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CHAPTER 1

INTRODUCTION

Field Programmable Gate Arrays (FPGAs) are general-purpose chips with a large
number of programmable cells that can be programmed to form any logic circuit. Its
functionality can be altered after manufacturing, hence the name field-programmable.
The reconfigurable nature of FPGAs is useful for prototyping applications and benefi-
cial for systems that are susceptible for changes or future updates. The configuration
of an FPGA is generally specified using a hardware description language. After that,
the configuration is translated which represents an electronic circuit to be mapped onto
the fabric of the FPGA.

Partial Reconfiguration (PR) is a feature that allows modification of certain prede-
fined regions of the fabric of the FPGA. Here the fabric is divided into a static region
and one or more dynamic regions. During runtime, the dynamic regions can be recon-
figured while the remaining design continues to function without interruption. Hardware
resources can be virtualized in a time-shared fashion. Increasing the logic density of
the chip and larger designs may be implemented on smaller chips. Dynamic Partial
Reconfiguration (DPR) extends the design flexibility even further by allowing hardware
modules to be loaded during run-time on demand.

The use of DPR introduces several design and implementation challenges. De-
pending on the tools used, PR designs require additional design steps such as par-
titioning, floorplanning and constraints that have to be applied on the design. There
exist various commercial and academic frameworks or tools to assist the designer in
this process. While the major vendor tools do have support and implement the DPR
design flow, they do not come without limitations. One such limitation is the lack of
more advanced reconfiguration styles such as slot- and grid-style [Int20; Xil20], where
the partial region can host multiple reconfigurable modules at the same time. Module
relocation is another missing feature, allowing the same modules to be reused in more
than one partial region.

Certain tools from the academic community such as [BKT12; Zam+18] overcome
these limitations or extend the vendor tool flow. Adding new features or provide an
automated and stand-alone framework that implements the whole system In general,
the commercial tools have a dependent design flow for building PR systems. Where
dependent means that the static system and reconfigurable modules are developed
in a single project. The integrity and compatibility between static design and partial
modules are kept in this way. Furthermore, it provides verification of the complete
system by means of a timing analysis and (post-implementation) simulation. Indepen-
dent design flow found in some of the academic tools allows the static system and
reconfigurable modules to be designed independently from each other. This can save
implementation time, but a drawback of this decoupling is that the design is difficult
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Chapter 1. Introduction 6

to test as a whole. Although the reconfigurable modules could be tested and sim-
ulated on their correct behavior, for the static system this is not possible by default.
Moreover, with different modules and configurations, interface mismatches and timing-
related bugs are likely to occur. With only in-circuit testing, it can be hard to point out
where the real error originates.

1.1 Problem Description

Verification of FPGA systems can be of a challenge, in particular, that of designs using
PR. The academic tools that implement a grid-style reconfiguration architecture do not
have the ability to perform a timing simulation. Reason for this limitation is that the
design was split into static and dynamic parts. A full placed and routed design (static
including partial modules) does not exist, thus a valid timing analysis can not be per-
formed. For such tools, functional testing and verification can only be done in-circuit.
This method of testing requires that the target hardware is known and present and this
might not always be possible or practical. In-circuit test can only be done in a late stage
of the design. If bugs arise in this late stage, such as timing violations, additional time
must be spent to resolve these issues. Timing-related bugs can be hard to detect. This
is mainly because they occur on-chip and are dependent on the given clock and data
signals. In the case of PR, the timing can also be module configuration dependent.
Testing the whole design before deployment into the field would be of added value.
Even if a module is successfully placed on the fabric during reconfiguration, there is
no guarantee that the system behaves and functions as expected.

Each time when a new module is developed, the system as a whole should be
tested again. As the number of variants of a module increases, also the number
of configurations and the number of tests that have to be performed increases. In-
circuit testing done manually can be cumbersome, inaccurate, time-consuming and
error-prone, especially when grid-style reconfiguration architecture is used. Therefore,
automating the verification of systems that uses partial reconfiguration will be of added
value for the designers.

In this work, an automated tool for verification and design reconstruction is pro-
posed for PR systems. The verification part checks if a given set of modules is com-
patible with each other and the static system. A fully placed and routed netlist is ob-
tained by merging reconfigurable modules back into the static design. Since place and
route constraints must be kept, the merging is done on a netlist level. The so-called
design reconstruction takes care of this merging process. The logic of the modules
that belong to a specific configuration is placed into the partial region of the FPGA
fabric and interface nets are reconnected. Finally, we end up with a fully placed and
routed design on which a timing analysis and functional simulation can be performed.
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1.2 Thesis Outline

This report is organized in chapters and sections and has the following structure. First,
the necessary background information is provided in Chapter 2. The main topics are
FPGA architecture, design and verification flow and DPR. The related work is de-
scribed Chapter 3 summarizes the work found in the academic literature. In Chapter 4
a method is presented to overcome some of the mentioned limitations in the previous
chapters. Next, the realization of the tool that implements the proposed functional-
ities is described in Chapter 5. Some examples are presented in Chapter 6 which
also provides a way to check the correctness of the design reconstruction. Finally, the
conclusion and some possible future research directions are discussed.



CHAPTER 2

BACKGROUND

This chapter provides the reader with the necessary background information required
for this work. In Section 2.1, the basic architecture of FPGAs is described. The general
design flow and design verification is described in Section 2.2. Section 2.3 describes
the feature partial reconfiguration together with the use cases. After that, the previous
work and the current literature on verification and timing analysis of partial reconfigu-
ration systems is discussed. The bitstream format and the possible interactions with
this binary file is described in Section 2.5. The last section Section 2.6 gives a short
introduction on TCL scripts since it will be used extensively in Chapter 5.

2.1 FPGA Architecture

FPGAs are composed of a large number of logic elements and interconnects on a pro-
grammable fabric. This programmable fabric allows for combinations in logic elements
to be made, providing the flexibility to implement almost any algorithm. The fabric is a
structure of a grid-like array of tiles (see Figure 2.1.1).

Figure 2.1.1: A simplified representation of the typical internal architecture of the
FPGA fabric where some of the basic components can be identified.

Tiles are arranged by identical resource types. In general, they span the whole
vertical direction and one or more columns in the horizontal direction. Apart from the
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Chapter 2. Background 9

tiles, the fabric is furthermore divided into separate clock regions. This allows for a
more even distribution of the clock signal on the fabric. A list of common tile types that
can be found in most FPGA architectures include:

• Interconnect (INT) tiles provide connections between the logic blocks.
• Configurable Logic Block (CLB) tiles include digital logic elements that imple-

ments the user logic.
• Input/Output Block (IOB) tiles used for the communication outside the chip.
• Clock Management Tile (CMT) that to provide clock frequency synthesis.
• Digital Signal Processor (DSP) tiles that contain hardware multipliers and ac-

cumulators to enhance the speed and efficiency of applications that are using
digital signal processing.

• Block RAM (BRAM) tiles to provide on-chip storage for data.

FPGAs are equipped with prefabricated routing resources. The INT tiles are the pri-
mary routing resource on the FPGA fabric. It consists of a switch box1 and wires. The
switch box allows wires to switch between vertical and horizontal wires (Figure 2.1.2).
Switch boxes that connect tracks in the same direction are called planar switch boxes,
while switch boxes that allow connections to other directions are called Wilton switch
boxes [DÉ18]. They are commonly used since they provide routing flexibility. The INT
tiles contains wires of different lengths. Single-length wires are intended for short con-
nections to adjacent CLBs. Double-length wires that spans two CLBs. Long wires can
reach several CLBs.

Planar 
switch matrix

Wilton
switch matrix

INT tile CLB tile

Slice-M

Slice-L

LUT MUX

FFPIP

Node

Figure 2.1.2: The topology of CLB and INT tiles in a Xilinx 7-Series FPGA.

CLBs form the primary resource for any combinatorial or sequential function. For
example, the Xilinx 7-Series CLBs2 contain a pair of identical slices, arranged sym-
metrically [Xil18a; Xil16]. Those slices contain the Basic Elements (BELs) such as
Look-up tables (LUTs), Multiplexers (MUXs) and Flip-Flops (FFs). Each slice has four
6-input LUTs, 8 FFs and a 4-bit carry chain. The carry chain logic is intended for

1Commonly called a switch matrix.
2The focus in this work will be on the Xilinx FPGA architecture, but is comparable to other FPGA

manufactures and architectures.
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the implementation of fast arithmetic functions. Some slices (such as SLICEM) have
additional memory capabilities and can be configured as synchronous RAM cells.

The basic building block of the FPGA is the LUT which are available in the majority
of FPGA architectures. LUTs are the primary building block to implement any Boolean
logic function. Basically, a LUT is a multiplexer where k inputs are compared with 2k

SRAM cells (Figure 2.1.3). A truth table is stored into the SRAM cells and can repre-
sent any Boolean function. LUTs with k inputs can implement 22k different functions.
For example, the 7-Series FPGA implement a 6-input LUT. With 6 inputs we can form
264 = 4096 logic functions. The inputs of the LUT are permutable, the same function
can be achieved by swapping the inputs of the LUT. This swapping property gives the
router more freedom to find a shorter path.

A0

0

1

1

0

Q

A1

SRAM cell

Multiplexer

Figure 2.1.3: Example of a 2-input LUT. Here the LUT will behave as a XOR-gate with
the provided SRAM configuration.

2.1.1 Modeling Routing Resources
The routing resources on the fabric of an FPGA can be modelled as a directed Routing
Resource Graph (RRG). Consider RRG G, where G = (V,E). Each vertex vi ∈ V
corresponds to an electrical wire segment (or pin). Each edge ei,j ∈ E represents the
(programmable) connection between two vertices3. Figure 2.1.4 shows an example of
a RRG. We can furthermore define a net Ni = (si, ni,1, ..., (ni,2, ti,3), ..., ti,k) as a signal
route in G [MB14]. Each net Ni starts with a source pin si ∈ V and ends in one or
more sink pins ti,j ∈ V . Intermediate nodes are defined by ni,j ∈ V . In essence, the
set of nodes in Ni forms a routing tree, which that defines all paths from the source to
all sinks.

From the Xilinx FPGA design perspective, a net consists of interconnected pins,
ports and wires [Xil18b]. Nets can be grouped to form buses. The signals declared
in the HDL design are converted to a netlist during the Place & Route phase of the
design. In the post-synthesis design, a net connects a starting point to an end point.

3Although for this work we do not (re-)route the FPGA, additional knowledge on routing and routing
resources of FPGAs was required and gained by reading the available literature.
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vertex
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Figure 2.1.4: Route resource graph of FPGA. From the fabric level (a) to a graph
model (b).

Those endpoints are the input and output pins of logical components (such as LUTs,
flipflops, DSPs etc.). Moreover, we can distinguish two kinds of nets, logical and phys-
ical nets (Figure 2.1.54). A logical net forms a network of connected cell pins in the
RTL schematic. The physical net describes the physical connections between site pins
on the chip. During a place operation in the design step, the design is mapped onto
the routing resources of the target FPGA chip. This mapping effectively creates the
physical net.

In the device view of an open design from the Vivado Design Suite, we can query
the properties for each net. This is done by the get nets <net name> and get property

<net> commands. Physical nets have the additional property called ROUTE which
specifies the physical structure of the route. The route is stored as a directed routing
string, represented by a tree structure. Branches in the route string are represented
by curly braces ({}). An example of a directed route string is shown in Figure 2.1.6.

The route shown in Figure 2.1.6 can be represented as {n1 n2 n3 { n7 n8 } n4 n5 n6}.
Where n1 to n8 represent the wires of the route. Another valid representation could be
{n1 n2 n3 { n4 n5 n6 } n7 n8}. By default, the route strings in Vivado are formatted
using relative wires. Relative route strings are smaller in size since the tile informa-
tion is omitted. However, without the tile information, the route string is ambiguous.
Wires with the same name may be repeated several times. The Xilinx Vivado tool
accepts an absolute route string where each node is formatted tile/wire combination
like tilename x<?> y<?>/wire. Where each tile is distinguished by a combination of
the tile type and the x- and y-coordinates and <?> is an integer (an example would be

4From the tutorial ”Build a Basic Router” [LK18]

https://www.rapidwright.io/docs/FCCM19_Workshop.html
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clk

in0

clk_IBUF_inst

IBUF

OI
clk_IBUF_BUFG_inst

BUFG

OI

in0_IBUF_inst

IBUF

OI

inst_FDRE_1

FDRE

Q

C

CE

D

R

inst_FDRE_2

FDRE

Q

C

CE

D

R

out0_OBUF_inst

OBUF

OI
out0

(a) (b)

Figure 2.1.5: Example that shows the difference between a logical and physical net.
This is the output result after synthesis and implementation phase of Listing A.0.4.
Where (a) is the resulting RTL schematic and (b) the corresponding implementation in
the device view of Vivado. The blue line is the intermediate signal i out between the
two flipflops in the VHDL source code.

1 get_property ROUTE [get_nets i_out]

2 # { CLBLM_M_AQ CLBLM_LOGIC_OUTS4 NR1BEG0 NR1BEG0 BYP_ALT1 BYP1 CLBLM_M_AX }

3

4 get_nodes -of_objects [get_nets i_out]

5 # INT_R_X71Y74/BYP_ALT1 INT_R_X71Y74/BYP1 CLBLM_R_X71Y74/CLBLM_M_AX INT_R_X71Y73/NR1BEG0

INT_R_X71Y72/NR1BEG0 CLBLM_R_X71Y72/CLBLM_LOGIC_OUTS4 CLBLM_R_X71Y72/CLBLM_M_AQ↪→
6

7 get_pips -of_objects [get_nets i_out] -downhill

8 # CLBLM_R_X71Y72/CLBLM_R.CLBLM_M_AQ->CLBLM_LOGIC_OUTS4 INT_R_X71Y72/INT_R.LOGIC_OUTS4->>NR1BEG0

INT_R_X71Y73/INT_R.NR1END0->>NR1BEG0 INT_R_X71Y74/INT_R.NR1END0->>BYP_ALT1

INT_R_X71Y74/INT_R.BYP_ALT1->>BYP1 CLBLM_R_X71Y74/CLBLM_R.CLBLM_BYP1->CLBLM_M_AX

↪→
↪→

9

10 get_absolute_routestring_from_nets_dict $nets

11 # i_out {\{ CLBLM_R_X71Y72/CLBLM_M_AQ CLBLM_R_X71Y72/CLBLM_LOGIC_OUTS4 INT_R_X71Y72/NR1BEG0

INT_R_X71Y73/NR1BEG0 INT_R_X71Y74/BYP_ALT1 INT_R_X71Y74/BYP1 CLBLM_R_X71Y74/CLBLM_M_AX \}}↪→

Listing 2.1.1: Example TCL script shows how to get the route information from a net.
These commands are entered into the TCL console of Vivado on an open design. In
this example, net i out is the intermediate signal between the two FDRE instances.

node INT R X41Y35/SS2BEG2). An INT tile is is associated to each CLB (see Fig-
ure 2.1.2). The INT tile consist of a Wilton Switch Matrix (SM) where each input has
multiple mappings possible to the output nodes. The Input node can send its signal
to various outgoing nodes (called downhill nodes). The connection between each in-
put and an output node of the SM is controlled by a Programmable Interconnect Point
(PIP). These PIPs are programmable (or configurable) interconnects and is achieved
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Figure 2.1.6: Example route string

by turning on or off a CMOS transistor. When turned on, the input signal passes from
the input node to the corresponding output node. Between the CLB and SM there exist
another switchbox. This planar SM is not user configurable.

Wires are the metal interconnects on the fabric in a single tile. A node is a collection
of wires that can span multiple tiles. Nodes and wires are defined and named by their
cardinal direction on the fabric. They are formatted by concatenating property fields
into a single string as shown in Equation (2.1.1):

wire = 〈cardinal〉〈displacement〉〈direction〉〈index〉 (2.1.1)

Where we define:

cardinal = ∈ {NN,NL,NR,NE,NW,EE, . . . ,WW, . . . , SS, . . . }.
The cardinal direction of the wire (or node). This includes north, east, south,
west, and intercardinal directions. This is denoted by two characters, where, for
example, NN means north direction.

displacement = ∈ N. This is the length of the wire, roughly the number of tiles it
skips.

direction = {BEG,END}. Begin or end, refers to the begin and end port of the
switchbox.

index = ∈ N0. This is the index for identical nodes in the same direction. Wires
that have an identical direction and properties are grouped and indexed by this
number.

There exist also nodes that have different formatting, for example:

• Wires starting or ending in a CLB (e.g. CLBLM LOGIC OUTS1, CLBLM M AX).
• Planer SM wires (e.g IMUX L1).
• Bypass wires in the switchbox (e.g. BYP ALT1, BYP1).
• Long vertical nodes spanning multiple tiles (e.g LV L0).
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2.2 Design and verification flow

The design and verification flow for FPGA designs is shown in Figure 2.2.1. In general,
it starts by having a design specification (or idea) written in a HDL language (e.g. VHDL
or Verilog). The HDL sources are then modelled into an abstract digital circuit which
is called the RTL description of the design. Next step is synthesis, where the HDL
code is translated to the available design primitives. Design primitives are the actual
gates, registers, LUTs etc. that are present on as available hardware resources of
the target device. The implementation phase consists of two steps. In the place step,
the location of the hardware is decided, effectively mapping the design onto the chip.
Followed by the route step, which decides which logic should be connected using the
programmable routing fabric. After this, a so-called bitstream file is generated, a binary
file containing all the instructions to configure the FPGA.

HDL Design

Implementation
(Place & Route)

Generate
Programming File

Design Verification

HDL RTL 
(behavioural)

Simulation

Post-synthesis 
(gate level)
Simulation

Timing 
Simulation

In-circuit
Simulation

In-circuit
Testing

Vendor
Libraries

Synthesis

Back
Annotation

Program.
Tool

Testbench 
Stimulus

Timing
Libraries

Bitstream

Figure 2.2.1: The general design flow (in blue) and verification flow (grey) for FPGA
systems (figure from [DSC12]).

Design
Under
Test

Testbench

Inputs Outputs

Figure 2.2.2: Test bench for DUT

Different methods of verification are possible during each step of the design phase.
Verification is required to ensure that the design behaves correctly and as intended
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by the designer. A test bench is often used when working with HDL languages such
as VHDL and Verilog. With a test bench you apply input signals to the design as if
it is connected to the real world (Figure 2.2.2). The output is captured by the test
bench and compared with the reference output. Additionally, most simulators provide
a graphical waveform viewer to capture and observe the output signals in time. Note
that when using any of the HLS languages (e.g. C++), this is often carried out by a
co-simulation where the hardware test bench is often automatically generated by the
HLS tool. We can distinguish five types of (in-software) verification methods by means
of simulation[Xil19a]:

• Behavioral Simulation is performed on the RTL and verifies only the logic without
any delay information.

• Post-Synthesis Functional Simulation is performed after synthesis and ensures that
any optimizations have not affected the functionality of the design.

• Post-Synthesis Timing Simulation is performed on an unrouted design and includes
only estimated time delays about the routing and components of the FPGA being
used.

• Post-Implementation Functional Simulation is performed after the design has been
placed and routed. This verification is useful for determining if any physical optimiza-
tions during implementation have affected the functionality of the design.

• Post-Implementation Timing Simulation is used for detecting whether or not the de-
sign can operate at the specified clock speed using accurate time delays. This is the
closest possible way to emulate the design on the device. Making it possible to de-
tect asynchronous path timing errors. The netlist is annotated with timing information
using a SDF file, in which all circuit delays are defined.

Note that the timing information for items 1, 2, and 4 in the list above are ignored.
Additional vendor libraries for device specific (timing) information are required to do
any of the post-synthesis and timing analysis.

The final verification of the design is the in-circuit testing. This is done on the actual
hardware, the circuit board itself. For example by interaction with the board itself (e.g.
buttons, LEDs, measuring voltages, etc.) or via a serial data interface for debugging.

2.2.1 Timing Analysis
Timing analysis is one of the techniques to verify the timing requirements of a digital
design. These requirements are, for example, the clock speed on which the design
must be able to operate. Apart from any geometric requirements, the design must
also meet the timing constraints, e.g. the setup and hold constraints. The optimization
process that meets these requirements is called timing closure. Violations in timing
constraints lead to glitches at the output which results in undefined behavior of the
design.

Delays in electronic circuits are mainly due to the on and off switching time of tran-
sistors. Charging and discharging of (parasitic) capacitors present in each transistor
takes time, increasing the turn on and off time of the transistor (see Figure 2.2.3). The
time delay by signal propagation in wires plays a less significant role in this. However,
the routing architecture of FPGAs consists of wires and switches that are used to con-
nect those wires. The type and quantity of switches attached to each routing wire,
such as pass transistors, multiplexers, buffers, increase the overall wire delay. As well
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as the size of transistors, the topology of the interconnection of the switches and the
wire width and spacing [SR01].

t1

c1

c2

c4

c3

t2

Figure 2.2.3: Parasitic capacitance present in a CMOS inverter circuit. Capacitors
together with resistors form RC circuits (resistors not drawn) which take time to charge
and discharge, increasing the turn on and turn off time of the transistors (MOSFETS).

Digital circuits are analysed on certain delay properties. Combinational logic is
characterized by propagations delay and contamination delay. The propagation delay
is the length of time from when the input changes until the output has reached its final
value (Figure 2.2.4). Contamination delay is the minimum time when the output can
change its value when the input changes. For synchronous logic, i.e. logic that requires
a clock signal, we can define the setup and hold timing properties. These timing
properties are required to check for proper propagation of data through sequential
logic (or cells) by validating if the data is stable around the active edge of the clock.
Setup time is defined as the minimum time period before the active edge of the clock
where the input data must remain stable. Similarly, the hold time is the minimum time
the input data must remain stable after the clock edge. The active edge of the clock for
sequential logic is the rising or falling edge of the clock where data capture takes place.
We can furthermore define tccq as the amount of time required for an initial change in
output Q and tpcq as the clock to output Q propagation delay of a flipflop.

We can define two methods for verification namely: Static Timing Analysis (STA)
and simulation based analysis [BC09]. STA is performed statically, meaning that it
does not depend on data input values. Whereas for simulation bases timing analy-
sis, stimulus is applied on the inputs of the design under test. The output behavior
is observed and verified, the time is then advanced and new input data is applied.
The behavior is again observed and verified. Simulation-based timing analysis is only
complete and exhaustive when all possible test vectors are used as stimulus. For
large designs with millions of gates this is a very slow method, making it difficult to ver-
ify through simulation. On the other hand, static timing analysis provides a faster and
simpler method for checking if paths have any timing violation. STA can be used to op-
timize the design by finding the worst or critical time paths. Timing-driven placement
uses STA to identify critical nets to improve signal propagation. This is achieved by
either minimizing the Worst Negative Slack (WNS) or the Total Negative Slack (TNS).

All static timing analysis is done on paths. A path is a net that starts at a clocked
element (e.g. a flipflop), going through any number of combinatorial elements and
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(a) (b)

Figure 2.2.4: Timing properties displayed in the wave form where we have: For logic
elements (a), propagation delay tpd and contamination delay tcd. For sequential logic
(b), the setup time tsetup and hold time thold. Figures from [HH07].

ends at a clocked element. For example, in Figure 2.1.5a signal i out (blue line)
is path. Paths themselves may have multiple segments as they can pass through
different levels of hierarchy in the design. The critical path is the signal path that has
the longest propagation delay. This path determines the highest clock speed possible
for the design. All static timing analysis is conducted on paths to determine the overall
circuit delays.

A key metric for STA is the timing slack for a given timing point. This timing slack
is defined as the difference between the requested arrival time and the actual arriving
time. The slack value is an indicator of whether the timing constraint for node v has
been satisfied. A positive value means that the timing is met, i.e. there is some slack.
Negative slack indicates a timing violation, there exist a signal that arrives after its
required time. The timing slack of a node v is defined as follows [Kah+11]:

slack(v) = RAT (v)− AAT (v) (2.2.1)

Where:

RAT = Required Arrival Time

AAT = Actual Arrival Time

The WNS is defined as:

WNS = min
τεT

(slack(τ)) (2.2.2)

Where T is the set of all timing endpoints. The TNS is defined as:

TNS =
∑

τεT,slack(τ)<0

slack(τ) (2.2.3)
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2.3 Dynamic Partial Reconfiguration

FPGAs have two modes of operation, configuration mode and user mode. After power-
up, an (SRAM-based) FPGA goes into its configuration mode. In this mode, there
exist several mechanisms to configure an FPGA. The Common and most widely used
method is the JTAG interface. This interface can also be used for testing the device
and handle multiple devices. Xilinx FPGAs offer various configuration methods such
as SelectMap, Internal Configuration Access Port (ICAP), Processor Configuration
Access Port (PCAP) or via a serial interface. To make the configuration persistent after
a power-cycle, the program is stored onto a flash memory chip near the FPGA. During
the start of the system, the configuration is loaded into the Static Random-Access
Memory (SRAM) memory chip to initialize the FPGA. Three configuration methods
can be classified as follows:

• Full configuration: The configuration is loaded during start-up (or during devel-
opment) of the FPGA.

• Dynamic reconfiguration: During operation, the FPGA is put into a configuration
mode to update its entire configuration.

• Dynamic Partial Reconfiguration (DPR): The FPGA keeps on performing its task,
but a portion of the fabric is reconfigured.

Additionally, there exist FPGAs that implement the feature of DPR. DPR allows
you to reconfigure a portion of the FPGA, while the remaining design continues to
function without interruption. The fabric is divided into a static region and one or more
dynamic regions (or partial regions). At any point in time, during run-time of the design,
pre-compiled partial bitstreams can be loaded to alter the behavior of the system.
Reconfiguration is done by a PR controller. The PR controller can be present on
the programmable logic itself or externally via PCAP interface. In this work, a Xilinx
Zynq 7000 chip is used. The Zynq SoC integrates the hardware programmability of
an FPGA with a dual-core ARM processor. Here the processor system can issue a
reconfiguration operation.

2.3.1 Terminology
The commonly used PR terminology that is used throughout this work is described
next. DPRS are FPGA systems that use PR that are decoupled into a static and one or
more dynamic parts. This decoupling is called the partitioning phase where the design
(the project) is split into two parts, static and dynamic. Here static means it does not
change during runtime of the design and dynamic refers the part where the behavior
that can be altered during runtime. The designer determines which part of the FPGA
design must be made dynamic and defines the architecture for the communication
interface. Furthermore, in order to determine the number of resources required to
host each reconfigurable module, resource budgeting is carried out (i.e. the number of
LUTs, DSPs or BRAMs etc.). At last, the floorplanning step determines the location of
each reconfigurable region on the FPGA fabric. To enforce routing constraints in the
design a blocker or blocker macro is applied. A blocker is used to occupy all routing
resources in order to force the (vendor) router not to use the resources. During the
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FPGA fabric

Static Region

Partial 
BitstreamsPartial Region

B1.bit

A1.bit

B2.bit

Figure 2.3.1: Concept of an FPGA system using partial reconfiguration. Multiple par-
tial regions can be defined on which multiple variants of partial bitstreams can be
loaded.

implementation of a module, the blocker is located around the partial region. Forcing
the router only to use the routing resources inside the partition. Holes in the border
are left open for interfacing. These holes are called tunnels and are wires in the border
of the blocker excluded from blocking. Tunnels allow for communication in and out of
the partial region (see Figure 2.3.2).

Blocker fence

Tunnel

Anchor logic

FPGA fabric

Interface signals

Module region

Figure 2.3.2: The blocker function is applied here to isolate a partial module. Tunnels
are unblocked wires that module can use for interfacing. Anchor logic is used to tie-off
the interface signals.

PR requires specials demands on communication architecture. Additional bus-
based architectures or methods using (LUTs) proxy logic have been proposed and
used in the literature. Using LUTs as anchor logic is a common method nowadays
since it has the least logic overhead. The LUT input (or output) is used as a termination
point for the interface signals.

The implementation of a reconfigurable module depends on the location on the
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fabric. Behaviorally identical modules can have different functional implementations.
Modules with function-equivalent implementations can, depending on where the mod-
ule is placed and routed on the fabric, also differ in module footprint. We have seen
in Section 2.1 that the fabric is divided into columns. An implemented module must
follow those resource constraints. Columns with identical resource types give room for
the feature called module relocation, where an implemented module can be reused on
different partitions of the fabric. Columns with different resource types result into a dif-
ferent module footprint, which are most often not interchangeable with other partitions.

The partial region must be large enough to host the largest module. This might lead
to low utilization of smaller modules and an increase of the internal fragmentation. Un-
used fabric space or area of a module is called internal fragmentation. Therefore,
there are reconfiguration styles that provide smaller (more optimal) slots, to lower this
internal fragmentation. As smaller slots will result into lower internal fragmentation.
The reconfigurable area can be categorized in different reconfiguration styles (Fig-
ure 2.3.3). The first variant is single island style, where only one module is loaded
in one specific partial area. Multi-island variants, such as slot-based and grid-style,
allows for one or more modules to be loaded at the same time. For grid-style, the
modules can have any arbitrary shape or size. Furthermore, adjacent modules di-
rectly communicate with each other. No additional overhead logic or routing resources
is required for a direct module-to-module communication. Additionally, a fourth re-
configuration style can be defined: fine-grained reconfiguration style [Zam+18]. This
granularity allows individual reconfiguration of components such as changing the truth
table of a LUTs. Fine-grained reconfiguration on LUTs is comparable with the con-
cept of Tunable Look-Up Table (TLUT) functions [BA09]. Having the advantage to be
faster than performing full module swap. However, its usability is limited to only small
and some specific cases. Some examples for this reconfiguration style could be: in
circuit switching without any additional logic overhead, clock tree switching to chang-
ing the clock frequency, conditional logic switching (e.g. exchange an OR-gate for an
AND-gate).

m
4

m3

m1 m2m
3

m1 m2m1 m2

Static part of the system Unused reconfigurable area Different modules

a b c

m1 m2

d

Individual components

Figure 2.3.3: Different reconfiguration styles: island-style (a), slot-style (b), mesh or
grid-style (c), fine-grained-style (d). Figures a,b,c from [Koc13].

Note that although we have different reconfiguration styles, the chip used might be
limited in its PR granularity, see Table 2.3.1.

2.3.2 Benefits and Applications for DPR
DPR can be used for a wide variety of applications. To quantify some of the benefits,
its prime use is to swap functions on-demand while the system is operational. More
adaptive designs can be created in order to increase the functionality on demand.
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Table 2.3.1: Xilinx PR Granularity

Architecture PR Granularity Circuit Relocation PR Primitive

Xilinx Zynq One clock region high Very difficult ICAP/PCAP
Xilinx Ultrascale One CLB Very difficult ICAP/MCAP

With time-sharing FPGA (hardware) resources, more functionally can be implemented
on smaller devices. Using fewer resources and thus more efficient in terms of sili-
con usage, can result in less power consumption. Additionally, loading functions only
when needed can also lead to power reduction. Furthermore, the design might be
able to work with a smaller sized FPGAs, reducing the cost of the system even fur-
ther. Another benefit would be the reduced configuration time. Instead of writing a full
bitstream, a smaller partial bitstream can be loaded.

A wide range of applications using DPR can be found the literature. These can
be grouped based on the specific features of DPR being used such as adaptability,
overhead reduction, reliability improvement, and hardware computing. To mention
some of the fields of applications and use cases, for example:

• Video processing - in [KL10], an adaptable video de-blocking filter using DPR
is proposed. This de-blocking removes artifacts that are created by block-based
transforms, motion estimation and quantization operations. The ability to adapt
to applications’ needs is used to support different resolutions and frame rates
dynamically.

• Image processing - in [Zam+18] different reconfigurable image processing filters
(such as dilate, erode and Sobel filters) can be loaded on-demand during run-
time.

• Database accelerating - using configurable hardware to accelerate database op-
erations. In [DZT13; Ves19] present such implementations for using DPR to
accelerate SQL database queries in hardware. The data from the database is
transferred to the FPGA. Basic SQL operators are then executed in hardware
resulting in an impressive speedup of the database query.

• Side-Channel Protection - counter measure against side-channel attacks on cryp-
tographic implementations using DPR. For example in [Sas+15; Het+19], DPR
is used to create different power profiles to make side-channel attacks on power
lines more difficult.

• Software Defined Radio (SDR) - In [Hos+18], five wireless communication sys-
tems are implemented on a Zynq FPGA. It shows to be effective in saving area
and power.

• Real-time systems - DPR can be used to schedule hardware with the concept of
scheduling tasks in a way that real-time systems can benefit from DPR [Pez+17].

• Neural networks - in [You+20] the power consumption of the neural network is
reduced by reducing the number of bits that represent the parameters of the
neural network. In [IAZ21],DPR is used to optimize throughput and accuracy.
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2.3.3 Verification of Partial Reconfigurable Systems
A common method for verifying hardware design functionality is using simulation. In
general, the more details included in the simulation, the more accurate the simulation
will be. However, this more detailed model leads to a decrease in simulation speed
and is often more time-consuming for the designers to trace the root cause of simu-
lation failures. Therefore we can say that verification productivity decreases with an
increasing simulation accuracy [GD14] (Figure 2.3.4).

Figure 2.3.4 illustrates the productivity and accuracy trade-off. Productivity is de-
fined as the simulation throughput, the number of simulated cycles per elapsed sec-
ond. On top of the graph, we have the high-level languages which are capable of
modeling and simulating hardware designs. Even though the simulation is not cycle-
accurate, it is accurate enough to verify the hardware architecture. In the middle, the
RTL-level of simulation, which is the common method used for verification. At the bot-
tom, we have the timing simulation. This is most of the time performed on the design
netlist annotated with the timing information.

Simulation Accuracy

Verification Productivity

Highlevel modeling
e.g. C/C++/SystemC

RTL Simulation
e.g. Verilog/VHDL

Timing simulation
i.e. simulating the design netlist

Figure 2.3.4: The simulation accuracy and verification productivity tradeoff (for static
designs). Figure from [GD14].

There has been some limited work in the academic community on verification and
simulating PR systems. Mainly because the major vendor tools do have basic support
for simulation when you use their tool flow. Since PR is closely associated with the tar-
geted FPGA architecture, fully modeling it requires modeling of low-level architectural
details. Some papers present methods to verify if the correct interface connections
are used. Or by automating design steps such as floorplanning, generate the (partial)
bitstreams, mistakes can be found. One important challenge for functional verification
is to verify the different stages of the reconfiguration process itself. Simulation of the
actual reconfiguration process is not always fully supported by the major vendor tools.

The Intel Quartus Prime software can simulate PR designs [Int20] and also gen-
erate the gate-level PR simulation models for each module. It is possible to use the
behavioral Register Transfer Level (RTL) or the gate-level PR simulation model for



Chapter 2. Background 23

simulation of the PR personas5. Simulation of PR persona replacement transition is
done by using simulation multiplexers and a simulation wrapper (see Figure 2.3.5).
The simulation multiplexers are used to change which persona drives the logic inside
the PR region during the simulation. The resulting change and intermediate effect can
then be observed in the reconfigurable partition.

Figure 2.3.5: Simulation of PR persona switching (from [Int20]).

From Vivado, the configurations of PR designs can use the standard simulation,
timing analysis, and verification techniques. However, the partial reconfiguration pro-
cess itself can not be simulated [Xil20]. The stages of the reconfiguration process is
described and categorized in [GD11a]. Divided into three stages, BEFORE, DURING
and AFTER:

• BEFORE reconfiguration is the time between the request and the first configura-
tion byte written.

• DURING reconfiguration is the time interval when the configuration is being writ-
ten.

• AFTER reconfiguration is the last stage, this is the time after the last byte written
and until the module is activated.

For each stage, various bugs and errors that can occur have been mentioned in
[GD11a].

There exist some academic frameworks that are capable of modeling the partial
reconfiguration process. In [GD14] the analysis challenges in verifying Dynamically
Reconfigurable Systems (DRS) designs are stated. Furthermore, a simulation-only
layer to emulate the behavior of the target FPGA is proposed. The simulation-only
layer is an approach for the functional verification of DRS designs. There exist MUX-
based methods such as [LSC97; Int20], but those methods fail to provide the accuracy
required to verify the design undergoing reconfiguration. Mainly because they swap
modules instantaneously or assume a compile-time defined reconfiguration delays.
Simulating the reconfiguration process and the bitstream traffic improves the accuracy
of functional verification.

5Intel calls the reconfigurable modules personas.
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To verify the reconfiguration process, the ReSim library is presented by Gong and
Diessel in [GD14]. It provides the designer assistance in verifying implementation-
related bugs, such as timing violation errors in the placed and routed design, and
short or open circuits, if any, caused by partial reconfiguration. This library uses a
simulation layer to model the physical layer of the partial run-time reconfiguration sys-
tems. The configuration port and configuration memory are emulated in this work. A
simulation bitstream (SimB) is used to transfer configuration data from storage to the
configuration port. The design flow of using ReSim takes a functional specification and
a set of reconfiguration strategies as input. These strategies include the name, size
and connectivity of the partial region and Reconfigurable Module (RM). The reconfig-
uration strategies are described in a Tool Command Language (TCL) script. Based on
that script, ReSim can generate the simulation-only artifacts. ReSim models the three
stages of the reconfiguration process and is thereby capable of simulating a design
undergoing partial reconfiguration. By accurately simulating the synchronization, iso-
lation and initialization mechanisms of the BEFORE, DURING and AFTER reconfigu-
ration, timing errors were detected in their case-study design. ReSim lets the designer
make use of the ”x” value injection. The ”x” injection can be changed to any design- or
test-specific error sequence. The chosen injection values will propagate through the
system from which erroneous cycles can be detected.

In [HKT13] a cycle-accurate simulation framework is presented. It extends the
idea of the ReSim [GD11b], but uses real bitstreams instead of simulation-only bit-
streams. This framework operates on the RTL-level using Very high-speed integrated
circuits program HDL (VHDL). The timing information is extracted from an actual FPGA
and provides cycle-accurate simulation. The provided reconfiguration controller uses
real bitstreams to control and simulate the reconfiguration process. This framework
supports island- and slot-based reconfiguration styles as well as the more advanced
features such as module relocation. The simulation framework is capable of detect-
ing and covering most of the common bugs described in [GD11a]. This includes the
bugs or errors that typically can occur during the different stages of the reconfiguration
process.

There are other techniques to assist the (pre-)verification of PR designs. For exam-
ple in [AMM18a] a technique is prosed to verify connections of the RMs using Assertion
Based Verification (ABV). It can verify the RTL designs after being modified to match
the DPR technique. The connections are modeled using System Verilog Assertion
(SVA) properties. Where an assertion is a statement of the design that is expected to
be true, SVA is a language construct providing a way to write the rules that constraint
the design specification. The assertions can then be used for formal verification (or
RTL simulation). When a property fails during verification, the root cause can be found
without much extra effort. Assertions can be synthesized on the FPGA and used for
runtime verification of DPR systems. Issues appear when there is a mismatch in the
number of ports between different modes of the RM. In this paper, we use the con-
nectivity verification approach to verify the changes in the interfaces of the RM. When
the design is synthesized, the netlist of the design is traversed to extract the connec-
tions of the RMs from the original design. The port connections are verified for every
mode of each RM. The proposed methodology verifies that the ports of all the RMs
of the design are properly connected. Ahmed et al. [AMM20] uses previous work to
demonstrate this on a Software Defined Radio (SDR) system. The effectiveness of ap-
plying these approaches in the design cycle is shown and three functional verification
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approaches are presented for DPR to verify:

• the port connections of the RMs,

• the dedicated logic added for DPR activities,

• Clock Domain Crossing (CDC) signals in the designs.

Likewise in [AMM18b] uses the same assertion-based verification technique to detect
bugs in the design They are able to identify output isolation errors, reset activation
sequence errors, and issues waiting for running computations on a module before
reconfiguring it.

In [AMM18c] a method is addressed for the issues that can occur during CDC. If
a signal crosses a clock domain and it does not remain steady during setup and hold
time, the receiving register can become metastable. Its output may settle at a random,
undetermined value that is different from the RTL simulation. Meta-stability can cause
functional errors in the design. The method proposed here first runs a sanity check
on the number of ports used. After that, a configuration mode is picked for the DRS
design that generates a RTL file for that mode. The utility generates the RTL design
for every mode and a script to run Questa CDC tool from Mentor Graphics6 to perform
the analysis on the design. Steps are repeated for all possible configuration modes of
the design. A report is generated from the CDC analysis. All is done on the RTL-level.

On the topic Static verification and Design Reconstruction. In the academic PR
tools, static timing analysis of the whole system is not possible, at least not directly.
However, Zamacola et al. [Zam+18] do offer a solution for this which they call design
reconstruction. The reconstruction is capable of merging a module back into the im-
plemented design of the static system. Essentially making the design as it is during
run-time. Using their framework and the exported data during the implementation, a
project that used island reconfiguration style can be reconstructed. Their framework is
limited to island-style only, fine-grained reconfiguration style is not supported.

2.4 Design Checkpoints

A Design Checkpoint (DCP) is a file used by Vivado. It represents a snapshot of a
design at any stage of the design process. At any point in time during the compilation
process, the designer can save a snapshot of the design state to a file which is referred
as a design checkpoint. The design checkpoint saves the intermediate state of the
design flow. Four states in the design flow can be classified: linked design, post-
synthesis, post-placement and post-routing. The linked design checkpoint does not
have a netlist, while the other three do.

A checkpoint is an archive file containing a collection of files that hold the netlist and
constraints of the design. The contents of the file can be viewed using any ordinary
archiving software (e.g. 7-Zip). After extracting the archive, we end up with a collection
of files:

• dcp.xml is an XML text file containing which version of Vivado is used, which
part (device) and what the top entity is. Furthermore, it contains a list of files that
are in the DCP archive.

6https://trias-mikro.de/wp-content/uploads/2018/07/Datenblatt-Questa-CDCand-Formal-
Technologies.pdf

https://trias-mikro.de/wp-content/uploads/2018/07/Datenblatt-Questa-CDCand-Formal-Technologies.pdf
https://trias-mikro.de/wp-content/uploads/2018/07/Datenblatt-Questa-CDCand-Formal-Technologies.pdf
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• top.edf specifies the design netlist. The file is formatted using the Electronic
Design Interchange Format (EDIF) specification7.

• top.incr contains timing-related information.

• top.rda contains a list of keywords and values separated with binary operators,
further usage is not known.

• top.shape starts with the text: ”Xilinx New Shape Database” and contains some
readable ASCII text. Contents and usage is unknown.

• top.sta, top.wdf, top.xbdc and top.xn for these files, the contents and usage
is unknown.

• top.xdef is the Xilinx Design Exchange Format file.

• top late.xdc is a design constraint file.

• top stub.v contains the top entity of the design, i.e. the ports of the top entity.
This is a Verilog source file.

• top stub.vhdl contains the top entity of the design, equal to top stub.v but then
in VHDL.

Checkpoints are of interest because they allow custom-developed CAD tools (e.g.
[LK18; WN14]) to interact with the design. For STA we required a full place and route
design. A possible idea would to is merging multiple Design Check Point (DCP) files
into one. From that point, a timing analysis can be performed. The incremental compile
flow [Xil21, p. 122] of Vivado, the logic, placement and routing of multiple designs can
be placed into a single design. However, it was found not useful (not intended by Xilinx)
in the contents of merging multiple implemented designs into a single design.

The RapidWright [LK18] framework was reviewed and considered for this work.
RapidWright is an open-source framework written in Java that complements the Vi-
vado. Offering various additional features to customize and modify the FPGA design
implementations. The topics of interest are A Pre-Implemented Module Flow8 and the
Lightweight Timing Model [Mai+19].

During this research, it was found that the lightweight timing model was not imple-
mented for 7-series FPGAs. That is to say, the timing information has to be comple-
mented for those devices. Furthermore, all the necessary functions required for this
work are present in the Vivado Design Suite. Therefore, any additional tools are not
necessary. Although with RapidWright offers better debug capabilities and more ab-
straction can be applied using object-oriented programing style, with Vivado we directly
interact with the open design and inspect the state graphically.

2.5 Bitstream Format

Xilinx FPGAs are configured by a binary file called bitstream. It contains the informa-
tion of the hardware logic, routing and initial values for on-chip memory. The file is a

7https://www.rulabinsky.com/cavd/text/chapd.html
8From https://www.rapidwright.io/docs/PreImplemented Modules Part I.html

https://www.rulabinsky.com/cavd/text/chapd.html
https://www.rapidwright.io/docs/PreImplemented_Modules_Part_I.html
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set of commands that are executed in sequence during the configuration of the FPGA.
Those commands are instructions that not only hold the chip configuration, but also de-
scribe the configuration process itself. Split into three parts: a header, the configuration
data and a footer (Figure 2.5.1a). The SYNC word is used to allow the configuration
logic to align at a 32-bit word boundary. Furthermore, the header contains information
about the origin, device, encryption and content of the entire bitstream. The body holds
the configuration data, which is arranged in data frames (Figure 2.5.1b). Those frames
are tiled over the device and are the smallest addressable segments of the FPGA con-
figuration memory [Xil18a]. They configure the resources of the FPGA (the CLBs, IOs,
BRAMs etc.). The footer finalizes the chip configuration and takes care of the start-up
sequence of the device. The DESYNC command releases the configuration logic.

SYNC
Bitstream header

HMAC header
configuration header

fabric data

configuration footer
HMAC footer

Bitstream footer
DESYNC

(a) (b)

Figure 2.5.1: (a) Bitstream file structure. Shaded parts can be encrypted. (b Rep-
resentation of the configuration memory layout arranged in data frames, taken from
[Gio+19]

The bitstream format is publicly documented. However, the mapping of configu-
ration bits (LUTs, PIPs etc.) is not. In the academic community, there exist various
literature and tools that analyze and reverse engineer bitstream files. Most work is
done to be able to modify the contents of LUTs or the interconnect (PIP) configuration
[Yu+19; MD20].

The program BITMAN [DHK17] is able to modify Xilinx bitstreams. This tool is writ-
ten in ANSI C and its knowledge of bitstreams was acquired by reverse engineering.
BITMAN has support for geometric operations such as cutting, relocation, duplication
and a number of low-level modifications on the contents of LUTs and BRAMs. For
DPRS this tool is useful since it can extract partial bitstreams from a full bitstream.
These partial bitstreams can be directly loaded using the available configuration port
(e.g. ICAP) of the device. Furthermore, since the tool is able to modify the address
information fields inside the bitstream, it is possible to perform module relocation on
the bitstream level. Module stitching is another feature that the tool is capable of. This
stitching property connects the interface of module tiles directly to each other on the
bitstream level. We will use this stitching and merging feature of BITMAN to verify the
correctness of our work in Chapter 5.
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2.6 TCL scripts

This work makes use of TCL scripts, therefore some basic background information is
provided in this section. Vivado integrates TCL version 8.5 (whereas ISE 13.4 is using
8.4) [Xil19b] and is equipped with its own binary version of the TCL interpreter and
shell. TCL is also pronounced as ticle. The GUI of Vivado includes a TCL console
where commands can be directly executed. Almost every action from the GUI can
also be performed with a corresponding TCL command. This allows working in project
mode and non-project mode. In non-project mode, Vivado is purely controlled by TCL
commands or scripts. All Vivado get * commands (e.g get nets for querying all nets
in a design) returns a collection of data, see for example Listing 2.1.1. Basically, these
collections are specialized wrappers around the ’list’ and ’dict’ data structures found in
the TCL framework. Collections are limited in the number of elements they list when
converted to a string representation. This limit can be adjusted with the following
command:
set_param tcl.collectionResultDisplayLimit 0; 0=disable the limit.

Listing 2.6.1 shows a few basic TCL commands [Whe11; Tcl]. Variables are de-
clared and initialized with the set command. Using the $ operator (or the set command
without the value argument) the value can be retrieved again. In TCL variables do not
have a type, everything is considered as a string. Values that variables hold can be
interpreted as numeric to perform mathematical operations. A group of elements can
be handled as a list and various list operations are supported by the TCL interpreter.
Furthermore, a key-valued lists are supported. These list are dictionaries and are
declared using the dict keyword.

Procedures can be created using the proc command. This command replaces any
existing procedure with the same name. TCL files can be arranged using namespaces.
A namespace is a collection of commands and variables. This ensures that commands
and variables don’t interfere with each other. By default, everything is in the global
namespace. Using the namespace eval command, a new namespace is created.
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1 #!/usr/bin/tclsh

2

3 # Variable declaration

4 set e 2.7182

5 puts $e; # prints 2.7182

6 puts [set e]; # prints 2.7182

7

8 # List example

9 set alist {4 8 15 16 23}

10 set blist [list 4 8 15 16 23]; # another list initialization method

11 lappend alist 42

12 puts [lindex $alist 0]; # list index are zero-based, prints 4

13 puts [llength $alist]; # prints 6

14

15 # Dictionary example

16 set d [dict create]

17 dict append d key1 val1

18 dict append d key2 val2

19 puts [dict get $d key1]; # prints 'val1'

20

21 # Create a namespace

22 namespace eval example {

23 namespace export example_proc

24 variable x 1

25

26 proc example_proc {} {

27 variable x

28 incr x

29 puts $x

30 }

31 }

32

33 # Calls the example_proc in the example namespace

34 example::example_proc; # prints 2

Listing 2.6.1: TCL example script showing basic commands. This scripts can be
executed using the tclsh <script.tcl> command in a shell.



CHAPTER 3

RELATED WORK

This chapter gives an overview of the DPR tools of the leading FPGA vendors and
the related academic tools found in the literature. A number of those tools have been
selected for comparison on their features and (active) development status.

3.1 An Overview of DPR Tools

The major FPGA vendors do have support for DPR. Intel Altera supports this for their
Cyclone, Arria, and Stratix devices with the Quartus Prime tool [Int20]. The PR design
flow of Intel requires initial planning where the design is set up with one or more par-
titions and the placement in the floorplan. In the floorplan view, you define the static
region, the PR place regions and routable regions for interfacing. The interface plan-
ner is used to create periphery floorplan assignments in the design. The next step is
adding the PR controller to the project. The personas (how Intel names reconfigurable
modules) are to be defined next. After that, the base revision for the design, as well
as PR implementation revisions for each persona is created. The Intel PR flow works
with project revisions to organize several versions in a single project. At this stage, the
base revisions can be compiled together with an export of the static region. The last
step is to generate the PR bitstream files and program the FPGA.

For Xilinx, designers can use PlanAhead for the ISE Design Suite or their latest
software the Vivado Design Suite. In the Vivado IDE, the partial reconfiguration design
flow is to be used for the Virtex, Zynq and UltraScale devices. Projects using PR
have to be created with the option partial reconfiguration enabled [Xil20; Xil19c]. The
designer then has to define the number of partitions in the project. To add and manage
the RM and the RTL sources, the Partial Reconfiguration Wizard is used. At this point,
the project can be synthesized. Each RM is assigned to a Physical Block (Pblock) by
default. Floorplanning can be carried out to adjust and move the Pblocks in the device
view. After passing the PR-specific checks, the implementation can be run to place
and route all RM configurations and the static design. When the implementation has
finished, running PR Verify is recommended to ensure consistency between static and
reconfigurable part. The last step is to generate the (partial) bitstream files.

Both tool flows are similar and comparable to each other. However, the vendor tools
do not come without limitations. For example, the partial region can only host a single
module at a time. They do not have support for slot- or grid-style reconfigurable styles.
This island-only style can lead to a non-optimal use of fabric area. Furthermore, the
vendor tools work with a dependent design flow for building reconfigurable systems.
The advantage of having a single project for the complete reconfigurable system is

30
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that the configuration can be checked for integrity. A disadvantage is that, for example,
when the static design requires a change, all of the reconfigurable modules need to
be re-implemented, up to the generating of new partial bitstreams. For large designs,
this is undesirable. This is not the case for an independent design flow. Here the static
system and modules are created independently from each other. Another limitation is
having no support for module relocation. When the same module is used (or loaded) at
various locations on the fabric it is called module relocation. Module relocation reduces
the storage space requirements of the reconfigurable modules and also reduces the
number of variants required for a specific module.

To overcome some of these limitations, there exist several academic tools. As
we will see later, design verification can be a challenge for such tools. The following
sections are devoted to the academic tools for the Xilinx platform.

3.1.1 GoAhead
The GOAHEAD tool is the successor of ReCoBus-builder tool [BKT12; Bec+13] sup-
porting more features and newer devices. This PR tool targets the Xilinx FPGAs for
implementing run-time reconfigurable systems. The tool is designed for usability by ab-
stracting most of the low-level details from the design engineer. Originally developed
for the Xilinx ISE IDE, where it is able to interact through XDL with the Xilinx tools.
Support for XDL was dropped in Vivado, but GoAhead has been adapted to emit TCL
code instead. GoAhead is a stand-alone .NET C# application and provides a graphi-
cal user interface and a scripting interface. This scripting capability allows automating
the implementation process in a single shot batch job. The tool provides floorplanning
capabilities, communication interface generation, and constraints generation required
for the implementation phase.

The tool flow of GoAhead is depicted in Figure 3.1.1b. In the planning phase, the
interface specifications are defined and resource budgeting is performed to calculate
the minimal size of the partial area. The designer has to take care of partitioning the
design into a static and dynamic part. In Figure 3.1.1a the block view of the FPGA
device is shown where each tile resource type has a distinct color. The block view
is stored into device descriptions files (*.binFPGA), a custom GoAhead format that
comes along with the tool. After the planning phase, GoAhead is used to floorplan
the design (Figure 3.1.1b). The definition of the reconfigurable areas can be selected
manually or by using the custom script commands of the tool. From the selection,
GoAhead generates the design templates (RTL sources) and constraint files. The RTL
sources have to be added to the Vivado project. The constraints files are executed at
different stages of the design. Using goa script files is a preferred method for building
reconfigurable systems with GoAhead.

To create a project with GoAhead (Vivado) using scripts, the following has to be
done.

• Define the static.goa file, which holds the commands:

– Floorplan the partial area
– Generate interface constraints
– Generate connection primitives in VHDL format
– Generate placement constraints
– Generate blocker macro

• module.goa file
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(a) (b)

Figure 3.1.1: (a) The GUI of GoAhead. (b) The design flow for building reconfigurable
systems with the GoAhead tool. The design of the static system and modules is com-
pletely separated. Floorplanning is done via de GUI of GoAhead. The corresponding
constraints and VHDL templates are generated by the tool. After that, Vivado applies
these files during the implementation phase of the design. Figure from [Hog19].

– Floorplan the module area
– Generate interface constraints
– Generate connection primitives in VHDL format
– Generate blocker macro
– Generate placement constraints

• build.tcl script file for the static design and for each module.

Running the goa scripts generates all the RTL sources and constrains scripts. The
RTL sources must be included in the FPGA project. For the constraints scripts, they
are executed in specific order after synthesis.

3.1.2 IMPRESS
IMPRESS is an open-source automated tool for implementing reconfigurable systems
[Zam+18; Zam+19; Zam+20] intended for the Xilinx Zynq SoC FPGAs. The frame-
work extends the Vivado reconfiguration flow capabilities by including a library written
in TCL language. It thereby overcomes some of the limitations of the Xilinx design
flow, such as the inability of stacking multiple Reconfigurable Partitions (RPs) within a
clock region [Zam+18]. The design flow for the IMPRESS framework is shown in Fig-
ure 3.1.2a. Different types of granularities are supported in the same reconfigurable
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system (Figure 3.1.2b). For Coarse-grain reconfiguration style, multiple RPs can exist
in the design. Each RP will hold only a single module. Exchanging modules during
run-time adapts the behavior of the system. The Medium-grain style has the property
that multiple RMs can exist in the same RP. Similar to the grid-style variant from Fig-
ure 2.3.3(c), this variant allows direct module-to-module communication. Useful, for
example, in systolic array networks. The Fine-grain type has the capability to reconfig-
ure low-level components. For example, by changing the equation of a LUT, the logic
behavior can be altered during the run-time of the design.

Planning Phase: static/partial partitioning, project definition

Synthesis and Implementation static

Synthesis and Implementation module

static.bit

module.pbs

generate_partial_bitstream.py reconstruction files

Vivado

Implement_reconfigurable_design <project>

Xilinx Format Manually VHDL

py_bitstream

static.vhdl

module.vhdl

Generated files by 
IMPRESS

(a) (b)

Figure 3.1.2: (a) The design flow for the IMPRESS framework. (b) IMPRESS and
Multi-grain Reconfiguration (from https://des-cei.github.io/tools/impress).

Ease of use has a strong focus for the IMPRESS framework as mentioned by the
authors. By providing a project-style architecture, it allows validation before any im-
plementation is performed. This can be a time-saver since errors can be found in an
early design stage. The number of manual (or intermediate) steps that the designer
has to perform are kept minimal. After defining the system specification, the tool au-
tomatically performs all the implementation steps and (partial) bitstream generation.
Three straightforward text files are used to define the system specification. Having a
profound understanding of the FPGA fabric and architecture is therefore not required.
The following specification files are setup during design time:

• project info file is the starting point for setting up the reconfigurable system. Di-
vided into three sections:

– General settings, such as project name and FPGA chip to be used.

– Source locations of the static system.

https://des-cei.github.io/tools/impress
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– Source locations of the reconfigurable modules and the partition group def-
inition per module.

• virtual architecture defines the architecture. E.g. the number of partitions in the
static design, the partition size, location, and reference to the interface file.

• interface file defines the local and global net interfaces.

The listings in Appendix A A.0.3, A.0.2 and A.0.1 show an example configuration.
This configuration was used for further clarification, understanding, and reference.
The decoupling of the implementation into a static system and reconfigurable mod-
ules (also called the partition phase) is a manual task. This is done on the source level
of the project. When the project files have been created and the design is partitioned,
a call to the IMPRESS framework can be issued in the TCL console from Vivado:

1 source /home/jeroen/git/impress/design_time/reconfiguration_tool/IMPRESS.tcl

2 implement_reconfigurable_design /home/jeroen/git/impress/examples/coarse_grain/project_info

Listing 3.1.1: Implement the example reconfigurable design
The first command makes the IMPRESS library available in Vivado by evaluating

all the source files specified in the file given by the argument. The second implements
the system previously defined in the project file. During synthesis and implementation,
the design checkpoints are stored in the project name directory near the project spec-
ification input files. The generated bitstream files are stored in a subfolder. These files
include the full bitstream of the static system and, for each module, a Partial Bitstream
(PB) file. Additionally, an info file and corresponding DCP file can be reviewed to find
potential issues that might have occurred during the implementation phase.

Regarding run-time management, the generated PBs are intended (and prepared)
for the run-time application. This application runs on one of the two ARM processor
cores of the Zynq FPGA, called the Processing Subsystem (PS). The PS has full read
and write access to the FPGA configuration memory through the PCAP interface. This
enables modifications to the circuit structure and functionality during operation of the
Programmable Logic (PL) part of the FPGA.

The following steps are performed when issuing the commands from Listing 3.1.1:

1. Parsing the project and virtual architecture files.

2. Setup of the Vivado project and create the output folder structure.

3. Static system generation.

4. Reconfigurable module generation.

Steps 1 and 2 do not require much further clarification. We continue with the sys-
tem implementation flow: static system and reconfigurable module generation. After
parsing the project input files the static system is synthesized.

• obtain interface info saves the interface information of all the reconfigurable par-
tition groups to a TCL variable.

• obtain xilinx and custom pblocks format takes a Pblock and saves its properties
(e.g the size) to two formats: the Xilinx format and the custom format for the
MORA PBS extractor tool.
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• obtain max DSP and RAM for reconfigurable partitions determines the number
of DSP and Random-Access Memory (RAM) components (number of tiles) for
each reconfigurable partition.

The RPs are arranged by their compatible footprint as well as with their compatible
interface. IMPRESS makes use of all inputs of the LUTs. Observing the implementa-
tion of the modules with respect to interfacing. The user can specify which border is
an input or an output. The number of usable tiles, that is the width, can be defined by
a suffix after specifying the cardinal direction. For example, defining SOUTH 0:3 for
the interface allows that four tiles are to be used on the southern border. Additional
standalone signal routing is possible. For example, a commonly used asynchronous
reset signal brings the FPGA system to its initial state. In GoAhead, it is possible to
configure the interface for all four borders separately. For each border, the designer
can adjust the width, the width in the number of bits the interface must have. Further-
more, the border can be bidirectional. Meaning it has separate input and output bus1.
Note that we do not mean a bidirectional bus here (declared with INOUT keyword in
VHDL).

3.1.2.1 Design reconstruction

The term design reconstruction refers to the operation on the previously decoupled
designs reconstructing into a fully implemented and single design. This implemented
design is identical to the run-time design when all partial bitstreams are loaded. Re-
construction is performed on the netlist level of the design since the place and route
constraint must be kept for all designs. IMPRESS framework offers support for de-
sign reconstruction. A method is included to merge a module into the static system at
design-time. For this to work, the reconfigurable regions must be the same for static
system and module, therefore the design reconstruction is only available for coarse-
grained reconfigurable systems. The provided method (a TCL proc) requires additional
information, which is output during the build and implementation phase of the recon-
figurable system. This additional information is stored in two text files and includes:

• For each module, the clock, reset and interface nets and its route string property.

• Placement constraints of certain cells (e.g. the LOCK PINS etc.).

The command listed in Listing 3.1.2 merges the div reconfigurable module inside
the reconfigurable partition of the static design. After completion, the result is a fully
implemented design, which can be validated using the simulator or by running a timing
analysis.

1 insert_reconfigurable_module pblock_reconf_part_0 <path to

IMPRESS>/examples/coarse_grain/impress_build/DESIGN_RECONSTRUCTION/group1_div.dcp↪→

Listing 3.1.2: Example command for design reconstruction with the IMPRESS frame-
work.

1For example the STD_LOGIC_VECTOR()
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3.1.3 TedTCL
TedTCL (TED: Tcl/Tk EDA Development) is an extension library to ease the use of
the TCL Application Programming Interface (API) of Vivado [Ves19; Vai+20]. Written
in TCL, it implements identical features for partial reconfiguration that are available in
GoAhead. This library is an extension for Vivado. TedTCL uses predefined connectors
that form the fixed wire assignment for a signal bundle. The connectors must use the
identical wires for the static system and modules to be able to communicate with each
other. For preventing wires routed through the reconfigurable region, TedTCL uses a
blocker (Figure 2.3.2). The blocker functions are using physical nets (the GROUND or
POWER nets) to prohibit using the wires from the interconnect tiles. The blocker blocks
all wires that are crossing the border of the Pblock, this results in a fence around the
module region. According to [Ves19], the performance of the blocker from TedTCL out-
performs the one from GoAhead, mainly because of the direct internal representation
of wires to block. TedTCL blocks only the wires that go across a tile, resulting in a fence
of only a single tile wide around the partial region. TedTCL features extended support
for clock routing. At the moment of writing, this feature has not been compared exten-
sively with the clock routing capabilities of GoAhead. GoAhead can generate scripts
for reconnecting the clocks to/in the partial area. This can be achieved by adding the
ConnectClockPins command in the GoAhead scripts. The command generates a TCL
script containing the statements to reconnect all the clock pins found in the partial area
to a predefined clock net. For example, the clockpin input from all the flip-flops that
each site contains.

3.2 Comparison and Differences between Frameworks

Starting with Xilinx Vivado, they have built-in support for PR, but island-style only.
Frameworks such as [Gli+19] completely automate the generation of the partial bit-
streams by compiling and configuring RMs onto the PR region, without the use of
vendor tools. Dreams [OdR12] has the disadvantage of that modules cannot commu-
nicate if they are located nonadjacent. If modules are located nonadjacent, we can
configure the slots in between modules such that they connect these modules. Those
modules are called bypass modules.

Various academic tools were compared on relevant properties on the design flow
of implementation PR systems. In particular, the GoAhead tool and IMPRESS frame-
work. They offer more or less the same functionality and there is still active develop-
ment on them. For each property in Table 3.2.1:

• Module relocation, the possibility to re-use modules in different partial regions.
• Style, the reconfiguration style, e.g. island or any of the other styles.
• Partition Interface, this is how the communication is defined between static sys-

tem and partial modules.
• Routing Isolation, how the routing is constrained not to use certain regions.
• Automated flow, is the PR flow automated, or does it require additional user

steps.
• Design reconstruction, can the design be reconstructed to a full design.
• System architecture description, Does the tool work with a system configuration

description.
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Tool / Feature Xilinx Vivado[Xil18b] GoAhead[BKT12] IMPRESS[Zam+18] TedTCL[Ves19] CoPR[VF14] DREAMS[OdR12] RePaBit[RFG16]

FPGAs V7,Zynq,
UltraScale

V4...V7,S6,
Zynq,
UltraScale

Zynq Zynq,UltraScale Zynq V5,S6 Zynq

Module relocation No Yes Yes Yes No Yes Yes
Reconfiguration styles Island All All Island Island All Island
Partition interface Proxy logic LUT binding in HDL Virtual Virtual (Xilinx) Proxy logic Virtual Bus macro
Routing isolation Xilinx Internal Blocker Blocker Dynamic Blocker Xilinx Internal Custom router Isolation Design Flow
Independent design flow No Yes Yes ?1 No Yes No
Automated tool flow Yes No2 Yes ? Yes Yes Yes
Design reconstruction Build-in Not yet Yes3 No No No No
System architecture description Yes No Yes No Yes Yes Yes

Table 3.2.1: Comparison of various DPR tools

3.2.1 GoAhead and IMPRESS
GoAhead has a built-in model of the FPGA fabric interconnections (or a graphical de-
vice view), TedTCL and IMPRESS do not offer such functionality. The model has the
advantage that tile selections can be done graphically and the internal PIP connections
can be shown. A downside is that the chip family database (and possibly the GUI) has
to be maintained separately. Another major difference is that the generated TCL con-
straints scripts from GoAhead must be tied into the build process of the reconfigurable
system. They must be executed at the right time during synthesis and implementation
flow within Vivado.

Since GoAhead exists for a long while, it has support for more (older) devices. Over
time, it is extended to support more devices and additional features that have been im-
plemented. The custom scripting interface gives access to all commands and macros
and gives the ability to replay the commands later. To make use of all commands, it
is required to have an in-depth technical knowledge of GoAhead and the FPGA chip
to be used. Furthermore, since the tool flow for modules and static design is decou-
pled, the designer must keep track of the consistency and integrity between modules
and static design. Especially for the correct placement of the interface. For example,
changing the partition size requires the designer to adjust the location (coordinates)
of the interface location and tunnels as well as the size of the blocker macro. Chang-
ing a setting or parameter can result in changes required elsewhere, something the
designer needs to keep in mind.

Regarding floorplanning, it can be considered more effortless for the IMPRESS
framework since it automates most steps. The designer does not have to know the
details of the (GoAhead) commands or have an understanding of the FPGA structure.
The project files from IMPRESS are of a similar approach as floorplanning phase of
GoAhead. Main difference is that GoAhead generates TCL scripts based on prede-
fined .goa configuration files for the static system and for each module. These must
be executed at the right time during the build of the project. Whereas IMPRESS takes
care of this by executing all the necessary commands directly in Vivado when reading
the project system architecture files.

Currently, the build process builds all modules and the static system. Rebuilding a
single module is not possible with IMPRESS framework Whereas GoAhead lets you
build a single module by running the template script for each module and perform an
implementation run.

GoAhead supports a number of devices, but not all features might have been im-
plemented for all devices. IMPRESS only supports the Zynq series FPGAs, but the

1Independent or automated flow is not mentioned in the literature.
2Not fully automated, manual and individual steps have to be performed.
3This framework only supports design reconstruction for island-style PR.
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tool could be extended to support more devices.
Regarding interface architecture, the IMPRESS framework uses fixed nodes in the

device which are shared between static and reconfigurable regions. This virtual inter-
face has the advantage of having no overhead in the RTL source code. In GoAhead,
these so-called interface connection primitives need to be declared and instantiated in
the VHDL source code. Note that for both tools there is no (logic) overhead in the final
design.

For GoAhead, each interface located the (cardinal) border. The number of signals
must be specified, as well as the number of tiles (CLBs) to use and reserve for the
communication. Both must relate and follow each other. Increasing the number of
signals also means adjusting the number of tiles to reserve for the connection macros.
Furthermore, it must match with the number of LUTs and LUT-pins available for each
CLB.

GoAhead is developed with Visual Studio adding extended debug capabilities to
the application (e.g. breakpoints and intermediate views). For TCL based frameworks
such as TedTCL and IMPRESS, those debugging capabilities are limited and in gen-
eral, do not go without a code change (e.g. adding print and assert statements.). On
the other hand, GoAhead has no direct access to an open FPGA design in Vivado. It
can only interact indirectly via script files. This makes it impossible to make some spe-
cific design changes. GoAhead requires the device files to be available for each device
to retrieve the fabric information, whereas IMPRESS can just query this in Vivado.

For comparison, example1 (from Section 6.1) is used. This example has one mod-
ule and one partition. RTL source code is identical, the static system The partition has
a size of 4 × 50 tiles, the shape is a rectangle placed from tile X34Y99 to X38Y50.
The designs were built consecutively on the same desktop computer. GoAhead took
about 31 minutes and 47 seconds to complete the build6. The IMPRESS framework
completed in 8 minutes and 52 seconds. The difference in time is mainly due to the
number of nodes that are blocked. The static blocker has 32750 nodes and the mod-
ule blocker has 175040 nodes blocked. 14301 nodes are blocked by IMPRESS, only
single fence nodes.

GoAhead blocks all wires around the reconfigurable partition. A GND net is created
and all nodes to be blocked are assigned to that net (Listing 3.2.2). This ensures that
the vendor router algorithm does not use these nodes (or wires).

The IMPRESS framework uses a similar approach for blocking nodes. There a
blocking net is constructed by a set of nodes which they call a fence. The same fence
net is used for the static design and for the reconfigurable module. Nodes are assigned
to the net by using the FIXED ROUTE property to prohibit the router to use these nodes
(Listing 3.2.1). They are terminated by using the input buffer (IBUF) and output buffer
(OBUF) primitives (see Figure 3.2.1).

The blocking algorithm from IMPRESS is faster than the one used in GoAhead as
we have seen above. GoAhead blocks a lot more wires and this takes considerable
more time to assign the blocking net and route the design. The fence created by
GoAhead is thicker. Especially for the module, a whole lot more wires are blocked. At
this point, it is not known if this is done by design or that it was required at some point.
It could also be the case that the algorithm is less optimal in certain situations.

The partial bitstreams are generated after a successful build of the module by the
IMPRESS framework. GoAhead relies on BITMAN tool to do this. The designer has to

6This is without generating the partial bitstream.
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command the BITMAN tool to slice out the module bitstream files for each module.

external_fence_ib

IBUF

OI
external_fence_ob

OBUF

OI

Figure 3.2.1: IMPRESS blocker net in the RTL schematic.

1 # IMPRESS:

2 # <skipped some code >

3 # Add the FIXED_ROUTE constraint

4 set froute [list]

5 foreach node $nodes {

6 lappend froute GAP $node

7 }

8 set_property FIXED_ROUTE [list $froute] $net

9

10 # Final route string:

11 get_property FIXED_ROUTE [get_nets external_fence]

12 { IOB_IBUF1 GAP INT_L_X38Y54/EE4BEG3 GAP INT_L_X38Y64/NE6BEG0 GAP INT_L_X38Y64/NE6BEG1 GAP

INT_L_X38Y64/NE6BEG2 GAP ... }↪→

Listing 3.2.1: Blocker script of IMPRESS (partly listed).

1 # GoAhead

2 create_net blocker_net_BlockSelection

3 create_pin -direction OUT gnd_for_BlockSelection/G

4 connect_net -net blocker_net_BlockSelection -objects [get_pins gnd_for_BlockSelection/G]

5 set_property ROUTE "( \ { INT_L_X34Y99/LVB_L12 INT_L_X34Y99/WW4BEG2 } \ { ... } ... )" [get_nets

blocker_net_BlockSelection]↪→

Listing 3.2.2: Blocker script of GoAhead (partly listed).

3.3 Module Stitching and Rapid Overlay

For this work, there was a need to modify the routing on a low-level (netlist) basis of the
design (as we will see later in Chapter 5). Tools that are capable of interaction with the
netlist such as RapidSmith [NTH18] and RapidWright [LK18] have been reviewed and
considered for this work. Those tools allow the designer to build customized FPGA
implementations and operate on a netlist level of the design. However, installation of
additional software is required, whereas Vivado already has most of all the necessary
functionality.

In [YKL15], a method is presented for module stitching without invoking the router.
This so-called stitching operation is also called zipping, connects adjacent modules
directly, without logic overhead. The long place-and-route process is a growing con-
cern and the vendor tools try to accelerate the compilation using different techniques.
Overlays are a way to solve reconfigurable computing problems. Those overlay archi-
tectures act as pre-compiled circuits. They propose a tool called ROB (Rapid Overlay
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Builder) that effectively builds those overlays from any logic design. This tool ad-
dresses the issue of long place and route times that overlay architecture can have. It
can place and route any logic design into a set of adjacent modules.



CHAPTER 4

PROPOSITION

As we have seen in Chapter 3, the frameworks that implement their own PR flow can
have limited test capabilities. Table 3.2.1 shows that timing analysis is not supported
by GoAhead. The IMPRESS framework has better test and verification support than
GoAhead. The automated design flow checks the system configuration for potential
mistakes. Interface alignment issues can not occur, because, during implementation,
the border nodes from the static system are used again for the modules. Furthermore,
it has support design reconstruction, capable of building a fully placed and routed
design. However, this design reconstruction is only supported for island reconfigura-
tion style, fine-grained reconfiguration style is not supported. Currently, GoAhead only
generates the constraints files, but can not verify the configuration or to perform tim-
ing analysis. Therefore, the main contribution of this work is to extend the GoAhead
tool flow with design reconstruction capabilities. This enables timing analysis for de-
signs generated with the GoAhead tool flow. It will have support for more fine-grained
architectures, such as the grid-style variant.

The in this work proposed method (or tool) allows reconstructing the design for a
given module configuration. It is a contribution for designs generated for the GoAhead
tool flow, by adding configuration validation and timing analysis. This reconstruction
overcomes some of the limitations on the testability of slot- and grid-style reconfig-
urable architectures as mentioned before. The size of the reconfigurable region can
be of size M×N , where M and N are of arbitrary size. To build a grid-style design, the
GoAhead tool is used to generate the design constraints for the reconfigurable FPGA
system. Figure 4.0.1 shows a general overview of the design flow together with the
GoAhead tool flow.

The static system is modified to create a fully placed and routed netlist by com-
bining and merging the logic and routing configuration of multiple designs into one.
During this reconstruction, we can verify the correctness of a given set of modules
and detect interface connection errors. With the fully placed and routed netlist we can
apply timing analysis and timing simulation.

The full design must be identical to that of the run-time design, so some important
physical constraints must remain intact. The logic must be restored in the exact same
place on the fabric. Routing constraints must be kept, i.e. the signals must use identical
wires on the fabric. Route and placement constraints are device-dependent. Therefore
we operate on the post-implemented design which is the gate-level netlist.

The tool will aid the user to find mistakes that would otherwise leave the design in
a non-functional state. It will be able to detect interface connection errors. GoAhead
will generate the design constraints for the reconfigurable system. After completion of
the implementation phase in Vivado, a merge script can be executed. The script uses
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GoAhead Tool Flow

Module1.dcp
Module1.dcp

Module1.dcp

static.dcp

Design 
Reconstruction 

Tool

Module
Configuration

static_final.dcp

Design
Checkpoints

Timing
analysis /
Simulation

Figure 4.0.1: Overview of the proposed method.

the design checkpoints and reconstructs the design with the following properties:

• The user must be able to provide the interface mapping, module configurations.
• All configurations with all variants can be restored.
• Checks if valid interface mapping, e.g. signal width matches.
• For each module, if the signals match up with the dedicated wires, pin layout

should be equivalent.
• The design should be reconstructed in such a way that it is functional and performance-

wise identical as the design in run-time.
• Automatic timing analysis for each design.

TCL scripting and Vivado was chosen mainly because:

• Direct interaction with an open design.
• Has the knowledge of the fabric of the used device.
• Able to place and route the design manually and visually inspect the result.
• Report the timing properties.
• Equipped with a simulator.

4.1 Merging Modules and Variants

A variant of a module has the same behavior, but different hardware implementation.
As each variant has a different hardware layout, the timing (and other properties) may
vary. To verify the complete design, all possible (useful) module configurations have
to be tested. Furthermore, modules may have other placements constraints. The
footprint of a module is such a constraint. The module might not fit into a given location
based on the hardware requirements (e.g. tiles that contain DSPs or BRAMs blocks
etc.).

4.2 Features

Figure 4.2.1 shows a correctly placed module. To mention some of the properties that
the design reconstruction tool can check. For example, in Figure 4.2.2a the number of
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inputs or outputs signals of the static design, does not match with the (reconfigurable)
module interface. We can detect possible alignment errors that may occur as shown in
Figure 4.2.2b, where a different wire is expected on the fabric level. Another verification
feature is the detection of open circuits, or to check that the correct interface is used or
present (Figure 4.2.2c). In that figure, the input signal is expected at the west border
of the module, but the signal is applied at the north border. Furthermore, able to detect
pin or wire swaps (Figure 4.2.2d). This can happen if, for example, the synthesis tool
tries to optimize the design, resulting in pin or wire swaps near or at the border.

Module

Static design

FPGA Fabric

Partition border

Common border node

Module interface

Example logic

Figure 4.2.1: Example of a correctly placed module on the FPGA fabric.

Module

X

(a)

Module

X X

(b)

Module

X

(c)

Module

X

(d)

Figure 4.2.2: Problems that might occur when incompatible modules are placed: (a)
the number of provided interface signals mismatches, (b) wrong wire alignment on the
interface border, (c) the module expects input from the West border, but the North
border is provided and (d) the wrong pins plugged at the border.

Regarding the placement of the module itself, misplacement can be detected in
advance. To ensure that no overlap occurs and the module is placed in the correct
location of the fabric. For example in Figure 4.2.3. After the placement of Module 2,
the configuration of Module 1 is overwritten, leaving the design in an undefined state.
It could also happen that the module is placed in (a part of) the static region.

For PR, the design is split into a static and one or more dynamic parts. Although
we are capable of testing reconfigurable modules individually, the decoupling makes
it impossible to do a timing analysis on the whole system. Furthermore, the place-
ment constraints that have been put on the design can affect the timing of the system
as well. For example, the output signals are routed alongside the partial region, the
length of the signal paths increases, affecting the timing properties of that signal. After
reconstruction, we end up with a fully placed and routed netlist.

Timing analysis (or timing simulation) checks if the design can operate at the spec-
ified clock frequency. In case of timing violations, changes have to be made to the de-
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Figure 4.2.3: Overlap of modules after placement. The configuration of Module 1 is
overwritten by Module 2.
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Figure 4.2.4: Longer signal paths, different timing properties.

sign, such as choosing a different module configuration or lower the clock frequency.
Different module configurations may lead to different operating frequencies, therefore
we could find a more optimal module placement concerning the clock frequency.

In the final stage, we end up with a full bitstream1 that can also be used as an initial
configuration.

1Can additionally be performed on bitstream level with BITMAN[DHK17]



CHAPTER 5

IMPLEMENTATION

This section describes the implementation for the Design Reconstruction Tool (DRT)
as proposed in the previous chapter. The DRT takes care of merging modules into the
static design. It is intended for the designs created with the GoAhead tool and uses
the TCL scripting of Vivado. The starting point is the DCP files that are the output of
the synthesis tool. They contain a snapshot of the design which includes the netlist,
constraints, and implementation results. The DCP files are generated in conjunction
with the constraints files from the GoAhead tool. In total we have:

• TCL library: drt.tcl (namespace eval drt).
• Input DCP files: modules and static design.
• A mapping and module configuration definition.

5.1 Design Reconstruction

Regarding the design reconstruction, there are some points of attention. Starting with
the nets, they can only make use of the already existing nodes. Any other modifications
must be prevented at all times. All nets should be properly terminated and not left
floating, but as we see later, this is not always possible.

The connection logic outside the module partition needs to be removed. This logic
is not present during runtime and can cause issues in the implementation of the static
part of the design. Furthermore, we must check that no logic gets unplaced during the
placement of the module logic. Unplaced logic can be a sign of logic overlap in the
design and therefore it might not function as intended.

During run-time reconfiguration we can have antennas, but during design time this
is not allowed. The design will not pass the design rule checks DRC (unless we lower
the rule check).

The following subsections describes the sequence of the reconstruction step-by-
step:

• Prepare the designs (5.1.1).
• Validate the user input, check existence of input files and mapping script (5.1.2).
• Preserve anchor logic, before placing modules (5.1.3).
• Place the modules into the static design (5.1.4).
• Reconnect all interface nets (5.1.5).
• Restore clock logic (5.1.6).
• Restore anchor logic s2p (5.1.7).
• Final route of the design and bitstream generation (5.1.8).

45
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After performing these steps, we can do a timing analysis and run a simulation.
Since we use Vivado in non-project mode, we must enter the commands manually in
the console. The DRT includes a script to launch the simulator on non-project mode.
It takes a DCP file and a simulation script to set up and run the simulation. Those
commands and steps are described in Section 5.2.

5.1.1 Prepare the Designs
During the implementation phase, the design is optimized. One such optimization is
flattening the hierarchy of the design. This flatting will, for example, coalesce certain
nets into a single net. Those nets will get a different name other than used in the HDL
source. Although it is not a strict requirement for the design reconstruction, adding
annotations to the interface signals and keeping the design hierarchy makes it easier
to do the signal mapping1. Without the signal annotating, the implemented design has
to be opened and searched for the interface nets by hand.

In Vivado there exist a number of attributes to constraint the HDL design [Xil18c].
The Save (S) constraint is a mapping constraint. During mapping, the nets are ab-
sorbed into logic blocks and some elements are optimized away. The S attribute pre-
vents such optimizations in order to preserve access to nets in the post-synthesis
netlist. The Keep (KEEP) constraint preserves signals in the netlist. Both S and KEEP
constraints are applied to a signal in the VHDL source code, an example is shown
in Listing 5.1.1. To disable any flatting we can use flatten hierarchy none with the
synthesis command (Listing 5.1.2).

1 -- attribute_declaration

2 attribute s : string;

3 attribute keep : string;

4

5 -- attribute_assignment

6 attribute s of x0y0_s2p_w : signal is "true";

7 attribute keep of x0y0_s2p_w : signal is "true";

Listing 5.1.1: Signal names to ’keep’ by defining the attributes in VHDL source.

1 # Synthesize design

2 synth_design -part xc7z020clg484-1 -top top -keep_equivalent_registers -flatten_hierarchy none

Listing 5.1.2: To keep the (signal) hierarchy, add the flatten hierarchy switch to the
synthesize command.

5.1.2 Validate User Input
The interface definition for each module configuration must be provided beforehand.
For certain designs (e.g. when there is a one-to-one relation), we could deduce this
from the module implementation. Regarding grid-style architecture, this deduction is

1Note that this can lead to a less optimal design
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not always possible since the same module can be placed at various locations and
using a different interface. For each configuration the user has to define:

• The runtime module configuration.
• The interface mapping.
• The name of the clock net.
• Indicate the unused interfaces (or slots).

The module mapping configuration is defined in a TCL script file (see Listing 5.1.3).
It contains a list of modules to be placed, together with the interface mapping. The
mapping defines which input is mapped to which output. It is possible to map each
signal like x[0] = y[0], x[1] = y[1], ..., x[n] = y[n] manually. However, Vivado allows the
use of the * wildcard in the index field. If all the index numbers of the signals line up
with their index, manual unrolling is not required.

1 # Define a list of modules

2 set modules [list module1 module2 ...]

3

4 # Define the interface mapping

5 set mapping {

6 {x0y0_s2p_w[*]} {module1/inst_ConnectionPrimitiveWestInput/x0y0_s2p_w[*]}

7 {module1/inst_ConnectionPrimitiveWestOutput/x0y0_p2s_w[*]} {x0y0_p2s_w[*]}

8 ...

9 }

10

11 # Define the unused s2p and p2s nets

12 set unused_s2p [list]

13 set unused_p2s [list]

14

15 # Define the clock net of the module instance

16 set internal_module_clk "clk"

17

18 # Define the clock net outside the partial area of the module

19 set external_module_clk "fclk_clk0"

20

21 # Assign the config, do not change

22 set modules_config [list {*}$modules]

23 set mapping_config $mapping

Listing 5.1.3: Example of the mapping script file. Here were define the list of modules,
the interface definition, and the name of the clock net. The script is sourced during the
execution of the DRT.

For designs generated with GoAhead, we can identify two hierarchical levels: the
connection logic and the module logic (Figure 5.1.1). The connection logic can be
seen as the switch box for routing in- and output signals outside the partial module.
The module logic contains the functional implementation for the partial module. The
number of in- and output ports from the connection logic can differ from the module
Logic. In Figure 5.1.1b the output of the module logic is connected to 3 outputs ports
of the partial module. The connection logic net name is used in the mapping script.

5.1.3 Preserve Routing and Anchor Logic
Some of the anchor logic might be required to get design closure. This is the case
when, for example, not all the ports from the partial area of the static design are used.
The anchor logic is removed when turning the partial area into a black box. The black
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Figure 5.1.1: Partial module connection logic examples. (a) Connection logic with 1
input and 1 output connection. Connection logic with 1 input and 3 output connections.
(b) Here the single output of the module logic is present on the 3 outputs of the partial
module.

box cell has all of its logic removed and signals are chopped off at the border of the
partial area. Those signals are now defined to be antennas and therefore will not pass
the DRC. The partition nets are connected to anchor LUTs in the partial area. Those
LUTs are (leaf) cells and need to be restored as well. For each LUT cell, we have to
preserve the routing, pins, and the configuration (equation) of the anchor LUT.

Physical constraints have to be added to the implemented designs. These are
the lock and fix route constraints to prevent the vendor tool to make any changes or do
optimizations. In particular, the LOCK PINS constraint needs to be applied to all LUTs.
This property specifies the mapping between logical LUT inputs and the physical LUT
inputs [Xil18d, p. 150]. An example is shown in Listing 5.1.4. After placement, we have
seen that pin swaps at the LUTs can occur (see Figure 5.1.2), which, as observed, can
not always be resolved later on.

1 # lock the pins on the LUT

2 set_property LOCK_PINS {I0:A3 I1:A2 I2:A1 I3:A4 I4:A5} [get_cells $lut_cell]

3

4 # fix the route string

5 set_property IS_ROUTE_FIXED 1 [get_nets -hierarchical]

Listing 5.1.4: Example on how to apply the design constraints.

Reason to believe that this is a kind of optimization that happens in the background,
e.g. using the fastest A6 input of a 6LUT or the A5 input for a 5LUT [Xil18b, p. 260].
During the implementation of the design, LUT pins are mapped in order from highest
to lowest by default. The highest logical pin is mapped to the highest physical pin.

Furthermore, the IS ROUTE FIXED property is applied to each net. This prevents
any changes in routing that could otherwise affect the timing and behavior of the final
design.
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Figure 5.1.2: Input pins A1 and A2 are swapped. This can happen if the net has a
different end point in the route string than the physical pin assignment of the LUT itself.

5.1.4 Place the Modules
We can add logic from another design into a cell of static design with the
read checkpoint -cell <the cell> command. This command reads a DCP file con-
taining the implemented design and populates the given cell with the netlist from the
checkpoint. The command on its own is not suitable for merging multiple modules in
the partial area. It can only be used once on an empty blackbox. Therefore, in conjunc-
tion, the add cells to pblock <pblock> [<cells>...] is used. First, an empty cell
instance is created with the create cell command. Normally, this command expects
the -reference <arg> to be a type from the library cell. The Library Cell contains all
the cells that are applicable for the current device of the design. It was found that
Vivado creates custom cells with the -reference argument that have a unique name
(i.e. not found in the Library Cell). This way, we can create an empty cell for each
module that we have. For each module, a Pblock is created. The empty cell is added
to this Pblock. After that, the content of the module cell is added to this cell by reading
the checkpoint.

When all modules have been placed, the design is inspected on the existence of
any unplaced logic cells. The behavior of Vivado is that cells placed on the fabric will
be unplaced when new cells are placed on the same position. Using the get cells

filter {STATUS=="UNPLACED"} command, we are able to find such cells and report
this to the user. Note that if any unplaced cells are found, the tool can not continue
and the user has to manually resolve this.

5.1.5 Reconnect the Interface Nets
After module placement, the interface nets from the modules are placed on top of
the interface nets of the static system. The nets have to be fused since this is not
performed by the vendor tool by default. This is also called module stitching, where
the nets are stitched together. Communication can only happen when two interface
signals share a common node at the border of the reconfigurable region. In case when
the grid-style reconfigurable architecture is used, module-to-module communication
happens via the common node at the border of the modules. Therefore we have to
identify the node (or the physical wire) that crosses the interface border. If no such
node is present, the module will not function as intended. Figure 5.1.3 show this
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Figure 5.1.3: Example route that has a wire that overlaps in both nets.

To find the common border node, we have to inspect the routing of the inter-
face nets. The route can be acquired by querying the ROUTE property using the
get property ROUTE [get nets <net name>] command for the net specified. As we
have seen in Section 2.1.1, the command returns a list of nodes that forms the route
on the fabric. By default, the route string is in a relative form. The node names are not
proceeded by their tile name. For routing a design, this is not a problem. As long as
there is a defined begin and endpoint and there is only one way to go from one node
to another. However, with this ambiguity, we can not find the common node border
node in the two interface nets to be fused. In essence, we want to have the index of
the node in the route string. By including the tile information in the route string we can
find the index. There exist several methods to obtain the tile information and translate
the route in an absolute route string:

• Using GoAhead [BKT12], we could extract this information from the included model
of the fabric. This information must be exported during the generation of the con-
straints scripts. Either the complete absolute net or the index in both nets could be
of use.

• Using RapidWright [LK18] which could work in the same way as GoAhead. The
included model of the fabric is comparable to that of GoAhead tool, thereby it is able
to retrieve an absolute route string. This requires processing in an external tool.

• Via find routing path command from Vivado, we can find a routing path between
two or more nodes. This methods works if the tile information is present for begin
and end node and only reliable for a single node hop. Multiple hops can result in a
different route.

• Using the cardinal information of the nodes we can resolve the tile information. As we
have seen in Section 2.1.1, we deduce the next tile from the node name. For example
in Listing 5.1.5. From third node, INT L X20Y25/EE4BEG3, the displacement is four



Chapter 5. Implementation 51

into to the east direction (EE4). Adding 4 to the x-coordinate, we end up at node
INT L X24Y25/EE4BEG3. We need at least one adjacent node that has the tile
information to resolve the next node in the list.

• Via get nodes <net> we get the list of nodes of the corresponding net. These nodes
can be used in the route string. By default the list returned by the get nodes com-
mand include tile information. However, the list is not in the order (the direction) of
the nodes in the route string (when using get property ROUTE [get nets net])2.
Making this option not useful to resolve all nodes. It is only suitable for the unique
nodes, commonly found at the begin and end of the route string.

• Via the get pips command has been found to be the best method and is used cur-
rently. An example output of this command is shown in Listing 2.1.1. The PIP list has
the same order as the route string. From the PIP name, we can extract the required
tile information.

1 get_property ROUTE <net name>

2

3 { CLBLL_LL_D CLBLL_LOGIC_OUTS15 EE4BEG3 EE4BEG3 SE2BEG3 NR1BEG3 ... IMUX2 CLBLL_LL_A2 }

4

5 set_property ROUTE { CLBLL_L_X20Y25/CLBLL_LL_D CLBLL_L_X20Y25/CLBLL_LOGIC_OUTS15 INT_L_X20Y25/EE4BEG3

INT_L_X24Y25/EE4BEG3 INT_L_X28Y25/SE2BEG3 INT_R_X29Y24/NR1BEG3 ... IMUX2 CLBLL_LL_A2} <net name>↪→

Listing 5.1.5: Example assigning nodes to the ROUTE property of a net. Vivado
permits intermixing nodes with and without tile information.

For each interface signal, we can now find the index of the common border node in
both nets. There should be at least one common node, but it is likely to have multiple
nodes if the net is fairly straight. In case we have multiple nodes, we choose the
first node (in front of an open brace). When we have module-to-module nets, the last
common node in the lowest nested branch is chosen.

The next step is to combine the route of two nets into one. Nets to travel from static
system to the partial area are called s2p nets. The s2p nets have an output driver
in the static system and or more inputs in the reconfigurable region. For those s2p
nets, the tail of the static net and the head of the partial net needs to be removed.
After that, the nets can be combined and applied to the driving net. In Vivado, it is
not possible to create a net alias from TCL command. Therefore, we clear the route
of the trailing net such that we do not get conflicts in overlapping nodes. The same
is done for signals that are leaving the partial area. Nets that go from partial area to
static system are called p2s nets. In case the grid-style architecture is used, we can
also define module-to-module nets m2m.

For modules that do not make use of any logic, but only use the routing resources,
a number of additional steps have to be carried out. These wire-only modules arise if,
for example, in the HDL the data is shifted. Certain shift operations such as division
or the shift rows operation from the AES algorithm as we see later in Section 6.2, only
requires wires on the fabric. The routing resources of those nets need to be added
to the source module first. After that, the final net combination can be made with the
destination net.

2Observed with Vivado 2018.3, but this could be different in later versions.
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5.1.6 Restore Clock Logic
Clock signals are required for the correct operation of the modules in the partial region.
To ensure that the clock signal is available for each module, it must be connected and
distributed on the reconfigurable region. Likewise, for the interface signals, these clock
resources and networks must be allocated and properly terminated in the reconfig-
urable region. GoAhead provides the ConnectClockPins command (Listing 5.1.6).
The command is executed on all tiles that are selected in the block view of GoAhead.
Logic elements on the fabric that require a clock signal (i.e. have a clock input pin) are
instantiated by the generated TCL statements. For the CLBs, the output registers are
instantiated as flipflops. Each clock pin of the register is connected to the global clock
net. During the implementation phase, this script is executed. All registers that are
present in the slices of the CLBs are instantiated as FDRE cells. The clock input (CK)
of each FDRE flipflop is connected to the clock tree that spans two columns of CLBs.
In the middle of the column, the clock net is connected to the global clock network.
Figure 5.1.4 shows how restoration looks on the fabric level.

1 ConnectClockPins

2 ClockPin=CK

3 BELs=[A-D]FF

4 ClockNetName=clk_IBUF_BUFG

5 FileName=connect-clockpins.tcl

6 Append=False

7 CreateBackupFile=False;

Listing 5.1.6: GoAhead command to connect the clock pins

1 create_cell -reference FDRE SLICE_X51Y99_DFF

2 place_cell SLICE_X51Y99_DFF SLICE_X51Y99/DFF

3 create_pin -direction IN SLICE_X51Y99_DFF/C

4 connect_net -hier -net clk_IBUF_BUFG -objects {SLICE_X51Y99_DFF/C}

5 create_cell -reference FDRE SLICE_X51Y99_CFF

6 place_cell SLICE_X51Y99_CFF SLICE_X51Y99/CFF

7 create_pin -direction IN SLICE_X51Y99_CFF/C

8 connect_net -hier -net clk_IBUF_BUFG -objects {SLICE_X51Y99_CFF/C}

9 create_cell -reference FDRE SLICE_X51Y99_BFF

10 place_cell SLICE_X51Y99_BFF SLICE_X51Y99/BFF

11 create_pin -direction IN SLICE_X51Y99_BFF/C

12 connect_net -hier -net clk_IBUF_BUFG -objects {SLICE_X51Y99_BFF/C}

13 create_cell -reference FDRE SLICE_X51Y99_AFF

14 place_cell SLICE_X51Y99_AFF SLICE_X51Y99/AFF

15 create_pin -direction IN SLICE_X51Y99_AFF/C

16 connect_net -hier -net clk_IBUF_BUFG -objects {SLICE_X51Y99_AFF/C}

Listing 5.1.7: Example script to connect the clock pins in the partial area of the static
design. Here all flipflops of SLICE X51Y99 are instantiated and connected to the
global clock net.

The placed clock logic and routing from the GoAhead script causes a physical
overlap of BELs on the fabric with that of the module logic. The update design -cell

<cell name> -black box command removes all cells in the cell specified. It does
however not remove the clock net generated from the TCL command from GoAhead,
because it does not belong to that hierarchy. The parent property is not set of those
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Figure 5.1.4: The device view of the reconnected clock pins of each flipflop in each
slice and the restored anchor logic.

cells and can not be altered the current state of the design. To restore the clock
nets and logic after the placement of a module, the unplaced FDRE cells need to be
removed first from the design. These unplaced cells can be found by querying all cells
that have the property STATUS==UNPLACED. From the mapping script, the user must
specify the name of the module clock nets. The clock nets and pins are then merged
with the clock net of the static design.

5.1.7 Restore Anchor Logic
For certain configurations of modules, not all communication interfaces are required.
The reconfigurable region is cleared before any logic is placed. This cuts all commu-
nication signals (nets) at the border of the partition. Those nets have floating nodes
and are marked as ANTENNAS. Antennas are nets that contain nodes not properly ter-
minated with a sink pin [BBS17]. Floating nodes can also occur in a branch of the
specified net. By running a DRC check or running the report route status com-
mand, Vivado will list all the nets that have a problem including antennas. Vivado is
able to remove such antenna nets, but this removal leads to unwanted optimizations
in the route. Therefore we restore as much as possible of the original anchor logic to
prevent any floating nets. Depending on the design, if the interface is not used, we
could just clear the entire route to the partition.
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5.1.8 Finalize the Design
The intermediate signals used in the HDL source for the interface signals need to be
removed since they are not required anymore. Furthermore, if a module turns into a
blackbox, it needs to be removed as well. After that, a final route design command is
issued. If no errors occurred at this point, we know that the provided module configu-
ration is valid. We should be able to write a DCP file and a final bitstream file. On this
checkpoint, we can perform a timing analysis and run a functional simulation. This is
described in Section 5.2.

5.2 Timing Analysis and Simulation

After a successful reconstruction, we have obtained the DCP file on which we can
perform timing analysis. By running the report timing summary, Vivado reports if
there are any timing violations in the design. A clock constraint is required to perform
any timing analysis on paths in the design. To create clock constraint of 100 MHz, we
issue the following command:

create_clock -name clk -period 10 -waveform {2.5 5} [get_ports clk]

Furthermore, a script is provided with the DRT to invoke the simulator. This script
writes a Standard Delay Format (SDF) file, which contains all the timing-related infor-
mation for each cell. After that, the top-level unit is translated into executable code and
linked to the simulation kernel to create an executable simulation snapshot. Next, the
simulator loads a simulation snapshot to affect the interactive simulation environment.
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EXAMPLES

This chapter provides a few example implementations for design reconstruction. The
first example is a minimal working example. The last example is a case study that uses
the grid-style partial reconfiguration architecture.

6.1 Example 1: Minimal Working Example

6.1.1 Implementation and results
Division is one of the four basic arithmetic operations that is the hardest to imple-
ment in hardware. Mainly because addition, subtraction and multiplication are well
defined and give exact answers. The result of a division between integers will gen-
erally be a rational number, which in many cases can not be represented in binary.
This example implements 16-bit signed division in VHDL using the division operator
(/). Information on which division algorithm is implemented when using the division op-
erator is not published by Xilinx. Furthermore, depending on the operand size and the
chip used, different (more optimal) algorithms could be chosen for the implementation.
Listing A.0.6 shows the HDL source code for this example.

If at any point in time an error is detected in the configuration (e.g. the specified
interface nets) or a common border is not found or a (potential) overlap is detected,
the reconstruction stops, and the error is reported to the user. After a successful
run, the design reconstruction, we can visually inspect the result in the device view.
The nets outside the partial region appear to be identical (Figure 6.1.2). We can also
observe that the correct border nodes (wires) are chosen by the tool, highlighted in the
device view in Figure 6.1.1. Looking closer at the logic inside the partial area (purple
rectangle, PBlock), additional clock logic can be seen. After removing the clock logic
cells and routing, the PBs shows up as binary identical (Figure 6.1.5).

After we have obtained a fully placed and routed design, we can check the de-
sign for timing-related issues. The maximum clock frequency for the design can be
calculated as follows:

fmax =
1

|tACP − tWNS|
(6.1.1)

Where we define:
tACP = The Actual Clock Period.
tWNS = The Worst Negative Slack.

The WNS can be retrieved by running the command report timing summary from
Vivado. The ACP is set in the XDC file of the design. For Example 1, using a 100
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(a)
→

(b)
→

(c)

Figure 6.1.1: Border nodes used for interfacing, from left to right zoomed in on the
border.

MHz clock, the slack is negative. This means the design can not run on the frequency
specified. We get that the maximum operation frequency is1:

fmax =
1

|10ns− (−44.589ns)|
≈ 18.3MHz (6.1.2)

Since we run in a non-project mode, we have to do the timing analysis in a manual
fashion by entering commands in the TCL console of Vivado. Listing 6.1.1 shows
how to get the timing information of the design by means of a TCL script. The listing
shows how to add the clock constraint (if not already present) with the create clock

command and how to query the timing paths. This gives a quick pass/fail test if the
design can operate on the given clock frequency. The output of the timing analysis for
100 MHz is shown in Listing 6.1.2, where it shows that the timing constraints are not
met.

Moreover, we can simulate the design with a graphical simulator for functional test-
ing. Vivado has supports for multiple simulators. For this work, we use the integrated
Vivado Simulator.

The static system contains a state machine that applies the values to the inputs
a and b of the module. At each clock edge, input a of the module remains at the
maximum value of 32767. Input b toggles between arbitrary values 3, 333 and 1. Fig-
ure 6.1.4 shows the simulation waveform of example 1. In the begin of the waveform,
we have a input clock of 10 MHz and at the end, the clock speed is 100 MHz. It clearly
shows that on 100 MHz the output value is wrong.

To verify that the design reconstruction is correct, we can compare the bitstream
files of the static system and module. A placed module must have an identical partial

1We do not include any input or output delays here, only the paths involving the clock.
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(a) (b) (c)

Figure 6.1.2: Visual inspection of the reconfigurable partition in the device view. (a)
The module to be placed. (b) The empty slot of the static system. (c) The final imple-
mented design.

bitstream as the partial bitstream of a module. They must be binary equivalent. The
BITMAN tool is used to extract a partial bitstream from the (full) bitstream of the static
system. After that, the extracted bitstream is compared with the partial bitstream of
the module. If the bitstream files are identical, we are sure the reconstructed module
is equal to the module in run-time.

Another thing we can do is place the PB into the static bitstream and compare the
static system on equality. According to Dang Pham et al., the generated full bitstream
from Vivado is different from BITMAN. The contents and FAR value should be the
same, but there are some differences in the commands. Furthermore, the timestamp
and Vivado version is different. Printing the CLB configuration with BITMAN with the
-c switch does not show any differences. Unfortunately, we can not compare the static
system with this method2. The method works for the partial bitstream since we slice
out the same region from the full bitstream and executing the commands consecutive

2Another method would be to read back the configuration from the FPGA, but this probably leads to
the same result
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(a) Module 1 (b) Combined

Figure 6.1.3: Clock nets

1 # Create a clock object

2 create_clock -name clk -period 10 -waveform {2.5 5} [get_ports clk]

3

4 # Get the period of the clock (ACP, in ns)

5 set period [get_property PERIOD [get_clocks clk]]

6 # 10.000

7

8 # Get the timing slack (WNS)

9 set slack [get_property SLACK [get_timing_paths]]

10 # -44.589

11

12 # The max. clock frequency (in Hz):

13 set max_clock [expr { 1 / ($period - $slack) * 1000000000}]

14 # 18318708.897396915

15

16 report_timing_summary

Listing 6.1.1: Script to get the timing related information of the design. The output is
shown below the command.

1 ------------------------------------------------------------------------------------------------

2 | Design Timing Summary

3 | ---------------------

4 ------------------------------------------------------------------------------------------------

5
6 WNS(ns) TNS(ns) TNS Failing Endpoints TNS Total Endpoints WHS(ns) THS(ns) THS Failing Endpoints

7 ------- ------- --------------------- ------------------- ------- ------- ---------------------

8 -44.589 -708.992 16 27 0.112 0.000 0

9
10
11 THS Failing Endpoints THS Total Endpoints WPWS(ns) TPWS(ns) TPWS Failing Endpoints TPWS Total Endpoints

12 --------------------- ------------------- -------- -------- ---------------------- --------------------

13 0 27 2.000 0.000 0 1252

14
15 Timing constraints are not met.

Listing 6.1.2: The output of timing summary report of example 1 for a 100 MHz clock
(partially displayed).

gives the same timestamp.
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Figure 6.1.4: The waveform from the Vivado simulator.

Figure 6.1.5: Bitstream file comparison using the md5sum and diff command, they
show up as identical.

6.2 Example 2: Case Study AES encryption

For this example, the Advanced Encryption Standard (AES) encryption algorithm is
implemented on an FPGA system using the grid-style architecture. The goal is to pre-
vent side-channel attacks and can be achieved by shuffling modules during runtime.
This results in different power profiles, thereby making side-channel attacks more dif-
ficult. However, the operating frequency of the design could not be determined, it had
to be guessed by lowering the clock speed.

6.2.1 Background on AES encryption
The AES is a fast and secure block cipher widely used for the encryption of data. It is
a symmetric encryption algorithm where the same key is used to encrypt en decrypt
the data. AES is known for its speed and security. Speed from the fact that it requires
less computational power compared to asymmetric encryption algorithm. Secure, be-
cause of a sophistical block cipher algorithm where the data is encrypted on a block
basis. AES uses a fixed block size of 128 bits and key size of 128, 192 and 256 bits.
It operates on a 4x4 column-major order matrix of bytes. The key size determines the
number of rounds required to move the data to be encrypted through the cipher algo-
rithm. A 128 bits key requires 10 rounds, 192 bits requires 12 rounds and 14 rounds
when 256-bit key is being used.

The AES algorithm shown in Figure 6.2.1 is an iterative algorithm. Firstly, a bitwise
XOR operation is performed between the encryption key and the plain text input data.
This operation gives the initial round key (note that RoundKey(0) is the starting key).
After that, a repeated sequence of four operation steps are performed (Figure 6.2.2):

• SubBytes
This byte substitution operation replaces each of the 16 bytes in the state matrix
(input) with a fixed byte from a lookup table called the S-box. The S-box effec-
tively maps an 8-bit input, to an 8-bit output. This ensures that the cipher has a
non-linear component.

• ShiftRows
The ShiftRows shifts the bytes in the static matrix by a certain offset. The first
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Plaintext (128 bits)

for i=1 to 9

SubBytes

Ciphertext (128 bits)

ShiftRows

MixColumns

SubBytes

ShiftRows

RoundKey(0)

RoundKey(10)

RoundKey(i)

Figure 6.2.1: The AES encryption algorithm when a 128-bit key is used.

1,2

a a a

aa1,1aa

a 2,1a a a

aaa

0,0 a0,1 0,2 0,3

1,0 1,3

2,0 2,2 2,3

3,0 a3,1 3,2 3,3 b

2,1

1,2

b b b b

bbbb

b b b b

bbb

0,0 0,1 0,2 0,3

1,0 1,1 1,3

2,0 2,2 2,3

3,0 3,1 3,2 3,3

SubBytes

S

(a) SubBytes

ShiftRows

a a a a

aaaa

a a a a

aaaa

a a a a

aaaa

a a a a

aaaa

No
change

Shift 1

Shift 2

Shift 3

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3 1,1 1,2 1,3 1,0

0,0 0,1 0,2 0,3

2,0 2,1 2,2 2,3 2,0 2,12,2 2,3

3,0 3,1 3,2 3,3 3,0 3,1 3,23,3

(b) ShiftRows

1,2

a a a

aa1,1aa

a
2,1a a a

aaa

0,0

a0,1
0,2 0,3

1,0 1,3

2,0 2,2 2,3

3,0 a3,1
3,2 3,3 b

1,2

b b b

bbb

b
2,1b b b

bb

0,0

b0,1
0,2 0,3

1,0

b1,1
1,3

2,0 2,2 2,3

3,0 b3,1
3,2 3,3

MixColumns

(c) MixColumns

2,1

1,21,1

a a a a

aaaa

a a a a

aaaa

0,0 0,1 0,2 0,3

1,0 1,3

2,0 2,2 2,3

3,0 3,1 3,2 3,3

k k k k

kkkk

k k2,1

k

k k

kkk

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,2 2,3

3,0 3,1 3,2 3,3

b

2,1

1,2

b b b b

bbbb

b b b b

bbb

0,0 0,1 0,2 0,3

1,0 1,1 1,3

2,0 2,2 2,3

3,0 3,1 3,2 3,3

AddRoundKey

(d) AddRoundKey

Figure 6.2.2: AES encryption operation steps for each round (figures from [Wik]).
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row is not changed. For the second row, each byte is shifted one to the left. For
the third row, each byte is shifted by two to the left and three to the left for the
fourth row.

• MixColumns
In the Mix Columns step, each column of the state matrix is multiplied by a fixed
polynomial represented by the matrix in Equation (6.2.1).

• AddRoundKey
In the final step for each round, the current state matrix is XORed with the Round-
Key and is the input of the next iteration. It is identical to the very first operation.

p =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 (6.2.1)

For a 128-bit key, the above steps are repeated 9 times. The last round does not
have the MixColumns operation. After finishing all rounds, the 128-bit input data is
encrypted. For decryption, the sequence from Figure 6.2.1 is inverted.

Searching for weaknesses in AES algorithm, there exist some types of attacks
aimed at the physical implementation. These types of attacks are, for example the tim-
ing and power side-channel attacks. Koeune et al. describes a timing attack method.
Certain logic operations take more time to execute and differs on the input. Measuring
the time for each operation, an attacker can recover the key by working backwards.
Another attack would be looking at the power consumption of AES [LBC16] and see
Figure 6.2.3. Differential power analysis is a common power analysis attack that is very
effective against implementations of block ciphers like AES. The basic idea is to ana-
lyze the power consumption of the device for different cipher texts during encryption or
decryption.

Power
Dissipation 

Measurement

Power 
Analysis 

Attack

AES-128
Encrypted

Device

Vdd

Idd

Plaintext

Secret Key
Ciphertext

Secret Key

Figure 6.2.3: Power analysis based side-channel attack on AES-128.

There exist some countermeasures to overcome some physical attacks on the AES
implementation. One method could be to switch the key frequently enough such that
the attacker can not learn enough about the key in time. Another way would be to
make the power consumption independent from the processed input values. This can
be achieved by making the power consumption more random (or equal) for each clock
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cycle. An example for achieving power side-channel protection is by using partial
reconfiguration [Sas+15; Het+19].

Leakages can often be found on power traces during transitions of the combina-
torial circuit after a change of a driving register. A common target on side-channel
attacks on symmetric block ciphers is the output of the non-linear substitution layer of
the algorithm.

In [Sas+15] the authors use the idea of random S-Box decomposition realized by
configurable lookup tables. The standard S-Box is split into two random mappings
and the correct S-box output is never stored onto a register. Using DPR, the dynamic
decomposition was applied for the S-Boxes, including pre-charging of registers3. After
running the power traces, they were not able to detect any first-order4 side-channel
leakage.

The following subsection describes another countermeasure to prevent power side-
channel attacks.

6.2.2 Implementation and Results
The starting point for this example is the implementation and continuation of the case
study from “Framework for Fine-Grained Partial Reconfiguration on FPGAs” [Hog19].
The idea is to use random module configurations and module implementation variants,
resulting into a more random power profile to make side-channel attacks more difficult.
To have multiple modules in the same partial region, the grid-style reconfiguration ar-
chitecture was used. Along with the use of DPR, the physical implementation of the
encryption algorithm can be altered during runtime. The design is implemented on
the ZedBoard, a development board for the Xilinx Zynq 7000 SoC. Three operations
of the AES encryption algorithm were relocated to the partial region: the SubBytes,
ShiftRows and the MixColumns. The static system controls the sequence and the
number of rounds of the algorithm. As mentioned before, timing analysis could not
be performed on grid-style reconfiguration systems. Using the proposed reconstruc-
tion tool, this can be done now. Two configurations are tested. Each configuration
implements a variant of the SubBytes, ShiftRows and MixColumns operation, see Fig-
ure 6.2.4.

The static system acts as the testbench for the AES implementation. A TCL script
is executed during simulation. This script sets up the wave from signals and provides
the stimulus to the inputs of the top entity. Those inputs are mapped to real inputs of
the FPGA chip. This simulates the switches and buttons on the Zedboard. For the AES
algorithm, the last 4 bits of input data is applied via switches present on the ZedBoard.
The last 4 bits of the AES are output on four LEDs of the ZedBoard. These outputs can
now also be observed in the simulator (Figure 6.2.5b and Figure 6.2.6b). Figure 6.2.5a
and Figure 6.2.6a shows that the timing constraints are met for this design. Two input
values are used for testing the designs5. For input value 6 we get:

• input: 3243F6A8885A308D313198A2E0370736
• key: 2B7E151628AED2A6ABF7158809CF4F3C
• output: 481A0AAC6942EA7F426d3A5BD4B25fAD

3Consecutive round inputs stored into registers can cause leakage. By expanding the single register
into two registers the leakage is avoided.

4When only one probe is used on the design.
5The output was checked using http://aes.online-domain-tools.com

http://aes.online-domain-tools.com
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Figure 6.2.4: Different AES configurations and module variants

And for input value 1 we get:

• input: 3243F6A8885A308D313198A2E0370731
• key: 2B7E151628AED2A6ABF7158809CF4F3C
• output: F91914CD01924B124C2EC316B4B35A79

(a)

(b)

Figure 6.2.5: Test results of AES configuration 1, (a) shows the timing report and (b)
the waveform from the Vivado simulator.

Both waveforms show the correct output on the LEDs. For the maximum clock
frequency we get for configuration 1:

fmax =
1

|10ns− (26.468ns)|
≈ 31MHz (6.2.2)
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(a)

(b)

Figure 6.2.6: Test results of AES configuration 1, (a) shows the timing report and (b)
the waveform from the Vivado simulator.

And for configuration 2 we get:

fmax =
1

|10ns− (21.671ns)|
≈ 27MHz (6.2.3)



CHAPTER 7

CONCLUSION AND RECOMMENDATION

7.1 Conclusions

We have seen in Chapter 6 that the tool can merge and stitch modules back into the re-
configurable partition of the static system. With the resulting fully implemented design,
we are able to verify a run-time PR configuration for grid-style reconfiguration styles.
Timing analysis can be performed and the static system can be functionally simulated.
Furthermore, during reconstruction, the interface configuration between static design
and modules can be checked for consistency and correct module placement on the
fabric can be monitored. The design can be tested without having the hardware. The
whole reconstruction process is automated, including the simulation.

7.2 Recommendations

To mention some of the recommendations and future work, one of the limitations is
that we can not move logic around, i.e. module relocation on the netlist level. The
module must be built with the correct footprint and location (same coordinates) on the
fabric since module relocation on the netlist level is not implemented in the tool. The
tool could be extended to do this relocation on the netlist level or use an academic tool
capable of performing this operation.

We are unable to restore all interfaces when they are unused since we can not
leave nets floating as antennas. As long as the nets are not clock paths, it will not
affect the timing of the design. Otherwise, another method must be found to allow
these antennas in the design, e.g. lowering the DRC from Vivado.

For simplicity, a TCL script is used to set up the simulation and provide the input
values. However, by doing this we have to verify the output from the simulator manually.
A testbench written in HDL code could be used for this.

The reconstruction tool is designed to work with the design checkpoints generated
with the GoAhead tool. Therefore it relies on the interface names used in the designs,
but the tool could be extended to work with other frameworks.

Moreover, GoAhead could be extended with a system configuration specification
file for grid-style reconfigurable systems. A number of commands to set up a reconfig-
urable system with GoAhead have to be repeated for each slot. Some of them have
no relation or restrictions to other commands, therefore missing certain validations in
the design step. An example validation could be checking if a specified region (a se-
lection of tiles) on the FPGA is valid for a certain configuration. Valid in the sense that
the region of the correct size, position and that it does not overlap with other regions
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on the FPGA fabric. Examples for the regions to be defined are the partial area, the
interfaces in and outside the partial area, the size of the blocker fence, the size and
position of tunnels. To make the setup of a (grid-style) reconfigurable system more
simple and effortless, we could combine some of the commands in a single command.
Combining commands makes the configuration less error-prone.

Furthermore, the reconfiguration time is directly proportional to the size of the bit-
stream. The smaller the bitstream, the lesser time it requires to reconfigure it. There-
fore, regarding the fine-grained reconfiguration style, one could find out what the real
impact is on bitstream storage and reconfiguration time compared to island-style.
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1 reconfigurable_partition_group

2 partition_group_name = group1

3 interface = ${local}/interface

4 reconfigurable_partition

5 partition_name = reconf_part_0

6 pblock = X40Y9:X45Y40

7 end_reconfigurable_partition

8 end_reconfigurable_partition_group

Listing A.0.1: Example file virtual architecture.. For each partition, the size, location
and interface is declared here.

1 local_nets

2 input1 NORTH

3 input2 NORTH

4 output1 SOUTH

5 end_local_nets

6

7 global_nets

8 clk 0

9 reset 1

10 end_global_nets

Listing A.0.2: Example file interface. The inputs to the module are only permitted to
used the North border and outputs only the South border.

67
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1 project_variables

2 project_name = IMPRESS_build

3 directory = /example1/impressproject

4 fpga_chip = xc7z020clg400-1

5 end_project_variables

6

7 static_system

8 sources = /example1/output/static_system/build/synth_checkpoint

9 virtual_architecture = /example1/impressproject/virtual_architecture

10 end_static_system

11

12 reconfigurable_modules

13 reconfigurable_module

14 module_name = add

15 sources = /example1/hdl_src/modules/add.vhd

16 partition_group_name = group1

17 end_reconfigurable_module

18 reconfigurable_module

19 module_name = multiply

20 sources = /example1/hdl_src/modules/multiply.vhd

21 partition_group_name = group1

22 end_reconfigurable_module

23 reconfigurable_module

24 module_name = substract

25 sources = /example1/hdl_src/modules/substract.vhd

26 partition_group_name = group1

27 end_reconfigurable_module

28 reconfigurable_module

29 module_name = div

30 sources = /example1/hdl_src/modules/div.vhd

31 partition_group_name = group1

32 end_reconfigurable_module

33 virtual_architecture = /example1/impressproject/virtual_architecture

34 end_reconfigurable_modules

Listing A.0.3: Basic IMPRESS project configuration example. The project info file
defines the system specification. Four reconfigurable modules are declared. Modules
are grouped by the same partition, the partial area.
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1 library UNISIM;

2 use UNISIM.vcomponents.all;

3

4 library IEEE;

5 use IEEE.STD_LOGIC_1164.ALL;

6

7 entity top is

8 port (clk : in std_logic;

9 in0 : in std_logic;

10 out0 : out std_logic

11 );

12 end top;

13

14 architecture Behavioral of top is

15 signal i_out: std_logic;

16 begin

17

18 -- source: ug953

19 inst_FDRE_1 : FDRE

20 generic map(

21 INIT => '0') -- Initial value of register ('0'or'1')

22 port map(

23 Q => i_out, -- Data output

24 C => clk, -- Clock input

25 CE => '1', -- Clock enable input

26 R => '0', -- Synchronous reset input

27 D => in0 -- Data input

28 );

29

30 inst_FDRE_2 : FDRE

31 generic map(

32 INIT => '0') -- Initial value of register ('0'or'1')

33 port map(

34 Q => out0, -- Data output

35 C => clk, -- Clock input

36 CE => '1', -- Clock enable input

37 R => '0', -- Synchronous reset input

38 D => i_out -- Data input

39 );

40

41 end Behavioral;

42

43 -- xdc:

44 -- set_property PACKAGE_PIN Y9 [get_ports {clk}];

45 -- set_property PACKAGE_PIN K19 [get_ports {out0}];

46 -- set_property PACKAGE_PIN M22 [get_ports {in0}];

Listing A.0.4: Example design for netlist.
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1 library ieee;

2 use ieee.std_logic_1164.all;

3 use ieee.numeric_std.all;

4
5 entity top is

6 port (

7 outp : out std_logic_vector (7 downto 0);

8 inp : in std_logic_vector (7 downto 0);

9 clk : in std_logic;

10 reset : in std_logic;

11 btn : in std_logic

12 );

13 end top;

14
15 architecture structural of top is

16
17 component PartialArea is

18 port (

19 x0y0_s2p_w : in std_logic_vector(31 downto 0);

20 x0y0_p2s_w : out std_logic_vector(15 downto 0)

21 );

22 end component PartialArea;

23
24 attribute DONT_TOUCH : string;

25 attribute DONT_TOUCH of inst_PartialArea: label is "TRUE";

26
27 -- state machine

28 type state_type is (s0, s1, s2);

29 signal state : state_type;

30
31 -- intermediate signals

32 signal a : signed(15 downto 0);

33 signal b : signed(15 downto 0);

34
35 signal x0y0_s2p_w : std_logic_vector(31 downto 0);

36 signal x0y0_p2s_w : std_logic_vector(15 downto 0);

37
38 -- attribute_declaration

39 attribute s : string;

40 attribute keep : string;

41
42 -- attribute_assignment

43 attribute s of x0y0_s2p_w : signal is "true";

44 attribute s of x0y0_p2s_w : signal is "true";

45 attribute keep of x0y0_s2p_w : signal is "true";

46 attribute keep of x0y0_p2s_w : signal is "true";

47 begin

48
49 inst_PartialArea : PartialArea

50 port map (

51 x0y0_s2p_w => x0y0_s2p_w,

52 x0y0_p2s_w => x0y0_p2s_w

53 );

54
55 x0y0_s2p_w <= std_logic_vector(a) & std_logic_vector(b);

56
57
58 -- output select

59 process(clk, reset, btn)

60 begin

61 if rising_edge(clk) then

62 if btn = '1' then

63 outp <= x0y0_p2s_w(15 downto 8);

64 else

65 outp <= x0y0_p2s_w(7 downto 0);

66 end if;

67 end if;

68 end process;

69
70
71 -- state machine

72 process(clk, reset)

73 begin

74 if reset = '1' then

75 state <= s0;

76 elsif rising_edge(clk) then

77 case state is

78 when s0 => state <= s1;

79 when s1 => state <= s2;

80 when s2 => state <= s0;

81 when others => state <= s0;

82 end case;

83 end if;

84 end process;

85
86
87 -- provide input data

88 process(state, inp)

89 begin

90 case state is

91 when s0 =>

92 a <= to_signed(32767, a'length);

93 b <= to_signed(3, b'length);

94 when s1 =>

95 a <= to_signed(32767, a'length);

96 b <= to_signed(333, b'length);

97 when s2 =>
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98 a <= to_signed(32767, a'length);

99 b <= resize(signed(inp), 16);

100 when others =>

101 a <= to_signed(1, a'length);

102 b <= to_signed(1, b'length);

103 end case;

104 end process;

105
106
107 end structural;

Listing A.0.5: Implementation of the static system of example 1.



Appendix A. Appendix A 72

1 library ieee;

2 use ieee.std_logic_1164.all;

3 use ieee.numeric_std.all;

4
5 entity div is

6 port (

7 clk : in std_logic;

8 a : in std_logic_vector(15 downto 0);

9 b : in std_logic_vector(15 downto 0);

10 o : out std_logic_vector(15 downto 0)

11 );

12 end div;

13
14 architecture behavioural of div is

15 begin

16
17 process(clk, a, b)

18 begin

19 if rising_edge(clk) then

20 o <= std_logic_vector(signed(a) / signed(b));

21 end if;

22 end process;

23
24 end behavioural;

Listing A.0.6: Implementation of the reconfigurable module of example 1.
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1 # Read sources

2 read_vhdl [glob sources/*]

3 read_vhdl [glob goahead/sources/*]

4

5 # Synthesize design

6 synth_design -part xc7z020clg484-1 -top top -keep_equivalent_registers -flatten_hierarchy none

7 #synth_design -part xc7z020clg484-1 -top top

8 write_checkpoint -force checkpoints/synthesis.dcp

9

10 # Optimize synthesized design

11 opt_design -sweep

12 write_checkpoint -force checkpoints/optimize-design.dcp

13

14 # Placement constraints

15 source goahead/tcl/module-placement-constraints.tcl

16 write_checkpoint -force checkpoints/placement-constraints.dcp

17

18 # Interface constraints

19 source goahead/tcl/module-interface-constraints.tcl

20 write_checkpoint -force checkpoints/interface-constraints.dcp

21

22 # Place

23 place_design

24 write_checkpoint -force checkpoints/place-design.dcp

25

26 # Insert blocker

27 source goahead/tcl/module-blocker.tcl

28 write_checkpoint -force checkpoints/blocker.dcp

29

30 # Route design

31 route_design -nets [get_nets -hierarchical -filter {TYPE != "GROUND"}]

32 write_checkpoint -force checkpoints/route-with-blocker.dcp

33

34 # Remove blocker

35 route_design -unroute -physical_nets

36

37 # Reroute other physical nets

38 route_design -physical_nets

39 write_checkpoint -force checkpoints/route-without-blocker.dcp

40

41 # Generate bitstream for BitMan

42 set_property BITSTREAM.General.UnconstrainedPins {Allow} [current_design]

43 set_property BITSTREAM.GENERAL.CRC DISABLE [current_design]

44 write_bitstream -force module.bit

Listing B.0.1: Example build script
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1 # Description: Static system

2 #-----------------------------------------------------------------------------------------

3
4 #-----------------------------------------------------------------------------------------

5 # Global variables

6 #-----------------------------------------------------------------------------------------

7 Set Variable=ProjectDir Value=M:\2018.3\zedboard\thesis\examples\example1\goahead_pr;

8 Set Variable=ZedBoard Value=%GOAHEAD_HOME%/Devices/xc7z020clg484.binFPGA;

9 Set Variable=GoAheadSources Value=%ProjectDir%/static/goahead/sources;

10 Set Variable=GoAheadTcl Value=%ProjectDir%/static/goahead/tcl;

11 Set Variable=EntityName Value=PartialArea;

12 Set Variable=InstanceName Value=inst_PartialArea;

13
14 #-----------------------------------------------------------------------------------------

15 # Load device

16 #-----------------------------------------------------------------------------------------

17 OpenBinFPGA FileName=%ZedBoard%;

18
19 #-----------------------------------------------------------------------------------------

20 # Floorplan the partial area

21 #-----------------------------------------------------------------------------------------

22 ClearSelection;

23 AddBlockToSelection UpperLeftTile=INT_L_X34Y99 LowerRightTile=INT_L_X38Y50;

24 ExpandSelection;

25 StoreCurrentSelectionAs UserSelectionType=PartialArea;

26
27 #-----------------------------------------------------------------------------------------

28 # Connect clock to the Partial Area

29 #-----------------------------------------------------------------------------------------

30 ConnectClockPins

31 ClockPin=C

32 BELs=[A-D]FF

33 ClockNetName=clk_IBUF_BUFG

34 FileName=%GoAheadTcl%/static-connect-clockpins.tcl

35 Append=False

36 CreateBackupFile=False;

37
38 #-----------------------------------------------------------------------------------------

39 # Generate interface constraints

40 #-----------------------------------------------------------------------------------------

41 # Slot (0,0) Border - West - Input

42 ClearSelection;

43 AddBlockToSelection UpperLeftTile=INT_L_X34Y90 LowerRightTile=INT_L_X34Y83;

44 StoreCurrentSelectionAs UserSelectionType=X0Y0_WestBorderInput;

45 PrintInterfaceConstraintsForSelection

46 FileName=%GoAheadTcl%/static-interface-constraints.tcl

47 Append=False

48 CreateBackupFile=False

49 SignalPrefix=x0y0

50 InstanceName=%InstanceName%

51 Border=West

52 NumberOfSignals=32

53 PreventWiresFromBlocking=True

54 InterfaceSpecs=In:2-4:s2p_w;

55
56 InstantiateConnectionPrimitives

57 LibraryElementName=LUTConnectionPrimitive

58 InstanceName=inst_x0y0_w_in

59 NumberOfPrimitives=32;

60
61 AnnotateSignalNamesToConnectionPrimitives

62 InstantiationFilter=inst_x0y0_w_in.*

63 InputMappingKind=external

64 OutputMappingKind=internal

65 SignalPrefix=x0y0

66 InputSignalName=s2p_w

67 OutputSignalName=dummy_w_in

68 LookupTableInputPort=3;

69
70 # Slot (0,0) Border - West - Output

71 ClearSelection;

72 AddBlockToSelection UpperLeftTile=INT_L_X34Y90 LowerRightTile=INT_L_X34Y83;

73 StoreCurrentSelectionAs UserSelectionType=X0Y0_WestBorderOutput;

74 PrintInterfaceConstraintsForSelection

75 FileName=%GoAheadTcl%/static-interface-constraints.tcl

76 Append=True

77 CreateBackupFile=False

78 SignalPrefix=x0y0

79 InstanceName=%InstanceName%

80 Border=West

81 NumberOfSignals=16

82 PreventWiresFromBlocking=True

83 InterfaceSpecs=Out:2-4:p2s_w;

84
85 InstantiateConnectionPrimitives

86 LibraryElementName=LUTConnectionPrimitive

87 InstanceName=inst_x0y0_w_out

88 NumberOfPrimitives=16;

89
90 AnnotateSignalNamesToConnectionPrimitives

91 InstantiationFilter=inst_x0y0_w_out.*

92 InputMappingKind=internal

93 OutputMappingKind=external

94 SignalPrefix=x0y0

95 InputSignalName=1

96 OutputSignalName=p2s_w

97 LookupTableInputPort=3;

98
99 #-----------------------------------------------------------------------------------------

100 # Generate partial area module in VHDL

101 #-----------------------------------------------------------------------------------------

102 PrintVHDLWrapper

103 InstantiationFilter=.*

104 EntityName=%EntityName%

105 FileName=%GoAheadSources%/PartialArea.vhd

106 Append=False
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107 CreateBackupFile=False;

108
109 #-----------------------------------------------------------------------------------------

110 # Generate placement constraints

111 #-----------------------------------------------------------------------------------------

112 ClearSelection;

113 SelectUserSelection UserSelectionType=PartialArea;

114
115 PrintAreaConstraint

116 InstanceName=%InstanceName%

117 AddResources=True

118 FileName=%GoAheadTcl%/static-placement-constraints.tcl

119 Append=False

120 CreateBackupFile=False;

121
122 PrintExcludePlacementProperty

123 InstanceName=%InstanceName%

124 FileName=%GoAheadTcl%/static-placement-constraints.tcl

125 Append=True

126 CreateBackupFile=False;

127
128 #-----------------------------------------------------------------------------------------

129 # Generate blocker macro

130 #-----------------------------------------------------------------------------------------

131 ClearSelection;

132 SelectUserSelection UserSelectionType=PartialArea;

133
134 BlockWiresInSelection

135 PortsToUnblockRegex=.*(1|2)(BEG|END).*;

136 BlockLUTInputPortsInSelection

137 InputPortsRegex=.*(L|M)*_(A|B|C|D)4;

138
139 BlockSelection

140 PrintUnblockedPorts=False

141 Prefix=blocker_net

142 BlockWithEndPips=True

143 NetlistContainerName=default_netlist_container;

144
145 #SaveAsBlocker

146 # NetlistContainerNames=default_netlist_container

147 # FileName=%GoAheadTcl%/static-blocker.tcl

148 # CreateBackupFile=False;

149
150 SaveAsBlocker

151 NetlistContainerNames=default_netlist_container

152 FileName=%GoAheadTcl%/static-blocker.tcl;

Listing B.0.2: Goa script static

1 # Description: Module - 1 Location - 1

2 #-----------------------------------------------------------------------------------------

3
4 #-----------------------------------------------------------------------------------------

5 # Global variables

6 #-----------------------------------------------------------------------------------------

7 Set Variable=ProjectDir Value=M:\2018.3\zedboard\thesis\examples\example1\goahead_pr;

8 Set Variable=MODULE_NAME Value=module1;

9 Set Variable=ZedBoard Value=%GOAHEAD_HOME%/Devices/xc7z020clg484.binFPGA;

10 Set Variable=GoAheadSources Value=%ProjectDir%/%MODULE_NAME%/goahead/sources;

11 Set Variable=GoAheadTcl Value=%ProjectDir%/%MODULE_NAME%/goahead/tcl;

12
13 #-----------------------------------------------------------------------------------------

14 # Load device

15 #-----------------------------------------------------------------------------------------

16 OpenBinFPGA FileName=%ZedBoard%;

17
18 #-----------------------------------------------------------------------------------------

19 # Floorplan the module area

20 #-----------------------------------------------------------------------------------------

21 # 5 columns module

22 ClearSelection;

23 AddBlockToSelection UpperLeftTile=INT_L_X34Y99 LowerRightTile=INT_L_X38Y50;

24 ExpandSelection;

25 StoreCurrentSelectionAs UserSelectionType=ModuleArea;

26
27 #-----------------------------------------------------------------------------------------

28 # Generate interface constraints

29 #-----------------------------------------------------------------------------------------

30 # Slot (0,0) Border - West - Input

31 ClearSelection;

32 AddBlockToSelection UpperLeftTile=INT_L_X34Y90 LowerRightTile=INT_L_X34Y83;

33 StoreCurrentSelectionAs UserSelectionType=X0Y0_WestBorderInput;

34 PrintInterfaceConstraintsForSelection

35 FileName=%GoAheadTcl%/module-interface-constraints.tcl

36 Append=False

37 CreateBackupFile=False

38 SignalPrefix=x0y0

39 InstanceName=inst_ConnectionPrimitiveWestInput

40 Border=West

41 NumberOfSignals=32

42 PreventWiresFromBlocking=True

43 InterfaceSpecs=In:2-4:s2p_w;

44
45 InstantiateConnectionPrimitives

46 LibraryElementName=LUTConnectionPrimitive

47 InstanceName=inst_x0y0_w_in

48 NumberOfPrimitives=32;

49
50 AnnotateSignalNamesToConnectionPrimitives

51 InstantiationFilter=inst_x0y0_w_in.*

52 InputMappingKind=internal

53 OutputMappingKind=external
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54 SignalPrefix=x0y0

55 InputSignalName=1

56 OutputSignalName=s2p_w

57 LookupTableInputPort=3;

58
59 # Slot (0,0) Border - West - Output

60 ClearSelection;

61 AddBlockToSelection UpperLeftTile=INT_L_X34Y90 LowerRightTile=INT_L_X34Y83;

62 StoreCurrentSelectionAs UserSelectionType=X0Y0_WestBorderOutput;

63 PrintInterfaceConstraintsForSelection

64 FileName=%GoAheadTcl%/module-interface-constraints.tcl

65 Append=True

66 CreateBackupFile=False

67 SignalPrefix=x0y0

68 InstanceName=inst_ConnectionPrimitiveWestOutput

69 Border=West

70 NumberOfSignals=16

71 PreventWiresFromBlocking=True

72 InterfaceSpecs=Out:2-4:p2s_w;

73
74 InstantiateConnectionPrimitives

75 LibraryElementName=LUTConnectionPrimitive

76 InstanceName=inst_x0y0_w_out

77 NumberOfPrimitives=16;

78
79 AnnotateSignalNamesToConnectionPrimitives

80 InstantiationFilter=inst_x0y0_w_out.*

81 InputMappingKind=external

82 OutputMappingKind=internal

83 SignalPrefix=x0y0

84 InputSignalName=p2s_w

85 OutputSignalName=dummy_w

86 LookupTableInputPort=3;

87
88 #-----------------------------------------------------------------------------------------

89 # Generate connection primitives in VHDL format

90 #-----------------------------------------------------------------------------------------

91 # connection primitives that are connected to the input signals of the module

92 PrintVHDLWrapper

93 InstantiationFilter=inst_x0y0_w_in.*

94 EntityName=ConnectionPrimitiveWestInput

95 FileName=%GoAheadSources%/ConnectionPrimitive.vhd

96 Append=False

97 CreateBackupFile=False;

98
99 # connection primitives that are connected to the output signals of the module

100 PrintVHDLWrapper

101 InstantiationFilter=inst_x0y0_w_out.*

102 EntityName=ConnectionPrimitiveWestOutput

103 FileName=%GoAheadSources%/ConnectionPrimitive.vhd

104 Append=True

105 CreateBackupFile=False;

106
107 #-----------------------------------------------------------------------------------------

108 # Tunnels

109 #-----------------------------------------------------------------------------------------

110 ClearSelection;

111 AddBlockToSelection UpperLeftTile=INT_R_X29Y90 LowerRightTile=INT_R_X33Y83;

112 StoreCurrentSelectionAs UserSelectionType=IOWestTunnel;

113 DoNotBlockDoubleEast;

114 DoNotBlockQuadEast;

115 DoNotBlockDoubleWest;

116 DoNotBlockQuadWest;

117
118 #-----------------------------------------------------------------------------------------

119 # Generate blocker macro

120 #-----------------------------------------------------------------------------------------

121 ClearSelection;

122 AddBlockToSelection UpperLeftTile=INT_R_X29Y109 LowerRightTile=INT_L_X42Y40;

123 SelectUserSelection UserSelectionType=ModuleArea;

124 StoreCurrentSelectionAs UserSelectionType=BlockerArea;

125
126 BlockSelection

127 PrintUnblockedPorts=False

128 Prefix=blocker_net

129 BlockWithEndPips=True

130 NetlistContainerName=default_netlist_container;

131
132 #SaveAsBlocker

133 # NetlistContainerNames=default_netlist_container

134 # FileName=%GoAheadTcl%/module-blocker.tcl

135 # CreateBackupFile=False;

136
137 SaveAsBlocker

138 NetlistContainerNames=default_netlist_container

139 FileName=%GoAheadTcl%/module-blocker.tcl;

140
141 #-----------------------------------------------------------------------------------------

142 # Generate placement constraints

143 #-----------------------------------------------------------------------------------------

144 # module area

145 ClearSelection;

146 SelectUserSelection UserSelectionType=ModuleArea;

147
148 PrintAreaConstraint

149 InstanceName=inst_Module

150 AddResources=True

151 FileName=%GoAheadTcl%/module-placement-constraints.tcl

152 Append=False

153 CreateBackupFile=False;

154
155 PrintExcludePlacementProperty

156 InstanceName=inst_Module

157 FileName=%GoAheadTcl%/module-placement-constraints.tcl

158 Append=True

159 CreateBackupFile=False;
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160
161 # connection primitives connected to the input interface of the module

162 ClearSelection;

163 AddBlockToSelection UpperLeftTile=INT_L_X26Y99 LowerRightTile=INT_L_X26Y92;

164 ExpandSelection;

165 StoreCurrentSelectionAs UserSelectionType=ConnectionPrimitiveWestInput;

166
167 PrintAreaConstraint

168 InstanceName=inst_ConnectionPrimitiveWestInput

169 AddResources=True

170 FileName=%GoAheadTcl%/module-placement-constraints.tcl

171 Append=True

172 CreateBackupFile=False;

173
174 # connection primitives connected to the output interface of the module

175 ClearSelection;

176 AddBlockToSelection UpperLeftTile=INT_L_X26Y98 LowerRightTile=INT_L_X26Y91;

177 ExpandSelection;

178 StoreCurrentSelectionAs UserSelectionType=ConnectionPrimitiveWestOutput;

179
180 PrintAreaConstraint

181 InstanceName=inst_ConnectionPrimitiveWestOutput

182 AddResources=True

183 FileName=%GoAheadTcl%/module-placement-constraints.tcl

184 Append=True

185 CreateBackupFile=False;

Listing B.0.3: Goa script module
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