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Abstract— Engineered heart tissues (EHT) are a promising in
vitro 3D model for studying heart disease and drug discovery.
This study presents a method to analyze microscopic videos of
the EHTs automatically. The analysis consists of tracking the
movement of the EHT, which is relatively small and therefore
challenging, and segmentation of the different parts of the EHT
where the difficulty is in the different illuminations and noise.
This study proposes template matching with the extension of a
novel method that delivers smooth sub-pixel precision trajectories
for tracking. For segmentation, deep learning models are used to
segment the EHTs. This study presents a framework to evaluate
the quality of the tracking and segmentation to assess the outcome
of the proposed methods.

Keywords—Tracking, Segmentation, Human-engineered heart
tissue, Template matching, Sub pixel interpolation

I. INTRODUCTION

Cardiovascular diseases (CVDs) account for 4.1 million
deaths annually in Europe alone [1]. Globally, CVDs are the
leading cause of death [2]. To treat these diseases, human heart
(patho)physiology and drug discovery studies are now widely
done using human pluripotent stem cells[3]. In these studies,
scientists use 2d and 3d models to mimic the heart. The most
promising model to mimic the heart in vitro 3D is engineered
heart tissues (EHTs) [3]. Scientists create EHTs by using hu-
man pluripotent stem cells (hPSCs) to derive cardiomyocytes
(hPSC-CM) for the creation of human-engineered heart tissues
(hEHTs) [4].

The Applied Stem Cell Technologies (AST) and BIOS Lab-
on-a-Chip group from the University of Twente developed a
platform that allows the creation of stem cell-derived cardiac
tissues. In this platform, an EHT can be grown between two
silicon pillars, as is shown in the brightfield in Figure 1. This
platform allows scientists to analyze the behavior of EHTs.
This analysis consists of capturing the contraction proper-
ties. Additionally, the surface area of the tissue is relevant
biological information. To gather the contraction properties,
the contraction movement of the tissue needs to be collected.
The contraction movement of the tissue can be found in the
movement of the two pillars that can be seen in Figure 1.
Tracking the position of the pillars over time with sensors
would be challenging. A video from the brightfield microscope
could be manually analyzed. This manual analysis would be
challenging and time-consuming. A software algorithm that
can automatically analyze the EHTs by brightfield videos
would be of great use for the scientists working with the
EHTs. Many EHTs need to be analyzed, so accurate and
fast analysis is needed. The main problem in automatically
analyzing the brightfield videos lies in the present low contrast,

Fig. 1. Brightfield of a EHT with 2X magnification

noise, and low pillar displacement. Segmentation of the tissue
in a brightfield image could supply the additional surface area
information. The challenge in segmenting the surface of the
tissue in the brightfields are the present noise and low contrast
and the different orientation and shapes in each video.

For the analysis of the brightfield videos, this study presents
tracking by template matching with sub-pixel precision to track
the displacement of the pillars and semantic segmentation by
deep learning to provide a template for the template matching
algorithm and determination of the surface area of the EHT.
In this study, we answer the following questions:

(RQ1) Is template matching with sub-pixel precision a solu-
tion for tracking EHTs that produces correct results?

(RQ2) Can deep learning-based segmentation methods be used
to provide templates of the engineered heart tissues
pillars for the template matching with the sub-pixel
precision method?

(RQ3) Can deep learning be used to determine the surface
area of the EHT by segmenting the engineered heart
tissue?

(RQ4) How can we evaluate the performance of the tracking
algorithms?
(RQ4.1) What are quantitative measures that can be

used, and how would the methods score?
(RQ4.2) What qualitative characteristics of the tissues

can be measured by analyzing the tracking
algorithms output?

II. RELATED WORKS

In the field of EHT analysis, not many publications are
available. There are custom software tools, but it is not always
clear how precise and efficient they are. In similar research
fields, for instance, sperm cell research and Red Blood Cells in
Urine research, multiple methods exist that may be promising
for use on the EHTs videos. In the following subsections, we
discuss these methods.
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A. Tracking

In the field of cardiac research, multiple methods for
tracking the movement of heart tissues are used. Some of
the algorithms are based on a cell-level scope, and others
detect the whole heart tissue movement. Researchers devel-
oped Musclemotion[5] to quantify cardiomyocytes and cardiac
muscle contraction in vivo and in vitro. It uses subtraction
of a reference frame to the current frame to determine the
movement in a frame. The algorithm suffers from distortions,
illumination problems, sample shifts, vibrations, and debris in
the videos. These problems make the algorithm not robust in
not ideal situations. The developers use filtering to solve these
problems partly. However, this is not a good solution since
filtering will lose information.

In Live-cell tracking [6], scale-invariant feature transform
(SIFT) keypoint detection is used to track cells in microscopic
images. As SIFT detects key points on the whole image, and
an EHT moves differently within the tissue, using key points
that are not on the pillars makes the average movement less
accurate. This inaccuracy could be partly solved by segmenting
the pillar first and only accepting key points within the pillar
region. But it would still be compromised by the different
movements within the tissue.

In motion vector analysis [7] and image-based evaluation
of contraction–relaxation kinetics [8] the block matching algo-
rithm (BMA) [9] is used to track the movement vectors of heart
tissues. Their approach is to find the movement vectors of the
EHTs by matching predefined-sized blocks from the current
frame to the next frame. To gather the EHTs movement in a
video, the region of interest of the EHT needs to be selected.
The method then uses the corresponding movement vectors
gathered from frame to frame to determine the movement
of the whole region of interest. This method works well for
analyzing parts of the tissue’s movement. However, it suffers
from areas where the movement is different, for instance, on
the edges of the tissue. The block shape will take average
movement and take the parts that do not belong to the tissue.
Also, a good segmentation of the tissue is needed to do the
tracking automatically. The movement in parts of the tissue
can be different from the whole movement of the tissue. This
difference in movement can also cause inaccuracies.

Another technique used in the field of tracking cardiac
motion in EHTs is optical flow. In [10], [11] it is used to track
the motion of heart muscle tissue. With optical flow, motion is
tracked by following the pixel’s intensity by differentiating in
the horizontal and vertical direction and in time. The cardiac
tissue has parts where the spontaneous contraction behaves
out of the expected, affecting the total result of the movement.
Although optical flow can give better insights into the tissue’s
behavior, it will struggle to find the total behavior of the tissue
since the movement in parts of the tissue can be different from
the whole movement of the tissue. Flow analysis of a whole
video will also increase the computational time significantly.

Template matching is a known method to locate objects
in the medical research field. In [12] template matching is
used to locate organisms in microscopic images. Because the
observed organisms are all slightly different multiple templates

are used to get better performance. In [13] template matching
is used to find the optical disk. Here a histogram of the
colors in the image is used to create the correct template.
The developers of [14] do segmentation to create a template
for tracking by template matching. A reinforcement learning
algorithm determines if the object’s shape is changed too much
to track the object. If the object changes too much, a new
template is created to start tracking with template matching
again. In [15] template matching is used to track the motion
of sperm cells. Here the orientation of cells changes which
makes it hard to track. Tracking with template matching suffers
from the change of the object’s orientation, illumination, and
shape. In the proposed studies, researchers propose multiple
solutions to overcome this. The EHT videos have the advantage
that the pillar shape, illumination, and orientation stay similar.
Therefore template matching is promising to use for tracking
the movement of EHTs.

In [16] sperm cells are tracked by a modified version of
the Discriminative Correlation Filter with Channel and Spatial
Reliability (CSR-DCF) [17]. Here a filter is trained by deep
learning to find the shape of the sperm cells in the microscopic
pictures and then tracked. The method is precise in tracking
sperm cells. A sperm cell moves on average 5 pixels per frame.
In contrast, the movement of the EHTs is far below 1 pixel per
frame. This makes that for this method, the tracking accuracy
on the videos of the EHT could be much lower. The presented
method is hard to set up since the model has to be trained with
a ground truth data set, which is extensive to make.

In the field of tracking, there are many studies not focused
on medical or microscopic images [18]. Although these studies
use methods that may be suitable for tracking the EHT
movement in the videos, we cannot compare with their results
since the used material is different, and the results may differ.

B. Segmentation
To the best of our knowledge, there does not exist an

algorithm specialized for segmenting EHTs. In related fields,
researchers propose methods that may also be promising for
segmenting the three regions of the EHTs.

In [19], [20] Hough circle detection[21] is used to segment
red blood cells in microscope images. The method is also used
in [22] to detect the location of the optical disk in the eye.
Hough circle detection works on circle-shaped objects, but
with other round-like shapes, it suffers. Since the pillars in
the EHT videos are not perfectly round, and their shape may
change, the Hough circle direction is not ideal.

State-of-the-art image segmentation methods are nowadays
based on deep learning and convolutional networks. In [23],
[24], [25] DL is used to segment objects in medical images.
Since DL is an active and fast-growing research field, we
can use many different techniques and models to segment
the regions of the EHTs. In [26] a recent survey is done
of the available DL models for segmentation. The results
achieved in these studies show that although DL is not perfect,
there lies a great potential for DL on the EHT segmentation
task. U-net [27] is a deep learning model developed explicitly
for efficiently segmenting biological microscopy images and
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therefore promising to be used on brightfield frames of the
EHT videos. Deeplabv3 with a resnet-101 backbone[28] scores
well in the survey on the different data sets. Although it is not
specially designed for biological microscopy images, it can be
promising to try.

Another method used for the segmentation of medical
images is thresh-holding and edge detection. These methods
have been around for some time and are well known. In [29],
[30] edge detection is used to segment red blood cells. Edge
detection suffers from noise and is therefore not robust. The
researchers in [31], [32], use thresholding to find blood cells
by the difference of pixel intensity. The proposed methods use
colored images, but gray-scale images like in the EHT videos
should also work. Thresholding can suffer from differences in
color between images, making it a less robust method.

There also exist many studies on segmentation not focused
on medical or microscopic images. Although these studies use
methods that may be suitable for the segmentation of the EHT
videos, we cannot compare the results of these studies since
the used material is different and the results may differ.

III. MATERIALS

The EHTs used in this study are formed in the fluid around
the two pillars. The pillars are silicon molded and are not
symmetrical or round at the top, as can be seen in Figure 1.
The shape of the pillar is cylindrical with on top a round-like
plateau. The molding places the pillars at a distance of about
3.2 mm from each other. This distance is kept consistent across
all the silicon molds.

The EHTs are recorded in an inverted microscope under
temperature and humidity control using a high-speed camera
with 100 frames per second (fps). The microscope outputs
frames in an 11bit grayscale format. There are three relevant
regions in the brightfield of an EHT, which can be seen in
Figure 3. The red encircled part is the inner part of the silicon
pillar. Because of the silicon molding, the shape is not perfectly
circular. The green region indicates the shape of the plateau
on top of the pillar. The last part is the whole EHT.

The movement of the EHTs is biologically defined. In
Figure 2 an example of a trajectory of an EHT is shown. A
certain base tension will push the pillars closer to each other
even when they do not contract. Upon the base tension, the
EHTs will contract and push the pillars to each other. The
movement of the EHT is smooth, so no sudden changes should
appear in the corresponding trajectory. In the videos, the EHT
is stimulated with a 2Hz electronic pulse. This pulse will cause
the EHTs to contract at 2Hz. Some of the EHTs will have a so-
called ”double bump” in their trajectory. Although this bump
is not biologically expected, it is present. This bump is an extra
Contraction and appears when the tissue is not fully relaxed.
In Figure 2 a ”double bump” trajectory is shown.

Peaks

Valleys

Upward
Downward

Double

contraction

bump

Fig. 2. An example of an EHTs displacement trajectory with so-called
”double bump” where the tissue contracts while not fully relaxed. Arrows
mark the double bump.

Fig. 3. EHT regions of interest. A. Inner area of the pillar. B. Area of the
plate. C. EHT surface area.

IV. METHODS

In this section, methods for tracking and segmentation of
the EHT videos are presented. A overview of the total process
is shown in Figure 4.

Fig. 4. Overview of the total EHT analysis algorithm.

A. Tracking
Finding the EHTs displacement consists of tracking the

precise location of the pillars in each video frame.
1) Template matching: Template matching is a method

for finding a (similar) region in a source image. Template
matching compares a template image T to a region in a
source image I by pixel intensities with normalized correlation
coefficient(NCC) [33]. The corresponding formula’s for NCC
matching are found in Equation 1, Equation 2 and Equation 3.
NCC puts out accumulator matrix R. Each value in the
accumulator matrix represents a match score of the location
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in the source image where one is an exact match, and zero
is no match at all. We find the location of the best match by
determining the highest score.

R(x, y) =

∑
x′,y′(T

′(x′, y′) ∗ I ′(x+ x′, y + y′))√∑
x′,y′ T

′(x′, y′)
2 ∗

∑
x′,y′ I

′(x+ x′, y + y′)
2

(1)

T ′(x′, y′) = I(x′, y′)−
∑
x′′,y′′ (T (x

′′, y′′))

(w − h)
(2)

I ′(x+x′, y+y′) = I(x+x′, y+y′)−
∑
x′′,y′′ (I(x

′′, y′′))

(w − h)
(3)

In the videos of the EHTs different shapes of pillars, shapes of
tissues, and lighting are present. To perform accurate template
matching, a template is segmented for each individual video.
This template is segmented on the first frame of the video. In
subsection IV-B the proposed automatic pillar segmentation
process is described. In Figure 5 an example of a tissue
and its corresponding segmented template for the right pillar
(Figure 7) is shown. The initial location or the location in the
frame before is known. Also, from biology, it is known that
the tissue moves within bounds. Therefore a region of interest
around the known location is selected to compute the template
matching algorithm. A significant reduction of computational
costs is achieved by computing template matching only on the
selected region. In Figure 6 the selected region of interest of
Figure 5 is shown. The corresponding accumulator matrix is
shown in Figure 8. Here the brighter the pixel is, the better
the match. The pixel distance between the points is calculated
to create a trajectory from the found points with Equation 4.
Then the distance in pixels is converted to millimeters, and the
distance between the pillars is subtracted with Equation 5. In
Figure 9 a trajectory of an EHT gathered by template matching
is shown.

Tpixel =
√

(xleft − xright)2 + (yleft − yright)2 (4)

T = Tpixel ∗ α− 3.2mm
Where α is the conversion factor from pixels to millimeters

(5)

2) Sub-pixel precision: Since the movement of the pillars is
far below pixel level, subpixel precision is needed to gather
usable results for the analysis of EHT videos. This subsection
presents a new template/pattern matching approach with sub-
pixel precision for tracking the movement of the pillar. The
output of the NCC will give an accumulator matrix as is
shown in Figure 8. In Figure 10 we zoom to the region of the
maximum intensity. In this case, there is an exact match of
the template. In Figure 10 the maximum score is in the center
pixel. The pixel has a high score compared to its neighboring
pixels. This is expected since shifting the template farther away
from the correct location will lower the match score, and the
middle pixel is an exact match. In Figure 11 the match lays
between pixels, therefore, we see neighboring pixels that have
a match score close to the maximum score. In Figure 11 we can

Fig. 5. brightfield of an EHT that is used as the input image for template
matching.

Fig. 6. Selected region of interest
for template matching on a pillar of
the EHT.

Fig. 7. Selected template for tem-
plate matching a pillar of the EHT.

Fig. 8. Accumulator matrix of the
template matching of the EHT
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Fig. 9. Trajectory of an EHT tracked with template matching

see that the left neighbor pixel from the maximum pixel has a
matching score close to the maximum. These values indicate
that the exact match lies between the left neighbor pixel and
the maximum score.

To find a match with subpixel precision, we use interpola-
tion. Interpolation is a method that will estimate a function
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Fig. 10. Peak region result image of the template matching method exactly
on pixel matched and its corresponding 3d projection

Fig. 11. Peak region result image of the template matching method exactly
on pixel matched and its corresponding 3d projection

based on measured points. In Figure 11 it is observed that a
linear function could not form the curves since the surface is
expected to be smooth. A polynomial function can estimate
the values between pixels and can find higher match scores
between pixels. Bicubic spline is a common technique for
obtaining smoothness in two-dimensional interpolation [34].
The bicubic spline can convert the peak region into a polyno-
mial function. Bicubic spline outputs a function that gives a
match score for a (decimal) location in the peak region and
beyond. The local maximum of the function needs to be found
to find the highest match score. Finding the local maximum
is done by the Nelder–Mead algorithm. The Nelder–Mead
algorithm is one of the best-known algorithms for multidi-
mensional unconstrained optimization without derivatives [35].
The Nelder–Mead algorithm runs a converging process that
computes test points to find the direction for the upcoming test
points. It stops the converging process if the deviation between
the test points is lower than a selected threshold. The location
of the maximum match score at pixel level is already known
and can therefore be a good starting point to find the local
maximum of the function. The initial point is within a half-
pixel distance of the maximum match score, and therefore, the
computation of the Nelder–Mead algorithm is limited together
with the threshold. The threshold for stopping the converging
processes is 0.0001. No significant change to the outcome is
present at this value since the level of noise in ETH videos
is influencing the template matching algorithm significantly
more. In Figure 12 the found location of Figure 11 shown. In

Fig. 12. Peak region result image by the template matching algorithm
with annotated subpixel precision match and its corresponding interpolated
3d projection.
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Fig. 13. Trajectory of an EHT tracked with template matching with subpixel
precision.

Figure 12 the 3d surface shows interpolated version of the 3d
surface in Figure 11. Now a whole trajectory can be made with
the subpixel precision points found by the introduced method.
An example of a trajectory can be found in Figure 13.

B. Segmentation by Deep learning

Segmentation methods based on deep learning approaches
deploy neural networks to classify each pixel of an image
belonging to one of the interest classes. The approaches do
this by identifying different regions belonging to different
(parts of) objects of interest. State-of-the-art approaches use
convolutional networks that are trained using labeled examples.
The label examples consist of layers that contain masks of
the different regions. In DL, the most common approach is to
apply a convolutional neural network (CNN) to analyze visual
imagery [36].

1) Dataset: A dataset was created to provide a CNN with
ground truth data of the EHT brightfield’s. A set of 81 videos
of about 500 brightfield frames per video are provided. Since
manual segmenting is time-consuming, only four frames per
video are segmented. For ten videos, seven frames per video
are segmented. The dataset has 290 brightfield images with
their corresponding labels. The labels consist of RGB images
where white is the background, red is the inner pillar, green is
the outer pillar, and blue is the tissue itself. An example of a
label is shown in Figure 14. In the supplied dataset, there are
two frame dimensions, 1414x532 pixels and 1476x472 pixels.
Before we feed the data to the CNN, the data is resized to the
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Fig. 14. Manual segmented label of the EHT dataset. A. Inner area of the
pillar. B. Area of the plate. C. EHT surface area.

same dimensions. First, height and width are scaled equally to
maintain the aspect ratio. Then padding is used to fill up space
to the correct dimensions. Training a CNN is computationally
costly. The dimension is resized to half of the maximum of the
two input dimensions to decrease the computational cost. The
output of the resize is an image with the dimension of 738x266
pixels. When training, the dataset is split into two parts. One
for training, the other for testing. The test set should contain
frames that the model has never trained on before. This, so
actual performance on new videos can be measured. Since we
use multiple frames per video, we must construct a test set
of frames from videos not in the train set. Now the dataset is
ready to use for training a model.

2) Training: A CNN contains convolutional layers that
consist of a set of learnable filters (or kernels). These layers
consist of artificial neurons. A CNN is set up to segment the
regions of the EHTs. The input of the CNN is a brightfield
frame of a EHT video. When fully working, the CNN will
annotate the found shapes in mask matrixes. We initialize all
parameters of the CNN network to start training it to give the
correct outputs. Then the CNN is fed with frames of the EHT
videos where the correct segmented output is known (labeled).
We compare the output of the CNN with the known label by a
cost function. The outcome of the comparison adjusts the CNN
parameters. When the CNN learns enough samples, the CNN
can segment on its own. We can test the precision of the CNN
with a so-called test set. The test set contains labeled frames
that are new to the CNN. We can give a score for precision to
the CNN by comparing the outputs of the CNN with the labels.
From the literature, we found two main CNN approaches for
the segmentation of the EHT video frames, U-net [27] and
Deeplabv3 with a ResNet-101 backbone [28]. Both approaches
perform well in segmentation tasks where the U-net approach
is developed for biomedical image segmentation.

3) U-net: For the training of the U-net model, we use the
settings in Table I. The input layer of the model is adjusted
from a three-layer RGB input to a one-layer grayscale input
since the input is in grayscale.

4) Deeplabv3 with a ResNet-101 backbone: For the training
of the Deeplab with a ResNet-101 backbone, we use the
settings in Table I. The input layer of the model is in three-
layer RGB format. Since the model uses the three layers further
up in the model, the input layer cannot be changed directly.
Therefore the grayscale input is converted to an RGB image
before it is fed to the model.

U-net Deeplabv3 with a ResNet-
101 backbone

Loss function Mean square error (MSE) Mean square error (MSE)

Optimizer Adaptive momentum
(adam)

Adaptive momentum
(adam)

Learn rate 0.05 0.01
Epochs 200 200
Batch size 1 3
Input layers 1 3
Output layers 4 4

TABLE I. Training settings for U-net and Deeplabv3 with a ResNet-101
backbone model on the EHT dataset

5) Calculation the surface area: The output of the two
proposed deep learning models is four mask images containing
the three different regions of interest. The mask has the pixel
value one if the pixel belongs to the class and zero if not. To
calculate the surface area of the EHT, we calculate the surface
of one pixel and multiply it by the sum of all activated pixels in
the mask. In Equation 6 the formula for calculating the surface
area is shown.

surfacemm2 = α2 ∗
∑
Isurfacemask

Where α is the conversion factor from pixels to millimeters
(6)

C. Segmentation as input for template matching

Our template matching method needs templates of the two
pillars to create a trajectory of the movement of the EHT.
To supply the templates, manual or automatic segmentation
can be used. This study proposes two deep learning models
for the segmentation in chapter IV-B. To see if we can
use the results of the deep learning models as an input to
the template matching method, we make a comprehensive
comparison between manual segmentation, segmentation by
U-net, and segmentation by Deeplabv3 with a ResNet-101
backbone.

To create a template from a segmented mask, we can either
pick the pillar’s inner or outer part. We select a square around
each pillar from the minimum and maximum bounds of its
shape to create a template. The output of the deep learning
models is expected to contain minor errors. These errors are
unwanted activations that could lead to extra blobs in the
segmentation masks. Because the blobs are expected to be
smaller than the shape of the pillars, selecting the two pillars
is done by picking the two larges shapes in the segmentation
mask to generate the templates.

V. VERIFICATION

To the best of our knowledge, there are no ground truth
data sets available for the segmentation and tracking of the
EHT videos. Thus, a framework for verification is needed to
evaluate the performance of the proposed approaches. This
section proposes an experimental framework for verifying the
quality of the segmentation and tracking results.
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A. Tracking
For tracking the EHTs, subpixel precision is needed. For a

human, it is impossible to create such precision with manual
tracking. A human would produce too much error in the results,
and therefore we can not use manual tracking to verify the
tracking results. Furthermore, for a human, it would be time-
consuming to place a marker on each video frame.

1) Simulation/Quantitative evaluation: First, a video of an
EHT with marked black dots was used for a quantitative
evaluation. The idea was to track the black dots to create the
ground truth and then artificial remove the black dots from the
video so the software could track it. We found that the black
dots were not clean enough to track the pillars correctly in this
experiment. Therefore a simulation video was used to create
a ground truth.

To create a simulation video, we start with a background
image. A video of an empty container of an EHT is filmed.
This video is recorded on the same setup as the actual EHT
videos and will give us the same noise level, illumination, and
magnification. In figure Figure 15 a frame of the background
video is shown. Now we can create a moving tissue on top
of the background. An EHT is segmented from its video, cut
in half, and placed on top of the background video. Since the
pillars are moving inward, we need to move the two segmented
parts to each other. The movement of the pillars is in subpixel
precision. An affine transformation is used to translate the
two parts to a sub-pixel precise location. By only moving the
two parts inwards, we prevent a gap between the two parts
showing the background. In Figure 16 a resulting frame of
two segmented parts placed on top of the background is seen.

There is always noise in the actual EHT videos, and variabil-
ities can be expected among videos. Therefore, random noise
is added to the simulation video to test the robustness of the
method. The background of the simulation video is recorded on
the same setup and already contains noise. Therefore random
noise is only added to the tissue. To test how well the method
can resist noise, adjustments can be made to the amount of
noise added. An example of a frame with 25% noise is shown
in Figure 17. Different amplitudes, noise levels, and signals
are generated to gather a wide variety of videos to get a
good overview of the performance of the proposed method
for tracking under different conditions. To measure the error
from the ground truth, we calculate the mean absolute error
(Equation 7) and mean square error (Equation 8).

MAD =
1

n

n∑
i=1

(yi − xi) (7)

MSE =
1

n

n∑
i=1

(yi − xi)
2 (8)

2) Survey/Qualitative evaluation: Scientists with a biologi-
cal background working with EHTs know how a certain EHT
should move and how the corresponding trajectory should
look. We can gather a good view of how the algorithm
performs by surveying the trajectories produced by the tracking
algorithm with these scientists. The survey contains a score

Fig. 15. Brightfield of an empty EHT container.

Fig. 16. Brightfield of an empty EHT container with two parts of an EHT
placed on top.

Fig. 17. Brightfield of an empty EHT container with two parts of an EHT
placed on top and 25% noise added on the EHT.

from one to five, where one indicates that the trajectory is
totally different from the expected and five is precisely as
expected. Furthermore, the attendees to the survey should leave
a comment to give clear reasoning about why the score was
given.

3) Evaluation of EHT contractile properties: The tracking
algorithm’s output is a trajectory of the difference in distance
over time of the pillars centers as a result of contraction of the
tissue. An example of a trajectory is given in Figure 3. Bio-
logically, The contractile properties of the EHTs are expected
to behave according to:

1) The speed of contraction needs to be higher than the speed
of relaxation.

2) There are no bumps when contracting.
3) During contraction or relaxation, the trajectory should

never invert the direction.
4) There are no sudden spikes or block-shaped movement.
5) The contraction of the EHT should be according to the

frequency of stimulation.
These behaviors can be tested on the trajectories produced
by the template matching with sub-pixel precision method to
verify the correctness of the tracking algorithm.

To test the behaviors, we first gather all the valleys and
peaks. Then behavior 1 is tested by comparing the rise and fall
speed. We measure rise speed by measuring the time it takes
from the valley to the peak. For the fall speed we use the time
from peak to valley. The last 10% at the top and bottom of the
y axis of the contraction curve has a pretty different derivative.
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We should exclude these parts in determining the rise and fall
speed.

When an EHT is contracting, there should be no bumps
while contracting. If there are no directional changes in the
path from valley to peak, the trajectory complies to behavior
2. Behavior 2 is tested by checking each sample to be higher
than its predecessor. For this test, the 10% top and bottom of
the y axis are still left out for reliability since a small error in
the trajectory could change its direction.

In behavior 3 it is stated that the direction cannot invert
during contraction or relaxation. For the contraction, the check
used in behavior 2 should be enough. As discussed in section I,
when the EHT relaxes, a second contraction bump might be
present. Therefore behavior 3 could only be tested partly. It
would be good to measure the width and height of the contrac-
tion bumps since they are of interest to the scientists working
with the EHTs. Measuring the width of the contraction bumps
is done by measuring the time from the first direction change
when falling, to the point that the same height is reached falling
again from the contraction bump. The height of the contraction
bump is measured by subtracting the peak of the contraction
bump to its starting point.

An ideal trajectory does not contain any spikes or block-
shaped movement. Since the camera’s resolution is limited and
noise is present, we expect that the results will not be perfect.
Although we expect some noise and block-shaped movement,
we can still test 4 by the derivative of the trajectory. Peaks and
block-shaped movements have a high derivative. By placing a
threshold on the derivative, we can pick out high peaks or
blocky movements that significantly impact the trajectory.

The scientists stimulate the EHTs in the videos with a
frequency of 2Hz. In behavior 5 it is stated that the EHTs will
contract following this frequency. We check this behavior by
determining the time between the peaks. When the frequency
is significantly different from the stimulated frequency, the
trajectory does not comply with behavior 5.

4) Comparison to state-of-the-art: To the best of our knowl-
edge, the state-of-the-art for tracking ETHs is MUCLEMO-
TION [5]. We use the results of this algorithm for a comparison
with the new proposed tracking algorithm. Furthermore, we
use the simulation videos created in subsubsection V-A1 to
compare both methods to the ground truth.

B. Segmentation

1) Manual segmentation: Although manual segmentation
could contain small errors, it can still recognize outliers in the
segmenting process. Intersection over Union (IoU) is used to
compare the manual segmented results to the proposed method.

IoU =
AreaofOverlap

AreaofUnion
(9)

VI. RESULTS

In this section, results are presented of the proposed tracking
and segmenting algorithms and their verification methods.

A. Template/pattern matching with Sub-pixel precision
1) Simulation/Quantitative evaluation: In Figure 18 and

Figure 19 the results of the proposed tracking method to the
simulation videos with variation levels of noise are shown.
Here, we can observe that the error grows when noise becomes
higher. The algorithm is stable until about 25% noise is added
to the tissue in the simulation video. Above the 25%, the error
is too high to gather stable results. With low noise added, the
algorithm performs well under 0.1 pixel precision.
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Fig. 18. Mean absolute error results of the simulated videos of different
signals tracked by the proposed template/pattern matching with sub-pixel
precision method compared to the ground truth.
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Fig. 19. Mean square error results of the simulated videos of different
signals tracked by the proposed template/pattern matching with sub-pixel
precision method compared to the ground truth.

2) Survey/Qualitative evaluation: A specialist who works
with EHT videos has taken a look at the results of a dataset
of 81 EHT videos. In Figure 20 the results of the survey are
shown.

3) Evaluation of EHT contractile properties: In Figure 21
it can be seen that most of the videos contract faster than
they relax. There are three videos where the contraction is
slower than the relaxation. In Figure 22 it can be seen that the
frequency in most of the videos is very close to 2Hz with a
maximum outlier of 2.25Hz. In Figure 23 it can be seen that
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5 Score(79) 4 Score(1) 3 Score(1)

Fig. 20. Scores of the tracked trajectories scored by a specialist from one
to five, where one is totally different from the expected and five is precisely
as expected.

most of the videos do not have rise direction change errors.
In Figure 24 it can be seen that when the displacement is
low, the amount of rise direction change errors becomes higher
and when the displacement is higher than about 0.05mm no
errors are present. In Figure 25 it can be seen that most videos
have a maximum displacement speed between 0− 150mm/s
and that there are four outliers. In Figure 26 we can see a
clear correlation between the maximum displacement and the
maximum speed of the trajectory. In Figure 27 it can be seen
that most videos have a displacement between 0− 10mm and
that there are four outliers. In Figure 28 we can see that the
four outliers with a higher displacement also have a higher
surface area.
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Fig. 21. Histogram of the fall versus rise speed ratio of the 81 EHT videos.
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Fig. 22. Histogram of the frequency of the 81 EHT videos.
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Fig. 23. Histogram of the rise direction error counts in the trajectory of the
81 EHT videos.
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Fig. 24. Maximum displacement versus rise direction error counts of the
trajectory of the 81 EHT videos.
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Fig. 25. Histogram of the maximum displacement speed of the trajectory of
the 81 EHT videos.
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Fig. 26. Maximum displacement versus the maximum displacement speed
of the trajectory of the 81 EHT videos.
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Fig. 27. Histogram of the maximum displacement of the trajectory of the
81 EHT videos.
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Fig. 28. Maximum displacement versus the surface area of the 81 EHT
videos.

4) Comparison to state-of-the-art: In Figure 29 it can be
seen that both algorithms have found the trajectory. MUS-
CLEMOTION starts from a high point, and then it lowers
more than 20 pixels. In Figure 30 MUSCLEMOTION detects
the same trajectory, but in the middle of the y-axis, it sud-
denly changes direction. In Figure 31 MUSCLEMOTION is
compared with template matching with sub-pixel precision and
with the ground truth. Both algorithms are close to the ground
truth. In Figure 32 we see that although a noisy video template
matching with sub-pixel precision still finds the ground truth
trajectory. In appendix A more comparisons are shown.
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Fig. 29. Comparison of a trajectory from a EHT video, MUSCLEMOTION
versus template matching with sub-pixel precision.
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Fig. 30. Comparison of a trajectory from a EHT video, MUSCLEMOTION
versus template matching with sub-pixel precision.
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Fig. 31. Comparison of a trajectory from a simulation video of a 2Hz sine
with a 2-pixel amplitude and 10% noise applied, MUSCLEMOTION versus
template matching with sub-pixel precision versus ground truth.
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Fig. 32. Comparison of a trajectory from a simulation video of a 2Hz sine
with a 0.5-pixel amplitude and 20% noise applied, MUSCLEMOTION versus
template matching with sub-pixel precision versus ground truth.

B. Segmentation by deep learning

The result of a Deeplabv3 with a ResNet-101 backbone and
a U-net prediction is shown in Figure 33. In Table II the results
of the IoU of the test set are shown.

Model Outer Tissue Outer Pillar Inner Pillar
deeplabv3
resnet101[28]

96.8% 96.0% 90.1% 91.2%

Unet[27] 97.3% 97.1% 91.3% 92.5%
TABLE II. Intersection over Union (IoU) results of the Deeplabv3 with
a ResNet-101 backbone and U-net prediction of the background, inner pillar,

outer pillar and tissue classes
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Fig. 33. Segmentation ground truth, Deeplabv3 with a ResNet-101 backbone
prediction and Unet prediction of the background, inner pillar, outer pillar and
tissue classes
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Fig. 34. Histogram of the surface areas of 81 EHT videos.

1) Calculation the surface area: The calculation of the
surface area relies on the performance of the segmentation.
Therefore, the results of the segmentation in paragraph VI-B
can be directly related to the performance of the surface area
calculation. In Figure 34 a histogram of the surface areas of
the base set of 81 videos is shown. We can see a clear peak
around 2mm2.

C. Segmentation as input for template matching

1) Comprehensive comparison of templates: In Figure 35
and Figure 36 the results of the comprehensive comparison
of different templates are shown. We can see that the various
trajectories have different base distances since they are not
on the same height. Although the different base distances,
the trajectories look very similar. Overall, the outer pillar
templates have a smoother trajectory than the inner pillar
template trajectories. In some cases, the base distance of two
or more methods is the same as shown in Figure 36, but this
varies between videos.
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Fig. 35. Comparison between templates. Inner and Outer part of a pillar as
template manual selected or by segmentation by U-net and Deeplabv3
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Fig. 36. Comparison between templates. Inner and Outer part of a pillar as
template manual selected or by segmentation by U-net and Deeplabv3

D. Computational speed
The computation speed of the algorithms is measured and

differ by the computers performance. In Table III the compu-
tation speed results of the proposed methods are shown on a
high end desktop and a laptop.

laptop desktop
CPU GPU CPU GPU

i7 6700HQ GTX960m I7 10700 RTX3090
Video loading 4.7s x 1.5s x

U-Net model load 0.21s 0.33s 0.13s 0.15s
U-Net segmentation 2.15s 2.13s 1.0s 1.02s

Deeplabv3 model load 2.31s 5.34s 1.19s 2.19s
Deeplabv3 segmentation 4.91s 5.17s 2.43s 2.47s

Inner pillar template matching 14.1s x 6.2s x
Outer pillar template matching 16.8s x 7.2s x

TABLE III. speed results of loading, segmentation and template
matching
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VII. DISCUSSION

A. Template/pattern matching with Sub-pixel precision

1) Simulation/Quantitative evaluation: A great addition to
the method would be to measure the level of noise present in a
video before the analysis. This measurement can then estimate
the precision of the output trajectory with the found results of
the simulation.

2) Survey/Qualitative evaluation: The survey shows that in
98% the tracking algorithm produces a precisely as expected
trajectory. One video had a score of 3 because one of the
pillar centers was moving up and down. This movement
was due to the printing on the screen. The trajectory was
correct. One video had a score of 4 because the point was not
correctly in the center of the pillar during the whole video.
This misalignment had to do with a not correctly manual
segmented template. When we leaf the two videos out, we see
that the algorithm is 100% successful in producing a precisely
as expected trajectory. This result shows that the algorithm is
stable and of great use for the scientist working with the EHTs.

3) Evaluation of EHT contractile properties: Most EHT
videos comply too the property evaluation of the rise speed that
should always be higher than the fall speed. In the video where
the ratio of contraction speed versus relaxation speed was
negative, the trajectory was noisy, and the displacement was
very low, causing the detection algorithm to select the wrong
peaks resulting in a negative result. In the two videos where
the contraction speed versus relaxation speed ratio was below
one, a double contraction bump by the tissue was detected
as another contraction. This bump causes the calculation of
the fall speed to be higher since it only takes the top part of
relaxation into account, resulting in a ratio below one. The
verification algorithm suffers when the trajectory is noisy or
contains small double bumps that are not detected. Although
the verification algorithm suffers under these circumstances,
the tracking algorithm is still correct after manual checking.
Some trajectories like Figure 37 have rise direction errors. Here
the direction changes while rising. In Figure 26 we can see
that this happens especially when the pixel displacement is
low. This is as expected. From the simulation in paragraph
VI-A3, we can conclude that there is an absolute error in
template matching with sub-pixel precision. When the pixel
displacement becomes lower, the relative error rises, making
it more likely that a rising error happens. A low pass filter
on the trajectories could solve this partly. When tissue has
no displacement, it means that physiologically the tissue is
dead. A trajectory of a tissue that has low displacement is of
less relevance to the scientists since it is almost dead. The
rise errors in the videos are caused by the relative error in
the tracking algorithm but only appear in less relevant EHT
videos. The relative error problem also counts for the behavior
that there are no sudden spikes or block shape movement. In
trajectories with a very low pixel displacement, more errors
will appear. In parts of trajectories with less movement, for
example, the lower parts of the contraction, more errors will
appear.

Since electronic pulses stimulate the frequency of contrac-
tion, the measured frequency of contraction in the EHT videos
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Fig. 37. Trajectory of a EHT with double bumps and low displacement.

should be the same. We see that most videos are very close
to the stimulated 2Hz. Some videos have a slightly higher
frequency. In the trajectories of these videos, we see that
double contraction bumps are present, causing the contraction
to be irregular. In Figure 37 a trajectory distorted by double
contraction bumps is seen. Here the maximum frequency is
2.63Hz and the minimum 1.59Hz the average is 2.12Hz.
It is seen that every time a double contraction bump has
appeared, the following two contractions are very close to
each other, causing a higher frequency. The double contraction
bump makes the minimum and maximum frequency diverge
more. When we look at the average frequency, most videos
still comply with a small margin to the stimulated 2Hz.

4) Comparison to state-of-the-art: In comparing MUSCLE-
MOTION and the proposed method, we compared actual EHT
videos and simulation videos. The simulation looks artificial,
and in the middle, where the two parts of the tissue overlap, a
stripe appears. Because the template matching with sub-pixel
precision method uses a region of interest, the stripe part will
not be considered. If it appeared on a region of interest, it still
would deliver a low match since it is not expected that a tem-
plate also contains a stripe. The MUSCLEMOTION method
uses subtraction of a reference frame to the current frame to
measure. MUSCLEMOTION could measure the differences at
the stripe and therefore we should take caution when taking a
conclusion from the simulation results.

In Figure 29 we see that MUSCLEMOTION finds the same
curves, but the base tension changes from the start. This
tension change is not expected since the tissue should return
to its base tension when relaxing. In Figure 30 we see that
MUSCLEMOTION changes direction halfway contraction and
relaxation. From the biological defines, we know that this
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should not happen. In Figure 31 and Figure 32 a comparison
is made with simulation. As discussed, this comparison can
suffer from the artificial effects of the stripe. In Figure 31
we see that both methods are close to the ground truth where
MUSCLEMOTION has more distortion in the trajectory. In
Figure 32 we see that the distortion is high. The 25% of
noise and the relatively low displacement cause this distortion.
MUSCLEMOTION could not find any trajectory that looks
like the ground truth, but template matching with sub-pixel
precision does. Summarizing the results of the comparison,
we see that template matching with sub-pixel precision out-
performs MUSCLEMOTION.

B. Segmentation by Deep learning
From the results, we found out that the U-net implementa-

tion scores the best in the IoU test. Although IoU scores higher,
the visual results show that the U-net implementation shows
more strange blobs in unexpected places (Figure 33). When
selecting the pillar templates for the tracking algorithm, blobs
may cause inaccuracies. It is better to have as few as possible
blobs in the output. The Deeplabv3 implementation would be
the best to pick for the segmenting task since the Deeplabv3
implementation scores very close to the U-net implementation
and suffers less from the appearance of blobs.

1) Determining the surface area: Since the result of the
segmentation directly represent the results of the surface area
calculation. We can see that with a small error, the segmenta-
tion can determine the surface area of the EHT. In Figure 34 we
see a nice spread of the surface areas between the data set of
81 videos. The four videos with a relatively high surface area
also have a high displacement in their trajectory, explaining
their outlying size.

C. Segmentation as input for template matching
1) Comprehensive comparison of templates: The resulting

trajectories stay more or less the same between templates. The
outer pillar produces the smoothest trajectories. This probably
has to do with more variations and edges in the outer pillars
template, resulting in more errors when a template is not in the
correct location. The base tension differs between methods but
also between methods and videos. The base tension that differs
between methods has to do with the center of a template, which
can differ a few pixels per method. Boxes are drawn around the
found pillar shapes and determine the centers. The difference
between videos can be caused by the shape of the silicon pillars
that can differ by their production process, and the shape of the
tissue can slightly alter the pillar shape. Although the initial
position slightly changes from the manual selected template,
both Deeplabv3 and U-Net succeed in selecting the correct
template. As discussed in paragraph VII-B the Deeplabv3
implementation show fewer blobs in its results, making it better
for displaying and creating templates.

D. Computational speed
The computational speed results are in the range of seconds

resulting in high throughput. Scientists can now analyze whole

batches of EHT videos automatically in a reasonable time.
Moreover, since the algorithm is fully automatic, no manual
work is needed.

E. Practical problem

The template matching with sub-pixel precision produces
trajectories that are of great use for the scientists who work
with EHTs. In developing this method, the scientists started
using it immediately since it was of such gain to the methods
they used before for gathering trajectories. Combined with the
automatically picking of the template by segmentation, this
method solved the analyzing problem of the scientists who
work with EHTs. The extra features gathered by the biological
checks are also of great relevance for scientists who work with
ETHs. In Figure 26 we see a correlation of the movement
speed in the trajectory versus the maximum displacement of
the EHT. This correlation is expected since the displacement
and the contraction speed are both related to the contraction
force.

This tool will allow to check the the Frank-Starling law of
the heart [37] which relates the contraction force to the volume
of the tissue. To check the Frank-Starling law of the heart a
different platform is needed.

VIII. CONCLUSION

The proposed method for tracking and segmentation is
a huge step forward in the assessment of EHTs. Scientists
who work with EHTs can now do an easy, quick, and fully
automatic analysis with highly accurate results. The results
given by the algorithm are proven to be robust and are tested
by the verification framework. The additional results of the
biological checks also prove great potential in the information
that can be subtracted from the proposed methods. The method
will help in the assessment of the EHTs for biological and drug
discovery studies.

The deep learning-based segmentation can provide templates
for the template matching with the sub-pixel precision method.
We conclude that the Deeplabv3 with a ResNet-101 backbone
implementation works the best and that the template of the
pillar plate creates the smoothest trajectories. The high accu-
racy of the deep learning-based segmentation allows the use
of the segmented tissue shape to calculate the surface area of
the EHT.

The quantitative evaluation results by simulation, evaluate
that template matching with sub-pixel precision is accurate
when noise levels are within the limit. From the qualitative
evaluation in the form of a survey under the scientists who
work with EHTs, we can conclude that the resulting trajectories
are as expected. Although some outliers, we can conclude that
the results comply with the defined biological behaviors. In
comparison to the state-of-the-art, we conclude that the results
look similar but that the proposed method outperforms the
state-of-the-art.

Platforms for EHTs that are not trained by the deep learning
segmentation model can still be tracked by the proposed
tracking method by manually selecting the pillars or anchors.
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This makes the tracking method very flexible for experiments
with different platforms.

Although not explicitly developed, we can use this method
in many more fields. For example, the study of contraction
of single cells where an edge could be picked as a template.
In non-biological fields, for example, in a vibration or shock
tests of electronic devices the proposed method can be used
to study the precise movement of parts.

IX. PYTHON PACKAGE

A python package is created for tracking with sub-pixel
precision to provide scientists with an easy-to-use library.
This library does not contain the segmentation part since the
segmentation relies on a specifically trained model, which will
not work on slightly different images. Instead, the scientists
can provide their own templates.

The python package can be found on www.github.com/
dkeekstra/sp templatematching.
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APPENDIX

A. Results comparison MUSCLEMOTION
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Fig. 38. Comparison of a trajectory from a EHT video, MUSCLEMOTION
versus template matching with sub-pixel precision.
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Fig. 39. Comparison of a trajectory from a EHT video, MUSCLEMOTION
versus template matching with sub-pixel precision.
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Fig. 40. Comparison of a trajectory from a EHT video, MUSCLEMOTION
versus template matching with sub-pixel precision.
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Fig. 41. Comparison of a trajectory from a EHT video, MUSCLEMOTION
versus template matching with sub-pixel precision.
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Fig. 42. Comparison of a trajectory from a EHT video, MUSCLEMOTION
versus template matching with sub-pixel precision.
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Fig. 43. Comparison of a trajectory from a EHT video, MUSCLEMOTION
versus template matching with sub-pixel precision.
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Fig. 44. Comparison of a trajectory from a EHT video, MUSCLEMOTION
versus template matching with sub-pixel precision.
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Fig. 45. Comparison of a trajectory from a EHT video, MUSCLEMOTION
versus template matching with sub-pixel precision.
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Fig. 46. Comparison of a trajectory from a EHT video, MUSCLEMOTION
versus template matching with sub-pixel precision.

0 50 100 150 200 250
Frame

−1.0

−0.5

0.0

0.5

1.0

1.5

Pi
xe

l

MUCLEMOTION
Template matching
Ground truth

Fig. 47. Comparison of a trajectory from a simulation video of a 2Hz sine
with a 0.5-pixel amplitude and 1% noise applied, MUSCLEMOTION versus
template matching with sub-pixel precision versus ground truth.
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Fig. 48. Comparison of a trajectory from a simulation video of a 2Hz sine
with a 0.5-pixel amplitude and 5% noise applied, MUSCLEMOTION versus
template matching with sub-pixel precision versus ground truth.
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Fig. 49. Comparison of a trajectory from a simulation video of a 2Hz sine
with a 0.5-pixel amplitude and 10% noise applied, MUSCLEMOTION versus
template matching with sub-pixel precision versus ground truth.
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Fig. 50. Comparison of a trajectory from a simulation video of a 2Hz sine
with a 0.5-pixel amplitude and 20% noise applied, MUSCLEMOTION versus
template matching with sub-pixel precision versus ground truth.
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Fig. 51. Comparison of a trajectory from a simulation video of a 2Hz sine
with a 0.5-pixel amplitude and 25% noise applied, MUSCLEMOTION versus
template matching with sub-pixel precision versus ground truth.
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Fig. 52. Comparison of a trajectory from a simulation video of a 2Hz sine
with a 2-pixel amplitude and 1% noise applied, MUSCLEMOTION versus
template matching with sub-pixel precision versus ground truth.
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Fig. 53. Comparison of a trajectory from a simulation video of a 2Hz sine
with a 2-pixel amplitude and 5% noise applied, MUSCLEMOTION versus
template matching with sub-pixel precision versus ground truth.
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Fig. 54. Comparison of a trajectory from a simulation video of a 2Hz sine
with a 2-pixel amplitude and 10% noise applied, MUSCLEMOTION versus
template matching with sub-pixel precision versus ground truth.
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Fig. 55. Comparison of a trajectory from a simulation video of a 2Hz sine
with a 2-pixel amplitude and 20% noise applied, MUSCLEMOTION versus
template matching with sub-pixel precision versus ground truth.
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Fig. 56. Comparison of a trajectory from a simulation video of a 2Hz sine
with a 2-pixel amplitude and 25% noise applied, MUSCLEMOTION versus
template matching with sub-pixel precision versus ground truth.
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Fig. 57. Comparison of a trajectory from a simulation video of an previously
recorded EHT trajectory with a 0.5-pixel amplitude and 1% noise applied,
MUSCLEMOTION versus template matching with sub-pixel precision versus
ground truth.
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Fig. 58. Comparison of a trajectory from a simulation video of an previously
recorded EHT trajectory with a 0.5-pixel amplitude and 5% noise applied,
MUSCLEMOTION versus template matching with sub-pixel precision versus
ground truth.
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Fig. 59. Comparison of a trajectory from a simulation video of an previously
recorded EHT trajectory with a 0.5-pixel amplitude and 10% noise applied,
MUSCLEMOTION versus template matching with sub-pixel precision versus
ground truth.

0 50 100 150 200 250
Frame

−1.00
−0.75
−0.50
−0.25

0.00
0.25
0.50
0.75

Pi
xe

l

MUCLEMOTION
Template matching
Ground truth

Fig. 60. Comparison of a trajectory from a simulation video of an previously
recorded EHT trajectory with a 0.5-pixel amplitude and 20% noise applied,
MUSCLEMOTION versus template matching with sub-pixel precision versus
ground truth.
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Fig. 61. Comparison of a trajectory from a simulation video of an previously
recorded EHT trajectory with a 0.5-pixel amplitude and 25% noise applied,
MUSCLEMOTION versus template matching with sub-pixel precision versus
ground truth.
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Fig. 62. Comparison of a trajectory from a simulation video of an previously
recorded EHT trajectory with a 2-pixel amplitude and 1% noise applied,
MUSCLEMOTION versus template matching with sub-pixel precision versus
ground truth.
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Fig. 63. Comparison of a trajectory from a simulation video of an previously
recorded EHT trajectory with a 2-pixel amplitude and 5% noise applied,
MUSCLEMOTION versus template matching with sub-pixel precision versus
ground truth.
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Fig. 64. Comparison of a trajectory from a simulation video of an previously
recorded EHT trajectory with a 2-pixel amplitude and 10% noise applied,
MUSCLEMOTION versus template matching with sub-pixel precision versus
ground truth.
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Fig. 65. Comparison of a trajectory from a simulation video of an previously
recorded EHT trajectory with a 2-pixel amplitude and 20% noise applied,
MUSCLEMOTION versus template matching with sub-pixel precision versus
ground truth.
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Fig. 66. Comparison of a trajectory from a simulation video of an previously
recorded EHT trajectory with a 2-pixel amplitude and 25% noise applied,
MUSCLEMOTION versus template matching with sub-pixel precision versus
ground truth.


	Introduction
	Related works
	Tracking
	Segmentation

	Materials
	Methods
	Tracking
	Template matching
	Sub-pixel precision

	Segmentation by Deep learning
	Dataset
	Training
	U-net
	Deeplabv3 with a ResNet-101 backbone
	Calculation the surface area

	Segmentation as input for template matching

	Verification
	Tracking
	Simulation/Quantitative evaluation
	Survey/Qualitative evaluation
	Evaluation of EHT contractile properties
	Comparison to state-of-the-art

	Segmentation
	Manual segmentation


	Results
	Template/pattern matching with Sub-pixel precision
	Simulation/Quantitative evaluation
	Survey/Qualitative evaluation
	Evaluation of EHT contractile properties
	Comparison to state-of-the-art

	Segmentation by deep learning
	Calculation the surface area

	Segmentation as input for template matching
	Comprehensive comparison of templates

	Computational speed

	Discussion
	Template/pattern matching with Sub-pixel precision
	Simulation/Quantitative evaluation
	Survey/Qualitative evaluation
	Evaluation of EHT contractile properties
	Comparison to state-of-the-art

	Segmentation by Deep learning
	Determining the surface area

	Segmentation as input for template matching
	Comprehensive comparison of templates

	Computational speed
	Practical problem

	Conclusion
	Python Package
	Acknowledgements
	References
	Appendix
	Results comparison MUSCLEMOTION


