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ABSTRACT
Quality inspection plays a critical role in the manufacturing industry. With the

recent popularity of detergent pods, ensuring utmost product quality has become a
necessity for detergent manufacturers. Due to the detergent pod containers being
opaque, manual quality inspection becomes slow and infeasible. Therefore, there is
a need for a non-destructive testing (NDT) technique to automatically detect fluid
leakage inside sealed containers.

The focus of this study is to develop a method to automatically detect the pres-
ence of leakage in sealed containers. Infrared thermography (IRT) has been applied
successfully by other researchers for quality inspection in cases where the test spec-
imen is out of direct line-of-sight. Therefore, IRT has been identified as a suitable
method to capture the information required for this task. Therefore, using thermal
image data, we aim to build an image classification system to distinguish between
instances of leakage and non-leakage.

We propose three alternate approaches for this task, namely handcrafted feature-
based approach, convolutional neural network (CNN) based approach and a hybrid
fusion approach combining multiple feature sources or classifiers, or both. The CNN
model outperforms the baseline feature-based approach with a 4-fold accuracy of
94.48%. The two hybrid fusion schemes namely, late-fusion and early-fusion pro-
vide an improvement to the pure CNN approach with a highest overall accuracy of
95.63% obtained over a 4-fold cross validation split.

Keywords: Leakage recognition, infrared thermography, convolutional neural net-
works, hybrid deep learning, feature fusion
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Chapter 1

Introduction

The process of product quality inspection is an essential part of every manufactur-
ing process and with an increasing trend towards automation in the manufacturing
industry, quality assurance has become a necessity [1]. Earlier, the inspection was
done by experts manually and was highly prone to human error. Therefore, more
and more industries have adopted automatic quality inspection in their produc-
tion routine [2]. Several different approaches exist for automatic industrial quality
inspection. In most applications, it is essential that the product under inspection is
not damaged during the inspection process and this is achieved by Non-Destructive
Testing (NDT).

FIGURE 1.1: Example of Leakage inside Detergent Pod Container

In recent years, a popular way of packaging liquid detergent is in the form of
one-time use pods. There is a growing trend in the use of detergent pods by cus-
tomers and the growth of this market is only expected to increase in the future [3].
Hence, detergent manufacturers want to ensure the quality of the pods until the
last step of the production process. A common problem faced by customers buy-
ing detergent pods is that sometimes the box may contain a broken pod resulting in
leakage of fluid within the container. Therefore, it is essential that the containers are
devoid of leaking pods before they leave the factory. According to recent European
Union regulations [4], the containers are made opaque which makes it difficult to
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visually inspect the containers after the packaging process.

Defect recognition or quality inspection of manufactured products has been ex-
plored exclusively for various products [5]. The focus of this work is detecting fluid
leakage in laundry detergent pod containers. It is expected that if a leaking pod
is present in the container, the leaking detergent will eventually reach the bottom.
Therefore, by heating the bottom surface to a certain extent, a temperature difference
can be created between the liquid and the material of the container. An appropriate
method to capture this would be to use thermal imaging in the infrared spectrum
that can penetrate the material of the containers [6]. The task of fluid leakage detec-
tion may be considered similar to the general problem of defect detection in many
ways. Leakage has texture properties that can be used to distinguish it from its sur-
roundings. In most real-world situations, fluid leakage is out of direct line-of-sight,
which makes the task of acquiring images difficult. Figure 1.2 shows examples of
thermal images containing leakage and non-leakage. The leakage is highlighted by
the bounding box in the image.

FIGURE 1.2: Infrared thermal images showing leakage (left) and non-
leakage (right)

The task of recognizing leakage from thermal images can be considered as an
image classification problem. Generally, image classification for industrial qual-
ity inspection has been performed in several ways. Some of the earliest methods
were digital image processing (DIP) techniques based on a set of empirical rules to
directly identify and measure defects [7]. More recent methods treat this as a su-
pervised learning problem [8], where a number of features are extracted from the
image and are used as input to a machine learning model such as support vector
machines (SVM) [9]. The feature extraction may involve statistical methods such as
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color histograms and Principal Component Analysis (PCA) to derive important fea-
tures from the image ([10]) as well as image processing techniques to extract infor-
mation such as shapes, textures, etc. [11]. The most recent advancements in image
processing applications are deep learning based methods. In 2012, Krizhevsky et.
al. ([12]) approached the 1000-Class ImageNet classification challenge with a Con-
volutional Neural Network (CNN) for the first time and obtained ground-breaking
results compared to previous state-of-the-art methods such as Histogram of Ori-
ented Gradients (HOG) [13]. Ever since, CNNs have dominated the field of deep
learning for image and signal processing applications. The key difference in this
approach is that the feature extraction step is implicit and is embedded within the
neural network. They are referred to as end-to-end learning models since all the pa-
rameters are learned through training data rather than being fine-tuned by experts
[2].

Apart from the methods discussed above, a few recent works have explored hy-
brid approaches. Hybrid learning combines two or more of the above methods to
improve the overall performance. For example, the feature extraction step can be
done using a CNN and a different traditional classifier such as Random Forest may
be used in place of the fully connected layers of a CNN. Other methods that com-
bine multiple feature sources even before classification have also been investigated
by researchers.

1.1 Problem Statement

Production of laundry detergent pods is a growing market and there is a compelling
need to ensure their quality throughout the manufacturing process. A problem
faced by manufacturers is to detect fluid leakage inside sealed containers after the
packaging process. It is even more challenging because recent EU regulations re-
quire detergent containers to be opaque. Therefore, the problem at hand is to auto-
matically detect the presence of leakage in sealed detergent pod containers and the
main challenge is to do so without opening the containers. Infrared thermography
is chosen as the method of data acquisition. This research aims to find a suitable
method to classify instances of leakage and non-leakage from thermal images.

1.2 Research Questions

For the problem stated above, a primary research question is identified and three
smaller sub-questions are defined to help solve the main objective of the project.
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The main research question is defined as follows:
What are the steps involved in building an image classification system to distin-
guish between instances of leakage and non-leakage from infrared thermal (IRT)
images of detergent containers?

The sub-questions are defined as follows:

- Which feature extraction techniques may be used to extract information that
distinguish between leakage and non-leakage from IRT images of detergent
containers?

- How do handcrafted feature-based methods compare to convolutional neural
networks in terms of classification performance?

- Do hybrid techniques that combine multiple feature sources or classifiers im-
prove the overall recognition performance?

In addition to the above research questions, an auxiliary research question is defined
as follows:

- What effect does dataset size have on the performance of the models and how
to identify the amount of data required to achieve a certain level performance?

1.3 Document Outline

The rest of the document is organized as follows:

• In Chapter 2, a survey of related work in the field of automatic defect classifi-
cation is presented.

• Chapter 3 provides a background to this work by briefly explaining theoretical
concepts involved in data acquisition, feature extraction and classification.

• The different methods proposed in this study for the problem of leakage recog-
nition from IRT images of detergent containers are explained in Chapter 4.

• In Chapter 5, the experimental setup is described and the results obtained from
the experiments are presented in detail.

• Chapter 6 provides a conclusions with respect the research questions formu-
lated above. A discussion on the obtained results and recommendations for
future work are also given.
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Chapter 2

Literature Survey

In this chapter, related work from relevant literature is discussed with respect to the
research questions defined in Chapter 1.

Generally, quality inspection may involve different tasks depending on the ap-
plication, such as determination of defects and conformity checking. For the pur-
pose of this research, we consider only defect recognition. The problem of recogniz-
ing defects in manufactured products may be considered as an image classification
problem where the decision of whether the product contains a certain defect is made
from an image of the product captured in a controlled industrial environment. This
problem has been solved in multiple ways in the past, but broadly, these methods
can be divided into three categories (in chronological order): DIP based methods,
feature-based supervised learning methods and deep learning methods. Figure 2.1
shows the different categories of visual defect recognition techniques. In the fol-

FIGURE 2.1: Classification of Visual Defect Recognition Methods

lowing sections, a few examples from each category that were found relevant to the
current problem statement are discussed.
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2.1 Digital Image Processing

The automatic recognition of defects using imaging techniques is a well-established
topic of research. Some of the earliest applications of defect detection predominantly
involved Digital Image Processing (DIP) based on a set of empirical rules to directly
identify and measure defects. Li et al. (2002) [14] proposed a method for detection
of surface defects in apples. For the detection and localization of defects in the in-
put image, simple image processing techniques such as background subtraction and
thresholding are used. In a similar application by Mak et al. (2009) [15], a system
to identify fabric defects is proposed. It consists of a sequence of morphological
operations and filtering operations to obtain a final binary image, from which the
defects can easily be localized by applying a suitable threshold. The different steps
involved are linear opening, linear closing and median blur filtering. Another work
by Rahaman et al. (2009) [16] shows an automatic defect recognition system for ce-
ramic tiles, where the images containing specific defects are used as reference. After
capturing the images and performing image enhancement and edge detection, each
image is compared with the reference image of a particular defect and a similar-
ity score is generated to determine the specific type of defect. DIP based methods
have also been used with thermal imaging. Tsanakas et al. [17] make use of image
processing techniques on thermal images for diagnosis of defects in Photo-voltaic
(PV) cells. The thermal images of PV modules are first converted to grayscale range.
Then, a Canny edge detection is performed followed by a thresholding step to lo-
calize defective regions within the images.

Image Acquisition 
Low-level image
processing (lines,

edges, textures etc.)

Mid-level image
processing (shapes,

objects etc.)

High-level image
processing  

(defect detection)

Products
with defects

Quality
control

FIGURE 2.2: General Overview of Digital Image Processing Applica-
tion for Defect Recognition

From the above examples, it can be seen that most of the applications involving
DIP generally consist of a pre-processing stage where the image is prepared for fur-
ther operations by choosing suitable pixel representations, normalizing pixel ranges
and so on. It is followed by a sequence of steps such as filtering, kernel operations
and morphological image processing to further enhance the image for the classifica-
tion. Then, some high-level operations such as edge detection, shape detection and
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blob detection depending on the application may be used. Finally the decision is
made by analyzing the images and carefully choosing conditional rules defining the
presence or absence of defects.

The advantages of DIP methods are: they can be implemented with a small num-
ber of images, they have a low computational requirement compared to more recent
methods. They can be deployed efficiently in stable environments where the images
can be acquired with high repeatability. However, they do not suit well for appli-
cations where the nature of the defect cannot be completely defined before hand.
Figure 2.2 shows the outline of a typical DIP application.

2.2 Feature Based Methods

The next class of methods commonly used for defect classification are feature based
methods. As introduced in Chapter 1, these methods involve deriving features from
images and using them for training supervised classification models. The objective
of feature extraction is to transform the input from a high-dimensional image space
to a reduced feature vector X. Once the feature vector is available, the problem can
be treated as a supervised learning problem, where X is mapped to the output y
using a function φ as y = φ(X) + ε, where ε is the unaccountable error or bias. In
other words, the mapping function can be described by several different supervised
learning algorithms that can fit the relationship between the input and output by
learning from training examples.

It can be noticed that DIP and feature based methods are similar in many ways.
The major difference between the earlier methods involving DIP and feature based
methods is that, the relationship between the features and the output is automati-
cally learned rather than using a rule-based alternative as discussed in DIP.

When it comes to defect recognition, textural features are considered to provide
the most valuable information from an image. In some cases, defects can also re-
semble specific shapes and therefore shape-based features can be used. Broadly, the
features used to recognize defects can be divided into the following categories:

(i) Statistical features

(ii) Structural or geometric features

(iii) Frequency domain features
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Feature extraction techniques belonging to the above categories are discussed as
follows.

2.2.1 Statistical Features

It is very common to use statistical properties such as mean intensity, standard de-
viation, intensity range, image moments and histogram values as features from im-
ages. An important tool in extraction of textural features is Gray Level Co-occurrence
Matrix (GLCM) used to determine the spatial relationship among pixels. In other
words, it is useful in calculating how often pixels of certain gray-levels appear closer
to each other. From the GLCM, several features such as entropy, contrast, energy,
dissimilarity and homogeneity can be extracted [18]. The co-occurrence matrix cal-
culated for an image is unique for every distance value D and angle θ. Therefore, for
different combinations of D and θ, different sets of meaningful features (i.e energy,
contrast, homogeneity etc.) are obtained. This is applied by Lin et al. [19] to ex-
tract six features from the GLCM for different distances and angles. These features
are used as input to an Artificial Neural Network (ANN) to detect different types
of fabric defects. Mery et al. [20] proposed a method to classify the quality of corn
tortillas into five classes using several statistical (GLCM) and geometric features as
input to a support vector classifier. Figure 2.3 (a) illustrates how GLCM is calculated
with an example.

(A)

(B)

FIGURE 2.3: Statistical Texture Extraction Methods: (a) GLCM [18], (b)
LBP [21]
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Local Binary Pattern (LBP) is another well-established feature extraction tech-
nique used for texture recognition. In LBP, for each pixel, a score, ranging from 0 to
255, is computed based on a comparison with each neighboring pixel. The distribu-
tion of these scores gives useful information about the texture found in the image
(see 2.3 (b)). The merits of LBP are that it is rotation and illumination invariant. It is
often used in combination with GLCM and other statistical and geometric features
[22]. Applications of LBP texture features in quality inspection are found in [23] and
[24].

Apart from the methods mentioned above, another statistical technique used for
feature extraction for image classification is Principal Component Analysis (PCA). It
is a popular dimensionality reduction technique in statistics and machine learning,
but it is also commonly used in image recognition problems, especially in biomet-
rics and face recognition. Bissi et al. [25] proposed a defect detection technique with
PCA along with frequency domain filters and achieved an accuracy of 98.8% with
a false detection rate of 0.37%. Fahimipirehgalin et al. [10] proposed an automatic
leakage recognition system for chemical plants using thermographic images and
videos. After background removal by subtraction of subsequent frames, PCA is ap-
plied on the frames to extract features. The classification of leakage or non-leakage
is done using K-Nearest Neighbors algorithm to achieve a final accuracy of 90.9%.

2.2.2 Geometric Features

It was seen that statistical features predominantly provide information about tex-
tures and color patterns present in the image. Defect recognition applications of-
ten also require identification of specific shapes and geometrical patterns within an
image. In some cases, the features also describe the geometric properties of certain
shapes known to be present in the image. One such example is the task of ellipse de-
tection, as many objects in the real world can be represented by it. Zhang et al. [26]
proposed a classification system for multiple varieties of fruits. Their method con-
sists of a segmentation stage where the object of interest is extracted from its back-
ground using morphological image operations. Then an ellipse detection step is car-
ried out to extract features such as eccentricity, major axis length, minor axis length,
perimeter and area. These features, along with other textural features (GLCM, LBP)
are used to construct a feature space. Next, the feature space is subjected to PCA
for dimensionality reduction and finally, the multi-class classification is performed
using Support Vector Machine (SVM). Other works using ellipse features are found
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in [20] and [27].

In [11], Razmjooy et al. use geometric features for the sorting of potatoes based
on size and classify pixels as defective and healthy. For the classification, ANN
and SVM are used with the extracted features. Before the defect inspection stage,
a sequence of morphological operations such as opening and closing are used to
subtract the background from the images. In [28], the authors have proposed a
system for crack detection in concrete structures. First, a median subtraction is done
on the input grayscale image to remove any noise present. Next, a Gaussian Low
Pass Filter (LPF) is applied and the image is converted to binary by a thresholding
operation. Finally, morphological operations closing and labeling are used to bring
out the cracks in the image, if there are any present. The final binary image is sorted
based on the number of white pixels found in each column and the first n columns
are fed as input to an ANN to detect the presence of cracks.

2.2.3 Frequency Domain Features

One of the most important techniques in image processing is linear image filtering.
Filtering can be used to perform a wide variety of operations such as edge detec-
tion, blurring, sharpening and so on. The common practice is to convert the image
from spatial domain to frequency domain using Discrete Fourier Transform (DFT)
and apply filters in the frequency domain. After filtering, Inverse Fourier Transform
is applied to convert the image back to spatial domain. Transforming from spatial
domain to frequency domain offers a natural way of removing noise from the im-
age [29]. In [30], the authors perform Fourier transformation on images of machine
parts to extract features such as peak frequency, central power spectrum and aver-
age power spectrum. These features are used as input to an ANN to detect surface
defects. It has been observed by Nasira et al. [31] that the presence of defects in fab-
rics causes significant changes in the resulting Fourier spectrum and by observing
the changes over different directions (horizontal and vertical), different features can
be extracted and used for classification.

Instead of applying Fourier transform to entire images, the same can be done in
a windowed fashion by using the convolution operation. Convolution enables ex-
tracting features at a local level, whereas DFT is a global filter. This technique is also
the key principle behind CNNs. There are several known filters using different ker-
nels meant for different purposes. A popular filter used widely for texture extraction
is the Gabor filter. Several researchers have implemented the Gabor filter as a feature
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extractor for both classification and semantic segmentation of defects. In [25] and
[32], Gabor filter banks are used as feature extractors for classifying defects in fabrics
and printed circuit boards (PCB) respectively. They act as frequency band pass fil-
ters and are good at isolating specific textures and patterns. In [33], texture features
are extracted from two-dimensional Discrete Wavelet Transform (DWT) response of
images of cooling radiator consisting of defects. Goyal et al. [34] used SVM classifier
for detection of bearing defects in industrial rotating machinery. They used DWT to
extract features from the original image, followed by selecting the strongest features
by using a distance metric (Mahalanobis distance).

2.2.4 Other features

There are other feature extraction techniques that are very popular in the general
context of image classification and recognition, but the three categories above were
chosen as they are the most relevant in the area of defect recognition and indus-
trial quality inspection. Some examples of popular image features are Histogram
of Oriented Gradients (HOG), Scale Invariant Feature Transform (SIFT), Speeded
Up Robust Features (SURF) and Features from Accelerated Segment Test (FAST).
Hossain et al. [35] used thermal cameras mounted on Unmanned Aerial Vehicles
(UAV) to obtain images of underground pipelines to detect fluid leakage. The au-
thors experiment with eight machine learning algorithms including decision trees
and Random Forest with two feature descriptors - SIFT and dense SURF. The results
are then compared a CNN based approach. A summary of all the feature extrac-
tion methods discussed above is shown in Table 2.1 along with the corresponding
references.

TABLE 2.1: Summary of Feature Extraction Methods

Category Method References
Statistical Gray Level Co-occurrence Matrix [20], [19], [22]

Local Binary Pattern [22], [23], [24]
Principal Component Analysis [26], [25]

Geometric Ellipse Detection [26], [20], [27]
Mathematical Morphology [11], [28]

Frequency Domain Fourier Transform [30], [31]
Gabor Filter [25], [32]
Discrete Wavelet Transform [33]

Other Histogram of Oriented Gradients [36]
Shape Invariant Feature Trasnform [37]
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2.2.5 Classification Algorithms

In the above sections, several techniques to extract useful information from digital
images were discussed. The features are used to represent the high-dimensional
images in a much smaller dimension. The next step in the process is classification.
Classification is the supervised task of assigning a label to a given input vector based
on the learned information from the training data.

In the above examples, several classification algorithms were mentioned namely:
Support Vector Machines (SVM), Random Forests (RF), Artificial Neural Networks
(ANN), K-Nearest Neighbors (KNN) and so on. Although one is not limited by the
algorithms mentioned above for the classification, it is worth mentioning that they
are found to be the most successful by other researchers in the domain. Table 2.2
highlights the references for the different classification algorithms.

TABLE 2.2: Commonly Used Supervised Learning Models for Defect
Classification

Model References
Support Vector Machine (SVM) [26], [11], [36]
Random Forest [36]
Artificial Neural Network (ANN) [19], [11], [28], [30]
K-Nearest Neighbors (KNN) [36]

2.3 Deep Learning Based Methods

The final and most recently developed group of methods used for image classifica-
tion are Deep Learning (DL) based methods. It is worth highlighting the difference
between the general definition of DL and its use in computer vision related liter-
ature. In general, deep learning is the branch of machine learning that makes use
of neural networks with multiple hidden neuron layers used to represent complex
relationships between input and output vectors [38]. In most image processing and
computer vision applications, the term deep learning is ambiguously used to denote
methods that use neural networks for feature extraction rather than hand-crafted
features. In this report, the latter definition will be used.

The popularity of Convolutional Neural Networks (CNNs) was touched upon
in Chapter 1. In recent literature, applications of CNN in several different visual
tasks such as image classification, object identification and semantic segmentation
are found in abundance. Recent improvements in Graphical Processing Units (GPU)
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and their ease of implementation have paved the way for widespread acceptance of
CNNs by a large number of researchers and practitioners. They have also been ac-
cepted as the state-of-the-art in defect recognition and quality inspection. This is
majorly due to the fact that CNNs are able to extract robust spatial features auto-
matically from training images thereby eliminating the need for domain expertise.
In the last few years, the use of deep learning and CNNs on thermography based ap-
plications has seen a tremendous increase in terms of volume of articles published.
Figure 2.4 shows the results from a document search in the Elsevier database using
the following query: ("infrared" OR "thermal imaging") AND ("convolutional neu-
ral networks" OR "deep learning"). The increasing trend can be observed from the
figure. A few such applications that were found to be relevant are discussed below.

FIGURE 2.4: Growing trend in deep learning used in thermography
shown through Elsevier database search results

Li et al. [39] proposed a deep learning based approach for fault diagnosis of ro-
tating machinery using thermal imaging. The use of thermography is further moti-
vated in this work as the defect recognition is done for largely different temperature
ranges. The authors compare the performance of four DL architectures namely -
Convolutional Neural Networks (CNN), Deep Belief Network (DBN), Deep Neural
Network (DNN) and Stacked Auto-Encoder (SAE) on a 10-class dataset. The above
architectures are used to extract features specific to each class and finally a soft-
max classifier is used for all the methods. The CNN approach (shown in figure 2.5)
achieved superior performance with an accuracy of 99.8%. A system to classify six
radiator defects including coolant leakage using IRT and CNN is proposed by Nasiri
et al. [40]. The well known VGG-16 architecture is used in this study with five con-
volution blocks, each consisting of a number of convolution layers and maximum
pooling layers. The architecture is considerably deeper than those discussed previ-
ously and consists of millions of parameters. The final classification block includes
batch normalization and dropout layers to tackle overfitting. These techniques are
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FIGURE 2.5: CNN Architecture used in [39]

commonly used in applications prone to overfitting due to shortage of training data.
Data augmentation is also used in the pre-processing stage as a strategy to overcome
the shortage of data. Finally, an accuracy of 96.67% was achieved in the testing set.
A detailed review of several such applications of deep learning used for defect de-
tection is shown in [41].

An important factor to be considered while choosing a suitable method is the
ability to acquire a large amount of data. This is particularly more relevant for deep
learning techniques where the performance is highly dependent on the amount of
training data available. Shortage of training data leads to overfitting of the model
to the training data. Moreover, it is not always possible to collect a huge amount of
data and sometimes there may be physical factors making it impractical to acquire
large amounts of data. Regularization is the process of providing the model with a
higher regularization capability. Some common regularization techniques are data
augmentation, weight regularization using L1 or L2 norms and adding dropout lay-
ers in neural networks.

2.4 Hybrid Methods

In recent literature, researchers have explored hybrid approaches to image classifi-
cation. The hybrid methods attempt fusing together components from two or more
separate techniques. Such fusion techniques have been used extensively in language
processing applications where the output of various models such as auto-encoders
and long short-term memory (LSTM) networks are combined to produce a concate-
nated vector that is finally used for classification. This strategy has also been used
by researchers in the image processing domain for applications such as scene recog-
nition and context understanding [42]. A few examples of such hybrid applications
are outlined below.

Almubarak et. al [43] developed an image classification system to detect cervical
cancer from histology images. Handcrafted feature extraction is performed using
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two color spaces - RGB and LAB. These features include gray texture features and
geometric features defined based on the characteristics of the cell. Next, they also
extract spatial features from a trained CNN and concatenate the features from both
the sources to perform classification using five different algorithms including SVM,
logistic regression and random forest. Lahmiri [44] proposed a hemorrhage classifi-
cation system from retina images for diagnosis of diabetic retinopathy. First, a deep
CNN is trained and the activations from the third convolution layer are extracted for
all the images in the database. Next, a Student’s t-test is applied in order to select
the 10 best features. The feature vector of length 10 is used as input to various super-
vised classifiers and the highest performance was achieved by a kernel-SVM model.
Moradi et al. [45] use features from various sources (HOG, LBP, Haar features etc.)
combined with activated CNN features to perform classification on CT scan images.
The classifier is trained separately on each feature group and a weighted average is
taken to assign the final label.

FIGURE 2.6: Hybrid deep learning model to predict smartphone repur-
chase behaviour from [46]

An example of a hybrid method of extracting features from multiple sources is
shown in [46]. For the problem of predicting customer repurchase behaviour for
a smartphone brand, the authors propose a hybrid learning model. Three sources
of data are used namely - numerical customer ratings, smartphone images and re-
view comments. A multi-layer perceptron model is used to compute features from
the numerical ratings. Image features are extracted from a CNN model and LSTM
model is used to process the full-text user reviews. Finally, the three feature groups
are combined to produce the output using a fully-connected network.
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2.5 Literature Summary

The most important findings from the literature survey with respect to the main
objective of this research are listed below:

i The most common techniques used for vision-based defect recognition were
categorized into three major sub-categories namely, DIP based methods, man-
ual feature-based methods and deep learning methods. More recent methods
that combine multiple models or feature sources were identified for the prob-
lem of image classification.

ii Some of the relevant works from each category were discussed in chronolog-
ical order. First, a few traditional DIP-based defect recognition applications
were shown. Different feature extraction techniques were discussed from im-
age based quality inspection applications.

iii Applications based on convolutional neural networks, the current state-of-the-
art in image classification, were discussed.

iv Finally, a few examples of hybrid methods from other areas of image classifi-
cation were discussed.
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Chapter 3

Background

In this chapter, a theoretical background is provided on the methods used in this
study. First, a brief explanation of thermography as a data acquisition technique is
given. Next, the algorithms used for feature extraction, feature selection and classi-
fication are explained.

3.1 Infrared Thermography

All objects at a temperature of above absolute zero are known to emit infrared radi-
ation. This phenomenon is exploited by infrared thermal (IRT) cameras to capture
the temperature of objects. Infrared thermography is a popular inspection technique
used in various industrial applications. The biggest advantage of thermography is
that it is a non-contact inspection technique and may be applied in situations where
the product under inspection does not have to be in contact with the sensor. The
amount of radiation emitted by an object is directly proportional to its temperature
and hence, defects and other anomalies show up as temperature differences which
can easily be identified using infrared thermography. There are mainly two cate-
gories of thermography - passive and active. Active thermography uses an external
heat source in the inspection process for thermal excitation whereas passive ther-
mography does not use any heat source. Figure 3.1 shows a representation of an
active thermography setup.

An important factor to be considered in thermographic measurements is the
emissivity of a material which is its ability to emit the incoming infrared radiation. It
is a value ranging between 0 and 1 where 0 is the emissivity of a mirror surface that
reflects all the radiation incident upon it and 1 refers to a black body. The thermal
measuring device can be calibrated using the known emissivity of the material to
obtain the exact temperature of an object. In the context of this study, active infrared
thermography is used as the method of data acquisition to capture the required in-
formation to detect fluid leakage inside the containers. We primarily assume that if
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FIGURE 3.1: Components of active thermography [47]

leakage occurs inside a container, it eventually reaches the bottom surface and by
heating the material of the container using an external heater, a thermal difference
can be created between the detergent fluid and the material which can be captured
by a thermal camera.

3.2 Feature Descriptors

In the following sections, the feature descriptors used in this work are explained.
A feature descriptor is an algorithm that takes an image as input and transforms it
into a feature vector. We use two feature descriptors to obtain handcrafted features
that can help distinguish between leakage and non-leakage from IRT images. They
are explained below.

3.2.1 Gray-Level Co-occurence Matrix (GLCM) Features

Texture extraction for image classification was first introduced by Haralick et. al
[48]. These features may be calculated from the gray-level co-occurence (GLCM)
matrix of an image. In Chapter 2, the concept of GLCM was briefly introduced. The
co-occurence matrix provides information on how frequently pairs of pixels occur
together in a specific direction θ and distance D. The GLCM is a square matrix of
dimensions Ng×Ng, where Ng is the highest gray value found in the image. The co-
occurence matrix may be created by scanning through the input image and counting
the number of times two gray values appear together in a given direction and offset
distance. In the image domain, the possible values for θ are 0◦, 45◦, 90◦ and 135◦. For
D, the commonly chosen value is 1 where only the immediate neighboring pixels are
considered. For values greater than 1, the co-occurrence is calculated with an offset
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corresponding to the value. Figure 3.2 illustrates the different values of θ on a 3×3
image fragment.

FIGURE 3.2: Possible values for angle θ in GLCM calculation

An example calculation of the GLCM for a 2-bit image is shown in figure 3.3.
For every pixel in the image, only its immediate neighboring pixels to the right are
considered since D=1 and θ=0◦.

FIGURE 3.3: GLCM calculation with θ=0◦ and D=1 ([49])

In the original paper, the authors propose 14 texture features from the GLCM
matrix, commonly known as Haralick features. In this work, six of these features
are chosen. Consider pij as the element in the co-occurence matrix with row-index
i and column index j. The expressions used to compute the six features are defined
in table:

1. Angular Second Moment (ASM) = ∑i ∑j p2
ij

2. Energy =
√

ASM

3. Contrast = ∑i ∑j(i− j)2pij

4. Homogeneity = ∑i ∑j
1

1+(i−j)2 pij

5. Dissimilarity = ∑i ∑j |i− j| pij

6. Correlation = ∑i ∑j
(ij)pij−µxµy

σxσy
,

where µx, µy, σx and σx are the means and standard deviations
along the rows and columns respectively.
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3.2.2 Local Binary Pattern

Local Binary Pattern (LBP) is another popular feature extraction tool introduced
by Ojala et. al [50] used for various applications such as face recognition, landscape
detection and generally, texture classification. The LBP algorithm is used to describe
the local spatial patterns in the neighbourhood of each pixel. The original image is
transformed into the LBP response by thresholding the neighboring pixels based on
the center pixel. The following operation is applied to obtain the output for each
pixel.

LBP =
P−1

∑
n=0

s(gn − gc)2n, (3.1)

s(x) =

1 if x ≥ 0

0 if x < 0
(3.2)

where gn is the gray value of neighboring pixel, gc is the gray value of the center
pixel and P is the number of neighboring pixels in consideration. The coordinates
of each of the neighboring pixels gn are given by (−Rsin(2πn/P), Rcos(2πn/P)),
where R describes the radius of the circular neighborhood. In figure 3.4, a few ex-
amples for the LBP neighbourhood with different values of P and R are shown.

R=1,P=4 R=1,P=8
R=2,P=16 R=3,P=24 

= gn = gc

FIGURE 3.4: Circular neighbourhoods for different values of P and R

An example calculation of the LBP response was shown in figure 2.3. The range
of values in the LBP response for p=8 is 0 to 255 as 28 unique patterns are possible.
The feature vector is constructed by taking the values from the histogram of the
LBP response. In this work, we use uniform LBP where only the uniform rotation-
invariant patterns are considered. Ojala et. al extract certain patterns from the LBP
responses that fully describe all the possible patterns in a much smaller dimension
(p+2 histogram bins). A pattern is called uniform when the number of 1-0 or 0-1
transitions in the LBP response is at most two. Some common patterns identified in
the original paper are shown in figure 3.5.
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FIGURE 3.5: Rotation-invariant local binary patterns [51]

3.3 Dimensionality Reduction

An optional step after feature extraction is feature selection or dimensionality re-
duction. Feature selection is the process of eliminating redundant features from the
original feature set. Principal component analysis (PCA), a technique famously used
for feature selection is explained below.

3.3.1 Principal Component Analysis

PCA is an unsupervised statistical technique that can be used to remove redun-
dancy in the data while retaining only useful information in a reduced dimensional
space. PCA uses the covariance matrix of the dataset to find the features with most
variance. The steps involved in PCA are summarized as follows [52]:

i. Consider an N × d dimensional dataset X. First, the row-wise mean (x̄) of X is
calculated as:

x̄j =
1
N

N

∑
i=1

Xij (3.3)

ii. Then we create the mean matrix,

X̄ =


1
.
.
.
1

 x̄ (3.4)

The mean-subtracted data is given by,

B = X− X̄ (3.5)
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iii. The covariance-matrix is,

C =
1

N − 1
B∗B (3.6)

iv. The eigenvectors and eigenvalues of the covariance matrix can be calculated
using Singular Value Decomposition (SVD). Ordering the eigenvectors based
on the largest eigenvalues results in the principal components. We select k
principal components resulting in a N × k dimensional dataset.

Intuitively, PCA seeks to find a set of new axes, called principal components,
that capture the maximum variance of the data points. Therefore, by selecting only
the first k < d principal components, most of the variability in the dataset can be
captured. Thus, PCA can be used to significantly reduce the dimensionality of the
feature vector and remove redundancy.

3.4 Supervised Classifier

As discussed in Chapter 2, the next step after obtaining the feature vector is to clas-
sify a given input as leakage or non-leakage and this may be done using a super-
vised binary classifier.

3.4.1 Linear Support Vector Machine

Support Vector Machines (SVMs) were introduced by Cortes et al. [53] for two-class
classification problems. Here, we stick to the linear variant of the algorithm that
assumes that the two classes are linearly separable. In other words, we assume that
it is possible to draw a n-1 dimensional hyperplane that separates the two classes in
IRn space (refer figure 3.6). The equation of the hyperplane is given by w.x + b = 0.

FIGURE 3.6: Hyperplane separating two classes in two-dimensional
space

Support vectors are the points from each class that are closest to the hyperplane
and their aim is to orient the hyperplane such that the distance between the closest
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members from both classes is maximized. Suppose we have two classes y=1 and
y=-1, the following can be deduced from figure 3.6:

xi.w + b ≥ +1 for yi = +1 (3.7)

xi.w + b ≤ −1 for yi = −1 (3.8)

Combining the above equations,

yi(xi.w + b)− 1 ≥ 0 ∀i (3.9)

Referring to figure 3.6, the hyperplane is drawn exactly in between the two hy-
perplanes H1 and H2 corresponding to the support vectors of each class. The dis-
tance to the center hyperplane from H1 and H2, known as the margin of the SVM
is equal to d1 = d2, which is the quantity to be maximized to obtain maximum
separability between the classes. The equations of the planes H1 and H2 are given
by:

xi.w + b = +1 for H1 (3.10)

xi.w + b = −1 for H2 (3.11)

If the margin is equal to 1
|w| , then the problem now becomes to maximize this

value or minimize |w| constrained to equation 3.9. The optimization problem is for-
mulated as follows:

min
1
2

∣∣∣w2
∣∣∣ s.t. yi(xi.w + b)− 1 ≥ 0 ∀i (3.12)

The optimal values of w and b are found from the training data and for a new
test example x′, the label is assigned as sgn(w.x′ + b).

3.4.2 Ensemble Methods

Among other popular classification techniques, ensemble methods such as random
forests and Adaboost are well known for image classification applications. These
methods are based on decision trees, a supervised learning algorithm that can be
used for both regression and classification. One of the biggest disadvantages of de-
cision trees is that they are prone to overfitting and the ensemble models are mostly
aimed at providing a better performance by combining many such weak learners.
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Random forest implements a technique called bagging to reduce overfitting. The
term bagging originates from two other techniques - bootstrapping and aggregating.
Bootstrapping is the process of taking random sub-samples from the training data
set with replacement. Multiple estimators are built from each of these bootstrapped
samples and the predictions from all the estimators are aggregated. Usually, a ma-
jority vote is used to obtain the final prediction.

Training
Data

Bootstrap sample
1

Bootstrap sample
2

Bootstrap sample
n

Classifier 1

Classifier 2

Classifier n

Aggregated
Result

Training
Data

Weak learner 1

Weak learner 2

Weak learner m

Update
sample
weights

Aggregated
Result

Weighted
sum

Bagging Boosting

FIGURE 3.7: Process of ensemble methods - bagging and boosting

Adaboost or adaptive-boosting is another ensemble method that reduces over-
fitting and also improves the prediction performance significantly compared to the
individual weak learners. In Adaboost, the emphasis is on reducing the prediction
error by assigning sample weights to each training observation. Single-depth de-
cision trees known as stumps are usually used as the individual learners. But the
boosting strategy can be used on any base estimator. Consider N training samples
belonging to two classes y = +1 and y = −1. Let the number of classifiers be M and
the response of each classifier be Gm. Algorithm 1 explains the working of Adaboost
classifier [54].

Algorithm 1 Adaboost Classification

1. Initialize sample weights wi = 1/N for i=1,2,3,...,N.

2. For all m = 1 to M:

a) Fit an individual classifier Gm(x) to the training samples using sample
weights wi.

b) Calculate errm = ∑n
i=1 wi I(yi 6=Gm(xi))

∑n
i=1 wi

c) Calculate the classifier importance αm = log((1− errm)/errm)

d) Update sample weights wi ← wi.exp(αm.I(yi 6= Gm(xi)))

3. Final prediction is given by G(x) = sgn[∑m
m=1 αmGm(x)]
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3.5 Convolutional Neural Networks

In the previous chapters, we discussed the significance of CNNs in image classifi-
cation. In this section, a brief introduction to CNNs used for the problem of image
classification is given. The different aspects of building a CNN architecture are dis-
cussed from an implementation point of view.

CNNs are specialized in image and signal processing applications because they
are based on the convolution operation used often in signal processing. The basic
building blocks of a CNN are: convolution layers, pooling layers and fully con-
nected layers. In the image domain, convolution is used for filtering over an image
using kernels. Therefore, the convolution layers in a CNN consist of kernels of spe-
cific dimension that are convolved over a given image to extract different features.
Figure 3.8 illustrates convolution performed on a two-dimensional image.

FIGURE 3.8: Example of 2D Image Convolution [55]

Convolution by different kernels are useful in extracting different features from
an image. Since the values of the kernels are trainable parameters in a CNN, the
most suitable kernels are automatically learned during the training process. The
biggest advantage of the convolution operation is that the patterns extracted are ro-
tation and translation invariant. Convolution layers are also known for learning hi-
erarchical features, meaning the first few layers may extract low level patterns such
as edges and lines and the deeper layers bring out the larger patterns like shapes
and objects. Therefore, the filters learned from training data are extremely useful in
extracting features that are unknown and are difficult to extract using known filters
such as edge detectors or Gaussian filters.

An addition to the convolution layers, a non-linear activation function is used
to represent the output of each layer in a specific range. It is also important that
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FIGURE 3.9: Max Pooling and Average Pooling [55]

the function is differentiable so that it can be optimized using back-propagation.
Some of the commonly used activation functions in neural networks are sigmoid
function, tanh function, Rectified Linear Unit (ReLU), softmax function and so on
(figure 3.10). In most modern CNN architectures, it has become the norm to use
ReLU as the activation function for convolution layers.

Lastly, for image classification, fully connected layers are required to classify the
feature maps from the convolution layers into binary or multi-class output. These
are similar to hidden layers in an ANN where all the neurons from one layer are
connected to all the neurons of a subsequent layer. In a CNN, after the final convo-
lution layer, the features are flattened and given as input to fully connected layers
before finally arriving at the output. The activation function for the output layer is
generally different from that of the convolution layers. Linear, sigmoid and softmax
functions may be used to obtain a value that may be used to determine the output.
For example, softmax function provides values that sum up to 1 and therefore, the
values may be interpreted as probabilities of the input belonging to each class.

The fundamental parts of a CNN architecture were discussed above. In order
to train a network using training data, a loss function and an optimizer must be
chosen. The loss function quantifies the classification performance of the network
on training data. Intuitively, it assigns a large value of loss for wrong classifications
and zero or small values for correct classifications. Therefore, an optimizer is used
to find a set of weights and biases for the network that attempts to minimize the
loss. Some well-known loss functions used for classification are hinge loss, binary
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FIGURE 3.10: Non-Linear Activation Functions

and categorical cross-entropy. Most optimizers use gradient descent to find the min-
ima of a given loss function. Stochastic Gradient Descent (SGD), Adaptive Moment
(Adam) estimation and Root Mean Square Propagation (RMSProp) are examples of
established optimizers for CNNs.
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Chapter 4

Methodology

In this chapter, the methodology used in this study to solve the problems formulated
in Chapter 1 is described. As described earlier, the main objective of the research is
to build a classification system to identify leakage from IRT images of detergent con-
tainers. We divide the methods into three main sub-categories, namely handcrafted
feature-based approach, deep learning approach and a hybrid approach combining
the first two. The classification performances of each of these appraoches are com-
pared in the latter parts of the report.

4.1 General Overview

The objective of any image processing system is to obtain meaningful insights from
digital images by manipulating the images or extracting information from the pix-
els. Therefore, the basic steps involved in most image classification applications are
similar. For this work, the following steps are considered to be most relevant:

1. Image acquisition

2. Pre-processing

3. Feature extraction

4. Dimensionality reduction (optional)

5. Classification

For the three approaches mentioned above, the image acquisition and pre-processing
steps remain the same and they only differ majorly in the methods used for feature
extraction and classification. Therefore, we first discuss the primary steps and then
explain the approaches based on the methods used for feature extraction and classi-
fication. Figure 4.1 depicts the general process flow of the classification system.
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Image Acquisiton Pre-processing Feature Extraction ClassificationDimensionality
Reduction

FIGURE 4.1: General process flow of image classification

4.2 Primary Steps

In this section, the initial steps of acquiring the image data and preparing it for the
further steps are discussed.

4.2.1 Image Acquisition

Image acquisition is the process of capturing the images from the sensor and stan-
dardizing the image format and representation. In this case, the sensor is an IRT
camera of resolution 640×480. Various pixel representations are possible for the IRT
images. They may be represented directly as temperature in ◦C, as grayscale values
ranging from 0 to 255 or as false 3-channel RGB values. The temperature values may
be converted grayscale as follows:

Igij =
Iij

Imax
∗ 255

where, Igij , Iij are grayscale and original thermal images with row and column index
i and j respectively, Imax is the highest temperature value found in the image. In
the following sections, for some methods, we use temperature values (◦C) and for
others, grayscale values are used. This is explicitly mentioned wherever applicable.

4.2.2 Pre-processing

Pre-processing, sometimes referred to as image enhancement is the process of ad-
justing the images so that they are more suitable for the further analysis steps [56].
Pre-processing generally involves extracting regions of interest (ROIs), contrast en-
hancement and so on. The following pre-processing steps are used in this work:

Cropping

The very first pre-processing step that we perform is cropping. Due to the physi-
cal position of the camera, the image consists of some unnecessary background and
Since the coordinates of the ROI are consistent in all the images, we perform crop-
ping by index. The dimension of the image is reduced from 640×480 to 580×250
after cropping.
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Input image Cropped image Mean subtraction

Augmentation (horizontal flip)

Augmentation (vertical flip)

640x480
580x250

FIGURE 4.2: Various steps involved in image pre-processing

Mean Subtraction

The next step is to subtract from each pixel of every image its respective mean
over the training dataset. This is done in order to center the distribution of each
pixel around zero. This method is referred to as mean subtraction and is a popular
pre-processing tool often used in CNN literature ([12], [57]). Suppose the training
dataset consists of N images with height h and width w, then the elements of the
mean image Ī are computed as follows:

Īij =
h

∑
i=1

w

∑
j=1

N

∑
n=1

Iijn (4.1)

where Iijn is the element with row-index i and column-index j from the nth image of
the training dataset. The mean-subtracted image,

I′ = I − Ī (4.2)

for all images from the database. Usually, normalization is performed to fit the
range of pixel values in a particular range such as [0,1] or [-1,1]. Since the subtracted
images result in negative pixel values, we shift the pixels to [-1,1] range.

Data Augmentation

In this work, the data acquisition process is limited by the time taken to produce
a single image. Therefore, it is practically infeasible to collect a large database of
images. One way to address this limitation is to enlarge the training dataset by
creating artificial copies of the existing images. This is done using simple image
transforms such as rotation, flipping, scaling and translations. We perform two sim-
ple operations - flipping along horizontal axis and flipping along vertical axis. Both
the transformations preserve the original dimensions of the image. Therefore, after
augmentation the size of the training set is increased by a factor of 3. Figure 4.2
illustrates the different steps involved in pre-processing explained above.
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4.3 Handcrafted feature-based approach

The first of the three proposed alternatives is the handcrafted feature-based ap-
proach. This is also considered the baseline method of this research. The key idea
behind this approach is manual feature extraction and using the features as input
for supervised learning. In order to extract numerical features from the grayscale
images, we use two texture based feature descriptors - GLCM and LBP. The method
of computing features from these feature descriptors was already explained in detail
in Chapter 3. Apart from them, some basic intensity features are also used. Table
4.1 shows the different feature groups and the exact description of the features gen-
erated from each.

TABLE 4.1: Extraction of handcrafted features

Feature Group Description

1 GLCM features

Co-occurrence matrix is generated for all combinations of D=[1,3,5]
and θ = [0◦, 45◦, 90◦ ,135◦].
From each of the 12 resulting co-occurrence matrices,
we obtain the following features: Contrast, homogeneity, dissimilarity,
correlation, ASM and energy.
Total features = 72

2 LBP features

Uniform LBP histogram bins for the following parameters:
i. R=1, P=8 (no. of bins = P+2 = 10)
ii. R=2, P=16 (no. of bins = P+2 = 18)
Total features = 28

3 Intesity features Mean intensity and standard deviation intensity

Therefore, the final feature vector is of 102×N dimension for a dataset of size N.
Next we use PCA to obtain the first k principal components (k < 102) such that the
new feature space is k-dimensional. PCA is used here for dimensionality reduction
as well as selecting the features with most variability for the classification.

Finally, the k× N dimensional vector is used to train a supervised classifier that
assigns a binary label to each new input, i.e. leakage or non-leakage. We use two
separate classifiers - linear SVM and Adaboost and compare their recognition per-
formance. We saw in Chapter 3 that SVM finds a hyperplane that best separates
the two classes linearly in the feature space. This would be a good choice for dis-
tinguishing between leakage and non-leakage because we expect that the texture
properties of both classes are different from each other. The implementation of SVM
is done using the stochastic gradient descent (SGD) optimizer with hinge loss func-
tion.
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FIGURE 4.3: Overview of proposed handcrafted feature-based ap-
proach

On the other hand, the Adaboost model is used as an alternate method for clas-
sification because it provides a non-linear separation between the two classes. The
boosting strategy also focuses on improving the predictions based on training sam-
ples that are often misclassified. We use single-depth decision trees (stumps) as the
individual learners. Therefore, the only hyperparameter is the number of estimators
M. A suitable value for M may be chosen by varying M and observing the classifi-
cation error as a function of M. The overall process of the feature-based approach is
summarized in figure 4.3.

4.4 Deep learning approach

The second approach mainly focuses on using convolutional neural networks for
the given task. As mentioned earlier, CNNs are end-to-end learning models where
feature extraction is part of the learning process and does not need to be performed
manually. For the given problem of detecting leakage in IRT images, we propose a
custom CNN architecture. The various parts of the architecture are described in the
following sections.
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4.4.1 CNN Architecture

The proposed architecture consists of two parts: feature extraction and classification.
The feature extraction part of the CNN consists of convolution and pooling layers,
whereas the classification layers consist of densely connected neurons leading to the
output. The detailed structure of the CNN is described below.

Convolution Layers

The convolution layers produce feature maps by performing convolution over the
input image using kernels of fixed size. Convolutions may be interpreted as scan-
ning over the image for specific patterns defined by the kernels. The response of
a convolution depends on the strength of match with the kernel at that particular
part of the entire image. For a pixel with coordinates (i, j), the convolution response
using a kernel of size m× n is defined as:

convij =
m×n

∑
x=1

wxvx (4.3)

where wx is the kernel weight and vx is the pixel intensity at position x in the m× n
neighbourhood. These kernel weights are learnt during the training process and
therefore, in a trained network, the kernels that provide the most distinction be-
tween the two classes are chosen.

Rectified Linear Unit

It is common to use a non-linear activation before successive convolutions to fit the
response of each layer within a certain range. The activation function provides a
non-linear mapping between two consecutive layers. We use ReLU activation for
the convolution layers because it is proven to perform well for a large number of
CNN applications. The popularity of ReLU activation is due to its computational
advantage and robustness against the vanishing gradient problem [58]. The ReLU
function is defined as follows:

ReLU(x) =

x if x ≥ 0

0 if x < 0
(4.4)

Pooling

Another important part of the architecture is pooling or subsampling. Pooling layers
are used after convolution layers to reduce the dimensions of the feature maps by
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aggregating values. In this architecture, we use maximum pooling and average
pooling. The output dimension of the feature maps depends on the pooling kernel
size, stride and zero padding. If the original height and width of the image are h
and w, the kernel is of size m× n, p is the increase in dimension due to zero padding
and s is the stride of the convolution, then the altered height and width of the image
are:

h′ =
⌊

h−m + s + p
s

⌋
, w′ =

⌊
w− n + s + p

s

⌋
(4.5)

where b.c denotes floor operation. All the pooling layers used in our architecture are
of size 2× 2 with a stride of 2 and we do not perform any zero-padding. Therefore,
from 4.5, this results in a downsampling of the input array by a factor of two.

The convolution, ReLU and subsampling layers together constitute the feature
extraction part of the neural network. After training, the learned weights and biases
of the convolution filters help extract the features that offer the highest separation
between the two classes from the images. Generally, these filters are designed such
that in the early layers, low-level features such as edges and lines are extracted and
the deeper layers bring out more complex features.

Fully connected layers

After the feature extraction is performed by successive convolutions and subsam-
pling, fully-connected (FC) or dense layers are used for the final classification. Each
neuron in a dense layer is connected to every other neuron from the previous layer,
similar to a multi-layer perceptron (MLP). These layers map the flattened feature
vector to the final binary classification output through the densely connected neu-
ron activations. The activation of a neuron in a dense layer l is given by:

al
j = f (

Mj

∑
i=1

W l
ij.a

l−1
i + bl) (4.6)

where Mj is the number of input neurons connected to the jth neuron of the lth layer,
W l and bl are the weight matrix and bias of the lth layer, f is the non-linear activation
function. The last layer consists of only one neuron in case of a binary classification
and if we use a sigmoid non-linearity, the activation of this neuron corresponds to
the probability of the class that an instance belongs to. The sigmoid function is given
by:

σ(x) =
1

1 + e−x (4.7)
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Dropout

Dropout is a form of regularization that is used commonly to reduce overfitting in
large neural networks. In a layer-wise dropout mechanism, the activations of a cer-
tain amount of neurons, defined by the dropout rate, are forced to be zero during
training. This helps to reduce overfitting because the neurons are forced to fit the
output without the activations of all neurons. Therefore, the overall complexity of
the network is reduced and better generalization is achieved. In this architecture,
we use dropout in some layers with a constant dropout-rate of 0.2. Hence, 20% of
the neurons in these layers are randomly disconnected from the previous layer.

Loss function and Optimizer

In order to train the neural network using labeled images, a loss-function and an
optimizer are required. The loss function is the metric based on which the weights
and biases are updated. Since the output layer is activated by a sigmoid function,
the most suitable loss would be a logarithmic function. Therefore, the binary cross-
entropy function is chosen for this problem. It is given by:

Loss = − 1
N

N

∑
i=1

yi.log(ŷi) + (1− yi)log(1− ŷi) (4.8)

where N is the number of training samples, yi and ŷi are the actual and predicted
output of the ith training sample. Various alternatives for the choice of an optimizer
are available. The RMSprop optimizer has been used in many similar works and
therefore we choose this for the task of minimizing the loss function.

The different components of the proposed CNN architecture to classify leakage
and non-leakage from IRT images were discussed above. The detailed structure of
the network is described in table 4.2. Figure 4.4 illustrates the architecture using a
representative diagram.
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FIGURE 4.4: Proposed CNN architecture for classification of leakage
from IRT images
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TABLE 4.2: CNN Architecture

Layer Name Description Input Dimension Output Dimension
Input 250×580 image input - 250×580×1
Conv0 + ReLU Conv + ReLU layer 1 with 32 6×6 kernels 250×580×1 245×575×32
Max Pooling + Dropout Pooling layer 1 with 2×2 kernel, stride = 2 245×575×32 122×287×32
Conv1 + ReLU Conv + ReLU layer 2 with 64 4×4 kernels 122×287×32 119×284×64
Max Pooling + Dropout Pooling layer 2 with 2×2 kernel, stride = 2 119×284×64 59×142×64
Conv2 + ReLU Conv + ReLU layer 3 with 64 3×3 kernels 59×142×64 57×140×64
Max Pooling + Dropout Pooling layer 3 with 2×2 kernel, stride = 2 57×140×64 28×70×64
Conv2 + ReLU Conv + ReLU layer 4 with 128 2×2 kernels 28×70×64 27×69×128
Average Pooling Average pooling with 2×2 kernel, stride = 2 27×69×128 13×34×128
Global Average Pooling Global averaging over all filters 13×34×128 1×128
Dense Layer 1 Dense layer with ReLU activation 1×128 300
Dense Layer 2 Dense layer with ReLU activation 300 64
Dense Layer 3 Dense layer with ReLU activation 64 10
Output Layer Output layer with sigmoid activation 10 1

4.5 Hybrid approach

The last of the three approaches is a hybrid approach that combines certain aspects
of both the approaches discussed in sections 4.3 and 4.4. The key difference between
the two methods discussed earlier was in the techniques used for feature extraction
and classification. In the handcrafted feature-based approach, manual feature ex-
traction was performed and the classification was done using two machine learning
models. In the deep learning approach, both feature extraction and classification
were embedded within the network and were learnable through the training pro-
cess. In the following sections, we introduce two hybrid-learning strategies that
combine two or more of the techniques for feature extraction and classification.

4.5.1 Late-fusion

In this approach, the feature extraction is performed using the convolution and pool-
ing layers of a trained CNN and in place of the fully-connected layers, a different
supervised classifier is used. This is termed as late-fusion strategy because the com-
bining of the two methods occurs only at the classification stage. The steps involved
in the late-fusion method can be summarized as follows:

- The proposed CNN architecture (refer section 4.4) is trained using a training
set of images.

- From the trained network, the activations at the end of the feature-extraction
layers of the CNN are obtained for each of the training samples.

- The activations are considered as the input features for classification. Instead
of using the fully-connected layers of the CNN for classification, two other
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supervised classifiers namely - SVM and Adaboost are used for the final clas-
sification. In figure 4.5 the late-fusion scheme described above is shown.

Convolution Pooling

CNN Feature Extraction

Supervised Classifier 
(SVM, Adaboost) 

Input Image

FIGURE 4.5: Hybrid Learning - Late Fusion approach

4.5.2 Early-fusion

The next approach is referred to as early-fusion. This is due to the fact that the fusion
of techniques occurs earlier in the pipeline during the feature extraction stage [42].
In an early-fusion scheme, the feature extraction may be performed using different
techniques or features may be obtained from different sources. For example, using
text-data in combination with image features or using two separate neural network
architectures to produce feature maps and merging their outputs may be considered
feature-fusion. In this work, the following steps are involved in the early-fusion
approach:

1. The activations from the last feature layer of the trained CNN are taken for
each training sample.

2. Texture features are extracted from each image using GLCM and LBP as de-
scribed in section 4.3.

3. Suppose the feature vectors obtained from step 1 and step 2 are F1 and F2

respectively. A new feature vector F is created by concatenating F1 and F2 as
F = [F1, F2].

4. F is used as input to train a supervised algorithm to obtain the final classifi-
cation. Note that early-fusion strategy may also use the same fully-connected
architecture of the CNN for classification since the distinction of the approach
lies in the fusion of features.
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FIGURE 4.6: Hybrid Learning - Early Fusion approach
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Chapter 5

Experiments and Results

In this chapter, the experimental setup used to conduct this study is first described
and the results for each of the methods discussed in Chapter 4 are presented. The
evaluation metrics used to evaluate the results are also defined. Finally, an addi-
tional experiment is performed in section 5.5 using the proposed CNN architecture
to address the auxiliary research question defined in Chapter 1.

5.1 Experimental Setup

The experimental setup consists of the data acquisition system used to capture the
required data. In the following sections, the components of the data acquisition
system and the description of the dataset obtained from it are explained.

5.1.1 Data Acquisition System

An active infrared thermography setup is used to collect the data required to detect
fluid leakage from detergent containers. The main requirements of such an experi-
mental setup were stated as follows:

- The setup should be able to produce thermal images of the bottom of the con-
tainers to be able to detect fluid leakage.

- The thermal images produced through the setup must be highly reproducible.

- The heating and imaging processes must be automated so that inspection can
be done for a large number of products one after the other.

Keeping the above requirements in mind, a demonstrator was set up with the
following components:

1. A cobot used for pick-and-place from conveyors and carrying the containers
over the setup for heating and imaging.
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2. A ceramic heater that is used to heat the bottom of the containers to create the
temperature difference between leaking fluid and the material of the container.

3. An infrared camera to capture images of the container immediately after heat-
ing. Figure 5.1 shows the setup with the components described above.

Container with
pods

Ceramic
Heater

Container with
pods

Supply
conveyor

Discharge
conveyor

Thermal
Camera

Cobot

FIGURE 5.1: Thermography setup used for data acquisition

5.1.2 Dataset

An experimental dataset was created for the purpose of this study. Typically, a deter-
gent pod consists of multiple chambers of different sizes containing different fluids.
Therefore, a real instance of detergent leakage was found to be anywhere between
5ml to 25ml. Therefore, we create examples of leakages with varying amounts of
fluid to represent the occurrence of leakage in a holistic way. In figure 5.2, we show
the different representations of leakage included in the dataset. The leakage is high-
lighted by red bounding boxes in the image.

The components of the data acquisition system can be adjusted to get images
with good contrast. For example, the heater can be mounted at different positions
such that the distance between the heater and the container may be varied. Similarly,
the time of heating may also be increased or decreased depending on the required
temperature range. For all the images used in this study, we fix the distance and time
of heating and obtain images in the same temperature range. By experimenting with
these parameters, similar images can be produced even at different environmental
conditions. The final dataset consists of 1305 images with an equal distribution of
both the classes. A total of 653 images with leakage and 652 images without leakage
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No leakage Low leakage

Moderate leakage Heavy leakage

FIGURE 5.2: Various representations of leakage based on amount of
fluid

were created. The images were taken in two different locations with varying ambi-
ent conditions, but the temperature ranges within the images were kept consistent
by varying the time and distance of heating.

5.2 Evaluation Metrics

To evaluate the classification performance of the different methods, we mainly use
the metrics - accuracy, sensitivity, specificity and f1-score. Accuracy is a direct mea-
sure of the correct predictions, i.e true positives (TP) and true negatives (TN) of the
model but gives no information about the which class was misclassified more often.
Therefore, to quantify the effect of false negatives (FN) and false positives (FP), we
use sensitivity and specificity respectively. The above metrics are defined as follows:

1. Accuracy = TP+TN
TP+TN+FP+FN

2. Sensitivity(TPR) = TP
TP+FN

3. Speci f icity(TNR) = TN
TN+FP

4. F1− Score = 2TP
2TP+FP+FN

Apart from the above metrics, we also use the receiver operating characteris-
tic (ROC) curve. The ROC curve is the plot between the false positive rates (FPR)
and true positive rates (TPR) as functions of threshold. The threshold decides the
outcome of the classification. The area under the ROC curve (AUC) is an overall
measure of the model’s performance with respect to TPR and FPR.
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5.3 Outline of Experiments

In all of the experiments that follow, a K-fold cross-validation (CV) split is done on
the original dataset consisting of 1305 images. In K-fold CV, the dataset is split into K
unique samples and the model performance may be tested on each of the K samples
by using the rest of the dataset for training. This approach provides an indication
on the model performance on unseen examples. We choose K = 4 and perform the
following experiments:

• Manual feature extraction is done separately on each CV split and classifica-
tion is performed using two classifiers. Section 5.4.1 shows the results obtained
from this approach for all the four CV splits.

• Next, the results obtained from the CNN-architecture described in 4.4 are pre-
sented in 5.4.2.

• The trained CNN is used to extract features for the hybrid approach and the
results from the late-fusion and early-fusion approaches are presented in 5.4.3.

• An additional experiment is conducted using the CNN architecture to investi-
gate the relationship between dataset size and model performance.

5.4 Results

In the following sections, the classification results obtained for the three approaches
previously described are discussed.

5.4.1 Handcrafted feature-based approach

As described in section 4.3, the feature vector is created using the two feature de-
scriptors GLCM and LBP. Next, the 102-dimensional vector is transformed to a
smaller dimensional space using PCA. To choose the number of principal compo-
nents k that can sufficiently explain the variance in the dataset, we observe the per-
formance of one of the classifiers as a function of k. Figure 5.3 shows the average
accuracy obtained over the 4-fold split using the SVM classifier for different values
of k.

From the above graph, it can be observed that the performance initially increases
steadily until about k = 50 and then stagnates for the rest of the range. Therefore a
value of k = 60 and the original feature set is reduced to 60 columns. Next, the re-
duced feature vector is used to train the classifiers - SVM and Adaboost. The number
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FIGURE 5.4: Error-rate as a function of number of estimators M

of individual learners M for the Adaboost algorithm is a hyperparameter to be cho-
sen. Therefore to select a suitable parameter for M, the prediction error-rate of the
model is observed over different values of M in figure 5.4. The error rate decreases
as we increase M until M = 250 and then remains nearly constant irrespective of
the increase in the number of estimators. Therefore, for all the experiments we use
a value of M = 400.

The 4-fold cross validation results for the handcrafted feature (HCF) based ap-
proach are presented. Table 5.1 shows the accuracy, sensitivity, specificity and F1-
scores respectively for each fold as well as the overall scores. Since the test set in
each fold is unique, the four components (TP, FP, FN and TN) of the confusion ma-
trix from each fold may be summed. The cumulative confusion matrices are shown
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TABLE 5.1: Results of SVM and Adaboost models on handcrafted fea-
tures

Model Fold-1 Fold-2 Fold-3 Fold-4 Overall
HCF+Adaboost 0.8899 0.8681 0.9018 0.8834 0.8858

Accuracy
HCF+SVM 0.9021 0.9141 0.9294 0.9172 0.9157
HCF+Adaboost 0.9020 0.8848 0.9353 0.8963 0.9049

Sensitivity
HCF+SVM 0.9359 0.9209 0.9568 0.9427 0.9386
HCF+Adaboost 0.8793 0.8509 0.8654 0.8704 0.8667

Specificity
HCF+SVM 0.8713 0.9060 0.9024 0.8935 0.8928
HCF+Adaboost 0.8846 0.8947 0.9086 0.8855 0.8879

F1-Score
HCF+SVM 0.9012 0.9209 0.9309 0.9164 0.9175

in table 5.2. The overall scores in table 5.1 are obtained from these confusion matri-
ces.

TABLE 5.2: Cumulative confusion matrices of SVM and Adaboost with
handcrafted features
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5.4.2 CNN-based approach

Before discussing the results, the process of training the neural network is first ex-
plained. The optimization algorithm takes smaller batches of training images rather
than the entire dataset in each iteration before updating the weights of the network.
Therefore the number of images per batch, known as the batch-size, must be cho-
sen. Another hyperparameter called epoch decides how many times the entire train-
ing dataset propagates through the network. In one epoch, every sample from the
training set will have passed through the network and contributed to the param-
eter updates. The optimizer takes another parameter called learning-rate that de-
cides how large the updates to the weights are in each iteration. It is important to
choose an optimal learning rate because if the updates are too small, then the loss
convergence is too slow and if they are too large, then the chances of overshooting
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increases. Based on initial experiments, the following values were chosen for the
training parameters:

- Batch-size = 20

- Learning rate = 0.001

- No. of epochs = 150
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FIGURE 5.5: Training and validation accuracy and cross-entropy loss
observed over 150 epochs

A fraction of the training data (30%) is used for validation of the model perfor-
mance during the training process. Figure 5.5 shows the training and validation
accuracy and loss obtained for 150 epochs. It can be observed that the training ac-
curacy does not increase beyond this range and it can also be deduced that there
is no significant overfit as the validation accuracy closely follows the training accu-
racy throughout the graph. After training, the test images are passed through the
network and the sigmoid output in the range [0,1] is obtained. We assign class la-
bels to each test sample by applying a threshold of 0.5. The 4-fold results for the
CNN-based approach are given in table.

TABLE 5.3: Results of CNN-based approach

Fold-1 Fold-2 Fold-3 Fold-4 Overall
Accuracy 0.9358 0.9417 0.9417 0.9601 0.9448
Sensitivity 0.9648 0.9820 0.9634 0.9777 0.9723
Specificity 0.9135 0.8994 0.9198 0.9388 0.9173
F1-score 0.9288 0.9452 0.9433 0.9642 0.9463
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TABLE 5.4: Cumulative confusion matrix of CNN
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5.4.3 Hybrid approach

In this section, the results obtained from the two hybrid methods are presented.
First, the feature vector is obtained from the last feature extraction layer of the
trained CNN and two classifiers - Adaboost and SVM are used in place of the fully-
connected layers. The results of this approach are shown in table 5.5.

TABLE 5.5: Results of late-fusion approach

Model Fold-1 Fold-2 Fold-3 Fold-4 Overall
CNN + SVM 0.9358 0.9509 0.9448 0.9632 0.9487

Accuracy
CNN + Adaboost 0.9327 0.9540 0.9417 0.9693 0.9494
CNN + SVM 0.9789 0.9701 0.9756 0.9777 0.9754

Sensitivity
CNN + Adaboost 0.9789 0.9760 0.9573 0.9832 0.9739

CNN + SVM 0.9027 0.9308 0.9146 0.9459 0.9218
Specificity

CNN + Adaboost 0.8937 0.9308 0.9259 0.9524 0.9249
CNN + SVM 0.9298 0.9673 0.9467 0.9669 0.9500

F1-Score
CNN + Adaboost 0.9267 0.9560 0.9429 0.9724 0.9506

We can deduce from the above table that both the classifiers outperform the pure
CNN based results. Particularly, the Adaboost model shows higher performance in
terms of overall accuracy as well as F1-score. The best scores are highlighted in the
table. The cumulative confusion matrices of the late-fusion models are shown in
table 5.6.
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TABLE 5.6: Cumulative confusion matrix of late-fusion models
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Next, feature fusion is performed by concatenating the features from the two
sources - CNN and manual feature extraction. The fused feature vector F is given
as input to three models - SVM, Adaboost and the fully connected neural network
(FCNN). The results of the early-fusion approach are shown in table 5.7.

TABLE 5.7: Results of early-fusion approach

Model Fold-1 Fold-2 Fold-3 Fold-4 Overall
CNN + HCF + SVM 0.9415 0.9571 0.9509 0.9755 0.9563

Accuracy CNN + HCF + Adaboost 0.9327 0.9571 0.9448 0.9724 0.9517
CNN + HCF + FCNN 0.9327 0.9632 0.9479 0.9693 0.9533

CNN + HCF + SVM 0.9789 0.9581 0.9756 0.9832 0.9739
Sensitivity CNN + HCF + Adaboost 0.9718 0.9641 0.9634 0.9721 0.9677

CNN + HCF + FCNN 0.9507 0.9760 0.9756 0.9777 0.9708

CNN + HCF + SVM 0.9135 0.9560 0.9259 0.9660 0.9387
Specificity CNN + HCF + Adaboost 0.9027 0.9497 0.9259 0.9728 0.9356

CNN + HCF + FCNN 0.9189 0.9497 0.9198 0.9592 0.9356

CNN + HCF + SVM 0.9360 0.9581 0.9524 0.9778 0.9570
F1-Score CNN + HCF + Adaboost 0.9262 0.9583 0.9461 0.9748 0.9525

CNN + HCF + FCNN 0.9247 0.9645 0.9496 0.9722 0.9540

We can see that the addition of handcrafted features results in a further increase
in the performance of the models compared to the late-fusion results. The confusion
matrices of the three models are given below.
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TABLE 5.8: Cumulative confusion matrix of early-fusion models
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5.4.4 Visualization of results

In figure 5.6, we plot the box plots of the 4-fold accuracy and F1-scores from all
the proposed methods to visualize the overall prediction performances of the mod-
els. It can be observed that the CNN outperforms the pure feature based methods
by a significant margin. Both late-fusion and early-fusion models provide a small
improvement in the CNN results in terms of both accuracy and F1-scores.

HCF + Adaboost
HCF + SVM

CNN
CNN+SVM

CNN+Adaboost
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FIGURE 5.6: Box plots of accuracy and F1-scores of all the models
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FIGURE 5.7: Box plots of sensitivity and specificity of all the models

Since accuracy and F1-score do not provide information about the ability of the
models specific to the positive and negative classes, we plot the sensitivity (true
positive rate) and specificity (true negative rate) of all the models in figure 5.7. Here,
positive class refers to non-leakage and negative class refers to leakage. Generally,
we observe that the TPRs of all the models are higher than the respective TNRs.
This shows that the predictions are skewed towards the positive class. We can also
observe that the TPR is not improved significantly by the fusion models, but there
is a clear increase in the TNRs compared to the pure CNN method. Specifically the
early fusion method with SVM model gives the best performance in terms of all the
metrics in consideration.

5.4.5 ROC Results

The advantage of obtaining a score distribution as output is that the final decision
may be made using a threshold. The sigmoid function outputs a probability score
between 0 and 1 and generally, the threshold is set as 0.5. But if we observe the
prediction and error rates as a function of the decision threshold, more insights
about the model performance can be gained. As mentioned earlier, the ROC curve is
the relationship between false-positive rates and true-positive rates as a function of
threshold. Therefore, if we vary the threshold from 0 to 1 in small steps, the model
performance can be observed over the range of thresholds.
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FIGURE 5.8: 4-fold ROC results for CNN and early-fusion model

In figure 5.8, we compare the ROC curves of the pure CNN approach and the
early-fusion approach with fully-connected layers over the 4 folds to see the effect
of adding handcrafted features before the classification. It can be observed that, in
most cases, the fusion model has a better ROC curve in terms of AUC. It can also
noticed that the upper-left most point on the graph is achieved by the fusion method
as well. To further validate the performances, we look at the FNR at a fixed FPR of
5% for each of the models (table 5.9). It is clear that in 3 folds the fusion model
achieves a smaller FNR compared to the pure CNN model.

TABLE 5.9: False Negative Rates (FNR) at False Positive Rate (FPR) of
0.05

Fold-1 Fold-2 Fold-3 Fold-4
CNN 0.070 0.044 0.074 0.054
CNN+HCF+FCNN 0.075 0.037 0.067 0.034

5.5 Effect of dataset size on performance

The amount of data required for training neural networks is a highly relevant ques-
tion in most industrial applications due to the infeasibility of collecting data. This
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issue also persists in this work as the generation of images is a tedious process and
the exact number of images to obtain the best performance is unknown. Therefore,
in order to investigate the relationship between the size of training data and classi-
fication performance, we use the CNN architecture from section 4.4.

FIGURE 5.9: Testing accuracy for various values of dataset size

The performance is evaluated on a static test set of 300 images separated from
the training set. The CNN architecture is trained using various values of dataset
size increasing in steps of 100. To get a robust estimate of the model performance,
the images are randomly sampled from the original dataset four times and their
accuracy values are plotted against the size of the dataset (shown in figure 5.9).
From the figure, it is clear that the performance depends on the dataset size until a
certain value is reached (about 600). After this point, the graph reaches a plateau
and the rate of increase of accuracy becomes very small. To model the relationship
between the size of the dataset and the accuracy, we try to fit an asymptotic curve
on the above data. The curve is defined by the equation given as follows:

f (x) = A(1− e−b(x−c)) (5.1)

where A, b and c are parameters to be optimized. We choose the above function
because it resembles the relationship observed in figure 5.9 and we know that the
accuracy value cannot exceed 1. The function reaches the value A at infinity and
intercepts the x-axis at c. The factor b decides the rate of increase of the exponential
function. We constraint the function to exist only for values of x > 0 because neg-
ative values of dataset size are absurd. For x > 0, the function is always positive
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and converges to a value A < 1 at infinity. Figure 5.10 shows the curve fit on the
relationship between dataset size and accuracy.

f(x) = A(1 – e-b(-x-c) )

A = 0.985 
b = -0.96 
c = 0.006

FIGURE 5.10: Curve fit on dataset size versus testing accuracy

To solve for the parameters in the above equation, we use the Levenberg-Marquardt
non-linear least squares algorithm [59] from the SciPy optimization toolbox. The op-
timal values of A, b and c are estimated as 0.985, -0.96 and 0.006 respectively. This
shows that the function is already close to reaching its maximum value. This can
also be observed from figure 5.10. The purpose of performing this experiment is
to provide a generic way to use the existing models to find how much significance
does increasing the amount of training data have for a specific method. It can also
answer questions such as how much data would be required to achieve a certain
performance using a particular method.
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Chapter 6

Conclusions

6.1 Research Questions

The conclusions with respect to each research question introduced in Chapter 1 are
given as follows:

- Q: What are the steps involved in building an image classification system
to distinguish between instances of leakage and non-leakage from infrared
thermal (IRT) images of detergent containers?

A: The following steps were involved in building a classifier to identify leak-
age from IRT images - image acquisition, pre-processing, feature extraction,
dimensionality reduction and classification. Three different approaches were
identified, namely handcrafted feature-based approach, deep learning approach
and hybrid approach. The classification performance of each of the above
methods on an experimental dataset are compared using various metrics.

- Q: Which feature extraction techniques may be used to extract information
that distinguish between leakage and non-leakage from IRT images of de-
tergent containers?

A: Various methods of feature extraction were identified from relevant liter-
ature. Finally, two techniques, namely GLCM and LBP were used to extract
102 features from the images. After PCA feature selection, the reduced feature
vector is used as input to two classifiers SVM and Adaboost. An overall ac-
curacy of 91.57% and F1-score of 91.75% over 4 CV folds was achieved by the
SVM classifier.

- Q: How do handcrafted feature-based methods compare to convolutional
neural networks in terms of classification performance?

A: A custom CNN architecture was built for classification of leakage and non-
leakage from the IRT images and the choices involved in the architecture de-
sign were described. The CNN outperformed the baseline method (HCF based
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approach) with an overall accuracy and F1-score of 94.48% and 94.63% respec-
tively over the 4-fold split.

- Q: Do hybrid techniques that combine multiple feature sources or classifiers
improve the overall recognition performance?

A: Two hybrid learning strategies were introduced, namely late-fusion and
early-fusion. Both alternatives provided a small improvement to the pure
CNN-approach. The highest performance was achieved by the early-fusion
approach with SVM classifier with a 4-fold accuracy and F1-score of 95.63%
and 95.70% respectively. The ROC curves of the pure-CNN approach and
the early-fusion approach with fully-connected layers are shown. The fusion
method showed a better performance in terms of AUC and FNR at 5% FPR.

- Q: What effect does dataset size have on the performance of the models and
how to identify the amount of data required to achieve a certain level per-
formance?

A: The proposed CNN model was trained using different training dataset
sizes. It was found that the accuracy of the model increased with increase
in dataset size of about 700, but after this point the rate of increase starts to
decrease. To model this relationship and predict the performance of the model
outside the known range, an asymptotic exponential function was fit to the
data. The predictions from the curve fit reveal that the accuracy had almost
reached its maximum and addition of training data would not significantly
improve the results.

6.2 Discussions and Recommendations

From the graphs shown in section 5.4.4, it is clear that all the models are generally
able predict non-leakage better than leakage as indicated by the sensitivity (TPR).
This behaviour was expected as the pods resting on the bottom of the box were also
similar in appearance to an instance of leakage. Higher amounts of leakage spread
over the surface and affected the temperature of the entire region, making it easy
to recognize. But in the case of small amounts of fluid, it was challenging to distin-
guish from the pods (as seen in figure 5.2). The importance of predicting a specific
class depends on the requirement of the customer. The ROC curve becomes more
relevant in this case because it helps visualizes the performance of the model in
terms of TPRs and FPRs over different thresholds.
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As per the problem definition, it was sufficient to classify entire images as leak-
ing or not leaking. Some researchers have performed defect classification using a
sliding window. Cha et al. [60] have performed crack detection on concrete walls
by dividing images of larger resolution into smaller image patches using a sliding
window. A similar approach may be applied to this problem, but the major chal-
lenge would be to perform manual labeling on the image patches. The advantage of
this approach is that it would be possible to obtain a more localised identification of
leakage.

Hybrid methods, especially the feature-fusion models have shown promising
performance with the experimental dataset. More feature groups can be added to
the fused feature vector and an additional step to pick out the most important fea-
tures from the fused vector may be explored. For example, GIST features have been
combined successfully with CNN features and provided an improvement to the
classification performance. GIST features are extracted by using Gabor filters at var-
ious scales and orientations to capture the gist from an image. Implementations of
GIST features with CNN are shown in [61] and [62]. Another factor in fusion meth-
ods is the operation used to fuse different feature vectors. Generally, the vectors are
simply concatenated with each other, but some works have benefited from using
different fusion methods such as summing and max operations [42].

Transfer learning has been popularly used in defect classification problems in
literature. Initial experiments on transfer learning for this problem did not yield
desired results. Several network architectures that have been trained on millions
of images exist that can be applied readily to any dataset. One of the challenges
faced during the implementation in this case was that the thermal images were sin-
gle channel images and most existing architectures are trained on RGB images and
hence take 3-channel input. Therefore, the single channel images were duplicated
along the three channels and given as input for training. Another disadvantage of
transfer learning is that the dimensions of the input image must be resized to the
size of the images that the network was trained on. Apart from the limitations men-
tioned above, an advantage of transfer learning is that it may be even with small
datasets and the hybrid learning experiments can easily be extended by using the
activations from other trained neural networks.

CNNs are predominantly used for most image based applications and are con-
sidered state-of-the-art. Recently, visual transformers have been used on image
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classification problems and have been reported to outperform CNN results. Trans-
formers use attention mechanism and apply different weights to different parts of
the input based on significance to the output. This has been extensively used in
NLP applications such as text classification and information retrieval. The attention
mechanism has also been successfully applied to computer vision problems where
the attention layers map the importance of different parts of the image. Dosovitskiy
et al. [63] achieve this by dividing the image into 16×16 patches and assigning po-
sitional encoding similar to tokens in a transformer architecture.



59

Bibliography

[1] Silvia Satorres et al. “A machine vision system for defect characterization on
transparent parts with non-plane surfaces”. In: Machine Vision and Applications
23 (2012), pp. 1–13. DOI: 10.1007/s00138-010-0281-0.

[2] Joseph Walsh et al. “Deep Learning vs. Traditional Computer Vision”. In: 2019.
ISBN: 978-981-13-6209-5. DOI: 10.1007/978-3-030-17795-9_10.

[3] Laundry Detergent Pods Market Size: Industry Report, 2019-2025. 2019. URL: https:
//www.grandviewresearch.com/industry-analysis/laundry-detergent-

pods-market.

[4] Liquid Laundry Detergent Capsules Guidelines on CLP Implementation. 2018. URL:
https://www.aise.eu/documents/document/20181203162709-clp_implementation_

guidelines_lldc_v2_0_261118.pdf.

[5] Osslan Vergara et al. “Automatic Product Quality Inspection Using Computer
Vision Systems”. In: 2014, pp. 135–156. ISBN: 978-3-319-04950-2. DOI: 10.1007/
978-3-319-04951-9_7.

[6] Mina Fahimipirehgalin et al. “Visual Leakage Inspection in Chemical Process
Plants Using Thermographic Videos and Motion Pattern Detection”. In: Sen-
sors 20.22 (2020). ISSN: 1424-8220. DOI: 10.3390/s20226659. URL: https://
www.mdpi.com/1424-8220/20/22/6659.

[7] Michele De Filippo et al. “Concept of Computer Vision Based Algorithm for
Detecting Thermal Anomalies in Reinforced Concrete Structures”. In: Proceed-
ings 27.1 (2019). ISSN: 2504-3900. DOI: 10.3390/proceedings2019027018. URL:
https://www.mdpi.com/2504-3900/27/1/18.

[8] Gareth James et al. An introduction to statistical learning : with applications in R.
Springer, 2014. ISBN: 978-1-4614-7137-0.

[9] Sergiu Deitsch et al. “Automatic Classification of Defective Photovoltaic Mod-
ule Cells in Electroluminescence Images”. In: Solar Energy 185 (2018). DOI:
10.1016/j.solener.2019.02.067.

[10] Mina Fahimipirehgalin et al. “Automatic Visual Leakage Inspection by Using
Thermographic Video and Image Analysis”. In: (2019), pp. 1282–1288. DOI:
10.1109/COASE.2019.8842941.

https://doi.org/10.1007/s00138-010-0281-0
https://doi.org/10.1007/978-3-030-17795-9_10
https://www.grandviewresearch.com/industry-analysis/laundry-detergent-pods-market
https://www.grandviewresearch.com/industry-analysis/laundry-detergent-pods-market
https://www.grandviewresearch.com/industry-analysis/laundry-detergent-pods-market
https://www.aise.eu/documents/document/20181203162709-clp_implementation_guidelines_lldc_v2_0_261118.pdf
https://www.aise.eu/documents/document/20181203162709-clp_implementation_guidelines_lldc_v2_0_261118.pdf
https://doi.org/10.1007/978-3-319-04951-9_7
https://doi.org/10.1007/978-3-319-04951-9_7
https://doi.org/10.3390/s20226659
https://www.mdpi.com/1424-8220/20/22/6659
https://www.mdpi.com/1424-8220/20/22/6659
https://doi.org/10.3390/proceedings2019027018
https://www.mdpi.com/2504-3900/27/1/18
https://doi.org/10.1016/j.solener.2019.02.067
https://doi.org/10.1109/COASE.2019.8842941


60 Bibliography

[11] Navid Razmjooy, B. Somayeh Mousavi, and F. Soleymani. “A real-time math-
ematical computer method for potato inspection using machine vision”. In:
Computers & Mathematics with Applications 63.1 (2012), pp. 268–279. ISSN: 0898-
1221. DOI: https://doi.org/10.1016/j.camwa.2011.11.019. URL: https:
//www.sciencedirect.com/science/article/pii/S0898122111009850.

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. “ImageNet Classifica-
tion with Deep Convolutional Neural Networks”. In: Neural Information Pro-
cessing Systems 25 (2012). DOI: 10.1145/3065386.

[13] N. Dalal and B. Triggs. “Histograms of oriented gradients for human detec-
tion”. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05). Vol. 1. 2005, 886–893 vol. 1. DOI: 10.1109/CVPR.2005.
177.

[14] Qingzhong Li, Maohua Wang, and Weikang Gu. “Computer vision based sys-
tem for apple surface defect detection”. In: Computers and Electronics in Agri-
culture 36 (2002), pp. 215–223. DOI: 10.1016/S0168-1699(02)00093-5.

[15] K. Mak, Polosnow Peng, and K. Yiu. “Fabric Defect Detection Using Morpho-
logical Filters”. In: Image Vision Comput. 27 (2009), pp. 1585–1592. DOI: 10.
1016/j.imavis.2009.03.007.

[16] G. Rahaman and Md Mobarak Hossain. “Automatic Defect Detection and
Classification Technique from Image: A Special Case Using Ceramic Tiles”.
In: International Journal of Computer Science and Information Security 1 (2009).

[17] Ioannis (John) Tsanakas et al. “Fault Diagnosis of Photovoltaic Modules through
Image Processing and Canny Edge Detection on Field Thermographic Mea-
surements”. In: International Journal of Sustainable Energy 34 (2015), pp. 351–
372. DOI: 10.1080/14786451.2013.826223.

[18] Texture Analysis Using the Gray-Level Co-Occurrence Matrix. URL: https://www.
mathworks.com/help/images/texture-analysis-using-the-gray-level-

co-occurrence-matrix-glcm.html.

[19] I-Shou Tsai, Chung-Hua Lin, and Jeng-Jong Lin. “Applying an Artificial Neu-
ral Network to Pattern Recognition in Fabric Defects”. In: Textile Research Jour-
nal 65.3 (1995), pp. 123–130. DOI: 10.1177/004051759506500301. URL: https:
//doi.org/10.1177/004051759506500301.

[20] Domingo Mery et al. “Quality classification of corn tortillas using computer
vision”. In: Journal of Food Engineering 101 (2010), pp. 357–364. DOI: 10.1016/
j.jfoodeng.2010.07.018.

https://doi.org/https://doi.org/10.1016/j.camwa.2011.11.019
https://www.sciencedirect.com/science/article/pii/S0898122111009850
https://www.sciencedirect.com/science/article/pii/S0898122111009850
https://doi.org/10.1145/3065386
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1016/S0168-1699(02)00093-5
https://doi.org/10.1016/j.imavis.2009.03.007
https://doi.org/10.1016/j.imavis.2009.03.007
https://doi.org/10.1080/14786451.2013.826223
https://www.mathworks.com/help/images/texture-analysis-using-the-gray-level-co-occurrence-matrix-glcm.html
https://www.mathworks.com/help/images/texture-analysis-using-the-gray-level-co-occurrence-matrix-glcm.html
https://www.mathworks.com/help/images/texture-analysis-using-the-gray-level-co-occurrence-matrix-glcm.html
https://doi.org/10.1177/004051759506500301
https://doi.org/10.1177/004051759506500301
https://doi.org/10.1177/004051759506500301
https://doi.org/10.1016/j.jfoodeng.2010.07.018
https://doi.org/10.1016/j.jfoodeng.2010.07.018


Bibliography 61

[21] Oscar García-Olalla et al. “Adaptive local binary pattern with oriented stan-
dard deviation (ALBPS) for texture Classification”. In: EURASIP Journal on
Image and Video Processing 2013 (2013). DOI: 10.1186/1687-5281-2013-31.

[22] Lei Zhang. “Fabric Defect Classification Based on LBP and GLCM”. In: Journal
of Fiber Bioengineering and Informatics 8 (2015). DOI: 10.3993/jfbi03201508.

[23] Olli Silvén, Matti Niskanen, and Hannu Kauppinen. “Wood Inspection With
Non-Supervised Clustering”. In: Mach. Vis. Appl. 13 (2003), pp. 275–285. DOI:
10.1007/s00138-002-0084-z.

[24] Vishwanath Sindagi and Sumit Srivastava. “OLED panel defect detection us-
ing local inlier-outlier ratios and modified LBP”. In: Proceedings of the 14th
IAPR International Conference on Machine Vision Applications, MVA 2015 (2015),
pp. 214–217. DOI: 10.1109/MVA.2015.7153170.

[25] Lucia Bissi et al. “Automated defect detection in uniform and structured fab-
rics using Gabor filters and PCA”. In: Journal of Visual Communication and Image
Representation 24 (2013), 838–845. DOI: 10.1016/j.jvcir.2013.05.011.

[26] Yu-Dong Zhang and Lenan Wu. “Classification of Fruits Using Computer Vi-
sion and a Multiclass Support Vector Machine”. In: Sensors (Basel, Switzerland)
12 (2012), pp. 12489–505. DOI: 10.3390/s120912489.

[27] Mr Yogesh et al. “Computer vision based analysis and detection of defects in
fruits causes due to nutrients deficiency”. In: Cluster Computing 23 (2020). DOI:
10.1007/s10586-019-03029-6.

[28] Hyeong-Gyeong Moon and Jung-Hoon Kim. “Inteligent Crack Detecting Al-
gorithm on the Concrete Crack Image Using Neural Network”. In: 2011. DOI:
10.22260/ISARC2011/0279.

[29] Tamás Czimmermann et al. “Visual-Based Defect Detection and Classification
Approaches for Industrial Applications—A SURVEY”. In: Sensors 20 (2020),
p. 1459. DOI: 10.3390/s20051459.

[30] Du-Ming Tsai, Jeng-Jong Chen, and Jeng-Fung Chen. “A Vision System for
Surface Roughness Assessment Using Neural Networks”. In: The International
Journal of Advanced Manufacturing Technology 14 (1998), 412–422.

[31] GM Nasira and P Banumathi. “Fourier Transform and Image Processing in
Automated Fabric Defect Inspection System”. In: International Journal of Com-
putational Intelligence and Informatics 3 (2013).

https://doi.org/10.1186/1687-5281-2013-31
https://doi.org/10.3993/jfbi03201508
https://doi.org/10.1007/s00138-002-0084-z
https://doi.org/10.1109/MVA.2015.7153170
https://doi.org/10.1016/j.jvcir.2013.05.011
https://doi.org/10.3390/s120912489
https://doi.org/10.1007/s10586-019-03029-6
https://doi.org/10.22260/ISARC2011/0279
https://doi.org/10.3390/s20051459


62 Bibliography

[32] Siew Mar, Prasad Yarlagadda, and C. Fookes. “Design and development of
automatic visual inspection system for PCB manufacturing”. In: Robotics and
Computer-integrated Manufacturing 27 (2011), pp. 949–962. DOI: 10.1016/j.
rcim.2011.03.007.

[33] Amin Taheri-Garavand et al. “An intelligent approach for cooling radiator
fault diagnosis based on infrared thermal image processing technique”. In:
Applied Thermal Engineering 87 (2015), 434–443. DOI: 10.1016/j.applthermaleng.
2015.05.038.

[34] Deepam Goyal et al. “Support vector machines based non-contact fault diag-
nosis system for bearings”. In: Journal of Intelligent Manufacturing 31.5 (2020),
pp. 1275–1289. DOI: 10.1007/s10845- 019- 01511-. URL: https://ideas.
repec.org/a/spr/joinma/v31y2020i5d10.1007_s10845-019-01511-x.html.

[35] Kabir Hossain, Frederik Villebro, and Søren Forchhammer. “UAV Image Anal-
ysis for Leakage Detection in District Heating Systems using Machine Learn-
ing”. In: Pattern Recognition Letters 140 (May 2020). DOI: 10.1016/j.patrec.
2020.05.024.

[36] Blaise Ngendangenzwa. “Defect detection and classification on painted spec-
ular surfaces”. In: Umea University, 2018.

[37] Christopher Dunderdale et al. “Photovoltaic defect classification through ther-
mal infrared imaging using a machine learning approach”. In: Progress in Pho-
tovoltaics: Research and Applications 28 (2019). DOI: 10.1002/pip.3191.

[38] Li Deng and Dong Yu. Deep Learning: Methods and Applications. Tech. rep. MSR-
TR-2014-21. Microsoft, 2014.

[39] Yongbo Li et al. “Rotating machinery fault diagnosis based on convolutional
neural network and infrared thermal imaging”. In: Chinese Journal of Aeronau-
tics 33 (2019). DOI: 10.1016/j.cja.2019.08.014.

[40] Amin Nasiri et al. “Intelligent fault diagnosis of cooling radiator based on
deep learning analysis of infrared thermal images”. In: Applied Thermal Engi-
neering 163 (2019), p. 114410. DOI: 10.1016/j.applthermaleng.2019.114410.

[41] Jing Yang et al. “Using Deep Learning to Detect Defects in Manufacturing:
A Comprehensive Survey and Current Challenges”. In: Materials 13 (2020),
p. 5755. DOI: 10.3390/ma13245755.

[42] Hilal Ergun et al. “Early and Late Level Fusion of Deep Convolutional Neural
Networks for Visual Concept Recognition”. In: International Journal of Semantic
Computing 10.03 (2016), pp. 379–397. DOI: 10.1142/S1793351X16400158. URL:
https://doi.org/10.1142/S1793351X16400158.

https://doi.org/10.1016/j.rcim.2011.03.007
https://doi.org/10.1016/j.rcim.2011.03.007
https://doi.org/10.1016/j.applthermaleng.2015.05.038
https://doi.org/10.1016/j.applthermaleng.2015.05.038
https://doi.org/10.1007/s10845-019-01511-
https://ideas.repec.org/a/spr/joinma/v31y2020i5d10.1007_s10845-019-01511-x.html
https://ideas.repec.org/a/spr/joinma/v31y2020i5d10.1007_s10845-019-01511-x.html
https://doi.org/10.1016/j.patrec.2020.05.024
https://doi.org/10.1016/j.patrec.2020.05.024
https://doi.org/10.1002/pip.3191
https://doi.org/10.1016/j.cja.2019.08.014
https://doi.org/10.1016/j.applthermaleng.2019.114410
https://doi.org/10.3390/ma13245755
https://doi.org/10.1142/S1793351X16400158
https://doi.org/10.1142/S1793351X16400158


Bibliography 63

[43] Haidar Almubarak et al. “A Hybrid Deep Learning and Handcrafted Fea-
ture Approach for Cervical Cancer Digital Histology Image Classification”.
In: International Journal of Healthcare Information Systems and Informatics 14 (Apr.
2019), pp. 66–87. DOI: 10.4018/IJHISI.2019040105.

[44] S. Lahmiri. “Hybrid deep learning convolutional neural networks and opti-
mal nonlinear support vector machine to detect presence of hemorrhage in
retina”. In: Biomed. Signal Process. Control. 60 (2020), p. 101978.

[45] Mehdi Moradi et al. “A hybrid learning approach for semantic labeling of
cardiac CT slices and recognition of body position”. In: 2016 IEEE 13th In-
ternational Symposium on Biomedical Imaging (ISBI). 2016, pp. 1418–1421. DOI:
10.1109/ISBI.2016.7493533.

[46] Jina Kim et al. “A deep hybrid learning model for customer repurchase be-
havior”. In: Journal of Retailing and Consumer Services 59 (2021), p. 102381. ISSN:
0969-6989. DOI: https://doi.org/10.1016/j.jretconser.2020.102381. URL:
https://www.sciencedirect.com/science/article/pii/S0969698920313898.

[47] Introduction to active thermography. URL: https : / / www . infrared - camera -
blog.com/tutorials/active-thermography-introduction/.

[48] Robert M. Haralick, K. Shanmugam, and Its’Hak Dinstein. “Textural Features
for Image Classification”. In: IEEE Transactions on Systems, Man, and Cybernet-
ics SMC-3.6 (1973), pp. 610–621. DOI: 10.1109/TSMC.1973.4309314.

[49] Manisha Verma, Balasubramanian Raman, and Subrahmanyam Murala. “Lo-
cal Extrema Co-occurrence Pattern for Color and Texture Image Retrieval”. In:
Neurocomputing 165 (Mar. 2015), 255–269. DOI: 10.1016/j.neucom.2015.03.
015.

[50] T. Ojala, M. Pietikainen, and T. Maenpaa. “Multiresolution gray-scale and
rotation invariant texture classification with local binary patterns”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 24.7 (2002), pp. 971–
987. DOI: 10.1109/TPAMI.2002.1017623.

[51] Local Binary Pattern for texture classification. URL: https://scikit-image.org/
docs/0.10.x/auto_examples/plot_local_binary_pattern.html.

[52] Steven L. Brunton and J. Nathan Kutz. Data-Driven Science and Engineering:
Machine Learning, Dynamical Systems, and Control. Cambridge University Press,
2019. DOI: 10.1017/9781108380690.

[53] Corinna Cortes and Vladimir Vapnik. “Support-vector networks”. In: Chem.
Biol. Drug Des. 297 (Jan. 2009), pp. 273–297. DOI: 10.1007/%2FBF00994018.

https://doi.org/10.4018/IJHISI.2019040105
https://doi.org/10.1109/ISBI.2016.7493533
https://doi.org/https://doi.org/10.1016/j.jretconser.2020.102381
https://www.sciencedirect.com/science/article/pii/S0969698920313898
https://www.infrared-camera-blog.com/tutorials/active-thermography-introduction/
https://www.infrared-camera-blog.com/tutorials/active-thermography-introduction/
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1016/j.neucom.2015.03.015
https://doi.org/10.1016/j.neucom.2015.03.015
https://doi.org/10.1109/TPAMI.2002.1017623
https://scikit-image.org/docs/0.10.x/auto_examples/plot_local_binary_pattern.html
https://scikit-image.org/docs/0.10.x/auto_examples/plot_local_binary_pattern.html
https://doi.org/10.1017/9781108380690
https://doi.org/10.1007/%2FBF00994018


64 Bibliography

[54] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statis-
tical Learning. Springer Series in Statistics. New York, NY, USA: Springer New
York Inc., 2001.

[55] Ihab S. Mohamed. “Detection and Tracking of Pallets using a Laser Rangefinder
and Machine Learning Techniques”. PhD thesis. 2017. DOI: 10.13140/RG.2.
2.30795.69926.

[56] Rafael C. Gonzalez and Richard E. Woods. Digital image processing. Prentice
Hall, 2008. ISBN: 9780131687288 013168728X 9780135052679 013505267X. URL:
http://www.amazon.com/Digital-Image-Processing-3rd-Edition/dp/

013168728X.

[57] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for
Large-Scale Image Recognition. 2015. arXiv: 1409.1556 [cs.CV].

[58] Salman Khan et al. A Guide to Convolutional Neural Networks for Computer Vi-
sion. 2018.

[59] Jorge J. Moré. “The Levenberg-Marquardt algorithm: Implementation and the-
ory”. In: Numerical Analysis. Ed. by G. A. Watson. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1978, pp. 105–116. ISBN: 978-3-540-35972-2.

[60] Young-Jin Cha, Wooram Choi, and Oral Buyukozturk. “Deep Learning-Based
Crack Damage Detection Using Convolutional Neural Networks”. In: Computer-
Aided Civil and Infrastructure Engineering 32 (Mar. 2017), pp. 361–378. DOI: 10.
1111/mice.12263.

[61] Khin Yadanar Win et al. “Hybrid Learning of Hand-Crafted and Deep-Activated
Features Using Particle Swarm Optimization and Optimized Support Vector
Machine for Tuberculosis Screening”. In: Applied Sciences 10.17 (2020). ISSN:
2076-3417. DOI: 10.3390/app10175749. URL: https://www.mdpi.com/2076-
3417/10/17/5749.

[62] Waleed Tahir, Aamir Majeed, and Tauseef Rehman. “Indoor/Outdoor Im-
age Classification Using GIST Image Features and Neural Network Classi-
fiers”. In: 12th International Conference on High-capacity Optical Networks and En-
abling/Emerging Technologies (HONET). Dec. 2015. DOI: 10.1109/HONET.2015.
7395428.

[63] Alexey Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. 2021. arXiv: 2010.11929 [cs.CV].

https://doi.org/10.13140/RG.2.2.30795.69926
https://doi.org/10.13140/RG.2.2.30795.69926
http://www.amazon.com/Digital-Image-Processing-3rd-Edition/dp/013168728X
http://www.amazon.com/Digital-Image-Processing-3rd-Edition/dp/013168728X
https://arxiv.org/abs/1409.1556
https://doi.org/10.1111/mice.12263
https://doi.org/10.1111/mice.12263
https://doi.org/10.3390/app10175749
https://www.mdpi.com/2076-3417/10/17/5749
https://www.mdpi.com/2076-3417/10/17/5749
https://doi.org/10.1109/HONET.2015.7395428
https://doi.org/10.1109/HONET.2015.7395428
https://arxiv.org/abs/2010.11929

	Introduction
	Problem Statement
	Research Questions
	Document Outline

	Literature Survey
	Digital Image Processing
	Feature Based Methods
	Deep Learning Based Methods
	Hybrid Methods
	Literature Summary

	Background
	Infrared Thermography
	Feature Descriptors
	Dimensionality Reduction
	Supervised Classifier
	Convolutional Neural Networks

	Methodology
	General Overview
	Primary Steps
	Handcrafted feature-based approach
	Deep learning approach
	Hybrid approach

	Experiments and Results
	Experimental Setup
	Evaluation Metrics
	Outline of Experiments
	Results
	Effect of dataset size on performance

	Conclusions
	Research Questions
	Discussions and Recommendations


