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Summary

Epilepsy is a common neurological disorder affecting between 0.4-1% of the population.
When anti-epileptic drugs are not viable and a focus from which seizures arise can be as-
signed, removing the epileptogenic zone through surgery is an option. This type of surgery
currently has a 40-80% success rate, depending on the center, cohort and epilepsy and
surgery characteristics. Therefore, it is desirable to improve the methods used for this
surgery. A way to improve epilepsy surgery is to construct patient-specific computational
models that can help predict the outcome of surgery. In recent years, the notion has
emerged that epilepsy must be seen as a network disorder rather than a localized disorder.
Hence, the constructed computational model should include the connections between dif-
ferent areas of the brain.

During the workup to surgery, Single Pulse Electrical Stimulation (SPES) can be used to
monitor connectivity in the brain. During SPES, monophasic electrical pulses (0.2 Hz, 1 ms,
4-8 mA) are applied to electrodes placed on the brain. These pulses can evoke responses in
other areas of the brain. Early responses to the stimulations (ERs, <100 ms) can be linked
to connectivity of the brain. Delayed responses (DRs, >100 ms) are seen as biomarkers
of the epileptogenic cortex. In literature it has been shown that it is possible to simulate
both the early and delayed responses to SPES in a network of just two neural mass models
using feedforward inhibition. This study showed that disinhibition led to DRs, but did not
consider reciprocal connections nor larger networks.

In this thesis, we first investigate the influence of feedforward inhibition on spontaneous
activity in a network of two reciprocally coupled neural mass models through simulations
and a bifurcation analysis. We show that feedforward inhibition has a significant effect
on the spontaneous activity of coupled neural mass models and the generation of activity
associated with epilepsy. Moreover, a key step in developing a patient-specific neural mass
model is to reproduce the patients’ ERs and DRs through stimulation within the model.
Hence, we want to understand better how stimulation-induced activity propagates through
the network. In this thesis we investigate evoked responses in small networks through
simulations to find the influence of specific parameters on evoked activity. We use an
evolutionary algorithm to fit parameters for networks of 12 nodes. The results show that
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it is possible to fit desired ERs and part of the desired DRs in small networks of neural
mass models. Moreover, optimizing parameters shows that most desired ERs and some
desired DRs can be fitted in patient-specific networks based on clinical data collected at
the University Medical Centre Utrecht. These models may later be used to study the
onset and propagation of seizures, and possibly assist in delineating epileptiform tissue,
thus improving epilepsy surgery.
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Chapter 1

Introduction

Epilepsy is a common neurological disorder affecting around 0.4-1% of the world’s popula-
tion [1]. When treatment using drugs is not viable, removal of the epileptogenic zone (EZ)
through surgery is an option. The epileptogenic zone is defined as the smallest part of the
cortex the removal of which results in the patient being seizure free. This type of surgery
currently has a 40-80% success rate [2]. In order to better delineate the epileptogenic
cortex, it is important to consider the connectivity and activity of the brain. Analysis of
this activity has lead to the view that epilepsy can be seen as a network disorder, rather
than a localized disorder [3].

During the workup for surgery, electrocorticography (ECoG) is used to monitor activity
of the brain. In this measurement method, small electrodes are placed directly on the
brain for recording electrical signals. Single pulse electrical stimulation (SPES) is used
during an ECoG monitoring period, which reveals effective connectivity between areas of
the brain [4]. In SPES, a stimulation is applied to pairs of adjacent electrodes and re-
sponses are measured in all other electrodes. The stimulation mainly evokes two types
of responses: early responses (ER) and delayed responses (DR) [5]. Early responses are
responses found within 100 ms after applying a pulse, whereas delayed responses are found
between 100 ms and 1 s after applying a pulse [5], [6]. The occurrence of ERs can be linked
directly to the connectivity of the brain [7], [8]. On the other hand, DRs are biomarkers of
the epileptogenic cortex, meaning that the occurrence of DRs signifies that a part of the
brain may belong to the epileptogenic zone [9]. We note that DRs occur only stochastically.

In early responses, three peaks are commonly found: the N1, P1 and N2 peaks [6], [10].
The N1 peak is a large negative peak in the EEG signal shortly after the stimulation, the
P1 peak is a subsequent positive peak and the N2 peak is a second negative peak that
does not appear in every ER. Delayed responses are often seen as a spike and sharp wave
occurring later after stimulation [5], [11]. Examples of ERs and DRs from clinical data are
shown in Figure 1.1.
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(a) Early response, averaged over 10 stimula-
tions. The coloured lines indicate results
from individual stimulations, whereas the
black line gives the average signal over 10
stimulations.

(b) Delayed responses. Ten stimulations are
shown on the vertical axis, and stimula-
tions 2 and 8 yield a DR.

Figure 1.1: Early and delayed responses in clinical data, adapted from [6].

Simulating ECoG signals by modelling individual neurons is not feasible due to the ex-
tremely large amount of neurons in the brain. Therefore, it is practical to consider a model
for the average activity within a region of the brain, specifically a model of the activity at
a single electrode. In columns of neurons perpendicular to the surface of the brain, the
firing of neurons is seen to synchronize [12]. Due to this synchronization, it is sufficient to
model the average activity of populations of neurons in such a cortical column, as this aver-
age activity is what most affects the measured ECoG signal. Neural mass models (NMMs)
are models describing the average activity of a neuronal population within a cortical column.

In this thesis we consider the Jansen-Rit and Wendling neural mass models [13], [14]. Both
the Jansen-Rit model and the Wendling model describe the activity of several populations of
neurons within a single cortical column. The Jansen-Rit model consists of three neuronal
populations: pyramidal cells and excitatory and inhibitory inter-neurons. Each of these
populations can be modelled using a second-order ordinary differential equation (ODE).
The Wendling model consists of four populations, as the inhibitory inter-neurons are split
into a slow inhibitory population and a fast inhibitory population. To model connected
areas of the brain, neural mass models can be coupled in several ways. In their original
paper, Jansen and Rit propose a model in which the activity of the pyramidal cells of one
neural mass is projected onto the excitatory inter-neurons of the other neural mass [13].
However, the activity of one neural mass may also have an effect on the activity of the
inhibitory inter-neurons in another region of the brain. In literature, the importance of such
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feedforward inhibitory connections within the Wendling model was highlighted as it allowed
the simulation of ER and DR-like responses within two feedforward coupled neural mass
models [6]. Eissa et al. show that an amount of feedforward inhibition within a certain
range on a macroscopic scale leads to the appearance of epileptic behaviour [15].

While it is known that feedforward inhibition is important for simulating activity evoked
by stimulation, such as ERs and DRs, it is not known what the influence of feedforward
inhibition is on the spontaneous activity of neural mass models. By spontaneous activity,
we mean the activity of the model in absence of stimulation. Moreover, it is interesting to
investigate whether stimulation evoked activity, specifically ERs and DRs, can be modelled
in networks of neural mass models. The reproduction of these early and delayed responses
in a model is an important step in developing patient-specific neural mass models that may
eventually improve epilepsy surgery.

We now formulate our two main research questions. First, what is the influence of feedfor-
ward inhibition on the spontaneous activity of two reciprocally coupled neural mass models?
As a follow-up question, how does evoked activity propagate in networks of neural mass
models?

The thesis is organised as follows. We first introduce the Jansen-Rit and Wendling neural
mass models. Moreover, we present models for coupled Jansen-Rit and Wendling models
with feedforward inhibition.

In the first part of our results, we investigate the influence of feedforward inhibition on
spontaneous activity. We analyse two reciprocally coupled neural mass models, where both
nodes are modelled using the Jansen-Rit or Wendling model. We assess the influence of
feedforward inhibition on this model through bifurcation analysis. Specifically, we character-
ize the bifurcations underlying the appearance and disappearance of spike-wave discharges
(SWDs). Spike-wave discharges are large amplitude oscillations in the (simulated) ECoG
signal that are associated with certain types of epilepsy [16]–[18].

In the second part of our results, we assess the influence of feedforward inhibition on
evoked activity. We investigate the propagation of stimulation-evoked activity within small
networks of Wendling neural mass models using simulations. We then fit parameters in
artificial 12-node networks to show desired ERs an DRs. Parameter optimization is done
using an evolutionary algorithm. Finally, we consider the performance of our optimization
on clinical data provided by the University Medical Centre Utrecht.
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Chapter 2

Neural mass models

We first describe the models used in this thesis. We explain the Jansen-Rit model, Wendling
model and the coupling used between neural masses in the case that multiple linked neural
masses are considered [13], [14]. Both the Jansen-Rit and Wendling models are neural mass
models that model the activity of several neuronal populations within a cortical column.
The Jansen-Rit model is based on one of the first neural mass models, as introduced
by Lopes da Silva et al. in [19]. The Wendling model is an extension of the Jansen-Rit
model. Both neural mass models can be used to approximate electroencephalography (EEG)
measurements or intracranial EEG (ECoG) measurements.

2.1 The Jansen-Rit model
In this section, we describe the Jansen-Rit model [13]. We first review the model and then
describe the dynamics and activity types found in the model.

2.1.1 Description of the Jansen-Rit model

The Jansen-Rit model describes the neuronal activity within a cortical column [13]. The
model contains a pyramidal population which receives both excitatory and inhibitory feed-
back from populations of inter-neurons. Each population receives an average firing rate as
input, comprised of input from other populations and in some cases external input. This
firing rate is transformed to a postsynaptic potential (PSP) using a transformation with
impulse response

h(t) =

Kkte−kt, t ≥ 0,

0, t < 0.
(2.1)

Summing all incoming PSPs yields the membrane potential for a population. Here, K
and k are constants which depend on whether the population is excitatory or inhibitory.
The constant K denotes the synaptic gain or maximum amplitude of the postsynaptic
potential, whereas 1/k is the time constant for the post-synaptic potential. It is assumed
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that the constants K and k are the same for the excitatory inter-neurons and the pyramidal
neurons, as they both have excitatory synapses. These constants are denoted as A and a
respectively. Similarly, we denote the values for K and k for the inhibitory inter-neurons by
B and b respectively. The impulse response described in equation 2.1 corresponds to the
following second-order ordinary differential equation (ODE), which describes the dynamics
of the postsynaptic potential for a neuronal population:

v̈(t) = −2kv̇(t)− k2v(t) +Kkx(t). (2.2)

Here, x(t) denotes the incoming firing rate. Meanwhile v(t) denotes the projected post-
synaptic potential by the considered population. Rewriting equation 2.2 introducing an
auxiliary state variable z = v̇ we obtain:v̇ = z,

ż = Kkx− 2kz − k2v.

A sigmoid function is used to transform the membrane potential for a population into a
mean firing rate of the neurons in this population. This sigmoid function is given by

σ(v) =
2e0

1 + er(vh−v)
.

Here, e0 denotes half the maximum firing rate for a neuronal population, vh is the potential
for which half the maximum firing rate is achieved and r is the slope of the sigmoid function
at vh [20]. The following system of six coupled first-order nonlinear ODEs comprise the
Jansen-Rit model: 

v̇0 = z0,

ż0 = Aaσ(v1 − v2)− 2az0 − a2v0,

v̇1 = z1,

ż1 = Aa (I + C2σ(C1v0))− 2az1 − a2v1,

v̇2 = z2,

ż2 = BbC4σ(C3v0)− 2bz2 − b2v2.

(2.3)

In this system, the state variables vi denote the postsynaptic potentials of the three neu-
ronal populations, and zi are auxiliary state variables. A schematic view of the interaction
between the three populations is given in Figure 2.1. Moreover, the constants C1, C2, C3

and C4 are used to account for the connectivity (the amount of synapses) between popu-
lations of neurons and I(t) denotes an external input firing rate. Within our analysis, this
external firing rate is generally taken to be constant.
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Figure 2.1: A schematic view of the Jansen-Rit neural mass model. Adapted from Grim-
bert et al. [20].

Values for the parameters as used by Grimbert et al. are given in Table 2.1 [20]. Parameter
choices for the Jansen-Rit model are not set in stone. A list of admissible parameter
ranges based on experiments and theoretically considered ranges for the Wendling model,
an extension of the Jansen-Rit model, is given in the work by Ferrat et al. [21]. The
parameters C1, C2, C3 and C4 will vary as they are based on the connectivity between
neuronal populations. However, in general the constants will follow the relations C1 = C,
C2 = 0.8C, C3 = 0.25C and C4 = 0.25C [13]. In this way, only one connectivity constant
C needs to be varied when analyzing the system. Lastly, we note that the signal obtained
from EEG or ECoG measurements can be approximated by the membrane potential or input
for the pyramidal neurons and is thus given by v1 − v2. Hence, the quantity v1 − v2 is of
particular interest when analysing the Jansen-Rit model.

Table 2.1: Parameter values for the Jansen-Rit model as described in the work by Grimbert
et al. [20].

Parameter Interpretation Value
A Synaptic gain for the pyramidal and excitatory populations 3.25
a Reciprocal of the time scale for the pyramidal and excitatory populations 100
B Synaptic gain for the inhibitory population 22
b Reciprocal of the time scale for the inhibitory population 50
C Connectivity constant 135
v0 Potential for which the sigmoid function has its median value 6
e0 Half the difference between maxv(σ(v)) and minv(σ(v)) 2.5
r Slope of sigmoid function 0.56

7



2.1.2 Dynamics of the Jansen-Rit model

In this section, we review the bifurcations present in a Jansen-Rit neural mass model as
described in [20]. For a minimal review of bifurcation theory we refer to Appendix A. To
locate the bifurcations in an uncoupled Jansen-Rit neural mass we first find the equilibria
of the system. At an equilibrium point we have

v0 = A
a
σ(v1 − v2),

z0 = 0,

v1 = A
a

(I + C2σ(C1v0)),

z1 = 0,

v2 = B
b
C4σ(C3v0),

z2 = 0.

The equilibria of the Jansen-Rit system can then be expressed as(
A

a
σ(v1 − v2), 0,

A

a

(
I + C2σ

(
A

a
σ(v1 − v2)

))
, 0,

B

b
C4σ

(
C3
A

a
σ(v1 − v2)

)
, 0

)
where v1 − v2 satisfies

v1 − v2 =
A

a
I +

A

a
C2σ

(
A

a
C1σ(v1 − v2)

)
− B

b
C4σ

(
A

a
C3σ(v1 − v2)

)
.

Using matcont [22] the found equilibrium points and found cycles may be continued let-
ting I be a free parameter. Other parameter choices are taken as in Table 2.1. This yields
the one-parameter bifurcation diagram as seen in Figure 2.2.
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Figure 2.2: 1-parameter bifurcation diagram for the Jansen-Rit system as found by Grim-
bert et al. [20].

Here, the positions of equilibria are plotted in blue, where a dashed blue line denotes
an unstable equilibrium and a solid line denotes a stable equilibrium. In the bifurcation
diagram, we see that there is a region where two equilibria are stable for −12.147498 ≤
I ≤ 89.829108. We will refer to the equilibrium with the lowest value for v1 − v2 by the
lower stable equilibrium. Similarly, we refer to the other stable equilibrium by the higher
stable equilibrium, also for I > 315. We see that two fold (LP) points and three Hopf (H)
points are found. The fold points are located at

ILP1 ≈ 113.586,

ILP2 ≈ −41.301.

We thus find that between these two parameter values three equilibria exist, whereas outside
of this region only one equilibrium exists. The Hopf points are found at

IH1 ≈ −12.147,

IH2 ≈ 89.829,

IH3 ≈ 315.696.

The maximum and minimum values for the simulated ECoG of the cycles resulting from
these Hopf bifurcations are plotted in green in Figure 2.2. For an unstable cycle, the green
line is dashed and for a stable cycle the green line is solid. From the Hopf point at IH1 an
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unstable cycle is born (subcritical Hopf bifurcation), which turns into a stable cycle after
the limit point of cycles point found at

ILPC ≈ 137.379.

This cycle cannot be continued further near I ≈ 113.586. The period of the limit cycle
increases rapidly near this value for I, as the branch terminates on a homoclinic bifurcation.

The cycle originating from the second Hopf point at IH2 is stable (supercritical Hopf bifur-
cation) and this cycle exists up until the third Hopf point at IH3 where it disappears.

2.1.3 Activity types in the Jansen-Rit model

We now show various activity types that the Jansen-Rit model can generate. We simulate
the Jansen-Rit system using a simple forward Euler scheme with a time step of 1× 10−4 s.

We follow the bifurcation diagram presented in Figure 2.2. We first simulate the system for
I = 50 starting near the lower stable equilibrium which can be seen as the solid blue line on
the bottom of the bifurcation diagram. In this case, we see that the simulated EEG signal
v1(t)− v2(t) seen in Figure 2.3a is constant as it converges to the lower equilibrium state.
Starting near the higher equilibrium for I = 60 we again see that the system converges
to an equilibrium state. The vertical axis is reversed to conform to standard methods of
visualizing EEG measurements.

Simulating the system for I = 135 (Figure 2.3c) for certain initial conditions, we find spike-
wave-discharges (SWD). Spike-wave-discharges are oscillations with high amplitude that are
commonly associated with certain types of epilepsy [16]–[18]. This behaviour corresponds
to the stable limit cycle with high amplitude found in the bifurcation diagram. Note that
the scale used for the simulation shown in Figure 2.3c is very different from the other shown
simulations.

Starting a simulation at I = 200 (Figure 2.3d) we see that the simulation shows an
α-rhythm, which are oscillations with a frequency of 7 − 13 Hz commonly seen during
wakefulness [23]. The oscillations shown here correspond to the stable cycle between IH2

and IH3 . Lastly, we see that starting close to the present stable equilibrium at I = 350

(2.3e) the simulation is again seen to converge to an equilibrium state.
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Figure 2.3: Simulations of the Jansen-Rit system for various values of I.

2.2 The Wendling model
The Wendling model is an extension of the Jansen-Rit model and distinguishes a fast
inhibitory population and a slow inhibitory population [14]. The added fast inhibitiory
population is modelled in the same way as the neuronal populations considered in the
Jansen-Rit model. The constants K and k as seen in Equation 2.2 are adjusted for the
new population. The addition of a fast inhibitory population allows for richer spontaneous
activity [24]. Moreover, the interaction between fast and slow inhibitory populations is
essential for modelling early and delayed responses in single pulse electrical stimulation
(SPES) [6].

2.2.1 Description of the Wendling model

The original system of ten ODEs proposed by Wendling et al. can be reduced to an equiv-
alent system of eight ODEs [25]. Similar to the Jansen-Rit model, this model includes
a population of excitatory neurons, a population of pyramidal neurons and a population
of slow inhibitory inter-neurons. Moreover, a population of fast inhibitory inter-neurons is
added. This population is modelled analogously to the ODEs derived for the Jansen-Rit
model, with synaptic gain G and time scale g. The fast inhibitory population receives input
from both the pyramidal population as well as from the slow inhibitory population. The
Wendling model for a single cortical column is then given by:
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

v̇0 = z0,

ż0 = Aaσ(upy)− 2az0 − a2v0,

v̇1 = z1,

ż1 = Aa(I + C2σ(uex))− 2az1 − a2v1,

v̇2 = z2,

ż2 = BbC4σ(uis)− 2bz2 − b2z2,

v̇3 = z3,

ż3 = GgC7σ(uif)− 2gz3 − g2v3.

The input firing rates for each population is given by
upy = v1 − v2 − v3,

uex = C1v0,

uis = C3v0,

uif = C5v0 − C6

C4
v2.

The sigmoid function σ(v) is given by

σ(v) =
2e0

1 + er(v0−v)
.

The EEG-signal can again be approximated by the membrane potential of the pyramidal
population, given by the input to the pyramidal cells upy = v1(t) − v2(t) − v3(t). The
Wendling model can generate more neural rhythms than the Jansen-Rit model. In their
original paper, Wendling et al. vary the parameters B and G to show six different activity
types [14]. Moreover, poly-SWDs can be generated for certain parameter choices [24], [26].
Parameter choices for the model are given in Table 2.2. In our analysis of spontaneous ac-
tivity, we mostly adhere to the standard parameter choices given by Wendling et al. [14].

We consider two choices for B and G. In the first case B = 24, G = 10 is used. For
these parameter choices, the slow inhibitory population is dominant over the fast inhibitory
population. On the other hand, choosing B = 22, G = 8, we consider a case where fast
inhibition is more important to the behaviour of the system. We note that both parameter
choices are close to the band where spike-wave-discharges are found by Wendling et al. [14].
Hence, as we vary parameters, we may expect the appearance of SWDs in the system.
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Parameter Interpretation Value
A Synaptic gain for excitatory and pyramidal populations 3.25
B Synaptic gain for slow inhibitory population 24 or 22
G Synaptic gain for fast inhibitory population 10 or 8
a Reciprocal of time scale for excitatory and pyramidal populations 100
b Reciprocal of time scale for slow inhibitory population 50
g Reciprocal of time scale for fast inhibitory population 500
C Connectivity constant 135
c1 Relative connectivity of pyramidal to excitatory population 1
c2 Relative connectivity of excitatory to pyramidal population 0.8
c3 Relative connectivity of pyramidal to slow inhibitory population 0.25
c4 Relative connectivity of slow inhibitory to pyramidal population 0.25
c5 Relative connectivity of pyramidal to fast inhibitory population 0.3
c6 Relative connectivity of slow inhibitory to fast inhibitory population 0.1
c7 Relative connectivity of fast inhibitory to pyramidal population 0.8
e0 Half the difference between maxv(σ(v)) and minv(σ(v)) 2.5
v0 Potential for which the sigmoid function has its median value 6
r Slope of sigmoid function 0.56

Table 2.2: Parameter values for Wendling’s neural mass model with feedforward inhibition
as given by Wendling et al. [14] (with B and G chosen differently).

2.2.2 Dynamics of the Wendling model

We now consider the dynamics of the Wendling system under both proposed parameter
choices when varying the input firing rate I. We start with the case that B = 24, G = 10.

Dynamics for B = 24, G = 10B = 24, G = 10B = 24, G = 10

The 1-parameter bifurcation diagram for this case is given in Figure 2.4. The dynamics for
this case are very similar to the dynamics found for the Jansen-Rit system. This can be
attributed to the larger value of B, the synaptic gain for the slow inhibitory population. A
subcritical Hopf bifurcation is found at

IH1 ≈ 8.550.

From this Hopf bifurcation an unstable limit cycle emerges. This limit cycle undergoes a
limit point of cycles bifurcation at

ILPC ≈ 156.382,
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after which it becomes stable. This stable limit cycle is associated with spike-wave-
discharge-like activity and ends in a SNIC bifurcation close to

ISNIC ≈ 131.285.

A second Hopf point is found at
IH2 ≈ 129.799.

The stable cycle resulting from this subcritical Hopf bifurcation is associated with an α-
rhythm and ceases to exist after

IH3 ≈ 437.716,

where a third subcritical Hopf point is detected. Lastly, two limit points are found. One
is responsible for the SNIC bifurcation and its location is thus given by the location of the
SNIC bifurcation. We find a second fold point at

ILP1 ≈ −11.872.

From the locations of the found bifurcations we infer that a cycle responsible for spike-wave-
discharges is stable between I ≈ 131.285 and I ≈ 156.382 whereas a cycle responsible for
an α-rhythm is stable between I ≈ 129.799 and I ≈ 437.716.
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Figure 2.4: 1-parameter bifurcation diagram for the Wendling model setting B = 24 and
G = 10.

Dynamics for B = 22, G = 8B = 22, G = 8B = 22, G = 8

The 1-parameter bifurcation diagram for this case is given in Figure 2.5. For these choices
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of parameters two fold points are detected at

ILP1 ≈ 119.993,

ILP2 ≈ −34.624.

A subcritical Hopf point is detected at

IH ≈ −23.315.

For I > IH the equilibrium remains stable. The unstable limit cycle resulting from the
Hopf bifurcation ends in a homoclinic-to-saddle bifurcation. For the parameter choices
B = 22, G = 8 we see no stable cycles and the ECoG signal always converges to an
equilibrium state.
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Figure 2.5: 1-parameter bifurcation diagram for the Wendling model setting B = 22 and
G = 8.

2.3 Coupled neural mass models
To model different but connected areas of the brain, neural mass models can be coupled.
When neural mass models are coupled, we propagate the firing rate of the pyramidal popu-
lation of one neural mass to another neural mass. However, the effect of the activity of one
neural mass is not immediately “felt” by another. Hence, the firing rate f(t) of the pyra-
midal population is propagated using a distributed delay following a Gamma distribution
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h(t) = Kte−Kt, meaning that a convolution is taken between f(t) and h(t). The input
firing rate x(t) given to the other neural mass becomes

x(t) =

∫ t

−∞
h(t− s)f(s)ds.

We thus find

x′(t) = h(0)f(t) +

∫ t

−∞
h′(t− s)f(s)ds

Since h(0) = 0 and h′(t) = Ke−Kt −K2te−Kt we find that

x′(t) = K

∫ t

−∞
e−K(t−s)f(s)ds−KX(t)

=⇒ x′′(t)

K
+ x′(t) = f(t)−K

∫ t

−∞
e−K(t−s)f(s)ds

=⇒ x′′(t)

K
+ x′(t) = f(t)− x′(t)−KX(t).

We can therefore model x(t) by the following system of two ODEs:x′(t) = z(t),

z′(t) = Kf(t)− 2z(t)−K2x(t).

The state variable x(t) can then be taken as additive external firing rate input for populations
in a neural mass.

2.3.1 The coupled Jansen-Rit model

In the original paper by Jansen and Rit, a model for two coupled Jansen-Rit neural masses
is given [13]. The model equations are:

v̇0j = z0j,

ż0j = Aaσ(v1j − v2j)− 2az0j − a2v0j,

v̇1j = z1j,

ż1j = Aa (uj + C2σ(C1v0j) +Ki,jv3i)− 2az1j − a2v1j,

v̇2j = z2j,

ż2j = BbC4σ(C3v0j)− 2az2j − a2v2j,

v̇3j = z3j,

ż3j = Adσ(v1j − v2j)− 2dz2j − d2v2j.

Here, i 6= j, i, j ∈ {1, 2}. The sigmoid function σ and the parameter values in this model
are taken to be the same as in the Jansen-Rit model for a single cortical column. The
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chosen parameter values can be found in Table 2.1. The final two equations correspond to
the distributed delay for the outgoing firing rate to other neural masses. The parameter d is
chosen to represent a different time scale for the signal propagated to other neural masses.
We set d = 33 ≈ a/3 according to the estimation made by Jansen and Rit [13].

The bifurcations present in this model have been studied extensively for three cases by
Ahmadizadeh et al. [27]. The cases considered in their paper are

• Reciprocally coupled neural masses with symmetrical input (u1 = u2, K1,2 = K2,1).

• Reciprocally coupled neural masses with a single input (u2 = 0, K1,2 = K2,1).

• Feedforward coupled neural masses with a single input (u2 = 0 K2,1 = 0).

Ahmadizadeh et al. find rich dynamics for the considered cases, showing a larger range of
possible behaviour for two coupled neural masses as opposed to a single Jansen-Rit neural
mass. Their analysis gives insight in the generation of spike-wave discharges as a result of
changes in another neural mass. As SWDs are associated with certain types of epilepsy,
their analysis is thus interesting in the context of epilepsy research [16]–[18]. An analysis
where I1 and I2 are fixed and K1,2 = 650−K and K2,1 = K through Lyapunov exponents
is performed for two coupled Jansen-Rit models in [28].

For our analysis of the influence of feedforward inhibition in reciprocally coupled neural mass
models, we extend the coupled Jansen-Rit model and introduce a feedforward inhibition
term. This gives the system of ODEs:

v̇0j = z0j,

ż0j = Aaσ(v1j − v2j)− 2az0j − a2v0j,

v̇1j = z1j,

ż1j = Aa (Ij + C2σ(C1v0j) +Ki,jv3i)− 2az1j − a2v1j,

v̇2j = z2j,

ż2j = Bb(C4σ(C3v0j) +Ki,jβv3i)− 2az2j − a2v2j,

v̇3j = z3j,

ż3j = Adσ(v1j − v2j)− 2dz3j − d2v3j.

(2.4)

Here, β is a scalar indicating what fraction of external input is projected onto the inhibitory
population of interneurons.

2.3.2 The coupled Wendling-model

We now give a formulation for coupled Wendling neural masses with feedforward inhibition
and feedforward excitation. We formulate the coupling between the neural masses in a way
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analogous to how Jansen-Rit models are coupled. This results in the following system of
10N ODEs, where N is the amount of coupled Wendling models:

v̇0j = z0j,

ż0j = Aaσ(upyj)− 2az0j − a2v0j,

v̇1j = z1j,

ż1j = Aa(σ(uexj) + Ij +
∑

i6=jK
i,jv4i)− 2az1j − a2v1j,

v̇2j = z2j,

ż2j = Bb(σ(uisj) + β
∑

i6=jK
i,jv4i)− 2bz2j − b2v2j,

v̇3j = z3j,

ż3j = Gg(σ(uifj) + γ
∑

i6=jK
i,jv4i)− 2gz3j − g2v3j,

v̇4j = z4j,

ż4j = Adσ(upyj)− 2dz4j − d2v4j.

(2.5)

Here, j ∈ {1, ..., N} and 
upyj = v1j − v2j − v3j,

uexj = C1v0j,

uisj = C3v0j,

uifj = C5v0j − C6

C4
v2j.

The sigmoid function σ(v) is given by

σ(v) =
2e0

1 + er(v0−v)
.

The parameters Ki,j denote the coupling strength between neural masses. We again set
d = 33 ≈ a/3 according to the estimations made by Jansen and Rit [13]. The scaling
constants for the amount of external input propagated to the slow inhibitory populations
and fast inhibitory populations are denoted by β and γ, respectively. Following parameter
choices made by Hebbink et al. we will assume that γ = 0.7β [6]. All other parameter
choices remain as for the uncoupled Wendling neural mass and can be found in Table 2.2.
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Chapter 3

The influence of feedforward inhibition
on spontaneous activity of two
reciprocally coupled neural masses
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3.1 Introduction
In this chapter, we analyze the influence of feedforward inhibition on spontaneous activity
of two reciprocally coupled neural mass models. Feedforward inhibition is known to be im-
portant in the context of computational models for epilepsy [6], [15]. However, the effect
of feedforward inhibition on the spontaneous activity of coupled neural mass models is not
known. A good understanding of this spontaneous activity would provide a link between
modelling choices necessary for generating characteristic evoked responses and the appear-
ance and disappearance of seizure-like activity.

In this chapter, we consider two weakly reciprocally coupled neural mass models represent-
ing two areas of the brain that are relatively far away from each other. We consider coupled
Jansen-Rit models as well as coupled Wendling models. Our goal is to investigate whether
feedforward inhibition has an effect on the appearance of seizure-like activity in the two
neural mass models. In order to do this, we first view simulations of two coupled neural
mass models. We then provide a bifurcation analysis of two coupled neural mass models
to characterize the dynamics underlying the appearance and disappearance of SWD-like
activity.

In literature, there are various works dealing with the analysis of coupled neural mass mod-
els, modelling connected areas of the brain [27]–[29]. Our analysis of coupled areas is
similar to the work by Ahmadizadeh et al. in which two reciprocally coupled Jansen-Rit
models are considered [27]. However, our analysis adds to the results in that paper in
the following ways. First, we consider two coupled Jansen-Rit models with feedforward
inhibition, as introduced in Equation 2.4. The role of feedforward inhibition has not been
explored in [27]. For the case that no feedforward inhibition is present, we discuss parame-
ter choices where both neural masses receive different but nonzero excitatory background
input. We consider these parameter choices as in the context of modelling ECoG signals it
is reasonable to assume that different areas of the brain receive nonzero background input
from long-range connections. However, these background inputs can vary when consider-
ing different areas of the brain. The choice for separate but nonzero background inputs
is different from the case considered in Ahmadizedah et al. where the goal is to model
a hierarchy between two neural mass models by setting the excitatory background input
to zero for one of the two neural masses [27]. Finally, we provide a bifurcation analysis
of two coupled Wendling neural masses, which does not exist in literature to our knowledge.
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3.2 Methods
We first consider two coupled Jansen-Rit models with feedforward inhibition as provided in
Equation 2.4. For this model, we keep parameter choices as in Table 2.1. To quantify the
influence of feedforward inhibition on the spontaneous activity of two reciprocally coupled
Jansen-Rit neural masses, we vary the excitatory background inputs I1 and I2 as well as
the amount of feedforward inhibition scaling β. These parameter variations are applied to
a system of two weakly linked neural masses with K1,2 = K2,1 = 25. We will also provide
some simulations where K1,2 and K2,1 are varied to investigate the influence of connectivity
on spontaneous activity.

We first simulate the system to find where the two neural masses show spike-wave dis-
charges, which are associated with certain types of epileptic activity [16]–[18]. We then
provide a bifurcation analysis for various choices of β for I2 = 120 and I2 = 150, letting I1
be a free parameter. A bifurcation diagram in the (I1, β) plane is constructed for I2 = 150.
In this way, we gain an understanding of the bifurcations underlying the appearance and
disappearance of SWD-like behaviour and also gain insight in other activity types present
in two reciprocally coupled neural masses.

We then consider two coupled Wendling neural masses, given by Equation 2.5. Parameter
choices are as in Table 2.2. We again vary I1, I2 and β, letting γ = 0.7β, and provide
some simulations where K1,2 and K2,1 are varied. Similar to the case of two coupled
Jansen-Rit models, we first simulate the system for various choices of I2, varying I1 and
β. For our simulations, we look at the slow inhibition dominated case with weaker cou-
pling (K1,2 = K2,1 = 25). For the fast inhibition dominated case, we consider a stronger
coupling between neural masses (K1,2 = K2,1 = 100). A stronger coupling is taken as
no SWD-like activity is found in the fast inhibition dominated case for K1,2 = K2,1 = 25.
We then provide a bifurcation analysis for the fast inhibition dominated case with stronger
coupling as the slow inhibition dominated case is similar to two coupled Jansen-Rit models.
In our bifurcation analysis, we fix I2 = 250 and I2 = 170 and investigate the dynamics of
the system for various choices of β, letting I1 be a free parameter. Finally, a bifurcation
diagram in the (I1, β) plane is constructed for I2 = 250.

For both the coupled Jansen-Rit and coupled Wendling models, simulations are done using
ode45, a standard solver in matlab. After a transient of 35 s, we measure the maximum
and minimum EEG signal in a simulation of 5 s and thus find the amplitude of the signal for
both neural masses. If the amplitude of the signal is higher than 8 mV within the considered
5 s, we classify the neural mass as spiking for the parameter values for which the system is
simulated. In this way, whether a neural mass exhibits population spikes can be measured
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in a grid. In this chapter, the term spike denotes periodic activity with high amplitude in
the simulated ECoG signal, and is thus not related to spikes as seen in single neurons. For
our bifurcation analysis, matcont is used for numerical continuation [22].

3.3 Results for two coupled Jansen-Rit models
We simulate two coupled Jansen-Rit neural masses to gain insight in the parameter ranges
for which SWD-like spikes occur in the model. The results of simulations following the
methods described in Section 3.2 can be seen in Figure 3.1. We note that simulations used
for making Figure 3.1 are started from a random initial condition distributed according to a
multivariate standard normal distribution. The results obtained are therefore also stochas-
tic. Moreover, “spots” of different behaviour within a region are indicators of bistability.

We now briefly go over each of the diagrams shown in Figure 3.1. For I2 = 100, a band of
spiking behaviour observed for the first neural mass is observed for parameter ranges similar
to the region where SWD-like activity can be observed in a single Jansen-Rit model. The
band of spiking activity slightly moves to the right as the amount of feedforward inhibition
scaling β increases.

For I2 = 110, a small band of spiking activity for the second neural mass appears for very
low values of β. For I2 = 120 and I2 = 130, we see that a large area of spiking behaviour
for the second neural mass emerges. Moreover, a band exists for low values of β where
simultaneous spiking is seen for both neural masses. For I2 = 130 this band of simultaneous
spiking behaviour is seen to extend to higher values of β.

For I2 = 150 we see that spiking behaviour is only observed for the first neural mass for low
values of β. As β increases a band of spiking behaviour for the second neural mass appears
as well as a region where both neural masses show spiking behaviour. For high values of β,
small regions where only one neural mass shows spiking behaviour appear next to the band
of simultaneous spiking. Similar results can be seen for I2 = 170 and I2 = 200, where the
band of spiking behaviour for the second neural mass appears for increasingly high values
of β. When I2 = 300, spiking is again only observed for the first neural mass in a small
band.
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(a) Spiking behaviour for I2 = 100. (b) Spiking behaviour for I2 = 110. (c) Spiking behaviour for I2 = 120.

(d) Spiking behaviour for I2 = 130. (e) Spiking behaviour for I2 = 150. (f) Spiking behaviour for I2 = 170.

(g) Spiking behaviour for I2 = 200. (h) Spiking behaviour for I2 = 300.

Figure 3.1: Diagrams showing regions of spiking behaviour for both coupled neural masses.
I1 and β are varied, whereas I2 is fixed. Here, blue means no neural mass
is spiking, yellow means only neural mass 1 is spiking, purple means only
neural mass 2 is spiking and red means both neural masses are spiking.

We provide similar simulations in order to investigate the influence of the connection
strength on the activity of two neural mass models. For these simulations, we fix I2 = 150

and β = 0.35 as this choice of parameters shows many different types of activity as shown
in Figure 3.1e. We first fix K2,1 = 25 and vary the feedforward connection K1,2. Then, we
set K1,2 = 25 and vary K2,1. The results are shown in Figure 3.2.
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(a) Spiking behaviour for K2,1 = 25. (b) Spiking behaviour for K1,2 = 25.

Figure 3.2: Diagrams showing regions of spiking behaviour for both coupled neural masses.
I2 and β are fixed. Here, blue means no neural mass is spiking, yellow means
only neural mass 1 is spiking, purple means only neural mass 2 is spiking and
red means both neural masses are spiking.

These simulations show that the connectivity has a large effect on the spontaneous activity
of two reciprocally coupled Jansen-Rit neural mass models. Specifically, we have found that
a stronger feedback connection promotes the appearance of simultaneous SWD-like activity
in the two coupled neural mass models.

3.3.1 Bifurcation analysis for I2 = 120

In this section we present the results from bifurcation analysis for the case that I2 = 120,
for which the results of the simulations are shown in Figure 3.1c. The choice for I2 = 120 is
made because simulations in Figure 3.1 show that the system exhibits rich and representative
behaviour for this choice of I2. Through our bifurcation analysis, we show the dynamics
underlying the appearance and disappearance of SWD-like activity as well as other activity
types present in the two coupled Jansen-Rit neural masses. We consider the cases β = 0,
β = 0.3 and β = 0.7.

Bifurcation analysis for I2 = 120I2 = 120I2 = 120, β = 0β = 0β = 0

We first provide a bifurcation analysis for I2 = 120 and β = 0. In this case, no feedforward
inhibition is present. Bifurcation diagrams and several simulations are shown in Figure 3.3.

In Figures 3.3a and 3.3b, we see the full 1-parameter bifurcation diagram. In Figure 3.3a
the amplitude of the simulated ECoG signal for the first neural mass is shown, and the
amplitude of the simulated ECoG signal for the second neural mass is shown in Figure 3.3b.
An equilibrium branch similar to the one seen for a single Jansen-Rit neural mass (Figure
2.2) is seen to remain for the first neural mass. However, this equilibrium branch is entirely
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unstable. This can be attributed to oscillations of the second neural mass, which causes
periodic forcing of the first neural mass. Two stable cycles exist for high values of I1, both
clearly seen in Figure 3.3. Simulations for these cycles are given in Figures 3.3o and 3.3p.
These two cycles are responsible for the bistability between spiking activity and no spiking
activity (α-rhythm) of the second neural mass as seen in Figure 3.1c. Both cycles become
unstable after a Neimark-Sacker bifurcation, from which a stable torus-like attractors orig-
inate. Simulations for the two resulting tori are shown in Figures 3.3m and 3.3n. These
tori remain stable along the region where only unstable cycles and equilibria are found in
Figures 3.3a and 3.3b. One of the tori corresponds to an α-rhythm for both neural masses,
whereas the other corresponds to spiking behaviour for the second neural mass and an
α-rhythm for the first. Hence, the bistable behaviour as seen in Figure 3.1c is explained for
the parameter range where these tori are stable. As shown in Figure 3.3c , the cycle show-
ing α-rhythms for the second neural masses undergoes two LPC bifurcations. After a Hopf
point, the cycle disappears. The cycle responsible for spiking behaviour of the second neural
mass regains stability after another NS point, as is seen in Figure 3.3c (simulation shown
in Figure 3.3j). After a third NS point shown in 3.3e near I1 = −20, the cycle becomes
unstable once more. After several fold of limit cycle bifurcations the cycle becomes sta-
ble again and remains stable for low values of I1 (simulation shown in Figure 3.3i and 3.3k).

An unstable cycle emerges from a Hopf point near the two NS bifurcations found for high
values of I1. This cycle becomes stable after an NS bifurcation (most clearly seen in Figure
3.3c). The resulting stable cycle corresponds to an α-rhythm for both neural masses for
higher values of I1. As I1 decreases, the amplitude of the oscillation in the first neural mass
also decreases. A simulation for this cycle with small amplitude for the first neural mass is
shown in Figure 3.3h. The cycle becomes unstable after a Neimark-Sacker bifurcation near
I1 = −15, after which it undergoes several fold of limit cycle bifurcations, shown in Figure
3.3e. After the last LPC bifurcation near I1 = 100, the cycle becomes stable again and a
simulation is shown in Figure 3.3h.

From a Hopf point near the first NS point from the left in Figure 3.3e, an unstable cycle
emerges for which the shape is reminiscent of the cycle that caused SWD-like behaviour
in a single Jansen-Rit neural mass. However, the cycle is completely unstable here. After
undergoing several LPC bifurcations most clearly shown in Figures 3.3d and 3.3g, the cycle
remains unstable and disappears after a homoclinic (SNIC) bifurcation. Instead, spiking
behaviour for both neural masses is seen in the form of activity with higher period. An
example of such activity is shown in Figure 3.3l. Cycles with higher period or torus-like
attractors responsible for this activity could not be continued numerically.
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(a) 1-parameter bif. diagram represented in the
ECoG signal for NM1.
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(b) 1-parameter bif. diagram represented in the
ECoG signal for NM2.
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(c) Zoom-in 1.
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(d) Zoom-in 2.
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(e) Zoom-in 3.
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(f) Zoom-in 4.
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(g) Zoom-in 5.
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(h) I1 = 10.5.
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(i) I1 = 11.
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(j) I1 = 38.
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(k) I1 = 65.
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(l) I1 = 126.
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(m) I1 = 248.
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Figure 3.3: One-parameter bifurcation diagram and simulations for I2 = 120, β = 0. In
the bifurcation diagrams, red = LP, yellow = H, blue = LPC, cyan = NS,
magenta = PD. 26



Bifurcation analysis for I2 = 120I2 = 120I2 = 120, β = 0.3β = 0.3β = 0.3

We now move on to the case that I2 = 120 and β = 0.3. We now find that there are two
branches of equilibria, most clearly seen in Figure 3.4b. Both equilibria are stable for high
values of I1, and simulations are shown in Figure 3.4q and 3.4r. The higher equilibrium
(in NM2) seems to show oscillatory behaviour when simulated. However, this behaviour is
transient and the signal will eventually converge to the equilibrium state.

The activity of the system for higher values of I1 is in many ways similar to the case that
β = 0. Namely, we see an NS bifurcation corresponding to the appearance of desynchro-
nized α-rhythms near I1 = 330 (Figure 3.4p). Another stable cycle also exists for this
parameter range (Figure 3.4o)

Spiking behaviour for the first neural mass can again be linked to the existence of a torus-
like structure, a simulation of which is shown in Figure 3.4n. A stable cycle corresponding
to SWD-like activity for the first neural mass also exists, as shown in Figures 3.4c and
3.4d between I1 ≈ 126 and I1 ≈ 143. This cycle becomes stable after an unstable cycle
originating from the leftmost Hopf bifurcation in Figure 3.4g and 3.4h undergoes a fold of
limit cycles. It becomes unstable again after another LPC point. A simulation of this cycle
is shown in Figure 3.4l. Similar to the case that β = 0, the unstable cycle originating from
the rightmost Hopf point in Figure 3.4g ends in a SNIC bifurcation as shown in Figures 3.4e
and 3.4f. Simultaneous spiking is again seen as activity with a higher period, an example
is shown in Figure 3.4k.

For low values of I1, a stable cycle corresponding to SWD-like activity for the second neural
mass persists. This cycle undergoes two period-doubling bifurcations before becoming
unstable after a fold of limit cycles. A simulation is shown in Figure 3.4j and the bifurcations
are most clearly shown in Figures 3.3b and 3.3d.
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Figure 3.4: One-parameter bifurcation diagram and simulations for I2 = 120, β = 0.3. In
the bifurcation diagrams, red = LP, yellow = H, blue = LPC, cyan = NS,
magenta = PD. 28



Bifurcation analysis for I2 = 120I2 = 120I2 = 120, β = 0.7β = 0.7β = 0.7

Lastly, we look at the case that I2 = 120 and β = 0.7. The two equilibrium branches
seen in the previous diagram remain. Instead of activity governed by a torus-like structure,
we now see that two stable cycles resulting from Hopf bifurcations (shown in Figure 3.5e,
simulations in Figures 3.5l and 3.5m) result in an α-rhythm for the first neural mass and
small oscillations for the second neural mass.

For SWD-like activity, we have found that an unstable cycle originating from the leftmost
Hopf bifurcation in Figure 3.5a becomes stable after an LPC point. This results in SWD-like
activity for the first neural mass (Figure 3.5j) and the cycle disappears after a homoclinic
bifurcation. Another stable cycle exists for low values of I1 that corresponds to spiking
behaviour of only the second neural mass as shown in Figure 3.3b. This cycle also disappears
after a homoclinic bifurcation. A simulation close to the homoclinic bifurcation point is
shown in Figure 3.5i, while a simulation for a lower value of I1 is shown in Figure 3.5g.
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Figure 3.5: One-parameter bifurcation diagram and simulations for I2 = 120, β = 0.7. In
the bifurcation diagrams, red = LP, yellow = H, blue = LPC, cyan = NS,
magenta = PD.

3.3.2 Bifurcation analysis for I2 = 150

We now provide several one-parameter bifurcation diagrams in order to better understand
the activity seen in Figure 3.1e. We set I2 = 150. This choice for I2 was made from
the considered values in Figure 3.1 because it shows rich and representative activity that is
considerably different from the activity seen for I2 = 120. Once again, we consider several
values of β in order to get an understanding of the dynamics underlying switches in activity
types within the two Jansen-Rit neural masses. We consider β = 0, β = 0.2 and β = 0.8.
The choice I2 = 150 corresponds to a second neural mass that without external input is
expected to show an α-rhythm.

Bifurcation analysis for I2 = 150I2 = 150I2 = 150, β = 0β = 0β = 0

We first consider a case where no feedforward inhibition is present. A single equilibrium
branch exists that is unstable for all considered values of I1. We see that for high values
of I1, a stable cycle exists corresponding to an α-rhythm for the second neural mass and
small oscillations for the first neural mass (Figure 3.6b, simulation is shown in Figure 3.6k).
This cycle becomes unstable after a Neimark-Sacker point. After this point, a torus-like
structure is stable that corresponds to a desynchronized α-rhythm for both neural masses
(Figure 3.6j). The unstable cycle becomes stable again after two LPC points, as shown in
Figure 3.6d (and Figure 3.6c). The stable cycle corresponds to two α-rhythms with the
same frequency for both neural masses (Figure 3.6i). The cycle briefly becomes unstable
due to an NS point, before becoming stable again after another Neimark-Sacker bifurcation
(bifurcations shown in Figure 3.6c). The resulting stable cycle corresponds to an α-rhythm
for the second neural mass and periodic activity with small amplitude for the first neural
mass (Figure 3.6g). This cycle remains stable up to an NS point. The cycle becomes stable
for a final time after two LPC bifurcations (Figure 3.6b), and this cycle again corresponds
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to an α-rhythm for the second neural mass and periodic activity with small amplitude for
the first neural mass. A simulation is shown in Figure 3.6f.

Once again, an unstable cycle originating from a Hopf point ends in a homoclinic bifurcation
after an LPC bifurcation (Figure 3.6e). A stable torus-like structure exists that shows
SWD-like activity for the first neural mass and an α-rhythm for the second neural mass. A
simulation for this torus is shown in Figure 3.6h.
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Figure 3.6: One-parameter bifurcation diagram and simulations for I2 = 150, β = 0. In
the bifurcation diagrams, red = LP, yellow = H, blue = LPC, cyan = NS,
magenta = PD.

Bifurcation analysis for I2 = 150I2 = 150I2 = 150, β = 0.2β = 0.2β = 0.2

Similarly, we provide the one-parameter bifurcation diagram for the case that I2 = 150 and
β = 0.2. For this choice of β, once again only one completely unstable equilibrium branch
is present.

We see that two stable cycles are found for high values of I1 (Figure 3.7b, simulations are
shown in Figure 3.7p and 3.7q). The first stable cycle corresponds to spiking behaviour in
the second neural mass, while the other corresponds to an α-rhythm in the second neural
mass. Both cycles become unstable after the occurrence of a Neimark-Sacker bifurcation.
The tori resulting from these bifurcations are stable and cause the bistability between spik-
ing activity of the second neural mass and no spiking activity for the second neural mass
in the band seen in Figure 3.1. Simulations for the two tori are shown in Figures 3.7n and
3.7o. The limit cycle responsible for the appearance of spiking activity in the second neural
mass can be continued letting β be a free parameter. This reveals that the band seen in
Figure 3.1 is bounded from below by a fold of limit cycles bifurcation, and bounded from
above by a homoclinic bifurcation for high values of I1. Continuations of these bifurcations
are shown in the 2-parameter diagram in Section 3.3.3.

A cycle corresponding to simultaneous spiking behaviour is found and a simulation is shown
in Figure 3.7j. Continuing this cycle reveals that there is an isolated branch of cycles
responsible for this simultaneous SWD-like behaviour (Figure 3.7e and 3.7f). This cycle is
stable between two LPC points. A torus-like structure responsible for spiking behaviour of
the first neural mass also exists, as shown in Figure 3.7i. For low values of I1, two stable
cycles remain corresponding to an α-rhythm for the second neural mass and periodic activity
with small amplitude for the first neural mass (simulations are shown in Figures 3.7g and
3.7h). Lastly, a stable cycle exists between two LPC bifurcations located approximately at
I1 = 240 and I1 = 300 responsible for spiking behaviour of the second neural mass and an
α-rhythm for the first neural mass (simulation shown in Figure 3.7m, bifurcations shown in
Figures 3.7c and 3.7d).
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Figure 3.7: One-parameter bifurcation diagram and simulations for I2 = 150, β = 0.2. In
the bifurcation diagrams, red = LP, yellow = H, blue = LPC, cyan = NS,
magenta = PD. 33



Bifurcation analysis for I2 = 150I2 = 150I2 = 150, β = 0.8β = 0.8β = 0.8

Finally, we provide the one-parameter bifurcation diagram for the case that β = 0.8.

We see that two branches of equilibria exist for β = 0.8 (Figures 3.8a and 3.8b). For high
values of I1, the system will tend to one of two stable equilibria. We will call the equilibrium
that has a higher simulated EEG signal in the second neural mass the upper branch equilib-
ria and the other equilibrium the lower branch of equilibria. The higher branch of equilibria
undergoes a Hopf bifurcation for I1 ≈ 378.27. From this supercritical Hopf bifurcation a
stable cycle emerges corresponding to an α-rhythm for the first neural mass and smaller
periodic activity for the second neural mass (Figure 3.8p). The cycle becomes unstable
after a Neimark-Sacker bifurcation, from which a torus corresponding to desynchronized
activity emerges (Figure 3.8n). A second supercritical Hopf bifurcation for the lower branch
of equilibria at I1 ≈ 319.58 yields a stable cycle corresponding to an α-rhythm for the first
neural mass and small periodic activity for the second neural mass (Figure 3.8o). This cycle
ends in another Hopf bifurcation at I1 ≈ 96.04.

The small band of spiking activity for the first neural mass seen next to the region of
synchronous spiking corresponds to a torus-like structure. A simulation is shown in Figure
3.8m. Synchronized spiking behaviour occurs when a cycle, originating from a homo-
clinic bifurcation, undergoes a period-doubling bifurcation after which it becomes stable
(bifurcation shown in Figure 3.8e and 3.8f). After a second period-doubling bifurcation
(I1 ≈ 137.9), the cycle again becomes unstable and the simultaneuous spiking ends. A
cycle corresponding to spiking behaviour of only the second neural mass is stable between
two LPC bifurcations located at I1 ≈ 122.19 and I1 ≈ 133.35 (leftmost LPC bifurcations in
Figure 3.8e and 3.8f, simulation shown in Figure 3.8j). For low values of I1, a cycle remains
corresponding to an α-rhythm for the second neural mass and periodic activity with small
amplitude for the first neural mass (cycle shown in the bifurcation diagram in Figure 3.8a
and 3.8b, simulation shown in Figure 3.8i).
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(b) 1-parameter bif. diagram represented in the
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Figure 3.8: One-parameter bifurcation diagram and simulations for I2 = 150, β = 0.8. In
the bifurcation diagrams, red = LP, yellow = H, blue = LPC, cyan = NS,
magenta = PD. 35



3.3.3 Bifurcation diagram in the (I1, β)(I1, β)(I1, β) plane for I2 = 150I2 = 150I2 = 150

Finally, we present a 2-parameter bifurcation diagram for I2 = 150 showing various relevant
bifurcations of cycles in the (I1, β) plane in Figure 3.10. We only show a small subset of all
bifurcations, responsible for the switches between spiking and non-spiking behaviour. We
do not show codimension 2 bifurcations.

For high values of I1, the region of spiking behaviour is enclosed between an LPC bifurcation
branch and a homoclinic bifurcation. For lower values of I1, spiking behaviour for the sec-
ond neural mass is governed by activity with higher period (i.e. torus-like structures, Figures
3.9a and 3.9b). Hence, no specific bounds for the region of spiking behaviour are found for
these lower values of I1. Within this area, a stable cycle corresponding to spiking behaviour
of the second neural mass does exist between two LPC bifurcations. The area of SWDs for
the second neural mass to the left of the area where both neural masses are seen to spike
simultaneously is also bounded by activity with higher period. However, in the center of
this region stable cycles can be found that are responsible for SWDs in the second neural
mass. We have not pursued a further bifurcation analysis of this region. The region where
only spiking behaviour for the first neural mass is seen is also caused by a torus-like struc-
ture. Hence, no clear bounds are found for this region in a 2-parameter bifurcation diagram.

Simultaneous spiking in both neural masses is seen between two LPC bifurcations for lower
values of β. For higher values of β, simultaneous spiking behaviour exists between two PD
bifurcations. Between the region enclosed by the LPC bifurcations and the region enclosed
by the PD bifurcations, cycles with higher period exist (simulation shown in Figure 3.9c).
We note that the region where simultaneous spiking behaviour exists does not completely
coincide with the region between the two PD bifurcations. This may be due to the choice
in initial conditions, as simulations show that stable SWDs do remain in the system (Figure
3.9d). Past the PD bifurcations, a stable period-2 cycle remains corresponding to spiking
behaviour for both neural masses (Figure 3.9e).
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Figure 3.9: Simulations elaborating on specific regions in the 2-parameter bifurcation di-
agram.
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Figure 3.10: 2-parameter bifurcation diagram for two reciprocally coupled Jansen-Rit neu-
ral mass models with I2 = 150. Here, blue=LPC, magenta=PD and
black=Hom.

3.4 Results for two coupled Wendling models
We now analyze two coupled Wendling neural masses with feedforward inhibition. The
model and parameter choices are described in Section 2.3.2.

We start by simulating the system and varying I1 and β while keeping I2 fixed for various
values of I2. We follow the methods for simulation described in section 3.2. We first
consider the case that B = 24 and G = 10 and set K1,2 = K2,1 = 25. We thus look at a
slow inhibition dominated case with weak coupling. We go through the diagrams found in
Figure 3.11.

For I2 = 100 (Figure 3.11a) we see that a small band exists where spiking behaviour is
present for the first neural mass. The second neural mass never shows spiking behaviour.
We note that for larger β a larger region for I1 corresponds to bistable behaviour where
one stable solution corresponds to no spiking behaviour and the other corresponds to only
spiking behaviour for the first neural mass.

In the case that I2 = 130 (Figure 3.11b) we see that a region exists for high I1 and low
β where the second neural mass shows spiking behaviour. This behaviour disappears when
β becomes larger. There is also a small region where both neural masses spike. When
I2 = 150 (Figure 3.11c) spiking behaviour for the second neural mass becomes prominent
for low values of I1. This is interesting as it is not seen for other values of I2. This may
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be attributed to the fact that a single neural mass has a stable cycle corresponding to
SWD-like behaviour for I2 = 150.

The observed behaviour for I2 = 170, I2 = 200, I2 = 250 and I2 = 300 (Figures 3.11d,
3.11e, 3.11f and 3.11g) are all qualitatively similar. For higher values of β a region can be
seen where both neural masses show SWD-like behaviour simulaneously. Moreover, for a
certain range of β we see that spiking behaviour for the second neural mass is prominent
for large I1. A region where both no spiking behaviour as well as spiking behaviour for the
second neural mass are stable remains close to the band where both neural masses are seen
spiking simultaneously.

The result obtained for B = 24, G = 10 shows similar dynamics when compared to the
results for two coupled Jansen-Rit models. A small band exists where the first neural mass
always spikes. For larger values of I2 a region exists for high values of I1 and β > 0 where
only the second neural mass shows SWD-like behaviours. Lastly, there exists a band for
β > 0 where both neural masses are seen to spike simultaneously. This similarity can be
attributed to the fact that for the parameter choices B = 24, G = 10 the slow inhibition is
dominant in the Wendling model.
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(a) Spiking behaviour for I2 = 100. (b) Spiking behaviour for I2 = 130. (c) Spiking behaviour for I2 = 150.

(d) Spiking behaviour for I2 = 170. (e) Spiking behaviour for I2 = 200. (f) Spiking behaviour for I2 = 250.

(g) Spiking behaviour for I2 = 300.

Figure 3.11: Diagrams showing regions of spiking behaviour for both coupled neural
masses. I1 and β are varied, whereas I2 is fixed. Here, blue means no
neural mass is spiking, yellow means only neural mass 1 is spiking, purple
means only neural mass 2 is spiking and red means both neural masses are
spiking.

We now consider the case B = 22, G = 8. In this case we see qualitatively different dy-
namics for a single Wendling neural mass than for a single Jansen-Rit neural mass. Since
low values of connectivity between neural masses yield no spiking behaviour in two coupled
neural masses we increase K1,2 and K2,1 and set K1,2 = K2,1 = 100.

For I2 = 100 (Figure 3.12a) no spiking behaviour is seen for either neural mass. For
I2 = 150 and I2 = 170 (Figures 3.12b and 3.12c) we see a small region where both neural
masses show SWD-like behaviour. This region ceases to exist for large values of β but is
not seen when β = 0. This region grows for higher values of I2. In the case that I2 = 250
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(Figure 3.12d) we see that a large region of spiking behaviour for both neural masses exists
for higher values of β. Moreover, we see a small band where stable spiking behaviour for
just the second neural mass is seen. Lastly, for I2 = 350 we see that the region of simulta-
neous spiking grows larger. Moreover, a narrow region of SWDs is found for the first neural
mass for lower values of β.

For the parameter choices B = 22, G = 8 we note that no spiking behaviour is found in the
case β = 0. Moreover, we see that increased feedforward inhibition can bring the system to
a state where both neural masses spike simultaneously. The disappearance of many regions
where only one neural mass spikes may be attributed to the increased value for K1,2 and
K2,1.

(a) Spiking behaviour for I2 = 100. (b) Spiking behaviour for I2 = 150. (c) Spiking behaviour for I2 = 170.

(d) Spiking behaviour for I2 = 250. (e) Spiking behaviour for I2 = 350.

Figure 3.12: Diagrams showing regions of spiking behaviour for both coupled neural
masses. I1 and β are varied, whereas I2 is fixed. Here, blue means no
neural mass is spiking, yellow means only neural mass 1 is spiking, purple
means only neural mass 2 is spiking and red means both neural masses are
spiking.

For the case that I2 = 250 and β = 0.65, we also investigate the influence of the strength
of both the feedforward and feedback connectivity. The results for these simulations are
given in Figure 3.13.
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(a) Spiking behaviour for K2,1 = 100. (b) Spiking behaviour for K1,2 = 100.

Figure 3.13: Diagrams showing regions of spiking behaviour for both coupled neural
masses. I2 and β are fixed. Here, blue means no neural mass is spik-
ing, yellow means only neural mass 1 is spiking, purple means only neural
mass 2 is spiking and red means both neural masses are spiking.

We have found that simultaneous spiking behaviour for both Wendling neural masses ceases
to exist if the feedforward connectivity is too weak or too strong. Moreover, we find that
increasing the feedback connectivity promotes the generation of simultaneous SWD-like
activity in both coupled neural mass models. This is similar to what was found for two
coupled Jansen-Rit models in section 3.3.

3.4.1 Bifurcation analysis for B = 22, G = 8

In this section we provide a bifurcation analysis of two coupled Wendling neural masses for
the case that B = 22 and G = 8. We choose not to do a bifurcation analysis for the
case that B = 24, G = 10 as the activity of the system is then shown to be very similar
to the activity of two coupled Jansen-Rit neural masses (as seen in Figure 3.11). Spiking
behaviour for this case is shown in Figure 3.12.

Bifurcation analysis for I2 = 250I2 = 250I2 = 250, β = 0β = 0β = 0

We start by considering the case that I2 = 250 and β = 0. Bifurcation diagrams and
simulations are shown in Figure 3.14. We see that there is a single equilibrium branch,
that becomes unstable between two Hopf bifurcations and between a Hopf bifurcation and
a fold bifurcation (Figures 3.14a and 3.14b). Between two Hopf bifurcations, a stable
cycle exists corresponding to and α-rhythm for both neural masses (Figure 3.14e). From a
second Hopf point an unstable cycle emerges that disappears after a homoclinic bifurcation
(Figures 3.14a and 3.14b). We see no stable behaviour corresponding to SWD-like activity,
which is in correspondence with what is found in the simulations shown in Figure 3.12.
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Figure 3.14: One-parameter bifurcation diagram and simulations for I2 = 250, β = 0. In
the bifurcation diagrams, red = LP, yellow = H, blue = LPC, cyan = NS,
magenta = PD.

Bifurcation analysis for I2 = 250I2 = 250I2 = 250, β = 0.3β = 0.3β = 0.3

We now give the 1-parameter bifurcation diagram for the case that I2 = 250 and β = 0.3,
shown in Figure 3.15. We see here that there is a small region for large I1 where SWD-
like behaviour occurs for the second neural mass (Figure 3.15a and 3.15b, a better view
of the cycle in the second neural mass is given in Figure 3.15e). The region where this
stable limit cycle exists starts at an LPC bifurcation around I1 ≈ 455. The cycle then
becomes unstable between two LPC bifurcations and between two PD bifurcations before
finally ending in a homoclinic bifurcation. Simulations are shown in Figures 3.15l and 3.15n.

For I1 ≈ 390 a Neimark-Sacker bifurcation is found along a stable limit cycle. For higher
values of I1 the stable limit cycle corresponds to an α-rhythm for the second neural mass
and smaller oscillations for the first neural mass (Figure 3.15k and 3.15m). Due to the
Neimark-Sacker bifurcation a torus-like structure exists for I1 < 390. This torus-like struc-
ture corresponds to an α-rhythm for both neural masses with different frequencies (Figure
3.15j). Past a second Neimark-Sacker bifurcation near I1 ≈ 270, a stable limit cycle re-
mains corresponding to α-rhythms for both neural masses with the same frequency (Figure
3.15i). This cycle ends in a Hopf bifurcation.
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From a Hopf bifurcation near I1 ≈ 200, a stable cycle emerges that corresponds to small
oscillatory behaviour for both neural masses (Figure 3.15h). This behaviour becomes un-
stable after an NS bifurcation and becomes stable again after an LPC point before ending
in another Hopf point (Figures 3.15a and 3.14b). An unstable cycle emerges from a Hopf
point near I1 ≈ 90, corresponding to unstable spiking behavour for the first neural mass.
After various bifurcations, this cycle ends in a homoclinic bifurcation. The cycle never
becomes stable (Figures 3.15c and 3.15d).
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Figure 3.15: One-parameter bifurcation diagram and simulations for I2 = 250, β = 0.3.
In the bifurcation diagrams, red = LP, yellow = H, blue = LPC, cyan =
NS, magenta = PD.

Bifurcation analysis for I2 = 250I2 = 250I2 = 250, β = 0.7β = 0.7β = 0.7

We now give the 1-parameter bifurcation diagram for the case that I2 = 250 and β = 0.7,
shown in Figure 3.16. Here, we see that there exists a stable cycle with large amplitude,
originating from a Hopf point near I1 = 360 (best seen in Figures 3.16a and 3.16b). This
cycle becomes stable at a limit-point of cycles bifurcation around I1 = 320 and loses sta-
bility after a period-doubling bifurcation at I1 ≈ 215. This is consistent with the region
of spiking behaviour for both neural masses found in the simulations in Figure 3.12d. A
simulation of the synchronized SWD-like behaviour is given in Figure 3.16k.

Otherwise, mostly small oscillations are seen in the simulations, though various unstable
cycles exist in the system. For high values of I1 a stable equilibrium exists (Figure 3.16m).
Near I1 ≈ 340, a supercritical Hopf bifurcation occurs from which a stable cycle emerges
showing small oscillations for both the first and second neural mass (Figure 3.16l). This
stable cycle becomes unstable after an LPC bifurcation near I1 ≈ 420.
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Figure 3.16: One-parameter bifurcation diagram and simulations for I2 = 250, β = 0.7.
In the bifurcation diagrams, red = LP, yellow = H, blue = LPC, cyan =
NS, magenta = PD. 45



Bifurcation analysis for I2 = 170I2 = 170I2 = 170, β = 0.3β = 0.3β = 0.3

The bifurcation diagram for the case that I2 = 170 and β = 0.3 is shown in Figure 3.17.
The main goal of this analysis is to identify the dynamics responsible for the onset and offset
of SWD-like behaviour for these parameter settings, when compared to the results found
for I2 = 250, β = 0.7. For high values of I1 we see that two stable equilibria exist (Figures
3.17a and 3.17b, simulations in Figures 3.17k and 3.17l). We note that throughout the
bifurcation diagram, two branches of equilibria are seen compared to one for the case that
I2 = 250, β = 0.7. At around I1 ≈ 380 a supercritical Hopf bifurcation occurs resulting in
a stable limit cycle. This limit cycle corresponds to an α-rhythm for the first neural mass
and smaller oscillations for the second neural mass (Figure 3.17j) and ends in another Hopf
bifurcation.

Similar to the case where I2 = 250, β = 0.7 we see that a region exists between an LPC bi-
furcation and a period-doubling point where synchronized SWD-like activity is found (Figure
3.17a and 3.17b, simulation shown in Figure 3.17i). Hence, we find that the dynamics un-
derlying the region of simultaneous spiking is the same as the case where I2 = 250, β = 0.7.

For low values of I1, we see that the simulations converge to either the high equilibrium
for the first neural mass or the low equilibrium for the first neural mass (Figures 3.17h and
3.17g).
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Figure 3.17: One-parameter bifurcation diagram and simulations for I2 = 170, β = 0.3.
In the bifurcation diagrams, red = LP, yellow = H, blue = LPC, cyan =
NS, magenta = PD.

3.4.2 Bifurcation diagram in the (I1I1I1,βββ) plane for I2I2I2 = 250250250

Finally, we show a 2-parameter bifurcation diagram for two reciprocally coupled Wendling
neural mass models with I2 = 250 in Figure 3.18. Again, we only show bifurcations relevant
for explaining switches between no SWD-like behaviour and SWD-like behaviour. More-
over, we do not consider codimension 2 bifurcations.

We see that the small band of spiking behaviour for the second neural mass is bounded
from below by an LPC bifurcation. This region is bounded from above by a homoclinic
bifurcation which we were not able to continue.

The region where simultaneous spiking is seen is bounded from the left by an LPC bifurcation
for lower values of β. For higher values of β, the cycle responsible for simultaneous spiking
becomes unstable on the left after a PD bifurcation. No stable period-2 cycles were found
through simulations. On the right side, the region of simultaneous spiking is also bounded
by an LPC bifurcation for low values of β. For higher values of β, either a Neimark-
Sacker or a period-doubling bifurcation causes the cycle to become unstable. Once again,
no simulations of doubled cycles or torus-like attractors were found through simulations.
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We note that the region where the cycle responsible for simultaneous spiking becomes
unstable due to a PD or NS bifurcation falls outside of our considered set of one-parameter
bifurcation diagrams.
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(a) 2-parameter bifurcation diagram. (b) 2-parameter bifurcation diagram plotted along
with results from simulations.

Figure 3.18: 2-parameter bifurcation diagram for two reciprocally coupled Wendling neu-
ral mass models with I2 = 250, K1,2 = K2,1 = 100. Here, blue=LPC,
magenta=PD and cyan=NS.

3.5 Conclusions
In our analysis, we have considered the activity of two weakly coupled reciprocally coupled
Jansen-Rit and Wendling neural mass models in detail as well as the influence of feedfor-
ward inhibition on this activity. We have found that two coupled neural mass models give
rise to complex dynamics and various pathways to activity associated with epilepsy.

In our analysis, we have seen that feedforward inhibition has a large influence on the activity
of coupled neural mass models. In two coupled Jansen-Rit models and the slow inhibition-
dominated Wendling model, we observe that for higher excitatory background input I1, I2
for both neural masses, spike-wave discharges occur in the second neural mass for a band
of values for the feedforward inhibition scaling β. We note that these higher values for the
excitatory background input are normally associated with a healthy α-rhythm for neural
masses as seen in Figures 2.2 and 2.4 [23].

Epileptiform activity often involves synchronized, high amplitude activity. Thus, syn-
chronous spiking behaviour is particularly interesting when considering the results of our
analysis. Small regions of simultaneous population spiking behaviour are found. For two
Jansen-Rit models with weak coupling synchronous spiking is only found for larger β and
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small regions of I1 where I1 is close to I2. When looking at a fast inhibition-dominated
case for two Wendling models with stronger coupling, we have indentified a region where
spiking activity occurs for both neural masses simultaneously and synchronously. This si-
multaneous spiking only occurs for nonzero values of β. The large regions of synchronous
spiking suggests that coupled Wendling models with strong coupling are more suitable for
explaining epileptic activity.

Our findings show that the addition of feedforward inhibition to neural mass models has
a large effect on the activity of these neural masses and can promote the appearance of
activity associated with epilepsy. The results of this chapter provide a link between the
modelling of delayed responses in neural mass models and spontaneous activity of neural
mass models. Delayed responses in SPES are considered to be biomarkers of the epilepto-
genic zone and feedforward inhibition is an essential ingredient for modelling DRs in coupled
neural mass models [6]. The fact that feedforward inhibition promotes the generation of
spike-wave discharges for nonzero values of β is thus consistent with this modelling choice
and the underlying clinical data.

In the various cases we consider in our bifurcation analysis, we have found that many
pathways to SWD-like activity are present in two coupled neural masses. Most commonly,
a fold bifurcation of a limit cycle or a homoclinic bifurcation are responsible for the onset
or offset of SWD-like activity. In literature, it has been shown that it is possible to infer
the bifurcations underlying seizure onset and seizure offset from clinical data [30]. Hence,
the analysis in this chapter may provide a basis for the investigation of (patient-specific)
generation of seizures in coupled neural mass models.
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Chapter 4

Modelling stimulation evoked activity
in networks of neural mass models
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4.1 Introduction
For clinical purposes, a network of neural masses is desired. In such a model, each neural
mass represents an electrode as placed on the brain during single pulse electrical stimulation
(SPES). In this procedure, used during presurgical monitoring for patients with epilepsy,
short monophasic pulses are given to pairs of electrodes placed directly on the brain. Re-
sponses to this stimulation are measured in other electrodes placed on the brain. In networks
of two feedforward coupled Wendling neural masses it has been shown that it is possible to
model both early and delayed responses with the addition of feedforward inhibition to the
model [6]. To create a computational model that can be used to predict surgery outcome
for patients with epilepsy, responses evoked by SPES should be modelled correctly. Hence,
our goal is to construct a network of neural masses that are coupled following the network
implied by early responses in SPES and show desired ERs and DRs in simulations.

This chapter is organised in the following way. We construct a network of neural mass
models and first map the occurrence of evoked activity in tiny networks to gain insight
into the influence of different parameters on the generation of evoked responses. We then
fit ERs and DRs in artificial networks of 12 nodes using an evolutionary algorithm and
reflect on the results. Finally, we use our evolutionary algorithm to fit ERs and DRs in data
provided by the University Medical Centre Utrecht.

4.2 Methods
We first describe our methods. We introduce the method by which ER networks are con-
structed. We then give the neural mass model used in our networks and describe how
stimulation is modelled within Wendling neural mass models. Moreover, we give the used
evolutionary algorithm for fitting ERs and DRs in larger networks of neural masses. Lastly,
we describe our method of generating small artificial ER networks.

4.2.1 Early response networks

Since early responses are indicative of connections between areas of the brain, data of the
occurrence of ERs can be used to construct a network representing the connectivity in the
brain. Such ER networks form the basis for modelling connections within a patient-specific
network of neural mass models. Within a patient-specific network, neural mass models
should be coupled if a connection is present in the ER network, and no other strong con-
nections should exist.
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After SPES measurements, a matrix is constructed that contains whether the stimulation
of a pair of electrodes results in an evoked ER in another electrode. We construct a network
from this information in the following way. Each electrode corresponds to a node in the
constructed graph. A directed edge from node A to node B is added if there is at least one
stimulation pair containing electrode A that evokes an early response in electrode B. Hence
no double connections or adjustments to the connection are made if an electrode A is present
in multiple electrode pairs that evoke an ER in electrode B. The obtained ER network is
a simple directed graph. For an introduction to graph theory, we refer to Grimaldi et al. [31].

In Appendix B, we discuss the validity of ER networks as an accurate representation of
connectivity of the brain in detail. We have found that under the assumption of nearest
neighbour coupling, ER networks may be assumed to represent connectivity in the brain
with sufficient accuracy.

4.2.2 Coupled Wendling neural masses with stimulation

We give the model used for each neural mass, as well as a description of how stimulation is
modelled within neural mass models. Apart from the addition of this stimulation, the model
used here is the same as the Wendling model with feedforward inhibition as described in
Chapter 2 and analysed in Chapter 3. The equations for neural mass j are given by

v̇0j = z0j,

ż0j = Aaσ(upyj)− 2az0j − a2v0j,

v̇1j = z1j,

ż1j = Aa(C2σ(uexj) + Ij + Istim +
∑

i6=jK
i,jv4i)− 2az1j − a2v1j,

v̇2j = z2j,

ż2j = Bb(C4σ(uisj) + βj
∑

i6=jK
i,jv4i)− 2bz2j − b2v2j,

v̇3j = z3j,

ż3j = Gg(C7σ(uifj) + γj
∑

i6=jK
i,jv4i)− 2gz3j − g2v3j,

v̇4j = z4j,

ż4j = Adσ(upyj)− 2dz4j − d2v4j.

(4.1)

Here, i, j ∈ {1, ..., N}, and 
upyj = v1j − v2j − v3j,

uexj = C1v0j,

uisj = C3v0j,

uifj = C5v0j − C6

C4
v2j.
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The sigmoid function σ(v) is given by

σ(v) =
2e0

1 + er(v0−v)
.

Here, K ∈ RN×N where Ki,i = 0 for all i ∈ {1, ..., N}. Stimulation of a neural mass
is modelled as a short block pulse applied to the population of excitatory neurons. Let
T = {t1, t2, ..., tn} denote the times at which a stimulation is applied. Setting stimulation
times ti ∈ T we thus have

Istim =

1500 if t ∈ [ti, ti + 1
100

] for some ti ∈ T,
0 else.

The connectivity matrix K represents the weight matrix for a weighted graph G = (V,E,K)

where V denotes the labelled sets of nodes in the network, |V | = N , and E denotes the
set of edges in the graph. Parameter choices are given in Table 4.1.

In simulations done using this model, responses resembling ERs and DRs are detected in
the following way. A simulation of 11 seconds is run, with a stimulation at t = 10 s. The
maximum and minimum simulated EEG signals for each node of the network of neural
masses are calculated for the interval t ∈ [5, 10]. If these differ by more than 1 mV, the
system is deemed to be in an oscillatory state. Otherwise, we determine the equilibrium
state of the system. If the simulated EEG drops 5 mV below the equilibrium state in the
interval t ∈ [10, 10.3], we say that an ER is present. If the simulated EEG drops 10 mV
below the equilibrium state in the interval t ∈ [10.4, 11] we determine that a DR is present.
We note that these intervals do not correspond to the intervals commonly associated with
ERs and DRs. However, the N2 peak is larger than the N1 peak and occurs later than 100
ms after stimulation. It is important to avoid miscategorization of a large N2 peak as a
delayed response.
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Parameter Interpretation Value
A Synaptic gain for excitatory and pyramidal populations 4.5
B Synaptic gain for slow inhibitory population 7
G Synaptic gain for fast inhibitory population 25
a Reciprocal of time scale for excitatory and pyramidal populations 100
b Reciprocal of time scale for slow inhibitory population 10
g Reciprocal of time scale for fast inhibitory population 130
d Reciprocal of time scale for output 100
C Connectivity constant 135
c1 Relative connectivity of pyramidal to excitatory population 1
c2 Relative connectivity of excitatory to pyramidal population 0.8
c3 Relative connectivity of pyramidal to slow inhibitory population 0.25
c4 Relative connectivity of slow inhibitory to pyramidal population 0.25
c5 Relative connectivity of pyramidal to fast inhibitory population 0.3
c6 Relative connectivity of slow inhibitory to fast inhibitory population 0.1
c7 Relative connectivity of fast inhibitory to pyramidal population 0.8
e0 Half the difference between maxv(σ(v)) and minv(σ(v)) 2.5
v0 Potential for which the sigmoid function has its median value 4.5
r Slope of sigmoid function 0.56
Ij Excitatory background input for pyramidal population Varied
α Part of external input going to excitatory population 0.1
βj Part of external input going to slow inhibitory population Varied
γj Part of external input going to fast inhibitory population 0.7βj
Ki,j Connectivity between neural mass i and neural mass j Varied

Table 4.1: Parameter values for Wendling’s neural mass model, based on parameter
choices made by Hebbink et al. [6].

4.2.3 Evolutionary algorithm for fitting ERs and DRs

To fit parameters for generating ERs and DRs in larger networks of coupled neural masses,
we apply an evolutionary algorithm to minimize a loss function. We restrict our search
space to the connectivity matrix K ∈ RN×N , the external excitatory input I ∈ RN and
the amount of feedforward inhibition present in each node β ∈ RN . The choices for K
and I as control parameters are natural, as the connectivity between different areas of the
brain and external input from areas outside the considered grid is expected to vary in the
network. The choice for β as control parameter is made due to the known importance of
feedforward inhibition in simulating early and delayed responses.
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We now define our loss function. Suppose that a graph representing the ER network
G = (V,E), |V | = N is given and let A be the adjacency matrix for this graph. Stimula-
tion pairs are given in a set S, in which each element is a tuple of two distinct vertices of G.

Let r : RN×N × RN × RN → R|S|×N be given so that r(K, I, β) = R where Rij = 1 if
stimulating stimulation pair i causes an ER in node j for the connectivity matrix K and
Rij = 0 otherwise. Moreover, we let R(0) ∈ R|S|×N be the matrix such that R(0)

ij = 1 if
an ER is desired in node j upon stimulating stimulation pair i and R

(0)
ij = 0 otherwise.

Similarly, let d : RN×N × RN × RN → R|S|×N so that d(K, I, β) = D where Dij = 1

if stimulating stimulation pair i evokes a DR in node j for connectivity matrix K, input
I and feedforward inhibition β, and Dij = 0 otherwise. We let D(0) ∈ R|S|×N be the
matrix containing where DRs are desired. Lastly, let o : RN×N ×RN ×RN → {0, 1} where
o(K, I, β) = 1 if the network of neural mass models with parameters K, I and β is in an
oscillatory state for any node, and o(K, I, β) = 0 otherwise. Using these maps, we can
define our loss function as follows:

f(K, I, β) =

M if o(K, I, β) = 1,∑|S|
i=1

∑N
j=1

∣∣∣(r(K, I, β)−R(0)
)
ij

∣∣∣+ 10
∣∣∣(d(K, I, β)−D(0)

)
ij

∣∣∣ else.

Here, M is a large constant satisfying M > 11|S|N to ensure that oscillatory behaviour is
always discouraged. The penalty from an unwanted or unfound ER is set to 1, while the
penalty for an unwanted or unfound DR is set to 10. An alternative loss function is defined
in the case that a conservative guess for the parameter values (K̂, Î, β̂) is known for which
no oscillatory behaviour is present. In this case, let p : RN×N × RN × RN → R where

p(K, I, β) =

|S|∑
i=1

N∑
j=1

∣∣∣∣(K − K̂)
ij

∣∣∣∣+
N∑
j=1

∣∣∣∣(I− Î
)
j

∣∣∣∣+
N∑
j=1

∣∣∣∣(β − β̂)
j

∣∣∣∣ .
We then adjust the loss function to

f(K, I, β) =

M + p(K, I, β) if o(K, I, β) = 1,∑|S|
i=1

∑N
j=1

∣∣∣(r(K, I, β)−R(0)
)
ij

∣∣∣+ 10
∣∣∣(d(K, I, β)−D(0)

)
ij

∣∣∣ else.
(4.2)

In this way, parameter choices closer to a known non-oscillatory solution are preferred in
the loss function in the case that oscillatory behaviour is found.

We use a differential evolution algorithm to optimize parameter choices for the loss function
defined in Equation 4.2 [32]. Differential evolution is known to be an efficient method for
optimizing non-differentiable loss functions such as the one posed in (4.2). Moreover, the
method generally scales better to high-dimensional problems than other popular algorithms,
such as Particle Swarm Optimization [33]–[35].
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We give an overview of the standard Differential Evolution algorithm as described in [32].
Given an objective function f : RN → R, our goal is to find x∗ ∈ D where D ⊆ RN so
that

f(x∗) ≤ f(x) ∀x ∈ D.

Differential evolution works by repeatedly updating a population of Np individuals. Initial-
ization is done by uniformly randomly choosing vectors from v(i) ∈ RN , i ∈ {1, ..., Np}
to create an initial population. Each of these individuals is then iteratively updated in the
following way.

We consider the update of an individual v(i). First, three random individuals v(k), v(l) and
v(n), k 6= l 6= n are chosen at random from the current population. From these three
vectors a mutation vector z is constructed:

z = v(k) + F (v(l) − v(n)).

Here, F ∈ R is a scaling factor. A trial vector v̂(i) is constructed, where v̂(i)j = zj with
probability Cr, or set v̂(i)j to the old value v̂(i)j = v

(i)
j with probability 1−Cr. The parameter

Cr ∈ [0, 1] is called the crossover rate. If f(v̂(i)) ≤ f(v(i)), the individual v(i) is replaced
in the population by v̂(i). The iteration is stopped once a certain stopping criterion is met.

For the DE/1/rand/bin algorithm described above, the parameters Np, F and Cr must
be chosen beforehand. Instead, we employ an adaptive radius-limited DE algorithm as
implemented in the Julia library BlackBoxOptim.jl in this chapter, so that these parameter
choices are made automatically and dynamically [36]–[38].

4.2.4 Generation of ER networks

We test the optimization of parameters on small artificial ER networks. We now describe
the method used for constructing these networks. The nodes of the network are placed in
a 4× 3 grid and are labelled as seen in Figure 4.11.
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Figure 4.1: Configuration of electrodes.
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Connections are added in the following way. A graph where all nodes are connected to
their neighbours is first constructed. This is done in order to conform to the conclusions
found in Appendix B. Then, each of the edges in this graph is removed with probability
0.3. Finally, between any two nodes, a connection is added with probability 0.15. It is
not taken into account whether these connections already exist. This results in an artificial
ER network G = (V,E), |V | = N . As stimulation pairs, we choose all pairs of adjacent
nodes on the rows of the grid shown in Figure 4.11. Hence, nodes 3 and 6, for example,
form a stimulation pair, as well as nodes 7 and 10 or nodes 2 and 5. However, nodes 1
and 2, for example, do not form a stimulation pair. In total, we thus have 9 stimulation
pairs, given by the set S. Expected ERs can be inferred from the network. Desired DRs
are randomly distributed with each response electrode having probability 0.1 of a desired DR.

The constructed network has nodes with degree similar to what is found in ER networks
for patients. In the artificial networks, there are fewer ERs than may be expected in a
real network. This is due to the method of construction where ERs are inferred from a
network without adding connections, instead of generating a sparser network and adding
connections based on the stimulation pairs. Lastly, in a real brain network, DRs will not be
spread randomly. However, we are not aware of a pattern in the occurrence of DRs that
can easily be used for the generation of artificial networks. Hence, the choice for a uniform
distribution of DRs was made.

For optimization in patient-specific networks, data was provided by the University Medical
Centre Utrecht. Data for the occurrence of ERs for each stimulation pair and scored data
for DRs was provided. From the data for the ERs a network is constructed following the
method described in 4.2.1. These ERs are also the desired ERs in the network, whereas the
desired DRs are directly derived from the scored data for DRs.

4.3 Results
Before moving to the results obtained for fitting parameters in 12-node networks, we first
characterize evoked responses in networks of a few nodes, providing intuition for the influ-
ence of parameters on the generation of evoked responses. This is interesting as it provides
a means to explain the results obtained through optimization of many parameters in larger
networks. Specifically, we are interested in the influence of the following parameters on
evoked responses:

1. The amount of feedforward inhibition to a node β.

2. The amount of excitatory background input in a node I.

3. The strength of the connection between stimulation pair Kff.
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4. The strength of feedback connections Krec.

5. The influence of external constant input, governed by a connectivity Kext.

The first two parameters considered are interesting because they are directly used for fitting
parameters in larger networks. By considering the latter three types of connections, we gain
an understanding of the influence of different values in the connectivity matrix K.

4.3.1 Primary responses to stimulation

We start by looking at primary responses to stimulation. In this scenario, we have one
stimulated electrode that is directly connected to another electrode. Our goal is to find
which types of responses can be obtained from such a configuration, and whether added
connections or nodes have a significant effect on evoked responses. We begin by considering
two nodes with one feedforward connection. A schematic view of the network is given in
Figure 4.2. Within this network, we vary β2, K1,2, I1 and I2.

1 2

Figure 4.2: Graph with one feedforward connection. A red color indicates stimulation of
a neural mass.

We first consider the influence of the excitatory background input on evoked activity. We
fix β = 0.7. Fixing K1,2 at several values and varying I1 and I2 yields the results seen
in Figure 4.4a and 4.4b. Simulations are given in Figure 4.3, showing the characteristic
responses obtained in the second neural mass. We see that higher values for the external
excitatory input promotes the appearance of early response-like activity. The influence of
the external input for the first neural mass on the appearance of ERs disappears for higher
values of K1,2. Moreover, we find a small band in the parameter plane where both an ER
and DR appear. We note that DRs only appear for very high values of I2.
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(a) Simulation 1.
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(f) Simulation 6.

59



-1 0 1 2 3 4 5
t

-12
-10
-8
-6
-4

si
m

 E
EG

K1,2 = 250, I1 = 120, I2 = 100

(g) Simulation 7.
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(i) Simulation 9.

Figure 4.3: Simulations corresponding to specific parameter choices in Figure ??. These
simulations show that a variety of characteristic evoked Sresponses may be
obtained from the system.

We now investigate the influence of feedforward connections and the amount of feedforward
inhibition on primary responses. We thus vary K1,2 and β. We first fix β = 0.7, I1 = 140

and vary K1,2 and I2. Next, we fix K1,2 = 200, I1 = 140 and vary β and I2. The results
are shown in Figure 4.4c and 4.4d. We see that increasing K1,2 and β has a similar effect
on the observed evoked activity. Increasing either parameter promotes the appearance of
ERs as well as DRs, and a slim band of increasing width where DRs occur is seen for both
K1,2 and β. A small area where only a DR and no ER occurs is also seen, corresponding to
an ER-like response that is too small to be registered as an ER and a DR-like response. We
thus find that both the amount of feedforward inhibition and a higher connectivity promote
delayed responses.

(a) Behaviour for K1,2 = 160, β = 0.7. (b) Behaviour for K1,2 = 250, β = 0.7.
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(c) Behaviour for I1 = 140, β = 0.7. (d) Behaviour for I1 = 140,K1,2 = 250.

Figure 4.4: Observed evoked activity in node 2 of the network shown in Figure 4.2. Here,
gray denotes oscillatory behaviour, white denotes no significant response, red
denotes an ER, blue denotes a DR and purple denotes both an ER and DR.

We now investigate the influence of an added reciprocal connection to the network. The
network considered is shown in Figure 4.5.

1 2

Figure 4.5: Graph with a reciprocal connection. A red color indicates stimulation of a
neural mass.

For this network, we aim to find the influence of the added extra reciprocal connection
K2,1. To do this, we fix β = 0.7 and look at two cases:

1. We fix I1 = 140 and I2 = 160 and vary both connectivities.

2. We fix I1 = 140 and K1,2 = 300 and vary K2,1 and I2.

In the first case, we directly compare the influence of both connectivities. In the second
case, we choose values for the excitatory background input that have been shown to gen-
erate DRs for specific parameter choices in the feedforward case. We are now interested in
whether these parameter ranges persist and whether the added reciprocal connection has
an effect on the appearance of DRs. The results are shown in Figure 4.6.

In case 1, we find that a larger feedback connection promotes the generation of DR-like
responses as well as oscillatory activity. In case 2, we find that a band of DR-like activity
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persists for higher values of K2,1. This band does become slimmer as K2,1 increases. For
higher values of K2,1 we see that DRs occur for slightly lower values of I2.

(a) Behaviour for I1 = 140, I2 = 160, β = 0.7. (b) Behaviour for I1 = 140, K1,2 = 300, β = 0.7.

Figure 4.6: Observed evoked activity in node 2 of the network shown in Figure 4.5. Here,
gray denotes oscillatory behaviour, white denotes no significant response, red
denotes an ER, blue denotes a DR and purple denotes both an ER and DR.

Finally, we look at the case where a second neural mass provides constant external input.
Our goal is to investigate the influence of this external constant input. The considered
network is shown in Figure 4.7.

1

2

3

Figure 4.7: Two feedforward coupled NMMs with constant external input. A red color
indicates stimulation of a neural mass.

Here, we fix β = 0.7, I1 = 140, I2 = 110 and K1,3 = 100 or K1,3 = 200. We thus vary
K2,3 and I3. The results are shown in Figure 4.8. We see that a large external constant
input stabilizes the system and DRs cease to exist for very large external input.
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(a) Behaviour for I1 = 140, I2 = 110, β = 0.7 and
K1,3 = 100.

(b) Behaviour for I1 = 140, I2 = 110, β = 0.7 and
K1,3 = 200.

Figure 4.8: Observed evoked activity in node 2 of the network shown in Figure 4.7. Here,
gray denotes oscillatory behaviour, white denotes no significant response, red
denotes an ER, blue denotes a DR and purple denotes both an ER and DR.

Summarizing our results, we have found that a stronger coupling between stimulation elec-
trode and response electrode promotes the appearance of ERs and DRs in two feedforward
coupled neural mass models. Similarly, an increased amount of feedforward inhibition also
has a positive effect on the appearance of ERs and DRs. A strong reciprocal connection
also promotes the generation of DRs. Finally, external constant inputs stabilize the neural
mass, diminishing the probability of the generation of DR-like activity.

4.3.2 Secondary responses to stimulation

We now investigate secondary responses to stimulation, meaning there is no direct connec-
tion between the stimulated electrode and the response electrode. Hence, no early response
is expected. However, delayed responses may occur in these electrodes. We again investi-
gate the influence of the parameters introduced at the start of this section.

We first consider a network with two feedforward connections. The network is given in
Figure 4.9.

1 2 3

Figure 4.9: Graph with two feedforward connections. A red color indicates stimulation of
a neural mass.
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We fix I1 = 110, K1,2 = 250 and I2 and vary K2,3 and I3. Moreover, we set β1 = β2 =

β3 = 0.7. This yields the results shown in Figure 4.12a and 4.12b. We see that, as desired,
no early responses occur. A parameter range does exist where delayed responses are seen.
We have found that an increase of K2,3 promotes the appearance of DR-like responses in
the third neural mass. Moreover, we again see that delayed responses only occur for high
values of I3, hence signifying a positive relation between the value of I3 and the generation
of delayed responses. We note that the network in Figure 4.9 is considered by Hebbink et
al. in [6]. Moreover, a network with an added connection from node 1 to node 3 is also
considered in [6].

In order to quantify the influence of feedforward inhibition on the activity observed in the
third neural mass, we now fix K2,3 = 300 and instead vary β3 and I3. This yields the result
shown in Figure 4.12c. We here see that a larger amount of feedforward inhibition β3 has
a positive effect on the appearance of DRs in the network shown in Figure 4.9.
We now investigate whether a reciprocal connection between nodes 2 and 3 in the feedfor-
ward network in Figure 4.9 affects the obtained responses. The new considered network is
shown in Figure 4.10.

1 2 3

Figure 4.10: Graph with a feedforward connection and a reciprocal connection. A red
color indicates stimulation of a neural mass.

For this network, we fix K1,2 = 250, I1 = 110, I2 = 150 and I3 = 155. We then vary
the connection strengths K2,3 and K3,2. This yields the results shown in Figure 4.12d. We
here see that a reciprocal connection can both promote and abolish DR-like activity.

Finally, we look at a case where a constant external input is present for the response
electrode.

1 2 3

4

Figure 4.11: Graph with two feedforward connections and an external input. A red color
indicates stimulation of a neural mass.

We fix I1 = 110, I2 = 150, I4 = 110, K1,2 = 250, K2,3 = 300 and βi = 0.7 for
i ∈ {1, 2, 3, 4}. We then vary I3 and K4,3. The result is shown in Figure 4.12e. In
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our simulations, we see an effect of external input similar to what is seen in the case of
primary responses, namely that an increased external input stabilizes the system and impairs
the appearance of DRs in neural mass 3. Summarizing our results, we find that various
parameters have a significant effect on the appearance of responses resembling ERs and
DRs in small networks of neural mass models. Namely, an increased external excitatory
input, the amount of feedforward inhibition and strength of feedforward connections to the
response electrode all promote the generation of ERs. Increasing these parameters also
promotes the generation of DRs both as a primary and secondary response. The influence
of an increased reciprocal connection is seen to be positive for the generation of DRs if
a direct connection exists between the stimulation and response electrode and negative
otherwise. Finally, external constant input diminishes the probability of the generation of a
DR, both for primary and secondary responses. We note that the findings in this chapter
only cover a small part of the possible parameter space and thus the conclusions obtained
here cannot be extended to other parts of the parameter space. We do believe that in this
section, a representative and interesting part of the parameter space is considered. The
reason for this is that parameter choices in larger systems are chosen at parameter choices
of smaller systems where interesting behaviour (generation of ERs and DRs) is seen. A
summary of the findings from this section and the previous section is given in Table 4.2.

Table 4.2: Influence of model parameters on the generation of evoked responses as
observed in small networks. Here, a + means that increasing a parame-
ter promotes the generation of the particular response, whereas a − means
that increasing a parameter diminishes the probability of generating a response.

Response → First order Second order
Parameter ↓ ER DR DR
Iresp + + +
βresp + + +
Kff + + +
Krec None + -
Kext None - -
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(a) Behaviour for I2 = 110 and β = 0.7. (b) Behaviour for I2 = 150 and β = 0.7.

(c) Behaviour for I2 = 110 and K2,3 =

300.
(d) Behaviour for K1,2 = 250, I1 = 110,

I2 = 150 and I3 = 155.

(e) Behaviour for I1 = 110, I2 = 150,
I4 = 110, K1,2 = 250, K2,3 = 300

and β = 0.7.

Figure 4.12: Observed evoked activity in node 2 of the network shown in Figure 4.9. Here,
gray denotes oscillatory behaviour, white denotes no significant response,
red denotes an ER, blue denotes a DR and purple denotes both an ER and
DR.
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4.3.3 Fitting ERs and DRs in 12-node networks

In the previous Section, we have investigated the influence of various parameter choices
on the evoked activity in small networks of neural mass models. We are now interested in
fitting I, β and K to fit responses in larger networks of neural mass models. To do this, we
first generate ten sample networks following the procedure described in Section 4.2.4. The
adjacency matrices for the 10 generated networks are provided in Figure 4.13. The desired
early and delayed responses for each of the ten artificial networks are given in Figure 4.14.
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(d) Network 4.
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(e) Network 5.
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(f) Network 6.
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(g) Network 7.
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(h) Network 8.
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(i) Network 9.
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(j) Network 10.

Figure 4.13: Visualization of the adjacency matrices for the used 12-node networks. If
the square at row i and column j is black, Aij = 0 and if the square is red,
Aij = 1. Connections from node i to itself are kept white, as no self-loops
exist in the network.
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(j) Network 10.

Figure 4.14: Desired ERs and DRs for all used 12-node networks. Here, black indicates
no ER or DR, red indicates an ER, blue indicates a DR and purple indicates
both an ER and DR.

We fit parameters in this network using a differential evolution (DE) algorithm as described
in Section 4.2.3, with the fitness function in Equation 4.2. Simulations needed for the eval-
uation of the loss function are performed using forward Euler with a time step of 0.003 s.
The responses resulting from the best found parameters are shown in Figure 4.15. Statistics
of the fitted responses are shown in Table 4.3.
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(j) Network 10.

Figure 4.15: Found ERs and DRs for all used 12-node networks. Here, black indicates no
ER or DR, red indicates an ER, blue indicates a DR and purple indicates
both an ER and DR.
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Table 4.3: Results for fitting ERs and DRs in ten 12-node artificial networks. Here, the
data in the column #Conn gives the amount of connections of the network. The
data in the columns #Found are the amount of found desired responses. The
columns #Desired give the amount of desired responses. Lastly, the columns
#False give the amount of additional unwanted responses that are found.

ERs DRs
#Found #Desired #False #Found #Desired #False

Network 1 14 15 1 6 9 0
Network 2 11 11 1 4 10 0
Network 3 11 11 1 3 7 0
Network 4 18 18 1 6 9 1
Network 5 16 16 0 3 9 0
Network 6 13 13 0 3 7 0
Network 7 14 15 2 5 9 1
Network 8 14 14 0 8 12 0
Network 9 6 6 0 3 11 0
Network 10 15 15 0 3 7 0

Before we consider the results obtained from optimization in more detail, we first provide
a simulation for network 1, showing the simulated ECoG signal and evoked responses after
optimization. The network contains 53 connections and 12 nodes, yielding a total of 77
parameters (53+12+12). After 229,200 steps and 229,311 loss function evaluations in our
DE algorithm, the algorithm converges to a loss of 31. When inspecting the results, we
find that this value stems from three DRs and one ER that were not found. Hence, using
this method it was possible to correctly fit all but one of the desired ERs and a majority of
the desired DRs (6/9). Results for all stimulation pairs are given in Figure 4.16.

In the simulations in 4.16, the results for the fitted ERs generally coincide with what is de-
sired. All desired ERs are clearly seen in the simulations. Apart from node 4 for stimulation
pair 1, where a faulty ER is found, there are several more cases where an ER-like response
is seen in nodes that should not show ERs. These cases are seen mostly for stimulation
pairs 1, 5 and 7. This can be attributed to the threshold value used for detecting ERs.
These ER-like responses have an amplitude smaller than 5 and are thus disregarded when
detecting ERs.

When looking at the fitted DRs, we find that no undesired DRs occur shortly after stim-
ulation. For stimulation pairs 3 and 5, three expected DRs are not seen in simulations.
In stimulation pair 8, we see that the occurrence of two DRs causes two other DR-like
responses at a later time. These responses were not measured when evaluating the loss
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function, and thus did not influence results.
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(a) Results for stimulation pair 1.
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(b) Results for stimulation pair 2.
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(c) Results for stimulation pair 3.
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(d) Results for stimulation pair 4.
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(e) Results for stimulation pair 5.
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(f) Results for stimulation pair 6.
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(g) Results for stimulation pair 7.
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(h) Results for stimulation pair 8.

-2 -1 0 1 2 3 4 5
t

1

2

3

4

5

6

7

8

9

10

11

12

N
od

e 
nu

m
be

r

(i) Results for stimulation pair 9.

Figure 4.16: Results from simulation of all stimulation pairs of the generated artificial
small network with the best found parameters. The stimulation pair is stim-
ulated at t = 0. In these simulations, a dashed line indicates that a channel
is stimulated. A red line indicates that an ER is expected. A blue line
indicates that a DR is expected. A purple line indicates that both an ER
and a DR are expected for this channel.

Our results show that fitting ERs works very well, as for most networks all ERs are found
and few extra ERs are found. Around half of the total desired DRs are found. These
results show that varying K, I and β can introduce sufficient heterogeneity in the network
so that a majority of evoked responses is found as desired, despite performing stimulation
from different nodes in a network with the same parameters. As only part of the delayed
responses is found correctly, we now compare nodes where a DR is correctly found to nodes
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where a desired DR is not found. We compare network structure and parameter choices to
gain insight in what parameters are important for determining whether a DR is found.

First, we have considered the distance between stimulation pair and response electrode. If
the electrode where a DR is desired is further away from the stimulation electrode, it may
be harder to correctly fit parameters in order to generate a delayed response. A comparison
of the distance between stimulation electrode and response electrode for found DRs and
unfound DRs using a Mann-Whitney U test (at a significance level of α = 5%) yielded that
there is a significant difference between the two groups (p = 2.0060 × 10−5). A majority
of the correctly fitted DRs are at distance 1 from the stimulation electrode. Moreover, no
DRs are fitted correctly at distance 3 or more from the stimulation electrode. A majority
of all desired DRs at distance 1 from the stimulation electrode are found (66.07%). Of the
desired DRs at distance 2 from the stimulation electrode, 24.14% are correctly fitted. In
total, 48.89% of the desired DRs are fitted correctly in our ten artificial networks. We note
that in networks derived from SPES measurements in patients with epilepsy, DRs are rarely
seen at distance 3 or more from the stimulation pair [6].

To further look into the influence of connectivity, we investigate whether the percentage
of incoming connections that show an ER and the percentage of connections that are bidi-
rectional are significantly different between found DRs and unfound DRs. Once again, we
use a Mann-Whitney U test at a significance level of α = 5%. We find that both the per-
centage of incoming connections with an ER (p = 0.1810) and the amount of bidirectional
connections (p = 0.2890) are not significant for explaining whether DRs are found or not
found in our optimization.

In order to investigate the influence of the feedforward inhibition β on the results of our
optimization, we perform another Mann-Whitney U test (α = 5%). We find that the
amount of feedforward inhibition is significantly different in nodes where a DR is correctly
found (p = 3.7647 × 10−4). This is in agreement with the analysis in Sections 4.3.1 and
4.3.2, where it is found that an increased amount of feedforward inhibition promotes the
generation of DRs, both for primary and for secondary responses. Boxplots showing the
amount of feedforward inhibition for found and unfound DRs is shown in Figure 4.17a. Fi-
nally, we investigate the influence of the amount of excitatory background input on whether
DRs are correctly found. We find, once again using a Mann-Whitney U test (α = 0.05)
that there is a significant relation between the amount of background input and whether a
DR is correctly found (p = 2.5033× 10−12). This is again in line with the results found in
Sections 4.3.1 and 4.3.2, where it is found that DRs can only occur for high values of I in
the response electrode. A boxplot is given in Figure 4.17b. A few outliers are present in
this boxplot. These cases may be explained by the appearance of an ER-like response that
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occurs later after stimulation. These responses are caused by DRs in other nodes of the
network. Our analysis suggests that it is only possible to take the excitatory background
input high for a few nodes to avoid oscillatory behaviour. If I is taken to be lower, no
delayed responses can generically be found. This may be attributed to the equilibrium then
being situated on a lower branch of equilibria.
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Figure 4.17: Boxplots showing the relation between the values of parameters in the net-
work and desired DRs that are found and not found after fitting these pa-
rameters.

4.3.4 Fitting ERs and DRs in networks derived from clinical data

We now consider the application of our DE algorithm to clinical data derived from mea-
surements done for patients treated at the University Medical Centre Utrecht. Single pulse
electrical stimulation measurements are used for four patients, and a network of neural
mass models with connections based on the ER networks for these patients are used. The
differential evolution algorithm was allowed to run for a range between 60000 to 75000
steps before optimization was stopped. For the evaluation of the loss function, forward
Euler with a timestep of 0.005 s was used for simulations. The algorithm was not stopped
because the DE algorithm converged, but rather because the evaluation of the loss function
was too slow to warrant the continuation of running the code. Hence, better results could
be obtained if the DE algorithm is run for more steps.

The results, given in Table 4.4, show that within networks derived from clinical data, it
is possible to correctly fit a large majority of all ERs. Moreover, it is seen to be possible
to correctly fit a few DRs in three of the four networks, without introducing oscillatory
behaviour or a large amount of additional unwanted DRs.
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Table 4.4: Results for fitting ERs and DRs in networks derived from clinical data using
a differential evolution algorithm. Here, the data in the column #Conn gives
the amount of connections of the network. The data in the columns #Found
are the amount of found desired responses. The columns #Desired give the
amount of desired responses. Lastly, the columns #False give the amount of
additional unwanted responses that are found.

#Conn ERs DRs
#Found #Desired #False #Found #Desired #False

Patient 1 1047 697 701 28 0 313 0
Patient 2 920 613 624 39 1 247 0
Patient 3 464 281 292 14 7 251 1
Patient 4 1043 646 663 46 10 589 1

Finally, we give an example of a simulation for one of the stimulation pairs for the neural
mass network derived for the data of Patient 4. This stimulation pair is picked because it
shows the generation of ERs and DRs in the network. The simulation is shown in Figure
4.18. We note that a few unwanted additional ERs are found for nodes 2, 22 and 23.
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Figure 4.18: Simulation for one of the stimulation pairs for Patient 4, showing the genera-
tion of ERs and DRs in networks derived from clinical data. The stimulation
pair is stimulated at t = 0. In this simulation, a dashed line indicates that
a channel is stimulated. A red line indicates that an ER is expected. A blue
line indicates that a DR is expected. A purple line indicates that both an
ER and a DR are expected for this channel.
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4.4 Conclusions
In this chapter, we have investigated evoked activity in small networks of neural masses.
We have first looked at small networks before presenting results for the optimization of
parameters in a network of 12 nodes.

Through simulations in tiny networks of up to three nodes, we have gained insight into
evoked activity generated in coupled Wendling neural masses. We have seen that a higher
connectivity and increased amount of feedforward inhibition between stimulation electrode
and response electrode promotes the appearance of ERs and DRs. We have also found
that a stronger reciprocal connection between stimulation electrode and response electrode
promotes the appearance of DR-like responses. Lastly, we have found that high external
input stabilizes the system.

In ten artificial 12-node networks, we have optimized parameter choices for the connectivity,
external excitatory input and amount of feedforward inhibition using a differential evolution
algorithm. These artificial networks have limitations and thus may include physiologically
impossible desired responses. Through the optimization of parameter choices, we were able
to simulate most desired ERs and part of the desired DRs, while generating few additional
evoked responses. Moreover, we have found that almost all desired ERs and some desired
DRs can be found through optimization of parameters in patient-specific networks of neural
mass models. The results in this chapter show that it is possible to introduce sufficient
heterogeneity in a network of neural mass models to model desired evoked responses that
are distinct per stimulation pair. This is promising for the use of networks of neural mass
models to explain clinical data and predict the outcome of epilepsy surgery. An analysis
of our results for the ten 12-node networks reveals that a majority of delayed responses at
distance 1 from a stimulation electrode could be fitted correctly, whereas responses far from
a stimulation electrode are more difficult to obtain. We have also found that the amount
of feedforward inhibition and the amount of excitatory background input are statistically
important for explaining why certain DRs were found and others were not.
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Chapter 5

Conclusions and discussion

In this thesis, we have investigated the influence of feedforward inhibition on the sponta-
neous activity of two reciprocally coupled neural mass models. Moreover, we have investi-
gated evoked activity in small networks of neural mass models. We first present the main
conclusions from our analysis. Afterwards, we discuss our results and provide an outlook
to further work.

5.1 Conclusions
In our investigation of spontaneous activity in two coupled neural mass models through
bifurcation analysis, we have found that feedforward inhibition has a significant influence
on the appearance of activity associated with epilepsy in coupled neural mass models. This
is seen both in two coupled Jansen-Rit models as well as in coupled Wendling models. The
feedforward inhibition necessary for modelling delayed responses also promotes spike-wave-
discharges (SWD) in neural mass models. Our finding is in accordance with the view of
delayed responses as a biomarker for the epileptogenic cortex and thus for the region where
seizures originate [9]. We have found that synchronous SWDs occur in a larger part of
the parameter space for two coupled Wendling models with stronger connections, when
compared to Jansen-Rit models with weaker connections. We have seen that a stronger
reciprocal connection significantly affects the region in which simultaneous spiking is seen
for two neural mass models. Finally, we find various possible pathways in our bifurcation
analysis to SWD activity.

When considering evoked activity in networks of neural mass models, we have mapped
the influence of several parameters on the generation of evoked responses in networks of
Wendling neural masses of up to four nodes. We have then shown using a differential
evolution algorithm that it is possible to model ERs and DRs in a network of 12 coupled
Wendling neural masses, when only controlling connectivities, the amount of feedforward
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inhibition and the amount of external excitatory input. Almost all desired ERs could be
modelled correctly. Desired DRs that were further away from the stimulation electrodes
were found only in some cases. However, desired DRs with a direct incoming connection
from a stimulated electrode could be modelled correctly in a majority of the cases. Finally,
we considered the application of our DE algorithm to clinical data provided by the University
Medical Centre Utrecht. We have found that most of the desired ERs and a few desired
DRs can be found through optimization of parameters in these patient-specific networks of
neural mass models.

The findings in this thesis provide a promising outlook for the usage of neural mass models in
epilepsy research. Our analysis of evoked activity shows that responses observed in SPES can
be modelled in networks of Wendling neural masses, which is an essential step towards the
creation of patient-specific neural mass models. Such models may eventually be used in the
prediction of surgery outcome for epilepsy patients. Moreover, our analysis of reciprocally
coupled neural mass models shows that the feedforward inhibition necessary for modelling
delayed responses in neural mass models has a significant effect on the spontaneous activity
of coupled neural mass models. This provides a theoretical link between the modelling of
evoked activity in SPES and spontaneous activity associated with epilepsy.

5.2 Discussion and limitations
In our analysis of two reciprocally coupled neural mass models, we have highlighted a role
for the connection strength in explaining synchronous SWD-like behaviour for the two con-
sidered neural mass models. However, the influence of connectivity in combination with
feedforward inhibition on spontaneous activity of neural mass models could be investigated
in more detail. Namely, in literature it is shown that the seizure-onset zone and resected
area for patients correlate with a high in-degree and out-degree in ER networks [4]. It would
be interesting to investigate whether these experimental findings can be explained through
the analysis of networks of neural mass models. We note that some analysis does exist
for the connectivity between coupled Jansen-Rit models [28], [29]. However, these publi-
cations do not consider the link to evoked activity nor the influence of feedforward inhibition.

Moreover, more work could be done comparing the use of the Jansen-Rit and Wendling
model in the explanation of seizures. In our analysis, a weaker connection strength is con-
sidered in the Jansen-Rit model than in the Wendling model. It can be concluded from our
analysis that the Wendling model with larger connectivity and a larger influence of the fast
inhibition is preferred for explaining seizures. However, a direct comparison between the
two models cannot be made with the analysis provided in this thesis.
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The method of constructing 12-node sample networks in our analysis of evoked responses
should be discussed. Firstly, we infer what ERs occur from a network assumed to be the
true network. Only if both stimulation electrodes have an outgoing connection to another
node, a desired ER is added. Adding connections if at least one node in the stimulation
pair shows a true connection to another node would be more true to the way in which
real ER networks are constructed. This method would likely lead to more ERs in the data
set. Delayed responses are distributed randomly over the network. While this method of
distributing DRs in theory should provide a large variety of configurations, it is not true to
any patterns found in delayed responses in patients. Hence, more work could be done to
construct artificial networks that are more true to clinical data.

In the analysis of our results of the optimization of parameters for fitting ERs and DRs, we
have found that the found parameter choices are sometimes not numerically stable, mean-
ing that an adjustment of the used ODE solver may remove or add a few early or delayed
responses to the outcome of a simulation. Moreover, in a model that can be applied to
clinical data it is desired that a part of the brain can be removed, simulating resection in
epilepsy surgery. The removal of a few nodes in the neural mass model should thus gener-
ally still result in stability. By stability we mean that each neural mass should still converge
to a stable equilibrium in absence of stimulation. In the current solutions found through
our DE algorithm, numerical experiments show that this is generally not the case, and the
system often tends to oscillatory activity with large amplitude upon the removal of a node.
Hence, the necessity of stability upon the removal of nodes in the network provides extra
conditions that results of parameter optimization should meet.

When fitting ERs and DRs using our DE algorithm, searching in a different parameter space
may be better for obtaining correct responses. For example, it may be more physically ac-
curate to view the feedforward inhibition as a characteristic of each specific connection
rather than of each node. A numerical experiment with one of our 12-node networks and
feedforward inhibition per connection did not yield significantly better results, but this may
not be the case in patient-specific networks.

5.3 Outlook
The results in this thesis provide a small step towards the construction of patient-specific
neural mass models that can assist in the delineation of epileptiform tissue and improve
epilepsy surgery. There are various directions in which future research can be taken.

First, there are still future steps that can be taken to improve patient-specific models show-
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ing desired ERs and DRs. As only a few DRs could be fitted correctly in large networks, it
is interesting to investigate whether methods can be constructed by which more DRs can
be found. Moreover, some conditions for stability after the removal of nodes in the network
should be met in patient-specific networks. A possible method of improving parameter op-
timisation is to incorporate knowledge of evoked activity in small networks of neural mass
models to improve the search space and rate of convergence of optimization methods. An
alteration of the parameter search space as discussed in the previous section could also be
considered.

Another step would be to model seizures in networks of neural mass models that also
show characteristic evoked responses. In literature, the influence of network structure on
seizure generation in Wendling neural mass models has been studied using a metric for the
ictogenicity of nodes in the network [39], [40]. In these models, parameter choices for each
node are the same. It would be interesting to investigate networks of neural masses with
patient-specific parameter choices per node. Such research would be a next step towards
more accurate prediction of surgery outcome for patients with epilepsy.
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Appendix A

Bifurcation theory

We give a brief introduction to bifurcation theory. For a full description of the field of
bifurcation analysis we refer to the book by Yu. A. Kuznetsov [41]. We consider a system
of ODEs of the form

ẋ = f(x, β) (A.1)

where the state x ∈ Rn and parameters are β ∈ Rk. A bifurcation point is defined as a
point β0 ∈ Rk such that within any neighbourhood of β0 there exists a β1 ∈ Rk so that no
homeomorphism exists that maps orbits of the system ẋ = f(x, β1) to orbits of the system
f(x, β0). Loosely speaking, a bifurcation point indicates a change in the type of orbits
that can be obtained from a dynamical system. In this section, we review codimension 1
bifurcations. These are bifurcations that can occur in systems where β ∈ R.

A.1 Local codimension 1 bifurcations
We first look into bifurcations of equilibria. An equilibrium of the system (A.1) is a point
such that f(x, β) = 0. The stability of an equilibrium can be found by investigating the
eigenvalues λk ∈ C where k ∈ {0, 1, ..., n} of the Jacobian matrix fx(x, β) evaluated at
the equilibrium. If the real parts of all eigenvalues are negative the equilibrium is stable. If
the real part of at least one eigenvalue is positive the equilibrium is unstable. This leaves
two critical cases, namely the case that λk = 0 for some k ∈ {1, 2, ..., n} or the case that
λj,k = ±iω for some j, k ∈ {1, 2, ..., n}, j 6= k and ω > 0.

In the case that λk = 0 and a normal form coefficient a is nonzero (for the computation of
normal form coefficients we refer to Kuznetsov [41]) a fold bifurcation occurs. When such
a fold bifurcation occurs at β = β0 two equilibria which exist either for β > β0 or β < β0

collide and disappear on the other side of β0. An example of the change of dynamics is
shown in Figure A.1.
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Figure A.1: Example of a fold bifurcation of equilibria, adapted from Kuznetsov [41].
Here, an equilibrium of saddle type O2 and a stable node O1 exist for β < 0.
The two equilibria collide at β = 0. Neither equilbrium persists after the
bifurcation point.

When λj,k = ±iω a Hopf bifurcation occurs. When a Hopf bifurcation occurs, a focus
(equilibrium where the imaginary part of at least two eigenvalues of the Jacobian matrix
are nonzero) changes stability. When this happens, a limit cycle emerges. Important in
the consideration of Hopf bifurcations is the value of a coefficient called the first Lyapunov
coefficient l1. When this coefficient is larger than 0 a subcritical Hopf bifurcation occurs
(Figure A.3). In this case, an unstable cycle disappears as the equilibrium switches from
stable to unstable. On the other hand, if l1 < 0 a supercritical Hopf bifurcation occurs
and a stable cycle emerges from the Hopf bifurcation (Figure A.2). Lastly, we note that if
l1 = 0, the Hopf bifurcation is not generic and the analysis is more delicate.

Figure A.2: Schematic view of a supercritical Hopf bifurcation, adapted from Kuznetsov
[41]. Here, a stable focus exists for β < 0. After the Hopf bifurcation point
at β = 0, the focus becomes unstable and a stable limit cycle emerges.
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Figure A.3: Schematic view of a subcritical Hopf bifurcation, adapted from Kuznetsov
[41]. Here, an unstable focus exist and an unstable cycle exist for β < 0.
After the Hopf bifurcation point at β = 0, the focus becomes stable and the
limit cycle ceases to exist.

A.2 Global codimension 1 bifurcations
We also describe codimension 1 bifurcations of cycles. Suppose that a cycle with period
T0 is given as x0(t). Then the monodromy matrix is given by y(T0) where y(t) satisfies

ẏ(t) = fx(x
0(t))y(t).

The monodromy matrix always has one trivial eigenvalue µn = 1. When we consider the
other eigenvalues of the monodromy matrix µk ∈ C, k ∈ {1, 2, ..., n− 1} the periodic orbit
is stable if all of these eigenvalues satisfy |µk| < 1 and is unstable if at least one eigenvalue
has modulus larger than 1. In systems with dimension 3 or higher this leaves us with three
critical cases:

• µk = 1 for some k ∈ {1, 2, ..., n− 1}.

• µk = −1 for some k ∈ {1, 2, ..., n− 1}.

• µj,k = e±iθ for some j, k ∈ {1, 2, ..., n− 1}, j 6= k and 0 < θ < π.

When µk = 1 a fold of limit cycles (LPC) bifurcation occurs. This bifurcation corresponds
to the collision and subsequent disappearance of two limit cycles in the system. A schematic
view is given in Figure A.4.
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Figure A.4: Schematic view of an LPC bifurcation, adapted from Kuznetsov [41]. Here,
two cycles exist for β < 0, one of which (C+

1 ) is unstable and the other is
stable (C−2 ). These cycles collide at the bifurcation point β = 0 and cease to
exist for β > 0.

When µk = −1 a period-doubling (PD) bifurcation occurs. This bifurcation corresponds to
emergence of a cycle with twice the period of the original cycle. A schematic view is given
in Figure A.5. We note that a common route to chaos in dynamical systems is a cascade
of period-doubling bifurcations where period-doubling bifurcations occur closer and closer
together leading to a chaotic attractor.

Figure A.5: Schematic view of a period-doubling bifurcation, adapted from Kuznetsov
[41]. Here, one stable cycle C−1 exists for β < 0. After the bifurcation point
at β = 0, the original cycle becomes unstable and a new stable cycle with
double period emerges (C−2 ).

When µj,k = e±iθ a Neimark-Sacker (NS) bifurcation occurs. From this bifurcation a
torus-like structure or closed invariant curve emerges after the bifurcation point. This
phenomenon is shown schematically in Figure A.6.
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Figure A.6: Schematic view of a Neimark-Sacker bifurcation, adapted from Kuznetsov
[41]. Here, a stable cycle C0 exists for β < 0. After the bifurcation point, a
stable torus T2 emerges and the cycle becomes unstable.

Lastly, we describe two types of homoclinic bifurcations. We recall that a homoclinic orbit
is a solution φ(t) of the system (A.1) such that lim

t→−∞ φ(t) = lim
t→∞ φ(t) = x0 where x0 is a

saddle equilibrium. A heteroclinic orbit is a solution φ(t) to the system (A.1) such that
lim
t→−∞ φ(t) = x0 and lim

t→∞ φ(t) = x1 where x0 and x1 are both equilibria of the system.

The first homoclinic bifurcation we describe is a homoclinic-to-saddle bifurcation. When
this bifurcation occurs, a homoclinic orbit exists exactly for the critical parameter. On one
side of the bifurcation point a cycle emerges, the stability of which depends on properties
of the homoclinic orbit. On the other side of the bifurcation point, the periodic orbit dis-
appears. A schematic view of this bifurcation is given in Figure A.7.
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Figure A.7: Schematic view of a homoclinic-to-saddle bifurcation, adapted from
Kuznetsov [41]. Here, for β > 0 a saddle point exists as well as a stable
cycle Cβ. At the bifurcation point β = 0, a homoclinic orbit Γ0 exists. For
β < 0, both the stable cycle and the homoclinic orbit disappear.

A second homoclinic bifurcation is the saddle-node on invariant curve (SNIC) bifurcation.
In this case, two saddle points are connected through two heteroclinic orbits on one side of
the bifurcation point. At the bifurcation point, a fold bifurcation occurs and the two saddle
points coincide. This results in the existence of a homoclinic orbit. After the bifurcation
point, a periodic orbit remains. This phenomenon is shown schematically in Figure A.8.

Figure A.8: Schematic view of a SNIC bifurcation, adapted from Kuznetsov [41]. Here,
two saddle points x1 and x2 exist for β < 0 that are connected through two
heteroclinic orbits. For β = 0, the two equilibria collide and a homoclinic
orbit Γ0 exists. For β > 0, both equilibria cease to exist and a stable cycle
Cβ remains.
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Appendix B

The validity of ER networks

Due to the method by which ER networks are constructed from clinical data, it is possible
that connections are added between nodes that are not connected in the underlying true
network of connectivity within the brain. Namely, if a connection exists between A and
C, and a stimulation pair (A,B) is chosen, a directed edge will also exist between B and
C in the resulting ER network. We investigate whether this method of constructing ER
networks qualitatively changes the network and thus whether ER networks can reliably be
used to indicate connectivity between areas in the brain. In order to find an answer to
our research question, we consider the values of several network measures that have been
shown to be significant in previous research done on ER networks [4], [6]. We show that
under the assumption of nearest neighbour coupling, ER networks can reliably be used to
indicate connectivity between different areas of the brain.

We consider four network measures for directed graphs. For an introduction to graph theory,
we refer to Grimaldi et al [31]. We denote the weighted network by G(V,E). Moreover,
we let |V | = N and nodes are labelled vi ∈ V , i ∈ 1, ..., N . We consider the in-degree
defined as

di(vi) =
N∑
j=1

Aji,

and the out-degree defined as

do(vi) =
N∑
j=1

Aij.

Moreover, we consider the closeness centrality defined as

cc(vi) =

(
N∑

j=1,i6=j

d(vi, vj)

)−1
where d(vi, vj) is the shortest distance between nodes vi and vj in G. We also consider the
eigenvector centrality ce ∈ RN defined as the solution to the eigenvector problem

Ace = λce
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where λ is the largest eigenvalue of A. The eigenvector centrality ce defines a centrality
measure for each node, given by the ith element ce,i for node vi. If G has one strongly
connected component, the solution to this eigenvector problem is unique up to scaling by
the Perron-Frobenius theorem. The reasoning behind this choice for network measures is
as follows. The in-degree and out-degree in electrodes in an ER network have both been
found to correlate positively with the seizure-onset-zone and resected area [4]. Similarly,
the in-degree, out-degree and eigenvector centrality all show a positive correlation to the
amount of DRs in a node both in some individual patients and on the group level. Lastly, the
closeness centrality characterizes the difference in path length between nodes. The path
length between nodes has previously been found to correlate with the onset of DRs [6].
Hence, if these four network measures remain similar when adjusting weights within an ER
network, we conclude that the adjusted network is similar to the original ER network.

When comparing measures for different networks, we use Spearman’s rank correlation. In
this method, each measure for a node in the original graph Yi and measure for a node in the
adjusted graph Xi is given a rank based on the ordering of these variables. The difference
between the rank of Xi and the rank of Yi is then denoted by di and Spearman’s rank
correlation can be calculated as

ρ = 1− 6
∑n

i=1 d
2
i

n(n2 − 1)
.

Here, n denotes the amount of observations. For testing the null hypothesis that no corre-
lation exists against a nonzero correlation a t-test can be applied.

We now assess how the method of constructing ER networks influences the properties of
the resulting network. To do this, we first generate a graph representing the true network.
We also choose stimulation pairs. We then construct a second network in the following
way. For each stimulation pair in the true network (vj, vk) we add edges to the network
according to the method of constructing ER networks that is used now (described in 4.2.1).
That is, in the chosen patient network, we add an edge from vi, i ∈ {j, k} to vl if an
edge exists from vm to vl, m ∈ {1, 2},m 6= i. We compare the network measures between
the artificial “true” network and the network after adding connections. We use the eigen-
vector centrality, closeness centrality, in-degree and out-degree as our network measures of
interest, and calculate Spearman’s rank correlation. To test the null hypothesis that no
correlation exists against a nonzero correlation a t-test is applied. The null hypothesis is
rejected if p < 0.05. We define the adjusted network to be similar to the original network
if there is a significant correlation between all considered network measures in the adjusted
graph and the same network measures in the original random graph.

We generate two types of true networks. For both types, stimulation pairs are taken to be
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adjacent electrodes on the rows of an 8×8 grid (similar to the method described in Chapter
4.2.4). We thus obtain 7× 8 = 56 stimulation pairs. In the first method, the true network
is taken to be a random Erdős-Rényi graph with 64 nodes and p = 0.2. For the second
type a bias for nearest neighbour connections is added, and the method is analogous to the
method described in Chapter 4.2.4. For each type, we construct 100 artificial networks.

For the 100 considered networks without bias for nearest neighbour connections, we find that
79 adjusted graphs are similar to the original graph. Considering the 100 networks with bias
for nearest neighbour connections yielded 98 networks that were similar after adjustment.
A comparison of the distributions of Spearman’s rank correlation for the four considered
network measures is given in Figure B.1. We see that Spearman’s ρ is considerably larger
in networks with nearest neighbour coupling for all considered network measures except the
in-degree. We conclude that the constructed ER network do not change qualitatively if a
bias for nearest neighbour coupling is assumed between electrodes.
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(a) Comparison of eigenvector centrality. (b) Comparison of closeness centrality.

(c) Comparison of in-degree. (d) Comparison of out-degree.

Figure B.1: Comparison of Spearman’s rank correlation between the original network and
networks after adjustment due to stimulation both in networks with nearest
neighbour (NN) coupling and without nearest neighbour coupling.
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