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Abstract

Time integration methods for stochastic di�erential equations are considered and compared
for two models, namely the double pendulum and the Lagrangian drifter. The goal is to
investigate how a choice in scheme has impact on the accuracy and correctness of the
results. This is done by analysing the disturbance in the Poincaré sections for the double
pendulum model, and using statistical tools for the model on the Lagrangian drifter. Two
methods with a deterministic counter part of �rst order are considered, namely Euler-
Maruyama and stochastic sympectic Euler, as well as two methods with deterministic
counter part of a higher order, stochastic Störmer-Verlet and stochastic Runge-Kutta.
The main result is that the result heavily relies on the type of model analysed. The
stochastic Störmer-Verlet preserves the structure of the Poincaré section of the double
pendulum better, and manages to preserve the total energy best. On the other hand,
for the Lagrangian drifter the Euler-Maruyama method and the stochastic Runge-Kutta
method yield generally identical dynamics.
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Chapter 1

Introduction

In current days, ocean and climate change modelling has become very important to predict
and combat the e�ects of the global climate change. Ocean modelling presents many sig-
ni�cant challenges, caused by the complexity of the equations that describe it and the large
range of dynamic scales involved. Small-scale in�uences, such as gusts of wind or changes
in atmospheric pressure are typically not resolvable by computational models. This moti-
vates an e�ective stochastic formulation to capture the nature of the dynamics. Stochastic
noise is often added in models because there is uncertainty about parameters and initial -
or boundary conditions, which may signi�cantly alter the outcome of a model, or to com-
pensate for missing information. A good example of the latter includes the study of �killer
waves�, where it is assumed that the undulation of waves can be described by stochastic
processes, in [1]. Solving such stochastic di�erential equations analytically proves to be
very di�cult, motivating us to turn towards numerical methods to �nd approximations of
these solutions. Stochastic time-integration is a subject of intense research [2]. We com-
pare and develop such methods for canonical nonlinear systems, both with few degrees of
freedom as in the stochastic double pendulum, as well as in problems with many degrees
of freedom, as arise in shallow water models. The latter create a bridge between our in-
vestigations of stochastic time integration methods and the overarching interest in climate
modeling.

Climate change has a signi�cant impact on all human activities, as practical as wheat
production in regions in China [3], but also in terms of increased variability of weather
patterns [4] and issues of personal safety in relation to �ooding [5, 6] and periods of severe
droughts [7]. By creating comprehensive computational models, Science can contribute
to the understanding of these mechanisms and to the design of measures to mitigate the
consequences. The formulation of stochastic models to achieve reliable predictions of future
developments, and which yields a quanti�cation of the `robustness' of the �ndings is a
major approach towards this goal. The stochastic di�erential equation models require
tailored numerical methods, in particular for the time integration. These methods and
their performance is the main focus in this report. Apart from relevance for climate
research, such stochastic modeling and simulation has various other uses. A good example
includes the study of solute transport in porous media, see [8]. Also, the operation of
future smart energy grids poses multiple challenges to stochastic time integeration that
can also be answered using speci�c time integration methods.

The �eld of stochastic time-integration methods knows a long history. Starting from the
seminal paper [9] by Maruyama, from which the Euler-Maruyama method is the earliest
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CHAPTER 1. INTRODUCTION 2

example. Since numerical methods for stochastic di�erential equations are challenged by
the fact that the noise has a direct relation on the convergence of the �ndings, current
methods are of low order compared to deterministic systems. Important recent develop-
ments address the question whether and how underlying structures of the equations can
be integrated entirely in the computational approach. Rather than aiming for higher or-
der, these methods aim to preserve, e.g., a Hamiltonian structure, also in the discrete,
stochastic implementation [10]. A motivating study in this direction may be found in [11].
Our primary aim in this research is to develop an understanding about how sensitive the
quality of predictions depends on numerical details. For this purpose, the performance of
various stochastic methods will be quanti�ed in terms of the degree with which fundamen-
tal dynamical properties are represented, e.g., phase space patterns, and in terms of actual
correspondence to scaling predictions, e.g., of dispersion properties, and correspondence to
other high-�delity simulations.

In this thesis, we compare several time integration methods in terms of stability and
accuracy, by applying them to two mechanical models. The �rst is the model of the double
pendulum, a set of ordinary di�erential equations describing the chaotic motion of this well-
known example. The double pendulum is of interest since it enables a precise assessment of
the quality of the numerical methods. We analyse the e�ect of the numerical method on the
main structures seen in the Poincaré section, as well as in the actual time-evolving solution.
In addition, we concentrate on the e�ect the noise has on main dynamical structures and
on how well the energy in the system is conserved. We found that the stochastic Störmer-
Verlet method showed promising results, keeping the shape of the Poincaré section more
intact and keeping the value of the Hamiltonian over time approximately constant, also
for stochastic perturbations.

The second model considered is the model of the Lagrangian Drifter, also known as Stokes'
drift, in which point particles are released in an embedding velocity �eld, the latter of which
is governed by a partial di�erential equation, for which we consider a shallow water model.
Combined, the motion of the Lagrangian Drifters can be interpreted as the behaviour
of a buoy on a large-scale ocean of shallow water. The expected value and variance of
the locations of the drifters over time is analysed and compared to the expected value
and variance of the analytic solution for an increasing amount of drifters. It is shown
that di�erent schemes show almost the same results in these terms, although the Euler-
Maruyama method reaches this result with shorter running time.

The layout of this thesis is as follows:

� In chapter 2 we will give an introduction of the concepts used in the theory of stochas-
tic di�erential equations (SDE's). We will introduce stochastic noise in the form of a
Wiener process, and motivate this choice. The so-called Itô- and Stratonovich repre-
sentations of an SDE are discussed, showing how the two closely related formulations
are still di�erent in interpretation. Finally, we will introduce the terms additive and
multiplicative noise.

� In chapter 3, we introduce and analyse several time integration methods for SDE's.
First, a motivation is given for using numerical methods to predict the behaviour of
SDE's. Next, we will introduce the numerical methods used for our double pendu-
lum and Lagrangian drifter. Methods to be discussed include the Euler-Maruyama
and symplectic Euler method, both based on the �rst order Euler forward integra-
tor. Furthermore, we will discuss two higher order Runge-Kutta methods and their
stochastic counterparts. Next a discussion on the accuracy of a numerical method
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for SDE's is given, as well as the de�nition of the strong order of a numerical method
for an SDE, followed by an argument on what the e�ect of stochastic noise is on the
order of a numerical method.

� In chapter 4 we test some of the previously mentioned methods for the double pen-
dulum, with an additional stochastic term. We will �rst introduce the Hamiltonian
formulation of the model and see that �rst order methods are unstable for this model.
Next, we introduce the Poincaré section, to concisely characterize dynamic structures
in phase space and facilitate comparison of methods.

� In chapter 5, we test the previously mentioned methods on the model of a drifter
in a 1-dimensional �ow enriched with a 2D noise perturbation. We analyse the
dispersion of the drifters statistically for each method. Speci�cally, we measure the
expected value and variance of the set of observations over time and check whether
they converge towards the analytical expressions. Finally, we use this model to test
for a velocity �eld with a physical representation.

� Finally, we conclude our �ndings in chapter 6.



Chapter 2

Introduction to Stochastic

Di�erential Equations

This chapter introduces the theory necessary to analyse the numerical schemes introduced
in chapter 3 and used in the chapters thereafter. Section 2.1 introduces the general notion
of noise used in the model of the double pendulum and the Lagrangian drifter. Section 2.2
consecutively introduces the general notion of a stochastic di�erential equation using both
the Itô and Stratonovich integral, and shows their di�erence in interpretation. Using
these representations, we discuss how we can adjust the noise term by using additive or
multiplicative noise, in section 2.3.

2.1 Wiener process

As mentioned in the introduction, we �rst need to state how we are going to add noise to
our di�erential equations. A Wiener process is typically used in literature to describe the
behaviour of natural phenomena such as the motion of a pollen emerged in water. This
was explained by Albert Einstein as the e�ect of the water molecules pushing the pollen,
see [12]. Examples of literature on a Wiener process can be found in [13, 14, 15].

Another way to look at stochastic di�erential equations known to the author is by the use
of rough paths (e.g. [16]), which we will not consider, as this is not part of our scope.

We start by giving the formal de�nition of a Wiener process

De�nition 2.1. A stochastic process Wt, t ≥ 0 is called a Wiener process, or Brownian

motion, if it satis�es the following properties

1. W0 = 0.

2. W has independent increments, i.e. Wt3 −Wt2 is independent of Wt2 −Wt1 for all

t1 < t2 < t3.

3. W has normally distributed increments, i.e. Wt2 −Wt1 ∼ N (0, t2 − t1).

4. For almost all ω, the sample path t 7→Wt(ω) is continuous.

Informally, a Wiener process can be seen as a representation for the integral of a Gaussian
process. However, the derivative of a Wiener process does formally not exist, as discussed
in [15].

4



5 2.2. ITÔ VERSUS STRATONOVICH

2.2 Itô versus Stratonovich

In this paper we often refer to two representations of stochastic di�erential equations,
namely Itô and Stratonovich. We will �rst show the representations in di�erential form
to familiarise the reader with the notation, before we show how these two representations
are di�erent and how they come to be. We will follow with a discussion on the choice of
representation.

An example we consider in this paper comes forward from sources that write a stochastic
di�erential equation in Stratonovich form. Whenever we refer to such a representation, we
write the di�erential equation in the following (di�erential) form

dX = f(X)dt︸ ︷︷ ︸
Deterministic

+ g(X) ◦ dWt︸ ︷︷ ︸
Stochastic

, (2.1)

where X = X(t) is a stochastic process, depending on time, which denotes the solution of
equation 2.1. Notice that we do not write down dX

dt . This is due to the fact that the time
derivative of a Wiener process Wt does not exist. We use the ◦-symbol to signal that we
are using Stratonovich calculus. This is done in line with other literature on Stratonovich
integrals, see for example [17, 13]. On the other hand, we refer to an Itô SDE whenever
we write a di�erential equation in the (di�erential) form

dX = f(X)dt︸ ︷︷ ︸
Deterministic

+ g(X)dWt︸ ︷︷ ︸
Stochastic

. (2.2)

Itô and Stratonovich originate from di�erent interpretations of the stochastic integral.
First recall how the standard Riemann sum of an integral is de�ned. It estimates the
area underneath a continuous function f(t) on a (in)�nite domain, e.g. [0, T ], as a sum of
rectangles, bounded by the width of smaller intervals and the function itself. For example,
if the height of the rectangles is determined to be equal to the value of f(t) on the left side
of the rectangles, the area underneath f(t) is estimated by∫ T

0
f(t)dt ≈

N−1∑
k=0

f(tk)(tk+1 − tk), (2.3)

where 0 = t0 < t1 < . . . < tN = T . If we take the height of the rectangles to be equal to
the average value of f on the left and the right side of the rectangle, we get that the area
underneath f(t) is estimated by∫ T

0
f(t)dt ≈

N−1∑
k=0

f(tk+1) + f(tk)

2
(tk+1 − tk). (2.4)

Both equations (2.3) and (2.4) are good estimations of the area underneath f(t) and for
both we will have that the approximations become equalities if we let N →∞. However,
when we integrate over a stochastic process, we cannot assure this equality anymore, which
we will show. For example, let us consider the general example of an integral of a function
f over a Wiener process: ∫ T

0
f(Wt)dWt. (2.5)
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Itô [18] chose to approximate equation (2.5) by a left side approximation. This results
in ∫ T

0
f(Wt)dWt ≈

N−1∑
k=0

f(Wtk)(Wtk+1
−Wtk). (2.6)

Stratonovich [19], on the other hand, chose to approximate equation (2.5) by an approxi-
mation as in equation (2.4). This results in∫ T

0
f(Wt) ◦ dWt ≈

N−1∑
k=0

f(Wtk+1
) + f(Wtk)

2
(Wtk+1

−Wtk). (2.7)

Now taking the limit of N to in�nity, we cannot assure that the two notations converge
to the same limit, as the Brownian motion is a stochastic process. However, both are well
posed options.

The choice in approach lies in the interpretation that one is mostly interested in. Both
Itô and Stratonovich processes have their own advantages, like the Itô integral being a
Martingale and the Stratonovich integral satisfying the ordinary chain rule of calculus.
References include [14, 15]. Application-wise, the Itô formulation is often more popular in
�nance, while the Stratonovich formulation is more popular in physics.

In this paper, we will often start with a Stratonovich formulation of a set of stochastic
di�erential equations, although numerical integration often requires Itô formulation. For-
tunately, the Stratonovich stochastic processes can be converted to Itô stochastic processes
and vice versa. To do so, we refer to theorem 2.2.

Theorem 2.2. Let an Itô SDE be given by

dXt = f(Xt)dt+ g(Xt)dWt, (2.8)

where Xt ∈ Rn denotes the state at time t. Furthermore assume that g is continuously

di�erentiable. Then in integral form, the conversion to a Stratonovich SDE is given by∫ T

0
g(Xt)dWt =

∫ T

0
g(Xt) ◦ dWt −

1

2

∫ T

0

dg

dx
(Xt)g(Xt)dt (2.9)

Proof. See appendix A.

More generally, by taking the derivatives of each term in equation (A.6), we can also write
the conversion in di�erential form.

Corollary 2.2.1. Let an Itô SDE be given by equation (A.5), where f, g : Rn → Rn. Then
in di�erential form, a Stratonovich SDE is given by

dXt =

(
f(Xt)−

1

2
c(Xt)

)
dt+ g(Xt) ◦ dWt, (2.10)

where c : Rn → Rn is given by

ci(Xt) =
k∑
j=1

dgi

dxj
(Xt)g

j(Xt), ∀i = 1, . . . , n.
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2.3 Types of noise

There are two main archetypes of noise which are considered when analysing stochastic
integrals, namely additive noise and multiplicative noise. For that purpose, let us look at
the Itô formulation of a stochastic di�erential equation, equation (2.2). The type of noise
is fully determined by the function g(X).

We say that the noise in the stochastic di�erential equation is additive if we have that
g(X) = β, where β ∈ R is a constant. Notice that for additive noise, we have that the
Itô and Stratonovich di�erential form are identical, following directly from theorem 2.2. If
we have no additive noise, i.e. g(X) is a function of the state X, we say that the noise is
multiplicative.

Both additive and multiplicative noise are recognised in several applications. See for ex-
ample [20].

2.4 Summary

In this chapter we have introduced the general notion of a Wiener process and its uses in
stochastic di�erential equations. Two interpretations of the stochastic integral were intro-
duced, those of Itô and Stratonovich. Additive and multiplicative noise were introduced as
well as the consequences of these types of noise on the stochastic integral using the men-
tioned interpretations. These newly introduced results allow us to formulate stochastic
di�erential equations. Furthermore, these terms will be used when considering solutions
for the double pendulum and Lagrangian drifter models in chapters chapter 4 and chap-
ter 5.



Chapter 3

Time integration methods

In this chapter we will translate the general stochastic di�erential equation introduced in
chapter 2 to a numerical model. The numerical methods introduced in this section are the
Euler-Maruyama method, the stochastic Runge-Kutta method, the stochastic symplectic
Euler method and the stochastic Störmer-Verlet method, which are the methods to be used
in chapters 4 and 5. Section 3.1 introduces the general notion of a numerical method for
stochastic di�erential equations and discusses the requirements of a numerical scheme to
be applicable to stochastic di�erential equations. Section 3.2 display the speci�c methods
used. Finally in section 3.3, we introduce the notion of weak and strong order of conver-
gence of the numerical schemes, and discuss why the analysis for numerical methods for
stochastic di�erential equations is more di�cult than for deterministic schemes.

3.1 Why use numerical methods

Let us again consider a general model of an Itô representation of a stochastic di�erential
equation:

dX = f(X)dt+ g(X)dWt. (3.1)

In integral form, we can �nd that the solution X(t) to equation (3.1) is given by

X(t) = X(t0) +

∫ t

t0

f(X(s))ds+

∫ t

t0

g(X(s))dWs, (3.2)

where 0 ≤ t0 < T are the initial and �nal time of the model, respectively. Computing this
can become very di�cult quickly for nonlinear functions f and g, and computational wise
it could be very ine�cient.

Simultaneously, in chapter 4 we will consider an even-dimensional systemX(t) = (q(t), p(t))>.
This, we can write into the set of di�erential equations,

dq = f(q, p)dt+ σ(q, p)dWt

dp = g(q, p)dt+ γ(q, p)dWt.
(3.3)

The notation used here is in line with [21], where the symplectic integration of Hamiltonian
systems is considered. As mentioned in the reference, the symplectic structure is only
preserved if there exist functions H(q, p) and h(q, p) such that f = ∂H

∂p and g = −∂H
∂q , as

well as σ = ∂h
∂p and γ = −∂h

∂q .

8
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In the same fashion as equation (3.2), we can �nd that the solution (q(t), p(t)) to equa-
tion (3.1), in integral form, is given by

q(t) = q(t0) +

∫ t

t0

f(q(s), p(s))ds+

∫ t

t0

σ(q(s), p(s))dWs

p(t) = p(t0) +

∫ t

t0

g(q(s), p(s))ds+

∫ t

t0

γ(q(s), p(s))dWs.

(3.4)

where 0 ≤ t0 < T are the initial and �nal time of the model, respectively. We again
have an expression similar to that in equation (3.1), which we could argue again is hard
and ine�cient to compute. This motivates us to turn towards numerical methods to
approximate the solutions of these stochastic di�erential equations.

3.2 Methods

In this we introduce four numerical methods which we will use to approximate the solution
X(t) as introduced in section 3.1 over time. We will introduce a few speci�cs of the methods
possible, but refer the reader to many more possible methods which can be found in e.g.
[22, 23, 17].

The methods chosen all have been chosen with the models in chapters 4 and 5 in mind.
Speci�cally, we chose four methods that all have a known deterministic counterpart, be-
cause these deterministic methods are known to be suitable for the deterministic versions
of the upcoming two models.

We have chosen in the following sections to use a constant time step size ∆t, to make the
schemes more easy to read, but also as we will be using a constant time step sizes in the
models in the following chapters, to simplify the implementation as well as the analysis of
these models.

Euler-Maruyama

The �rst of the considered time integration methods is one of the simplest approximations
of an Itô process, called the Euler-Maruyama method [9]. It is an extension of the �rst
order explicit Euler method. This method is chosen due to its simplicity in interpretation.
This method was the �rst numerical stochastic time integration method considered after
the analysis done by Itô in 1944, and approximates a solution of problem equation (3.1).
The method is given by:

Xn+1 = Xn + f(Xn)∆t+ g(Xn)∆Wt (3.5)

Stochastic Runge-Kutta

The stochastic scheme based on the fourth order Runge-Kutta method is constructed in
[23]. There are many more Runge-Kutta schemes, the one chosen here is the most in line
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with the fourth order deterministic Runge-Kutta scheme. The method is given by:

k1 = f(Xn)∆t+ g(Xn)∆Wt

k2 = f(Xn + k1/2)∆t+ g(Xn + k1/2)∆Wt

k3 = f(Xn + k2/2)∆t+ g(Xn + k2/2)∆Wt

k4 = f(Xn + k3)∆t+ g(Xn + k3)∆Wt

Xn+1 = Xn +
1

6
(k1 + 2k2 + 2k3 + k4).

(3.6)

Here, k1, . . . , k4 are the internal stages of the stochastic Runge-Kutta method.

Stochastic symplectic Euler

The following method approximates a solution for equation (3.3) and is based on its deter-
ministic counterpart. This method is introduced in [21], but is also analysed in [17]. The
method is given by:

qn+1 = qn + f(qn+1, pn)∆t+ σ(qn+1, pn)∆Wt,

pn+1 = pn + g(qn+1, pn)∆t+ γ(qn+1, pn)∆Wt
(3.7)

Stochastic Störmer-Verlet

The �nal method also approximates a solution for equation (3.3). Based on the determinis-
tic Störmer-Verlet scheme, it calculates an extra internal stages compared to the stochastic
symplectic Euler method. The method is given by: [17]

pn+1/2 = pn +
1

2
g(qn, pn+1/2)∆t+

1

2
γ(qn, pn+1/2)∆Wt

qn+1 = qn +
1

2

(
f(qn, pn+1/2) + f(qn+1, pn+1/2)

)
∆t+

1

2

(
σ(qn, pn+1/2) + σ(qn+1, pn+1/2)

)
∆Wt

pn+1 = pn +
1

2
g(kn+1, pn+1/2)∆t+

1

2
γ(qn+1, pn+1/2)∆Wt.

(3.8)

Here, we solve the �rst two steps of the method iteratively and calculate the �nal step
explicitly.

3.3 Convergence of a stochastic numerical method

In this section we introduce the notion strong order of convergence for a numerical method,
and elaborate on the order of convergence of the Euler-Maruyama method. We want to
show that a numerical method for an SDE generally converges slowly towards the solution,
motivating us to turn to other quantities to check the performance of a method.

The order of convergence is a quantities that shows how close the true solution X(t) from
equation (3.2) or equation (3.4) lies towards the estimated solution, for now called Y (t),
found using a numerical method. It can be shown for both the Euler-Maruyama and the
stochastic Runge-Kutta method that these methods have a low order of convergence. The
theory discussed here is in line with that given in [13].

In stochastic di�erential equations, there are two di�erent interpretations of the order of
convergence. These are called weak and strong convergence, and the di�erence here lies
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in the use of the expected value, or the mean. If we take the mean of the di�erence
between the exact solution X(t) and the estimated solution Y (t), we would talk about
strong convergence. On the other hand, looking at the di�erence between the mean of the
exact solution X(t) and the mean of the estimated solution Y (t) would be the notation for
weak convergence. The strong order of convergence is what we use to compare the order of
convergence of a stochastic numerical method with the order of a deterministic numerical
method, and thus is the notation of interest here.

Formally, we say that a time discrete approximation Y δ with maximum step size δ converges
strongly to X with order γ > 0 at time T if there exists a positive constant C, which does
not depend on δ, and a δ0 > 0 such that

ε(δ) = E(|XT − Y δ(T )|) ≤ Cδγ (3.9)

for each δ ∈ (0, δ0).

From [13], we know that the Euler-Maruyama scheme has a strong order of 0.5 for an
SDE. Similarly, the stochastic Runge-Kutta method given by equation (3.6) has order 0.5
as well. [23].

The order of convergence of a stochastic di�erential equation is in general low, as could
be seen by the two examples. The addition of a stochastic variable has the e�ect that
deterministic high order schemes such as the fourth order Runge-Kutta scheme diminishes
in order. This motivates to look at di�erent quantities to investigate, such as preservation
of energy, which we will look at in chapter 4.

3.4 Implementation

In chapters 4 and 5 we will look at the methods introduced in this chapter. The imple-
mentation of these numerical methods is done using MATLAB.

The value of ∆t has a direct relation to the variance of the Wiener process. Although we
could choose ∆t very large to minimise the frequency with which we add noise, this would
also imply that the noise becomes bigger, such that there will e�ectively be no di�erence.
Hence in each model we will choose an ampli�cation factor β which we will multiply with
the Wiener process, such that we still can have in�uence on the size of the noise, and
choose for each model a time step size ∆t that is suitable for the deterministic version of
the respective model.

The computational cost of the four methods are all di�erent. The stochastic Runge-
Kutta methods, compared to the Euler-Maruyama method, uses three extra steps during
one iteration to compute the next value of Xn+1. For these two methods, all of these
calculations are explicit. Furthermore, the stochastic symplectic Euler method only uses
two steps, but the �rst step is implicit, which is calculated using an iterative solver, namely
the Newton method. The stochastic Störmer-Verlet method has two implicit steps and one
explicit step, making it the slowest computational method. Here the implicit steps are also
calculated using the Newton method.



Chapter 4

Stochastic Double Pendulum

In this chapter we study the stochastic double pendulum to get acquainted with several
schemes introduced in the previous chapter. Section 4.1 describes the basic dynamical
system of a double pendulum, and tells why this problem is of importance. This is followed
by section 4.2, where the Hamiltonian formulation for the double pendulum is derived,
followed by an analysis regarding the stability of several numerical schemes designed for
this system. This analysis is then used to show that the Euler-Maruyama and Milstein
methods are not well-suited for this problem. Section 4.4 describes how a Poincaré section
can be set up for the double pendulum and shows some characteristic dynamic structures for
the deterministic system. In section 4.5, the Poincaré sections are shown for the stochastic
problem using the stochastic Störmer-Verlet and stochastic symplectic Euler method. We
show the di�erence in results of these methods in both the Poincaré sections as well as the
energy level of the system. This is done for Stratonovich multiplicative noise.

4.1 Introduction to the double pendulum

The double pendulum is a system that has been under study for centuries, with some of
the oldest references found in [24]. Several decades ago, chaotic non-linear systems like the
double pendulum were of high interest due to the rise of computational simulations. An
example of the simulation of a driven damped pendulum can be found in [25]. Because the
behaviour has been analysed thoroughly and the equations are well described, we can use
this as a good place to start introducing noise and testing the time integration methods.
More importantly, the sum of energies acting on the double pendulum is constant over
time. This motivates to describe the model as a Hamiltonian system. An important
feature is that it is unknown whether the system stays Hamiltonian, i.e., preserves energy
(on average), for each of the numerical methods that we chose. We will come back to
this question in section 4.3. The next section describes the deterministic system as a
Hamiltonian, in which we will introduce noise later on.

12
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Figure 4.1: Schematic representation of a double pendulum.

4.2 Equations of motion

We describe the system as a Hamiltonian system to re�ect the energy conservation of the
system. In appendix B, the derivation of the Hamiltonian can be found.

H(θ1, θ2, pθ1 , pθ2) =
l22m2p

2
θ1

+ l21 (m1 +m2) p
2
θ2
− 2m2l1l2pθ1pθ2 cos (θ1 − θ2)

2l21l
2
2m2

[
m1 + sin2 (θ1 − θ2)m2

]
−(m1 +m2)gl1 cos(θ1)−m2gl2 cos(θ2).

(4.1)

Here, we have de�ned the following variables and parameters:

� θ1, θ2: the angle of the �rst and second pendulum, respectively.

� pθ1 , pθ2 : the canonical momentum of the �rst and second pendulum, respectively.

� m1,m2: the masses of the �rst and second pendulum, respectively.

� l1, l2: the length of the rods of the �rst and second pendulum, respectively.

� g: the gravitational constant.

We can now �nd the characteristic equation describing the change in time of both the
angles, as well as the canonical momenta. The update of each of the variables over time is
given by

θ̇1 =
∂H

∂pθ1
=

l2pθ1 − l1pθ2 cos (θ1 − θ2)
l21l2

[
m1 +m2 sin2 (θ1 − θ2)

]
θ̇2 =

∂H

∂pθ2
=
l1 (m1 +m2) pθ2 − l2m2pθ1 cos (θ1 − θ2)

l1l22m2

[
m1 +m2 sin2 (θ1 − θ2)

]
ṗθ1 = −∂H

∂θ1
= − (m1 +m2) gl1 sin θ1 −K1 +K2

ṗθ2 = −∂H
∂θ2

= −m2gl2 sin θ2 +K1 −K2,

(4.2)

where K1 and K2 are equal to

K1 ≡
pθ1pθ2 sin (θ1 − θ2)

l1l2
[
m1 +m2 sin2 (θ1 − θ2)

]
K2 ≡

l22m2p
2
θ1

+ l21 (m1 +m2) p
2
θ2
− l1l2m2pθ1pθ2 cos (θ1 − θ2)

2l21l
2
2

[
m1 +m2 sin2 (θ1 − θ2)

]2 sin [2 (θ1 − θ2)] .
(4.3)
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Here we indicate the time derivatives of each variable in equation (4.13) with a dot, i.e.,
ẋ = dx

dt . We now have a set of four ordinary di�erential equations which can be solved
using a numerical time integration method.

4.2.1 Stochastic equations

We want to investigate how we can use time integration methods for a stochastic di�erential
equation. Since the double pendulum does not involve any stochastic variables, we add
noise as considered in chapter 2. Speci�cally, we decide to add Stratonovich noise to the
canonical momenta. This is done in line with the theory mentioned in [17, 10]. This also
makes sense to do so here, due to the fact that adding noise to the angles could violate basic
dynamics of the system. What we mean by this is that the angles of the two pendula could
reach a state such that the distance between the two pendula changes, i.e., the distance
would not equal the initial l2 anymore.

Furthermore, linear multiplicative noise is analysed, that is, we multiply the noise added
to the canonical momentum by their respective angle. We do this, as multiplicative
Stratonovich noise is of most interest in chapter 5. The equations for the canonical mo-
menta with additional noise are given by

dpθ1 = −∂H
∂θ1

dt︸ ︷︷ ︸
Deterministic

−βθ1 ◦ dW︸ ︷︷ ︸
Stochastic

dpθ2 = −∂H
∂θ2

dt︸ ︷︷ ︸
Deterministic

−βθ2 ◦ dW︸ ︷︷ ︸
Stochastic

,

(4.4)

where we again use the notation as explained in chapter 2. In these equations, β is a
(small) parameter which we will use to control the amount of noise added to the system.
Since θ1,2 are angles, we will use their periodicity to keep them inside the interval [−π, π〉.
We will do this to ensure that both the βθ terms in equation (4.4) do not get too large,
which would lead to a larger impact from the noise term and could spiral the system out
of control.

Note that the noise added in equation equation (4.4) could cause the energy in the system
to vary over time. This has to be kept in mind as the system would no longer be a
Hamiltonian system. Nevertheless, we could still simulate the system over time and see
the e�ect the noise has on the total energy in the system. We will do so in section 4.4 and
discuss the relevance of the result.

4.2.2 Parameter values in simulations

The values of the parameters in equation (4.1) for the simulations are chosen to be

� (m1,m2) = (2, 1),

� (l1, l2) = (1, 1),

� g = 9.81.

The length of both pendula are chosen to be equal such that the analysis done in section 4.3
is simpli�ed. Typically, these values are chosen to be equal to one, to provide a simple
example (see e.g. [26]), which is why we choose them to be equal to one here as well.
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The value of the second mass has been chosen to be equal to one, by the same reasoning.
Furthermore the value for g is chosen such that it is in line with the gravitational constant
on earth. These parameters also have the e�ect that the minimal value of the Hamiltonian
equals −4g ≈ −39, corresponding to the value of the Hamiltonian if both pendula are
pointing down ((θ1, θ2) = (0, 0)).

The numerical implementation adopts a time step size ∆t = 0.01. This value ensures both
fast computational time for a long run, while retaining accuracy. The e�ect on the results
by increasing this value and their signi�cance will be discussed in section 4.6.

4.2.3 How to compare results

We want to �nd a suitable method to compare the numerical schemes used in this chapter.
To do so, we introduce three levels of detail. The most detailed level would be comparing
each of the variables over time. This is done for the �rst 10 seconds. In our �nal results, we
will increase this simulation time signi�cantly. However this short simulation already gives
a good impression. For longer simulations the results quickly di�er and large local errors
accumulate. Here we have chosen parameters in line with section 4.2.2. This includes a
time step size of ∆t = 0.01. We have also slightly varied this value, which only in�uences
the time before a local di�erence between the methods comes to be.

Figure 4.2 shows four plots illustrating the time evolution of all solution components. The
initial correspondence of the di�erent methods is seen to be lost quite soon and all detailed
local comparison at this �nest level is not so relevant anymore.

We introduce the next level of comparison, by zooming out of the individual behaviour of
each of the variables, and looking at the behaviour of the model by showing the trajec-
tory the two pendula follow. In �gure 4.3, the �rst few seconds of running time for the
deterministic methods can be seen.

Figure 4.3 shows that the Euler forward method behaves quite di�erent after a short run.
This leads us to question the numerical stability of this scheme, which will be analysed
in section 4.3. Furthermore, �gure 4.3 shows that it is di�cult to compare and draw
conclusions on the behaviour of the trajectory in physical space itself already after a few
seconds. Moreover, the comparison should clearly show the in�uence of noise after a long
run, because we are mostly interested in the dynamic e�ect of noise. This leads to the
third and coarsest level of detail, which is displaying the dominant dynamical structures in
terms of the Poincaré section of the double pendulum. See section 4.4 for an introduction
on the theory of Poincaré sections, as well as examples for the deterministic Störmer-Verlet
and symplectic Euler method. We will frequently use Poincaré sections in the sequel of
this report.
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(d) pθ2 over time.

Figure 4.2: Behaviour of all four variables over time, for a short run of the double pendulum
using 4 di�erent numerical methods. The Euler-Forward method shows a qualitatively
di�erent outcome compared to the other three methods, which seem to stay very close to
each other for a much longer time.
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(a) Euler Forward.
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(b) Classic Runge-Kutta 4.
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(c) Störmer-Verlet.
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(d) Symplectic Euler.

Figure 4.3: Short run of the double pendulum using 4 di�erent methods. In a few seconds
of running time, the Euler forward method already shows a signi�cantly di�erent outcome.
The Runge-Kutta and Störmer-Verlet trajectories seem identical from this perspective, as
is the symplectic Euler method. The comparison of trajectories in space does not allow to
discuss great detail and is hard to interpret.
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4.3 Justifying the numerical methods

It is desirable that the deterministic variant of the time integration methods considered
conserve the value of the Hamiltonian. For this purpose, we analyse the numerical stability
of each proposed scheme for the model of the double pendulum, in line with [27]. To do so,
the eigenvalues of the double pendulum model are found and used to determine whether a
numerical scheme is stable for this system. We will show that the eigenvalues are imaginary,
which implies that the Euler explicit method and its stochastic counterparts are unstable
methods for this problem as is established in [28].

Since the Hamiltonian is nonlinear, analysis regarding the eigenvalues of the system can
be quite di�cult. To simplify, the system is linearized around (θ1, θ2) = (0, 0). For small
angles, the partial derivatives of the Lagrangian are approximated by

∂L

∂θ1
= −(m1 +m2)l1gθ1

∂L

∂θ2
= −m2l2gθ2

∂L

∂θ̇1
= (m1 +m2)l

2
1θ̇1 +m2l1l2θ̇2

∂L

∂θ̇2
= m2l

2
2θ̇2 +m2l1l2θ̇1

(4.5)

We want to use the Euler-Lagrange equation (equation (B.8)) to �nd the eigenvalues of
the system. The equality that follows is given by

−(m1 +m2)l1gθ1 = (m1 +m2)l
2
1θ̈1 +m2l1l2θ̈2

−m2l2gθ2 = m2l
2
2θ̈2 +m2l1l2θ̈1

(4.6)

This can be written in matrix form as

A

[
θ1
θ2

]
+B

[
θ̈1
θ̈2

]
= 0, (4.7)

where

A =

[
(m1 +m2)l1g 0

0 m2l2g

]
B =

[
(m1 +m2)l

2
1 m2l1l2

m2l1l2 m2l
2
2

]
.

(4.8)

A general solution is of the form [
θ1
θ2

]
=

[
E1

E2

]
eλt, (4.9)

where λ are the eigenvalues of our system, and E1 and E2 are the eigenvectors of the system.
Filling in this solution, we �nd that the eigenvalues satisfy the following equality:

det
(
A+ λ2B

)
= 0. (4.10)

Solving this for λ yields

(m1 +m2) g
2 − λ2 (m1 +m2) (l1 + l2) g + λ4m1l1l2 = 0. (4.11)
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We now restrict ourselves towards the situation l1 = l2 = l. In this case, the solution for
λ is given by

λ21,2 = −g
l

(
1 +

m1

m2
±

√
m1

m2

(
1 +

m1

m2

))
. (4.12)

Since it is assumed that all above parameters are positive constants, this equations results
in two negative values for λ21,2. Speci�cally, it follows that all four eigenvalues of the system
of a double pendulum are imaginary.

We can refer to many books on analysis of numerical methods (see e.g. [27]) to immediately
state that the Euler forward method is unstable for a system consisting of imaginary
eigenvalues. The reason can be investigated using [28]. Hence, this method is not suited
as a solver for the model of the double pendulum. This result is further supported by
plotting the value of the Hamiltonian over time for non-speci�c initial conditions. This
can be found in �gure 4.4. Here we look at initial value H = −10, which can be seen as
a typical case of high energy. Indeed the Störmer-Verlet and fourth order Runge-Kutta
method remain stable, while the Euler forward method does not. From this, it can be
concluded that the Euler-Maruyama method is an unsatisfactory method to use for this
problem. Consequently, we decide to use the stochastic symplectic Euler method instead,
which does conserve energy and has a deterministic counterpart that is �rst order.
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(a) Hamiltonian including Euler-Forward.
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Figure 4.4: Energy levels of the four methods. The energy for the Euler forward method
increases over time, for the Störmer-Verlet and fourth order Runge-Kutta method it stays
generally constant.

Figure 4.4 shows that the result from the Runge-Kutta fourth order method and the
Störmer-Verlet method is very similar, which is in line with the result in �gure 4.3. This
peaks our interest in comparing the Störmer-Verlet and the Symplectic Euler method in
an e�cient way to detect structure in the model of the double pendulum.
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4.4 Deterministic Poincaré section

In this section we will show a Poincaré section for the double pendulum, for several levels
of energy. All results in this section are obtained using the Störmer-Verlet method, which
has shown to be both e�cient and robust. Due to the fact that there are more periodic
orbits of the double pendulum at low energy levels, we will restrict ourselves to these levels.
After showing the Poincaré sections for the deterministic system, we will add Stratonovich
multiplicative noise in the next session and examine the results of the implementation using
the stochastic Störmer-Verlet and stochastic symplectic Euler method.

The Poincaré section is a tool often used to �nd structure in a (chaotic) dynamical system.
Their concept were named after Henri Poincaré, based on his research in and around 1892
[29]. For the double pendulum, the Poincaré map has been used before to determine stable
orbits for the double pendulum [30, 31]. The basic idea of the Poincaré section is to map
our four-dimensional system onto a two-dimensional plane. This plane should be chosen
such that it is transversal with the �ow, i.e., such that the points move through the chosen
plane [30]. We consider one Poincaré section, namely the one at θ1 = 0 with a positive
velocity θ̇1. This section is chosen in line with several other papers [30, 31], but was also
chosen due to its many clear sections that were found.

To show the usefulness of the Poincaré sections, a Poincaré section at H = −10 is shown
in �gure 4.5. The value of the Hamiltonian is chosen such that we observe a high energy
level, for which H = −10 is a typical case. Here we chose the parameter values as discussed
in section 4.2.2. The grey shattered dots indicate chaos, while the three coloured regions
show periodic orbits. For example, if we now choose initial conditions in the centre of the
blue region shown in �gure 4.5, we get the periodic orbit as shown in the right picture.
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(a) Poincaré section. (b) Periodic orbit found at the centre of the blue orbit
shown in the Poincaré section.

Figure 4.5: Poincaré section for a high energy levelH = −10, together with a periodic orbit.
Each of the coloured region in the Poincaré sections indicates a separate initial condition.
Upon closer inspection, it seems like there are more spots where periodic orbits could be
found. However, investigating initial conditions in these empty spots did not result in more
periodic orbits, rather again in chaotic trajectories. The boundary resembles a hexagon,
which means that the extreme values of position and velocity of the second pendulum
are limited. Finally the behaviour of the blue orbit is considerably more simple than the
behaviour of the two green orbits, which show a more complex trajectory.

Now that we have a �rst impression of our Poincaré section, we decrease the value of the
Hamiltonian such that more periodic orbits are obtained inside our Poincaré section. In
�gure 4.6, the e�ect of lowering the energy level can be seen. As the energy decreases, we
see more orbits being created until we can �nd many at H = −20. As this energy level
contains a high number of periodic orbits that could be found, we decide to not decrease
the value of the Hamiltonian any further. Instead, the in�uence of stochastic noise on the
time integration method at this energy level is studied.
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(a) H=-12
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(b) H=-15
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(c) H=-18
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(d) H=-20

Figure 4.6: Decreasing H to �nd more Poincaré sections. ForH = −20, many more periodic
orbits can be seen. Each of the coloured regions indicates a separate initial condition. The
left and right boundary at θ2 = ±π become smaller as the amount of energy in the system
becomes smaller.

Figure 4.7 shows the same Poincaré section at H = −20, now using the symplectic Euler
method instead of the Störmer-Verlet method. The result is similar, although the points
shown due to the chaotic (grey) trajectory is more spread out, and the second blue `ring'
from the middle out shows gaps in comparison to the using the result using the Störmer-
Verlet method (�gure 4.6d), i.e. the trajectory resembles a quasi-periodic orbit.

In �gure 4.7, it is di�cult to see any major di�erences between the two Poincaré sections.
Hence a zoomed-in part of the plot is shown in �gure 4.8 to highlight some minor di�er-
ences. This establishes the robustness with which structures in the Poincaré section can be
predicted numerically. Even in case orbits depend sensitively on details of the numerical
methods used, the global character and the region of phase space occupied by such orbits
remains well de�ned. This contrasts comparison at the �nest level of detail in which close
correspondence is lost already after a short time integration.
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(a) Störmer-Verlet, for reference
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Figure 4.7: Poincaré section at H = −20 using the symplectic Euler method. Each of the
coloured regions indicates a separate initial condition. Other than the blue section lying
just inside the green periodic orbit, there seems to be no di�erence.

The time step size ∆t is chosen to be equal to 0.01 in all results shown in this chapter in line
with section 4.2.2, as we discovered that for this value the results were most interesting,
and is in line with the results shown in the next section.
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(a) Störmer-Verlet
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Figure 4.8: Poincaré section at H = −20, enlarged. Additional minor di�erences can be
found when zoomed in, such as less chaotic (grey) points being present in the symplectic
Euler result, or the pink period showing a di�erent shape.
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4.5 Stochastic Poincaré section

In this section, we show and discuss the results of both the stochastic Störmer-Verlet
method and the stochastic symplectic Euler method. Both methods are applied to the
double pendulum system with Stratonovich multiplicative noise as explained in section 4.3.
Recall that these are given by

θ̇1 =
∂H

∂pθ1
=

l2pθ1 − l1pθ2 cos (θ1 − θ2)
l21l2

[
m1 +m2 sin2 (θ1 − θ2)

]
θ̇2 =

∂H

∂pθ2
=
l1 (m1 +m2) pθ2 − l2m2pθ1 cos (θ1 − θ2)

l1l22m2

[
m1 +m2 sin2 (θ1 − θ2)

]
ṗθ1 = −∂H

∂θ1
− βθ1 ◦ dWt = − (m1 +m2) gl1 sin θ1 −K1 +K2 − βθ1 ◦ dWt

ṗθ2 = −∂H
∂θ2
− βθ2 ◦ dWt = −m2gl2 sin θ2 +K1 −K2 − βθ2 ◦ dWt,

(4.13)

where K1 and K2 are given in equation (4.3). Parameters and time step values are chosen
as discussed in section 4.2.2.

It should be noted that Poincaré sections are used as a tool for systems with constant
energy. The addition of noise can cause the total energy to vary. However, the noise is
chosen such that the mathematical structure is mostly preserved for a very long time for
small values of β, i.e., it can be observed that the total energy over time is almost constant,
and at small β do not show an increasing or decreasing trend. Hence, the dynamics can
be interpreted as being close to a hyper-surface of constant total energy for all time.
This heuristically motivates the use of Poincaré sections also for system that are energy
preserving on average only.
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(b) Stochastic symplectic Euler

Figure 4.9: Poincaré section at θ1 = 0 with positive velocity θ̇1. Here β = 0.001.

In these simulations, three di�erent values of β are used, namely β = 0.001 (low amount of
noise), β = 0.005 (medium amount of noise) and β = 0.02 (high amount of noise). These
three values are chosen as this range nicely shows the in�uence of the noise on the system.
The results can be seen in �gures 4.9, 4.10 and 4.11 respectively.
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Figure 4.10: Poincaré section at θ1 = 0 with positive velocity θ̇1. Here β = 0.005.
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(b) Stochastic symplectic Euler

Figure 4.11: Poincaré section at θ1 = 0 with positive velocity θ̇1. Here β = 0.02.

As can be seen in the Poincaré sections, the periodic orbits that were found seem to dissolve
as the amount of noise increases. Especially for β = 0.02, it is hard to recognise any, other
than the blue orbits in the middle and the dark blue one on top. The reason these periodic
orbit did not dissolve so quickly is most likely due to the fact that the angles for this
orbit are very small, causing the noise to have less of an in�uence. Looking at �gure 4.10,
trajectories seem to keep their structure more for the Störmer-Verlet method than for the
symplectic Euler method, in the way that the blue trajectory in the middle diverges less,
and both green trajectories seem to stay in place as well. In �gure 4.12, θ2 of the light
blue trajectory as shown in �gure 4.11 is observed over time to see if the in�uence of the
noise with β = 0.02 can be noticed. Checking this for θ1, we get a similar result. As it is
di�cult to see any di�erence in results from this �gure, we decide to observe the Fourier
transform of θ2 as well. This is given in �gure 4.13.

If we increase the value of ∆t slightly such that the deterministic variants of the numerical
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(a) Störmer-Verlet with β = 0, for reference
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(b) Stochastic Störmer-Verlet
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(c) Stochastic symplectic Euler

Figure 4.12: Trajectory of θ2 over time, for β = 0.02, corresponding to an initial condition
inside the light blue trajectory as shown in �gure 4.11. The interval of time was chosen
such that a clear di�erence could be seen, although it can be observed that the amplitudes
are not signi�cantly di�erent. A shift in period did happen.

methods keep stable, i.e. ∆t < 0.05, we notice that results do not change signi�cantly,
as for smaller values of β the stochastic symplectic Euler solution blows up, while the
stochastic Störmer-Verlet method keeps the solution limited, preventing a blow-up.

Zooming in on the images in a similar fashion to �gure 4.8, it was found that the images
were di�cult to interpret and hence did not add value to �nding signi�cant di�erences. For
this reason the �gures are not included in this document. Similarly, plotting the trajectory
of the double pendulum, as discussed in section 4.2, it was found that the plot does not
show useful results after simulating for a long running time.

On the other hand,the evolution of the Hamiltonian over time is worth studying. The
value of the Hamiltonian can be seen for the di�erent values of β in �gure 4.14. This is the
value of the Hamiltonian corresponding to a single trajectory. The �rst thing that stands
out is the width of the stochastic symplectic Euler line. The line is much thicker compared
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Figure 4.13: Fourier transform of θ2 over time, for β = 0.02, corresponding to an initial
condition inside the light blue trajectory as shown in �gure 4.11. Observe that the am-
plitude of the peaks for both methods with noise are lower, although the peaks for the
stochastic Störmer-Verlet seem a little higher. If we zoom in at the bottom, it can be
observed that the symplectic Euler method su�ers more from the noise.

to the stochastic Störmer-Verlet method. This is in line with the result from the deter-
ministic method, which shows that the value of the symplectic Euler line �uctuates more,
as investigated in �gure 4.4. Furthermore, �gure 4.14 shows that the noise has a larger
impact on the symplectic Euler method. It looks as if the Hamiltonian of the symplectic
Euler keeps increasing for β = 0.02. We have checked whether this is true by plotting it
for a much longer period of time and found that the Hamiltonian rapidly increases until it
reaches a value where the system breaks, i.e., becomes numerically unstable.

Furthermore, we also look at the value of the Hamiltonian over time for the light blue
trajectory, in �gure 4.15. It can be seen that the increase in energy over time is less, which
makes sense as the structure is preserved even for the high amount of energy.
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(b) Stochastic symplectic Euler

Figure 4.14: Hamiltonians over time for β = 0.02, β = 0.005 and β = 0.001. The
value corresponds to the energy level of a single trajectory, namely the grey one (see e.g.
�gure 4.7), a random example.
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Figure 4.15: Hamiltonians over time for β = 0.02, β = 0.005 and β = 0.001. The value
corresponds to the energy level of a single trajectory, namely the light blue one (see e.g.
�gure 4.7), which we are interested in as the structure is mostly preserved.
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4.6 Summary

In this chapter, we looked at the di�erence of the results of the stochastic Störmer-Verlet
method and the stochastic symplectic Euler method for several amplitudes of multiplicative
Stratonovich noise. These two methods were chosen since the Euler forward method shows
numerical instability and the fourth order Runge-Kutta method shows similar results to
the Störmer-Verlet method. The Poincaré section at θ1 = 0 with positive velocity θ̇1
was used to determine structures in the double pendulum and to show the di�erence in
simulation between the stochastic Störmer-Verlet method and the stochastic symplectic
Euler method.

It was found that the ampli�cation factor β strongly in�uences the Poincaré section already
for small values. Furthermore the di�erences between the stochastic Störmer-Verlet method
and the stochastic symplectic Euler method can be seen in the Poincaré section as well as
the value of the Hamiltonian over time. The Störmer-Verlet method does a better job as
an integration method. This follows from the boundary of the Poincaré section is more
intact, as well as the value of the Hamiltonian is less a�ected over time.

On the other hand, the value of the Hamiltonian is not precisely constant. The question
arises whether there is a way to add noise such that the Hamiltonian does stay intact
over time. [10] introduces a stochastic variational principle for �uid dynamics, which does
manage to preserve some measured quantities. In a similar way it might be possible to
preserve the energy for the double pendulum.

The value of the time step size ∆t was chosen such that the simulation had little compu-
tational cost and results were of su�ciently high quality. However, as the value of ∆t also
has a direct relation towards the variance of the Brownian motion, it may be interesting
to investigate di�erent values of ∆t in further research. An example of an adjusted time
step size for β = 0.001 was considered but no �gures were included. Nonetheless, it would
be interesting to explore the sensitivity of the solution to adjustments of the time step
size.



Chapter 5

Stochastic Lagrangian Drifter

In this chapter we study the Lagrangian drifter. Section 5.1 introduces the Lagrangian
drifter and describes the coupling of this model with the physical shallow water model.
Section 5.2 describes the basic model of a Lagrangian drifter, both the deterministic as
well as the stochastic ones. After establishing these equations, we describe the tools to
measure the quality of time integration schemes in section 5.3 using estimates of both the
mean as well as the variance of the set of data. In section 5.4 and 5.5 we apply the schemes
to explicitly de�ned velocity �elds for which the analytic results are known. Section 5.6
applies the schemes and tests these results for a scenario de�ned by the shallow water
equations.

5.1 Introduction to the Lagrangian drifter

In the previous chapter we considered a model driven by stochastic ordinary di�erential
equations. Now we want to apply the gained knowledge to the study of particle dispersion
in a �ow. For that we consider the shallow water model, which applies well to many
environmental �ow problems, e.g., mixing in the upper ocean or in large lakes. The one-
dimensional shallow water equations are given by the following set of partial di�erential
equations:

ut +
1

2
(uu)x +

1

Fr2
(η − b)x = a(t)

ηt + (uη)x = 0.
(5.1)

Here, u(x, t) is the velocity �eld, η(x, t) denotes the water height, b(x) denotes the bottom
pro�le underneath the water and a(t) denotes a forcing acting on the water, like the tides.
Furthermore, Fr denotes the dimensionless Froude number. An example of a solution
u(x, t) at a certain point in time is shown in �gure 5.2.

An acclaimed method to make this PDE stochastic is using a stochastically constrained
variational principle, as proposed in [10]. The use of this stochastically contrained vari-
ational principle causes several quantities to be preserved under the addition of stochas-
ticity. Using this approach, it can be found that the overall equations are adjusted to
become

ut +
1

2
(uû)x +

1

Fr2
(η − b)x = a(t)

ηt + (ûη)x = 0.
(5.2)

30
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0

1

Figure 5.1: Evolution of velocity �eld u(x, t) over time, with initial conditions u(x, 0) = 0,

η(x, 0) = b(x) = 1 − c · exp
(
−(x−x0)2

k2

)
, a(t) = cos(t). Boundary conditions are periodic,

i.e. u(0, t) = u(1, t), η(0, t) = η(1, t). Parameters values are c = 0.01, k = 0.15, x0 = 0 and
Fr = 0.75. It can be observed that the motion moves upward until it stops at about u = 1,
from where the motion will continue in opposite direction. Furthermore, notice that u only
changes slightly for di�erent values of x.

Here, û is given by

û = u+ ξ0 +

m∑
i=1

ξi ◦ dWi, (5.3)

where ξ(x) are location-dependent functions that act as ampli�cation factors for the
stochastic process. Adding noise in this way preserves several properties, such as potential
vorticity (see [32]).

However, due to the nonlinear nature of the shallow water equations, it is hard to verify
the preservation of several quantities numerically. Instead, we use the velocity �eld as
described in equation (5.1) and transform it into a Lagrangian function. This means that
instead of looking at the �ow u over time, we look at individual particles x over time. We
call these particles drifters. For example, in the case of ocean dynamics the Lagrangian
drifters can be associated with buoys on a large-scale shallow water surface.

5.2 Lagrangian drifter equations

Let us denote the location of drifter d at time t by xd(t). We assume each drifter has
no mass and no friction, meaning the location of each deterministic drifter is directly
determined by the �ow and does not further a�ect the evolution of the �ow, i.e.,

d
dt
xd = u(xd, t). (5.4)
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Here we have that xd(t) ∈ R. This may cause problems, since the velocity �eld u is only
de�ned on a �nite amount of grid points. To tackle this problem, we use linear interpolation
to construct a value of u(xd, t) from the known values of u at the grid points which xd lies
between. Since t is a de�ned grid on which u(xd, t) is de�ned, we do not have to use linear
interpolation in this dimension.

Stochastic equations

We now introduce stochastic noise to equation (5.4). The location of the drifter is given,
in line with equation (5.3), by

dxd = u(xd, t)dt+ ξ0(xd, t) + ξ1(xd, t) ◦ dWd,t. (5.5)

Important is that Wd,t is both time as well as drifter dependent. Here, we choose ξ1(xd, t)
as:

ξ1(xd, t) = βu(xd, t), (5.6)

where β is a constant multiplication factor. The choice of ξ1 is made with dispersion of
large particles in mind. Furthermore, equation (5.6) has a view that if the ocean moves
very fast, a ship is more vulnerable to noise.

The ξ0 term is used to make the analysis simpler. Recall that we can rewrite the Stratonovich
di�erential equation into an Itô di�erential equation alongside corollary 2.2.1, therefore ξ0
is chosen such that

dxd = u(xd, t)dt+ βu(xd, t)dWd,t, (5.7)

i.e., to compensate for the Stratonovich integral.

Choice of numerical methods

In the following section we will use the methods introduced in chapter 3 that are approx-
imations to equation (3.1), as our problem shown in equation (5.7) is an example of this
problem. Hence, the adopted methods are the Euler-Maruyama and the stochastic Runge-
Kutta method. Although it was reasoned in chapter 4 that the Euler-Maruyama method
was not useful for the model of the double pendulum, we can reconsider it here. The reason
for this is that the deterministic variant of the method, i.e. the Euler Forward method, is
suitable to estimate a solution of equation (5.4). We do not consider the stochastic sym-
plectic Euler and stochastic Störmer-Verlet method here as they are suitable for problems
like equation (3.3), which are not investigated in this chapter.

5.3 Statistical tools

We want to compare time integration methods for the drifter equation and determine to
what extent speci�c methods in�uence the statistics of the Lagrangian drifters. For any
drifter the noise associated with the Brownian motion has the e�ect that each trajectory
is unique. Because of this, we do not analyse the behaviour a single drifter, but rather a
group of drifters. The aim is to detect whether increasing the number of observations, i.e.,
increasing the number of independent drifters, results in the average solution converging
towards the solution of the underlying deterministic system given by equation (5.4). Next
to that, we introduce the variance of a set of drifters and wish to study whether this
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Figure 5.2: Location of 10 drifters over time, driven by a sinusoidal velocity �eld u(x, t) =
sin(t) and implemented using the Euler-Maruyama method. All drifters start at initial
location xd(0) = 0. Notice that the drifters disperse, but do so in a sinusoidal movement.
The average location of the drifters, represented by the centre of mass, shows a sinusoidal
movement as well.

variance converges towards the analytic value in case an explicitly prescribed velocity �eld
is assumed.

To start our analysis, we will �rst calculate what the solution should converge to. This
amounts to calculating the mean and variance of xd at a certain chosen time t = T . This
is done by taking equation (5.7) and calculating the expected value and the variance from
the integrated expression, similar to the solution shown in equation (3.2) to the original
Itô problem shown in chapter 2 (equation (2.2)). Recall that xd is the position of drifter d,
which moves with both the deterministic and stochastic �ow. Thus we �nd that the value
of xd at time t = T is given by

xd(T ) = xd(0) +

∫ T

0
u(xd, t)dt+

∫ T

0
βu(xd, t) ◦ dWd,t. (5.8)

Here, it is assumed that the initial time t0 is equal to 0. This assumption is implied for
the rest of this chapter. From this expression, we can directly calculate the expected value
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and the variance of the solution xd(T ). The expected value is given by

E(xd(T )) = E(xd(0)) + E

(∫ T

0
u(xd, t)dt

)
+ E

(∫ T

0
βu(xd, t)dWd,t

)
= xd(0) +

∫ T

0
u(xd, t)dt+

β · E

[
lim
N→∞

N∑
k=0

u(xd, tk)(Wd,tk+1
−Wd,tk)

]

= xd(0) +

∫ T

0
u(xd, t)dt+

β lim
N→∞

N∑
k=0

u(xd, tk) · E
[
(Wd,tk+1

−Wd,tk)
]

(5.9)

From the third property of de�nition 2.1 it immediately follows that the �nal term is equal
to zero. Here we also used the second property of de�nition 2.1 to the extent that the noise
induced in u by the position of the drifter xd at time tk is independent ofWtk+1

−Wtk .

Using the same two properties, i.e., the second and third property of de�nition 2.1, we can
also �nd the variance of xd at time t = T . This is given by

Var(xd(T )) = Var(xd(0)) + Var

(∫ T

0
u(xd, t)dt

)
+ Var

(∫ T

0
βu(xd, t)dWd,t

)
= Var

(
β

∫ T

0
u(xd, t) ◦ dWd,t

)
= β2 ·Var

[
lim
N→∞

N∑
k=0

u(xd, tk)(Wd,tk+1
−Wd,tk)

]

= β2 lim
N→∞

N∑
k=0

(u(xd, tk))
2 ·Var

[
(Wd,tk+1

−Wd,tk)
]

= β2 lim
N→∞

N∑
k=0

(u(xd, tk))
2 · (tk+1 − tk)

= β2
∫ T

0
u(xd, t)

2dt

(5.10)

Now that we have an analytic expected value and variance of equation (5.7), we want to
calculate these values for the Euler-Maruyama and stochastic Runge-Kutta scheme. This
is done to ensure whether these schemes converge towards the expected value and variance
as the time step size is decreased. If these values are not equal to the analytic values, then
the schemes would be inconsistent[33].
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Euler-Maruyama

Assuming a uniform time step size ∆t, the mean, or expected value, of xd at time t = T
for the Euler-Maruyama method is given by:

E(xd(T )) = E (xd(T −∆t) + u(xd, T )∆t+ βu(xd, T )∆Wd,T )

= E(xd(T −∆t)) + E(u(xd, T )

= E(xd(T −∆t)) + u(xd, T )∆t

= . . .

= xd(0) + ∆t

T∑
t=0

u(xd, t).

(5.11)

Here we again use that the expected value of the Brownian motion is zero, as mentioned
in chapter 2. Similarly, we can also calculate the variance of xd at time t = T . This is
given by:

Var(xd(T )) = Var [xd(T −∆t) + u(xd, T )∆t+ βu(xd, T )∆Wd,T ]

= Var(xd(T −∆t)) + Var (βu(xd, T )∆Wd,T )

= Var(xd(T −∆t)) + β2u(xd, T )2 ·Var(∆Wd,T )

= Var(xd(T −∆t)) + β2u(xd, T )2∆t

= . . .

= β2∆t
T∑
t=0

u(xd, t)
2,

(5.12)

where it is used that the variance of the Brownian motion ∆Wd,t is equal to ∆t. Fur-
thermore we use in the �rst step that the increments of the Wiener process for each time
∆Wd,ti are independent, see property two of de�nition 2.1.

Stochastic Runge-Kutta

Recall that the stochastic Runge-Kutta method is given by

xd(T ) = xd(T −∆t) +
1

6
(k1 + 2k2 + 2k3 + k4) (5.13)

Here we denote k1, ..., k4 as the internal stages of the Runge-Kutta method, as were intro-
duced for the method in equation (3.6). In this model, these are given by

k1 = u(xd, T −∆t)∆t+ βu(xd, T −∆t)∆Wd,T

k2 = u(xd + k1/2, T −∆t/2)∆t+ βu(xd + k1/2, T −∆t/2)∆Wd,t

k3 = u(xd + k2/2, T −∆t/2)∆t+ βu(xd + k2/2, T −∆t/2)∆Wd,t

k4 = u(xd + k3, T )∆t+ βu(xd + k3, T )∆Wd,t.

(5.14)

The mean of the Runge-Kutta method is now given by

E(xd(T )) = E

[
xd(T −∆t) +

1

6
(k1 + 2k2 + 2k3 + k4)

]
= E(xd(T −∆t)) +

1

6
[E(k1) + 2E(k2) + 2E(k3) + E(k4)]

= E(xd(T −∆t)) +
∆t

6
[u(xd, T −∆t) + 2u(xd + k1/2, T −∆t/2)+

2u(xd + k2/2, T −∆t/2) + u(xd + k3, T )] .

(5.15)
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We remind the reader that linear interpolation is used to determine the velocity �eld u at
each internal location.

Notice that if the velocity �eld u is independent of the drifter location as well as the time,
we obtain

E(xd(T )) = E(xd(T −∆t)) + ∆t · u(xd, T ), (5.16)

just as we would have with the Euler-Maruyama scheme, equation (5.11).

Similarly, the equation for the variance is given by:

Var(xd(T )) = Var(xd(T −∆t)) +
1

36
Var [k1 + 2k2 + 2k3 + k4] . (5.17)

We will analyse two situations, one where the internal stages are independent and one
where they are not. This will show only one option is justi�ed, which is demonstrated by
assuming a simple velocity �eld.

The variance term around the internal stages can only be separated if the variance at each
internal stage is independent of the other stages. This is the case when the Wiener process
∆Wd,t at each stage is unique, leading towards the expression

Var(xd(T )) = Var(xd(T −∆t)) +
1

36
[Var(k1) + 4Var(k2) + 4Var(k3) + Var(k4)]

= Var(xd(T −∆t)) +
β2

36

[
u(xd, T −∆t)2 + 4u(xd + k1/2, T −∆t/2)2

+ 4u(xd + k2/2, T −∆t/2)2 + u(xd + k3, T )2
]

∆t.

(5.18)

Since it is di�cult to say what happens if ∆t becomes in�nitesimal, we will consider a
situation where the velocity �eld u is independent of the position of the drifter as well as
the time. We will verify this in our results in section 5.4. If u is independent of the position
of the drifter as well as the time, we have that

Var(xd(T )) = Var(xd(T −∆t)) +
β2

36

[
u(xd, T )2 + 4u(xd, T )2

+ 4u(xd, T )2 + u(xd, T )2
]

∆t

= Var(xd(T −∆t)) +
10

36
βu(xd, t)

2∆t,

(5.19)

which is di�erent than the variance shown in equation (5.12). Instead, we have that the
variance of this scheme is equal to

Var(xd(T )) =
10

36
β2∆t

T∑
t=0

u(xd, t)
2. (5.20)

Now letting the size of ∆t become in�nitesimal, this expression does not converge towards
the variance of the analytical solution in equation (5.10).

On the other hand, using the same Gaussian increment at each internal stage in equa-
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tion (5.17), we �nd that

Var(xd(T )) = Var(xd(T −∆t)) +
1

36
Var [k1 + 2k2 + 2k3 + k4]

= Var(xd(T −∆t)) +
β2

36
Var [u(xd, T −∆t)∆Wd,t

+ 2u(xd + k1/2, T −∆t/2)∆Wd,t

+ 2u(xd + k2/2, T −∆t/2)∆Wd,t

+u(xd + k3, T )∆Wd,t]

= Var(xd(T − δt)) +
β2

36
· [u(xd, T −∆t)

+ 2u(xd + k1/2, T −∆t/2) + 2u(xd + k2/2, T −∆t/2)

+u(xd + k3, T )]2 ∆t.

(5.21)

Again, we look at the situation where the velocity �eld u is independent of the position of
the drifter as well as the time.

Var(xd(T )) = Var(xd(T −∆t)) +
β2

36
[u(xd, T ) + 2u(xd, T )

+ 2u(xd, T ) + u(xd, T )]2 ∆t

= Var(xd(T −∆t)) +
β2

36
[6u(xd, T )]2 ∆t

= Var(xd(T −∆t)) + β2u(xd, T )2∆t.

(5.22)

In this case, the same variance is found as in equation (5.12). Both values converge towards
the variance shown in equation (5.10) as ∆t becomes in�nitesimal.

We will from now on denote the expected value and variance of xd at time T as µT and σ2T
respectively, and use context to make clear whether we are referring to the expected value
and variance of the analytical solution, the solution from the Euler-Maruyama scheme, or
the solution from the stochastic Runge-Kutta scheme.

Sample mean and sample variance

We now have clear what mean and variance we could expect from each of our chosen
schemes. We now introduce the sample mean and sample variance as a way to measure
our results. In respect, these are given by

x̄T =
1

N

N∑
d=1

xd(T ), (5.23)

S2
xT

=
1

N − 1

N∑
d=1

(xd(T )− x̄T )2 . (5.24)

In equations (5.23) and (5.24) we let N denote the number of drifters, d = 1, . . . N . Note
that the sample mean can also be seen as the average behaviour of our drifters, i.e., the
centre of mass. Properties on the sample mean and sample variance can be found in
appendix C. From the results in this appendix we conclude that it is expected that the
sample mean and variance should converge towards the mean and variance of the respective
scheme as the total number of drifters N is increased. In the following sections we will
experimentally show whether this is indeed the case.
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Mean Squared Displacement

Another way of justifying the numerical schemes is by using the mean squared displacement
(MSD), given at time t by

MSD =
1

N

N∑
i=1

|x(i)(t)− x(i)(0)|2. (5.25)

Here, N is the number of particles released at reference locations xi(0). Note that equation
5.25 resembles equation (5.24). It is known for the mean squared displacement that for a
particle solely driven by a Brownian motion, the MSD at time t is equal to

MSD = 2Dt, (5.26)

where D is the di�usion coe�cient. This di�usion coe�cient has a direct relation to the
stochastic process, namely that the Brownian motion forcing this particle has a variance
of 2Dt, while maintaining a mean of 0. Hence we could choose a value for the di�usion
coe�cient D and study whether the average variance of a set of particles converges towards
the value of the MSD as the amount of particles increase. On the other hand, since the
particles in our system are not only driven by a Brownian motion, but also by a velocity
�eld, this could only be a good veri�cation if we choose a constant velocity �eld u(x, t) = 1.
Still, investigating the e�ect of a numerical method on the value of the di�usion coe�cient
D can also be achieved by investigating the value of β in equation (5.7) instead.

Furthermore, since the de�nition of the mean squared displacement is very similar to the
de�nition of the sample variance, the latter is only used from now on. It is then su�cient
to verify that the variance agrees with the analytic value at certain times t.
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5.4 Constant drift

In this section we will compare the Euler-Maruyama and the stochastic Runge-Kutta
method for a constant drift u(x, t) = 1.

For this and the following sections, we have chosen to study the situation where ∆t =
0.1. This is of interest to us since the result by the Euler-Maruyama method and the
stochastic Runge-Kutta method become similar for ∆t small, as shown in the previous
section. Furthermore we have chosen β = 1, and initial condition xd(0) = 0 for all drifters,
as this is generally easy to consider.

As was shown in section 5.3, for a value of u that is not dependent on the location of the
drifter as well as the time, the Euler-Maruyama and stochastic Runge-Kutta method (with
the same noise in each internal stage) are identical. Hence, we obtain the same result here
for these methods, as shown in �gure 5.3.
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Figure 5.3: Mean location and variance of an increasing number of N drifters at T =
1000. Both the stochastic Runge-Kutta method and the Euler-Maruyama method converge
towards the analytically prescribed mean and variance.

As can be seen in �gure 5.3, the mean and variance for both methods converge towards
103, which is in line with the theory mentioned in section 5.3.

The mean stays close to the analytical value from N = 512 and onward. Repeating this
experiment multiple times using new generated Brownian motion, we �nd that this stays
true.
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5.5 Sinusoidal drift

In this section we will compare the Euler-Maruyama and the stochastic Runge-Kutta
method for a more realistic velocity �eld, namely a sinusoidal wave u(x, t) = sinπt. This
velocity �eld can be thought of as a simple approximation to tidal behaviour. The result
of the mean and variance over time can be seen in �gure 5.4.
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Figure 5.4: Mean location and variance of an increasing number of N drifters at T = 1000.

As can be observed in �gure 5.4, the results of both methods are almost identical. This
is likely due to the fact that the time step size is still too small to make a signi�cant
impact.

The error between the mean of the numerical methods and the analytic mean seems to
be much larger compared to the result generated by the constant drift. If we repeat this
experiment with new generated Brownian motion, we �nd that indeed the error is much
larger compared to the error of the constant drift.

Additionally, it can be seen that for less then 10 drifters the error for the expected value
seems to be small compared to the error for an increased amount of drifters.
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5.6 Drift from a real scenario

In this section, we study the result of both schemes for a velocity �eld generated by
the shallow water equations, as were mentioned in section 4.1. That is, we take u to
be the numerically approximated solution of equation (5.1). The results can be seen in
�gure 5.5.

These �gures contain no line showing the true expected value and variance, as the calcu-
lation of these values is not available. This is due to the fact that u is dependent on the
position of the drifters.
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Figure 5.5: Mean location and variance of an increasing number of N drifters at T = 1000.

In �gure 5.5, it can be observed that the two solutions lie very close together. Repeating this
experiment with new values for the Brownian motion, we can indeed verify that the solution
of the stochastic Runge-Kutta and Euler-Maruyama method are always approximately
equal. Initially, it was thought that the di�erence should be bigger, as the velocity �eld u is
dependent both on the position as well as the time. However, remember the picture shown
in �gure 5.2. If we look at the solution u(x, t) at any time t generated by equation (5.4),
we see that the u(x, t) is is nearly constant in space.

It can also be observed in �gure 5.5 that the mean value and variance converge to similar
values as for the case of sinusoidal drift. Again this can be con�rmed by the behaviour of
u from the shallow water equations because u behaves like a sinusoidal over time.
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5.7 Summary

In this chapter we studied the di�erence of the results of the Euler-Maruyama method
and the stochastic Runge-Kutta method on the Lagrangian drifter. A noise term was
included in the drifter equation by introducing Stratonovich multiplicative noise. Using
the variance of the analytic solution, we showed that the Runge-Kutta method could only
be justi�ed as an approximation to the solution if the noise in each stage would be the
same. Using these methods, we approximated solutions for three di�erent velocity �elds
u(x, t), namely a constant one, a sinusoidal �eld, and �nally a velocity �eld generated
by the one-dimensional shallow water equations.It was found that the di�erence between
the sample mean and sample variance of the methods were approximately equal, even
being exactly equal for the constant velocity �eld, in line with the theory covered. We
conclude that for this problem the Euler-Maruyama method provides a su�ciently accurate
approximation to the true solution. Additionally, it is a computationally cheaper method
than the stochastic Runge-Kutta method, which uses four internal stages per time step,
while the Euler-Maruyama method only uses one.

An additional interesting study presents itself when considering the behaviour of particles
on the stochastic shallow water equations using the deterministic variant of the Lagrangian
drifter, which can be found in equations (5.2) and (5.4), respectively. These results can
subsequently be compared to the location of the particles obtained using the stochastic
Lagrangian drifter driven by the deterministic shallow water equations , i.e. the results in
section 5.6. This could lead to new insights on how to choose the noise in the stochastic
Lagrangian drifter, and forge a relation between equations (5.6) and (5.7).



Chapter 6

Conclusion

In this thesis we have studied the results of two models, which were subjected to a stochastic
process. To reach this goal, we have introduced a stochastic variable inside a di�erential
equation in the form of a Wiener process, and shown some basic properties of the stochastic
di�erential equation. This expression has been discretised and numerical methods were
introduced to approximate the solution as a function of time.

A model of the double pendulum has been introduced, where we added stochastic terms
to the canonical momenta of the Hamiltonian equations. Using Poincaré sections we
could analyse the behaviour of the double pendulum under varying levels of multiplica-
tive Stratonovich noise. We focused on two di�erent time integration methods, namely
the stochastic Störmer-Verlet method and the stochastic symplectic Euler method, which
yielded almost identical results for the deterministic model. For the stochastic model, the
results between the two methods were close in terms of preserving the total energy but far
from being locally identical for the same noise. For a low level of noise, some structured
orbits, e.g., periodic motions, seen in the Poincaré sections, were preserved but most such
structured orbits seemed to disappear as a form of chaotic motion. Increasing the amount
of energy only ampli�ed this e�ect, with leaving only basic low frequency orbits seemingly
untouched.

We introduced another model of particles �oating on top of a �eld of water. Speci�cally,
we introduced the shallow water equations as an example of an underlying system which
moves these particles. Using statistical tools we have shown that the expected value and
the variance of the Euler-Maruyama and stochastic Runge Kutta numerical schemes con-
verge towards the expected value and the variance of the continuous model of the stochastic
drifter. As expected, for a constant drift the results were equal, and for a sinusoidal drift
velocity �eld the results were still quite close to each other. Even adjusting several parame-
ters did not result in a bigger di�erence in expected value and variance for the two methods.
In the third situation analysed, the drift was induced by the one-dimensional deterministic
shallow water equations, as shown in equation (5.1). Similar to the previous two cases,
di�erences in the particle dispersion characteristics were found insensitive to the numerical
method, showing that a low order deterministic method would be su�cient.
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Appendix A

Extensive proofs SDE's

Lemma A.1

Lemma A.1. The following equality holds true:[∫ T

t0

dWs

]2
=

∫ T

t0

ds, (A.1)

or, in more detail when written out,

(Wtk+1
−Wtk)2 → (tk+1 − tk), whenever (tk+1 − tk)→ 0, (A.2)

for k ∈ {0, 1, 2, ..., N − 1}.

Proof. Let us denote ∆Wtk = Wtk+1
−Wtk and ∆tk = tk+1 − tk. First of all we show that

the lemma is true for the expected value:

E[(∆Wtk)2] = Var(∆Wtk) + E[∆Wtk ]2

= ∆tk.
(A.3)

Now, when partitions ∆Wtk get in�nitesimally small, from the strong law of large numbers
we get that

P

(
lim
N→∞

1

N

N−1∑
k=0

∆W 2
tk

= ∆tk

)
= 1. (A.4)

Relation between an Itô and Stratonovich SDE

Theorem A.2. Let an Itô SDE be given by

dXt = f(Xt)dt+ g(Xt)dWt, (A.5)

where Xt ∈ Rn denotes the state at time t. Furthermore assume that g is continuously

di�erentiable. Then in integral form, the conversion to a Stratonovich SDE is given by∫ T

0
g(Xt)dWt =

∫ T

0
g(Xt) ◦ dWt −

1

2

∫ T

0

dg

dx
(Xt)g(Xt)dt (A.6)
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Proof. This prove makes use of lemma A.1. Let us denote ∆Wtk = Wtk+1
− Wtk and

∆tk = tk+1 − tk.∫ T

0
g(Xt)dWt = lim

N→∞

N−1∑
k=0

g(Xtk)(∆Wtk)

= lim
N→∞

N−1∑
k=0

g(Xtk+1
) + g(Xtk)

2
(∆Wtk)− lim

N→∞

N−1∑
k=0

g(Xtk+1
)− g(Xtk)

2
(∆Wtk)

=

∫ T

0
g(Xt) ◦ dWt −

1

2
lim
N→∞

N−1∑
k=0

(
g(Xtk+1

)− g(Xtk)
)

(∆Wtk)

=

∫ T

0
g(Xt) ◦ dWt −

1

2
lim
N→∞

N−1∑
k=0

(
g(Xtk+1

)− g(Xtk)

Xtk+1
−Xtk

(Xtk+1
−Xtk)

)
(∆Wtk)

=

∫ T

0
g(Xt) ◦ dWt −

1

2
lim
N→∞

N−1∑
k=0

(
g(Xtk+1

)− g(Xtk)

Xtk+1
−Xtk

Xtk+1
−Xtk

Wtk+1
−Wtk

)
(∆Wtk)2

=

∫ T

0
g(Xt) ◦ dWt −

1

2
lim
N→∞

N−1∑
k=0

(
g(Xtk+1

)− g(Xtk)

Xtk+1
−Xtk

Xtk+1
−Xtk

Wtk+1
−Wtk

)
(∆tk)

=

∫ T

0
g(Xt) ◦ dWt −

1

2

∫ T

0

dg
dx

(Xt)
dXt

dWt
dt

=

∫ T

0
g(Xt) ◦ dWt −

1

2

∫ T

0

dg
dx

(Xt)g(Xt)dt

(A.7)



Appendix B

Derivation of the Hamiltonian for

the double pendulum

In this section, we derive the Hamiltonian equations for the model of the double pendulum.
For that, we �rst write the system of equations as a Lagrangian system, and derive the
equations for the Hamiltonian afterwards.

Let a pendulum be given by a certain mass m1 attached to a solid object with a rigid
massless rod of length l1, and let this have an angle θ1, with θ1 = 0 implying the rod
would hang straight down. Now suppose we attach another pendulum with a mass m2 to
the �rst pendulum with another rigid massless rod of length l2 with an angle θ2, where
θ2 = 0 would again imply that the second rod is pointing down from the �rst pendulum.
In Cartesian coordinates, the location of both pendula would then be given by:

x1 = l1 sin(θ1)

y1 = −l1 cos(θ1)

x2 = l1 sin(θ1) + l2 sin(θ2)

y2 = −l1 cos(θ1)− l2 cos(θ2).

(B.1)

We want to �nd equations for velocity of both pendula. This gives

ẋ1 = l1 cos(θ1)θ̇1

ẏ1 = l1 sin(θ1)θ̇1

ẋ2 = l1 cos(θ1)θ̇1 + l2 cos(θ2)θ̇2

ẏ2 = l1 sin(θ1)θ̇1 + l2 sin(θ2)θ̇2.

(B.2)

The physical energies playing a role in the double pendulum are the kinetic energy T and
the potential energy V . In general, these energies are equal to

T =
1

2
mv2

V = mgh,
(B.3)

where m denotes a mass, v denotes a velocity, g denotes the gravitational constant and
h denotes a height. For the double pendulum, the formula for these energies are the
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following:

T =
m1

2

(
ẋ21 + ẏ21

)
+
m2

2

(
ẋ22 + ẏ22

)
,

V = m1gy1 +m2gy2.
(B.4)

We now use equation (B.2) to transform the energy denoted in Cartesian coordinates into
an energy denoted by polar coordinates. For the kinetic energy T , this results in

T =
m1

2

(
(l1 cos(θ1)θ̇1)

2 + (l1 sin(θ1)θ̇1)
2
)

+
m2

2

(
(l1 cos(θ1)θ̇1 + l2 cos(θ2)θ̇2)

2 + (l1 sin(θ1)θ̇1 + l2 sin(θ2)θ̇2)
2
)

=
m1

2

(
l21θ̇

2
1

)
+
m2

2

(
l21θ̇

2
1 + l22θ̇

2
2 + 2l1l2θ̇1θ̇2 cos(θ1) cos(θ2) + 2l1l2θ̇1θ̇2 sin(θ1) sin(θ2)

)
=
m1

2

(
l21θ̇

2
1

)
+
m2

2

(
l21θ̇

2
1 + l22θ̇

2
2 + 2l1l2θ̇1θ̇2 cos(θ1 − θ2)

)
.

(B.5)

Furthermore, the potential energy V in polar coordinates is equal to

V = −m1l1g cos(θ1)−m2l1g cos(θ1)−m2l2g cos(θ2). (B.6)

The Lagrangian is de�ned as the di�erence between the kinetic and the potential energy,
i.e., L = T − V . This implies that in our case the Lagrangian L is given by

L(θ1, θ2, θ̇1, θ̇2) =
m1 +m2

2

(
l21θ̇

2
1

)
+
m2

2

(
l22θ̇

2
2

)
+m2l1l2θ̇1θ̇2 cos(θ1 − θ2) . . .

+ (m1 +m2)l1g cos(θ1) +m2l2g cos(θ2).
(B.7)

Next, we want to denote the Euler-Lagrange equation, which is an important equation
for Lagrangian mechanics. This says that for a Lagrangian L, the following equality
holds

∂L(θ, θ̇)

∂θ
=

d
dt
∂L(θ, θ̇)

∂θ̇
. (B.8)

For now we will not use this equality explicitly, although we will need it in section 4.3.

∂L

∂θ̇1
= (m1 +m2)l

2
1θ̇1 +m2l1l2θ̇2 cos(θ1 − θ2)

∂L

∂θ̇2
= m2l

2
2θ̇2 +m2l1l2θ̇1 cos(θ1 − θ2).

(B.9)

We now have a Lagrangian and its partial derivatives with respect to θ̇. The equalities in
equation (B.9), are known as the canonical momenta of the double pendulum. In this case
we denote it by pθ:

pθi =
∂L

∂θ̇i
, i = 1, 2. (B.10)

For any Lagrangian system L, we can denote it as a Hamiltonian system H as a function
of θ and pθ. This can be done as follows

H =

2∑
i=1

θ̇ipθi − L. (B.11)
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The update of pθ and θ for a Hamiltonian can then be determined via Hamilton's equations,
given by

dθ
dt

=
∂H

∂pθ
dpθ
dt

= −∂H
∂θ

.

(B.12)

The latter equation in equation (B.12) follows directly from the Euler-Lagrange equa-
tion (B.8).

The Hamiltonian can be written as a function of θ and pθ, leaving θ̇ out of the function.
To do so, we rewrite θ̇ in terms of pθ using equation (B.9). We can rewrite equation (B.9)
in the form(

pθ1
pθ2

)
= A

(
θ̇1
θ̇2

)
, A =

(
(m1 +m2)l

2
1 m2l1l2 cos(θ1 − θ2)

m2l1l2 cos(θ1 − θ2) m2l
2
2

)
. (B.13)

We can �nd the inverse of A, if this exists. Since the determinant of A is bigger than zero
for nonzero values of l1, l2,m1 and m2, the inverse does indeed exist. Since the calculation
of the inverse is a tedious process, it is omitted. It can be found that θ̇ in terms of pθ is
given by

θ̇1 =
l2pθ1 − l1pθ2 cos (θ1 − θ2)

l21l2
[
m1 +m2 sin2 (θ1 − θ2)

]
θ̇2 =

−m2l2pθ1 cos (θ1 − θ2) + (m1 +m2) l1pθ2
m2l1l22

[
m1 +m2 sin2 (θ1 − θ2)

] .

(B.14)

Hence, after more algebraic work, the equation for the Hamiltonian of the double pendulum
can be found:

H(θ1, θ2, pθ1 , pθ2) =
l22m2p

2
θ1

+ l21 (m1 +m2) p
2
θ2
− 2m2l1l2pθ1pθ2 cos (θ1 − θ2)

2l21l
2
2m2

[
m1 + sin2 (θ1 − θ2)m2

]
−(m1 +m2)gl1 cos(θ1)−m2gl2 cos(θ2).

(B.15)



Appendix C

Properties of the sample mean and

variance

The expected value of the sample mean is

E(x̄T ) =
1

N

N∑
d=1

E(xd) = µT . (C.1)

Furthermore, the variance is given by

Var(x̄T ) = Var

(
1

N

N∑
d=1

xd

)

=
1

N2
Var

(
N∑
d=1

xd

)

=
1

N2

N∑
d=1

Var(xd)

=
σ2T
N
.

(C.2)

For large N , the variance of the sample mean should thus go to zero.
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The expected value of the sample variance is given by

E(S2
xT

) =
1

N − 1

N∑
d=1

E
[
(xd − x̄T )2

]
=

1

N − 1

N∑
d=1

Var [xd − x̄T ] + E [xd − x̄T ]2

=
1

N − 1

N∑
d=1

Var

[
xd −

1

N

N∑
i=1

xi,T

]
+ 0

=
1

N − 1

N∑
d=1

Var

[
N − 1

N
xd

]
+ Var

 1

N

∑
i 6=d

xi,T


=

1

N − 1

N∑
d=1

(N − 1)2

N2
σ2T +

N − 1

N2
σ2T

=
N − 1

N
σ2T +

1

N
σ2T

= σ2T .

(C.3)

The calculation of the variance of the sample variance can be a tedious process. For this
reason, we refer the reader to [34] for more detail on the calculation of this, but for now
we omit it and note the variance of the sample variance directly. This is given by

Var(S2
xT

) =
µT 4

n
− σ4(n− 3)

n(n− 1)
, (C.4)

where µT 4 = E
[
(xd − x̄T )4

]
is the fourth central moment of xT .
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