, is

performed in the studio of this label. Boris his main drivers for music production are income,

enjoyment, and emotional release. Boris has signed a deal with his label which states that he has to

release at least 1 album each year, and he been able to deliver on this promise. Boris is very active on

social media, mostly for the promotion of this own music. Furthermore Boris has a large social circle

within Amsterdam with many friends active in the music industry, this results in a lot of local

collaboration and support.

Figure 21 - Image of Boris

57

Josh, male, advanced producer, 32 years old, Berlin, software developer

Josh is 32 years old and has been producing music since his

childhood years. An impression of Josh can be seen in figure

22, created with thispersondoesnotexist.com (Karras et al.

(2019). He started out playing guitar, but later moved on to

digital music production in Ableton. He has studied computer

science at the university of Delft and now works a full-time

job as a software developer in Berlin. He lives alone in a

moderate apartment in the city of Berlin. Josh mostly

partakes in music production during evenings and in the

weekend. Josh his main drivers for music production are

enjoyment, emotional release and personal development. Josh only occasionally releases his music

on Soundcloud or his Spotify page. Josh is a member of a Facebook group where he talks with other

like-minded musicians. Within this group he is not very active, but will engage occasionally. Noah can

finance his musical activities well, since he has a stable income. His setup is minimalistic but of good

quality, with a proper mixer, good speakers, a MIDI keyboard, and a few instruments.

Nina, female, advanced producer, 21 years old, Utrecht, Sound Design

student.

Nina is a student sound design at the HKU in Utrecht. In this

program she specialises in sound for video content. She works

part time in a sound design agency and makes her own music

as well. An impression of Nina can be seen in figure 23, created

with thispersondoesnotexist.com (Karras et al. (2019). She has

a lot of contact with young producers and DJ’s and is trying to

build a portfolio for herself, which includes being active on

social media and doing promotional work. Since she wants to

distinguish herself from the crowd she is always looking for

creative ways to make new music. This includes utilizing old

instruments or sampling old records. Her budget is not big which means she is very particular about

what she invests her money in.

Figure 22 - Image of Josh

Figure 23 - Image of Nina

58

Robert, male, advanced producer and performer, 56 years old, Hogeveen,

Electrical engineer

Robert is 56 years old and has been performing music for a long

time. An impression of Robert can be seen in figure 24, created

with thispersondoesnotexist.com (Karras et al. (2019). He

started out in bands around the age of 16 and has been making

music ever since. This passion has progressed parallel to this

professional career in engineering. The music Robert produces

is mostly psychedelic rock and synth wave music. Roberts main

drivers for music production and performance are emotional

release and enjoyment. He does make a small amount of

money from his music performances, but this is not a main

drive. Robert records music with a band and uses different musical instrument in this process. Robert

has always been very interested in the mixing and mastering of the audio and has a small mixing studio

in his garden. This studio holds a variety of guitars, effects, mixing board, and some synthesizers.

Robert mostly uses Ableton for the finalizing of his recordings and occasionally uses software

instruments or effects in the process.

4.3.2 - Activities

Analysis of activities provides the essential functionality that the Modsy will have. These activities

should all be well supported in the design of a more playful Modsy controller.

Sound design

Sound design is an activity in which new sounds are being created using different instruments or

effects. Within the context of Modsy this will be the creation of new music by altering the parameters

of a digital instrument or effect. This activity could occur often during the music production process.

It is an active activity and is more often performed individually, but this can also be done collectively.

Sound design can take place for any music related project, from dance music to soundscapes and

audio visual projects.

Figure 24 - Image of Robert

59

Sound automation

Within the scope of this thesis sound automation relates to the occurrence of automated parameter

changes by the DAW of a user (Bawiec, 2018). What this means is that the DAW will change certain

parameters of instruments of effects over the course of a song. The way that the DAW changes these

parameters can be recorded or edited by a user themselves. A form of automation is the slow increase

of a cut-off filter or volume throughout a musical piece. An example of this automation, a volume

drop, can be seen in figure 25 below. The Modsy controller can be used during the musical

arrangement to create these automations in the music.

Figure 25 - Automation in Ableton Live

Ableton navigation and control

Ableton navigation and control refers to the function buttons and mapping section on the Modsy

controller. The function buttons can be used to trigger certain functions inside of Ableton Live. This

can be start/stop, record, quantize, and other relevant functionality. The encoder can be used to

navigate between your digital instruments and effects within Ableton and thus enabling to fully

control you DAW environment straight from the controllers interface.

These three elements from the core functionality of Modsy controller and must be kept intact for a

good functioning of the Modsy controller.

4.3.3 - Context

There are two main environments in which the Modsy controller can be used: a Studio environment

and Live environment.

60

Studio environment

A studio environment in the context of the Modsy controller refers to a music production studio

environment that can be used for the recording, creation, mixing or mastering of audio. The type of

music studio can differ based on the type of music producer of performer. Some studios are full of

analogue machines while other studios are more simple and have only good speakers, a computer

system and some mixing equipment. Beginner musicians are more likely to have a simple studio while

more advanced and professional musicians are more likely to have a more advanced studio. A studio

environment can relate to any place that is used for creation of audio, this also includes bedroom and

office spaces with only a desk, chair and laptop.

Live performance

The Modsy can also be used during a Live performance, in this environment the Modsy controller can

be used together with other instruments or effects to provide a real performance. Such a performance

is normally performed in front of an audience. The user has different needs in such a context.

Following user interviews performed by Mathijssen, Driel, Berkenbos, Wintermans (2020) musicians

that perform live need simple layout, a sturdy fixed controller, and clear control visible in low light.

This is due to the fast pace, rowdy and dark environment in which live performance takes place.

The primary focus of the Modsy controller is on the studio environment since the Modsy controller

seems to have highest potential in this context (Mathijssen, Driel, Berkenbos, Wintermans, 2020).

However, the live environment is still important to consider since artists have indicated the potential

during live performance.

4.3.4 - Technologies

The primary technology that is needed for the functioning of the Modsy controller is a computer with

Ableton Live. This computer should have basic peripherals for normal operation of Ableton Live. The

Modsy controller itself has different input and output types that create its interaction with the user.

Input

These are the main input technologies that are used within the Modsy system.

- Potentiometer

These will be used to control the parameters of different digital instruments or effects.

61

- Buttons

o Function buttons

The function buttons are used for triggering different functions within the Ableton

Live environment like start/stop, quantise, record etc.

o Parameter buttons

The parameter buttons can be coupled to different digital instruments and effects like

the potentiometers.

o Mapping / Page button

These buttons are located on the top left of the controller and are used for Mapping

specific functions.

- Encoder

The encoder can be used to select different instrument or effects within Ableton Live.

- Mouse and keyboard

The user can also select and control Modsy functionality straight from the Modsy plugin on

his computer.

Output

These are the main output technologies that are used within the Modsy system.

- 34 OLED displays

o Above potentiometers and parameter buttons

Above each potentiometer and parameter button will be a display that will tell a user

what this parameter is mapped to and display the current status of this parameter.

This could be the parameter level or setting.

o For mapped and selected instrument or effect

Two displays are located at the top of the controller which will display the instrument

or effect name that the controller is mapped to and the selected instrument or effect.

This selected device can be changed using the encoder, the display will update

automatically.

- Digital interface – The Modsy plugin

The Modsy controller has a software interface within Ableton Live that is used to the creation

and manipulation of mappings. These mappings are what map the controller to certain digital

instruments or effects.

62

Communication

- MIDI communication

The controller will communicate to the computer using MIDI protocol over USB.

Content

- Updated content

The content displayed on the controller itself is embedded software and is not likely to be

updated. The content within the software plugin is more likely to receive updates in content

and graphical user interface. This will be both updates graphical user interface and digital

features.

4.4 - Playfulness Ideation

This section of the Ideation phase will discuss the actual ideation of more playful concepts regarding

the Modsy controller. According to literature research the PLEX framework is well-suited to be used

in ideation of concepts related to playfulness. Thus, the PLEX categories will serve as the driving force

behind this ideation phase. The order of the described ideation methods describes the order of events

during this ideation phase and is structured in two separate diverging and converging sections. At the

end of the ideation phase a preliminary concept was created that was carried over into the

specification phase.

4.4.1 - Group brainstorm #1 - Diverging

A group brainstorm was chosen as the first Ideation method to be used since group ideation can lead

creative solutions that look at a problem from different perspectives (George, 2007). For this

brainstorming session PLEX brainstorming and PLEX scenario methods were used as described in

chapter 3 of this report. In total two group session has been performed using these two methods, one

with the Weirdly Wired team, and one with potential customers. Both groups group sessions have

been performed in different stages of the ideation phase.

The first group brainstorming was performed with the Weirdly Wired team and had the purpose to

identify the potential of the different PLEX methods and categories within the context of the design

of the Modsy controller. The Weirdly Wired team was chosen for this group brainstorm since this

63

group understands the controller the best and can more easily understand potential features and

application of the Modsy controller using different categories.

First PLEX brainstorming was performed. This method, as described in chapter 3, can be used to come

up with different playful concepts using PLEX categories. The execution of this method can be seen in

figure 26. The outcome of this method was reported on paper. Since the Weirdly Wired team has 3

team members a slight alteration of the PLEX brainstorming method was performed. This alteration

used 3 participants of which each picked 3 PLEX cards, however only 6 cards could be added to the

Seed card to remain same level of depth in ideated concept. An example of a concept created during

this PLEX brainstorm can be seen in table 13 below:

Seed card Expression

Added PLEX

cards

Control, Captivation, Submission, Competition, Sympathy, Thrill

Description The music made with the Modsy is directly visualized in a VR setting. One

can completely be emerged in his musical experience since the changes

made with the use of the Modsy controller are directly visualized in this

environment. This VR experience allows other users to join and potentially

compete with each other. Other people have the possibility of tuning in and

listening to these musical creation where they can show how they feel about

it. The worse you perform the worse your visualization is.

Table 13 - Example of concept created to PLEX brainstorming

Figure 26 – Execution of PLEX brainstorm method

64

Next, the PLEX scenario method was performed. This method results in more complete product

scenarios using 3 plex categories. Again, 3 participants were included in this methods who could

collectively come up with a scenario. One of these created scenarios can be seen in figure 27 below,

the storyline was documented digitally. An example of a concept created through PLEX scenario

forming can be read in table 14.

Beginning Nurture You want to improve and develop yourself by optimizing you

mappings and getting better at the control created through these

mappings.

Continuation Simulation Through the creation and optimizing of mappings you create a

digital studio where you can see all of you gear like you would in

a real analog studio.

Ending Sensation You see visually what you have made and is standing in your

studio of mappings. This can be made in very sensational way, as

a real experience.

Table 14 - Example of concept created through PLEX scenario forming

Figure 27 – Execution of PLEX scenario method

65

Conclusion group brainstorm

The outcome of the sessions was a variety of concepts that varied highly in feasibility and acceptability.

It seemed that there was a need for a more structured and focussed ideation while using the PLEX

framework. The creative potential of the use of PLEX methods could be seen, but the effectiveness

varied highly throughout the brainstorm.

4.4.2 - Mind mapping - Diverging

The group brainstorm identified the usefulness of some categories but showed certain disruption in

concepts as well. This might be due to the nature of these categories and the mismatch in the purpose

of the Modsy controller. To further explore these categories and their influence on concepts a mind

mapping exercise was used as described in chapter 3, this was performed individually.

Mind mapping was used to ideate about each category of PLEX framework and potential concepts that

would derive from these categories. A part of the resulting mind map can be seen in the figure 28 on

the next page. The full mind map can be viewed in the appendix, item C.

Mind mapping process

The procedure used during the mind mapping exercise was very straightforward. This is described

below.

1. Place main theme (Modsy controller) and all PLEX categories.

2. Place potential sub-categories of these categories on green cards.

This could for instance be spectacular visuals and spectacular audio for the category of

sensation.

3. Place practical ideas of these categories in purple.

4. Possibly add additional comments in pink.

66

Figure 28 - Part of mind map Modsy with PLEX categories

Conclusion mind mapping

The mind mapping exercise helped to further identify the potential of certain categories. Some

categories failed to bring forward feasible concepts, this will be further discussed in the next section.

Some concepts that spark interest during this mind mapping exercise were concepts related to

category humour and fantasy, the use of humorous audio or visuals during the music production

process could be very feasible and original for a music production controller. The use of fantasy

aspects could also provide an original take on a music production controller design.

4.4.3 - Assessment of PLEX categories - Converging

Through the first brainstorm and mind mapping exercise the potential of the use of PLEX categories in

ideation phase could be assessed. There were certain categories which seem to result in interesting

concepts and other categories which seem to be rather disruptive. These disruptive categories had a

tendency to negatively influence ideas during the PLEX brainstorming and scenario methods. These

categories also did not pose great potential following the individual mind mapping exercise and could

sometimes be seen as questionable regarding Modsy’s overall goal and vision. Taking into account the

nature of the PLEX framework and its application this is no surprise, the framework was not primarily

focussed on improving product design. So, for the purpose of focussed ideation the framework could

be evaluated.

67

Disruptive categories

First, the more disruptive categories have to be addressed. These should not be seen as disruptive for

the playfulness of Modsy but more so disruptive for the purpose and vision of Modsy. As described

earlier in the product analysis, there is a very clear emphasis on certain features and vision for the

product. These disruptive categories seemed to undermine the vision that Weirdly Wired had for the

product and are thus less suited for a future design.

Cruelty, Suffering, Thrill, Eroticism, Subversion

Concepts created through, or altered by, these categories seem to be conflicting with the overall goal

and purpose of Modsy. The goal and purpose of Modsy is to create joy, expression and creativity.

Adding erotic elements might improve the playfulness in a way, but this could send very confusing

signals to the users of Modsy.

Completion, Competition

These two categories are conflicting with the vision of Weirdly Wired on music production. Even

though these categories could potentially include playfulness Weirdly wired does not wat to make its

product competitive based. It could be interesting to play with the element of competition or

completion for oneself, this is why the category Challenge is still labelled as an Interesting category.

However, a focus on completion or competition will most likely not be the best approach.

Nurture

Concepts created with this category resulted in features that improved learning or skill. A thesis by

Robbert-Jan Berkenbos, which is executed in parallel to this thesis, covers these aspects already

(Berkenbos, 2021). Thus, it was less interesting within the scope of this thesis to use the element of

Nurture.

Interesting categories

Interesting categories include categories that bring forward interesting concepts that would be well

suited in a playful enhancement of the Modsy controller.

Discovery, Exploration

Literature research shows these elements to be important factors for music production controllers.

The individual brainstorm confirms that these could be well implemented within the Modsy system.

However, these elements are already at the core of standard Modsy functionality. A user gets to play

with and discover his digital instruments and effects.

68

Captivation, Expression, Sympathy, Challenge, Sensation, Control

All of the above mentioned categories provided interesting concepts that could be applicable for the

Modsy system. These categories are grouped since they provide features that can be seen in different

music production controllers already. Some improved sense of captivation, expression or challenge

has been ways in which controllers have been designed. It could still be interesting to further explore,

but might not be as unique of a solution.

Fantasy, Humour, Simulation, Fellowship, Submission

These categories not only provided interesting concepts, but also differentiated from current solutions

seen in different music production controllers. A playful solution resulting from these categories could

be a new unique selling point of the Modsy controller and truly set it apart from the competition.

Conclusion converging

What we can state from this converging exercise is that we could potentially exclude certain categories

from the PLEX brainstorm and scenario since these seem to reduce the feasibility and application of

the created concepts. These categories are listed as the disruptive categories. The categories that

create more interesting concepts can be further explored in future brainstorms and ideation with

special focus on the categories of Fantasy, Humour, Simulation, Fellowship, Submission since these

could provide a new unique selling point for the Modsy controller. These categories will be the focus

of future brainstorming and concept creation sessions.

4.4.4 - Group brainstorm #2 - Diverging

The second brainstorm was also executed with the use of PLEX brainstorming and PLEX scenario

method, only now with reduced amount of PLEX categories. The following PLEX categories were

included: Discovery, Exploration, Captivation, Expression, Sympathy, Challenge, Sensation, Control,

Fantasy, Humour, Simulation, Fellowship, Submission as a result of the converging exercise that was

performed. The PLEX brainstorm was executed in an alternative fashion, only 4 PLEX cards could be

used to form a concept, this resulted in somewhat more focussed ideas and seemed to positively

influence concept creation.

Both PLEX brainstorming and scenario forming showed interesting results, the created concepts

seemed to result in more feasible concepts that were in-line with Modsy’s overall goal and vision. An

example of a created solution during the brainstorm is the following:

69

There is a small creature living inside of the controller that has to be maintained and changes

throughout your music production process. Whatever music you make this influence this

creature in the controller. The creature can also begin to alter parameter and take a life on its

own.

4.4.5 - Rapid ideation - Diverging

Individual rapid ideation was performed to explore all categories that could create unique playful

solution for the Modsy controller. As stated these categories are: Fantasy, Humour, Simulation,

Fellowship, Submission. Since these categories were not seen in many other music production

controller it could be very interesting if these categories are used in a playful solution. To give an idea

of the concepts created during this rapid ideation phase some examples are listed in table 15 below.

Category Description

Fantasy Controller that can be made custom like a Warhammer figure

Fantasy Transformer controller that can be transformed to an action figure and alter

the sound during play behaviour.

Humour A user can enter a CD into the controller which will alter the control of the

controller.

Humour There is an animal or person living in the controller that has to be maintained

and kept happy (like a Tamagotchi)

Simulation The controller can be wind up before usage to simulate the power it consumes.

Fellowship /

Submission

Controller can be used to communicate to other elements. This can be other

Modsy controllers, other instruments, or to an audience.

Fellowship /

Submission

The controller reacts to its environment. This could be a response to the sound

created, the elements that are in the room, or the other instruments that are

connected.

Table 15 - Concepts created during rapid ideation

4.4.6 - Individual grouping - Converging

The concepts created during the group brainstorm and individual session could be reduced to a

selection that were most feasible to pursue. This reduction was performed individually and based on

feasibility within the context of this thesis, the overall vision and goals of Weirdly Wired and user

70

acceptance based on the user information gathered through PACT analysis in section 4.3 of this

chapter. The following concepts remained:

- The game controller

A controller that allows users to simultaneously play a certain game during usage, for instance

a classic game of pong. The knobs, buttons and displays could function as input and feedback

for this game. This game can be played during the music production process resulting in more

creative usage of parameters. This concept is mostly related to the categories humour,

fantasy, and challenge of the PLEX framework.

- The Warhammer controller

A fully customizable controller that can be shaped to the specific fantasy of the controller,

complete with backstory, artifacts and additional items. The controller can be put together by

users themselves. This concept is mostly related to the fantasy category of the PLEX

framework.

- Feel the room controller

The controller will respond to its environment. This can be a response to the music that is

created, to the usage of other Instruments, or other Modsy controllers. This is related to the

PLEX categories submission and fellowship.

- The musical Tamagotchi controller

Lastly, there is the concept of some entity being stuck inside of the controller. This entity can

develop itself by the way that the controller is being used. If a music producers uses the

controller in a certain way this will affect the entity living inside of the controller. The entity

can also alter certain parameters randomly if it feels the need to do this. This concept is related

to the fantasy and humour categories of the PLEX framework.

4.4.7 - Weirdly Wired / User feedback - Converging

The 4 concepts were discussed with two different stakeholder groups: the Weirdly Wired team and 2

potential users of the Modsy controller. The following feedback was received about the concepts:

Concept Feedback

The game controller /

Musician Tamagotchi

After feedback it seemed like the game controller and musical

Tamagotchi concept could be combined into one concept where there

are external influences that alter the Modsy controller parameters, this

could be games, some virus or an unknown entity. At the core this

71

seemed to be what created an interesting playful interaction while also

increasing creativity in the music production process.

Warhammer controller The Warhammer concept seems to be playful in form but the interaction

with the controller lacks in playfulness, after verbal explanation this

concept was perceived as less playful as the other concepts.

Feel the room controller The feel the room controller was stated to be an interesting concept,

especially the factor of collaboration was seen as interesting in the feel

the room concept. However, it might not be the case that two Modsy’s

are seen together very often so it was somewhat unclear how extensive

the interaction could be with only one Modsy. Next to this, using

communication to device other than Modsy controllers might not be

feasible.

Table 16 - Feedback on final set of concepts

The feedback was used to decide on a final concept direction. As can be seen in the feedback section

the game controller / musical Tamagotchi seemed to have most prospect. This concept was chosen

for last section of ideation to define the final concept.

4.5 – Defining the final concept

From the game controller, musical Tamagotchi direction several different possible sub-concepts could

be ideated for implementation. These sub-concepts then related to the type of game or interaction a

user will have with the Modsy controller. Individual rapid brainstorming was used to explore possible

sub-concepts. Each ideated sub-concept is mentioned in table 19 with a short description, it should

be noted that these are still conceptual and leave some room for interpretation.

Sub-concept Description

Entity inside the Modsy An unknown entity lives inside the Modsy controller and can manipulate

/ control parameters. The user can interact with this entity in some way.

This can be compared to a Tamagotchi.

Virus There is a virus that takes over the Modsy controller and changes

parameters / settings.

Bomb There is a bomb that goes off and changes the parameters.

72

Pong Classic game of Pong using Modsy for feedback / controls

Tetris Classic game of Tetris using Modsy for feedback / controls

Pacman Classic game of Pacman using Modsy for feedback / controls

Snake Classic game of Snake using Modsy for feedback / controls

DJ controller emulation The controller emulates a DJ controller that uses the Modsy controls

Radio receiving The controller turns into an old radio that can be used to tune into

certain frequencies and communicate with other entities or possibly

controllers.

Gold digging game The Modsy controller can be used for a classic gold digging game. This

will include some sort of grappling hook that is used to grab gold from

parts of the controller.

Platform game A platform game that includes the running to a certain point avoiding

obstacles etc. This can be compared to Mario or Sonic like games.

Safe cracking The Modsy controller turns into a safe that has to be cracked, this can

be done by twisting certain parameters of the Modsy controller.

Spaceship controller The Modsy can be used to control a spaceship and navigate around

obstacles like blocks of rubble. Also certain alarms can go off that a user

has to take care of. This can be compared to concepts like space-

invaders and among us.

Battleship The Modsy controller can be used to play a game of battleship.

Table 17 - Possible sub-concepts preliminary concept

One of these concepts one had to be chosen for specification. This should be the concept that best

serves the factor of playfulness. In the context of playfulness we should consider how well each

concept serves the PLEX categories. In this way it could be derived which concept had most potential

for playful interaction. The analysis was performed using Excel where all concepts were rated per PLEX

category. All PLEX categories were included in this analysis, since all of the current concepts could be

feasible and it is interesting to see where there was most playful potential. The concepts were rated

from a 0 for no relevance, 1 for some relevance, and 2 for high relevance. This analysis was performed

by myself with own interpretation of these concepts. A part of the resulting table can be seen in figure

29 below. The full excel table has been included in the appendix as item D.

73

Figure 29 - Part of the PLEX analysis for sub-concepts

After this PLEX analysis the space ship control game was seen as potentially most playful. This was

mainly due to elements of exploration, fantasy and captivation, but many other categories showed

high potential as well. This concept was also very flexible, it could be combined with concepts like the

virus or bomb concepts, since there could be occasion’s that the spaceship gets hit or gets infected by

a virus. Thus the spaceship control concept will be chosen as current concept and further specified in

the next chapter.

4.6 - Preliminary concept

The preliminary concept is a spaceship game that can be played during the music production process.

A user can interact with this spaceship game with the same Modsy parameters that are used to control

an instrument or effect. This means that while playing the game a user is simultaneously altering the

sound. This should provide a playful experience according to the following PLEX categories:

Exploration, Fantasy, Captivation and Discovery. This concept will be further specified in the next

chapter.

4.7 - Use scenario

To clarify how a user of the Modsy controller could interact with the current preliminary concept a

short use scenario will be described including one of the personas mentioned in section 4.3.1 of this

ideation chapter. Table 17 provides an overview of the use case, table 18 describes the actual

interaction with the current preliminary concept, this is somewhat abstract since the concept has

not been specified yet.

74

Use case 1 Interaction with more playful Modsy controller

Actor Boris, from persona section PACT analysis, 4.3.1

Use Case overview Boris is using the Modsy controller in his standard musical production

process. He is creating a song on his computer in his home studio.

Subject Area Home studio in apartment.

Trigger Boris is in need of something that will spark his musical creativity.

Precondition 1 Modsy is connected to a digital instrument within Ableton Live.

Table 18 - Overview of use case

Description This scenario describes a standard interaction with the more playful Modsy

controller. The Modsy controller is connected to a digital instrument within

Ableton Live.

1 Boris is controlling a digital instrument or effect with the Modsy controller and

presses a button that starts playful interaction.

2 The controller then starts the playful interaction. The Modsy controller turns

into a spaceship game. Different Modsy elements change to game elements.

3 Boris sees enemy spaceships and aliens flying towards him, and locates the

controls to avoid these elements or destroy them. These elements can be seen

on the displays of the Modsy controller or another external display.

4 Boris uses a variety of the Modsy control elements to take control over the

spaceship and make sure that the ship stays alive, all the while the controls are

connected to a digital instrument in Ableton which means that his control

changes the sound as well.

5 When Boris is satisfied with his playful interaction and the sound that has been

created through this interaction, or the game reaches its logical conclusion,

Boris can return to this normal music production process.

Table 19 - Use case of preliminary concept

75

4.8 - Preliminary requirements

Different requirements could be derived from the ideation phase. These are the result of user analysis

and research, product analysis, and ideation about a more playful Modsy controller. These were

structured using the MoSCow method into a list of preliminary requirements split between non-

functional and functional requirements.

Non-Functional

Must have

- The controller must be more playful in interaction compared to the current Modsy controller.

- The controller must be more playful in form compared to the current Modsy controller.

- The controller must be able to provide an analogue feeling

- The controller must be able to provide the same, or more expression during music production

process compared to the current Modsy controller.

- The controller must be able to provide the same, or more creative control during music

production process compared to the current Modsy controller.

- The controller must be the same or more fun to use compared to the current Modsy

controller.

Should have

- The control of parameters should be non-disruptive for the music production process.

- The controller should keep the ability to fully focus on music production process

- The controller should be able to be used by all potential users of the Modsy.

Could have

 No could haves were derived from this ideation phase.

Won’t have

 No won’t haves were derived from this ideation phase.

76

Functional

Must have

- The controller must be able to control 32 parameters.

- The controller must be able to provide feedback on the names of currently mapped

parameters.

- The controller must be able to provide feedback on the value of currently mapped

parameters.

- The controller must allow parameters to be automated.

- The controller must be able to be used in a studio environment.

Should have

- The controller should be able to be used during a Live performance

- The controller should be easy to transport.

Could have

 No could haves were derived from this ideation phase

Won’t have

- The controller won’t use a different way of parameter control compared to the current Modsy

controller.

77

Chapter 5 – Specification

This specification phase will define the preliminary concept in both its form and function. The

specification phase will be structured in the following way: First, there will be some general ideation

about the form and function through sketching and mood board creation. Thereafter a brainstorm

was performed that look at different possible mechanics for the spaceship game, which are then

placed in a storyboard to provide overview of the concept. Next, the current Modsy system is analysed

and the implementation of the concept is discussed. Lastly, the way in which the concept will interact

with the parameters of the Modsy system will be addressed.

5.1 - Spaceship control

To ideate about potential implementation of this spaceship game concept, sketch based ideation was

used. This method showed different ways in which the concept could be implemented and helps to

ideate about the potential form of the concept. A sketch from this exercise can be seen in image 30.

Next to this, a Mood board was created which was used to conceptualize and communicate the

possible form of the Modsy controller. This mood board can be viewed in figure 31. With special

attention to the bottom right of the mood board, an mission control table for children, very playful in

Figure 30 - Sketch ideation

78

form since it invites an observer to investigate the meaning of each of these elements in the mission

control table. This is a explorative and fantasy-rich interaction, which playfully engages the viewer.

5.2 - Game mechanics ideation

For the specific game mechanics of the spaceship game an individual rapid ideation and group

brainstorm was performed. The group brainstorm was performed with the Weirdly Wired team. The

goal was to identify different feasible game mechanics that could be included in the spaceship game.

The following mechanics resulted from this brainstorm: Manoeuvre spaceship, shoot gun spaceship,

point gun of spaceship, manoeuvre around enemy ships, manoeuvre around asteroids, powerups,

activate a shield, point the shield, avoid floating aliens, completion of mission, virus that takes over

spaceship control, reload action, XY-control for manoeuvres, fix the ship, message to other ships, end

point that the ship reaches (end planet), Indication of day or mission that you are on.

Within the scope of this thesis a limited amount of game mechanics could be included and tested.

Next to this, there is danger in adding too many game mechanics which could potentially take over

the music production process. It might distract users from the actual purpose of the Modsy controller

and as stated in the requirements: The controller should keep the ability to fully focus on music

production process. Thus, to test the potential of the spaceship concept a limited amount of

functionality will be used:

Figure 31 - Mood board spaceship game

79

- Manoeuvre ship

- Shoot gun

- Activate shield

- Avoid asteroids

- Avoid enemy ships

- Reload action

- Completion of mission

- Fix errors

These game mechanics will be addressed in the realisation phase.

5.3 - Storyboarding

After game mechanics had been specified a storyboarding exercise was used to place all mechanics in

logical order and see how they could interact with each other. In this storyboard a simple and

straightforward implementation of the concept with the current Modsy controller can be seen. This

allowed ideation about a feasible implementation of the concept. This storyboard can be seen in

figure 32, the next page explains the different elements in the storyboard.

Figure 32 - Storyboarding of spaceship concept

80

The descriptions listed below are related to the illustrations that can be seen in the storyboard. The

numbers relate to the numbers in the storyboard.

1. A user can press a button which will initiate the playful interaction.

2. User enters the game mode. The spaceship and elements of the game can be viewed on the

Modsy controller.

3. This illustration shows a potential implementation of the spaceship interaction. The screens

of the Modsy controller have been used as feedback of the game.

4. Different elements of the Modsy controller can relate to different spaceship functionality,

such as error fixing or trusting the ship forward as can be seen in this illustration.

5. Parameters of the Modsy controller can be used for spaceship control. This could relate to the

twisting of a potentiometer to manoeuvre the spaceship.

6. This illustration shows potential elements that the game could include, e.g. friendly spaceship,

enemy spaceships and asteroids. It also shows a fire button that the user can use to shoot at

the enemy elements.

7. This illustrations shows a world that comes into view. This will mark the end of the game

interaction and adds an element of completion to the entire interaction.

5.4 - Modsy system

For the feasibility and realization of this concept it is good to consider the current Modsy system and

analyse what should be changed in order to implement the current concept. Changes to the design of

the current Modsy hardware could weaken the feasibility and application of the concept. However, if

a different system architecture could significantly improve the playfulness of the Modsy controller this

is important to consider.

System analysis

The current system of the Modsy controller consists of 2 main elements: The hardware controller

compatible with Arduino environment, and the Ableton environment with Python scripts and VST

plugin that connect the Modsy controller to the Ableton Live environment. An overview of this system

can be seen in image 33 on the next page.

Currently, the Modsy controller has 2 input types that enable control over the system: potentiometers

and buttons, these are connected to an ATmega32u4 controller using a selection circuit with

81

demultiplexing chips (74HC238D) and switching elements (74LVC1G66GV), these elements can be

seen in figure 34. The Modsy controller also has 2 output types: 34 0,91 inch OLED displays using

SSD1306 IC controllers and addressable RGB LEDs. These elements can also be seen in figure 34. The

Modsy controller uses MIDI protocol over USB to communicate back and forward with the Ableton

environment. It can receive information about the Ableton environment through MIDI Sysex

messages.

The Ableton environment has 2 essential Modsy software elements: A remote control script running

in the back-end of Ableton and a Modsy VST plugin which can be used for user interaction. As can be

seen in figure 35 the Remote control script is the brain of the operation and this talks to the Modsy

controller. The Modsy VST plugin has a graphical user interface that communicates to this Remote

control script, but also creates a way to easily map to third party devices, this will not be explained in

more detail since this is not relevant within the scope of this thesis.

Figure 33 - Overview of Modsy system architecture

82

Figure 34 - Overview of Modsy controller architecture

Figure 35 - Ableton Live system overview

83

If the same system architecture is used for the current concept it might be important to consider if

the microprocessor of Modsy can handle the visualisations and game mechanics of the concept. It

should be considered what the capabilities of the current Modsy controller are.

Modsy capabilities

Since the current Modsy controller works with the Arduino environment it would be beneficial for a

more playful solution to be compatible with the Arduino environment. This means that the

microcontroller or chip used in the concept has to be able to be programmed with the Arduino IDE.

The same chip could be used as in the current Modsy controller: an ATmega32u4 as seen on the

Arduino Leonardo. The capabilities of this microprocessor are listed below:

Digital I/O 20

Analog Input Channels 12

Flash memory 32KB

SRAM 2.5KB

EEPROM 1KB

Clock speed 16MHz

Table 20 - Technical specifications Atmega32u4

Both the analog/digital input, output and memory could be expended if necessary. The clock speed

cannot be increased, if improvement is needed a different chip should be used. To assess whether the

current Modsy controller could handle the current concept reference projects were investigated. A

project like the Arduboy for instance is fully based on an Arduino chip and has dynamic visualizations

(https://arduboy.com/). This project is a Gameboy controller based around an Arduino

microprocessor. Another project showing the performance of an Arduino chip is a project like Arduino

Tetris (Wisesa, L., Dirakit community, 2017). This project uses an Arduino uno, which has a clock speed

of 16MHz, just like the current Modsy controller. Based on these examples it seems feasible to build

the current concept with the use of the ATmega32u4 chip. However its limitation should be noted.

https://arduboy.com/

84

5.5 - Controller Design

The current concept could directly be implemented on the Modsy controller, using the same

microcontroller, same displays, same LEDs and same potentiometers and buttons. However, this

would mean that the Modsy in its natural state would not seem more playful in form or function. Only

upon triggering the spaceship game will the controller appear to be more playful in function (through

the gameplay) and more playful in form (by the visualisation on the displays).

As stated in literature research, playfulness is one of the main attributes that consumers use to

distinguish between product appearances (Blijlevens, Creusen & Schoormans, 2009). Thus, it is

important that users directly see the playful potential of the product. As stated in chapter 2 of this

report an import factor to consider is the playfulness in form. Playfulness in form can be defined as:

Distinct quality of visual engagement that people associate with being playful. Many ways can be

derived to create this playful visual engagement. However, within the scope of this thesis not all

possible formfactors can be evaluated. So, it was decided that a conceptual evaluation of the use of a

playful formfactor would be executed. A simple formfactor would be added to the design, that could

determine whether it was effective to design for playfulness in form.

Then, what playful formfactor could be added? In order to create playful visual engagement the PLEX

categories of the current concept were used. The most dominant PLEX categories in the current

concept are fantasy, captivation, exploration and discovery. Of these categories, fantasy seems to be

the most logical to implement in the Modsy controller design. As can be seen on the mood board in

figure 31, there are many elements that could add to the fantasy of a spaceship controller. Mainly

handles, joysticks, lights and displays.

Now there is a certain balancing act that needs to be performed, while it might be more playful to add

all kinds of handles, switches and colours this might not be positive for the music production process

and the overall experience of a user. This is also stated as one of the requirements: The controller

should keep the ability to fully focus on music production process.

Since this thesis aims to improve overall user experience with the use of playfulness, it has to be

considered whether some of these potentially more playful elements won’t reduce the overall user

experience. An important design aspect of the Modsy can be used during this balancing act which is

the fact that the Modsy is somewhat modular as can be seen in figure 36, its legs can be taken off.

This could be used in the design of a more playful Modsy controller. Playful elements could be

attached or removed when deemed necessary, which could restore full focus on music production

process.

85

Figure 36 - Modularity of the Modsy controller

The decision was made to use a simple attachment that would be more playful in form. This

playfulness will come from the use of two LED meters that indicate the status of the spaceship during

the game and a joystick that could be used for spaceship control. This was expected to bring more

playful visual engagement for the users of the Modsy controller. This attachment should make the

Modsy controller more playful in form.

5.6 - User interaction

The core of the current concept is for the user to interact differently with the Modsy controller due to

the game that he is partaking in. In this interaction the user should be able to use the Modsy

parameters for game input and could retrieved game feedback via the Modsy elements as well.

This means that for input the following elements could be used:

- 32 Control elements (28 potentiometers, 4 silicone buttons)

86

- 4 function buttons

- Mapping control elements

- Joystick on playful attachment

Of these input types the function buttons and mapping control elements will not be used for playful

interaction since these parameters do not related to a mapped instrument or effect but keep the same

functionality throughout the use of the Modsy controller. Only the control elements and joystick will

be used for game interaction.

For system output the following elements could be used:

- 34 OLED displays

- 42 LEDs

- Spaceship meters

Of these output elements the 34 displays are very well suited for this game concept and could perfectly

be used for system feedback. These displays could already been spotted in the storyboards that were

created and are one of the reasons why this concept would be very promising. To develop the game

interaction for these 34 displays in the current grid these screens and their resolution were analysed.

The layout of these displays can be seen in figure 37 below.

The displays used in the Modsy controller are 0.91” OLED displays using a 128 * 32 pixel grid. To assess

whether proper feedback could be provided throughout the game potential visualization were made.

Figure 37 - Modsy display and LED layout for user feedback

87

These visualizations can be seen in figure 38, 39 and 40 below. The illustrations where made using the

128 * 32 pixel grid.

Figure 40 - Possible asteroid visualization

In order for users to interact will all parameters of an instrument or effect users should have an

incentive to alter a variety of different parameters. This is where specific game mechanics like “fix the

ship” come in. If a “fix-ship” message arises at one of the screens on the Modsy controller, as can be

seen in figure 41 below, the user has to twist the related parameter in order to solve this issue (to fix

the ship). This would provide a way for the game to indicate parameters that the user would then feel

urged to alter. This will help with the exploration and discovery of new parameters. Next to “fix

parameters” there will also be “fuel parameters” to provide a more diverse way for the user to interact

with the game. Both these elements will be implemented during the realisation phase.

Figure 38 - Possible spaceship visualization

Figure 39 - Possible enemy ship visualization

Figure 41 - Fix visualization

88

Now, to combine all system input and output the full controller with playful attachment and possible

visualizations was illustrated. This was used to analyse the potential of the concept and assess whether

this would be feasible to realize. This illustration can be seen in figure 42 below. In figure 43 a close

up of the illustration of friendly spaceship and asteroid can be seen.

Figure 42 - Illustration of the final concept

Figure 43 - Closeup of spaceship visualizations

89

5.7 - Instrument / effect parameter control

As stated in the preliminary requirements of the ideation phase: The control of parameters should be

non-disruptive for music production process. This means that the parameters that a user has control

over and the way that the user controls these parameters should not create irritating or annoying

sound, but help to inspire during the creation of music. With this in mind, the influence of the current

concept on the music production process should be discussed. The current concept might not always

be positive for general quality of the music. This is due to the following aspects:

- Control over specific parameters might disrupt the sound

All digital instruments and effects have different parameters that can influence the sound.

These parameters vary from filter control to oscillator control to dry/wet knobs. Some of these

parameters are fun to change drastically, but some parameters are more precise and are

normally only altered within certain context. Take for instance tuning, if you create a song in

a certain key and then change the tuning of one of these instruments it will sound “out-of-

key”, which is typically not what a musician would want.

In order to create a playful solution that is non-disruptive for the music production process it

has to be considered what parameters would be suitable for interaction. For this purpose, an

analysis has been performed of 3 different digital instruments and effects. This analysis had

the purpose of identifying parameters that could be disruptive within the music production

process if altered during music production process. The digital instruments analysed in this

exercise are: Roland Juno-106 VST, Arturia Mini-V, Sylenth-1 VST, the digital effects analysed

in this exercise are: Ableton Echo, Fabfilter Pro-R, and Ableton Glue Compressor. This analysis

was done through a sound design exercise in Ableton Live, all knobs were randomly changed

during music production process and the parameters that badly influenced the sound were

noted. The parameters that could have disruptive effect on the music are listed in table 21 on

the next page. In the first row of this table the general parameter name has been described,

the second row describes the amount of disruption that could occur during the music

production process, the third row holds a short description of how it disrupts the sound, the

last row holds a description on the occurrence of this parameter on instrument and effect

plugins.

90

Parameter Disruption Description Occurrence

Level or

Volume

High This could disrupt the balance of the

musical piece and does not alter

sound in a fun or creative way.

All Instruments,

some effects

Tuning High Tuning might result in sound that is

“out-of-tune” with the rest of the

music. This might not be preferable.

Most Instruments,

not on most effects

Coarse Moderate

to High

Also a tuning parameter that might

result in out of tune music. This

parameters is somewhat more

subtle then the tuning parameter.

Some instruments,

not on most effects

Attack Moderate Could be problematic if tweaked too

much. Results in non-audible sound

if increased too much.

Most instruments,

Not on most effects

On/Off OSC

Moderate Switching on and off oscillators

might reduce the sound by a

significant amount. if all oscillators

are off there is no sound at all.

Most instruments,

Not on most effects

Helper

parameter

Moderate There could be certain supportive

parameters that keep timing or

structure but do not add to the

music itself.

Small amount of

instruments and

effects

Feedback Moderate

to High

This parameter could be disruptive if

tweaked by too much.

Some instruments,

some effects

Input /

Output

High These parameters could be seen as

volume parameters. As stated

before, volume control could be

problematic.

Most instruments,

Most effects

Makeup High Parameter that boosts the output

sound. Has an influence of overall

volume of instrument or effect.

Not on most

instruments, on

some effects

Table 21 - Parameter analysis

91

What can be derived from this exercise is that since there are many different instruments and

effects there are also many dangerous parameters that can disrupt the sound. These could all

be excluded from the spaceship control. An option might be to allow the user to set certain

parameters fixed or as unused during the playful game.

- Fixed control might not improve discovery and exploration

If every time the spaceship game is played the same parameters are used for control, this

game will not allow for great discovery and exploration of the controlled instrument or effect.

Since these are both PLEX categories, this might end up reducing the overall playfulness of the

solution.

- There are both instruments and effect plugins that have very different parameters and

purpose.

Plugins have a different purpose within the music production process. There are certain

plugins that are more formal and leave less room for playful interaction. These plugins might

not be a good fit with the current concept and it should be considered if, and how, the current

concept can still be applied on these types of music production tools.

During the realisation phase these different points should be addressed in the actual functioning of

the game. The connection with the Ableton Live environment will be important to consider here, since

Ableton Live has all the data about parameters and types of plugins. This data can be accessed through

python scripts as stated in the system analysis.

92

5.8 - Final Concept

The final concept is a space-invaders like game that can be played while controlling different digital

instruments and effects. The parameters of the Modsy controller will have a different meaning inside

of the game and throughout playing the game the user will interact with his instruments and effects

in a different way.

A physical attachment will also be created which can be added to the Modsy controller and gives extra

control and feedback over the game. This attachment will help to increase the playfulness in form and

adds to the playfulness in function as well.

5.9 - Final requirements

The preliminary requirements of the Ideation phase will be extended with requirements resulting from

the specification phase. The additional requirements have been stated in bold. The requirement: The

control of parameters should be non-disruptive for the music production process was split into 3

different aspects of which two have been added to the non-functional should have requirements and

one has been added to the functional should have requirements. This was the result of section 5.7 of

this specification chapter.

Non-Functional

Must have

- The controller must be more playful in interaction compared to the current Modsy controller.

- The controller must be more playful in form compared to the current Modsy controller.

- The controller must be able to provide an analogue feeling

- The controller must be able to provide the same, or more expression during music production

process compared to the current Modsy controller.

- The controller must be able to provide the same, or more creative control during music

production process compared to the current Modsy controller.

- The controller must be the same or more fun to use compared to the current Modsy

controller.

93

Should have

- The control of parameters during game interaction should be suitable for both instrument

and effect plugins.

- The control of parameter during game interaction should allow for good discovery and

exploration of digital instruments and effects.

- The controller should keep the ability to fully focus on music production process

- The controller should be able to be used by all potential users of the Modsy.

Could have

No could haves have been derived during ideation and specification phase.

Won’t have

No could haves have been derived during ideation and specification phase.

Functional

Must have

- The controller must be able to control 32 parameters.

- The controller must be able to provide feedback on the names of currently mapped

parameters.

- The controller must be able to provide feedback on the value of currently mapped

parameters.

- The controller must allow parameters to be automated.

- The controller must be able to be used in a studio environment.

- The Modsy controller must be programmable with Arduino environment

Should have

- The controller should be easy to transport.

- The controller should be able to be used during a Live performance.

- During game interaction it should not be possible to alter disruptive parameters.

94

Could have

- The controller could have dynamic system for selecting disruptive parameters per instrument

or effect during playful interaction.

Won’t have

- The controller won’t use a different way of parameter control compared to the current Modsy

controller.

95

Chapter 6 – Realisation

This chapter will describe the development of the technology specified in the previous chapter. It will

discuss game mechanics, software and hardware development.

6.1- Initial prototyping

The initial plan, as stated in the specification phase, was to implement the full game on the Modsy

controller. This includes all visualizations, game mechanics and user interactions. The capabilities of

the chip of the new Modsy prototype were assessed and this seemed feasible. However, after a period

of game implantation on this new Modsy prototype it turned out that there was too little RAM

memory available for the dynamic values of both the functioning of the Modsy controller and the

spaceship game. Next to this, the controller was too slow in updating all its display values. Both of

these aspects were shortcoming of the current Modsy hardware and these problems were not known

prior to the realisation phase.

Even though a possible upgrade in microprocessor seemed feasible during specification phase this

turned out to be more complex than anticipated. A change in the hardware structure was not possible,

the dynamic memory of the atmega32u4 (the chip used in the current Modsy controller) could not

easily be expended and its speed could also not easily be increased. Thus, a different solution needed

to be created, one that could reduce the dynamic memory usage while remaining same playful

interaction and form in order to evaluate the enhancement of playfulness. After research,

brainstorming and short discussion with thesis supervisor Wouter Eggink a decision was made to move

forward with prototyping which will be explained below.

6.2 – Altered prototyping

The following solution to the hardware problem was found to be most feasible:

The game mechanics and visualisations will be outsourced to the computer, this includes visualisation

of the spaceship, asteroids and enemy spaceships. The user interaction and some basic visualizations

will take place on the Modsy controller. This would outsource most dynamic memory consuming

96

calculations and screen changes to the computer and still allow for a complete user experience and

user test. The implementation of this solution can be read throughout this chapter.

6.2.1 - Game mechanics

The game mechanics specified in chapter 5 were implemented and have been listed below with a

short description. The computer program that was developed in order to show the visualizations and

take care of game mechanics was written in Java in the Processing environment.

Manoeuvre ship

The ship has to be able to move in two axis of motion, X and Y. This gives users a sense of control and

exploration. An impression of the spaceship can be seen in figure 44 below.

A user can take control over the spaceship using the

joystick controller on the playful attachment. The

joystick of this playful attachment can be seen in figure

45 to the left.

Figure 45 - Modsy playful attachment realisation

Figure 44 - Modsy spaceship software realisation

97

Health and fuel bar

As described in the specification phase a majority of the interaction with the parameters of an

instrument or effect will be due to the fixing and fuelling of the spaceship. To provide an incentive for

using these parameters a health and fuel bar have been created. The health and fuel of the ship will

reduce at certain moment throughout the interaction as will be explained at the relevant interactions,

for instance when hitting an asteroid. The health and fuel level can be seen in the program window

on the computer as displayed in figure 44, or on the playful extension as can be seen in figure 45 on

the last page.

Avoid asteroids / enemy ships

During the game the user has to avoid different asteroids and enemy ships. This can be done by

manoeuvring around these elements. Both elements are spawned at the right of the game view. They

move at random different speeds toward the spaceship on the left. The enemy ships will shoot at

random intervals. The spaceship can be hit by an asteroid, enemy ship or bullet and all of these

elements reduce the health of the ship. All elements can be seen in figure 46 below.

Completion of mission

The game reaches an end-state after certain time period (currently 3 minutes) where the ship reaches

a planet, this is supposed to represent the final destination of the ship. This can be seen in figure 47

on the next page.

Figure 46 - Asteroid and enemy spaceship realisation

98

This element of completion is supported by the PLEX framework and also ensures that the focus of

producers or performers will be shifted back to the music production process after a certain time

period.

Fix errors / fuel the ship

A user will interact with the parameters of a digital instrument or effect through the twisting of

parameters indicated by LED lights. This interaction will be to fix the ship and increase the overall

health, or fuel the ship and increase the overall fuel of the spaceship. These parameters can jump

between different parameters on the Modsy controller. This type of interaction will initiate in the

processing program on the controller with a popup on the screen, this can be seen in figure 48 below.

After the popup can be seen in the processing program one of the LEDs on the controller will light up,

this indicates which parameter should be altered in order to fuel or fix the ship. This can be seen on

the next page in figure 49.

Figure 47 - Mission completion implementation

Figure 48 - Parameter pop-up implementation

99

If this parameter is twisted within a certain timeframe the processing program will show that the

reload or fix was performed in time and health or fuel will be added as can be seen in figure 50. The

timeframe for twisting the parameter is currently set at a random time interval between 2 and 6

seconds. This changes every time a new parameter is selected.

If the parameter is not twisted in time the display will show that you did not complete the task and

health or fuel will be deducted as can be seen in figure 51.

Figure 50 - Fuelled in time feedback

Figure 49- Image of fuel ship indication

Figure 51 - Fuel parameter not twisted in time

100

Shoot gun

The spaceship is able to shoot at asteroids or enemy spaceships that approach it. The shooting can be

performed by pressing one of the 4 buttons on the Modsy controller. The indication next to this button

will be a red LED, this is explained before partaking in the game. This indication can be seen in figure

52.

Activate shield

The shield can protect the ship from hitting asteroids and enemy spaceships, this can be seen in figure

53. This shield can be activated by pressing the button indicated with a blue LED. This indication can

be seen in figure 52.

Figure 52 - Image of fire / shield button

Figure 53 - Shield of Spaceship activated

101

6.2.2 – Hardware

As stated in the specification chapter, and as already discussed in the game mechanic section, a

hardware element was added to the Modsy controller. This hardware element should provide more

playfulness in form. Two elements were added on this playful attachment: a playful way of user input

with the use of a 2-axis joystick, and a playful way of system output using LED sticks. This playful

attachment can still be removed from the main Modsy controller during usage to remain the

possibility to fully focus on the music production process. The full “more playful” Modsy controller can

be seen in figure 54 below.

Different hardware components were used to realise this design, these are listed below.

- 2-Axis Joystick

For the manoeuvring of the spaceship a 2-axis joystick will be used. This can provide 3 different

types of data to the system: X component for left and right movement, an Y component for

top and bottom movement, and a push component that can provide data on whether the

joystick has been pushed down. Only the X and Y component will be used in the prototype.

The following specific joystick was used in the design: Joy-It KY023JM, purchased from Conrad

(Conrad, 2021).

Figure 54 - Realised version of the theoretically more playful Modsy controller

102

- LED bars

For the LED bars addressable RGB LEDs were used. These LEDs can easily be controlled using

Arduino libraries and have the ability to change to many colours. They are also easy to

implement with regards to the wiring since the data line of all of the LEDs is shared.

Prefabricated LED sticks with WS2812 LEDs where used. The specific part name is: NeoPixel

Stick - 8 x 5050 RGB LED with Integrated Drivers from Adafruit (Adafruit, 2021).

- Arduino Leonardo

A microcontroller was used for the communication of the above mentioned elements with

the computer. Since an Arduino Leonardo was available this was used in the design. However,

most Arduino controller could have been implemented in this design since there are low

requirements for update speed and communication for this playful attachment.

- Plastic casing

All above mentioned electrical elements were fitted inside a casing designed and 3d printed

by Bram van Driel, a student of the bachelor Creative Technology and co-founder of Weirdly

Wired.

Wiring playful extension

The different hardware components had to be connected to the Arduino Leonardo. This was fairly

straightforward and can be seen in the schematic below named figure 55. Pins A0 and A1 of the

Arduino Leonardo were used for Joystick input, Pin D7 was used for the LED data.

Figure 55 - Wiring playful extension

103

6.2.3 – Software

For the current implementation of the playful concept a specific software structure had to be

implemented that used a processing program for visualisations and game mechanics. This processing

program had to communicate with both the playful attachment and normal Modsy controller in order

for the concept to work. This section describes how this software implementation was structured and

what each element in this software structure should do.

Software structure

The current implementation uses 3 main software elements that can communicate with one another.

These can be seen listed below. A general overview of the communication of these 3 software

elements can be seen in figure 56 below.

- Processing program, in Java, for playful game mechanics / visualizations

The processing program handles the main game mechanics and visualisations of the game.

This program takes care of the position of game elements, the spawning of elements, checking

hitboxes, establishing the fuel and fix parameters and taking care of the general game state

of the game. This processing program communicates with both the normal Modsy controller

and playful attachment over Serial. The code of this processing program has been shared in

the appendix as item I.

- Arduino, in C++, Modsy controller program

The Arduino environment is used for the embedded software of both the normal Modsy

controller and the playful Modsy extension. The software on the normal Modsy controller

Figure 56 - Software communication structure

104

enables the visualisation of fuel, fix, shoot and shield parameters. It also communicates when

a certain parameter has been altered. The software on the playful extension enables the use

of the joystick for the game and the visualisation of the health and fuel as LED bars.

The code of both Arduino programs have been shared in the appendix, item J.

- Remote control script, in Python, Ableton interaction

The remote control script is a python script that can be enabled inside of Ableton Live that

provides control over Ableton Live functionality. The remote control script maps the

parameters of the Modsy controller to the parameters of a digital instrument or effect. Within

the scope of this thesis this remote control script has not been altered. However, the remote

control script could be important in the avoidance of disruptive parameters in further

implementation of the concept. The code of the remote control script has not been shared in

the appendix since this was not altered within the scope of this thesis.

6.3 - Parameter control

As stated in the specification phase, in order to make the game non-disruptive for the music

production process there should be a way to remove the disruptive or harmful parameter from the

playful interaction. This could be done by smartly monitoring the parameters of a mapping and

filtering these mappings on their parameters for playful control. However, this system is complex to

implement for the current prototype and during evaluation only 1 instruments and 1 effect will be

used due to time constraints. So, for the scope of this thesis the parameters that could be disruptive

will be manually excluded from the playful interaction. This will be done by have certain exclusion lists

for certain instruments or effects with disruptive parameters. In a later stage this could be automated

by altering the python script in Ableton Live. An example of the lists used with the final prototype can

be seen in figure 57 below.

Figure 57 - Excluded parameters playful interaction

The use of parameter exclusion removes the disruptive parameters from the interaction during

evaluation, however there are two more parameter related concerns that should be addressed in

implementation as pointed out in the specification phase: fixed parameter control and control over

both instruments and effects. The fixed parameter control concern relates to the fact that if the

parameters used in the game would not alter throughout the game this would make the musical

105

interaction less explorative and discovery rich. However, due to the implementation of the fix and fuel

parameters this seems to have been addressed. The final concern is the fact that the game interaction

should make sense for both instruments and effects. During testing only one instrument and effect

will be used, both will be chosen to suit the concept and should not create problems. However, in a

later stage the usefulness of the concept should be tested for a variety of different instruments and

effects.

106

Chapter 7 – Evaluation

The goal of the evaluation phase is to address all the requirements that have been stated in the

specification phase and address the main research question stated at the beginning of the report.

During this phase both the normal Modsy controller and playfully enhanced Modsy controller will be

evaluated using 4 different methods to assess how both concepts differ in playfulness and user

experience.

7.1 - Testing methods

During this evaluation phase 4 different evaluation methods will be used.

- Appearance identification

An appearance identification method will be used to assess the form of the controller. This

method will result in qualitative data about the appearance of the prototypes and should help

to determine whether the new prototype is more playful in form. In this method different

cards with single words are used to describe the appearance of a product. These words have

been identified by Blijlevens, Marielle and Schoorman (2009) as the most frequently used

categories to describe product appearances. These categories should help participants to

assess the form of the controller and provided the researcher with useful information about

the perception of the form. Participants are free to add additional terms and explanation of

the form of the controller next to the use of the cards. This is not an established method and

is only meant to provide indication of the participant’s form perception of both Modsy

prototypes. The cards, as used in this thesis, have been included as appendix E to this report.

The words on the cards are: old-fashioned, classical, oldish, kitsch, retro, functional, simple,

boring, plain, playful, funny, unusual minimalistic, sleek, futuristic and modern.

- Assessment of flow

An assessment of the flow state of a participant will be used to assess the playfulness

experienced during interaction. As stated in the literature research, flow analysis is a method

that can be used to assess the state of playfulness an individual is In. For the evaluation of the

prototypes the Flow Short Scale will be used since this is a quick and reliable way to assess the

flow experienced during an activity (Rheinberg, Vollmeyer, and Engeser, 2003; Kyriazos et al,

2018). The items 11 – 13 of the questionnaire are designed to assess perceived demand / skill

fit. The first 10 questions are the core of the FSS and measure the components of flow

107

experience (Engeser, 2012). Since flow experience is of most interested during this evaluation

only the first 10 questions will be used.

- Observation

To further assess the playfulness of participants during interaction with both prototypes

participant behaviour will be analysed. Glynn and Webster (1992) identified 5 characteristics

that can be used to assess the playfulness in adults. These 5 categories, spontaneous,

expressive, fun, creative, and silliness will be at the centre of the observation. These categories

are normally used to assess the playfulness in character of an individual and are not often

used in direct observational manner, however, these character traits could provide good

insight into the playfulness that results for certain interaction or behaviour with the

prototype.

- User experience evaluation

Lastly, the overall user experience should be assessed. This will be done through both a SUS

analysis, to assess the overall usability of the system, and by gathering overall user feedback

about the system. This SUS method is explained in detail in the method section of this report.

The SUS questionnaire as used in this evaluation phase has been added to the report as

appendix A.

7.2 - Test procedure

This section shortly describes the procedure that was used during the evaluation of the theoretically

more playful Modsy prototype and the normal Modsy prototype.

At the start of the research all participants were provided an information brochure and informed

consent form for participation, both have been included as appendix items F and G to this report. The

participants were provided a short introduction into the nature of the research but no information

was shared about the design or desired result. After the informed consent had been signed the testing

would start.

For one half of the participants the normal Modsy prototype was provided first, for the other half of

the participants the playfully enhanced prototype was provided first. This was done to control for the

variance in outcome that could occur by always providing one of the prototypes first. This method

should prevent the outcome from being biased based on order of prototype interaction.

108

The participant were first asked to analyse the product on appearance using the appearance

identification method as described in the previous section. A result of such an identification session

can be seen in figure 58 below.

Figure 58 - Form analysis Modsy controller

Thereafter the participant is asked to use his provided prototype with a digital instrument. For the

more playful Modsy prototype the game will start and users can use all functionality described in the

realisation phase to interact with this instrument. Thereafter an effect would be selected and used in

similar fashion. During control of both an instrument and effect the participant will be observed and

interesting aspects will be noted.

After both an instrument and effect has been used with the prototype the user is asked to fill in two

forms: the Flow Short Scale and SUS questionnaire. Both will be answered using Google Forms.

After the forms had been completed there was room for general feedback and remarks about the

currently tested prototype. Thereafter the prototype would be switched, if the theoretically more

playful Modsy controller was provided first then the normal Modsy controller would be provided and

vice versa. Then all methods would be repeated.

7.3 - Results

The results consist of the data gathered through all 4 methods, this resulted in quantitative data for

both the flow analysis and the sus analysis. Qualitative data was gathered through form analysis,

observation and user feedback.

There were only 6 participants included in this evaluation. This means that all quantitative data does

not produce any significant results, this data will only be used as an indicator and support of qualitative

109

data. All participants were potential customers of the Modsy controller. These participants varied in

music production skill level, gender and age. All participants were above 18 years old.

7.3.1 – Results Form analysis

The Form analysis resulted in groupings or lists of words that would describe both prototypes. An

example of a grouping created for the normal Modsy controller can be seen in figure 59 below.

Figure 59 - Example of appearance grouping normal Modsy controller

Most interesting are the groupings that included the word playful. Since this would indicate that the

participants find the prototype playful in form. Other words used to describe the prototype are

interesting as well, but won’t all be analysed within the scope of this thesis. For the normal Modsy

prototype 0 out of 6 participants used the word playful to describe the appearance of the prototype.

For the playfully enhanced Modsy controller 2 out of 6 participants used the word playful to describe

the prototype. This would indicate that the newly created prototype is slightly more playful in form,

however this is not by a great margin and only assessed by 6 participants.

7.3.2 – Results Flow analysis

The Flow Short Scale resulted in categorical data on a 5-point Likert scale. Since the participant number

is low (n = 6) this will not lead to significant result but an indication of the flow experienced by

110

participants can be derived. As stated, only the first 10 questions of the Flow Short Scale will be used.

As for the outcome of this analysis, the higher on the 5-point Likert scale the higher the flow that was

experienced during product interaction. The average value for each question have been calculated

and compared to provide overview of the difference between the two prototypes and can be seen in

table 22. The highest value between both prototypes has been indicated in green.

Question Normal Modsy Playfully enhanced

Modsy

1 I feel just the right amount of challenge 3.5 3.83

2 My thoughts/activities run fluidly and

smoothly

4.2 3.17

3 I do not notice time passing 4.7 4.3

4 I have no difficulty concentrating 3.7 2.8

5 My mind is completely clear 3.5 3

6 I am totally absorbed in what I am doing 4.5 3.8

7 The right thoughts/movements occur of

their own accord

3.7 3.5

8 I know what I have to do each step of the

way

3.5 3.83

9 I feel that I have everything under control 3.7 3.5

10 I am completely lost in thought 3.5 2.7

Table 22 - Flow Short Scale results

This data shows that the flow experienced with the normal Modsy prototype seems to be higher than

with the extended Modsy prototype for most items on the Flow Short Scale. From these flow measures

we can derive an indication of the playfulness that was experienced, which can then be stated to be

slightly higher during interaction with the normal Modsy controller than with the playfully extended

Modsy controller. However, it is difficult to provide an actual level of playfulness that was experienced,

both prototypes indicate high flow measures (score above 3 points), thus likely high playful behaviour.

7.3.3 – Results SUS analysis

The SUS scores of both the playful enhanced and normal Modsy prototype can be seen in table 23 on

the next page.

111

 Normal Modsy controller Playfully enhanced Modsy controller

SUS score 81.25 75

Table 23 - Results SUS analysis

Overall, the normal Modsy controller can be stated to have better usability than the playfully

enhanced Modsy controller since its SUS score is higher. This could be logical since more functionality

has been added to the playfully enhanced controller which generally tends to make a system more

complex. Both systems have a SUS score above 68, which indicates that there are no major usability

issues with the system. The SUS score of the normal Modsy controller is higher than 80.3 which

indicates that people are very positive about the usability of the system (Thomas, n.d.), this is not the

case for the playfully enhanced Modsy controller.

7.3.4 – Observation / user feedback

User feedback and observation provided qualitative data into the experienced playfulness of the

playfully enhanced Modsy controller and its provided user experience. This feedback has been listed

below for the normal Modsy controller and playfully enhanced Modsy controller.

Normal Modsy proto

Quotes

“Process of music production is more fun than just the software”

“You create sounds that you otherwise would never create”

“Not creative in terms of functionality, other synthesizers can do this as well”

Observation

The normal Modsy prototype is perceived rather well by most participants. There seemed to be strong

captivation during Modsy usage with participants jokingly stating that they could stay there for hours.

This shows a certain level of captivation and exploration that is possible with the use of the Modsy

controller. However, it differs highly on the participants skill level how the Modsy is used and what

sounds are created, participants that are more familiar with sound design and different digital

instruments and effects are more aware of the terminology and can get more captivated by the Modsy

controller.

112

Playful Modsy prototype

Quotes

“You follow more what the computer wants”

“Not actively creative, but passively creative”

“Music is an extra, the game seems to be central”

“You are too busy with the game to realize what is happening”

“More accidental cool stuff takes place”

Observation

As can be read from the above mentioned quotes this prototype was received with some concerns

and remarks by the participants. One aspect that came up with most participants is the fact that while

altering the sound you do not have time to stop the game and further tweak your sound, you have a

continuous pressure from the game to keep altering the sound, which was not always perceived as

positive for the creative process. However, there was a significant amount of laughter and silliness

during interaction which could indicate more playful behaviour. That being said, none of the

participants asked to play the game again. With one participant even stating that if they want to

make weird sounds they would just aggressively turn knobs and get the same effect. Users did state

its potential for the learning synthesis and potential implementation for children. Next to this, users

would also not describe the experience as negative, but in comparison to the normal Modsy controller

most participants would rather spend time with the normal Modsy controller.

7.4 - Discussion

The results indicate that the new prototype is only slightly more playful in form, not directly more

playful in interaction and not directly positive for the user experience compared to the current Modsy

controller.

After reflection and analysis of the results the most likely explanation is that instead of enhancing the

current playful experience of the Modsy controller a new playful experience was created that did not

include certain PLEX categories that were involved during interaction with the normal Modsy

controller. These categories are Control, Relaxation and Captivation. The experience with the normal

Modsy controller turned out to be highly playful. During usage of the normal Modsy system users

113

would have full control over an instrument or effect, could take their time to alter any parameter, and

get completely captivated in this activity. This combination seemed to result in a highly playful state

and was not experienced with the new Modsy prototype.

Now this outcome requires a bit of perspective, the playful attachment of the Modsy controller could

be removed and the game does not necessarily have to be played during the music production

process. This means that the original playfulness of the Modsy can always be restored. Within this

thesis a direct comparison has been performed between the normal Modsy controller and the more

playful Modsy controller, but this might not have been completely valid.

If the current concept is provided as an addition to the Modsy controller will this increase the overall

playfulness of the Modsy controller? This question is very hard to answer following the current

evaluation. The Flow analysis and observation do indicate a state of playfulness (high flow state and

observation of playfulness) during interaction with the new Modsy prototype, however is this due to

the same playful experience as the normal Modsy? Or is this a new playful experience? More research

should be performed to further analyse the potential of this concept on the overall perception of the

Modsy controller.

7.5 - Evaluation of requirements

The evaluation of requirements will discuss all requirements as stated in the specification phase and

assess whether these have been met. Both the functional and non-function requirements will be

evaluated. These have been listed with NFR for non-functional requirement and FR for functional

requirement. The requirements have been grouped based on the MoSCoW categories.

Must haves

NFR1 - The controller must be more playful in function compared to the current Modsy controller.

This requirement has not been met.

Current evaluation indicates the controller to be less playful in interaction in comparison with

the current Modsy controller.

NFR2 - The controller must be more playful in form compared to the current Modsy controller.

This requirement has been met.

114

2 out of 6 users used playful to describe the new prototype. No participant described the

normal Modsy controller as playful. This indicates that the created prototype is slightly more

playful in form.

NFR3 - The controller must be able to provide an analogue feeling

` This requirement has partially been met.

 Evaluation indicated that the prototype was mostly able to remain its analog feeling in form

and functionality. This has been derived from the form analysis where users used word like

retro and oldish to describe the new prototype. However, some users used words like modern

and futuristic to describe the new prototype which could undermine the analog feeling.

Control over instruments and effect remained the same, providing the same knob-feel as

before, which can be understood as an analog feeling within the scope of this thesis.

NFR4 - The controller must be able to provide the same, or more expression during music

production process compared to the current Modsy controller.

This requirement has partially been met.

User interviews indicated that the supposedly more playful prototype was not able to

maintain the same expression. However, since the playful elements could be removed from

the interaction in current implementation the controller could still result in the same

expression as the current Modsy controller.

NFR5 - The controller must be able to provide the same, or more creative control during music

production process compared to the current Modsy controller.

This requirement was met.

The playful interaction was able to provide a new form of creative control while maintaining

the creative control possible with the normal Modsy controller.

NFR6 - The controller must be the same or more fun to use compared to the current Modsy

controller.

This requirements was met.

The playful interaction was perceived as an additional item that could bring joy to participants,

thus this would result in an overall more fun experience.

115

FR11 - The controller must be able to control 32 parameters.

 This requirement was met.

32 parameters could be used for control.

FR12 - The controller must be able to provide feedback on the names of currently mapped

parameters.

This requirement was met.

The Modsy prototype was able to show instrument or effect parameter names.

FR13 - The controller must be able to provide feedback on the value of currently mapped

parameters.

This requirement could not be met.

This requirement was not met due to the current Modsy prototype. This prototype was

unable, due to speed and memory problems, to update the displays with value feedback of

parameters. However, with an improved prototype this could easily be implemented.

FR14 - The controller must allow parameters to be automated.

 This requirement was met.

The controllers parameters could still be automated.

FR 15 - The controller must be able to be used in a studio environment.

 This requirement was met.

The controller was effectively tested in a studio environment.

FR 16 - The Modsy controller must be programmable with Arduino environment

 This requirement was met.

The controller could be programmed with Arduino IDE.

Should haves

NFR7 - The control of parameters during game interaction should be suitable for both instrument

and effect plugins.

 This requirement has partially been met

116

Only 1 digital instrument and effect were evaluated within the scope of this thesis. Both these

elements were found usable within the current game. The main difference between both

elements related to the amount of control that users would have. An effect naturally has less

parameters which leads to less parameters to play with using the Modsy controller. However

this also provided good oversight of all usable parameters and was found more relaxed by

users. Since not a lot of instruments and effects were tested no complete compliance with

this requirements can be stated.

NFR8 - The control of parameter during game interaction should allow for good discovery and

exploration of digital instruments and effects.

This requirement has been met.

The playful interaction supports the exploration and discovery of new parameters very well.

This was also stated as one of the positive aspects by the participants.

NFR9 - The controller should keep the ability to fully focus on music production process

This requirement has partially been met.

The controller was stated to remove focus on music production during interaction, however,

through the nature of the design the playful attachment can be taken of and the playful game

interaction could be stopped. This means that the focus could always be restored.

NFR10 - The controller should be able to be used by all potential users of the Modsy.

This requirement has been met.

Participants with a variety of skill level used the prototype during evaluation and all could use

this prototype with no major problems. The SUS score of 75 supports this claim.

FR17 – The controller should be easy to transport

This requirement has been met.

The controller maintained compact and could still be transported in same fashion as the

normal Modsy controller.

FR18 – The controller should be able to be used during a Live performance

This requirement has not been met.

This was not directly tested but the testing method provided good insight for assessment of

live performance possibility. From this we can conclude that the playful enhancement would

117

not be suited during a live performance in its current state, so this requirement has not been

met.

FR19 - During game interaction it should not be possible to alter disruptive parameters.

This requirement has been met.

Through the use of exclusion lists it was currently not possible to control any disruptive

parameters during the game interaction.

Could haves

FR20 - The controller could have dynamic system for selecting disruptive parameters per

instrument or effect during playful interaction

 This requirement has not been met.

Within the scope of this research it was not feasible to realise a dynamic system for parameter

selection for playful interaction. It was too complex to develop this feature with the current

system using processing, Arduino and the remote control script. This could still be developed

in a later stage.

118

Chapter 8 – Conclusions and future

work

In this final chapter a conclusion will be formed from the results of the previous chapter, furthermore

a recommendation will be given for future work. The goals as stated in the beginning of this thesis will

be addressed.

8.1 - Conclusion

The main goal of this thesis was to create a more playful Modsy controller that could improve user

experience. This goal has not completely been achieved, however, much can be learned from the

process and the created concept. The created concept consists of a playful addition that can be used

in combination with the standard Modsy controller.

Within this process different subgoals were addressed and answered. Starting with the following

subquestion: What is play and playfulness within the context of a music production controller? This

question was answered through literature research. Within the scope of this thesis play can be

described as an activity that elicits involvement and provides pleasure. Playfulness can be used to

describe a state or trait of an individual, or as a product or interaction that has the ability to alter the

playfulness state or trait of an individual.

Thereafter the following subquestion was answered: How can playfulness be used in the design of a

music production controller? Through literature research a practical implementation of playfulness in

product design was derived. Two major tools were identified to design for playful experiences and

thus create more playful products. These tools are the Playful Experiences Framework (PLEX) and use

of playfulness in both form and function.

Next, a theoretically more playful Modsy controller was created using the creative technology design

process. This process included ideation, specification, realisation and evaluation in which a variety of

methods were used. This resulted in a prototype that relied heavily on the following PLEX categories:

Exploration, Discovery, Fantasy and Captivation. The created prototype has the ability to enter a

game-like state where the user could interact with a spaceship game during the music production

process. The user could interact with this spaceship game by using Modsy parameters that are also

used to control instruments and effects. This means that while interacting with the spaceship game

119

the user is simultaneously altering the sound. This concepts was developed to be very playful in

function, the playful formfactor was enhanced by adding a specific playful attachment that could be

used in the spaceship game interaction.

For the evaluation of this playfully enhanced Modsy controller the following sub-questions had to be

answered: How can playfulness be measured and how does the playfulness of a product affect the

user experience? After literary research it was determine that playfulness could be identified through

the use of flow state analysis and observation. The effect of this playfulness on user experience could

be assessed with the use of general user feedback and a SUS analysis. All mentioned methods were

used in evaluation of the created prototype.

The results were analysed and discussed. From these results it could be concluded that currently the

playfully enhanced Modsy prototype was slightly more playful in form, not more playful in interaction

and did not have a positive influence on the user experience compared to the normal Modsy

controller. However the evaluation method could be slightly invalid due to the direct comparison with

the normal Modsy controller. In hindsight an alternative evaluation method could have been better

at assessing the enhancement of the playfulness of the created prototype and actual implementation

of the concept.

Finally, the main research question can be addressed: How can the playfulness of the Modsy controller

be optimized to improve the overall user experience? From this thesis it seems high feasible that

playfulness could be optimized in both form and function with the use of PLEX categories. However

within the scope of this thesis no direct enhancement of playfulness could be concluded and thus no

conclusion can be drawn about the impact on user experience. Results indicate that a playful

experience was present during interaction with the new prototype but this experience was perceived

as less playful in comparison with the normal Modsy controller. Due to the modularity and possible

ways to implement the concept it might still be a valuable asset for Weirdly Wired, but more research

should be performed to assess possible use and its effect on users.

8.2 - Future work

Since this thesis was somewhat inconclusive about the effect that playful can have on user

experience, future work will be very important to further identify its potential. Playfulness is still a

largely understudied field with regards to product design. There has been no major research into the

effect that playfulness in products can have on user experience, and this is a shame since playfulness

120

can have a real impact on human life. With regards to Modsy, there is a variety of next research

steps that could be taken to better understand playfulness within the context of the Modsy

controller and how a company like Weirdly Wired could benefit from this discipline. Listed below are

some of the interesting aspects that could be addressed in future research.

- Further research of playfulness in form within the context of the Modsy controller.

Playfulness in form has briefly been discussed and a simple implementation has been

evaluated within this thesis. This showed promising results since there was an alteration in

the perceived playfulness of the controller. However, a lot more research could be performed

into the implementation of visually playfully engaging elements in the design of the Modsy

controller. Within the scope of this thesis there was not enough time to sufficiently analyse

this aspect. Future research could determine which aspects people find especially visually

engaging within the context of the Modsy controller.

- Re-evaluate the current concept

Future research could re-evaluate the current concept. As discussed in chapter 7 of this report

there could be some flaws in the evaluation method used to assess the currently created

prototype. These flaws are mainly due to the direct comparison of the playful interaction with

normal Modsy functionality. Future research could provide a better way to assess the

enhancement of playfulness of the Modsy controller and show the potential of adding

additional playful experiences.

- Different implementation of current concept

The current concept is still very flexible and different implementation might be possible.

Future work could assess the use of a different sub-concept as discussed during the

specification phase in order to assess their effectiveness. A different sub-concept, other than

the space ship game, could interact very differently with the Modsy controller and it could be

interesting to evaluate these approaches.

- Brand perception and playfulness

Not a lot of research could be found that discussed the perception of brands and their

playfulness. If a company creates more playful products or services does this alter the

perception that customers have of this company? For the company like Weirdly Wired that is

interested in playfulness it might be useful to analyse how their customers will respond to

more playful products. Future work could identify the potential in using playfulness as a

company asset.

121

9 - References
Ableton. (2017, November 2). Ableton Live 10: New Device Visualisations on Push [Video]. YouTube.

Accessed on: Mar. 16, 2021. Available: Ableton Live 10: New Device Visualisations on Push -

YouTube

Ableton. (n.d.) Push, Music at your fingertips. Accessed on: Jul. 9, 2021. Available:

https://www.ableton.com/en/push/

Adafruit. (2021). NeoPixel Stick - 8 x 5050 RGB LED with Integrated Drivers. [Webstore]. Accessed on:

Jul. 9, 2021. Available: https://www.adafruit.com/product/1426

Apter, M. J. (1989). Reversal theory: a new approach to motivation, emotion and personality.

Anuario de Psicologia. Vol. 42

Arrasvuori J., Korhonen, H., Boberg, M. (2010) Understanding playfulness: An overview of the

revised playful experience (PLEX) framework. Proceedings of the 7th International

Conference on Design and Emotion

Arrasvuori, J., Boberg, M., Holopainen, J., Korhonen, H., Lucero, A., Montola, M. (2011). Applying the

PLEX Framework in Designing for Playfulness. Conference: DPPI'11 - Designing Pleasurable

Products and Interfaces, Proceedings. doi: 10.1145/2347504.2347531.

Barnett. L. (1990). Playfulness: Definition, design, and measurement. Play & Culture, 1990, 3, 319-

336

Bateson, P. (2014) Play, Playfulness, Creativity and Innovation. Animal Behavior and Cognition, 1(2),

99-112. doi: 10.12966/abc.05.02.2014

Bateson, P. (2015). Playfulness and creativity. Current Biology, Vol. 25, Issue 1 12-16. Doi:

https://doi.org/10.1016/j.cub.2014.09.009

Bateson, P., Martin, P. (2013). Play, Playfulness, Creativity and Innovation

Bawiec, D. (2018). What Is Mix Automation? Everything You've Been Too Afraid to Ask. . Accessed

on: Jul. 9, 2021. Available: https://www.izotope.com/en/learn/what-is-mix-automation.html

Baxmusic. (2021). Softube Console 1 mkII DAW controller. [Digital Image]. Softube Console 1 mkII

kopen? | Bax Music (bax-shop.nl)

Bekoff, M. (1972), The Development of Social Interaction, Play, and Metacommunication in

Mammals: An Ethological Perspective, The Quarterly Review of Biology, Vol. 47, No. 4, 412-

434, Published by: The University of Chicago Press

Belyh, A. (2019). Brainstorming – Techniques for Idea Generation. Accessed on: Jul. 9, 2021.

Available: https://www.cleverism.com/brainstorming-techniques-for-idea-generation/

Berkenbos, R.-J. (2021). Modsy tutorial: An engaging and easy to understand introductory tutorial.

Unpublished Thesis

https://www.youtube.com/watch?v=RzWDaroO2LY
https://www.youtube.com/watch?v=RzWDaroO2LY
https://www.ableton.com/en/push/
https://www.adafruit.com/product/1426
https://doi.org/10.1016/j.cub.2014.09.009
https://www.izotope.com/en/learn/what-is-mix-automation.html
https://www.bax-shop.nl/midi-studio-controllers/softube-console-1-mkii-daw-controller?gclsrc=aw.ds&gclid=CjwKCAjw55-HBhAHEiwARMCszp5Yij7108cAU9ZCZb9M8wyULpUb-L7RNrBhgsX-VqE-_hrO5-s05RoCNTAQAvD_BwE
https://www.bax-shop.nl/midi-studio-controllers/softube-console-1-mkii-daw-controller?gclsrc=aw.ds&gclid=CjwKCAjw55-HBhAHEiwARMCszp5Yij7108cAU9ZCZb9M8wyULpUb-L7RNrBhgsX-VqE-_hrO5-s05RoCNTAQAvD_BwE
https://www.cleverism.com/brainstorming-techniques-for-idea-generation/

122

Blijlevens, J., Creusen, M. E. H., & Schoormans, J. P. L. (2009). How consumers perceive product

appearance: The identification of three product appearance attributes. International Journal

of Design, 3(3), 27-35.

Canva. (2021). How to create a beautiful moodboard. Accessed on: Jul. 9, 2021. Available:

https://www.canva.com/learn/make-a-mood-board/

Chan, W. W. L., Ma, W. W. K. (2014). The Influence of Playfulness and Subject Involvement on

Focused Attention when Using Social Media. Journal of Communication and Education, 16-

27

Chang, C. (2013). Relationships between Playfulness and Creativity among Students Gifted in

Mathematics and Science. Creative Education 04(02):101-109. DOI:10.4236/ce.2013.42015

Conna, C. (2016). A Comb Holds Nails in Place. [Digital image]. http://hackable.com/a-comb-holds-

nails-in-place/

Conrad.nl (2021). Joy-it KY023JM Sensorkit Geschikt voor: Raspberry Pi, pcDuino, Banana Pi, Arduino

1 stuk(s). [Webstore]. Accessed on: Jul. 9, 2021. Available: Joy-it KY023JM Sensorkit Geschikt

voor: Raspberry Pi, pcDuino, Banana Pi, Arduino 1 stuk(s) | Conrad.nl

Costello, B. M., Edmonds, E. A. (2007). A study in play, pleasure and interaction design. Conference:

Proceedings of the 2007 International Conference on Designing Pleasurable Products and

Interfaces. doi:10.1145/1314161.1314168.

Csepregi, G. (2013). On Musical Performance as Play. Nordic Journal of Aesthetics 23(46):96-114.

Doi: 10.7146/nja.v23i46.16384

Csikszentmihalyi, M. (1975). Beyond Boredom and Anxiety. San Francisco : Jossey-Bass Publishers

Csikszentmihalyi, M. (2008). Flow, The Psychology of Optimal Experience. Publisher: Harper & Row

Diaz-Varela, A., Wright, L. H. V. (2019). Play for Adults: Play-based Approaches in Teacher Training.

Scottish Educational Review 51(2). 132-136.

Endemol Shine Group (Producer). (2021). Lego Masters. [Television broadcast]. RTL Network

Engeser, S. (2012). Advances in Flow Research. Springer, New York. Doi: 10.1007/978-1-4614-2359-

1,

Funkydesignspaces. (n.d.) PLEX Cards, Playful Experiences Cards. [PDF File].

http://www.funkydesignspaces.com/plex/

Garris, R., Ahlers, R., & Driskell, J. E. (2002). Games, motivation, and learning: A research and

practice model. Simulation & gaming, 33(4), 441-467.

George, J. M. (2007). Creativity in Organisations, The Academy of Management Annals. 1:1, 439-277,

Doi: 10.1080/078559814

Gray, Peter. (2017). What Exactly Is Play, and Why Is It Such a Powerful Vehicle for Learning?. Topics

in Language Disorders. 37. 217-228. doi: 10.1097/TLD.0000000000000130.

https://www.canva.com/learn/make-a-mood-board/
http://hackable.com/a-comb-holds-nails-in-place/
http://hackable.com/a-comb-holds-nails-in-place/
https://www.conrad.nl/p/joy-it-ky023jm-sensorkit-geschikt-voor-raspberry-pi-pcduino-banana-pi-arduino-1-stuks-1707629?WT.mc_id=gshop&utm_source=google&utm_medium=surfaces&utm_term=1707629&utm_content=free-google-shopping-clicks&utm_campaign=shopping-feed&gclid=Cj0KCQjwktKFBhCkARIsAJeDT0gTsR2bM-3HXWguW9wl1mUT9oN4v_YKj2a-xBcjG4Xlb0H5Lz6qCKgaAtIEEALw_wcB&gclsrc=aw.ds&tid=9774089998_102830953594_pla-1150822110642_pla-1707629&WT.srch=1&vat=true&insert_kz=8J
https://www.conrad.nl/p/joy-it-ky023jm-sensorkit-geschikt-voor-raspberry-pi-pcduino-banana-pi-arduino-1-stuks-1707629?WT.mc_id=gshop&utm_source=google&utm_medium=surfaces&utm_term=1707629&utm_content=free-google-shopping-clicks&utm_campaign=shopping-feed&gclid=Cj0KCQjwktKFBhCkARIsAJeDT0gTsR2bM-3HXWguW9wl1mUT9oN4v_YKj2a-xBcjG4Xlb0H5Lz6qCKgaAtIEEALw_wcB&gclsrc=aw.ds&tid=9774089998_102830953594_pla-1150822110642_pla-1707629&WT.srch=1&vat=true&insert_kz=8J
http://dx.doi.org/10.1145/1314161.1314168
http://www.funkydesignspaces.com/plex/

123

Groos, K. (1898). The Play of Animals. New York : Appleton. Retrieved from:

https://archive.org/details/playofanimals00groouoft/mode/2up

Guitard, P., Ferland, F., & Dutil, É. (2005). Toward a Better Understanding of Playfulness in Adults.

OTJR: Occupation, Participation and Health, 25(1), 9–22. doi:

https://doi.org/10.1177/153944920502500103

Hong, Z. (2012). A study for Playful product design. University of Auburn, Alabama

Huizinga, J. (1938). Homo Ludens: A study of the play-element in culture. Routledge & Kegan Paul

London, Boston and Henley.

Human Motivation, 3rd ed., by Robert E. Franken, 1994

IKEA. (2021). BYGGLEK. [Digital Image]. https://www.ikea.com/nl/nl/p/bygglek-lego-r-stenen-201-

delig-gemengde-kleuren-20436888/

Interface. (2020). MP Midi Controller. [Digital Image]. https://www.interface.nl/nieuws/artikel/3-

24676/mp-midi-controller

Jackson, S. A., & Eklund, R. C. (2002). Assessing flow in physical activity: The Flow State Scale-2 and

Dispositional Flow Scale-2. Journal of Sport & Exercise Psychology, 24(2), 133–150

Karras et al. (2019). Imagined by a GAN (generative adversarial network), StyleGAN2. Accessed on:

Jul. 9, 2021. Available: https://thispersondoesnotexist.com/

Kim, B., (2015). Understanding Gamification. Vol. 51. No. 2. Library Technology Reports. ISSN 0024-

2586

King, S., Chang, K. (2015). Understanding industrial design. O'Reilly Media, Inc. ISBN: 9781491920398

Klarkowski, M., Johnson, D., Wyeth, P., Smith, S., Phillips, C. (2015). Operationalising and measuring

flow in video games. In Proceedings of the Annual Meeting of the Australian Special Interest

Group for Computer Human Interaction onOzCHI ’15, ACM, Melbourne, Vic. 114-118

Korhonen, H., Montola, M., Arrasvuori, J. (2009). Understanding playful user experiences through

digital games. Conference: International conference on designing pleasurable products and

interfaces.

Kyriazos, T. A., Stalikas, A., Prassa, K., Galanakis, M., Flora, K., & Chatzilia, V. (2018). The Flow Short

Scale (FSS) Dimensionality and What MIMIC Shows on Heterogeneity and Invariance.

Psychology, 9, 1357-1382. https://doi.org/10.4236/psych.2018.96083

KyTary.nl. (2021). ABLETON PUSH 2. [Digital Image]. https://kytary.nl/ableton-push-2/HN160497/

LEGO education (n.d.). Retrieved March 16, 2021, from: Build Confidence with STEM Competitions |

LEGO® Education

LEGO world (n.d.). Retrieved March 16, 2021, from: LEGO World 2019 – leukste uitje in de

herfstvakantie

LEGO. (2021). LEGO Homepage. [Website]. Accessed on: Jul. 9, 2021. Available: Start | Officiële

LEGO® winkel NL

https://archive.org/details/playofanimals00groouoft/mode/2up
https://doi.org/10.1177/153944920502500103
https://www.ikea.com/nl/nl/p/bygglek-lego-r-stenen-201-delig-gemengde-kleuren-20436888/
https://www.ikea.com/nl/nl/p/bygglek-lego-r-stenen-201-delig-gemengde-kleuren-20436888/
https://www.interface.nl/nieuws/artikel/3-24676/mp-midi-controller
https://www.interface.nl/nieuws/artikel/3-24676/mp-midi-controller
https://thispersondoesnotexist.com/
https://doi.org/10.4236/psych.2018.96083
https://kytary.nl/ableton-push-2/HN160497/
https://education.lego.com/en-us/competitions#solutions
https://education.lego.com/en-us/competitions#solutions
https://www.legoworld.nl/
https://www.legoworld.nl/
https://www.lego.com/nl-nl?ef_id=CjwKCAjwuIWHBhBDEiwACXQYsXNV2dKR1hDvyzLsBAPLrSQBJ63iXJZwIJouOXo4QqU-7v6TYPnLYRoCOsMQAvD_BwE:G:s&s_kwcid=AL!933!3!377765703785!e!!g!!lego%20store%20online&cmp=KAC-INI-GOOGEU-GO-NL-NL-RE-PS-BUY-CREATE-MASTERBRAND-SHOP-BC-EX-RN-CORE
https://www.lego.com/nl-nl?ef_id=CjwKCAjwuIWHBhBDEiwACXQYsXNV2dKR1hDvyzLsBAPLrSQBJ63iXJZwIJouOXo4QqU-7v6TYPnLYRoCOsMQAvD_BwE:G:s&s_kwcid=AL!933!3!377765703785!e!!g!!lego%20store%20online&cmp=KAC-INI-GOOGEU-GO-NL-NL-RE-PS-BUY-CREATE-MASTERBRAND-SHOP-BC-EX-RN-CORE

124

Lieberman, J. N. (1977). Playfulness. New York: Academic Press.

Lonczak, H. S. (2020, December 10th). How to Measure Flow with Scales and Questionnaires.

Retrieved from How to Measure Flow with Scales and Questionnaires

(positivepsychology.com)

Lucero, A. Holopainen, J., Ollila, E., Suomela, R., Karapanos, E. (2013) The Playful Experiences (PLEX)

Framework as a Guide for Expert Evaluation. ISBN: 978-1-4503-2192-1/13/09

Lucero, A., Arrasvuori, J. (2010). PLEX Cards: A source of inspiration when designing for playfulness.

ACM International Conference Proceeding Series. doi: 10.1145/1823818.1823821

Mader, A. H., & Eggink, W. (2014). A Design Process for Creative Technology. In E. Bohemia, A. Eger,

W. Eggink, A. Kovacevic, B. Parkinson, & W. Wits (Eds.), Proceedings of the 16th

International conference on Engineering and Product Design, E&PDE 2014 (pp. 568-573).

(E&PDE). The Design Society.

Mathijssen, O. Driel B. van, Berkenbos, R.-J. & L. Wintermans. (2020). Modsy Business Plan.

Unpublished report

Merriam-Webster. (n.d.). State of mind. In Merriam-Webster.com dictionary. Retrieved April 7,

2021, from https://www.merriam-webster.com/dictionary/state%20of%20mind

Moog. (n.d.). Minimoog Model D. Accessed on: Jul. 9, 2021. Available:

https://www.moogmusic.com/products/minimoog-model-d

Music store. (2021). Moog Minimoog Model D. [Digital Image].

https://www.musicstore.com/nl_OT/EUR/Moog-Minimoog-Model-D/art-SYN0005422-000

Native Instruments. (2021). OUR BEST MIDI KEYBOARDS. Accessed on: Jul. 9, 2021. Available:

https://www.native-instruments.com/en/catalog/komplete/keyboards/

Native Instruments. (2021). This is NKS. [Digital Image]. This Is Nks (native-instruments.com)

Nayanathara, R. (2020). PACT Analysis. Accessed on: Jul. 9, 2021. Available:

https://bootcamp.uxdesign.cc/pact-analysis-3ac5fbe8817

O’Brien T. (2020). Blipblox After Dark is a kid's synth for adults. It's still basically a toy, but that's not

necessarily a bad thing. Retrieved March 16, 2021, from: Blipblox After Dark is a kid's synth

for adults | Engadget

Pang, A.S.K. (2012, November 2). The downside of flow: Machine gambling. Strategy + Rest. The

downside of flow: Machine gambling – Strategy and Rest

Patel, K. (2020). 5 tips to make ideation sketching approachable to all. Accessed on: Jul. 9, 2021.

Available: https://uxdesign.cc/5-tips-to-make-ideation-sketching-approachable-to-all-

9a9a23d2cdf2

Pierce, D. (2017). The Hot New Hip-Hop Producer Who Does Everything on His iPhone. Accessed on:

15/04/2021. Steve Lacy Produced That Hot Kendrick Lamar Track Using Only His iPhone |

WIRED

https://positivepsychology.com/how-to-measure-flow-scales-questionnaires/
https://positivepsychology.com/how-to-measure-flow-scales-questionnaires/
https://www.moogmusic.com/products/minimoog-model-d
https://www.musicstore.com/nl_OT/EUR/Moog-Minimoog-Model-D/art-SYN0005422-000
https://www.native-instruments.com/en/catalog/komplete/keyboards/
https://www.native-instruments.com/en/specials/komplete/this-is-nks/
https://bootcamp.uxdesign.cc/pact-analysis-3ac5fbe8817
https://www.engadget.com/blipblox-after-dark-synthesizer-handson-153013376.html?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAJ2hVg8OdQSlWYOPlgj2nCJ7XZtybYKGTWJV3ZPIiwVzC5Z94NksQy63HDSKuwxDfOghkNFAOaeHMrO7r1HnN3lJm380Cs-_LlD2WwBTyzbDDFO95Jc66_WcPIF8Qwps4S16a4RhH7Wi4xBVYqFYJMI1oJgIk2F-FNdAVk1qBKS-
https://www.engadget.com/blipblox-after-dark-synthesizer-handson-153013376.html?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAJ2hVg8OdQSlWYOPlgj2nCJ7XZtybYKGTWJV3ZPIiwVzC5Z94NksQy63HDSKuwxDfOghkNFAOaeHMrO7r1HnN3lJm380Cs-_LlD2WwBTyzbDDFO95Jc66_WcPIF8Qwps4S16a4RhH7Wi4xBVYqFYJMI1oJgIk2F-FNdAVk1qBKS-
https://www.strategy.rest/?p=1676
https://www.strategy.rest/?p=1676
https://uxdesign.cc/5-tips-to-make-ideation-sketching-approachable-to-all-9a9a23d2cdf2
https://uxdesign.cc/5-tips-to-make-ideation-sketching-approachable-to-all-9a9a23d2cdf2
https://www.wired.com/2017/04/steve-lacy-iphone-producer/
https://www.wired.com/2017/04/steve-lacy-iphone-producer/

125

Playtime Engineering. (2021). Meet the Blipblox. Accessed on: Jul. 9, 2021. Available:

https://blipblox.com/

ProductPlan. (2021). MoSCoW Prioritization. Accessed on: Jul. 9, 2021. Available:

https://www.productplan.com/glossary/moscow-prioritization/

Proyer, R. T. (2012). Examining playfulness in adults: Testing its correlates with personality, positive

psychological functioning, goal aspirations, and multi-methodically assessed ingenuity.

Psychological Test and Assessment Modeling. Vol. 54, 103-127

Proyer, R. T. (2013). The well-being of playful adults: Adult playfulness, subjective well-being,

physical well-being, and the pursuit of enjoyable activities. European Journal of Humour

Research 1(1), 84-98 doi: 10.5167/uzh-78008

Proyer, R. T., Gander, F., Braeuer, K., Chick, G. (2021). Can Playfulness be Stimulated? A Randomised

Placebo-Controlled Online Playfulness Intervention Study on Effects on Trait Playfulness,

Well-Being, and Depression. Applied Psychology Health and Well-Being 13, 129-151. doi:

10.1111/aphw.12220

Reid, D. (2014) A Model of Playfulness and Flow in Virtual Reality Interactions. Presence

Teleoperators & Virtual Environments 13(4). 451-462. doi:10.1162/1054746041944777

Reverb. (2019, February 25). Ep20: Synth Sounds of Minimoog: Parliament, Pink Floyd, Dr. Dre &

More | Reverb [Video]. YouTube. https://www.youtube.com/watch?v=33gZwkSUZRs

Rheinberg, F., Vollmeyer, R., & Engeser, S. (2003). Die Erfassung des Flow-Erlebens [The assessment

of flow experience]. In J. Stiensmeier-Pelster & F. Rheinberg (Eds.), Diagnostik von

Motivation und Selbstkonzept, 261–279

Rheinberg, F., Vollmeyer, R., & Engeser, S. (2003). Die Erfassung des Flow-Erlebens [The assessment

of flow experience]. In J. Stiensmeier-Pelster & F. Rheinberg (Eds.), Diagnostik von

Motivation und Selbstkonzept (pp. 261–279). Göttingen: Hogrefe.

Romanwave. (2020, November 16). Is it worth to buy PUSH 2 in the end of 2020? Pros & Cons.

[Online forum post]. Reddit.

https://www.reddit.com/r/ableton/comments/jvaf4i/is_it_worth_to_buy_push_2_in_the_e

nd_of_2020_pros/

Samuelsson, I. P., Johansson, E. (2006). Play and learning—inseparable dimensions in preschool

practice, Early Child Development and Care, 176:1. 47-65. doi:

10.1080/0300443042000302654

Sandelands, L., Ashford S. A., Dutton, J. E., (1983). Reconceptualizing of the overjustification effect: A

template-matching approach. Motivation and Emotion. 7. 229-255. doi:

10.1007/BF00991675

Sandelands, Loyd E. (1988) The Effect of work and Play signals on task evaluation. Journal of Applied

Social Psychology, Vol.18, Issue 12, 1032-1048. doi: https://doi.org/10.1111/j.1559-

1816.1988.tb01191.x

Schiller, F. (1795). On the Aesthetic Education of Man. Dover Publications, Inc. Mineola, New York

https://blipblox.com/
https://www.productplan.com/glossary/moscow-prioritization/
https://www.youtube.com/watch?v=33gZwkSUZRs
https://www.reddit.com/r/ableton/comments/jvaf4i/is_it_worth_to_buy_push_2_in_the_end_of_2020_pros/
https://www.reddit.com/r/ableton/comments/jvaf4i/is_it_worth_to_buy_push_2_in_the_end_of_2020_pros/
https://doi.org/10.1111/j.1559-1816.1988.tb01191.x
https://doi.org/10.1111/j.1559-1816.1988.tb01191.x

126

Shahri, J. M. (2016). Playful engagements in product design: Developing a theoretical framework for

ludo-aesthetic interactions in kitchen appliances. University of Edinburgh.

Sicart, M. (2014). Play Matters.The Mit Press. ISBN: 9780262027922

Singer, D. G., Golinkoff, R. M., & Hirsh-Pasek, K. (2006). Play = learning: How play motivates and

enhances children's cognitive and social-emotional growth. Oxford University Press. doi:

10.1093/acprof:oso/9780195304381.001.0001

Smith, L. W. (2000). Stakeholder analysis: a pivotal practice of successful projects. Paper presented

at Project Management Institute Annual Seminars & Symposium, Houston, TX. Newtown

Square, PA: Project Management Institute.

Softube. (2021). CONSOLE 1 Sound. Workflow. Control. Accessed on: Jul. 9, 2021. Available:

https://www.softube.com/console1

Softube. (2021). Console 1. Sound. Workflow. Control. [Digital Image]. Console 1 | Softube

Starbuck, W., Webster, J. (1991). When is play productive?. Accounting, Management and

Information Technologies. 1. 71-90. 10.1016/0959-8022(91)90013-5

Tannis, D. J. (2012). Exploring play/playfulness and learning in adult and higher education classroom.

The Pennsylvania State University, ProQuest Dissertations Publishing.

Teenage Engineering. (2021). the portable wonder synthesizer. Accessed on: Jul. 9, 2021. Available:

https://teenage.engineering/products/op-1

Telekom Electronic Beats. (n.d.). Playlists [YouTube channel]. YouTube. Accessed on: March 16,

2021, from Ask The Producer: Steffi (Electronic Beats TV) - YouTube

Thomann. (2021-a). Native Instruments Komplete Kontrol S49 MK2. [Digital Image].

https://www.thomann.de/nl/native_instruments_komplete_kontrol_s49_mk2.htm

Thomann. (2021-b). Teenage Engineering OP-1. [Digital Image]. Teenage Engineering OP-1 –

Thomann Nederland

Thomann. (2021-c). Playtime Engineering Blipblox. [Digital Image].

https://www.thomann.de/gb/playtime_engineering_blipblox.htm

Thomas, N. (n.d.) How To Use The System Usability Scale (SUS) To Evaluate The Usability Of Your

Website. Accessed on: Jul. 9, 2021. Available: https://usabilitygeek.com/how-to-use-the-

system-usability-scale-sus-to-evaluate-the-usability-of-your-website/

Tombolare. (2012). Teenage Engineering’s OP-1 Portable Synthesizer. [Digital Image].

https://c86.tumblr.com/post/25845019985/teenage-engineerings-op-1-portable-

synthesizer

Townsend, J. D. Montoya, M. M. & Calantone, R. J. (2011). Form and Function: A Matter of

Perspective. Journal of Product Innovation Management. Doi: 10.1111/j.1540-

5885.2011.00804.x

UNICEF (2018). Learning through play, strengthening learning through play in early childhood

educational programs.

https://www.softube.com/console1
https://www.softube.com/console1?gclid=CjwKCAjw55-HBhAHEiwARMCszktXRVGJXGhjktz5e4HMxAXIWivzYwSWHT2hHSIu_Evk0G8oWRd9OBoCmMsQAvD_BwE
https://teenage.engineering/products/op-1
https://www.youtube.com/watch?v=e5uqeowr-vI&list=PLfRh37c5lvivmaG6thUvjvLJNGdHKiGDH
https://www.thomann.de/nl/native_instruments_komplete_kontrol_s49_mk2.htm
https://www.thomann.de/nl/teenage_engineering_op_1.htm?glp=1&gclid=CjwKCAjw55-HBhAHEiwARMCszp3mVd_xIKtHlZNUjAyqFhNMEZvQUCbW6-Yq_2cTWvgMEHA6oGkO5xoCCYIQAvD_BwE
https://www.thomann.de/nl/teenage_engineering_op_1.htm?glp=1&gclid=CjwKCAjw55-HBhAHEiwARMCszp3mVd_xIKtHlZNUjAyqFhNMEZvQUCbW6-Yq_2cTWvgMEHA6oGkO5xoCCYIQAvD_BwE
https://www.thomann.de/gb/playtime_engineering_blipblox.htm
https://usabilitygeek.com/how-to-use-the-system-usability-scale-sus-to-evaluate-the-usability-of-your-website/
https://usabilitygeek.com/how-to-use-the-system-usability-scale-sus-to-evaluate-the-usability-of-your-website/
https://c86.tumblr.com/post/25845019985/teenage-engineerings-op-1-portable-synthesizer
https://c86.tumblr.com/post/25845019985/teenage-engineerings-op-1-portable-synthesizer

127

University of Adelaine. (2014). Mind Mapping Writing Centre Learning Guide. Accessed on: Jul. 9,

2021. Available: Mind Mapping (adelaide.edu.au)

Usability.gov. (2020). System Usability Scale (SUS). . Accessed on: Jul. 9, 2021. Available:

https://www.usability.gov/how-to-and-tools/methods/system-usability-

scale.html#:~:text=The%20System%20Usability%20Scale%20(SUS,Strongly%20agree%20to%

20Strongly%20disagree.

Webster, J., Trevino, L.K., Ryan, L. (1993). The Dimensionality and Correlates of Flow in Human-

Computer Interaction. Computers in Human Behavior, Vol. 9, 411-426. doi:

https://doi.org/10.1016/0747-5632(93)90032-N

White Sea Studio. (2019, February 21). REVIEW: Softtube Console 1 [Video]. YouTube. REVIEW:

Softube Console 1 - YouTube

Wignall, N. (2019). Psychological Benefits of Playfulness for Adults. Accessed on: Mar. 16, 2021.

Available: https://nickwignall.com/benefits-of-playfulness/

Yager, S. E., Kappelman, L. A., Maples, G. A., Prybutok, V. R. (1997). Microcomputer Playfulness:

Stable or Dynamic Trait? The database for Advances in Information Systems, Vol. 28, No. 2

Zosh J.M., Hopkins, E.J., Jensen, H., Liu, C., Neale, D., Hirsh-Pasek, K., Solis, S.L., Whitebread, D.

(2017). Learning through play: a review of the evidence. White Paper, LEGO foundation.

ISBN: 978-87-999589-1-7

https://www.adelaide.edu.au/writingcentre/sites/default/files/docs/learningguide-mindmapping.pdf
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html#:~:text=The%20System%20Usability%20Scale%20(SUS,Strongly%20agree%20to%20Strongly%20disagree
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html#:~:text=The%20System%20Usability%20Scale%20(SUS,Strongly%20agree%20to%20Strongly%20disagree
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html#:~:text=The%20System%20Usability%20Scale%20(SUS,Strongly%20agree%20to%20Strongly%20disagree
https://doi.org/10.1016/0747-5632(93)90032-N
https://www.youtube.com/watch?v=M-wS1d8iYC8
https://www.youtube.com/watch?v=M-wS1d8iYC8
https://nickwignall.com/benefits-of-playfulness/

128

10 – Appendix

A – SUS questionnaire

129

130

B – Flow Short Scale questionnaire

131

132

133

C – Mind map ideation

134

135

D – PLEX concept assessment

E – Form assessment cards

Old-Fashioned

Classical

Oldish

136

Kitsch

Retro

Functional

Boring

Plain

Playful

Funny

Unusual

Minimalistic

137

Sleek

Futuristic

Modern

138

F – PLEX analysis state of the art

139

140

G – Consent form

Informed consent – Playfulness research
About

This informed consent is related to the evaluation method of a thesis about the playfulness of the

Modsy controller. This research assesses whether playfulness can be used as a good tool in design and

whether this can improve the overall experience a user has with the product.

You give permission to participate in a user test in which statements and information can be used for

this research. More information about this research can be found in the information brochure.

Lead researcher: Olivier Mathijssen

Supervisor: Wouter Eggink

Contact information

For any questions, you can contact the researcher that is present at the user test, Olivier Mathijssen

(o.p.mathijssen@student.utwente.nl) or the supervisor Wouter Eggink (w.eggink@utwente.nl). You

can also contact the Ethics Committee (ethicscommittee-cis@utwente.nl). This committee consists of

independent experts from the university and is available for questions and complaints regarding this

research.

Research: Playfulness of Modsy controller

mailto:o.p.mathijssen@student.utwente.nl
mailto:w.eggink@utwente.nl

141

I consent voluntarily to be a participant in this study and understand that I can refuse to

answer questions or perform the tasks and I can withdraw from the study at any time, without

having to give a reason.

I understand the reason for this research, methods are explained and I have had the option to

ask questions.

I hereby give upfront consent to participate in this research

I give permission for the use of my statements during this user test for research purposes

I give permission for the making of a video recording during the user test for research

purposes.

The video recording and transcriptions of the interview will be only accessible for the main researcher,

Olivier Mathijssen. The video will be stored and anonymously processed according to the GDPR

guidelines. All data will be stored for a minimum of 10 years, but in suiting cases for an undetermined

time, appropriate to the current guidelines from the Vereniging van Universiteiten (VSNU).

Date: Place:

Name: Paragraph participant:

H – Information brochure

Information brochure – Playfulness research
Background

The Modsy controller is a new type of music production controller. The controller can provide more

analogue feeling over different digital instruments and effects. Within music production, play and

playfulness are very important to consider. More playful interaction can result in more creativity, fun,

and a better learning experience. For a new controller entering the market, it is important to consider

the aspect of playfulness and see how this can influence the overall user experience.

The goal of this research is to assess the effect that playfulness can have on the Modsy controller. In

this research, a more playful Modsy controller will be created and evaluated through user tests. This

brochure relates to these user tests.

Research Procedure

Through the means of a user test feedback will be gathered to analyse whether a more playful design

can help to improve the overall user experience with a Modsy controller.

The research will include the use of a theoretically more playful Modsy controller in normal

circumstances in order to test all features and see how design changes influence user interaction with

this controller. During these user tests, the researcher will take notes and make a video recording.

142

This information brochure will explain what it means for you to partake in this research. If you have

any further questions, don’t hesitate to contact Olivier Mathijssen

(o.p.mathijssen@student.utwente.nl).

Participation

Participation is entirely voluntary and you can quit this research at any moment without stating the

reason why. Permission for participation only has to be granted once.

What happens during the test?

During the test, a participant is asked to perform specific tasks using the Modsy controller. This way

the interaction with the controller can be observed. This is meant to resemble a normal music

production process and follows some standard music production interactions, like controlling an

instrument or effect. This will also include the use of a special mode in which playfulness is the main

focus.

After the Modsy controller has been used, the researcher has both a short semi-structured interview

and questionnaire prepared for the participant. These question will relate to the experienced

playfulness and overall experience of the Modsy controller.

Which data will be collected?

The user test will be visually and audibly recorded to optimally utilize and analyze the user interaction

with the product. Next to this, the researcher will make digital notes during the interview and use the

data of the questionnaire. Statements made during the interview could be used to support the

research outcome. These statements will be used anonymously.

How will the data be stored?

The video data will be stored on an encrypted hard drive of the researcher. Next to this, the

statements made during the interview and filled-in questionnaire are scanned and later destroyed,

the digital files are saved on an encrypted hard drive as well.

Who has access to the data?

The video recordings and transcriptions of the test will only be accessible to the lead researcher,

Olivier Mathijssen.

Will any personal data be made public?

The video material will not be publicly displayed. Statements made during the interview could be

anonymously used as a source in the research. Some statements could be included during the

publication of the thesis.

More information and independent advise

Would you like independent advice about participating in this research or do you have a complaint?

Then you can contact the Ethics Committee (ethicscommittee-cis@utwente.nl). This committee

consists of independent experts from the university and is available for questions and complaints

regarding this research.

For any questions, you can contact the researcher, Olivier Mathijssen
(o.p.mathijssen@student.utwente.nl) or the supervisor Wouter Eggink (w.eggink@utwente.nl).

mailto:o.p.mathijssen@student.utwente.nl

143

I – Processing program code

//Playful game interaction for the Modsy controller

//

//By Olivier Mathijssen

//05-07-2021

//

//Developed as part of the Bachelor Thesis the Playfulness of Modsy

import processing.serial.*;

Serial playful_extention_Port; // Create object from Serial class

Serial modsyPort;

HealthBar health_bar;

HealthBar power_bar;

int spaceship_x;

int spaceship_y;

int[] spaceship_hitbox_size = {128, 32}; //The size of the box that makes up the spaceship hitbox, X,Y

int[] hitbox_spaceship = {0, 0, 0, 0}; //

char[] spawned = {'n', 'n', 'n', 'n'}; //'n' = nothing, 's' = spaceship, 'a' = astroid //

int[] spawned_xpos = {1024, 1024, 1024, 1024}; //

int[] spawned_ypos = {32, 32, 32, 32}; //

int[] spawned_speed = {0, 0, 0, 0}; //

long time_now_enemyship;

long time_now_astroid;

int timing_enemyship = 10000; //This timing could be made more dynamic

int timing_astroid = 7200; //This timing could be made more dynamic

int[] speed_ranges = {9, 20}; //The speed will be determined by a random function with these two
boundries

144

int[] spawned_y_ranges = {0, 256}; //The boundries in which elements can be spawned along the y
axis

int[] enemyship_hitbox_size = {128, 32}; //The size of the box that makes up the enemyship hitbox,
X,Y

int[] astroid_hitbox_size = {100, 50}; //The size of the box that makes up the astroid hitbox, X,Y

int[] hitbox_spawned = {1000, 1000, 1000, 1000}; //One hitbox array that can be used during the
Hitbox calculations, L,R,T,B

//Bullet code ---------------------- 10 bullets max

char[] present_bullets = {'n', 'n', 'n', 'n', 'n', 'n', 'n', 'n', 'n', 'n'}; //'n' = nothing, 'b' = bullet

int[] xpos_enemybullets = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; //Max ten bullets

int[] ypos_enemybullets = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; //

int[] bullet_speed = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

int[] hitbox_bullet = {0, 0, 0, 0}; //One hitbox array that can be used during the Hitbox calculations

int[] bullet_hitbox_size = {5, 5}; //The size of the box that makes up the bullet hitbox, also for
friendly bullets

//Spaceship bullets (friendly) ----------------------- 10 bullets max

char[] friendly_bullets = {'n', 'n', 'n', 'n', 'n', 'n', 'n', 'n', 'n', 'n'}; //'n' = nothing, 'b' = bullet

int[] xpos_friendlybullets = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; //Max ten bullets

int[] ypos_friendlybullets = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; //

int[] friendly_hitbox_bullet = {0, 0, 0, 0}; //One hitbox array that can be used during the Hitbox
calculations

int friendly_bullet_speed = 50;

//Overall timing variables

long time_now_refresh;

int timing_refresh = 80;//0.08Hz

boolean run_game = false;

boolean first_fix = true;

boolean first_reload = true;

145

long start_time; //Time will be set at start of the game

int total_game_duration = 120000; //Game should be played for 3 minutes. > 3* 60 * 1000 =
120000ms

boolean end_animation = false;

int end_earth_x = 1280;

int end_earth_y = 0; //This should be changed

//Elements to be used during the game.

int fireButton;

int shieldButton;

int reload_parameter;

int fix_parameter;

boolean set_shield = false;

int timing_shield = 2000;

long timing_now_shield;

boolean shield_expand = true;

int shield_diameter = 90;

//For the timing of reload and fix actions

long time_now_reload = 0;

long time_now_fix = 0;

int reload_timing;

int fix_timing;

//If one of the parameter is fixed or reloaded in time this positively affects the bars, else negatively

boolean fix_intime = false;

boolean reload_intime = false;

//Timing of popup in screen

long timing_now_popup = 0;

int timing_popup = 1000;

String popup_message = "Spacecruise started";

146

long timing_now_popup_above = 0;

int timing_popup_above = 2000;

String popup_message_2 = "Spacecruise started";

int[] reload_timing_boundries = {3000, 10000};

int[] fix_timing_boundries = {4000, 10000};

PImage spaceship;

PImage background;

PImage endearth;

//Array of images

PImage enemyship_images[];

PImage astroid_images[];

PImage bullet_images[];

PImage friendly_bullets_img[];

//For health and power bar

int health;

int power;

boolean enable_port_extention;

boolean enable_port_modsy;

//Excluded parameters

boolean echoctrl = false;

int[] echo_excluded_par = {3, 6, 7, 8, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 29, 30,
31, 32 };

int[] juno_excluded_par = {8, 15, 16, 26, 27, 28};

int[] echo_non_excluded = {1, 2, 4, 5, 9, 10, 12, 20, 28};

int[] juno_non_excluded = {1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25,
29, 30, 31, 32};

147

void setup() {

 size(1280, 320);

 background(0);

 printArray(Serial.list());

 enable_port_extention = false;

 enable_port_modsy = false;

 if (enable_port_extention == true) {

 String playful_extension = Serial.list()[1]; //change the 0 to a 1 or 2 etc. to match your port

 playful_extention_Port = new Serial(this, playful_extension, 9600);

 }

 if (enable_port_modsy == true) {

 String modsy_controller = Serial.list()[0]; //change the 0 to a 1 or 2 etc. to match your port

 modsyPort = new Serial(this, modsy_controller, 9600);

 }

 //To set the arduino leds

 health_bar = new HealthBar(width-180, color(154, 205, 50));

 power_bar = new HealthBar(width-100, color(255, 255, 51));

 health = 100;

 power = 80;

 if (enable_port_extention == true) {

 set_game_bars();

 }

 assignSpaceShipFunctions();

148

 enemyship_images = new PImage[4];

 astroid_images = new PImage[4];

 bullet_images = new PImage[10];

 friendly_bullets_img = new PImage[10];

 spaceship = loadImage("spaceship.png");

 endearth = loadImage("earth.png");

 for (int i = 0; i < spawned.length; i++) {

 enemyship_images[i] = loadImage("enemyship.png");

 astroid_images[i] = loadImage("asteroid.png");

 }

 for (int j = 0; j < present_bullets.length; j++) {

 bullet_images[j] = loadImage("Bullet-07.png");

 }

 for (int s = 0; s < friendly_bullets.length; s++) {

 friendly_bullets_img[s] = loadImage("bullet_friendly.png");

 }

 //Set the values of the spaceship

 spaceship_x = 50; //Approximatly half of the x of the first display (128)

 spaceship_y = 70; //Approximalty half of the y of the first display (32)

 //Set the supposed spawned elements initially

 time_now_enemyship = millis();

 time_now_astroid = millis();

 time_now_refresh = millis();

 //Total time of the game

 start_time = millis();

149

}

void draw() {

 //spawn_astroid_ship_timer(); //This method spawns the ships and astroids when time is due

 background(255);

 if (run_game == true) {

 read_serial();

 draw_elements();

 if (millis() >= time_now_refresh + timing_refresh) {

 time_now_refresh = millis();

 spawn_astroid_ship_timer(); //This method spawns the ships and astroids when time is due

 move_spawned(); //This method moves all the spawned elements along the Modsy

 timedShipInteraction(); //This method is used for the reload and fix triggers.

 }

 } else {

 //Give start screen

 fill(220, 220, 220);

 noStroke();

 rect(0, 0, width, height);

 fill(0);

 textSize(24);

 textAlign(CENTER);

 text("Press s to start the game", width/2, height/2);

 time_now_enemyship = millis();

150

 time_now_astroid = millis();

 time_now_refresh = millis();

 //Total time of the game

 start_time = millis();

 }

}

void read_serial() {

 //For serial port

 String incoming_msg_p1 = "";

 String incoming_msg_p2 = "";

 if (enable_port_extention == true) {

 if (playful_extention_Port.available() > 0) { // If data is available,

 incoming_msg_p1 = playful_extention_Port.readStringUntil('\n'); // read it and store it in val

 println(incoming_msg_p1); //print it out in the console

 if (incoming_msg_p1 != null) {

 if (incoming_msg_p1.charAt(0) == 'j') {

 switch (incoming_msg_p1.charAt(1)) {

 case 'u':

 if (spaceship_y > 0) {

 spaceship_y -= 8;

 }

 break;

 case 'd':

 if (spaceship_y < 300) {

 spaceship_y += 8;

 }

 break;

 case 'l':

151

 if (spaceship_x > 0) {

 spaceship_x -= 8;

 }

 break;

 case 'r':

 if (spaceship_x < 500) {

 spaceship_x += 8;

 }

 break;

 default:

 print("Default case");

 break;

 }

 }

 }

 }

 }

 if (enable_port_modsy == true) {

 if (modsyPort.available() > 0) { // If data is available

 incoming_msg_p2 = modsyPort.readStringUntil('\n'); // read it and store it in val

 println(incoming_msg_p2); //print it out in the console

 if (incoming_msg_p2 != null) {

 if (incoming_msg_p2.charAt(0) == 'p') {

 switch (incoming_msg_p2.charAt(1)) {

 case 'r':

 reload_intime = true;

 visualize_parameter("Fueled in time!", 't'); //Does not work right now, the other element
draws over this.

 power += int(random(2, 5));

 if (power >= 100) {

152

 power = 100;

 }

 power_bar.update_bar(power);

 break;

 case 'f':

 fix_intime = true;

 visualize_parameter("Fixed in time!", 't'); //Does not work right now, the other element
draws over this.

 health += int(random(2, 5));

 if (health >= 100) {

 health = 100;

 }

 health_bar.update_bar(health);

 break;

 }

 } else if (incoming_msg_p2.charAt(0) == 'g') {

 //g for gun

 spaceship_shoots();

 } else if (incoming_msg_p2.charAt(0) == 's') {

 //s for shield

 spaceship_shield();

 }

 }

 }

 }

}

void set_game_bars() {

 println("Set game Bars");

 char health_level = '0';

 char power_level = '0';

153

 if (health >= 0 && health <= 13) {

 health_level = '1';

 } else if (health > 13 && health <= 25) {

 health_level = '2';

 } else if (health > 25 && health <= 38) {

 health_level = '3';

 } else if (health > 38 && health <= 50) {

 health_level = '4';

 } else if (health > 50 && health <= 63) {

 health_level = '5';

 } else if (health > 63 && health <= 75) {

 health_level = '6';

 } else if (health > 75 && health <= 88) {

 health_level = '7';

 } else if (health > 88 && health <= 100) {

 health_level = '8';

 }

 if (power >= 0 && power <= 13) {

 power_level = '1';

 } else if (power > 13 && power <= 25) {

 power_level = '2';

 } else if (power > 25 && power <= 38) {

 power_level = '3';

 } else if (power > 38 && power <= 50) {

 power_level = '4';

 } else if (power > 50 && power <= 63) {

 power_level = '5';

 } else if (power > 63 && power <= 75) {

 power_level = '6';

 } else if (power > 75 && power <= 88) {

154

 power_level = '7';

 } else if (power > 88 && power <= 100) {

 power_level = '8';

 }

 //For the health message

 playful_extention_Port.write('<'); //to start the message

 playful_extention_Port.write('h'); //to start the message

 playful_extention_Port.write(health_level);

 playful_extention_Port.write('>'); //close the message

 playful_extention_Port.write('<'); //to start the message

 playful_extention_Port.write('p'); //to start the message

 playful_extention_Port.write(power_level);

 playful_extention_Port.write('>'); //close the message

}

void draw_elements() {

 if (millis() >= start_time + total_game_duration) {

 end_animation = true;

 }

 spaceship.resize(128, 32);

 image(spaceship, spaceship_x, spaceship_y);

 if (set_shield == true && millis() < timing_now_shield + timing_shield) {

 //For the shield

 if (shield_diameter > 100) {

 shield_expand = false;

 } else if (shield_diameter < 80) {

 shield_expand = true;

155

 }

 if (shield_expand == true) {

 shield_diameter += 1;

 }

 if (shield_expand == false) {

 shield_diameter -= 1;

 }

 fill(2, 2, 200, 90);

 circle(spaceship_x + 90, spaceship_y + 16, shield_diameter);

 }

 //Debuging hitboxes

 //rect(hitbox_spaceship[0], hitbox_spaceship[2], spaceship_hitbox_size[0],
spaceship_hitbox_size[1]);

 //Spawn ships and stuff

 for (int i = 0; i < spawned.length; i++) {

 if (spawned[i] == 'e') {

 //enemyship movement

 //Debuging hitboxes

 enemyship_images[i].resize(128, 32);

 image(enemyship_images[i], spawned_xpos[i], spawned_ypos[i]);

 } else if (spawned[i] == 'a') {

 //Debuging hitboxes

 //rect(hitbox_spawned[0], hitbox_spawned[2], astroid_hitbox_size[0], astroid_hitbox_size[1]);

 astroid_images[i].resize(100, 50);

 image(astroid_images[i], spawned_xpos[i], spawned_ypos[i]);

 }

156

 //Draw timely stuff

 if (millis() <= timing_now_popup + timing_popup) {

 fill(154, 205, 50);

 noStroke();

 rect(width/3, height-80, width/3, 60, 15);

 fill(255);

 textSize(24);

 textAlign(CENTER);

 text(popup_message, width/2, height-40);

 }

 if (millis() <= timing_now_popup_above + timing_popup_above) {

 fill(220, 20, 60);

 popup_message_2 = "Fueled in time!";

 fill(154, 205, 50);

 noStroke();

 rect(width/3, 10, width/3, 60, 30);

 fill(0);

 textSize(24);

 textAlign(CENTER);

 text(popup_message_2, width/2, 45);

 }

 //Draw bars

 fill(0);

 textSize(20);

 textAlign(CENTER);

 text("Health", width-155, 40);

 health_bar.draw();

157

 fill(0);

 textSize(20);

 text("Fuel", width-75, 40);

 power_bar.draw();

 }

 //Spawn bullets

 for (int j = 0; j < present_bullets.length; j++) {

 if (present_bullets[j] == 'b') {

 bullet_images[j].resize(4, 2);

 image(bullet_images[j], xpos_enemybullets[j], ypos_enemybullets[j]);

 }

 }

 //For friendly bullets

 for (int j = 0; j < friendly_bullets.length; j++) {

 if (friendly_bullets[j] == 'b') {

 friendly_bullets_img[j].resize(4, 2);

 image(friendly_bullets_img[j], xpos_friendlybullets[j], ypos_friendlybullets[j]);

 }

 }

 if (end_animation == true) {

 end_earth_x -= 4;

 endearth.resize(600, 600);

 image(endearth, end_earth_x, end_earth_y);

 if (end_earth_x < 0) {

 stopgame();

 }

 }

}

158

void spawn_astroid_ship_timer() {

 if (millis() >= time_now_enemyship + timing_enemyship) {

 time_now_enemyship = millis();

 // Spawn a enemy ship

 spawnElement(0);

 println("Enemy ship spawned");

 }

 if (millis() >= time_now_astroid + timing_astroid) {

 time_now_astroid = millis();

 // Spawn an astroid

 spawnElement(1);

 println("Astroid spawned");

 }

}

void spawnElement(int type) {

 //Type 0 for enemyship, 1 for astroid

 boolean spawned_element = false;

 for (int i = 0; i <spawned.length; i++) {

 if (spawned[i] == 'n' && spawned_element == false) {

 if (type == 0) {

 //Serial.println("Spawn enemy");

 //Spawn enemyship at location i in array

 spawned[i] = 'e';

 spawned_speed[i] = int(random(speed_ranges[0], speed_ranges[1]));

 spawned_xpos[i] = 1024; //All the way to the right of the displays

 spawned_ypos[i] = int(random(spawned_y_ranges[0], spawned_y_ranges[1]));

 spawned_element = true;

 } else if (type == 1) {

159

 //Serial.println("Spawn astroid");

 //Spawn astroid at location i in array

 spawned[i] = 'a';

 spawned_speed[i] = int(random(speed_ranges[0], speed_ranges[1]));

 spawned_xpos[i] = 1024; //All the way to the right of the displays

 spawned_ypos[i] = int(random(spawned_y_ranges[0], spawned_y_ranges[1]));

 spawned_element = true;

 }

 }

 }

}

void timedShipInteraction() {

 if (millis() >= time_now_reload + reload_timing) {

 time_now_reload = millis();

 if (first_reload) {

 reload_intime = true;

 first_reload = false;

 }

 if (reload_intime == false) {

 //Not reloaded in time

 visualize_parameter("Oof, no fuel was provided", 't'); //Does not work right now, the other
element draws over this.

 power -= int(random(6, 20));

 power_bar.update_bar(power);

 if (enable_port_extention) {

 set_game_bars();

 }

160

 if (power <= 0) {

 stopgame();

 }

 }

 reload_timing = int(random(reload_timing_boundries[0], reload_timing_boundries[1]));

 reload_parameter = pick_parameter(2); // 0 to indicate that this is a reload request.

 //Perform the reload visualization > Pick a random parameter from the ones that are availible and
then go wild

 send_Serial(reload_parameter, 'r');

 visualize_parameter("Fuel the ship", 'b');

 //print("Fuel parameter: ");

 //println(reload_parameter);

 reload_intime = false;

 }

 if (millis() >= time_now_fix + fix_timing) {

 time_now_fix = millis();

 if (first_fix) {

 fix_intime = true;

 first_fix = false;

 }

 if (fix_intime == false) {

 //Not fixed in time

 visualize_parameter("Ai, ship not fixed in time", 't'); //Does not work right now, the other
element draws over this.

 health -= int(random(6, 20));

161

 health_bar.update_bar(health);

 if (enable_port_extention) {

 set_game_bars();

 }

 if (health <= 0) {

 stopgame();

 }

 }

 fix_timing = int(random(fix_timing_boundries[0], fix_timing_boundries[1]));

 fix_parameter = pick_parameter(1);

 //Perform the fix visualization > Pick a random parameter from the ones that are availible and
then go wild

 send_Serial(fix_parameter, 'f');

 visualize_parameter("Fix the ship", 'b');

 //print("Fix parameter: ");

 //println(fix_parameter);

 fix_intime = false;

 }

}

void send_Serial(int number, char type) {

 if (enable_port_modsy == true) {

 modsyPort.write('<');

162

 if (type == 'f') {

 modsyPort.write('f'); //Sending fix par

 } else if (type == 'r') {

 modsyPort.write('r'); //Sending reload par

 }

 if (0 < number && number < 9) {

 modsyPort.write('1');

 modsyPort.write(str(number));

 } else if (8 < number && number < 17) {

 modsyPort.write('2');

 number -= 8;

 modsyPort.write(str(number));

 } else if (16 < number && number < 25) {

 modsyPort.write('3');

 number -= 16;

 modsyPort.write(str(number));

 } else if (24 < number && number < 33) {

 modsyPort.write('1');

 number -= 24;

 modsyPort.write(str(number));

 }

 modsyPort.write('>');

 }

}

void visualize_parameter(String message, char type) {

 if (type == 'b') {

 //b for bottom

 timing_now_popup = millis();

163

 popup_message = message;

 } else if (type == 't') {

 //t for top

 timing_now_popup_above = millis();

 popup_message_2 = message;

 }

}

int pick_parameter(int type) {

 int random_num;

 int parameter = 0;

 if (type == 1) {

 //This is the reload parameter case

 if (echoctrl) {

 random_num = int(random(0, echo_non_excluded.length));

 parameter = echo_non_excluded[random_num];

 } else {

 random_num = int(random(0, juno_non_excluded.length));

 parameter = juno_non_excluded[random_num];

 }

 if (parameter == fix_parameter) { //Or equal to one of the problematic parameters

 pick_parameter(type); //If its the same fun the function again.

 }

 } else if (type == 2) {

 //This is the fix parameter case

 if (echoctrl) {

 random_num = int(random(0, echo_non_excluded.length));

 parameter = echo_non_excluded[random_num];

164

 } else {

 random_num = int(random(0, juno_non_excluded.length));

 parameter = juno_non_excluded[random_num];

 }

 if (parameter == reload_parameter) { //Or equal to one of the problematic parameters

 pick_parameter(type); //If its the same fun the function again.

 }

 }

 return parameter;

}

void move_spawned() {

 calcHitbox('s', spaceship_x, spaceship_y); //Calc hitbox of friendly spaceship

 //Loop through all bullets and move them, also check the collision with the main device

 for (int j = 0; j < present_bullets.length; j++) {

 if (present_bullets[j] == 'b') {

 xpos_enemybullets[j] -= bullet_speed[j];

 calcHitbox('b', xpos_enemybullets[j], ypos_enemybullets[j]); //Calc hitbox of spawned element

 //Hit calculation

 if (hitbox_bullet[0] < hitbox_spaceship[1] && hitbox_bullet[1] > hitbox_spaceship[0] &&
hitbox_spaceship[2] < hitbox_bullet[3] && hitbox_spaceship[3] > hitbox_bullet[3]) {

 //We have a hit, box calculation

 println("Bullet Hit");

 present_bullets[j] = 'n'; //Reset position to nothing

 xpos_enemybullets[j] = 0;

165

 if (set_shield == false) {

 health -= int(random(10, 30));

 health_bar.update_bar(health);

 }

 }

 if (hitbox_bullet[1] < 0) {

 println("Spawned element of map");

 present_bullets[j] = 'n'; //Reset position to nothing

 xpos_enemybullets[j] = 1023;

 }

 }

 }

 //Friendly bullets

 for (int a = 0; a < friendly_bullets.length; a++) {

 if (friendly_bullets[a] == 'b') {

 println("Move friendly bullet");

 xpos_friendlybullets[a] += friendly_bullet_speed;

 calcHitbox('b', xpos_friendlybullets[a], ypos_friendlybullets[a]); //Calc hitbox of spawned
element

 for (int i = 0; i < spawned.length; i++) {

 //Check if a friendly bullet has hit one of the spawned elements

 if (spawned[i] != 'n') {

 calcHitbox(spawned[i], spawned_xpos[i], spawned_ypos[i]); //Calc hitbox of spawned element

 if (hitbox_bullet[0] < hitbox_spawned[1] && hitbox_bullet[1] > hitbox_spawned[0] &&
hitbox_spawned[2] < hitbox_bullet[3] && hitbox_spawned[3] > hitbox_bullet[3]) {

 println("Bullet hit");

 spawned[i] = 'n'; //Reset position to nothing

 spawned_xpos[i] = 1023;

166

 }

 }

 }

 if (hitbox_bullet[1] > 1023) {

 println("Own bullet of map");

 friendly_bullets[a] = 'n'; //Reset position to nothing

 xpos_friendlybullets[a] = 0;

 }

 }

 }

 //Loop through all spawned items and move them

 for (int i = 0; i < spawned.length; i++) {

 if (spawned[i] == 'e') {

 //enemyship movement

 spawned_xpos[i] -= spawned_speed[i];

 if (int(random(0, 5)) == 1) { //Change of 1 to 5

 // println("Shot called");

 possible_enemy_shot(spawned_xpos[i], spawned_ypos[i], spawned_speed[i]);

 }

 } else if (spawned[i] == 'a') {

 //Asteroid movement

 spawned_xpos[i] -= spawned_speed[i];

 }

 if (spawned[i] != 'n') {

 //Calculate hitbox

 calcHitbox(spawned[i], spawned_xpos[i], spawned_ypos[i]); //Calc hitbox of spawned element

167

 //rect(hitbox_spawned[0], hitbox_spawned[2], enemyship_hitbox_size[0],
enemyship_hitbox_size[1]);

 if (hitbox_spawned[0] < hitbox_spaceship[1] && hitbox_spawned[1] > hitbox_spaceship[0] &&
hitbox_spaceship[2] < hitbox_spawned[3] && hitbox_spaceship[3] > hitbox_spawned[3]) {

 //We have a hit, box calculation

 println("There is a hit");

 spawned[i] = 'n'; //Reset position to nothing

 spawned_xpos[i] = 1023;

 if (set_shield == false) {

 health -= int(random(10, 30));

 health_bar.update_bar(health);

 }

 }

 if (hitbox_spawned[1] < 0) {

 println("Spawned element of map");

 spawned[i] = 'n'; //Reset position to nothing

 spawned_xpos[i] = 1023;

 }

 }

 }

}

void stopgame() {

 print("Stop the game");

 fill(100);

 noStroke();

 rect(width/3, height/4, width/3, height/2, 30);

 fill(255);

168

 textSize(28);

 textAlign(CENTER);

 text("Endgame", width/2, height/2);

 noLoop();

}

void calcHitbox(char type, int x_axis, int y_axis) {

 //This method is equiped to calculate the hitboxes of friendly ship 's', enemy ship 'e',..

 //, the astroid 'a'

 int left_boundry;

 int right_boundry;

 int top_boundry;

 int bottom_boundry;

 if (type == 's') {

 //Calc hitbox for own spaceship

 left_boundry = x_axis;

 right_boundry = x_axis + spaceship_hitbox_size[0];

 top_boundry = y_axis; //This might have to be flipped with the one bellow

 bottom_boundry = y_axis + spaceship_hitbox_size[1]; //This might have to be flipped with the one
above

 for (int i = 0; i < hitbox_spaceship.length; i++) {

 switch (i) {

 case 0:

 hitbox_spaceship[i] = left_boundry;

 break;

 case 1:

 hitbox_spaceship[i] = right_boundry;

 break;

 case 2:

169

 hitbox_spaceship[i] = top_boundry;

 break;

 case 3:

 hitbox_spaceship[i] = bottom_boundry;

 break;

 }

 }

 }

 if (type == 'e') {

 //Calc hitbox for enemy spaceship

 left_boundry = x_axis;

 right_boundry = x_axis + enemyship_hitbox_size[0];

 top_boundry = y_axis; //This might have to be flipped with the one bellow

 bottom_boundry = y_axis + enemyship_hitbox_size[1]; //This might have to be flipped with the
one above

 for (int i = 0; i < hitbox_spawned.length; i++) {

 switch (i) {

 case 0:

 hitbox_spawned[i] = left_boundry;

 break;

 case 1:

 hitbox_spawned[i] = right_boundry;

 break;

 case 2:

 hitbox_spawned[i] = top_boundry;

 break;

 case 3:

 hitbox_spawned[i] = bottom_boundry;

 break;

 }

 }

170

 }

 if (type == 'a') {

 //Calc hitbox for astroid

 left_boundry = x_axis;

 right_boundry = x_axis + astroid_hitbox_size[0];

 top_boundry = y_axis; //This might have to be flipped with the one bellow

 bottom_boundry = y_axis + astroid_hitbox_size[1]; //This might have to be flipped with the one
above

 for (int i = 0; i < hitbox_spawned.length; i++) {

 switch (i) {

 case 0:

 hitbox_spawned[i] = left_boundry;

 break;

 case 1:

 hitbox_spawned[i] = right_boundry;

 break;

 case 2:

 hitbox_spawned[i] = top_boundry;

 break;

 case 3:

 hitbox_spawned[i] = bottom_boundry;

 break;

 }

 }

 }

 if (type == 'b') {

 //Calc hitbox for bullet

 left_boundry = x_axis;

 right_boundry = x_axis + bullet_hitbox_size[0];

 top_boundry = y_axis; //This might have to be flipped with the one bellow

171

 bottom_boundry = y_axis + bullet_hitbox_size[1]; //This might have to be flipped with the one
above

 for (int i = 0; i < hitbox_bullet.length; i++) {

 switch (i) {

 case 0:

 hitbox_bullet[i] = left_boundry;

 break;

 case 1:

 hitbox_bullet[i] = right_boundry;

 break;

 case 2:

 hitbox_bullet[i] = top_boundry;

 break;

 case 3:

 hitbox_bullet[i] = bottom_boundry;

 break;

 }

 }

 }

}

void possible_enemy_shot(int x_pos, int y_pos, int current_speed) {

 //Change that there will be a shot is normally 1 to 5, this can be seen in the move section

 boolean bullet_spawned = false;

 for (int i = 0; i < present_bullets.length; i++) {

 if (present_bullets[i] == 'n' && bullet_spawned == false) {

 bullet_spawned = true;

 present_bullets[i] = 'b';

 xpos_enemybullets[i] = x_pos + 40;

 ypos_enemybullets[i] = y_pos + 20;

172

 bullet_speed[i] = current_speed + 50; //Bullet should go faster then enemy ship

 }

 }

}

void spaceship_shoots() {

 boolean bullet_spawned = false;

 for (int i = 0; i < friendly_bullets.length; i++) {

 if (friendly_bullets[i] == 'n' && bullet_spawned == false) {

 bullet_spawned = true;

 friendly_bullets[i] = 'b';

 xpos_friendlybullets[i] = spaceship_x + 128;

 ypos_friendlybullets[i] = spaceship_y + 20;

 //Speed is already determined

 }

 }

}

void spaceship_shield() {

 set_shield = true;

 timing_now_shield = millis();

 power -= 10;

 power_bar.update_bar(power);

}

void assignSpaceShipFunctions() {

 //This function can be used to randomly assign the fire and shield buttons to a button on the
Modsy controller.

 fireButton = int(random(1, 5));

 shieldButton = int(random(1, 5));

173

 if (fireButton == shieldButton) { //Recall the funciton if the parameters are the same.

 assignSpaceShipFunctions();

 }

 //print("Fire : ");

 //println(fireButton);

 //print("Shield : ");

 //println(shieldButton);

 if (enable_port_modsy) {

 modsyPort.write('<'); //to start the message

 modsyPort.write('o'); //random letter chosen for firebutton > o

 switch(fireButton) {

 case 1:

 modsyPort.write('1');

 break;

 case 2:

 modsyPort.write('2');

 break;

 case 3:

 modsyPort.write('3');

 break;

 case 4:

 modsyPort.write('4');

 break;

 }

 modsyPort.write('>'); //close the message

 modsyPort.write('<'); //to start the message

174

 modsyPort.write('d'); //random letter chosen for firebutton > d

 switch(shieldButton) {

 case 1:

 modsyPort.write('1');

 break;

 case 2:

 modsyPort.write('2');

 break;

 case 3:

 modsyPort.write('3');

 break;

 case 4:

 modsyPort.write('4');

 break;

 }

 modsyPort.write('>'); //close the message

 }

 //Here the first timing of the spaceship functions is also set

 reload_timing = int(random(reload_timing_boundries[0], reload_timing_boundries[1]));

 fix_timing = int(random(fix_timing_boundries[0], fix_timing_boundries[1]));

}

void keyPressed() {

 if (key == 's' || key == 'S') {

 run_game = true;

 }

}

//Healthbar class - Playful game interaction for the Modsy controller

//

//By Olivier Mathijssen

//05-07-2021

175

//

//Developed as part of the Bachelor Thesis the Playfulness of Modsy

class HealthBar {

 int value, max, x, y, w, h;

 color backing, bar;

 HealthBar(int xpos, color colour) {

 value = 2;

 max = 100;

 w = 50;

 h = 200;

 x = xpos;

 y = height/2-h/2;

 bar = color(220, 220, 220);

 backing = colour;

 }

 void draw() {

 fill(backing);

 noStroke();

 rect(x, y, w, h);

 fill(bar);

 rect(x, y, w, map(value, 0, max, 0, h));

 }

 void update_bar(int val) {

 value = 100 - val;

 }

176

}

J – Arduino program

J1 – Normal Modsy controller

//Demux adresses

//Multiplexer 1, selector for multiplexers

#include <Adafruit_NeoPixel.h>

#ifdef __AVR__

#include <avr/power.h> // Required for 16 MHz Adafruit Trinket

#endif

#include <USB-MIDI.h>

#include <Wire.h>

#include <er_oled.h>

#define LED_PIN 7

#define LED_COUNT 41

#define BUTTON_SENSE 5

Adafruit_NeoPixel strip(LED_COUNT, LED_PIN, NEO_GRB + NEO_KHZ800);

USBMIDI_CREATE_DEFAULT_INSTANCE();

uint8_t oled_buf[WIDTH * HEIGHT / 8];

#define mux1_pinA 6

#define mux1_pinB 12

#define mux1_pinC 4

#define mux2_pinA A0

177

#define mux2_pinB A1

#define mux2_pinC A2

#define pot_sense_pin = A5;

String mapped_device = "Modsy";

String selected_device = " ";

boolean selected_mapped_change[2] = {false, false}; //0 Pos is mapped, 1 is for selected

//Of JUNO-106

const char string_1[] PROGMEM = "DCO RANGE";

const char string_2[] PROGMEM = "DCO LFO MOD";

const char string_3[] PROGMEM = "DCO PWM DEPTH";

const char string_4[] PROGMEM = "VCF CUTOFF FREQ";

const char string_5[] PROGMEM = "VCF RESONANCE";

const char string_6[] PROGMEM = "VCF KEY FOLLOW";

const char string_7[] PROGMEM = "EFFECT DEPTH";

const char string_8[] PROGMEM = " ";

const char string_9[] PROGMEM = "DCO PWM SOURCE";

const char string_10[] PROGMEM = "DCO PWM LEVEL";

const char string_11[] PROGMEM = "DCO SAW LEVEL";

const char string_12[] PROGMEM = "HPF CUTOFF FREQ";

const char string_13[] PROGMEM = "VCF ENV MOD";

const char string_14[] PROGMEM = "VCF LFO MOD";

const char string_15[] PROGMEM = " ";

const char string_16[] PROGMEM = " ";

const char string_17[] PROGMEM = "DCO SUB LEVEL";

const char string_18[] PROGMEM = "ARPEGGIO TYPE";

const char string_19[] PROGMEM = "ARPEGGIO STEP";

const char string_20[] PROGMEM = "LFO RATE";

const char string_21[] PROGMEM = "ENV1 ATTACK";

178

const char string_22[] PROGMEM = "ENV1 DECAY";

const char string_23[] PROGMEM = "ENV1 SUSTAIN";

const char string_24[] PROGMEM = "ENV1 RELEASE";

const char string_25[] PROGMEM = "ARPEGGIO SW";

const char string_26[] PROGMEM = " ";

const char string_27[] PROGMEM = " ";

const char string_28[] PROGMEM = " ";

const char string_29[] PROGMEM = "ENV2 ATTACK";

const char string_30[] PROGMEM = "ENV2 DECAY";

const char string_31[] PROGMEM = "ENV2 SUSTAIN";

const char string_32[] PROGMEM = "ENV2 RELEASE";

//Of JUNO-106 - Bram

//const char string_1[] PROGMEM = "DCO RANGE";

//const char string_2[] PROGMEM = "DELAY TYPE";

//const char string_3[] PROGMEM = "DCO PWM DEPTH";

//const char string_4[] PROGMEM = "VCF CUTOFF FREQ";

//const char string_5[] PROGMEM = "VCF RESONANCE";

//const char string_6[] PROGMEM = "VCF KEY FOLLOW";

//const char string_7[] PROGMEM = "EFFECT DEPTH";

//const char string_8[] PROGMEM = " ";

//const char string_9[] PROGMEM = "DCO PWM SOURCE";

//const char string_10[] PROGMEM = "DCO PWM LEVEL";

//const char string_11[] PROGMEM = "DCO SAW LEVEL";

//const char string_12[] PROGMEM = "HPF CUTOFF FREQ";

//const char string_13[] PROGMEM = "VCF ENV MOD";

//const char string_14[] PROGMEM = "VCF LFO MOD";

//const char string_15[] PROGMEM = " ";

//const char string_16[] PROGMEM = " ";

//const char string_17[] PROGMEM = "DCO SUB LEVEL";

//const char string_18[] PROGMEM = "ARPEGGIO TYPE";

//const char string_19[] PROGMEM = "ARPEGGIO STEP";

179

//const char string_20[] PROGMEM = "LFO RATE";

//const char string_21[] PROGMEM = "REVERB TYPE";

//const char string_22[] PROGMEM = "DCO NOISE LEVEL";

//const char string_23[] PROGMEM = "DELAY LEVEL";

//const char string_24[] PROGMEM = "REVERB LEVEL";

//const char string_25[] PROGMEM = "ARPEGGIO SW";

//const char string_26[] PROGMEM = " ";

//const char string_27[] PROGMEM = " ";

//const char string_28[] PROGMEM = " ";

//const char string_29[] PROGMEM = "ENV2 ATTACK";

//const char string_30[] PROGMEM = "ENV2 DECAY";

//const char string_31[] PROGMEM = "ENV2 SUSTAIN";

//const char string_32[] PROGMEM = "ENV2 RELEASE";

//Of ECHO

const char estring_1[] PROGMEM = "L Division";

const char estring_2[] PROGMEM = "R Division";

const char estring_3[] PROGMEM = " ";

const char estring_4[] PROGMEM = "Input Gain";

const char estring_5[] PROGMEM = "Feedback";

const char estring_6[] PROGMEM = " ";

const char estring_7[] PROGMEM = " ";

const char estring_8[] PROGMEM = " ";

const char estring_9[] PROGMEM = "Input Gain";

const char estring_10[] PROGMEM = "Feedback";

const char estring_11[] PROGMEM = " ";

const char estring_12[] PROGMEM = "Stereo Width";

const char estring_13[] PROGMEM = " ";

const char estring_14[] PROGMEM = " ";

const char estring_15[] PROGMEM = " ";

const char estring_16[] PROGMEM = " ";

const char estring_17[] PROGMEM = " ";

180

const char estring_18[] PROGMEM = " ";

const char estring_19[] PROGMEM = " ";

const char estring_20[] PROGMEM = "Output Gain";

const char estring_21[] PROGMEM = " ";

const char estring_22[] PROGMEM = " ";

const char estring_23[] PROGMEM = " ";

const char estring_24[] PROGMEM = " ";

const char estring_25[] PROGMEM = " ";

const char estring_26[] PROGMEM = " ";

const char estring_27[] PROGMEM = " ";

const char estring_28[] PROGMEM = "Channel Mode";

const char estring_29[] PROGMEM = " ";

const char estring_30[] PROGMEM = " ";

const char estring_31[] PROGMEM = " ";

const char estring_32[] PROGMEM = " ";

const char *const string_table[] PROGMEM = {string_1, string_2, string_3, string_4, string_5,
string_6, string_7, string_8, string_9, string_10,

 string_11, string_12, string_13, string_14, string_15, string_16, string_17,
string_18, string_19, string_20,

 string_21, string_22, string_23, string_24, string_25, string_26, string_27,
string_28, string_29, string_30,

 string_31, string_32

 };

const char *const estring_table[] PROGMEM = {estring_1, estring_2, estring_3, estring_4, estring_5,
estring_6, estring_7, estring_8, estring_9, estring_10,

 estring_11, estring_12, estring_13, estring_14, estring_15, estring_16,
estring_17, estring_18, estring_19, estring_20,

 estring_21, estring_22, estring_23, estring_24, estring_25, estring_26,
estring_27, estring_28, estring_29, estring_30,

 estring_31, estring_32

 };

char buffer[30];

181

boolean string_change[33];

boolean juno_mapping = true;

int pot_values[32] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

 };//Holds all the values of the potentiometers

int button_values[6] = {0, 0, 0, 0, 0, 0};

//For playful interaction

long par_timer;

//boolean newData = false;

const byte numChars = 10;

char receivedChars[numChars];

String incoming_message;

int reload_parameter = 0;

int fix_parameter = 0;

int fix_led = 0;

int reload_led = 0;

int fire_button = 0;

int shield_button = 0;

//For on/off

boolean low = true;

void OnMidiSysEx(byte* data, unsigned length) {

 char incoming_chardata[length];

 String total_message;

182

 boolean display_message = true;

 boolean intro_message = false;

 char char_par_num[2] = {'0', '0'};

 String parameter_number_str;

 for (uint16_t i = 0; i < length; i++) {

 if (data[i] == 240) {

 //Start message

 incoming_chardata[i] = ' ';

 } else if (data[i] == 247) {

 incoming_chardata[i] = '\0';

 } else {

 incoming_chardata[i] = char(data[i]);

 }

 }

 //Check for the type of message

 if (incoming_chardata[1] == 'l') {

 display_message = false;

 } else if (incoming_chardata[1] == 'i') {

 intro_message = true;

 } else {

 display_message = true;

 } //Could add extra for value updating

 //For the display or LED number

 char_par_num[0] = char(incoming_chardata[2]);

 char_par_num[1] = char(incoming_chardata[3]);

 if (char_par_num[0] == '0') {

183

 parameter_number_str = String(char_par_num[1]);

 } else {

 parameter_number_str = String(char_par_num);

 }

 int parameter_number = parameter_number_str.toInt();

 total_message = String(incoming_chardata).substring(4);

 if (intro_message == true) {

 switch (parameter_number) {

 case 55:

 led_vis(1);

 break;

 case 56:

 led_vis(2);

 break;

 case 57:

 led_vis(3);

 break;

 case 58:

 led_vis(4);

 break;

 case 59:

 led_vis(5);

 break;

 default:

 break;

 }

 }

 if (parameter_number > 0) {

184

 if (parameter_number == 40) {

 //mapped data

 selected_mapped_change[0] = true;

 mapped_device = total_message;

 if (total_message == "JUNO-106(VST2 64bit)") {

 juno_mapping = true;

 for (int i = 0; i < 33; i++) {

 string_change[i] = true;

 }

 } else if (total_message == "Echo") {

 juno_mapping = false;

 for (int i = 0; i < 33; i++) {

 string_change[i] = true;

 }

 }

 } else if (parameter_number == 41) {

 //selected data

 selected_mapped_change[1] = true;

 selected_device = total_message;

 }

 }

}

void setup() {

 Serial.begin(9600);

 Wire.begin();

185

 //Lister to MIDI on channel 1

 MIDI.begin(1);

 MIDI.setHandleSystemExclusive(OnMidiSysEx);

 par_timer = millis();

 strip.begin(); // INITIALIZE NeoPixel strip object (REQUIRED)

 strip.show(); // Turn OFF all pixels ASAP

 strip.setBrightness(50); // Set BRIGHTNESS to about 1/5 (max = 255)

 //Mux 1

 pinMode(mux1_pinA, OUTPUT);

 pinMode(mux1_pinB, OUTPUT);

 pinMode(mux1_pinC, OUTPUT);

 //Mux 2

 pinMode(mux2_pinA, OUTPUT);

 pinMode(mux2_pinB, OUTPUT);

 pinMode(mux2_pinC, OUTPUT);

 //Buttonsense

 pinMode(BUTTON_SENSE, INPUT);

 initiate_displays();

 initiate_leds();

}

void initiate_displays() {

 for (int i = 0; i < 33; i++) {

186

 string_change[i] = true;

 }

 par_timer = millis();

 int mux = 0;

 int row_num = 0;

 int corrected_row_num = 0;

 for (byte byteCounter = 0; byteCounter < 5; byteCounter++) {

 mux++;

 row_num = 0;

 for (byte byteCounterTwo = 0; byteCounterTwo < 8; byteCounterTwo++) {

 row_num++;

 select_adress(byteCounter, byteCounterTwo);

 if (mux == 1) {

 if (row_num == 1 || row_num == 2) {

 er_oled_begin();

 er_oled_clear(oled_buf);

 command(0xa6);//--set normal display

 er_oled_string(10, 2, "--", 15, 1, oled_buf);

 er_oled_display(oled_buf);

 }

 }

 if (mux > 1 && mux < 6) {

 /* display an image of bitmap matrix */

187

 er_oled_begin();

 er_oled_clear(oled_buf);

 command(0xa6);//--set normal display

 er_oled_string(10, 2, "-", 15, 1, oled_buf);

 er_oled_display(oled_buf);

 }

 }

 }

 //Serial.println(F("Done with screen initialization"));

}

void initiate_leds() {

 uint32_t color = strip.Color(0, 127, 0);

 int wait = 100;

 for (int a = 0; a < 10; a++) { // Repeat 10 times...

 for (int b = 0; b < 3; b++) { // 'b' counts from 0 to 2...

 strip.clear(); // Set all pixels in RAM to 0 (off)

 // 'c' counts up from 'b' to end of strip in steps of 3...

 for (int c = b; c < strip.numPixels(); c += 3) {

 strip.setPixelColor(c, color); // Set pixel 'c' to value 'color'

 }

 strip.show(); // Update strip with new contents

 delay(wait); // Pause for a moment

 }

 }

188

 for (int i = 0; i < strip.numPixels(); i++) {

 strip.setPixelColor(i, strip.Color(0, 0, 0));

 strip.show();

 }

}

void led_vis(int type) {

 //Led visualisaties voor de Robster

 switch (type) {

 case 1:

 for (int i = 0; i < strip.numPixels(); i++) { // For each pixel in strip...

 strip.setPixelColor(i, strip.Color(61, 79, 161)); // Set pixel's color (in RAM)

 strip.show(); // Update strip to match

 delay(50); // Pause for a moment

 }

 for (int i = 0; i < strip.numPixels(); i++) { // For each pixel in strip...

 strip.setPixelColor(i, strip.Color(0, 0, 0)); // Set pixel's color (in RAM)

 strip.show(); // Update strip to match

 delay(50); // Pause for a moment

 }

 case 2:

 //Top right parameter ON

 strip.setPixelColor(1, strip.Color(61, 79, 161));

 strip.show();

 break;

 case 3:

189

 //Top right parameter OFF

 strip.setPixelColor(1, strip.Color(0, 0, 0));

 strip.show();

 break;

 case 4:

 //All parameters ON

 for (int i = 1; i < strip.numPixels(); i++) {

 strip.setPixelColor(i, strip.Color(61, 79, 161));

 strip.show();

 }

 break;

 case 5:

 //All parameters OFF

 for (int i = 1; i < strip.numPixels(); i++) {

 strip.setPixelColor(i, strip.Color(0, 0, 0));

 strip.show();

 }

 break;

 }

}

void loop() {

 // put your main code here, to run repeatedly:

 MIDI.read(); //MIDI read

 MidiUSB.flush();

 recvWithStartEndMarkers();

190

 loop_muxes();

}

void loop_muxes() {

 int mux = 0;

 int row_num = 0;

 int corrected_row_num = 0;

 for (byte byteCounter = 0; byteCounter < 5; byteCounter++) {

 mux++;

 row_num = 0;

 for (byte byteCounterTwo = 0; byteCounterTwo < 8; byteCounterTwo++) {

 row_num++;

 select_adress(byteCounter, byteCounterTwo);

 corrected_row_num = convert_element_num(mux, row_num);

 if (mux == 1) {

 switch (row_num) {

 case 1:

 //For the currently selected display

 if (selected_mapped_change[1] == true) {

 selected_mapped_change[1] = false;

 er_oled_clear(oled_buf);

 er_oled_string(10, 2, selected_device.c_str(), 15, 1, oled_buf);

 er_oled_display(oled_buf);

 }

 break;

 case 2:

 //For the mapped display, during bytecounting this results in the first element

191

 if (selected_mapped_change[0] == true) {

 selected_mapped_change[0] = false;

 er_oled_clear(oled_buf);

 er_oled_string(10, 2, mapped_device.c_str(), 15, 1, oled_buf);

 er_oled_display(oled_buf);

 }

 break;

 case 3:

 //Mapping button

 readout_button(1);

 break;

 case 4:

 //Page button

 readout_button(2);

 break;

 case 5:

 //FButton 1

 readout_button(3);

 break;

 case 6:

 //FButton 2

 readout_button(4);

 break;

 case 7:

 //FButton 3

 readout_button(5);

 break;

 case 8:

 //FButton 4

 readout_button(6);

 break;

 default:

192

 break;

 }

 }

 if (mux > 1 && mux < 6) {

 readPotVal(corrected_row_num);

 if (millis() > par_timer + 800) {

 if (string_change[corrected_row_num - 1]) {

 //If the display value has changed...

 string_change[corrected_row_num - 1] = false;

 //Serial.print("Update Display");

 er_oled_clear(oled_buf);

 if (juno_mapping == true) {

 strcpy_P(buffer, (char *)pgm_read_word(&(string_table[corrected_row_num - 1]))); //
Necessary casts and dereferencing, just copy.

 } else {

 strcpy_P(buffer, (char *)pgm_read_word(&(estring_table[corrected_row_num - 1]))); //
Necessary casts and dereferencing, just copy.

 }

 er_oled_string(10, 2, buffer, 15, 1, oled_buf);

 er_oled_display(oled_buf);

 }

 }

 }

 }

 }

}

193

void readout_button(int id) {

 int button_readout = digitalRead(BUTTON_SENSE);

 if (button_readout != button_values[id - 1]) {

 Serial.println("Buttonpressed");

 if (button_readout == HIGH) {

 if (id == 1) {

 //Mapping button

 MIDI.sendNoteOn(42, 127, 1);

 } else if (id == 2) {

 //Mapping page button

 MIDI.sendNoteOn(36, 127, 1);

 } else {

 //This will send note with velocity 64, 65, 66 and 67

 MIDI.sendNoteOn(id + 61, 127, 1);

 }

 }

 button_values[id - 1] = button_readout;

 }

}

void readPotVal(int select_num) {

 int pot_readout;

 int buffer_pot = 3;

 int samples = 7;

 pot_readout = 0;

 for (int i = 0; i < samples; i++) {

 pot_readout += analogRead(A5);

194

 }

 pot_readout = pot_readout / samples;

 if (select_num > 24 && select_num < 29) {

 if (pot_readout < 500) {

 pot_readout = 0;

 } else if (pot_readout >= 500) {

 pot_readout = 1023;

 }

 }

 if (pot_readout > pot_values[select_num - 1] + buffer_pot || pot_readout < pot_values[select_num
- 1] - buffer_pot) {

 int mapperoutput = map(pot_readout, 0, 1023, 0, 127);

 if (select_num == reload_parameter) {

 Serial.println("pr");

 strip.setPixelColor(reload_led, strip.Color(0, 0, 0));

 strip.show();

 } else if (select_num == fix_parameter) {

 Serial.println("pf");

 strip.setPixelColor(fix_led, strip.Color(0, 0, 0));

 strip.show();

 } else if (select_num == fire_button) {

 Serial.println("g"); //g for gun

 } else if (select_num == shield_button) {

 Serial.println("s"); //s for shield

 }

 if (select_num > 0 && select_num < 9) {

 MIDI.sendControlChange(select_num + 15, mapperoutput, 1);

 } else if (select_num > 8 && select_num < 17) {

195

 MIDI.sendControlChange(select_num + 15, mapperoutput, 1);

 } else if (select_num > 16 && select_num < 25) {

 MIDI.sendControlChange(select_num + 31, mapperoutput, 1);

 } else if (select_num > 24 && select_num < 33) {

 if (select_num > 24 && select_num < 29) {

 //Special algorithm for buttons, send high or low

 if (mapperoutput == 127) {

 if (low == true) {

 Serial.println("Send 127");

 MIDI.sendControlChange(select_num + 31, 127, 1);

 low = false;

 } else {

 Serial.println("Send 0");

 MIDI.sendControlChange(select_num + 31, 0, 1);

 low = true;

 }

 }

 } else {

 MIDI.sendControlChange(select_num + 31, mapperoutput, 1);

 }

 }

 pot_values[select_num - 1] = pot_readout;

 er_oled_clear(oled_buf);

 er_oled_string(10, 2, String(mapperoutput).c_str(), 15, 1, oled_buf);

 er_oled_display(oled_buf);

 par_timer = millis();

 string_change[select_num - 1] = true;

196

 }

}

int convert_element_num(int mux, int parameter_in_row) {

 //This whole method would not have been neccessary with good hardware design

 int display_num;

 if (parameter_in_row < 3) {

 display_num = 9 - parameter_in_row;

 } else {

 display_num = parameter_in_row - 2;

 }

 switch (mux) {

 case 1:

 display_num += 32;

 break;

 case 2:

 display_num += 24;

 break;

 case 3:

 display_num += 16;

 break;

 case 4:

 display_num += 8;

 break;

 case 5:

 //Nothing needs to happen

 break;

 }

197

 return display_num;

}

void select_adress(byte address_mux1, byte address_mux2) {

 int M1S0 = bitRead(address_mux1, 0);//Least significant bit

 int M1S1 = bitRead(address_mux1, 1);

 int M1S2 = bitRead(address_mux1, 2);//Most significant bit

 int M2S0 = bitRead(address_mux2, 0);

 int M2S1 = bitRead(address_mux2, 1);

 int M2S2 = bitRead(address_mux2, 2);

 digitalWrite(mux1_pinA, M1S0);

 digitalWrite(mux1_pinB, M1S1);

 digitalWrite(mux1_pinC, M1S2);

 digitalWrite(mux2_pinA, M2S0);

 digitalWrite(mux2_pinB, M2S1);

 digitalWrite(mux2_pinC, M2S2);

}

void recvWithStartEndMarkers() {

 static boolean recvInProgress = false;

 static byte ndx = 0;

 char startMarker = '<';

 char endMarker = '>';

 char rc;

 while (Serial.available() > 0) {

 rc = Serial.read();

198

 if (recvInProgress == true) {

 if (rc != endMarker) {

 receivedChars[ndx] = rc;

 ndx++;

 if (ndx >= numChars) {

 ndx = numChars - 1;

 }

 } else {

 receivedChars[ndx] = '\0'; // terminate the string

 recvInProgress = false;

 ndx = 0;

 incoming_message = String(receivedChars);

 check_message(receivedChars);

 }

 } else if (rc == startMarker) {

 recvInProgress = true;

 }

 }

}

void check_message(String incoming_message) {

 int par_number = 0;

 int led_num = 0;

 int button_num = 0;

 char row_char = incoming_message[1]; //For the row

199

 char element_char; //For the number in the row

 switch (row_char) {

 case '1':

 par_number = 0;

 led_num = 35;

 button_num = 25;

 break;

 case '2':

 par_number = 8;

 led_num = 33;

 button_num = 26;

 break;

 case '3':

 par_number = 16;

 led_num = 31;

 button_num = 27;

 break;

 case '4':

 par_number = 24;

 led_num = 29;

 button_num = 28;

 break;

 default:

 //Serial.println("No correct row");

 break;

 }

200

 if (incoming_message[0] == 'o') {

 //O is send first, remove all LEDS from the field

 for (int i = 0; i < strip.numPixels(); i++) {

 strip.setPixelColor(i, strip.Color(0, 0, 0));

 strip.show();

 }

 //For assignment of the firebutton

 fire_button = button_num;

 Serial.print("-Fire fire: ");

 Serial.println(String(fire_button));

 //Set the new led to a colour

 strip.setPixelColor(led_num, strip.Color(230, 3, 5)); //Red colour for firing

 strip.show();

 } else if (incoming_message[0] == 'd') {

 //For assignment of the shieldbutton

 shield_button = button_num;

 Serial.print("-Shield");

 Serial.println(String(shield_button));

 //Set the new led to a colour

 strip.setPixelColor(led_num, strip.Color(7, 6, 230)); //Blue colour for shield

 strip.show();

 } else {

 element_char = incoming_message[2];

201

 switch (element_char) {

 case '1':

 if (row_char == '2' || row_char == '4') {

 led_num = par_number + 8;

 par_number += 1;

 } else {

 par_number += 1;

 led_num = par_number;

 }

 break;

 case '2':

 if (row_char == '2' || row_char == '4') {

 led_num = par_number + 7;

 par_number += 2;

 } else {

 par_number += 2;

 led_num = par_number;

 }

 break;

 case '3':

 if (row_char == '2' || row_char == '4') {

 led_num = par_number + 6;

 par_number += 3;

 } else {

 par_number += 3;

 led_num = par_number;

202

 }

 break;

 case '4':

 if (row_char == '2' || row_char == '4') {

 led_num = par_number + 5;

 par_number += 4;

 } else {

 par_number += 4;

 led_num = par_number;

 }

 break;

 case '5':

 if (row_char == '2' || row_char == '4') {

 led_num = par_number + 4;

 par_number += 5;

 } else {

 par_number += 5;

 led_num = par_number;

 }

 break;

 case '6':

 if (row_char == '2' || row_char == '4') {

 led_num = par_number + 3;

 par_number += 6;

 } else {

203

 par_number += 6;

 led_num = par_number;

 }

 break;

 case '7':

 if (row_char == '2' || row_char == '4') {

 led_num = par_number + 2;

 par_number += 7;

 } else {

 par_number += 7;

 led_num = par_number;

 }

 break;

 case '8':

 if (row_char == '2' || row_char == '4') {

 led_num = par_number + 1;

 par_number += 8;

 } else {

 par_number += 8;

 led_num = par_number;

 }

 break;

 default:

 //Serial.println("No correct element");

 break;

 }

204

 if (incoming_message[0] == 'f') {

 //First set the past led to 0

 strip.setPixelColor(fix_led, strip.Color(0, 0, 0));

 //Then set the new led to a colour

 strip.setPixelColor(led_num, strip.Color(50, 205, 10));

 strip.show();

 //update the fix parameter

 fix_led = led_num;

 fix_parameter = par_number;

 } else if (incoming_message[0] == 'r') {

 //First set the past led to 0

 strip.setPixelColor(reload_led, strip.Color(0, 0, 0));

 //Then set the new led to a colour

 strip.setPixelColor(led_num, strip.Color(255, 255, 10));

 strip.show();

 reload_led = led_num;

 reload_parameter = par_number;

 }

 }

}

205

J2 – Playful extension Modsy controller

#include <Adafruit_NeoPixel.h>

#ifdef __AVR__

#include <avr/power.h> // Required for 16 MHz Adafruit Trinket

#endif

//Pin for LED data

#define LED_PIN 7

//Amount of LEDs

#define LED_COUNT 16

Adafruit_NeoPixel strip(LED_COUNT, LED_PIN, NEO_GRB + NEO_KHZ800);

//Control for Joystick

int VRx = A0; //Pin of the X-axis joystick

int VRy = A1; //Pin of the Y-axis joystick

int SW = 2; //Pin for switch of joystick?

int xPosition = 0;

int yPosition = 0;

int previous_xPosition = 0;

int previous_yPosition = 0;

int SW_state = 0;

int mapX = 0;

int mapY = 0;

int health_level;

int power_level;

const byte numChars = 20;

char receivedChars[numChars]; // an array to store the received data

char dataNumber = 0;

boolean newData = false;

206

char char_par_num[2];

String incoming_message;

unsigned long time_now_joystick;

int period = 100; //period of 0.1Hz

char lastmove = 'n';

void setup() {

 // put your setup code here, to run once:

 Serial.begin(9600);

 //Setting up joystick control

 pinMode(VRx, INPUT);

 pinMode(VRy, INPUT);

 pinMode(SW, INPUT_PULLUP);

 strip.begin(); // INITIALIZE NeoPixel strip object (REQUIRED)

 strip.show(); // Turn OFF all pixels ASAP

 strip.setBrightness(50); // Set BRIGHTNESS to about 1/5 (max = 255)

 set_leds();

}

void loop() {

 // put your main code here, to run repeatedly:

 readJoystick();

207

 recvWithStartEndMarkers();

}

void recvWithStartEndMarkers() {

 static boolean recvInProgress = false;

 static byte ndx = 0;

 char startMarker = '<';

 char endMarker = '>';

 char rc;

 while (Serial.available() > 0) {

 rc = Serial.read();

 //Serial.println("Ola");

 if (recvInProgress == true) {

 if (rc != endMarker) {

 receivedChars[ndx] = rc;

 ndx++;

 if (ndx >= numChars) {

 ndx = numChars - 1;

 }

 } else {

 receivedChars[ndx] = '\0'; // terminate the string

 recvInProgress = false;

 ndx = 0;

 incoming_message = String(receivedChars);

 check_message(incoming_message);

208

 //Serial.println(incoming_message);

 }

 } else if (rc == startMarker) {

 recvInProgress = true;

 }

 }

}

void set_leds() {

 for (int j = 8; j < strip.numPixels(); j++) {

 //For the health bar

 strip.setPixelColor(j, strip.Color(50, 205, 10)); // Set pixel's color (in RAM)

 strip.show();

 }

 for (int i = 0; i < 8; i++) {

 //For the power bar

 strip.setPixelColor(i, strip.Color(255, 255, 10)); // Set pixel's color (in RAM)

 strip.show(); // Update strip to match

 }

}

void check_message(String incoming_msg) {

 String parameter_number_str;

 char level = incoming_msg.charAt(1);

 Serial.println(level);

 if (incoming_msg.charAt(0) == 'h') {

 switch (level) {

209

 case '1':

 for (int i = 8; i < 9; i++) { // For each pixel in strip...

 strip.setPixelColor(i, strip.Color(50, 205, 10)); // Set pixel's color (in RAM)

 strip.show(); // Update strip to match

 }

 for (int i = 9; i < 16; i++) { // For each pixel in strip...

 strip.setPixelColor(i, strip.Color(0, 0, 0)); // Set pixel's color (in RAM)

 strip.show(); // Update strip to match

 }

 break;

 case '2':

 for (int i = 8; i < 10; i++) { // For each pixel in strip...

 strip.setPixelColor(i, strip.Color(50, 205, 10)); // Set pixel's color (in RAM)

 strip.show(); // Update strip to match

 }

 for (int i = 10; i < 16; i++) { // For each pixel in strip...

 strip.setPixelColor(i, strip.Color(0, 0, 0)); // Set pixel's color (in RAM)

 strip.show(); // Update strip to match

 }

 break;

 case '3':

 for (int i = 8; i < 11; i++) { // For each pixel in strip...

 strip.setPixelColor(i, strip.Color(50, 205, 10)); // Set pixel's color (in RAM)

 strip.show(); // Update strip to match

 }

 for (int i = 11; i < 16; i++) { // For each pixel in strip...

 strip.setPixelColor(i, strip.Color(0, 0, 0)); // Set pixel's color (in RAM)

 strip.show(); // Update strip to match

210

 }

 break;

 case '4':

 for (int i = 8; i < 12; i++) { // For each pixel in strip...

 strip.setPixelColor(i, strip.Color(50, 205, 10)); // Set pixel's color (in RAM)

 strip.show(); // Update strip to match

 }

 for (int i = 12; i < 16; i++) { // For each pixel in strip...

 strip.setPixelColor(i, strip.Color(0, 0, 0)); // Set pixel's color (in RAM)

 strip.show(); // Update strip to match

 }

 break;

 case '5':

 for (int i = 8; i < 13; i++) { // For each pixel in strip...

 strip.setPixelColor(i, strip.Color(50, 205, 10)); // Set pixel's color (in RAM)

 strip.show(); // Update strip to match

 }

 for (int i = 13; i < 16; i++) { // For each pixel in strip...

 strip.setPixelColor(i, strip.Color(0, 0, 0)); // Set pixel's color (in RAM)

 strip.show(); // Update strip to match

 }

 break;

 case '6':

 for (int i = 8; i < 14; i++) { // For each pixel in strip...

 strip.setPixelColor(i, strip.Color(50, 205, 10)); // Set pixel's color (in RAM)

 strip.show(); // Update strip to match

211

 }

 for (int i = 14; i < 16; i++) { // For each pixel in strip...

 strip.setPixelColor(i, strip.Color(0, 0, 0)); // Set pixel's color (in RAM)

 strip.show(); // Update strip to match

 }

 break;

 case '7':

 for (int i = 8; i < 15; i++) { // For each pixel in strip...

 strip.setPixelColor(i, strip.Color(50, 205, 10)); // Set pixel's color (in RAM)

 strip.show(); // Update strip to match

 }

 for (int i = 15; i < 16; i++) { // For each pixel in strip...

 strip.setPixelColor(i, strip.Color(0, 0, 0)); // Set pixel's color (in RAM)

 strip.show(); // Update strip to match

 }

 break;

 case '8':

 for (int i = 8; i < 16; i++) { // For each pixel in strip...

 strip.setPixelColor(i, strip.Color(50, 205, 10)); // Set pixel's color (in RAM)

 strip.show(); // Update strip to match

 }

 break;

 default:

 break;

 }

 } else if (incoming_msg.charAt(0) == 'p') {

212

 switch (level) {

 case '1':

 for (int i = 7; i < 8; i++) { // For each pixel in strip...

 strip.setPixelColor(i, strip.Color(255, 255, 10)); // Set pixel's color (in RAM)

 strip.show(); // Update strip to match

 }

 for (int i = 0; i < 7; i++) { // For each pixel in strip...

 strip.setPixelColor(i, strip.Color(0, 0, 0)); // Set pixel's color (in RAM)

 strip.show(); // Update strip to match

 } // Update strip to match

 break;

 case '2':

 for (int i = 6; i < 8; i++) { // For each pixel in strip...

 strip.setPixelColor(i, strip.Color(255, 255, 10)); // Set pixel's color (in RAM)

 strip.show(); // Update strip to match

 }

 for (int i = 0; i < 6; i++) { // For each pixel in strip...

 strip.setPixelColor(i, strip.Color(0, 0, 0)); // Set pixel's color (in RAM)

 strip.show(); // Update strip to match

 }

 break;

 case '3':

 for (int i = 5; i < 8; i++) { // For each pixel in strip...

 strip.setPixelColor(i, strip.Color(255, 255, 10)); // Set pixel's color (in RAM)

 strip.show(); // Update strip to match

 }

 for (int i = 0; i < 5; i++) { // For each pixel in strip...

 strip.setPixelColor(i, strip.Color(0, 0, 0)); // Set pixel's color (in RAM)

 strip.show(); // Update strip to match

213

 }

 break;

 case '4':

 for (int i = 4; i < 8; i++) { // For each pixel in strip...

 strip.setPixelColor(i, strip.Color(255, 255, 10)); // Set pixel's color (in RAM)

 strip.show(); // Update strip to match

 }

 for (int i = 0; i < 4; i++) { // For each pixel in strip...

 strip.setPixelColor(i, strip.Color(0, 0, 0)); // Set pixel's color (in RAM)

 strip.show(); // Update strip to match

 }

 break;

 case '5':

 for (int i = 3; i < 8; i++) { // For each pixel in strip...

 strip.setPixelColor(i, strip.Color(255, 255, 10)); // Set pixel's color (in RAM)

 strip.show(); // Update strip to match

 }

 for (int i = 0; i < 3; i++) { // For each pixel in strip...

 strip.setPixelColor(i, strip.Color(0, 0, 0)); // Set pixel's color (in RAM)

 strip.show(); // Update strip to match

 }

 break;

 case '6':

 for (int i = 2; i < 8; i++) { // For each pixel in strip...

 strip.setPixelColor(i, strip.Color(255, 255, 10)); // Set pixel's color (in RAM)

 strip.show(); // Update strip to match

214

 }

 for (int i = 0; i < 2; i++) { // For each pixel in strip...

 strip.setPixelColor(i, strip.Color(0, 0, 0)); // Set pixel's color (in RAM)

 strip.show(); // Update strip to match

 }

 break;

 case '7':

 for (int i = 1; i < 8; i++) { // For each pixel in strip...

 strip.setPixelColor(i, strip.Color(255, 255, 10)); // Set pixel's color (in RAM)

 strip.show(); // Update strip to match

 }

 for (int i = 0; i < 1; i++) { // For each pixel in strip...

 strip.setPixelColor(i, strip.Color(0, 0, 0)); // Set pixel's color (in RAM)

 strip.show(); // Update strip to match

 }

 break;

 case '8':

 for (int i = 0; i < 8; i++) { // For each pixel in strip...

 strip.setPixelColor(i, strip.Color(255, 255, 10)); // Set pixel's color (in RAM)

 strip.show(); // Update strip to match

 }

 break;

 default:

 break;

 }

 }

215

}

void readJoystick() {

 if (millis() >= time_now_joystick + period) {

 time_now_joystick = millis();

 xPosition = analogRead(VRx);

 yPosition = analogRead(VRy);

 // Serial.print("X pos: ");

 // Serial.println(xPosition);

 // Serial.print("Y pos: ");

 // Serial.println(yPosition);

 SW_state = digitalRead(SW);

 if (xPosition > 900) {

 Serial.println("ju");

 }

 if (xPosition < 100) {

 Serial.println("jd");

 }

 if (yPosition > 900) {

 Serial.println("jr");

 }

 if (yPosition < 100) {

 Serial.println("jl");

 }

216

 }

}

