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Completely Automated CNN Architecture Design
Based on VGG Blocks for Fingerprinting
Localisation

Abstract—WiFi fingerprinting using Convolutional Neural Net-
works (CNN) is one of the most promising techniques for
indoor localisation due to the extraordinary performance of CNN
in image classification. However, the performance of CNN is
architecture dependant, and thus an architecture that works well
in one case may not work in another, especially for the WiFi-
based localisation problems. Most of the solutions use an existing
hand-crafted architecture or a semi-automated CNN design for
fingerprinting, which requires significant CNN expertise and
time. Therefore, a satisfactory solution may not be guaranteed
as it is challenging to design numerous possible architectures. In
this work, this challenge is addressed by developing a framework
that completely automates the CNN architecture design process.
The automated architectures based on VGG blocks have shown
superior performance compared to standard architectures such
as VGG-16. Further, three heuristics are explored for automation:
Bayesian optimisation, Hyperband, and Random Search, which
demonstrate their importance towards the automated CNN
architecture development for WiFi fingerprinting. Experiments
are conducted on publicly available datasets and, a comparative
study between the automated architectures and other models is
presented. This work would, therefore, facilitate the CNN design
process for WiFi indoor localisation.

Index Terms—WiFi Fingerprinting, Automated Convolutional
Neural Network, Bayesian optimisation, Hyperband, Random
Search

I. INTRODUCTION

Indoor localisation is a concept of locating a person
or a device in an indoor environment. It has always been
important in various sectors such as healthcare, security, or
location-based services [1]. Although the advent of Global
Positioning System (GPS) has made outdoor localisation a
part of our everyday lives, indoor localisation still remains an
open challenge as GPS does not usually work indoors.

Among many of the solutions studied for indoor
localisation, WiFi-based is one of the most attractive
solutions because: it is easy to deploy and maintain, wireless
LANs (WLANs) are ubiquitous, and smartphones are
nowadays WiFi-enabled [2] making scanning of WiFi signals
an easy process. Among various techniques, fingerprinting
[3] is a common and popular one to identify the location
of a user by characterising his radio signal environment
[4]. It is completed in two phases: an offline phase and an
online phase. In the offline or training phase, a site survey
is performed, and Received Signal Strength Indicator (RSSI)
is calculated from all detected WiFi Access Points (APs) at
each known reference point. A radio map is built consisting

of vectors of RSSI values at their known locations. This is
followed by the online phase, where the user collects RSSI
measurements at their present location. These measurements
are then matched with the radio map to determine the user’s
position with the aid of position estimation algorithms.

One such potential position estimation algorithm is
Convolutional Neural Networks (CNN) [5], which is a deep
learning algorithm popularly used to solve image recognition
and processing problems. It has shown good results with
images and therefore, due to its ability to learn complex
relationships between RSSI and location coordinates as
demonstrated in [6, 7], can serve as a promising solution for
WiFi localisation.

The performance of a CNN model depends heavily on its
architecture, which is a possible combination of the number
of layers and associated hyperparameter values set within the
layer. Although previous works could shortlist each potential
architecture, and then train and validate it to choose the best
among them, a satisfactory solution may not be an optimal
solution because it is difficult to come up with the number
of layers needed and tackle multiple possible hyperparameter
combinations. This is because the computational complexity
also increases greatly during runtime as the list of possible
hyperparameter combinations that needs to be tuned grows.
Moreover, designing the architecture requires expertise in both
CNN’s working and an understanding of the problem domain
[8]. In practical scenarios such as WiFi-based fingerprint
localisation, this is often more challenging to do so. Even the
popular hand-crafted architectures, such as VGGNet based on
VGG blocks [9], whose performance has been proven on many
data types and applications [10, 11], may still not guarantee
good accuracy for WiFi fingerprint localisation.

A. Problem Statement

The designing of CNN architecture to deliver good per-
formance requires expertise in CNN’s working. To this day,
the development of completely automatic CNN architectures
for WiFi fingerprint localisation with promising performance,
constrained by limited computational resources, is still in its
infancy. Additionally, tuning the hyperparameters for optimis-
ing the architectures requires considerable time and effort.
Therefore, for optimisation of CNN architectures, three heuris-
tic computational paradigms, such as Bayesian optimisation



[12], Hyperband [13] and Random Search [14] still needs to
be explored. The main objective of this research therefore, is
to generate a framework for automating the CNN architecture
design process based on the VGG block for WiFi localisation,
and explore the three heuristics for optimisation of such
architectures.

B. Research Questions

How do we solve indoor localisation problem using
WiFi fingerprinting technique [3] and CNN [5] as position
estimation algorithm, given that CNN is complex to design
and tune for a novice?

The main question can be sub-divided into:

1) How do we design a framework for automating the
development of CNN architecture for WiFi fingerprint
localisation?

2) How do we optimise such architectures using heuristic
techniques such as Bayesian optimisation [12], Hyper-
band [13] and Random Search [14]?

3) Given the automated architectures, on what basis can we
decide which heuristic technique performs the best?

C. Methodology

To this end, the development of completely automatic
CNN architectures for WiFi fingerprint localisation with
promising performance, constrained by limited computational
resources, is still in its infancy. The target of this research
is to develop an automated framework for CNN architecture
designing based on the VGG block, and use the heuristic
computational paradigms, such as Bayesian optimisation [12],
Hyperband [13] and Random Search [14] for optimisation.
To evaluate the framework, we use publicly available datasets
such as Indoor Location, and Navigation competition series
on Kaggle [15], as well as the UJlIndoorLoc dataset [16].
The Kaggle dataset embodies WiFi sensor data collected
via crowdsourcing from a smartphone and the UJIIndoorLoc
dataset was created in 2013 with the help of more than 20
different users collecting WiFi samples.

The research question is achieved by breaking it down to
following goals.

1) Designing a framework to automatically deliver a CNN
architecture based on VGG Blocks for WiFi fingerprint
localisation.

2) Designing a framework which automates the
hyperparameter tuning process of the automatically
designed CNN architectures using the three heuristics
for optimisation.

The proposed framework assumes no prior knowledge of the
user about the CNN design process, investigated dataset and
genetic algorithms.

D. Thesis Outline

The thesis follows the following structure:

Chapter 2: Background and Related Work - In this
section, we first discuss theory regrading indoor localisation
using WiFi fingerprint technique and basics of CNN
architecture. We then discuss the theory behind the heuristic
algorithms for optimisation. This section is later followed
by some state-of-the-art solutions involving WiFi Indoor
localisation using CNN and its architecture optimisation.

Chapter 3: Completely Automating the CNN design
process - In this section we discuss an overview of our
suggested framework. We discuss the prerequisites required
for WiFi based indoor localisation using CNN. We also
provide in depth discussion of model backbone, building
blocks and hyperparameters tuned for model optimisation.

Chapter 4: Experimental Setup - In this section we
discuss the datasets in detail, we perform data analysis and
provide some additional information regarding the scenario
where experiments were conducted and tools used for
implementation.

Chapter 5: Experimental Results - In this section,
we compare the performances of our automated CNN
architectures with other machine learning and deep learning
algorithms. Further, we compare the working of all three
optimisation heuristics to understand their importance towards
CNN architecture optimisation. In the end, we study the best
and worst architecture returned by all the three heuristics and
form a comparative study between them.

Chapter 6: Discussion and Conclusion - In the discussion
section, we reflect on the study and our findings. Finally,
we summarise our findings and results in the conclusion
section followed by recommendations to improve or extend
the existing work.

II. BACKGROUND AND RELATED WORK

In this section, the theory behind WiFi fingerprinting tech-
nique is presented. It is then followed with a basic background
about the CNN algorithm and the default available VGG-16
CNN architecture. A basic background of the three optimisa-
tion heuristics is also presented, and the section is concluded
with some related works relevant to this study.

A. Fingerprinting Technique

Among many technologies used to solve indoor localisation
problem, WiFi based [17, 18] is a popular technique due to
it’s universality being the main advantage. Often, there is no
need to add any additional hardware devices to deploy WiFi
in buildings and individuals can use WiFi with ease on their
mobile devices. WiFi, which stands for Wireless Fidelity,
uses radio frequencies to send signals between two or more
devices. WiFi localisation i.e to estimate a user’s position



in an indoor space using WiFi, is popularly solved via two
methods: triangulation and fingerprinting [3]. In triangulation,
the user’s mobile device captures the radio signals emitted by
the WiFi infrastructure. Based on the strength of the signals
received by the device, the three most strongest signals
are selected and the distance between the device and the
corresponding WiFi hardware is calculated. Finally, with the
help of a position estimation algorithm, the final position of
the user is calculated based on these distances. However, one
drawback of this method is that due to the obstacles present in
the room, there can be severe errors in calculating distances.
One way the researchers have overcome this challenge is by
applying fingerprint technique, which has also proved to be
more accurate [19].

Fingerprint based technique [3] is conducted in two phases:
offline and online. In the offline phase, the user moves around
the indoor space with a mobile device such as a smartphone.
The device is responsible for collecting the radio signals from
each of the Access Point (AP) deployed in the space. An AP
is responsible for projecting WiFi signals in the designated
area, and thus the mobile device collects the WiFi signals
from all the detected AP in user’s area. Received Signal
Strength Indicator (RSSI) measures how strong or weak the
signals are, which are received by the mobile device. For
example, if the mobile device detects an RSSI value of -30
dBm from AP1 and -80 dBm from AP2, indicates that the
user is located closer to APl in comparison to AP2, and
therefore receives stronger signals from API. A radiomap
is created based on all the RSSI values collected from all
detected APs at particular location. In the online phase,
the user collects the RSSI values at their present location,
which is then matched against with the radio map created
in the offline phase. With the help of a position estimation
algorithm, the position of the user is determined. Fig. 1
depicts the offline stage and radio map created.

Although this technique promises accurate results, the site
survey process, i.e. collecting RSSI fingerprints from fixed
interested locations is time consuming and labour intensive.
The data collection process needs to be repeated several times
at the same reference points. To overcome this challenge,
crowdsourcing [20] method can be implemented. In this
method, several users move along a trajectory in the indoor
space collecting WiFi signals from the detected APs. Thereby,
all the parts of the indoor space is covered and the data is then
consolidated to create the radiomap.

B. CNN - Basic Structure

Convolutional Neural Network (CNN) [S5] has provided
excellent results in certain fields such as image processing
and even voice recognition. They are a class of deep artificial
neural networks which are able to maintain spatial integrity of
input images, i.e. the images can be fed into the network in
their original 2-D form if they are greyscale images, or 3-D
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Fig. 1: WiFi RSSI values collection from 4 APs at fixed known
location followed by radiomap creation

form if they are RGB images. After the images are fed into
the CNN, the process follows the below order.

1) Extract features: CNNs extract features with the help of
convolutional filters, which are in practice set of weights
applied to the input image. Convolutional filters slides
over the input image, and create a filtered version of
the image known as feature map. Different filters are
capable of creating different feature map from the same
input image. Convolutional filters can have both positive
and negative weights for creating such feature maps.

2) Processing by activation function: The feature maps are
further processed by an activation function. Generally,
ReLU [21] is a popular activation function used in
CNN. Activation functions introduce non linearity in
the CNN architecture or model helping it learn complex
information in the data. ReLLU, for example, ensures that
only the nodes with positive activation, i.e the nodes with
a value greater than 0.0 will send their values forward
to the next step. The nodes with negative activation send
a value of 0.0. The nodes that are positively activated
are likely to contain useful information and focusing on
only these can possibly lead to better results.

3) Dimensionality reduction via pooling: The goal of pool-
ing is to reduce the size of feature maps without the
loss of information. This can reduce the amount of
processing required in the further stages as well as
reduce the time during training the model. A filter is
passed over the feature maps for pooling. Common



variants of such filters are MaxPool, AveragePool and
SumPool [22]. As the name suggests, MaxPool takes
the maximum pixel value within the filter, AveragePool
averages the pixel values within the filter and SumPool
sums them up.

CNN can be very deep networks comprising of several layers
of convolutional and Pooling filters. However, the last few
layers of the network, are fully connected (FC) layers. The
output of the convolutional or pooling layers is passed to the
FC layers. There can be one or several FC layers depending
on the problem but the final output layer is adjusted according
to whether the problem is a classification or a regression
problem.

Once the architecture is ready, the network is trained using
few but not all data samples known as training data. Training
the network means finding the appropriate weights of the
neural network. This is achieved by updating the weights of
the network in response to the errors made by the network
on training data. Loss functions specified in the output layer
is used to calculate the error i.e the difference between the
predicted output and the actual output across the training
samples. The type of loss function employed depends on the
problem. For indoor localisation, the goal of the network in
all cases will be to minimise the loss. Therefore, an optimiser
is used, which is an algorithm used to change the parameters
of the neural network such as weights to reduce the losses.
Example of such optimisers are Adam [23], Adadelta [24]
and it should not be confused with the optimisation algorithms
such as Bayesian optimisation, which are used to change the
hyperparameters of the architecture and will be discussed
further. Therefore, training the network is a long process
and needs to be repeated several times to achieve optimal
performance.

C. CNN - VGG-16

VGG-16 was first presented in [9]. The authors investigated
the impact of the depth of the CNN on its accuracy in large-
scale image recognition. They passed the input image to a
stack of convolutional layers (Conv2D), consisting of filters
responsible for extracting features from the previous layer.
Spatial pooling was performed by MaxPool layers, placed
after some, but not all, Conv2D layers. At the end of the
architecture, a stack of fully connected layers with different
dimensions is placed, the value of which depends on the
problem. A complete VGG-16 architecture is shown in Fig. 2.
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Fig. 2: A complete VGG-16 architecture

D. CNN - Overfitting

Once the basic structure of the CNN is created, training the
neural network is the next important step. It is the process
of finding appropriate weights and biases of the network.
The available dataset is usually divided into training and
testing data. The training data is used to train the network
repeatedly to find the best possible values of weights and
biases, by checking how closely the computed output is to
the known correct output values. Once the training phase is
completed, the testing data is fed as input to the model once,
and the accuracy of the model is computed by finding the
extend to which the computed output differs from the known
correct output. Therefore, the models learns the appropriate
values of weights and biases from the training data and the
final performance of the model is calculated on the basis of
how well it performs over the test data. However, one big
challenge faced during neural network training is the problem
of overfitting [25]. It is the process when the model learns the
training data well but fails to perform satisfactorily on the test
data. There are some ways to tackle this problem such as:

1) k-fold cross validation [26]: In this case, the training
data is divided into k disjoint subsets of approximately
equal sizes. The CNN architecture or model is trained
using k-1 subsets, which now together form the training
data. The remaining one subset is now called the val-
idation data, against which the model’s performance is
measured. The procedure is repeated until each of the
k subset has as served as the validation dataset. The
total performance of the model is the average of the
performance of the model over k validation datasets.
Fig. 3 illustrates this process with 5 fold cross validation.
The original training data is divided into 5 subsets,
therefore k=5. In the first iteration or fold, the first
subset serves as the validation set and remaining are
the new training datasets. In the second iteration, the
second subset is the validation set and so on. The final
performance of the model is still tested on the test data
however, applying the k-fold cross validation technique
[27] gives the scientists a better intuition on how the
model performs on unseen data while training.

Iteration 1 Val Train Train Train Train
Iteration 2 Train Val Train Train Train
Iteration 3 Train Train Val Train Train
lteration 4 Train Train Train Val Train
Iteration 5 Train Train Train Train Val

Fig. 3: k-fold cross validation with 5 folds

2) Early Stopping [28]: Training the model for too long can
also lead to overfitting. The strategy of early stopping is
used to stop the training process after some time, once



the accuracy of the model stops improving. The training
time of the model depends on the number of epochs.
i.e the model will be trained for a longer time if the
number of epochs is 100, in comparison to when we set
the epoch value 10. As shown in Fig. 4, the vertical axis
represents the number of epochs and the horizontal axis
is the error. The blue line represents the training error
and the red line represents the validation error. If the
model continues to be trained after a certain point, the
validation error and training error will deviate from each
other significantly, leading to overfitting. If we stop the
training of the model earlier, we run into the problem
of underfitting [29]. Therefore, the goal is to stop the
training of the model at the exact point to prevent both
the problems.

Fig. 4: CNN architecture or model’s training process. The
training and validation error plotted with respect to the number
of epochs

3) Dropout Layer: The process of dropout [30] is a
popular technique to prevent overfitting. Each layer in
the neural network consists of several nodes or neurons.
These neurons are initialised with weights randomly
at the beginning of the training process, making the
error higher at the beginning. In dropout technique,
few neurons are dropped out from the network during
each iteration. It can be seen as them being temporarily
removed from the network. The removal of neurons
from the network is random, and a tunable parameter
’p’ determines the percentage of neurons to deactivate.
The dropout procedure can be seen as averaging the
affect of several different networks, which forces the
network to not rely on one feature, but learn robust
features that are useful.

Training the neural network is a time consuming process,
especially for a deep architecture. Batch Normalisation is a
widely adopted technique to enable faster and more stable
training of neural network. Normalising the inputs of the neu-
ral network to a zero mean and a constant standard deviation
had been known since a long time to benefit the training
process [31]. Batch normalisation layers in addition, can be in-
serted in the CNN architecture the same way as convolutional
and FC layers. There might be a little disagreement within the
scientific community regarding batch normalisation improving

the training process or in general accuracy of the results.
However the successful proliferation of batch normalisation
in several areas of deep learning [32, 33] cannot be ignored.
The authors in [34] claim that the internal covariate shift is the
reason for slow training of deep architectures. They describe
this phenomenon as the change in the distribution of network
activations due to the change in network parameters during
training. For a sequential neural network, the output of the
first layer is the input to the second layer, the output of the
second layer is the input to the third and so on. Therefore,
when the parameters of a layer change, so does the distribution
of the inputs to the next layer. These shifts can be problematic
for larger and deeper networks. Batch normalisation method is
intended to reduce this effect by normalising the distribution of
inputs of each layer to have zero mean and standard deviation
of one.

E. Hyperparameter Tuning

Hyperparameter tuning [35] is the process of finding
the right combination of hyperparameters, to maximize the
performance of CNN. Hyperparameters in neural network
are variables that people can set manually and it defines
the overall structure of the network [36]. For example, in
case of CNN, the hyperparameters can be the learning rate
of the optimiser, the variable ’p’ controlling the percentage
of neurons to dropout, the size of filters in Conv2D layer
and MaxPool layers or even the number of layers in neural
network. Tuning the hyperparameters can improve the
performance of CNN significantly, however as the complexity
of the neural network increases, hyperparameter tuning
can become increasingly difficult. Model complexity, for
example, can include how deep the neural network is, along
with the appropriate number of filters in each layer. Simpler
models might not be able to learn much from the dataset
while complex models may overfit the data. Therefore,
hyperparameter tuning allows the scientists to come up
with the correct CNN architecture configuration according
to the problem statement. Since the hyperparameters are
problem dependant and therefore an architecture with certain
hyperparameter values that work for one dataset might not
work for another. Hyperparameter tuning also affects the
overall training time. Changing the hyperparameters can
change the training time from few minutes to few hours.
Hence, hyperparameter tuning requires a balance of coming
up with an optimised architecture and letting it train for a
satisfactory amount of time, which is a tedious and difficult
task and demands an expert’s experience and knowledge.

Hyperparameter tuning can be mainly divided into two
categories: manual or automatic. Manual search tries different
combinations of hyperparameters by hand and depends on the
expert’s intuition in identifying the important hyperparame-
ters that will have greater impact on the results. For non-
experts, this is a difficult process. As the number of possible
hyperparameters to tune and the range they can take increases,
the number of possible combinations that can be created also



increases and hyperparameter tuning can become a complex
process. To overcome this challenge, automatic algorithms for
hyperparameter tuning are proposed. Some of them which
interests our topic of study are listed below.

1) Grid Search: it is one of the most popularly used
methods to explore the hyperparameter configuration
space [35]. The Grid Search algorithm in general tries
all possible combination pairs. Therefore, for example
if the the learning rate can take two values of 0.01
and 0.001 and the rate of dropout needs to be checked
between two values 0.3 and 0.4, there will be four
different combinations to try and therefore four different
architectures to train and validate. The algorithm tries
all the possible combinations and therefore performs an
exhaustive search of the given hyperparameters and their
range. The advantage of Grid Search is that it is easy to
implement and is effective for small search spaces. The
biggest limitation is, as the number of hyperparameters
to tune grows, or the range of values hyperparameters
can take increases, the search for an optimised archi-
tecture by trying out all possible combinations becomes
computationally expensive.

2) Bayesian Optimisation: The Bayesian optimisation [37]
approach uses Bayes theorem to guide the search for
detecting the minimum or maximum of an objective
function. It consists of two main components: The
objective function, which is modeled using a Bayesian
probabilistic model, and an acquisition function, which
determines the samples to search next [37]. The prob-
abilistic model of the objective function, known as the
surrogate model, is a model trained on (hyperparameter,
true objective function value) pairs. After certain trials,
the next choice of hyperparameter is kept from the
pair where the acquisition function was maximized.
These corresponding hyperparameters are further used
to test the surrogate model and update the true objective
function. This process of updating the surrogate model
continues until the maximum time, maximum iteration
is reached. Bayesian optimisation, therefore provides an
advantage over Grid Search in case the hyperparame-
ter search space is large. However, since it follows a
sequence of order, it is difficult to parallelise it.

3) Hyperband: Hyperband [13] is based on the principle of
successive halving, which works with N different con-
figurations and a budget B. In each iteration, successive
halving keeps the best half of the configurations, and
discards the other half. The process continues until a
configuration is obtained. One limitation of this process
is deciding the number of samples at the beginning. Hy-
perband solves this problem of *N v/s 8’ by considering
several possible values of N for a fixed B, essentially
performing a grid search over practical values of N [13].

4) Random Search: Random Search [14] bases its opti-
misation strategy on a stochastic process. It randomly
selects samples between the upper and lower bound of

each hyperparameter and then trains the model using
these until the budget mentioned, such as max_trials is
exhausted. Therefore, unlike Bayesian optimisation, it
does not take past evaluations into account. It is much
more efficient than Grid Search in large search spaces
[14], however it’s main drawback is that a large number
of evaluations conducted are unnecessary since it does
not exploit previously known regions.

F. Related Work

Numerous studies have addressed fingerprinting-based
WiFi localisation. Initially, machine learning algorithms (ML)
such as K-nearest neighbors (k-NN) [38], Support vector
machine (SVM) [39], Random forests and, Decision trees
were explored. In [40], nine teams undertook the “Ubiqum
Challenge”, nine teams investigated different combinations of
machine learning algorithms to improve position accuracy.
Their main goal was to classify the floor a user was situated
on and perform regression techniques to estimate longitude
and latitude. In [41], a comparative study is conducted
between six different types of ML algorithms to measure
their performance over a common dataset. The authors in [42]
incorporated an unsupervised ML method such as Principle
Component Analysis (PCA) to improve the localisation
performance.

Since Deep Learning can solve a complex problem
better than standard machine learning, Deep-Neural-Network
(DNN)-based methods have also been studied [43, 44]. The
main drawback of these methods is the poor accuracy they
achieve when the dataset is insufficient [45]. Reference
[45] analyses WiFi localisation using CNN, where the
authors convert RSSI vectors into 2-D images for multi-floor
classification. Similarly, CNN-LOC [46] generates input
images using RSSI from WiFi signals, which are then used to
train a CNN model to classify the user at one of the reference
points. Tiangi Qu et al. presented a similar approach using
a modified CNN model and an analysis of its performance
compared to a regular CNN architecture in [47].

Although the proposed CNN models could improve loca-
tion estimation, they are technically challenging and time-
consuming. Moreover, it requires expertise in both CNN theory
and understanding fingerprint localisation [8]. Moreover, an
exact CNN architecture such as VGG-16 [9] might be unable
or ineffective to solve some problems. As a result, architec-
ture optimisation algorithms based on heuristic computational
paradigms, such as, random search [14], Bayesian optimisation
[12], and Hyperband [13], have been proposed. However, to
our knowledge, none of the previous works has proposed a
fully automated end to end CNN architectural development
using heuristics for optimisation for WiFi fingerprint localisa-
tion.



III. COMPLETELY AUTOMATED CNN DESIGN FOR
FINGERPRINTING LOCALISATION

In this section, an overview of the proposed framework is
given. The framework helps in understanding the automated
end-to-end process of developing the CNN architecture for
WiFi localisation. For a deeper understanding, the process
of restructuring the data to create the input images for the
CNN model, the proposed CNN building blocks, and finally
the optimisation using the hyperparameter tuning technique is
also discussed.

A. Overview

The framework for developing an automated CNN
architecture is shown in Fig. 5. The initial phase is the data
collection phase performed by recording WiFi scans using a
smartphone.

The recorded data is then treated in two ways depending on
the dataset used. In case of Kaggle dataset [15], the collected
data is cleaned, useful information is extracted, the data is
rearranged in the fingerprint radiomap format and missing
values for any label corresponding to a particular AP is
filled up. Additionally, dummy columns are added with fake
APs in case the original total number of AP is not a perfect
square. In case of UlllndoorLoc [16], the data preprocessing
stage involves adding a value in case there are any missing
values for a particular label corresponding to a particular
AP. Further, similar to Kaggle dataset, dummy columns with
fake APs are added to make the total number of APs a
perfect square. Input images for the CNN architecture is then
generated by reshaping the original 1-D RSSI array into a
2-D array for each label, which serves as an input image for
the CNN algorithm.

The third stage of our framework involves developing a
workflow for automating the CNN design process by finding
the best possible selection of hyperparameters. In this stage
we develop a custom tuner called CVTuner which will help
in achieving our goal. It consists of two components, model
building and model evaluation. The model building function
contains an argument for sampling the hyperparameters.
This function along with the choice of heuristic algorithm
for architecture optimisation are used to instantiate the
CVTuner. The model evaluation stage comprises of initiating
the tuner search process by passing the necessary arguments.
Depending on the heuristic algorithm specified, several
different architectures are explored and the best one is
retained.

Finally, we analyse the performance of the best automated
architecture against the test data and perform position estima-
tion over it.

B. Data Collection

The Kaggle dataset [15] is provided by an indoor
positioning company XYZ10 in collaboration with Microsoft

Research. It was collected with the help of several users
walking along a particular path in a shopping mall. During
the walk, android smartphones are held firmly in front of the
chest of the user, enabling the user to collect sensor data.
The sensor data is recorded in several trace files, and consists
of readings belonging to different sensors such as bluetooth,
WiFi, accelerometer, gyroscope etc. The Kaggle dataset is
cleaned to extract only the WiFi scans which were recorded
in the trace files.

The UlllndoorLoc [16] dataset was created in 2013 and
covers three buildings of Universitat Jaume I. More than 20
different users helped to create the dataset, which can be used
for both floor classification, or latitude-longitude regression.
The dataset consists of only WiFi sensor readings.

C. Data Preprocessing

In case of Kaggle dataset [15], it is first cleaned by
arranging the data is the correct format. The clean data
consists of rows of APs and their readings followed by their
timestamp. Therefore AP1,AP2...APn,Timestamp represents
the cleaner WiFi scan. The location information for each WiFi
scan in the form of ’x’ and ’y’ coordinates is computed. This
is achieved by using the complimentary files provided along
with the dataset. A radio map is thus fabricated combining
all the required information. Suppose that during each WiFi
scan, the user receives RSSI values from neighbouring N
APs, namely, the data w = (ap;, aps....,apy) is a 1-D vector
of length N, where ap; denotes the RSSI value obtained
from the AP i. Each data w has labels x € {1,..,.M} and y €
{1,...M}. Consequently, for each data value wj, we have the
labels x;, y;. Note, that for training, we know both the N
RSSI values and the corresponding label as (w;,z1,y1), but
for prediction, we know the RSSI values for ws and want to
estimate the corresponding labels. We insert a value of -100
dBm for the APs if the corresponding AP was not detected
at a particular location. Since the CNN requires a 2-D array
input, the number of APs in the 1-D data should be a perfect
square. We thus add some dummy APs with a value of -100
dBm for all labels and rearrange the 1-D array into a 2-D array.

Similarly, UJIIndoorLoc dataset [16] also consist of vectors
of RSSI values with their corresponding latitude (x) and
longitude (y) information. We changed the value of 100 dBm,
which indicates that an AP was not detected at that particular
location, to -105 dBm. This was done to make it consistent
with rest of the RSSI readings. To make the number of AP
a perfect square, we add dummy APs with the value of -105
dBm. Similar to Kaggle dataset, we rearrange the 1-D array
into a 2-D array for each label.

We further scale both the datasets by applying a standard
scalar. The standard scalar transforms the data in a way that
mean is 0 and standard deviation is 1. This may help to speed
up the training process.
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D. Model Backbone

In our study, we do not implement the entire original VGG-
16 architecture, but instead try to find the optimal number of
VGG blocks needed. In VGG-16 [9], a VGG block consists
up of two Convolutional layers and one MaxPool layer. In
our proposed model backbone, we additionally add Batch
Normalization after each convolutional layer to standardize
the inputs of each layer. This might reduce the computation
time for training a model. The backbone of our framework
also contains two fully connected layers and an output layer,
similar to VGG-16. However, an additional dropout layer is
added between two fully connected dense layers to prevent
overfitting.

E. Model Optimisation

For architecture optimisation, a custom CVTuner is de-
signed. The choice of heuristic optimisation algorithm, the
objective to be minimized, the max_trials i.e the maximum

number of different architectures to try out and the model
building function are passed as parameters to instantiate the
CVTuner. The model-building function, as presented in Algo-
rithm 1, is a user-defined function which takes an argument /p
from which one can sample hyperparameters within a specified
range. The details of the body of the CVTuner is further
summarized in Algorithm 2. For initiating the CVTuner search
process for an optimised architecture, certain arguments are
passed such as training data, batch size etc. However, in our
case, we also hyperparameter tune the batch size, as presented
in line 2 of algorithm 2. The value of epoch is constant, but
the technique of early stopping is employed while training the
model to prevent underfitting and overfitting. Finally, we split
the training data into k folds and apply k-fold cross validation
[26] technique to analyse the architecture and calculate the
loss. The total loss of the architecture is the average of the
loss over k folds. The total number of architecture or trials



Algorithm 1 Model Build function to tune the selected
hyperparameters in order to build the CNN architecture

procedure BUILD-MODEL(hp) > hp = hyperparameter
Model = Sequential Model
Model < Add Layer (Input, Shape=(h, w, c))
for i =[1,n] do > n = number of maximum VGG
units to tune
Model <— Add Layer (Convolutional 2D,
Number of filters = hp.Choose( 64 / 128 / 256
/ 512))
Model <+ Add Layer (Batch Normalization)
Model <~ Add Layer (Convolutional 2D,
Number of filters = hp.Choose( 64 / 128 / 256
/ 512))
Model < Add Layer (Batch Normalization)
Model < Add Layer (MaxPool2D)

Model <~ Add Layer (Flatten)
Model <~ Add Layer (Dense,
Units = hp.Int( min = 64, max = 512 ))
Model < Add Layer (Dropout,
Rate = hp.Float(min 0, max 0.5))
Model <+ Add Layer (Dense,
Units=2, Activation="‘linear’)
Learning rate = hp.choose(0.01 / 0.001 / 0.0001)
Model < Compile(Loss function = Mean Squared
Error
Optimizer = Adam (learning rate))
return Model

tried out by the CVTuner is the value of the max_trials.
Each architecture is assigned a unique trial id which can
be accessed to retrieve architecture information such as the
number of VGG units, batch size, rate of dropout unit etc. This
is achieved as it is possible to call the model building function
from within the body of the CVTuner. Therefore, for every
new trial, a new architecture with new set of hyperparameters
is used for evaluation. However, for k-fold cross validation,
the trail id remains the same and therefore the k-fold cross
validation takes over the same architecture. The next set of
hyperparameters of an architecture for a new trial depends on
the choice of heuristic optimisation algorithm specified while
instantiating the tuner. For example, in case of Random Search
[14], past configurations of hyperparameters are not taken into
account and the new set of hyperparameter configuration is
completely random. However, in case of Bayesian optimisation
[37], this is not the case. Finally, since we are dealing with
a regression problem, and the goal of the architecture is
to predict both x and y labels. We use mean square error
(MSE) as the loss function as it measures the average squared
difference between the predicted values and the actual values.
We finally calculate the root mean squared error (RMSE) i.e
root of MSE for architecture performance and comparisons.

Algorithm 2 Algorithm to perform K Fold cross validation
for each of model returned by the Model Build function, and
calculate their Validation and Test loss.

procedure RUN TRIAL(sel f, trial, x,y, args, kwargs)
Batch size < hp.choose( 8 / 16 / 24 / 32)
Epochs <~ A constant value
CV Split«— Split the Training data as train and val
using K fold
Value losses = []
for train indices, value indices in CV do
X-train <— X[train index]
X-val < X]val index]
Y-train < Y[train index]
Y-val < Y[val index]
Train Model <— Train, Val, Early stop, Epochs and
Batch size
Predict <— Label predictions of validation set X-val
Predict < Inverse-transform(Predict)
Y-val < Inverse-transform(Y-val)
ValueLosses < Average (MeanSquareErrors
(Predict, Y-val))
TestPredictions <— Label predictions of test set X-test
TestPredictions < Inverse-transform(TestPredictions)
MSETest < MeanSquareErrors(TestPredictions, Y-
test)
Save the model

FE. Hyperparameters

In the following, we discuss some of the hyperparameters
that we define in the model building function and CVTuner
for hyperparameter tuning.

« Batch Size: The performance of a CNN model is affected
by its batch size [48]. Larger batch size speeds up the
computations, but too large a batch size may result in a
poorly generalised model. Therefore we set the range to
tune the batch size in CVTuner.

e Number of VGG Blocks: We also leave it up to the
CVTuner to determine the number of VGG blocks to
tune. Too many units can lead to an overly complex
architecture. Fewer layers may yield inaccurate results.
This is achieved by using a for loop in the model building
function. The for loop executes n number of times,
creating n number of VGG blocks. The values of #n is
taken up by the CVTuner from a specified range.

« Filters in the Conv2D layer: The filter extracts the distinct
set of features from the input. Since an input may have
different features, we need n multiple filters to extract the
important features from the input.

e Dense Layer Units: The dense layer in a CNN is a fully
connected layer, and each neuron receives input from all
neurons in the previous layer. The units of the dense
layer define the form of the input that is passed to the
subsequent layer. It can be challenging to come up with
the number of units in the dense layer, especially for a



novice.

Learning Rate: The learning rate is also an important
hyperparameter that controls how much a model must
be changed in response to the estimated error obtained
each time the model’s weights are updated. If the learning
rate of an optimiser is set too low, training becomes a
tedious process. If it is too high, it can cause the model
to converge to a suboptimal solution. We therefore, let
the automation process decide the ideal learning rate.
Rate of dropout Layer: We add a dropout layer between
two dense ones in our model. The rate of the dropout
layer determines the percentage of neurons that get
deactivated in that particular layer, thus affecting the
performance of the architecture significantly.

IV. EXPERIMENTAL SETUP

In this section, we implement the previously described
framework to solve the indoor WiFi localisation challenge.
We describe the dataset, the techniques used to optimise the
architecture and the environment where the experiments were
conducted.

A. Dataset Description

The Kaggle dataset [15] consists of multiple traces of
sensor data collected from over 200 buildings. However,
for our study, we only consider the data collected from
two floors: F1 and F2, from the same building named
5da138364db8ce0c98bc00f1. We run the regression over both
floors separately. No information is provided about the model
of the smartphone or the operating system running on the
device. For this study, we therefore assume that identical
devices were used for data collection. The total number of
APs for floor F1 (including dummy APs) is 676 for floor F2
is 289. The total number of data samples i.e the value of M
is 939 for F1 and 561 for F2.

The UlllndoorLoc [16] dataset also consists of data col-
lected over several buildings and floors. However, since we
only want to perform position estimation for x and y co-
ordinates, we consider the data collected only on Building
number 0, floor number 0. The total number of APs (includ-
ing dummy APs) is 529. The value of M is 1137 for the
UlJIIndoorLoc dataset. Therefore, we consider our dataset to
be scarce in terms of the input required for neural networks.

B. CVTuner configuration and prerequisites

The CNN positioning algorithm is performed by splitting
the datasets as train and test in the ratio of 80:20 for both
Kaggle F1, F2 and UJlIndoorLoc dataset Building O floor O.
Going forward we will address this simply as UJIIndoorLoc
for the purpose of this study. Therefore, 20 percent of the
total data is kept aside as test data. The data split is per-
formed randomly. CVTuner is a custom tuner designed for the
purpose of architecture optimisation. To instantiate the tuner,
a choice between Bayesian optimisation, Random Search and
Hyperband can be given. In case of Bayesian optimisation and
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random search, we also need to specify the value of max_trials.
We have set this value as 150 for all the experiments, keeping
the timing constraints for training a model and hyperparameter
tuning in mind. In case of Hyperband, the process for finding
the optimised architecture continues until in the end only one
architecture remains. Therefore, we cannot specify max trials
value in case of Hyperband. Instead, for a fair comparison, we
stop the optimisation process for Hyperband once 150 trials
are carried out by it. In addition, we also need to specify the
model building function for instantiating the CVTuner. For
the purpose of clarity, model building function is described
in the next section in detail. Next, to initiate the tuning
search process, we pass the training data and training labels
to the tuner search process. This begins the search for the
CNN optimised architecture keeping the choice of heuristic
algorithm for optimisation as a baseline. For the purpose of
searching promising architectures, we perform k fold cross
validation with 5 folds over the training data and average out
the validation loss over 5 folds. The method of early stopping
is employed while training the model. The parameter ’p’ is set
at 20. This is called the patience parameter and is the number
of epochs with no improvement after which the training stops.
The value of p is problem dependant and the value of 20 is
set after trying different values within the range 10-100. The
batch size is also tuned in the CVTuner. The option to tune
between the values 8, 16, 32 and 64 is given. Theses values
are the most popular batch size values used while training the
neural network.

C. Model building function description

The model building function uses an argument hp from
which hyperparameters can be sampled. For hyperparameter
tuning, the range of values is specified in this function. The
range for all the hyperparameters is listed below.

1) Number of VGG blocks: The number of VGG blocks
can range from a minimum of 1 to a maximum of 3.
Since each VGG block comprises of 2 Conv2D layers,
2 Batch Normalisation layers and one MaxPool layer, a
model with 3 VGG blocks is deep enough to give good
performance on our datasets. Increasing the number
of blocks to potentially take higher values affect the
training time of the architectures, in turn increasing over
all time to carry out 150 trials for hyperparameter tuning.
Filters: In Conv2D layer, filter values is a choice between
64, 128, 256 and 512. Therefore during hyperparameter
tuning, only the specified filter values can be sampled
from. We have chosen such these values as these are
the most popular filter values used for training the CNN
architecture.

Dense Layer Units: The dense layer units can take values
in the range of 64 to 512, with a step size of 64.
Although dense layer units can be any integer value,
we restrict the range only to certain values keeping the
training time of CNN networks and tuning them in mind.
Learning Rate: The model optimiser used is Adam,
which is the most popular choice amongst scientists. The

2)

3)

4)



TABLE I: RMSE of 5 experiments conducted over three datasets: Kaggle F1, F2 and UJlIndoorLoc using Bayesian Optimisation,

Random Search and Hyperband

Dataset Heuristic | Trial 1 | Trial 2 | Trial 3 | Trial 4 | Trial 5 Mean RMSE | Standard deviation

BO 217m | 221m | 1.89m | 2.17m | 2.15 m 2.118 m 0.12 m

F1 RS 235m | 251 m | 258 m | 231 m | 2.56 m 2.46 m 0.12 m

HP 202m [ 222m | 217m | 1.97 m | 224 m 2.12 m 0.12 m

BO 1.89m | 1.81m | 208 m | 202 m | 2.11 m 1.98 m 0.12 m

F2 RS 227m | 1.78 m | 1.76 m | 1.99 m | 221l m 2.00 m 0.23 m

HP 222m [ 2I1m [ 207m | 1.69m | 229 m 2.07 m 0.23 m

BO 359m | 3.06m | 3.12m | 357 m | 3.34 m 333 m 0.24 m

UllIndoorLoc RS 319m | 40lm | 444 m | 378 m | 3.05 m 3.69 m 0.57 m
HP 367m | 293 m | 337m | 380 m | 3.36 m 342 m 0.33 m

TABLE II: Performance comparisons between the CNN architecture automatically designed by our framework and other models

on the Kaggle dataset Floor F1, Floor F2 and UJIIndoorLoc dataset Floor 0 Building 0

Model Architecture | Kaggle floor F1 RMSE | Kaggle floor F2 RMSE | UJIIndoorLoc RMSE
Decision Tree 335 m 3.61 m 5.13 m
kNN 1.80 1.82 m 422 m
VGG-16 2241 m 17.29 m 27.96 m
CNN-Bayesian 1.89 m 1.81 m 3.06 m
CNN-Random Search 231 m 1.76 m 3.05m
CNN-Hyperband 1.97 m 1.69 m 293 m

learning rate of Adam optimiser is a hyperparameter and
can be tuned to take up 0.01, 0.001 and 0.0001.

5) Rate of dropout Layer: The dropout rate can be sampled
from a minimum value of 0 to a maximum value of 0.5.
The step size of dropout rate is 0.025. We have set the
upper limit as 0.5 since a dropout value of more than
that significantly affects the performance of the CNN
architecture.

D. Environment

All the experiments are carried out on Google Colaboratory
[49]. It is a product from Google allowing users to write
python code especially for machine learning and deep learning.
It gives free access to powerful hardware options such as CPU,
GPU and TPU. The GPU is allocated to the users randomly.
For most of our experiments, we were allocated the Tesla
P100-PCIE-16GB GPU. A Jupyter notebook environment is
provided for interactive development.

E. Libraries and Tools

For carrying out the experiments, we use Keras [50], Ten-
sorFlow [51] and scikit-learn [52] libraries. All the libraries
are open source and are designed to carry out machine learning
and neural networks operations. Some important functions and
classes used for conducting experiments are listed below.

1) train test split(): The scikit-learn library provides this
function which takes an entire dataset as input and
returns a dataset split into two subsets: train and test.

2) StandardScalar(): This is also a scikit-learn function for
standardising the inputs.

3) Earlystopping: Kera’s early stopping class is used by
specifying only few important arguments such as setting
the quantity to be monitored as val loss, minimising it
and setting the patience parameter p to 20.

4) Tuner: The base Tuner class is responsible for hyperpa-
rameter search process. Although built-in tuner classes
are available for Bayesian optimisation, Random Search
and Hyperband, we don’t use any of those and create our
own custom CVTuner. The Tuner class of KerasTuner
[53] can be subclassed to customise our own tuning
and hyperparameter search process. Advanced training
techniques such as k-fold cross validation and early
stopping is implemented for this study, and therefore
is a part of our cutstom CVTuner.

5) tuner.search(): This process initiates the search process
of the tuner for an optimised CNN architecture. Param-
eters such as training data, callbacks etc are given for
initiating the process.

V. EXPERIMENTAL RESULTS

In this section, we study the performance of our automated
CNN architectures in detail and compare it to the state of the
art VGG-16 architecture. Further, we compare the architec-
tures with other popular ML algorithms for regression. We also
interest the readers with the working of heuristic algorithms
for a better understanding of the underlying process for model
selection. This can be crucial because although each of the
algorithms have certain limitations, they play an important role
in automating the CNN architecture.

A. Comparison of Accuracy: Automated Architectures

We conduct a total of five experiments using the Bayesian
optimisation heuristic algorithm on Kaggle F1, F2 and
UlJlIndoorLoc dataset, to find the the best performing
automated CNN architecture. We repeat the process with
other heuristics algorithms i.e. with Hyperband and Random
Search again for a total of five times on all the three datasets.
The max_trial value for each of the experiments is set to
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150. The main performance criteria is the RMSE of each
of the automated CNN architecture. Lower value of RMSE
indicates a better performing CNN architecture in comparison
to an architecture with higher RMSE. This is presented in
Table 1. For all the three heuristics: Bayesian optimisation,
Random Search and Hyperband, all the experiments results
in good architectures and acceptable errors. As it can be seen
from the Table I, Bayesian optimisation is conducted a total
of five times, and the RMSE value of the best performing
automated CNN architecture i.e the architecture with the least
RMSE value found in 150 max_trials of each trial is retained.
The process is also repeated for the other heuristics algorithms.

The mean performance of Bayesian optimisation over 5
experiments of Kaggle F1, F2 and UlJlIndoorLoc dataset is
2.118 m, 1.98 m and 3.33 m while the standard deviation is
0.12 m, 0.12 m and 0.24 m. Similarly, the mean of Random
Search experiments for all datasets is 2.46 m, 2.00 m and 3.69
m while the standard deviation is 0.12 m, 0.23 m and 0.57 m.
In case of Hyperband, the mean is 2.24 m, 2.07 m and 3.42 m
and the standard deviation is 0.12 m, 0.23 m and 0.33 m. As
seen in the Table I, the performance of individual experiments
in terms of RMSE is very close to each other. The mean RMSE
value of Bayesian optimisation over 5 trials is the least in
all the datasets by an extremely small margin. However, the
standard deviation of Bayesian optimisation is also the least in
all datasets. This indicates that the performance of Bayesian
optimisation shows consistent results in coming up with an
automated CNN architecture for all 5 trials. This is due to
the fact that Bayesian optimisation takes past evaluations into
account while tuning the hyperparameters. The CNN architec-
tures generated via Random Search optimisation algorithm are
also at par with Bayesian optimisation. However, since each
architecture is tuned randomly and the history of the trials is
not taken into account, we see that the standard deviation of
Random Search is more than Bayesian optimisation. This gives
a wider range of error values that next set of automated CNN
architecture can possibly show. In case of Hyperband, we had
to manually stop the optimisation process once the number of
max_trials reached 150. Therefore, there is a possibility that
the performance of Hyperband improves significantly if we let
it search for hyperparameters further, however it comes at the
cost of additional computation time and powerful hardware
resources. In case of 150 trials, Hyperband has better overall
average in comparison with Random Search in two datasets:
Kaggle F1 and UJlIndoorLoc.

B. Comparison of Accuracy: Other Architectures

From Table I, which lists down the RMSE of the best
performing CNN architecture for each experiment, we now
select the best CNN architecture among them and compare
the performance of these against decision tree regressor, k-
nearest neighbors (kNN) algorithm and VGG-16 architecture,
as summarized in Table II. kNN algorithm is a popular position
estimation algorithm for WiFi indoor localisation. For a fair
comparison, we perform hyperparameter tuning for decision
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tree regressor and kNN using grid search optimisation tech-
nique. We also performed k fold cross validation with 5 folds
in case of VGG-16 architecture. However in case of VGG-
16, unlike our other automated CNN architectures, we keep
the architecture as it is and do not tune any hyperparameters
except the batch size. As seen from Table II, all the automated
architectures perform better than the decision tree regressor.
The performance of our automated CNN architectures is
similar to kNN in case of Kaggle datasets and slightly better in
case of UJlIndoorLoc. Finally, all three heuristics performed
significantly better than the standard VGG-16 architecture in
all cases. In addition, the number of layers or the depth
of the automated models are fewer than that of VGG-16,
thereby making the training process of individual models
faster. Therefore, all our automated architectures have shown
acceptable performance.

C. Comparison of Heuristic Algorithms

For each dataset: Kaggle F1, F2 and UJlIndoorLoc, we
plot all the RMSE values returned by the heuristic algorithms
during one experiment. As we perceive from Figures Fig. 6a,
Fig. 6b and Fig. 6c¢, initially the Bayesian algorithm tries
to find the best model for reaching the objective function
and eventually the set of best hyperparameters over the
model. Therefore, towards the end of each experiment, the
all the trials have approximately similar performance. In
contrast, the Hyperband as shown in Figure Fig. 7a, Fig. 7b
and Fig. 7c and RandomSearch in Fig. 8a, Fig. 8b and
Fig. 8c executes random configurations, therefore, throughout
the experiment we see fluctuating performances of the
architectures. Bayesian optimisation has the potential to come
up with a good performing architecture even when the number
of trials is less, as seen from the graphs. While this depends
more on luck in case of Hyperband and Random Search.
For example, Fig. 6a shows that several good performing
architectures were discovered by trial number 50 in case of
Kaggle F1 dataset, while this is cannot be said for certain for
the other two heuristics due to their random nature, as shown
in Fig. 7a and Fig. 8a

For an even better understanding of the performance re-
turned by the algorithms, we plot the cumulative density func-
tion graph of all three heuristics for all three datasets as shown
in Fig. 9, Fig. 10 and Fig. 11. As we notice, The RMSE for
approximately all the experiments in Bayesian optimisation for
Kaggle F1 is similar and shows good performance. 95 percent
of the trails have RMSE less than 10 m. This is in contrast
with Hyperband and Random Search where 90 percent of the
performances include high value of RMSE values of more
than 10 m. Similarly in case of Kaggle F2, 95 percent of the
automated architectures generated by Bayesian optimisation
have RMSE value less than 5 m. This is in contrast with
Hyperband and Random Search, where only approximately
80 percent of the automated CNN architectures show good
performance of less than 5 m. In case of UlJlIndoorLoc,
90 percent of the RMSE values of automated architectures
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generated via Bayesian optimisation shows good performance
in comparison to Hyperband and Random Search.

D. Comparison of the automated architectures

For a comparative study, we retrieve the best and poorest
architectures of one of the selected experiment from each
heuristic algorithms, for all the three datasets. The best model
corresponds to the model with the lowest RMSE on the val
data and the poorest model corresponds to the model that
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achieved the maximum RMSE value. For the Kaggle F1
dataset, the complete comparison of the architectures is shown
in the Tables III, IV and V. In all the three heuristics cases,
the difference in the best and poorest RMSE is approximately
20 m. While the best architectures have a good performance
of approximately 2 m RMSE, the RMSE of the poorest
architectures is approximately 22 m. Table III especially
highlights the importance of hyperparameter tuning the CNN
architecture. Both the architectures have the same batch size,
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number of VGG blocks and the neurons present in the fully
connected dense layers. The major difference between them
lies in the neurons present across the layers in the VGG
blocks, thereby resulting in completely different location
estimation accuracies.

Similarly, for Kaggle F2 dataset, the complete comparison
of the architecture is presented in tables VI, VII and VIIIL.
Similar to the previous dataset, the RMSE of the best models
is approximately 2m, while that of the poorest models ranges
from 15 m to 45 m approximately. The best and the poorest
architectures for the UllIndoorLoc dataset is presented in
tables IX, X and XI. In all the three cases, the RMSE of the
best model is approximately 3 m and the poorest model is in
the range 18 m - 22 m approximately.
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Fig. 10: CDF depicting the performance of all three heuristics
for Kaggle Floor F2

Comparing the automated CNN architectures with VGG-16,
For all the heuristics, the best generated CNN architectures
require only three VGG blocks; VGG-16, on the other hand,
has five VGG blocks making it a deeper model to train.
However, the location estimation accuracy of the generated
CNN architectures is much higher than that of VGG-16.
Additionally, it can be seen that the arrangement of neurons
across the layers also does not follow any particular pattern,
such as monotonically increasing, decreasing, or remaining
constant. Therefore, it is challenging to craft the best CNN
model for fingerprint localization unless one has an extensive
knowledge about CNN and invests a lot of time and effort.
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Fig. 11: CDF depicting the performance of all three heuristics
for UJIIndoorLoc

VI. DISCUSSION AND CONCLUSION

A. Discussion - Answering the research questions

The main research question asked at the beginning was
how do we help solve indoor localisation problem using WiFi
fingerprinting technique and CNN as position estimation
algorithm, given that CNN is complex to design and tune for
a novice?

To tackle the WiFi fingerprinting localisation challenge
using CNN, we need to automate the CNN design process.
This required creating an end to end process for automation,
such that minimum manual intervention is needed. This would
help a person who does not have any expertise in developing
the CNN architecture. The goal to automate the process was
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TABLE III: Comparison of the hyperparameters returned for
the best and the poorest architecture for Kaggle F1: Bayesian

optimisation
Architecture Best RMSE | Poorest RMSE
(1.89 m) (22.41 m)
Batch Size 16 16
Learning Rate 0.001 0.01
Number of VGG Blocks 3 3
Conv2D-128 Conv2D-64
BatchNorm BatchNorm
VGG Block 1 Conv2D-64 Conv2D-128
BatchNorm BatchNorm
MaxPool MaxPool
Conv2D-128 Conv2D-256
BatchNorm BatchNorm
VGG Block 2 Conv2D-512 Conv2D-256
BatchNorm BatchNorm
MaxPool MaxPool
Conv2D-64 Conv2D-128
BatchNorm BatchNorm
VGG Block 3 Conv2D-256 Conv2D-512
BatchNorm BatchNorm
MaxPool MaxPool
Dense-128 Dense-128
Fully Connected Layers | Dropout-0.0 Dropout-0.25
Dense-2 Dense-2

TABLE IV: Comparison of the hyperparameters returned for
the best and the poorest architecture for Kaggle F1: Hyperband

optimisation
Architecture Best RMSE | Poorest RMSE
(1.97 m) (22.35 m)
Batch Size 16 24
Learning Rate 0.001 0.01
Number of VGG Blocks 3 3
Conv2D-64 Conv2D-256
BatchNorm BatchNorm
VGG Block 1 Conv2D-64 Conv2D-64
BatchNorm BatchNorm
MaxPool MaxPool
Conv2D-512 Conv2D-256
BatchNorm BatchNorm
VGG Block 2 Conv2D-256 Conv2D-512
BatchNorm BatchNorm
MaxPool MaxPool
Conv2D-256 Conv2D-512
BatchNorm BatchNorm
VGG Block 3 Conv2D-128 Conv2D-64
BatchNorm BatchNorm
MaxPool MaxPool
Dense-320 Dense-128
Fully Connected Layers | Dropout-0.0 Dropout-0.25
Dense-2 Dense-2

further subdivided into following questions.

1) How do we design a framework for automating the
development of CNN architecture for WiFi fingerprint

localisation?

o This was achieved by using the Keras tuner class
for model optimisation. The Keras Tuner class con-
sisted of a model building function, which takes an



TABLE V: Comparison of the hyperparameters returned for
the best and the poorest architecture for Kaggle F1: Random

TABLE VII: Comparison of the hyperparameters returned for
the best and the poorest architecture for Kaggle F2: Hyperband

Search optimisation
Architecture Best RMSE | Poorest RMSE Architecture Best RMSE | Poorest RMSE
(2.31 m) (25.51 m) (1.69 m) (47.91 m)
Batch Size 16 24 Batch Size 8 16
Learning Rate 0.001 0.01 Learning Rate 0.001 0.01
Number of VGG Blocks 3 3 Number of VGG Blocks 3 3
Conv2D-512 Conv2D-256 Conv2D-512 Conv2D-64
BatchNorm BatchNorm BatchNorm BatchNorm
VGG Block 1 Conv2D-512 Conv2D-256 VGG Block 1 Conv2D-256 Conv2D-512
BatchNorm BatchNorm BatchNorm BatchNorm
MaxPool MaxPool MaxPool MaxPool
Conv2D-256 Conv2D-64 Conv2D-256 Conv2D-64
BatchNorm BatchNorm BatchNorm BatchNorm
VGG Block 2 Conv2D-64 Conv2D-64 VGG Block 2 Conv2D-128 MaxPool
BatchNorm BatchNorm BatchNorm Conv2D-64
MaxPool MaxPool MaxPool MaxPool
Conv2D-256 Conv2D-256 Conv2D-512 Conv2D-256
BatchNorm BatchNorm BatchNorm BatchNorm
VGG Block 3 Conv2D-128 Conv2D-128 VGG Block 3 Conv2D-64 Conv2D-512
BatchNorm BatchNorm BatchNorm BatchNorm
MaxPool MaxPool MaxPool MaxPool
Dense-448 Dense-448 Dense-64 Dense-448
Fully Connected Layers | Dropout-0.0 Dropout-0.0 Fully Connected Layers | Dropout-0.0 Dropout-0.0
Dense-2 Dense-2 Dense-2 Dense-2

TABLE VI: Comparison of the hyperparameters returned for
the best and the poorest architecture for Kaggle F2: Bayesian

TABLE VIII: Comparison of the hyperparameters returned for
the best and the poorest architecture for Kaggle F2: Random

optimisation Search
Architecture Best RMSE | Poorest RMSE Architecture Best RMSE | Poorest RMSE
(1.81 m) (22.24 m) (1.76 m) (15.17 m)
Batch Size 8 8 Batch Size 8 32
Learning Rate 0.0001 0.01 Learning Rate 0.001 0.001
Number of VGG Blocks 3 3 Number of VGG Blocks 3 3
Conv2D-64 Conv2D-512 Conv2D-64 Conv2D-256
BatchNorm BatchNorm BatchNorm BatchNorm
VGG Block 1 Conv2D-512 Conv2D-256 VGG Block 1 Conv2D-128 Conv2D-256
BatchNorm BatchNorm BatchNorm BatchNorm
MaxPool MaxPool MaxPool MaxPool
Conv2D-64 Conv2D-256 Conv2D-64 Conv2D-512
BatchNorm BatchNorm BatchNorm BatchNorm
VGG Block 2 Conv2D-512 MaxPool VGG Block 2 Conv2D-64 MaxPool
BatchNorm Conv2D-512 BatchNorm Conv2D-64
MaxPool MaxPool MaxPool MaxPool
Conv2D-64 Conv2D-128 Conv2D-64 Conv2D-512
BatchNorm BatchNorm BatchNorm BatchNorm
VGG Block 3 Conv2D-64 Conv2D-256 VGG Block 3 Conv2D-256 Conv2D-256
BatchNorm BatchNorm BatchNorm BatchNorm
MaxPool MaxPool MaxPool MaxPool
Dense-512 Dense-192 Dense-256 Dense-448
Fully Connected Layers | Dropout-0.0 Dropout-0.0 Fully Connected Layers | Dropout-0.0 Dropout-0.25
Dense-2 Dense-2 Dense-2 Dense-2

different hyperparameter combinations would be
tried out and tested. The search space can be ex-
plored and the best performing architecture can be
retrieved. Therefore, it eliminates the need to have
an expertise in CNN design process and working to
come up with a good performing architecture.

argument hp from which hyperparameters can be
sampled from. It gives the programmers the freedom
to design their own basic structure of the CNN
architecture, as well as allows the them to specify
the range of the hyperparameters to tune. Once the
Keras Tuner is initiated, based on the underlying

search algorithm for hyperparameter optimisation, 2) How do we optimise such architectures using heuristic
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TABLE IX: Comparison of the hyperparameters returned TABLE XI: Comparison of the hyperparameters returned
for the best and the poorest architecture for UlJlIndoorLoc:

Bayesian optimisation

Architecture Best RMSE | Poorest RMSE
(3.06 m) (27.92 m)
Batch Size 8 24
Learning Rate 0.0001 0.01
Number of VGG Blocks 3 3
Conv2D-64 Conv2D-128
BatchNorm BatchNorm
VGG Block 1 Conv2D-64 Conv2D-512
BatchNorm BatchNorm
MaxPool MaxPool
Conv2D-64 Conv2D-256
BatchNorm BatchNorm
VGG Block 2 Conv2D-64 Conv2D-256
BatchNorm BatchNorm
MaxPool MaxPool
Conv2D-512 Conv2D-256
BatchNorm BatchNorm
VGG Block 3 Conv2D-64 Conv2D-64
BatchNorm BatchNorm
MaxPool MaxPool
Dense-512 Dense-64
Fully Connected Layers | Dropout-0.0 Dropout-0.25
Dense-2 Dense-2

TABLE X: Comparison of the hyperparameters returned for
the best and the poorest architecture for UJlIndoorLoc: Hy-

perband optimisation

Architecture Best RMSE | Poorest RMSE
(2.93 m) (18.02 m)
Batch Size 8 32
Learning Rate 0.001 0.001
Number of VGG Blocks 3 3
Conv2D-64 Conv2D-128
BatchNorm BatchNorm
VGG Block 1 Conv2D-128 Conv2D-128
BatchNorm BatchNorm
MaxPool MaxPool
Conv2D-256 Conv2D-128
BatchNorm BatchNorm
VGG Block 2 Conv2D-64 MaxPool
BatchNorm Conv2D-512
MaxPool MaxPool
Conv2D-512 Conv2D-512
BatchNorm BatchNorm
VGG Block 3 Conv2D-64 Conv2D-128
BatchNorm BatchNorm
MaxPool MaxPool
Dense-192 Dense-64
Fully Connected Layers | Dropout-0.0 Dropout-0.25
Dense-2 Dense-2

techniques such as Bayesian optimisation, Hyperband

and RandomSearch?

o For optimisation using heuristic techniques, it is

possible to use the built-in Bayesian optimisation,
Hyperband and Random Search by Keras Tuner.
However, for this work, we create our own custom
Tuner called CVTuner for optimisation. This is be-
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for the best and the poorest architecture for UlJlIndoorLoc:

Random Search

Architecture Best RMSE | Poorest RMSE
(3.78 m) (27.92 m)
Batch Size 16 16
Learning Rate 0.001 0.01
Number of VGG Blocks 3 3
Conv2D-128 Conv2D-64
BatchNorm BatchNorm
VGG Block 1 Conv2D-128 Conv2D-256
BatchNorm BatchNorm
MaxPool MaxPool
Conv2D-256 Conv2D-256
BatchNorm BatchNorm
VGG Block 2 Conv2D-128 Conv2D-512
BatchNorm BatchNorm
MaxPool MaxPool
Conv2D-512 Conv2D-512
BatchNorm BatchNorm
VGG Block 3 Conv2D-256 Conv2D-512
BatchNorm BatchNorm
MaxPool MaxPool
Dense-64 Dense-256
Fully Connected Layers | Dropout-0.0 Dropout-0.5
Dense-2 Dense-2

cause during the hyperparameter search process and

coming up with an optimised architecture, we also
incorporate early stopping and k-fold cross valida-
tion technique to prevent overfitting. We can there-
fore present our results with a stronger confidence.
For Bayesian optimisation and Random Search, we
specify the value of max_trials. This parameter takes
in a number and creates as many different hyper-
parameter combinations as specified. Therefore, if
the max_trial is 5, then 5 unique architectures will
be created with different hyperparameter values. We
can then retrieve the best performing architecture,
i.e an architecture with the least RMSE on val and
test data. In case of Hyperband, we chose to stop the
process once certain number of trials were carried
out.

3) Given the automated architectures, on what basis can we
decide which heuristic technique performs the best?

¢ We conducted five experiments in total using

Bayesian optimisation, Random Search and Hyper-
band on three datasets. We retrieve the best per-
forming architecture over five experiments for each
of the heuristics, for each of the dataset. The average
error of Bayesian optimisation over five experiments
was the least for all the datasets. Additionally, the
standard deviation of Bayesian optimisation was
also the least for all datasets. The average error of
Bayesian optimisation is not significantly different
than the other two heuristics, however the low stan-
dard deviation gives the impression that Bayesian
optimisation provides consistent results. Therefore,



for the 150 max_trials per experiment limitation
we had, Bayesian optimisation heuristic technique
performed the best due to consistent results in
comparison with Hyperband and Random Search.

B. Conclusion

This study proposed a completely automated CNN archi-
tecture design based on VGG blocks for WiFi fingerprinting
localisation. We base our study on publicly available datasets
uploaded on Kaggle, as part of their Indoor Location and
Navigation competition series and UJIIndoorLoc, a popular
database for WiFi localisation. The WiFi localisation is carried
out by cleaning the data, generating a WiFi radiomap and
using the CNN as position estimation algorithm for location
prediction. The CNN architectures are automatically designed
by our proposed framework and, especially with our opti-
misation algorithms, yield a high localisation accuracy and
outperform the standard VGG-16. This shows the need to
develop a framework for automating the architectures as hand
crafted or semi automated architectures might not perform
well in all cases. The significant dependence of a model’s
performance on its architecture is also shown by drafting
a comparison between the best and the worst architecture.
This dependence proves that a slight modification in the CNN
architecture would lead to a massive change in localisation
accuracy. Additionally, we also study the working of the three
heuristics for optimisation: Bayesian optimisation, Hyperband
and Random Search. Bayesian optimisation showed consistent
results due to the underlying principle of taking the past
evaluations into account for hyperparameter search process.

C. Future Work

This existing work itself can be extended in several ways
for different applications. There is a possibility to change the
model building function by adding additional VGG blocks,
in case a deeper architecture needs to be implemented. Also,
the range of hyperparameters can be changed in such a way
that more options for hyperparameter tuning is available. For
example, in our experiments, we have given only four choices
for filters in Conv2D layer: 64, 128, 256 and 512. It can be
changed to take a minimum value of 32 and a maximum
value of 512, with a step size of 16. Therefore, a wider
range of hyperparameter is available for tuning. This of course,
comes with an added complexity and therefore increases the
overall training time for each architecture. Although the VGG
blocks and the heuristics algorithms are used in the proposed
framework, it is not necessary to have expertise in these while
using the proposed framework. It is also straightforward to
extend this framework with other networks such as the ResNet
and the DenseNet blocks.
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