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ABSTRACT  
 

Reducing disaster risks is a wicked problem that requires integrated knowledge and coordinated action 

among decision-makers. It acknowledges the combination of indigenous knowledge and scientific 

knowledge to develop methodologies that improve hazard assessment and reduce community 

vulnerability.  However, few examples exist to operationalize this.  Hurdles include knowledge 

infrastructures that are unable to accommodate different worldviews and knowledge domains.   

Methods are needed to produce results that are meaningful to the target communities. 

The proposed model introduces indigenous toponyms as an interface of co-production between 

indigenous knowledge and scientific knowledge. It describes how indigenous toponyms can contribute to 

disaster risk reduction and how the community that provides this type of information can benefit. In a 

Bayesian approach, indigenous toponyms are used both as data input and explanatory variables for 

landslide hazard modelling.  Translating toponyms into variables for statistical modelling combined 

qualitative and quantitative methods in the data collection, data processing, and analysis. The workflow 

was refined as it is evaluated within the context of the study area, situated in the Philippine Cordilleras. 

First, toponym data obtained in-situ before the research was enriched by structured and unstructured 

online discussions facilitated by the researcher. Consultations with experts combined with desktop 

research added details. After which, toponyms were characterized according to their relation with 

landslide causal factors then regionalized into slope units used to construct models.  Using the Deviance 

Information Criterion, three constructed models were compared for their goodness-of-fit.  The selected 

model was then rendered as a static and dynamic map.  The dynamic map version underwent limited 

testing among actual users as a decision-making tool for land use and infrastructure planning.  This 

mapping output presents a basic tool that the co-producers can improve with updated information and as 

they prefer.  Similar situations may adopt and improve this model.  

 

This research also contributes to indigenous knowledge valorization. As demonstrated, the potential of 

toponyms as a medium of multidisciplinary collaboration in hazards modelling needs more attention. It 

opens directions in toponymic research that need further investigation.   

 

Key words 

wicked problem, indigenous toponyms, Bayesian, landslide hazards, co-production, disaster risk 
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1.  Introduction 
This MSc thesis aims to describe how indigenous toponyms can contribute to reduce disaster risks and 

how the community that provides this type of information can benefit. Through combined production 

between scientific and indigenous knowledge it covers the entire process of landslide hazard modelling 

from landslide inventory to map rendering. It is an informed decision-making process where production 

and its product enable the affected community to make their own risk assessment. 

1.1 MOTIVATION AND BACKGROUND 

1.1.1  Wicked problem and Indigenous Knowledge  

Natural hazards caused over 1.2 million deaths in the last 20 years globally. The economic toll amounts to 

an annual average of 243 billion dollars (Aon 2020).  These defeat sustainable development efforts in 

less-developed countries, crippling social support systems, making post-disaster recovery an endless 

struggle, thus exhausting capacities needed to transform economies for the better. It is a wicked problem, 

compounded by hazard assessment lacking integrated knowledge that is utilized in the best possible 

way(Weichselgartner and Pigeon 2015).  Breaking the vicious cycle requires approaches that understand 

the root causes of vulnerability and people's abilities to cope and recover from disasters (UN Secretary-

General 2016). One approach is to situate this wickedness (Noordegraaf et al. 2019) by using local 

information to facilitate hazard assessment, in which the necessary experts are identified to collaborate.   

The strategy is to co-produce hazard assessment models that acknowledges the experiences and 

knowledge of those with a long history of exposure to natural hazards.  

 

Among these exposed populations are indigenous peoples who possess indigenous knowledge and 

practices that understand natural hazards (Lambert and Scott 2019). This knowledge resulted from 

generations of interactions with the environment expressed in cultural meanings and place names (Mark 

and Turk 2011). Indigenous communities, primarily oral societies, use place names as memory devices 

where descriptions of the past are stored. These offer geographic information properties and relations that 

can better assess hazards when combined with scientific knowledge.  

1.1.2 Co-knowledge production 

The same is also recognized by the Sendai Framework for Disaster Risk Reduction 2015–2030 (UNISDR 

2015) which made explicit the use of local and indigenous knowledge in disaster risk reduction . It 

mentions the use of local and indigenous knowledge (IK) to complement scientific knowledge (SK) in 

disaster risk assessment that is tailored to localities and context. Before and after the Sendai Framework, 

participatory methods have been applied to include indigenous communities into scientific studies, yet the 

transformation of indigenous knowledge into ways that increase community resilience remains 

underexplored. Despite participatory method awareness, the vast majority of studies on climate research 

using indigenous knowledge are found to use an extractive model  (David-Chavez and Gavin 2018), 

which limits possibilities of building resilience.  

 

In the integration process, the domination of SK is an issue raised (Battiste 2014; Gasparotto 2016; 

Mazzocchi 2018; Nakashima, Rou, and Munn 2002), requiring balanced approaches that permit drawing 

on the best wisdom that these two types of knowledge provide (Kelman, Mercer, and Gaillard 2012).  It 

means co-production of knowledge where IK does not only play a confirmatory role (Alexander et al. 

2019; Latulippe and Klenk 2020) which is realized through high community engagement.  Indicators of 

this engagement include transparency of the integration procedure, community authority on analysis, 

access to findings, and reported outputs (David-Chavez and Gavin 2018; Wheeler and Root-Bernstein 

2020). The result is informed decision-making, where studies extend to better outcomes in the community 
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(Raymond et al. 2010).  In informed-decisions, the right to decide on how to save and use IK emphasizes 

on community engagement not limited only to supplementing science data but to supporting “governance-

value” in these systems (Whyte 2018). This further goes to supporting data sovereignty and data 

governance where the collection, stewardship and dissemination of data is centred on indigenous peoples’ 

rights (David-Chavez and Gavin 2018).  Currently, there are limited examples of co-production that 

adhere to indicators and principles of high community engagement.   

 

Indigenous toponyms are articulations of IK (Heikkilä and Fondahl 2010) that serve as a “medium to 

reflect on the indigenous ancestral past for guidance on living “right” in the present” (Johnson and Basso 

1998).  As historical markers of natural hazards that occurred in the distant past, toponyms can provide 

leads to predictive modelling.  Specifically, they can inform on “intensive risks” which is defined by 

UNISDR (2017; 2015a) as risks with “high-severity, mid to low-frequency disasters,” where large 

concentrations of people and economic activities are exposed to intense hazard events, which are also 

characterized by underlying risk drivers such as poverty and inequality (UNISDR 2009). The correlation 

between toponyms and avalanche, landslides, floods, and tsunami was recently explored by the academic 

community (Dall’Ò 2019; Faccini et al. 2017; Isoda et al. 2019)(Dall’Ò 2019; Faccini et al. 2017; Isoda et 

al. 2019). While these studies agree that toponyms have informative value, further exploration of their 

usefulness in disaster risk reduction was not pursued.  

1.1.3 Indigenous toponyms and landslides 

Indigenous toponyms related to natural hazards abound where these events occur, storing prodigious 

experiences that serve as references in past spatial decisions to avoid disaster risk. This is evident in old 

settlement patterns to avoid tsunamis in the coastal regions (Isoda et al. 2019), landslides in the 

mountainous regions (Dall’Ò 2019), and floods in the riverine and coastal areas (Jones 2016).  Land 

developments may have obscured their importance, but they remain as fixed markers, offering 

information to build hypotheses for scientific inquiry. However, toponyms that describe ephemeral 

evidence like those from tsunamis and storm surges approximate the reach of the hazard, and information 

can be deduced from old settlement patterns or oral literature that may have been embellished through 

time (Isoda et al. 2019; King, Goff, and Skipper 2007). Their assessment requires additional physical 

evidence. On the other hand, landslides are downward movements of rocks and soil resulting from natural 

or human-made actions that leave tangible evidence in the physical landscape. Toponyms related to 

landslides and associated events describe geomorphology, geology, and deposits, combined with existing 

oral literature. Regions with a long history of human interaction with landslides offer rich, verifiable, but 

untapped toponymic information that can help explain landslide occurrence. In societies with existing oral 

traditions, the narratives are substantiated by what is still observable and vice versa. Scientific 

investigation validates their importance, which promotes official adoption of their use.   For indigenous 

communities in mountain regions where terrain ruggedness inhibits response during disasters, this is 

important because official recognition restores confidence in IK. The usage of this information creates an 

enabling culture where spatial decisions acknowledge the significance of shared local historical 

observations, thereby promoting awareness of reducing disaster risks.   

1.1.4 Usefulness of Landslide Probability Models 

Disasters are difficult to resolve due to the lack of understanding of the root causes and risk drivers 

(Alcántara-Ayala and Oliver-Smith 2019).  In areas at risk, stakeholders have to be persuaded first by 

hazard forecasting from authorities before participating in mitigation measures.  Yet, current research on 

landslide hazard assessment lacks approaches that involve local stakeholders. Although most of these 

studies refer to their usefulness in land planning and risk reduction, the results do not match their 

expressed intended use (Hearn and Hart 2019). Prevailing research practice focuses on sophisticated 

statistical analysis rather than on the relevance of the outputs (Reichenbach et al. 2018). The explanatory 
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variables for these models are often assumed from what is recommended in general literature, derived 

from geologic surveys and processed from remote sensing. Local knowledge that contextualizes the 

modelling product is often absent. It may also account for the missing link to land use planning, 

infrastructure intervention and community awareness, underscoring the need for local input, design and 

validation of the model. To build this link,  toponyms can be utilized as the springboard where the act of 

eliciting the local peoples’ knowledge of these places becomes a process of learning why a name was 

given to a place and the conditions surrounding it (Perdana and Ostermann 2019). This can provide light 

on past risk management. For indigenous toponyms, tacit knowledge that the local people have on places 

linked to landslide hazards can surface. In this process, a collective social exercise memorialized in places 

(Jenjekwa Vincent 2018) becomes an exercise of awareness that helps shape the usability of resultant 

mapping. No known methodology exists yet where indigenous toponyms are explored for their usefulness 

in landslide hazard modelling. 

1.1.5 Prior Knowledge Translation 

Making room for IK production in academic research that is dominated by science needs a new way of 

doing things (Latulippe and Klenk 2020). Methods must be based on ethical frameworks where 

opportunities are provided in which indigenous communities can represent their knowledge and values on 

their own terms (Hill et al. 2020; Parsons, Fisher, and Nalau 2016). In addition, methods adopted must 

not undermine IK ontologies where inputs are re-articulated and where outputs lose relevance to the 

indigenous community. These are concepts of equity and transparency that are consistent with the 

indigenous rights to self-determination (UNDRIP 2017).  From the point of view of science, indigenous 

knowledge reaches its potential when involved in all steps of the research process and enhanced by an 

interdisciplinary approach (Bélisle et al. 2018). Therefore the choice of modelling framework must 

provide this space.  

 

Bayesian models are recognized to be well-suited to meet this methodological challenge. The parallels of 

the predictive property of IK and Bayesian methods were investigated by Tacher and Golicher (2004) and 

are now increasingly applied in IK integration with the ecological sciences (Bélisle et al. 2018; Bowles et 

al. 2020; Gryba 2020; Liedloff et al. 2013; Reid et al. 2021). Fuzzy models are also suggested to capture 

holism and complex properties of IK in a systematic way (Bélisle et al. 2018; Mackenzie Kierin, Siabato 

Willington, Reitsma Femke 2017; Sarmiento et al. 2020). 

 

Where indigenous toponyms are assumed to help explain the probability of landslide occurrence over 

space and time, they are treated as prior knowledge that updates both science and local beliefs. This 

process of updating is inherently Bayesian, wherein beliefs are also translated into quantifiable form. As a 

form of indigenous knowledge stored in topographical space, toponyms are used here as local expert 

knowledge translated into prior distributions for analysis.   

 

1.2 PROBLEM IDENTIFICATION 

With the end-view of reducing disaster risks, this study contributes to developing contextualized landslide 

hazard mapping for land use and infrastructure planning.  In particular, indigenous toponyms are used as a 

co-knowledge production tool and an information source of inputs in a Bayesian model.  Thus, the main 

objective is to devise a co-production process of using indigenous toponym data in landslide hazard 

modelling.    
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1.2.1 Research Objectives 

 The process of using indigenous toponym data into landslide hazard modelling involves four expected 

outputs in response to the following sub-objectives: 

1.To develop a toponymic co-production classification approach that translates toponyms into input 

variables for landslide hazard modelling 

2. To generate, evaluate and select toponymic variables for landslide hazard modelling 

3. To implement and select a Bayesian model to use based on their performance 

4. To assess the resultant map’s usability as a hazard information for land use and infrastructure planning 

in the study area 

 

 

 

1.2.2 Research Questions 

The following questions address the respective objective: 

 

Sub-objective 1:  

 

RQ1.1 What are the considerations in representing a toponym as an input variable for landslide hazard 

modelling? 

RQ1.2 How is co-production employed in translating toponyms into model variables? 

 

Sub-objective 2:  

 

RQ2.1 Factoring in the conditions mentioned in RQ1.1, which methods are suited to generate quantitative 

input variables for modelling from toponyms?   

RQ2.2 What probability distribution captures the information provided by the data and toponyms?  

 

Sub-objective 3:  

RQ3.1 What are criteria to evaluate and select toponymic variables for landslide hazard modelling?  

RQ3.2 Based on which criteria and which process are models selected for their goodness-of-fit?  

 

Sub objective 4:  

 

RQ4.1 Which factors define the usability of the resultant mapping as a piece of base information for land 

use and infrastructure planning in the study area?  

RQ4.2 Based on the factors defined in RQ4.1, what testing method can measure the usability of the 

resultant map among users in the study area?  

RQ4.3 What features in the landslide hazard map needs improvement to make it more usable? 
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 1.2.3 Significance  

Limited research has been done where indigenous knowledge and scientific knowledge co-produce to 

model landslide hazards. There are no known methodologies on how indigenous toponyms translate into 

prior distributions in Bayesian modelling. The process of integrating indigenous knowledge into state-of-

the-art science is an under-researched topic. This research will provide information on how this type of 

knowledge and its systems integrate with geoscience, which includes associated ethical concerns, that 

may be helpful for future research in this area. Within the geoscience community, this research can serve 

as an example of interdisciplinarity and collaboration possibilities that can clarify the tasks of each 

discipline given a wicked problem. It opens areas for further study.  The research also contributes to 

valorizing indigenous knowledge, which is under-represented in literature and in danger of losing its 

significance, especially to the communities that possess this. 

 

The research output is a landslide hazard map integrating indigenous toponyms that the concerned local 

community can use as a reference for their decision-making to reduce disaster risks. The expected result 

is better risk-governance in the area.  

1.3 RESEARCH APPROACH 

1.3.1 Overview of analysis workflow 

From generating toponymic information to the resultant landslide hazard mapping, co-knowledge 

production between indigenous knowledge (IK) and scientific knowledge (SK), underpins the general 

methodology (Figure 1) below.  

 

 
Figure 1.General workflow of co-knowledge production 
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1.3.2 Research Design 

This study combined qualitative and quantitative approaches in data collection, data processing, and 

analysis following the general sequence of the co-knowledge production workflow shown in Figure 1.  

This workflow was refined as it is evaluated within the context of a study area.  New methods were 

adopted  from knowledge acquired and validated during the research process, which resulted to a 

proposed model. The study area is a 25-square kilometer composition of contiguous river basins in the 

Philippines Cordilleras. The region was reported as among the top 5 locations with the largest area at risk 

of landslides by NASA’s LHASA tracking (Parsons and Lister 2018).   

 

Three main characteristics define the study area as a good candidate for the proposed modelling co-

production process: 

• Richness in indigenous toponyms 

• Lived-in by indigenous peoples 

• Long history of landslides 

 

The selection of the study area was further influenced by the familiarity of the researcher of the site and 

local language. Established connections with the target indigenous community made access and 

verification of data efficient. Another major determinant is the availability of data within the thesis 

working period and Covid-19 pandemic constraints. The limitations brought about by the pandemic also 

decided the boundaries of the study area. 

 

1.3.3 Thesis Structure  

The thesis document is presented as follows:  

 

Chapter 1: Introduction and problem identification 

Chapter 2: Concept Integration  

Chapter 3: Design and Implementation  

Chapter 4: Modelling Results  

Chapter 5: Discussion 

Chapter 6: Conclusion discussing insights and possible developments of study 

 

Chapter 2 reviews methods and presents knowledge gaps to explain approaches that are adopted for the 

design and implementation methods in Chapter 3.  
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2.  Relevant Concepts 
This chapter aims to show how different concepts, theories, and models found in literature are integrated 

relative to the objectives of this study. Five main themes define the concepts reviewed: Co-knowledge 

production; Landslide hazard modelling; Toponym research approaches; Statistical approach, and; 

Usefulness. First, it synthesizes the requirements of co-knowledge production,  then defines the gaps in 

conventional landslide modelling. Based on identified gaps and requirements, a discussion on toponym 

handling and the Bayesian approach follows.  These discussions mention state-of-the-art approaches. The 

last discusses Usefulness measures 

2.1 CO-KNOWLEDGE PRODUCTION CONSIDERATIONS 

There are few examples of IK-SK co-production available in literature in the past five years that aim at 

producing concrete results in the form of information or policy action.    The list in Table 1 shows co-

production where the objective is to generate information for various decision-making processes. The list 

in Table 2 shows various applications of co-produced knowledge that are directly related to policy 

decisions.   

 

In the five examples in Table 1, the results provide a better understanding of nature, in the form of 

enriched data, information equipment, and decision support tools. Co-production methods employed 

state-of-the-art tools, and joint analyses, involving various skills and disciplines, facilitated by the 

researchers themselves.  In all cases, mixed methods of analysis were employed with specific focus on 

results that matter to the local community.  Some characteristics of the co-production process are outlined 

as follows: 

Early engagement. The concerned indigenous community participate in the study at the earliest 

possible time wherein protocols specific to the community are defined.  It could begin right before the 

start of the project implementation or as early as the conceptualization stage of the project.  

Combined data and observations.  Different available tools of data acquisition, organization and 

processing were employed as demonstrated by the combined weights method in South Africa 

(Nyetanyane and Masinde 2020) and heterogeneous sensing in Swedish Lapland (Roué et al. 2016).  

Disparate data that are either remote-sensed or “ground-sensed” through mobile applications or 

sensors are combined in the analysis.  

 

Recognition of complex dimensions.  IK has complex dimensions that does not have a one to one 

correspondence with SK.  IK combines different concepts into one to fewer representations, that 

require appropriate organization, classification or statistical methods that respond to this fuzziness.  

This is indicated in the use of  HREV (Fox et al. 2020) and Shannon’s diversity index (Capra et al. 

2016) to capture that complexity. Knowledge of a phenomena is unique to the community setting 

which means that the variables and the methodology adopted derive from the properties of that 

knowledge.  

 

Table 2 shows that cases aimed at policy decision-making employed co-production methods that facilitate 

dialogues.  IK is visualized with the help of computer-based mapping and GIS tools (Diver 2017). The 

spatial visualization of IK goals facilitated the formal recognition of this knowledge by the government 

policy-maker. Continuous reflection through ethically sensitive dialogues ensured that IK diversity is 

preserved and not subsumed in the dominant knowledge infrastructure (Matuk et al. 2017). In the Brazil 

case, Matuk et al. (2017) mentioned that an indicator of legitimacy of the resultant knowledge from co-

production is its usability among the indigenous community. Another indicator of legitimacy is the 

community recognition of selected IK resource persons in structured surveys. In this respect, the Delphi 



 
INDIGENOUS TOPONYMS IN LANDSLIDE HAZARD MAPPING FOR LAND USE AND INFRASTRUCTURE PLANNING 

8 

 

technique employed by Wheeler et al ( 2020) may have to be combined with protocols on selection of 

representative knowledge resources as well as unstructured elicitation of information. 

 

Table 1. Co-production to generate information 

 

 

  

Method Results Setting Author 

1. Structured elicitation process and statistical 

framework to combine indigenous knowledge with 
survey data 

2. Digitizing hand-drawn maps to create spatial 

polygons 

3. Maxent Machine Learning, constraining model 
parameterization to the IK boundary 

 

Species distribution modelling 

(SDM) for increased ecological 
insights in the Martu 

determination area 

 

Ecological insights that 
improves the impact of research 

Australia (Skroblin et al. 

2020) 

1. Combined weights of Climate Data, Indigenous 

Knowledge and Satellite Imagery to determine season 
onset where IK indicators are elicited through farmer 

interviews and surveys. 

2. Crop monitoring by IK expert using app 

3. Crop health prediction through Machine Learning 
using timeseries algorithms 

Optimizing Cropping Decisions 

by Small-Scale Farmers, 
uMgungundlovu District 

Municipality 

South Africa (Nyetanyane 

and Masinde 
2020) 

1. Human-relevant environmental variables (HREV) or 

complex, synthesis variables that when used in 

conjunction with a host of social variables, assist in 
informing safe land travel and activities 

2. Locating best sites for weather stations 

 

Community-based weather 

station network in Inuit 

Nunangat 
 

Website where residents can 

access real-time weather 

information 
 

Canada (Fox et al. 

2020) 

1. Co-design of protocols and joint analyses by 

herders, climatologists, anthropologists and ethno-

biologists  
 

2. Combined observations: 

Temperature probes 

Local snow and herding via a smartphone app by Sami 
herders 

Cartographic data from Sami on land use patterns 

Quantitative data about snow metamorphism at the 

regional scale using remote-sensing and satellite 
imagery 

1. Establishment of Evenk 

Observatory to monitor climate 

and environmental change 
Eurasian reindeer herding 

peoples  

 

2. Establishment of community-
based observatory 

Siberia  

 

 
 

 

 

Swedish 
Lapland 

(Roué et al. 

2016) 

1. Toponym collection from Geoportal, Municipal 

Library and State Archives, and interviews with local 

people 
2. Database creation and toponym translation 

3. Categorization of toponyms  

4. Soil field investigation and analysis of several 

physical–chemical parameters where pedonyms 
(indigenous knowledge) are matched with prevalent 

soils (scientific knowledge) 

5. Shannon’s diversity index to quantify complex 

variables 
6. Statistical comparison between local and scientific 

knowledge through CCA 

 

Soil resource study of the 

Sardinian landscape 

Italy (Capra et al. 

2015, 2016) 
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Table 2. Co-production for policy decisions 

 

2.3 TOPONYM RESEARCH APPROACHES 

 

This section reviews mapping approaches and the most relevant classification approach that satisfies co-

knowledge production. 

2.3.1 Toponym collection 

Approaches to mapping indigenous toponyms are either related to its protection or usefulness. These 

activities are expressed in research and rarely for the purpose of placing these indigenous names on the 

map.  The research objectives vary from cultural to historical referencing for various purposes (Cogos, 

Roué, and Roturier 2017; von Mentz 2017; Morphy et al. 2020). 

 

Toponym collection is also recognized in new disciplines such as  ethnopedology that seeks to understand 

indigenous approaches in soil classification and management  (Capra et al. 2015). A new field of inquiry 

that is starting to employ toponyms is ethnophysiography (Feng and Mark 2017), which studied local 

conceptualizations of the landscape, and eventually enabling culturally specific geographic information 

systems (Mark and Turk 2011).  Ethnogeology, which was a field identified much earlier (Kamen-Kaye 

1975) still has to explore links to toponyms. So far there is no related literature on indigenous toponyms 

that explain physical mechanisms responsible for landslides.  

 

2.3.2 Participatory approaches 

In the mapping of placenames for landslide hazard modelling, the desired information is the point location 

of the toponym, its etymology, and associations.  Since not all indigenous toponyms are recorded in 

ethnographic atlases, participatory approaches have to be adopted to collect information. Community 

members are engaged in locating place names and discuss their meanings. Although the concept of 

Method Results Location Author 

Delphi technique or structured expert 

elicitation process  

1. Environmental decision-making 

2. Identification of participants' experiences 

of scientists' misconceptions on IK 

 

Arctic (Wheeler 

et al. 

2020) 

1. Workshops through community 

meetings and fieldtrips 

 

2. “Translation Convergences” 

through knowledge linkages of land 

use values and goals visualized 

through computer-based mapping 

technology and GIS 

 

Science-policy negotiations 

1. Ecosystem-based planning for Xáxli’p 

Community Forest, 

2. Formal recognition of indigenous values 

by the Ministry of Forests 

 

British 

Columbia, 

Canada 

(Diver 

2017) 

Multiple workshops with  culturally 

and ethically sensitive dialogues that 

include continuous reflection, 

enabling adaptation and 

improvisation 

Method aims at knowledge 

legitimacy and usability 

 

1. Ethnoecological approach on Amazonian 

SISA policy (REDD+ program)Integrated 

Kaxinawá and scientific classifications of the 

soils on the map 

Brazil (Matuk et 

al. 2017) 
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participatory mapping is not new in indigenous communities, the mapping of placenames itself is new. 

Field work is a tried and tested approach of collecting informtion that elicits indepth description.  A 

participatory method through field survey was applied in Indonesia using a collection-verification-

publication process (Perdana and Ostermann 2018). In this example, there is emphasis in engaging the 

local government and the community to improve data collection.  The study pointed out that field surveys 

have limiting factors such as accessibility to location, weather, and density of geographic features in 

fieldwork areas. The surveyors’ familiarity with the place also matters,  as it defines navigational tools to 

use that would enhance their performance. The availability of digital platforms like Open Street Map and 

Google Earth also offer opportunities for toponym collection.  

2.3.3  Toponym classification 

For toponym classification in relation to  toponym research, Tent (2015) synthesized different studies and 

proposed two approaches which he calls “micro” and “macro” levels (Table 3). At the micro level, 

research is described as qualitative which becomes quantitative at the macro level, where the pattern 

analysis expresses values in numerical form. Often the qualitative research is followed by a quantitative 

study in order to find empirical support for hypotheses. Such analyses can reveal much about the 

following elements: place naming practices and patterns (both temporally and spatially); regional 

distributions of certain types of toponym, or geographic feature; settlement patterns (both temporally and 

spatially); the geomorphology of a region (by concentrating on feature types); grammar/syntax of 

toponyms; linguistic geography such as regional distribution of name types; and, the influence of names 

on property values.  

 

Table 3.  Tent's classification in toponym research 

 

 

As shown by Tent, qualitative handling of toponyms requires linguistic competency. Co-production and 

toponymic organization exercises require ability to communicate in the local language. Local language 

competency enables recognition of nuances of vocabularies used among different participating 

communities in the locality. 

 

Another way to classify toponyms is by date of their appearance (Vannieuwenhuyze 2007).  The oldest 

mention of toponyms confirms the name's existence, offering a terminus ante quem for the reference to 

that spatial reality. Therefore, written and oral records that mention the name provide a basis for 

analyzing linkage to historical events. However, as Vannieuwenhuyze (2007) noted, the date of 

appearance cannot provide a terminus post quem for their existence.  

 

The translation of toponyms into explanatory variables for hazard modelling is not available in literature. 

An approach on toponym translation into numerical values have so far been explored by Capra et al. 

(2015) in ethnopedology, in which Shannon entropy index and canonical correspondence analyses were 

employed. 

  

Micro/Qualitative/Intensive Macro/Quantitative/Extensive 

 Etymology, meaning, and origin of toponyms Toponyms of a region and examining patterns of these 

names 

 

Grassroots-based with basic fields:  

toponym identification, where sound linguistic 

knowledge is required; toponym documentation; and, 

toponym interpretation.   

Broader research based on datasets or corpora of 

toponyms, gazetteers, maps, and atlases. At this stage, 

placenames function as independent variables which 

can be tested against dependent variables such as 

region, toponym type, or feature type. 
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2.2 LANDSLIDE HAZARD MODELLING  

2.2.1 Concepts 

Landslide is a slope movement that has several conceptions. The most endorsed is presented by Varnes 

and the International Association for Engineering Geology (1984) who defined it as “almost all varieties 

of mass movements on slope including some such as rock falls, topples and debris flow that involve little 

or no true sliding”.  The slope movement classification shown in Table 4, is also presented by Varnes 

(1978)which is widely used today to classify landslides.  

 

Table 4.  Classification of slope movements(Varnes 1978) 

 

Landslide susceptibility refers to the spatial probability of landslide occurrence. It predicts “where” 

landslides are likely to occur (Guzzetti et al. 2005a). According to the USGS, the most important factors 

determining susceptibility are prior failure, rock or soil strength, and steepness of slope. Varnes and the 

IAEG (1984) suggested that the definition of natural hazards should also apply to mass movements on a 

slope, such that landslide hazards would then mean “the probability of occurrence within a specified 

period and a given area of a potentially damaging phenomenon”.  Guzzetti et al. (2005) added to the 

definition by including the concepts of magnitude, geographical location and time recurrence. Magnitude 

refers to intensity that conditions destructive power. Thus, landslide hazard is susceptibility with a 

temporal component and intensity that conditions destructive power. With time as a component, hazard 

also considers the chance that a landslide might travel downslope a given distance (Highland 2008).  

 

Landslide susceptibility models therefore are only concerned with the presence-absence of landslides over 

space. Landslide hazard modelling goes further than landslide susceptibility modelling by adding 

temporal,  spatial and  size  probability of events (Corominas and Mavroulli O 2011).  Due to scarcity of 

historical information, few models incorporate time and magnitude.  

 

Assessing landslide hazards needs a collection of landslide occurrence information.  These landslide 

inventories can be prepared through various methods (Guzzetti et al. 2000; Wieczorek 1984) but still pose 

a challenge because aside from requiring expertise and resources, it is tedious (van Westen, van Asch, and 

Soeters 2006).  The collection of information also requires landslide classification that suffers 

simplifications, geomorphological deduction, and subjectivity(Guzzetti et al. 2012).  Guzetti et al.  

(2005b) suggest checking against external information on landslide types and processes available for the 

investigated area. 

 

Both landslide susceptibility mapping and landslide hazard mapping result in zonation or the terrain's 

subdivision into zones that have a different likelihood of landslide occurrence.  The different approaches 

TYPE OF MOVEMENT TYPE OF MATERIAL 

BEDROCK ENGINEERING SOILS 

  Predominantly 

coarse material 

Predominantly 

fine material 

FALLS Rock fall Debris fall Earth fall 

TOPPLES Rock topple Debris topple Earth topple 

SLIDES Rotational Few units Rock slump Debris slump Earth slump 

Translational Many units Rock slide Debris slide Earth Slide 

LATERAL SPREADS Rock spread Debris spread Earth spread 

FLOWS Rock flow 

(deep creep) 

Debris flow 

(soil creep) 

Earth flow 

(soil creep) 

Abbreviated version of Varnes' classification of slope movements 
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that lead to landslide hazard zonation are classified into four general approaches (Aleotti and Chowdhury 

1999; Guzzetti et al. 1999; Soeters and Westen 1996; van Westen et al. 2006).  These are: 

• landslide inventory-based probabilistic approach, which interprets data either from 

remote-sensing, field observation, interviews or historical analysis; 

• heuristic approach, which is based on the opinion of geomorphological experts and 

adopted when landslide data is scarce; 

• statistical approach, which uses a landslide inventory map where information on past 

landslide occurrences are needed to forecast future occurrences using a combination of 

causal factors that are statistically determined; and 

• physically-based modelling approach, which calculates the safety factors and 

quantitatively produces the stability index using a slope stability model. 

 

These are implemented through various techniques (Shano, Raghuvanshi, and Meten 2020).  The best 

method depends on the scale, the available data, and the characteristics of the study area (Abella et al. 

2006).   

 

Landslide susceptibility assessment remains to be dominant in gaining insights into probable slope 

failures. Statistically-based models also continue to flourish due to advances in technology and increasing 

availability of data. However, there is concern that the growing number of these models has not made 

significant changes in terms of quality and usefulness, as discussed in the following section. 

2.2.2 Statistically-based models and zonations 

The gaps in current practice emphasize the lack of multiplicity and representativeness in landslide 

temporal inventories, mapping techniques, and model types to increase the quality of information and 

optimize zonations (Reichenbach et al. 2018).  This finding was based on an analysis of 565 peer-

reviewed articles on statistically-based landslide susceptibility models.  There is also a lack of multiple 

metrics in evaluating the performance of landslide susceptibility models, which had been mentioned by 

Rossi et al.  (2010)and Steger et al (2016). Aside from this, there is an emphasized need to concentrate on 

designing new and more reliable methods and indices to evaluate of model quality, thus increasing their 

credibility and usefulness. The aim is to favour their adoption and use by different stakeholders. 

 

 

Reichenbach et al. (2018) mentioned the lack of statistical, geomorphological or operational justification 

for biases regarding the use of modelling tools and landslide information. The observation further 

includes the lack of careful analysis of available geo-environmental information prior to its use for 

susceptibility modelling, considering the variables' relevance or lack of relevance. 

 

In general, landslide susceptibility modelling steps start with a landslide inventory followed by selecting 

causal factors, such as those listed in Table 5, used as independent variables in statistical analysis. 

Modelling assumes that the factors causing slope-failure in a region are the same as those which will 

generate landslides in the future. Widely used algorithms make use of either statistical approaches or 

machine learning techniques. Machine learning algorithms are known to be effective in maximizing 

predictive performances.  But handling analytical tasks, like elaborating parameter uncertainties and 

effect sizes might require less complex and more transparent algorithms, such as logistic regression or 

generalized additive models(Goetz et al. 2015; Schmaltz, Steger, and Glade 2017; Steger and Kofler 

2019).  
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Generalized additive models result in continuous probability values in the hazard map that are reclassified 

into susceptibility zones. Current models mention this output as zonation maps to be used supposedly for 

land use planning. However, these final zonation maps often have reclassified values that do not define 

how urban planners and decision-makers could use them (Hearn and Hart 2019).  

 

Table 5. General landslide causal factors (classified by Süzen and Şener Kaya 2012) 

 

 

 

2.2.3 Spatial units  

Landslide hazard assessment uses different spatial units: grid cells, slope units (SUs), or administrative 

units(Van Den Eeckhaut et al. 2009; Erener and Duzgun 2011).   In recent years, the choice of mapping 

unit for landslide susceptibility zonation has been the subject of study for some researchers. A comparison 

between grid-cells and SUs yielded findings where the SUs performed better (Ba et al. 2018; Martinello 

et al. 2020). Another comparison concluded that SU sizes play an important role in the final result 

(Domènech, Alvioli, and Corominas 2020). An SU has a strong relation with the underlying topography, 

absent in grid cell–based analyses (Guzzetti et al. 2006).  
 

2.2.4 State-of-the-art on landslide hazard modelling 

 

There are attempts to include temporal probability in landslide hazard models. Techniques were applied 

that explored available historical benchmarks.  For instance, in the absence of historical data on 

landslides, landslide hazard models have used an indirect approach by analyzing the frequency of rainfall 

occurrence to derive landslide distribution over time. Fan et al. (2020) and Ha et al. (2020) applied this 

through simulations in small catchments not exceeding 1 square kilometre.  Landslide distribution was 

also obtained from statistical analysis using Gumbel distribution for a one-time extreme rainfall event 

(Lee et al. 2020) and Poisson distribution for more frequent rainfall events (Dikshit et al. 2020).  Pradhan, 

Lee, and Kim (2019) applied the same approach on a regional scale using Artificial Neural Network 

(ANN). Uzielli et al. (2018) also used the triggering probability of rainfall using a Bayesian approach to 

measure the temporal evolution of landslides. In cases where observed historical data exists but not older 

than 20 years, machine learning was used, such as Deep Belief Network (DBN) to explore patterns of 

displacement (Li et al. 2020) and Random Forest (RF) to predict near-future events (Lai and Tsai 2019). 

 

In a similar scenario where the available historical data is not older than eight years, Bayesian-generalized 

additive models constructed from 3 co-seismic event inventories were used.  One model generated 

predictive realizations over two other inventories (Lombardo and Tanyas 2020).  On a global scale, the 

Environmental Geotechnical Topographical Geological 

Anthropogenic parameters Soil texture Drainage Strata-slope interaction 

Position within catchment Soil thickness Surface roughness Lineaments/faults 

Rainfall Other geotechnical 

parameters 

Topographic indices Geology/lithology 

Land use/land cover  Elevation  

  Slope aspect  

  Slope length  

  Slope angle  

  Slope curvature  
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National Aeronautics and Space Administration (NASA) offers a near-real-time model called Landslide 

Hazard Assessment for Situational Awareness (LHASA)  which maps susceptibility with 1-kilometre 

resolution(Kirschbaum and Stanley 2018)In cases where historical data that is older than 50 years were 

obtained, the Poisson distribution was applied. Fu et al. (2020) used this for community-based modelling 

in a 34-square kilometre in China.   On a 79-square kilometre area in Italy, Lombardo et al. (2020) 

combined a Poisson model with a Gaussian model using a Bayesian framework that modelled “intensity”.  

Both studies used SUs as spatial units.  All models exploited the possibilities of obtainable data, and each 

has its limitations. Most of it is on account of the accuracy of the data. From these models, there is a 

correspondence between how far into the future one can predict from how far back in time an event was 

observed. Records of the distant past have not yet been considered. 

 

2. 4 BAYESIAN APPROACH 

 

Bayesian is a statistical perspective that accommodates one’s prior belief in a quantitative analysis. It is 

based on Bayes’ theorem wherein one’s prior belief is updated after evidence has been taken into account. 

This updated belief is called the posterior probability, and the object of interest, which can be exploited to 

make inferences and draw conclusions from. Before seeing evidence, the beliefs held by a modeller about 

the parameters in a statistical model is called a prior distribution, expressed as probability distributions. 

That belief changes when evidence or new data is obtained. A way of quantifying those belief changes is 

called conditional probability. The conditional probability distribution given parameters of the data, 

defined up to a constant is known as the likelihood function. 

 

If we have a data set 𝑦 and model parameters 𝜃, Bayes’ rule can be written as: 

 

 
𝜋 ( θ ∣∣ y ) =

π ( y ∣∣ θ )π (θ)

π(y)
   

( 1) 

 

 

 

where:  

 

π(y∣θ) is the likelihood of the data y given parameters θ  

π(θ) is the prior distribution of the parameters and, 

π(y) is the marginal likelihood, which acts as a normalizing constant 

 

π(y) is difficult to calculate because it could involve sums and integrals that could be time-consuming, 

that’s why in practice, the posterior π (θ∣y) is the estimated product of the likelihood and the prior 

distribution. However,  it is needed when computing Bayes factors for model comparison and averaging 

(Link and Barker 2006). Bayes’ rule is written as: 

 

 

 𝜋( θ ∣∣ y ) ∝ 𝜋( y ∣∣ θ )𝜋(θ) 

 

( 2) 

 

In this equation, the posterior can be estimated by re-scaling the product of the likelihood and the prior so 

that it integrates up to one. The prior distribution π(θ) is set by the modeller.    

 

There is an increase in interest in Bayesian statistics due to the recent availability of powerful 

computational tools. Computational techniques like  Markov Chain Monte Carlo (MCMC)  makes exact  
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Bayesian inferences possible even in very complex models. However, the exact computation of marginal 

likelihoods can be very slow. A fast alternative to this is the integrated nested Laplace approximation 

(INLA), a method for approximate Bayesian inference introduced by  Rue, Martino, and Chopin  (2009). 

This method is used via the R-INLA package.  Bayesian modelling in R-INLA allows a free combination 

of different sorts of modelling approaches with prior information.  It does not select model combinations 

or new arrangements, and it can model information in ways that are deemed realistic.  Since it can 

compute the posterior inferences easily, it allows more time to explore different models.  New 

conceptions of models are therefore analyzed, providing wider usage among those outside the statistical 

community.  In landslide hazard mapping, R-INLA was applied (Lombardo et al. 2020; Lombardo, Opitz, 

and Huser 2018) using its spatial models for discrete data. 

 

2.6 USEFULNESS AND USABILITY  

 

Nielsen (2012) defined usefulness as the sum of utility and usability, where usability is a quality of 

attribute that assesses ease of use of user interfaces. Utility defines the functionality of the product. ISO 

9241-11 (2018) defines usability further by relating it to the outcome of interacting with a system, product 

or service. Thus, its failure means the failure of the product to function for users.  Modelling efforts and 

design, should keep the end-users in mind where their spatio-temporal questions find answers in the 

resultant map(van Elzakker and Ooms 2018).  Knowing when a map works depend on user research 

methods where the kind of people involved determines the evaluation approach  (Roth, Ross, and 

MacEachren 2015). The context of the map use is also a factor to consider. For instance, evaluation 

depends on whether the mapping would be interactive and accessed via web or desktop application or 

presented as static information. Whatever the context, the involvement of the end-users from the 

beginning of the design process ensures that the final product responds to their needs(Gulliksen et al. 

2003).   

 

2.7 METHODS ADOPTED 

 

This study combines methods from the preceding related concepts found in literature to develop a 

contextualized landslide hazard mapping for land use and infrastructure planning.  It adopts a Bayesian 

generalized linear model for landslide assessment. A Bayesian approach is viewed here as appropriate to 

make inferences from indigenous toponyms.  The algorithms of a generalized additive model also satisfy 

transparency requirements of data transformation gathered from indigenous knowledge.   

 

The collection and analysis of indigenous toponyms follow structured and unstructured co-production. It 

proceeds from qualitative to quantitative analysis, allowing for iterations to translate indigenous 

toponyms for modelling. Finally, following the principles of co-production to generate information and 

aid policy decisions, the output is foreseen as a usable document for its target users. A test guided by ISO 

9241-11 is employed to improve the modelling product.  
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3.  Design and Implementation  
 

The methods presented in this chapter derive from both related literature and discoveries about indigenous 

toponym dimensions within the study area.  

 

Figure 2 further refines Figure 1 by breaking down toponymic information into two process steps that 

compose the first modelling part.  The first part deals with the translation of toponyms into input variables 

for Bayesian modelling. The second part of modelling deals with statistical modelling. The process is 

iterative, where adjustments in the model ensue from information updates from the indigenous 

community when they use the resultant mapping. In the co-production process, the researcher assumed 

the role of intermediary between scientific knowledge and indigenous knowledge.   Unless otherwise 

indicated, the term “local community” refers to locals engaged by the researcher in social media.  These 

are residents and former residents of the study area who are active in local concerns through their 

membership in a Facebook discussion group moderated by elected municipal officials.  

 

 
 

Figure 2. Toponymic co-production landslide hazard modelling process 

Toponymic Characterization (3.2) and Regionalization (3.3) discusses the properties of indigenous 

toponyms in response to RQ1.1. “What are considerations in representing a toponym as an input variable 

for landslide hazard modelling?” Decisions on the methods adopted required consultations with local 

community representatives. These are described in Sections 3.2 and 3.3 in response to RQ1.2 “How is co-

production employed in toponym translation to variables?”  
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Section 3.5 discusses the modelling implementation process from selecting significant variables to the 

selection of the model. Finally, section 3.6 presents how usability of the resultant mapping had been 

evaluated.  

 

3.1 THE STUDY AREA 

The study area (Figure 3) is situated in the largest mass of mountains in the Philippine archipelago known 

officially as the Cordillera Administrative Region. It is inhabited by different ethnolinguistic communities 

that share similar mountain-related cultural practices.  The region resisted Spain’s full sovereign authority 

in the country’s nearly four centuries of Spanish occupation, which accounts for the preservation of 

indigenous toponyms.  

 

 
 

Figure 3. Study area, Philippine Cordilleras 

The selected area comprises one drainage basin and three half-basins covering five (5) barangays, with 

the borders of the basins intersecting four (4) other barangays. The five barangays include the town 

centre (Poblacion) and four old villages (Julongan, Nagacadan, Tuplac, and Ambabag), now officially 

recognized as political-administrative units. Barangay is a term for the smallest political unit in the 

Philippines.  

 

Elevation in this area ranges from 510 to 1626 meters above sea level (masl), with the steepest slopes at 

143 per cent. Slopes below 15% comprise 12.6 % of the study area, where the oldest settlements are 

situated. From this rugged terrain emerged indigenous slope stabilization practices, which are evident in 

the landscape earning it world heritage recognition (WHC 1995).   
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Agricultural "water districts" (Barton 1930) partition the basins such that woodlots on the lower reaches 

of the slope protect and delineate the headwaters on the upper reaches to sustain the rice terraces further 

down the slopes. Through wet cultivation, east-facing slopes are sealed by moist topsoil all year round to 

prevent water seepage into the soil foundation that could cause shear failure. Within this system is a 

drainage network that allows water-saving in the dry season and rapid water exit during heavy 

precipitation through channels that divert destructive water flow on the slopes. Current land-use practises, 

however, are undermining this traditional system. Ninety-five per cent (95%) of the 19-km long road that 

traverses the study area lies on a slope per cent that is 30% and above. A trend of increasing built-up areas 

is apparent along this road. Protected forest zones where the road cuts through are also undergoing rapid 

conversion to agriculture. These land-use trends modify natural drainage and account for frequent slope 

failures that cause annual road blockages and the destruction of settlements in the wet months, from April 

to January of the following year.  

 

A highly exposed area to hazard is the town centre, Poblacion, the newest settlement which sits on a 

levelled part of the land at the foot of an eroding mountain called Atade. In the vernacular 

language, Poblacion is called Nabagtu, meaning "higher plateau" but expressed as a verb in the past 

tense, articulated from the people's perspective in the downhill villages. The population of this centre 

started in the early 1900s when American occupation established a military barracks, followed by an 

administrative centre, schools and connecting roads (Barton 1930). The town is the oldest in the province, 

name Kiangan, which derives from Kiyyangan, an old abandoned village centre downstream. 

 

The earliest known record of old settlements in the area is found in a 1598 report in an unpublished 1789 

manuscript, Noticias de los infieles igorrotes en lo interior de la Isla de Manila, by a Dominican 

missionary  (Antolin and Scott 1970). In 1801, foreign entry into the area recorded the population of its 

old village. However, it was in the early 1900s when more written records mentioned other toponyms in 

the area. The names of mountains and regions are mentioned in indigenous rituals and myths that invoke 

deities for protection against calamities. Religious worship focuses on avoiding evil or disaster by giving 

the gods what they want (Lambrecht 1962). The cosmological conceptions that formulate worship include 

supernatural geography that mentions some toponyms in the study area. For instance, the eroding 

mountain,  Atade is mentioned in invocations because its great deity, Imbangad, which means "returned", 

must hold the rocks from falling (Martin 2021).   

3.2 TOPONYMIC CHARACTERIZATION 

Figure 4 outlines the steps in toponymic characterization. It is a process of matching toponyms with 

landslide occurrence based on its meanings and associations in the study area as well as on the 

information required in modelling.  Each step is further illustrated to show how these are further 

processed and implemented using various tools.  
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Figure 4. Toponymic characterization steps 

3.2.1 Toponym collection and meanings 

The output required in this activity is data on the location points of toponyms and associated meanings. 

These are expressed in a shapefile with corresponding attributes to be used as inputs in the next 

steps. Figure 5 illustrates the series of activities for this step. 

 

Toponym information may come from existing ethnographic atlas and supplemented by elicited 

information from the residents. The study area already has an existing toponym dataset collected in situ 

from three administrative units by the researcher prior to this research. The data was produced from 

workshops that were organized together with the municipal government, and official representatives of 

each barangay. A representative from the National Commission on Indigenous Peoples (NCIP) was also 

present to validate the process. The same data set was crossed-checked by an online focus group 

discussion (FGD) created for this study through a published mapping of toponyms on Google Earth with 

restricted access to this group. The activity added a few toponyms and also relocated some points to more 

accurate locations. A resident participant of the FGD relied on sending marks on screenshot images to 

identify approximate positions.  

 

The toponyms were also presented to a larger FB group which enriched the meanings of toponyms 

through open-ended discussion threads, which remained active for more than a month. Discussions 

included morphemes and affixes as well as references to historical events. Toponym meanings were also 

derived from available dictionaries published by linguists and in documents prepared by priests who 

resided in the vicinity between the early 1800s and 1960s. Old reports from Spanish friars that date back 

to the 1500s were used to date the toponyms. Dating the toponyms was done through confirmation with 

an archaeologist who worked in the area and with community members who confirmed approximates 

using written records as reference dates. Table 6 summarizes the information sources. 
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Table 6.  Summary of information source 

 

 

 

 

There are general descriptions of land features that fall between toponyms and geomorphology that are 

not included in the collection because the local community does not use them as geo references. Instead, 

these areas become "active" during a natural or human-made event. An example is the formation of 

natural waterways on concave curvatures known in the vernacular as kulu, which literally mean “scour”.  

Such feature is considered in classification for certain toponym types described in the next section.  

Information Source Type of information source 

Toponyms  In-situ workshops, 2016  Data set 

Map validation and 

supplementary data 

FGD via Facebook discussions, 

2020/2021; Google Earth , 2020 

Social media + web map tool 

Etymology/Associative 

meaning 

Local community via Facebook 

discussions, 2020/2021 

Social media 

Pataueg, 2020 Local language expert 

 

  

Summer Institute of Linguistics, 2014; 

Lambrecht, 1978 

Dictionaries 

  

Dating Antolin and Scott, 1970; United States 

Philippine Commission (1899-1900) 

1904);Roth, 1974 

Reports/Notes on ethnohistory 

 Acabado, 2021; Martin, 2021 Anthropological archaeologist 

Indigenous culture expert 
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Figure 5. Collect toponyms 

3.2.2 Toponym Characterization 

From community discussions to online FGDs, there are some toponyms with meanings that also remain 

unknown. They were classified according to their traditional land use. Etymology and association of 

toponyms were not always related to a single dimension, category or feature.  Thus, some toponyms have 

multiple meanings and fall into two or even all three classes. The term “characterization” therefore is 

adopted to distinguish them. 

 

The primary consideration in characterizing toponyms is their relation to landslide occurrence. The 

second consideration is traditional land use which is reflected in the generic landscape and indicates 

indigenous knowledge on avoiding and preventing landslides.   

 

Toponyms in the study area are references to locations in the generic landscape (human-made and 

natural) where human interactions occurred, and events took place. The toponyms feature mountains, 
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vegetation, terrace paddies, old settlement areas and water bodies (springs, rivers, brooks). They also 

feature morphological, hydrological, and soil attributes that describe the presence of variables that may 

cause landslides. Locations that do not have toponyms indicate no remarkable feature nor record of 

significant experience. 

 

In characterizing toponyms related to landslides, two types emerge. The first type is associated with 

recognized landslide hazard factors. The second type directly describes landslide occurrence or elements 

of a landslide.  Those not related to landslides describe the natural and human-made landscape in terms of 

land feature, land cover, and land use.  This is characterized as the third type. The classification of 

landslide causal factors is based on the parameters outlined by Suzen and Şener Kaya( 2012). Figure 6 

illustrates the characterization of toponyms based on their relation to landslides. 

 

 
 

Figure 6. Characterize into types 

 

Each type of toponym is further characterized. Type 1 toponyms indicate the presence of factors that 

could cause landslides. These causal factors correspond to a list of geological, hydrological, 

morphological, and other variables that are generally used in landslide susceptibility mapping.  

 

Rapid matching of toponyms with this list of landslide causal factors was first done by the researcher, 

which narrowed down the list to nine (9) variables. Seven variables that fall under Type 1 toponyms were 

then used as a checklist for each Type 1 toponym. Appendix A shows a  sample of the survey checklist 

used to generate the scores for each toponym. This checklist was created online through 

https://www.jotform.com/, shared to the FGD.  

 

The checklist works like a matrix showing how toponyms match with seven possible factors that 

influence landslide occurrence in the area: Elevation, Slope Steepness, Soil Moisture, Slope Aspect, 

Lithology, Planar Curvature and, Profile Curvature (Figure 7). The numerical value for Type 1 is the 

summation of checks for each toponym. The checklist is then presented to the FGD.  Decisions are 

finalized through the larger group, where the checklist questions become part of an open discussion on 

etymology and associated meanings.  The output of this is in the form of added attribute columns to the 

toponym dataset 

https://www.jotform.com/
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Figure 7.Match with landslide causal factors  

 

The method of matching Type 1 toponyms with a checklist of landslide causal factors captures to some 

degree the multiple dimensions of indigenous toponyms. From Figure 7, Type 1 toponyms already consist 

of 4 further categories.  This method may still be considered a simplification but necessary to generate a 

representative numerical value to the toponym.  

 

In the above checklist, soil moisture is often observed on the concave curvatures of the slopes where 

natural drainage lines are and on the faces of the slopes between these drainage lines to some point when 

the slope starts to form a convex curve. Thus, planar concave curvatures, known in the language as “kulu” 

sites, are subsumed under Soil Moisture.  

 

This associative checklist cannot capture other information, such as the dynamic changes mentioned 

above.  Toponyms may therefore be a composite of causal factors and can explain other factors that are 

not apparent. For example, in the area, the name of one mountain connotes erosion tendencies but scores 
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low on the number of causal factors. Explanatory variables that are available in literature cannot fully 

capture this effect.  Another potential causal factor in the area defined by toponyms is wind direction, 

which, when combined with the poor status of vegetation cover, results in slope instability.  This was not 

included because of the lack of literature to confirm this. 

 

Toponyms that further match Type 2 characteristics are considered “plus one” landslide counts in the area 

bounded by the toponym, which will be determined later when connected with spatial units. All toponyms 

of this type are further classified according to the date they existed, represented as time slices. Figure 8, 

which is a continuation of Figure 7, illustrates this as an intermediate step where four time slices are 

created.  For example, toponyms that exist in the 16th century (1598) are given a count of 1 event within 

that time slice.  The space in which this happened is assigned when spatial units are defined in Section 

3.3.  The number of these events are added in the landslide inventory presented in Section 3.4.   

 

 

Toponyms that match Type 3 characteristics do not indicate the presence of factors that cause landslides. 

These are toponyms that refer to old settlements (not necessarily settled today), rice terraces, woodlots 

and old vegetation. All of these describe the traditional landscape. Although vegetation cover may be a 

variable that can cause landslides, this is not included under Type 1 toponyms because it is its absence 

that is likely to cause slope failure. Land-use change as a landslide causal factor can be extracted from 

Type 3 toponyms through dummifying variables. These may be from land-use changes on forest covers 

such as quarrying, road constructions, and new settlements that alter or block natural drainage lines. 

Land-use change on forest covers and vegetation-derived toponyms are given a score of 1 to indicate the 

presence of slope instability. However, this cannot be assigned at this stage because this condition 

depends on the area covered.  The affected area can only be defined during the toponym assignment to 

slope units described in 3.3.2.  On the toponym dataset, attribute columns for land cover and traditional 

land use are added that classify these land covers/use. Later, dummy variables are added to account for 

the absence of these descriptions in specific SUs where there is an observed change. Figure 8 illustrates 

the process of matching toponyms with Type 3 characteristics. 
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Figure 8. Create columns that match type 2 and type 3 characteristics 

3.3 REGIONALIZATION 

This section responds to RQ2.1, which states as, “Factoring in the conditions mentioned in RQ1, which 

methods are suited to generate quantitative input variables for modelling from toponyms?”  

 

Although toponyms are characterized in this model into different types, each can also belong to multiple 

types.  One toponym can represent causal factor features (Type 1), and is counted as a landslide event 

(Type 2).  To prepare toponyms as variables for modelling, these properties must be first referenced in 

space, then quantified. Figure 9 shows the workflow. The first step is to optimize spatial unit partitioning, 

followed by toponyms connection to these spatial units. The dummy columns created in Section 3.2 are 

then populated before these spatial units are grouped according to their properties.  
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Figure 9. Regionalization steps 

3.3.1 Optimizing spatial unit partitioning 

The initial step is to decide whether the spatial units to be used should be grid-based or terrain-based. 

Slope units (SUs) are terrain-based and represent topographical units. An SU is also known as a "half-

basin" because ridgelines and valley lines define it (Figure 10). Both landslides and toponyms can adopt 

different types of mapping units. However, toponyms have ambiguous boundaries. Clearer delineation 

may only be observed in manmade landforms, such as named plateaus bounded by retaining walls. This is 

the case in the study area, where settlements are named in various "platform" terminologies and are well-

defined. For indigenous placenames, spatial precision is also relative and exclusive to the local 

community's knowledge. One thing certain about toponym boundaries is that these are not grid-based. 

Often they adopt natural features such as ridges, rivers and streams (Tsai and Lo 2013) and are close to 

terrain configurations.  Therefore SUs align well with the spatial definitions of indigenous toponyms. For 

this reason, the proposed model adopts SUs as spatial units. 

 

The purpose of optimizing spatial unit partitioning is to define the minimum size of mapping units that 

simplifies the model but does not diminish the information content of the two elements for modelling 

(landslides and toponyms) and their relation. The minimum spatial unit size defines the optimal terrain 

subdivision by capturing the amount of information detail within each of these elements without these 

having to be divided further into finer units. In the overall model, larger spatial units mean fewer 

observation units. Thus, optimizing spatial unit partitioning also means maximizing the amount of 

information from the fewest observation units. In this study, it is the minimum distance between distinct 

terrain configurations defined by toponyms that determine the optimal minimum size of spatial units.   
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Figure 10. Slope units (SUs) 

 

The “r.watershed” module in GRASS in QGIS extracts “half-basins” based on a threshold value of 

drainage and divide networks. An algorithm developed by Alvioli et al. (2020) implements an iterative 

procedure of optimizing SUs by starting the partitions from bigger half-basins, further subdividing these 

into smaller half-basins. The subdivision of an SU stops then flagged when the half-basin meets the 

internal homogeneity and size criteria of an SU defined by the modeller. In the work of Alvioli et al. 

(2016), the determinant for this homogeneity is terrain aspect segmentation.  

 

For the proposed model, the determinant is the toponym meaning descriptive of geomorphology. The 

iteration procedure starts the partitioning from smaller half-basins where SUs are merged to adjacent SUs 

that share the longest boundary. Using the “r-watershed” module, smaller half-basins are merged to 

bigger basins by employing a merging process using the algorithm, “Eliminate selected polygons”.  

Appendix B displays a detail of this workflow. 

 

Figure 11 illustrates how toponyms define the merging iteration. The number of SUs is reduced 

iteratively by merging SUs as long as  toponyms that describe different geomorphological features 

continue to be in separate SUs.  This is checked with local knowledge, and the minimum distance 

between toponym points produced in Section 3.2.  Finding the closest pair of toponym points that have 

distinct geomorphological properties can be checked through the “Distance matrix” operation in QGIS 

which shows the minimum distances between toponym points using the “Summary distance matrix” as 

output matrix type.  

 

Remnants of lines that are visible in the last iteration can be cleaned through the “v.clean” operation in 

GRASS. Finding the optimal granularity of SUs may be taken as an optional step here and the decision to 

use a minimum SU size that is smaller than the optimal size (thereby increasing the number of units) is set 

by the modeller.  In this case, the optimal size is preferred.  
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Figure 11.  Select polygons to be merged 

 

3.3.2 Connecting toponym attributes with SUs 

Inputs for this process are the toponym point dataset and the SU polygon dataset. The output is an SU 

dataset with toponym attributes exported as comma separated values (CSV) for further processing. The 

general steps use GIS operations that first connects a point (toponym) to a polygon (slope unit). This 

polygon then connects to its adjacent neighbouring polygons, which continues before these polygons 

cross the imaginary boundary of the toponym. Polygons that lay across these boundary lines connect to 

toponyms guided by a set of rules. The imaginary boundary is calculated through Voronoi polygons based 

on specific toponym points. Figure 12 illustrates the general steps. 
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Figure 12.  Connecting toponym attributes with SUs 

 

 

Some important conditions have to be clarified first in the calculation process.  First, the toponym points 

of mountains and those found on the uppers slopes are not centrally located in the area covered by the 

toponym.  In a basin, the central approximation of toponym points more often applies to the valley parts 

than in the upper slopes due to the denser toponyms in settlement areas.  A toponym point in the upper 

slopes may represent the curved rim of that basin or branch out to another chain of hills. Second, these 

points are relative to the study area and the residents who mapped these.  Thus, a toponym point in the 

upper slopes may also represent a range of hills with defined ridgelines that extend beyond the study 

area's boundaries. For the purpose of connecting toponyms with the respective SUs in those areas, more 

representative points of the same toponym are added in the range of hills that it covers. For headwater 

toponyms, the representative points are placed on slopes 1200 masl and above. Based on prior knowledge 

and mapped vegetation, this is an elevation line where it is certain that the area above it is considered 

headwaters. Below this line is a mixture of land cover(forests) and land use.  Mountain/hill toponyms that 

are found below this elevation are also given more representative points from ridge to river if there are no 

land use toponyms found on its slopes.   

 

Connecting toponyms starts with SUs from upper slopes, valley parts then on SUs on elevation margins 

and voronoi lines.  

 

The process is executed in the following steps: 

 

Step 1 From the toponym point dataset, create three separate toponym datasets: Set A) mountains and 

headwaters; Set B) settlements and agricultural areas and; Set C) remaining toponyms. For the shapefile 

on headwaters, which consist of a chain of hills, add representative toponym points on the slopes below 

the ridgeline above 1200 masl.    

 

Step 2 Select slope units that contain these points.  Through GIS processing, the “extract by location” 

operation extracts features from the SU shapefile where the feature contains the toponym points (e.g. 

mountains and headwater shapefile). This results to an intermediate layer “Extracted (location)” which 

becomes the input for the operation “Join attributes by location” where the “Joined layer” is the same 

toponym shapefile.  In the “join type” query box, choose “one-to-one”.  The 2-step process creates a 

“Joined layer” in the form of an SU shapefile with attributes adopting the toponyms that they contain 

(Appendix C). This is performed for the three datasets.  Alternatively, direct spatial joins and filtering can 

be performed directly using one dataset but this entails more data cleaning and manual checks.   
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 Step 3 Add surrounding neighbours for sets A and C.   The previous step ensured that all toponyms and 

their attributes are accounted for in the 3 SU datasets.  At this stage there are larger gaps between 

mountain toponyms on the upper reaches of the basin than on the valley parts.  The operation “Select by 

location” picks out slope units that are adjacent to the main SU containing the toponym point extracted in 

Step 2. These selected SUs are added through the operation “Join attributes by nearest”. This creates 

another new intermediate layer “Joined” for the 2 datasets. It should be noted that there are already some 

overlaps between the “Joined” C set and the settlement shapefile, “Extracted” B.  In this case the vector 

geoprocessing tool “Difference” is implemented to subtract these polygons from “Joined” C, resulting to 

“Difference” C.  The neighbouring SUs surrounding settlement areas that have now been assigned set B 

toponyms will be inspected later. Appendix D illustrates these intermediate steps.   

 

  

Step 4 Merge the 3 datasets. This creates a dataset “Toponym_SU” that only shows SUs that take the 

properties of the toponyms that they contain (Figure 13). Overlaps between these sets will be manually 

checked after all gaps are filled. 

 

 

Figure 13. Merging the datasets  

 

Step 5 Connect remaining SUs from the top parts of the basin down to the valley areas. This follows the 

same process of adding SUs to the nearest toponym set as in Step 3 but this time it will be a manual 

selection of SUs from the Toponymic SU dataset.   To create guides along the slopes, the “Voronoi 

Polygons” operation is employed using the Set C dataset as input layer.  This operation takes the toponym 

points layer and generates a polygon layer representing approximate boundaries of the toponym points. 

Figure 14 and 15 show how the voronoi lines are used as guides.   

 

This is a step in the process that needs careful checking because this involves decisions in assigning 

toponym properties on SUs where they overlap or on SUs that does not have a toponym. In general the 

land cover toponym from the top takes precedence over land use on the valley. Figure 14 illustrates some 
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rules for Case 1 and Case 2 to serve as guides for this step.  The labels show the literal translation of the 

toponyms. 

 

 

Case 1: Near headwaters. If the SU lies across the voronoi boundary that is transverse to the 

slope, the SU adopts the headwater name.  

 

 

Case 2: More than 1 toponym. If there are more than 1 toponym in 1 SU, then the SU is named 

according to these toponyms.  The SU adopts the attributes of all three.  If there are attribute 

values that are conflicting in one SU, the toponym that  does not describe the underlying 

landscape is not included. In the illustrated example, the toponym “abundant beads” was taken 

out because it does not reflect the underlying landscape after checking this with a satellite 

basemap. 

 

 
Figure 14. SU cuts across boundaries 

 

Case 3: Settlement toponym with unnamed land cover and use. If the toponym defined as a 

settlement area is in an SU that includes traditional agricultural areas and headwaters above,  the 

SU is named as a settlement with headwaters and agricultural area or “H_T_hamlet”. In the 

example in Figure 15, the hamlet toponym is on an SU that cuts across other areas such as an 

unnamed headwater or forest above and unnamed terraces below it.  The forest above and terraces 

are referred to in the local community as “headwater of ” and “terraces of ” the hamlet. 

 

 

Case 4: Toponym within a toponym. If the SU is on a named mountain with a named slope, the 

SU adopts both headwater/mountain and named slope properties. In the example in Figure 15 the 

named slopes lie on the lowest slopes of “headwater region”. The slope units are therefore 

renamed “headwaters_hollowed out”, “headwaters_distended_hollowed out” (if this is reflected 

in the underlying terrain), and “headwaters_roaring waters”.  
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Figure 15. Toponyms with other named and unnamed places 

 

Case 5: If there are blank spots or SUs in places with features that are obviously not descriptive of 

its named neighboring unit, these are labeled as “neighbor_r”  to refer to the neighboring SUs.  

These are described by the locals as “before” this place or “between” two places depending on 

their reference point. The SUs may adopt the attributes of the nearest toponym within that side or 

aspect of the slope when landslides occur in this unit.   

 

Step 6 Check overlaps in the final Toponym_SU dataset. The overlaps between those from set A 

(headwaters/mountain) and set C (thematic descriptions of the slopes) indicate renaming of some slopes 

(Case 4). 

 

Step 7. Identify SUs that are affected by land use change.   

From Step 6, the dataset shows SUs with toponyms and their attributes with the dummy columns for land 

use change. One column identifies SUs for built-up areas, named “d_BU” which refer to land conversion 

from toponym-described land cover or land use to roofed structures and pavements. The built-up areas in 

this case include settlements, paved surfaces, and other industrial activities (e.g. quarrying).  The other 

column identifies SUs where vegetation conversion is evident, named “d_VC”.  This includes toponyms 

of mountains and the headwater region. Built-up areas in the form of roads and new settlements are also 

accounted by superimposing the toponym SUs on existing land use base maps. The two dummy variable 

columns for vegetation change and built-up areas can now be filled-in to indicate SUs where land use 

change occurred.   

 

 

Step 8 Cross-check with community representatives.  The process is iterative and may be updated even 

during usage of the final product.  
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3.3.3 Summary of Toponym-based landslide causal factors 

Table 7 summarizes the landslide causal factors considered as a result of toponym matching and observed 

changes from toponym-described land use and land cover.   

 

Table 7.  Summary of causal factors considered 

 

 

3.3.4  Toponymic Regions 

The output of the previous process is a dataset that shows the Type 1 attributes of toponyms. These 

include the checklist of landslide causal factors processed during the toponym characterization stage 

(3.2.2). SUs are grouped according to the same presence and combination of the causal factors. 

Henceforth, these are called "predictors".   

 

These regions assume the combination of the predictors present.  The grouping of SUs in effect translates 

toponyms as  geospatial regions with composite predictors.  The same toponym may be in different 

regions and different toponyms may belong to one region class.  There are cases where one region is 

equal to one SU. The number and combination of predictors are added as information into the SU dataset. 

These were then assigned codes to simplify notation.   

 

The regions as a composite representation of the presence of predictors takes the absolute value of their 

sum as its numerical value. Where there are 3 predictors, the region’s value is 3. The assumptions are: 

 

• Since toponyms hold information associated with landslide predictors, the resulting aggregation 

of predictors combines these effects, where a higher number of predictors means a higher effect. 

• The quantity of predictors in each region is proportional to its combined effect, where one 

predictor equates to a count of 1. 

• The effect of predictors is constant for each region. 

 

 

The kind of predictors present and their interactions within their specific regions should not be ignored 

and must be preserved in the final analysis. Each region has a different set of predictors that provide 

information on land use policies and infrastructure interventions. The set of predictors combine inherent 

characteristics of the terrain and land use activities that require specific and appropriate policy responses.  

Causal Factors 

 

Considerations 

Topographical Elevation Indicated by the toponym 

Geomorphology Slope steepness Indicated by the toponym 

Geomorphology Planar curvature Toponyms describe the convex curvature 

Geomorphology Profile curvature Toponyms describe the convex curvature 

Geological Soil moisture Toponyms relate this with concave profile and planar curvature and 

sometimes with slope aspect 

Topographical Slope aspect Description of south to south-west facing slopes only based on prior 

knowledge of slope failure during extended heavy precipitation  

Geology Lithology Associations of toponym 

Human Activities Built-up area Land use differ from toponym description 

Human Activities Vegetation change Land use differ from toponym description 
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This information must therefore be rendered in the resultant mapping of the selected model. Figure 16 

provides an illustration of information required in the dataset both for modelling and for rendering. The 

notation tg represents “toponymic geospatial regions”. In the example, tg10 has three predictors: 

Elevation (E), Slope steepness (S) and, Lithology (L).  

 

 
 

 
Figure 16. Toponymic geospatial regions, "tg" 
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3.4 LANDSLIDE INVENTORY  

 

The collection of landslide information is co-produced.  Table 8 shows the combined observations of 

landslide events.  The inventory of landslide events from 2009 is a set of points from different sources. 

Landslide events of 2009 were memorable to the local community, but Google earth images only 

provided clear images of 2010, which showed old landslide scars of 2009. The images of 2010 were still 

used to corroborate 2009 recollections. The inventory of landslides before 2009 also comes from 

recollections of the community, discussed in social media triggered by landslide-related toponym 

discussion. The inventory from Google earth was exported in Keyhole Markup Language files. These 

were then converted as shapefiles in QGIS. Each SU covered by the toponym is given the value of 

"counts" of recalled events plus one count for the toponym. For example, if the local community can 

recall 2 events in the location covered by a landslide toponym, the SUs that it covers are given a count of 

two (2) plus one (1).  Identification points are described to differentiate multiple events within an SU.  

Landslide inventory uses Varnes (1978) classification to identify the types of slope movements present in 

the study area.  

 

Table 8.  Combined approaches in landslide inventory 

*OSM- Open Street Map 

 

  

Combined Method Time Identification points 

Toponyms and community recall on social media Pre-2009 As counts within the slope 

units covered 

Google Earth images and community recall  2009-2010 Highest position on scar 

Google Earth, OSM*,community workshops, GPS Survey 2014-2016 Highest position on scar 

Google Earth, OSM*, social media posts, FGD 2017-2020 Highest position on scar 

Social media posts and discussions  Early 2021 Approximate point in slope 

units 
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3.5 MODEL CONSTRUCTION AND SELECTION 

3.5.1 Probability distribution 

This section responds to the research question RQ2.2 which is stated as: “What prior distribution captures 

the information provided by the data and toponyms?”. 

 

The analysis here focused on spatial pattern that matches the data.  In the Bayesian paradigm, the aim is 

to estimate the joint posterior distribution.  The selected toponymic regions provided spatial information 

that is assumed to improve the reliability of these estimates.  In orer to estimate the posterior marginal 

distribution, the integrated nested Laplace approximation (INLA) method was employed. This method is 

implemented in the INLA package available for the R programming language. 

 

The dataset shows multiple temporal landslide events that are partly supplied by indigenous toponyms,   

which indicate  counts of their occurrence. Landslide events are observed within given boundaries in the 

form of SUs, which presents irregular lattice data. Thus for the landslide occurrences 𝑦𝑖 within each SU 

𝑖 = 1, … , 𝑛, the Poisson model is  

 

𝑦𝑖 ∼ 𝑃𝑜(𝜇𝑖) 

log 𝜇𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝  

 

where 𝜇𝑖 is the mean of the response variable, 𝑥1, … 𝑥𝑝 are 𝑝 explanatory variables with effects  

𝛽1, … , 𝛽𝑝 and 𝛽0 is the intercept representing the overall mean after accounting for the covariate 

effects.  

 

 

Spatial models for lattice data are usually defined as random effects with variance-covariance structure 

that depends on the neighborhood structure of the areas (Gómez-Rubio 2020).  Neighbors or areas that 

share the same boundaries tend to have a similar number of events, which shows spatial autocorrelation.  

If observed data from neighboring areas exhibit higher correlation than distant areas, this correlation can 

be accounted for using the class of spatial models called “CAR” models (Conditional Auto-Regressive) 

introduced by Besag (Besag 1974; Morris 2019). This effect is plausible for landslide hazards, where 

neighboring SUs have similar surface and subterranean properties. Downward movements also affect 

surrounding areas.  Another important condition to note is that most of the toponymic regions that are 

used here as explanatory variables are a composite of predictors with various combinations, among which 

are land use change factors.  The type of predictors present has a fixed effect for landslides and their 

combination may have a random effect. Toponymic regions as explanatory variables however, will be 

assumed in the modelling to have fixed effects. The underlying structure in the data was confirmed by an 

over-dispersion test implemented using the dispersion() in the “AER” package.  Random effects are 

therefore added to the model to account for this extra-Poisson variability.  The model is expressed as: 

 

 log 𝜇𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 + 𝑢𝑖 + 𝑣𝑖  

 

                         ( 3) 

 
 

 

where, 𝑢𝑖 is a random effect specific to area i to model spatial dependence between the relative effect, and 

𝑣𝑖 is an unstructured exchangeable component that models uncorrelated noise.  
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The models considered are expressed as follows: 

 

Model 1: (iid) 

log 𝜇𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 + 𝑣𝑖   

Model 2: (CAR or Besag)  

log 𝜇𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 + 𝑢𝑖   

Model 3: (BYM=iid+Besag) 

log 𝜇𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 + 𝑢𝑖 + 𝑣𝑖   

 

 

For comparison, the base model (Model 0) will also be presented to show fixed effects.  Model 1 assumes 

that the confirmed over-dispersion or random effects are "independent and identically distributed"(i.i.d).  

The i.i.d random effects account for any unmeasured explanatory variables and unstructured variability. 

The assumption is that any data point is independent of any other data point. The other assumption is that 

the events are identically distributed.      

 

Random effects were also assumed to follow the CAR models specified in Models 2 and 3.  The models 

show how spatial relations present among the data differ from the explanatory variables. CAR modelling  

is a technique used that borrows information from its neighboring areas.  It works in a way such that the 

probability estimates in a given areal unit is conditional on the level of neighboring values. Relationships 

between these neighbouring areal units are described by an adjacency matrix of the slope units . In this 

model, the neighbor relationship is symmetric but not reflexive; if i∼j then j∼i, but a spatial unit is not its 

own neighbor.   

 

 

The spatial relationship between these units are either independent or correlated.  The model is called an 

improper CAR (ICAR) if it assumes complete spatial relationship between these regions. It results to a 

singular matrix, with some unrealistic consequences (Assuncaõ and Krainski 2009; Lavine and Hodges 

2012) which can be overcome by adding a constraint (Cramb et al. 2017; Morris 2019).  The BYM model 

is the result of ICAR and i.i.d. essentially combining both structured and unstructured random 
effects but each cannot be treated individually.   
 

The formulas corresponding to the three models are in the R-INLA package that is used to perform 

Bayesian analysis in this study. Latent random effects are specified with the f(). The neighborhood 

structure can be obtained by using the function “poly2nb” from package spdep (Bivand and Wong 2018), 

which will return an “nb” object.  

3.5.2 Selection and analysis of variables 

This section responds to the research question RQ3.1 which is stated as: “What are criteria to evaluate and 

select toponymic variables for landslide hazard modelling?”. 

 

Before the set of toponymic geospatial regions are considered explanatory variables for modelling, this 

underwent elimination. First, all toponymic geospatial regions (tg) where no observed landslide occurred 

are taken out from the set, followed by the formulation of the generalized linear model(glm) using all 

remaining as explanatory variables.  The glm describes the relationship between landslide counts and the 

toponymic geospatial regions.  Second, a stepwise selection process in both directions was applied to the 

glm. Stepwise selection builds up the model step-by-step, each time either adding or subtracting a 

variable based on the Akaike Information Criterion (AIC). The AIC distinguishes among a set of possible 

models the best one that fits the data. This was implemented using the function step() in the R “MASS” 

https://becarioprecario.bitbucket.io/inla-gitbook/ch-spatial.html#ref-spdep
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package. The stepwise process in both directions was selected to arrive at the fewest possible explanatory 

variables with the least AIC. It is noted that the backward selection process also yielded the same model.  

 

The third step is a multicollinearity diagnosis, simultaneously done with checking how the elimination of 

variables from the set that passes this test can cause the least loss of information. Identifying variables to 

eliminate was guided by the result of the stepwise selection process, which shows the variables that can 

cause minimum information loss when removed. The combination of variables to remove is based on the 

researcher’s observation of variables that may impact the dependent variable (in this case, landslide 

counts).  Multicollinearity test was implemented using the function vif() in the R “car” package, which 

provided the Variance Inflation Factor (VIF) of each model with a given set of variables. Models with 

variables that are above 5.0 VIF values are rejected.  The model with the set of variables that passed the 

multicollinearity test and with the least AIC was then used in modelling.  

 

The fourth step of elimination was performed during the Bayesian modelling process by examining the 

overlap of their 2.5% and 97.5% posterior estimates with zero. Here, Bayesian inference returns the 

posterior distribution of possible effects presented across a value range.  Within this range is the credible 

interval (CI) containing a particular percentage of probable values. The selection of variables to keep in 

this experiment made use of the 95% CI due to its wider range.  In modelling landslides over an area, the 

conservative perspective was taken, which considers the widest possibilities of effects given observed 

data.  

 

The selection of variables utilizing CIs is an iterative process.  The models considered, returned posterior 

distributions where effects are within the zero probability range, which further reduced the set of 

variables.   

3.5.3 Model selection and visualization 

This section responds to the research question RQ3.2 which is stated as: “Based on which criteria and 

which process are models selected for their predictive performance?” 

 

The goodness-of-fit of the models was compared using the Deviance Information Criterion (DIC). A 

smaller value of DIC indicates a better model fit. Like AIC, the DIC is another criterion that provides an 

approximation of predictive accuracy but it uses the average log-likelihood over the posterior distribution 

as a measure of goodness-of-fit.  DIC is calculated automatically by R-INLA.   

 

Iteration was also practiced in the selection of the final model where the DIC comparison is combined 

with the removal of variables that fall within the zero probability range of the CI. Again, this was 

performed by exploring the data and the impact of variables. The iterative process built the four models 

by retaining the set of variables that does not increase the DIC value. The model with the lowest DIC is 

selected for map visualization. 
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3.6 EVALUATION OF USEFULNESS 

3.6.1 Usefulness Factors 

This section responds to RQ4.1, stated as follows: 

 

 “Which factors define the usefulness of the resultant mapping as a piece of base information for land use 

and infrastructure planning in the study area?” 

 

Usability is a quality attribute that assesses how easy the user interface  (UI) is to use and this includes 

methods for improving ease-of-use during the design process (Nielsen 2012).  An equally important 

quality attribute according to Nielsen (2012) is “utility” which refers to what users need.  If utility is not 

satisfied then, usability matters little. Likewise, failure to address usability means wasting useful content. 

In this study, the factors considered in the resultant mapping combines usability as defined by ISO 9241-

11 with use requirements and user requirements.  First, it must be noted that the resultant mapping here 

follows from a co-production modelling process in which end-users participated.  Thus, this partly 

satisfies content requirements related to the map purpose. 

 

In the context of land use and infrastructure planning, the utility of the landslide hazard map have to do 

mainly with its functionality to guide spatial planning interventions in order to reduce disaster risks. The 

landslide hazard map’s basic purpose is to inform its end-users the specific areas in their locality that are 

at risk of landslides in order for them to make sound spatial planning decisions. This is the use 

requirement.  The use requirement is incorporated in the co-production modelling steps, wherein inputs of 

end-users have been taken into consideration. As informed participants in the co-production process, they 

already have an idea of the output, which defines the content and context of use in the output. Therefore, 

the resultant mapping explored how to optimize content through available devices in the study area.   

 

Another consideration is the usage process of the actual users.  Spatial planning interventions in this case 

refer to land use policies and infrastructure planning that minimize disaster risk.  These are tasks assumed 

by specific personalities in the local government unit or municipality.  In the study area, the execution of 

plans and spatial policies are handled by the municipal planning officers and the municipal disaster risk 

reduction officer.  Before these plans are administered, the decision to implement needs the adoption of 

the legislative body, after these receive approval of municipal residents.  This is the official procedure.   

The actual users are the municipal planning officers, the municipal disaster risk reduction officer, the 

legislative body and representative municipal residents.  Here, the use and the legal process of using the 

landslide hazard map in spatial planning interventions have defined the actual map users. Outside of this 

legal usage process is the general usage of the public in the study area.  

 

The process by which each actual user uses the map interface varies and this is influenced by their 

individual mapping exposure and group learning dynamics. The latter refers to instances during the 

adoption of proposed spatial planning interventions where map use is a group workshop. In the approval 

of land use policies and physical intervention plans, the legislative body inspects this as a group. Hence, 

evaluation methods take into consideration how maps are used individually and in groups.  

3.6.2 Testing methods 

This section responds to RQ4.2 “Based on the factors defined in RQ4.1, what testing method can measure 

the usability of the resultant map among users in the study area?” 

 

Both remote moderated and remote unmoderated methods of usability testing are applied on a dynamic 

map produced from the selected model.  The remote moderated method attempts to assess usability of 
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grouped users by incorporating the dynamics of a group mapping activity, where map use is influenced by 

reactions of observer-participants. Since this is moderated, some real-time guidance is provided by the 

researcher. This was conducted as a videoconference with the FGD via MS Teams moderated by the 

researcher. During the online meeting, an html copy of the map was sent to one user who is assigned to 

explore the map.  This activity was recorded, which captured the mapping activity of a first-time user.  

The videorecording also showed which and how sections of the panel were checked first, the sequence of 

panning and zooming, contribution of other participants, and the length of time that specific information 

is discovered and queried.  A simple mapping activity was prepared for this meeting. 

 

The remote unmoderated testing was done through instructions of a mapping exercise and questions with 

an html copy of the map that were emailed to the municipal disaster risk reduction officer and to the FGD 

participants after the online meeting.  The objective for this assessment is to gather information if the 

target users and the local public can use the map to identify areas that are affected by landslides.  

Appendix I and J exhibit the answers of two respondents. 
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4.  Modelling Results  
This chapter reports findings from the implementation as described in Chapter 3. Sections 4.1 and 4.2  

present the results of the toponym translation process as explanatory variables and as observed data. 

Section 4.3 presents the statistical modelling results. A key point to note in the results of toponym 

translation is that the findings of each step partly shaped the procedure and the methods adopted which 

were described in Chapter 3.  

 

4.1 TOPONYMIC CHARACTERIZATION 

4.1.1 Toponym collection and meanings 

A total of 123 toponyms was collected from the study area (Figure 17).  The southeast half-basin is not a 

complete list as indicated by more information on toponym points provided by the local community 

through social media at the end of this research.   Some toponyms that connote ownership, such as those 

featuring land use, are not included.  These often relate to human-made boundaries but with no known 

meanings that describe the landscape. Within the study area, most of these are in the rice terraces. The list 

of collected toponyms and their longer descriptions are provided in the submitted supplementary material.  

 

 
Figure 17. Collected toponyms 

4.1.2 Toponymic Characterization 

Figure 18 presents 74 toponyms  that relate with landslide causal factors elicited through the summary of 

the survey checklist. Type 1 toponyms denote landscape properties that have local connotations.  Eight 

(8) of these count as landslide occurrence indicated by “T1-C” and “T1-D”.  
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CF =  Landslide causal factor 

Figure 18. Type 1 characterization of toponyms 

T1-A  TYPE 1 T1-B  TYPE 1 + TYPE 3 

id Toponym Denotation CF id Toponym Denotation CF 

5 Awa Hill pass 1 9 Bagnit Waterfalls 3 

13 Bakung Curve 3 11 Bahakal Forest 3 

21 Botbotan Suicide place 3 16 Bayninan Knoll hamlet 2 

41 Halipan Spur 3 17 Bilid Hill 3 

47 Imbuliklik Rock  3 19 Bilong Spur hamlet 2 

50 JULONGAN Waterway 3 20 Bokyod Spur hamlet 2 

53 Kahingyan Slope curve 2 23 Bungubung Headwater forest 3 

57 Kurba Spur curve 2 26 Dapdap Terraces 2 

62 Likkod Slope curve 2 27 Daya Headwater region  3 

64 Liyang Cave and water 1 28 Bolal Knoll 4 

75 Mumbungug Highly audible  2 30 Dinilag Hillside hamlet 3 

86 Nunbukul Distended 2 33 Dinapugan Spur hamlet 2 

87 Nuntuul Distended 3 40 Gayumhod Hillside hamlet 1 

98 Pico Lower slope 3 43 Gitiw Hillside hamlet 2 

107 Upla Spur 4 44 Golo Hillside hamlet 1 

112 Yukko Bend 2 46 Imbintok Vegetation 1 

117 Wingiyon Sideway 1 48 Huliaban Spur hamlet 1 

118 Inluplup Spring  2 49 Indalmogan Headwater region 4 

119 Wingiyon Pass - lower slope 1 51 Huyu Village boundary 3 

    52 Kadibdib Windy 2 

    54 Kappugan Many hills 2 

T1-C  TYPE 1 + TYPE 2 58 Huyung Side hamlet 1 

id Toponym Denotation CF 59 Lapiddik Trees 2 

31 Domang Slope 2 60 Lapidik Trees 2 

32 Dopla Scarp 3 65 Kabonglahan Vegetation 3 

38 Godde Landslide 3 70 Madannum Watery soil 3 

39 Gode Landslide & 

deposits 

3 74 Longnga Spur hamlet 1 

122 Domang2 Slope 2 76 Munkilong Vegetation 3 

T1-D  TYPE 1 + TYPE 2 + TYPE 3 77 Muyung Woodland 3 

id Toponym Denotation CF 78 Lungngut Village on a spur 2 

4 Atade High mountain + 

erosion 

3 80 Nabuluk Decayed 3 

   81 Naduntug Hilly formation 4 

79 Nabangkawan Hollowed out 2 83 Maningla Abandoned village 2 

85 Napukliyan Scraped 2 84 Nalodan Vegetation 2 

    91 Patkik Headwater part 3  
94 Pa-u Vegetation 3 

97 Patukan Spur hamlet 3 

99 Puloy Mountain 4 

103 Punduntugan Hill hamlet 2 

105 Tangil Hamlet 3 

108 Utu Waterfalls 2 

109 Wa'el Brook 1 

111 TUPLAC Valley village 3 

113 Baggabag Terraces 2 

114 Lobbongan Flooded ground 1 

116 Patuldug River 1 

120 Ambuwaya Valley village 1 

121 Tanibung Valley village 1 
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The remaining 49 toponyms (Figure 26) show Type 3 toponyms not directly related to landslides. The 

traditional land use (LU) is classified into settlement and terraces or rice paddies.  In general, settlement 

toponyms indicate their placement along a slope, knolls and hills, or mounds on the valley. Land cover 

(LC) is classified as either forest or vegetation. The maintenance of forest areas and vegetation is also part 

of the land management practices. These toponyms either indicate animal habitation or plant species in 

that area.   

 
Figure 19. Type 3 toponyms 

  

  TYPE 3   

id Toponym Denotation LU LC id Toponym Denotation LU LC 

1 Aliguyon Hamlet_man's name S 0 56 Kikaag Forest 0 F 

2 AMBABAG Village S 0 61 Layya Vegetation 0 V 

3 Angguniit Knoll hamlet S 0 63 Imbungyaw Valley hamlet S 0 

6 Ayuyu Knoll hamlet S 0 66 Lacdag Spur hamlet S 0 

7 Bae Knoll hamlet S 0 67 Luhong Trees 0 F 

8 Bae2 Knoll hamlet S 0 68 Linda Terraces T 0 

10 Bagwong Side hamlet S 0 69 Mabbalat Vegetation 0 V 

12 Bahawit Raised hamlet S 0 71 Malpao Vegetation 0 V 

14 Balikongkong Vegetation 0 V 72 Maluhong Trees 0 F 

15 Banaguy Knoll hamlet S 0 73 Lohob Knoll hamlet S 0 

18 Biday Knoll hamlet S 0 82 NAGACADAN Vegetation S V 

20 Bokyod Spur hamlet S 0 88 Olagon Vegetation 0 V 

22 Bumalatuk Vegetation 0 V 89 Onnop Vegetation 0 V 

24 Bolog Knoll hamlet S 0 90 Panniki Forest 0 F 

25 Buyakawan Vegetation 0 V 92 Motwaon Terraces T 0 

29 Bunnagan Hamlet side S 0 93 NABAGTU Wide and high plateau 0 0 

34 Dotal Level  S 0 95 Naggawwa Valley middle 0 0 

35 Dotal2 Level  S 0 96 Patugong Knoll hamlet S 0 

36 Dugung Village edge hamlet S 0 100 PINDONGAN Valley village S 0 

37 Galuwago Hamlet on a knoll S 0 101 Pud-awan Knoll hamlet S 0 

42 Halong Trees 0 F 102 Pulitang Knoll hamlet S 0 

45 Ihak Terraces T 0 104 Tukyudan Vegetation 0 V 

55 Kibadut Terraces T 0 106 Tikma Knoll hamlet S 0 

     110 Tugawi Village_abandoned 0 F 

     115 Ungbul Valley hamlet S 0 

     123 Dumanayan Valley meeting place S 0 

LU = Traditional land use                                         

LC = Land Cover 

S = Settlement 
 

F = Forest cover, natural and traditional land management 

V = Vegetation 

T = Terraces/Rice paddies 
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4.2 REGIONALIZATION 

4.2.1 Optimizing slope unit partition 

The merging of SUs to larger SUs through an iterative elimination process stopped at 6125.4 square 

meters.  To preserve all information from toponyms, any SU should not be larger than this area. This is 

based on the closest pair of geomorphology-descriptive toponym points, which were 119.5 meters apart.  

One toponym means “depressed that tends to be flooded”, and the other refers to a “water-supplied raised 

(implied) platform”.  The final set has 1112 SUs.

 
Figure 20. Slope unit partitions 

 

4.2.2 Connecting toponym with SUs 

In Figure 21, image A shows SUs connected with landslide causal factors based only on their direct 

associations with toponyms. The seven (7) causal factors enumerated in Table 7 vary in terms of number 

and combinations over the area. Image B factors in observed human activities reflected in land use that 

differs from toponym-described land use or land cover. 
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Figure 21. Presence of Toponym-based Landslide Causal Factors 
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4.2.3 Construction of toponymic regions 

Fifty-eight (58) toponymic geospatial regions were formed from the grouping of SUs with the same 

number and combination of predictors. Figure 29 indicates their placement and the areas that underwent 

land use change.  The areas without predictors are on the valley parts used for settlement and terraced wet 

cultivation. Figure 22 shows the basic coverage of regions,”tg” and areas that have undergone change due 

to human activities. Table 9 shows the combination of predictors. 

 

 
Figure 22. Toponymic regions 
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Table 9.  Combination of predictors 

 

tg – toponymic geospatial region   

nPredictors – number of predictors 

A – slope aspect 

E – elevation 

L – lithology 

M – slope moisture 

plC – planar curvature 

 

 

SUwLS – Slope units with landslides 

SUnLS – Slope units without landslides 

prC – profile curvature 

S – slope steepness 

Bu – built up 

Vc – vegetation change 

  

 

Predictors tg SUwLS SUnLS nPredictors Predictors tg SUwLS SUnLS nPredictors 

non-assigned 0 2 192 2 ESplCMBuVc 30 3 1 6 

ESplCprCML 1 1 0 6 ESplCprCMLBu 31 1 2 7 

ESplCprCMAL 2 1 0 7 SplCprClBu 32 1 4 5 

ESplCprC 3 0 33 4 ESplCLBu 33 2 3 5 

ESplCM 4 2 69 4 ESplCLBuVc 34 1 0 6 

ESplCL 5 0 2 4 ESMBu 35 13 25 4 

ESMALBu 6 1 0 6 ESMVc 36 11 16 4 

ESM 7 13 91 3 ESMBuVc 37 28 9 5 

ESMA 8 17 87 4 ESMABu 38 4 1 5 

ESplCBuVc 9 1 0 5 ESMAVc 39 21 25 5 

ESL 10 8 0 3 ESMABuVc 40 39 7 6 

ESprC 11 0 1 3 ESLBu 41 7 0 4 

SplCprCl 12 0 1 4 ESLVc 42 3 0 4 

SplCM 13 4 39 3 ESLBuVc 43 4 0 5 

SplCprCBuVc 14 2 1 5 SplCMBu 44 3 5 4 

SplCprC 15 0 2 3 SplCMVc 45 3 7 4 

SMLBu 16 0 2 4 SplCMBuVc 46 5 5 5 

SM 17 3 27 2 SAVc 47 0 1 3 

SplC 18 2 10 2 SMABuVc 48 1 0 5 

ES 19 4 46 2 ESVc 49 6 27 3 

SABu 20 1 0 3 ESBuVc 50 1 0 4 

SBu 21 0 26 2 SplCBu 51 0 6 3 

SVc 22 2 33 2 SplCVc 52 0 2 3 

BuVc 23 2 8 2 SplCBuVc 53 0 1 4 

ESplCprCMALBu 24 1 0 8 SMBu 54 0 13 3 

ESplCprCMALVc 25 3 8 8 SMVc 55 3 12 3 

ESplCprCMALBuVc 26 9 0 9 SMBuVc 56 2 2 4 

SMABu 27 1 0 4 ESMALVc 57 1 0 6 

ESplCMBu 28 0 1 5 ESMALBuVc 58 2 0 7 

ESplCMVc 29 5 9 5 
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4.2.4 Landslide Inventory 

 

Landslide inventory added current observed data and Type 2 toponym “count” data which totals to 627 

landslide events. Of those, 128 events were derived from Type 2 toponyms, expressed as numerical 

values of the SUs that the Type 2 toponym covers (Figure 23).    

 

 

 
Figure 23. Landslide inventory from toponyms and observed data 
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4.3 MODEL SELECTION 

4.3.1 Selection of Significant Variables 

The 58 variables were reduced to 43 using AIC and multi-collinearity diagnosis. Using 95% credible 

interval, 35 (Table10) are significant with iid random effects (Model 1). Model 0 which only accounts for 

fixed effects has 40 significant variables. However it showed a better DIC value with the set of variables 

of Model 1. Appendix E and F show which variables were found not significant.     

 

Table 10.  Significant variables for Model 0 and Model 1 

 

 

With CAR effects, tg19 and tg23 which were not significant with iid random effects showed significance. 

The final set has a total of 37 significant variables (Table11).  Removing tg27 from Table 11 also resulted 

to another set of significant variables with CAR effects, but this showed a higher DIC value. Appendix G 

and H show the iterative selection of significant CAR variables. 

  
mean sd 0.025quant 0.5quant 0.975quant  

(Intercept) -12.8244 0.172455 -13.1767 -12.8193 -12.5007 

1 tg1 0.438282 0.18527 0.067769 0.44036 0.797173 

2 tg2 0.663641 0.169025 0.319316 0.66792 0.984536 

3 tg6 0.464127 0.197194 0.062417 0.469119 0.838502 

4 tg8 0.298461 0.068072 0.162518 0.299239 0.429967 

5 tg9 0.618972 0.236632 0.136922 0.624962 1.068219 

6 tg10 1.398434 0.141026 1.124503 1.397297 1.67878 

7 tg14 0.507888 0.162585 0.171108 0.513896 0.810715 

8 tg20 1.11224 0.458817 0.133974 1.139879 1.939834 

9 tg24 0.658599 0.134252 0.392618 0.659207 0.921003 

10 tg25 0.300938 0.065479 0.166604 0.30293 0.424058 

11 tg26 0.477313 0.043223 0.394081 0.476736 0.563928 

12 tg27 0.814252 0.344114 0.080551 0.834979 1.434955 

13 tg28 0.513425 0.180451 0.132612 0.522692 0.842788 

14 tg29 0.40607 0.096205 0.209019 0.408907 0.58721 

15 tg30 0.43804 0.120238 0.190767 0.441877 0.663795 

16 tg33 0.418766 0.148667 0.105875 0.426077 0.690924 

17 tg34 0.510842 0.197195 0.109132 0.515834 0.885217 

18 tg35 0.556451 0.077345 0.402745 0.55704 0.706743 

19 tg36 0.518198 0.088467 0.340833 0.519419 0.688649 

20 tg37 0.656179 0.051586 0.556721 0.655559 0.759233 

21 tg38 0.673455 0.114663 0.444311 0.674705 0.895515 

22 tg39 0.459883 0.05502 0.3518 0.459878 0.567881 

23 tg40 0.594987 0.038909 0.520612 0.594284 0.673411 

24 tg41 0.87958 0.115615 0.653287 0.879208 1.107692 

25 tg42 0.963913 0.164929 0.638537 0.964206 1.287345 

26 tg43 0.733578 0.113034 0.512313 0.733189 0.956749 

27 tg44 0.53038 0.145369 0.231804 0.534913 0.803479 

28 tg45 0.438338 0.150958 0.123339 0.444755 0.71708 

29 tg46 0.554471 0.100405 0.350808 0.556708 0.745675 

30 tg49 0.413555 0.136606 0.132049 0.418168 0.668819 

31 tg50 0.781059 0.277899 0.225297 0.784177 1.319383 

32 tg55 0.421127 0.185995 0.032736 0.429119 0.76426 

33 tg56 0.622723 0.173084 0.269642 0.627298 0.950467 

34 tg57 0.806518 0.18527 0.436003 0.808597 1.165409 

35 tg58 0.529884 0.115569 0.300227 0.530661 0.755068 
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Table 11.  Significant variables from Model 2 and 3 

 

 

4.3.2 Goodness of fit 

The DIC values and effective number of parameters for the three competing models are shown in Table 

12. Model 3 showed the least DIC value; however, this formulation only slightly improves model fit over 

the other CAR model. It differs from Model 2 by less than 2 DIC.  Between the CAR models, Model 3 is 

less complex, indicated by the effective number of parameters. This will therefore be selected as the best 

model.   Notable too is how the random effects are accounted for between Model 1 and the CAR models. 

The CAR models consider more toponymic priors than the iid model and show significant differences in 

the DIC value. 

 

  
mean sd 0.025quant 0.5quant 0.975quant  

(Intercept) -13.014 0.259108 -13.5406 -13.0082 -12.521 

1 tg1 0.55525 0.186219 0.184846 0.55666 0.917631 

2 tg2 0.643804 0.190871 0.259082 0.647089 1.010306 

3 tg6 0.510208 0.182175 0.135182 0.516147 0.851973 

4 tg8 0.310826 0.091945 0.126726 0.311996 0.48831 

5 tg9 0.710903 0.199357 0.295641 0.719074 1.080183 

6 tg10 1.42814 0.156904 1.123256 1.426936 1.73963 

7 tg14 0.579378 0.163089 0.242161 0.585213 0.883572 

8 tg19 0.624624 0.260217 0.110707 0.624993 1.136336 

9 tg20 1.357521 0.509424 0.290325 1.380565 2.296482 

10 tg23 0.756381 0.343218 0.025274 0.776827 1.374907 

11 tg24 0.578025 0.136241 0.307817 0.578788 0.843821 

12 tg25 0.297079 0.090034 0.114058 0.299235 0.46808 

13 tg26 0.452747 0.056349 0.341912 0.452733 0.563568 

14 tg27 0.789831 0.355772 0.034562 0.809932 1.434744 

15 tg28 0.506715 0.185389 0.115065 0.516419 0.844477 

16 tg29 0.483292 0.106354 0.268821 0.485198 0.687076 

17 tg30 0.445951 0.131696 0.174798 0.450301 0.692475 

18 tg33 0.444261 0.166763 0.099784 0.45014 0.755487 

19 tg34 0.477725 0.181848 0.103066 0.483776 0.818449 

20 tg35 0.561956 0.086765 0.390695 0.562224 0.731569 

21 tg36 0.494336 0.097235 0.299777 0.495576 0.681871 

22 tg37 0.57825 0.061391 0.459113 0.577767 0.700014 

23 tg38 0.558086 0.140236 0.275874 0.560401 0.8273 

24 tg39 0.470576 0.070516 0.330991 0.470883 0.608324 

25 tg40 0.522887 0.058859 0.405851 0.523351 0.637357 

26 tg41 0.91168 0.132899 0.652819 0.910855 1.17494 

27 tg42 0.937493 0.15626 0.626998 0.938599 1.241628 

28 tg43 0.80797 0.113202 0.587279 0.807314 1.0321 

29 tg44 0.596021 0.148803 0.293297 0.599695 0.8783 

30 tg45 0.532524 0.147179 0.227923 0.537908 0.806439 

31 tg46 0.595903 0.108636 0.378265 0.597327 0.805501 

32 tg49 0.571232 0.176251 0.224547 0.571016 0.919034 

33 tg50 0.56243 0.209665 0.130844 0.569295 0.955424 

34 tg55 0.522274 0.187367 0.137649 0.52811 0.873902 

35 tg56 0.722098 0.176031 0.365435 0.725862 1.057796 

36 tg57 0.895617 0.196377 0.505061 0.897062 1.277944 

37 tg58 0.595931 0.113179 0.370788 0.596799 0.816093 
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Table 12.  DIC values 

 

 

Figure 24 shows a summary of the posterior distribution of all the estimated coefficients that appeared to 

be significant for Model 3. The estimated coefficients for Model 0 and Model 1 are also plotted to 

highlight the difference. By absolute value, the mean tg10,tg20,tg41,tg42, and tg57 variables gave the 

strongest contribution to the models.  

 

  

 

 
 

Figure 24. Estimated intercept and coefficient effects 

 

 

Figure 25 shows the fixed and mixed effects of the four models. At this scale a small difference between 

the fixed and the mixed models can be seen. 

Models Effective number of parameters DIC 

Model 0 (Fixed effects) 35.82 1687.128 

Model 1 (Fixed effects + iid random effects) 212.03 1481.020 

Model 2 (Fixed effects +  proper CAR effects) 194.85 1429.984 

Model 3 (Fixed effects +  iCAR and iid effects) 185.85 1431.157 
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Figure 25. Fixed and mixed  effects 

Figure 26 shows the plotted posterior mean of Model 3 presented as “Intensity” values.  The upper and 

lower limits are presented in Table 13.   This is the resultant map to be rendered for users in the study 

area.  

 
Figure 26.  Model 3 posterior mean as Intensity values 
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Table 13.  Upper, lower and relative limits of Model 3 

 

 

4.4 MODEL SUMMARY 

Model 3 was also rendered as a dynamic map. This is available in the supplementary material provided.   

 

From preprocessing to model rendering, a number of softwares and packages were used. Table 14 shows 

a summary of the modelling activities and citations.  Computers that have standard operating systems for 

which QGIS and R-INLA are available can run the models.  The recommended memory for each is 1 Gb.   

 

 

Table 14.  Citation and software used 

 

 

 

 

 

4.6 USAGE TEST 

This section partly responds to RQ4.3 “What features in the landslide hazard map needs improvement to 

make it more usable?”.  

 

From the unsupervised exercise sent to eight actual users and stakeholders, only two responded, but with 

very similar positive comments. One is a municipal planner and the other an environmental planner.  Both 

are familiar with mapping and the purpose of the landslide hazard map.  The non-response of the others is 

taken here as a response in itself that needs follow-up. Two participants joined the supervised exercise 

where one was assigned as the map navigator.  This user is not a professional mapper but often uses the 

Google mapping platform. The first activities observed were panning and zooming, searching for river 

lines and roads, aided by comments from the other participant. Notable is the length of time spent 

RL       LL  UL 

Min.   : 0.007518  Min.   :0.000325 Min.   : 0.03133 

 1st Qu.: 0.044070    1st Qu.:0.004508 1st Qu.: 0.17106 

 Median : 0.104101 Median :0.011820 Median : 0.38181  

 Mean   : 0.605143 Mean   :0.189557  Mean   : 1.42929  

 3rd Qu.: 0.416444  3rd Qu.:0.062170  3rd Qu.: 1.34442   

 Max.   :15.714723 Max.   :9.468316 Max.   :23.56907 

Software/Package Purpose Citation/url 

QGIS, SAGA, GRASS Pre-processing  https://www.qgis.org 

R-INLA Analysis, Modelling Bivand, Gómez-Rubio, and Rue 

2015 

SPDE Analysis Bakka et al. 2018 

R-MASS Selection of variables Venables and Ripley 2002 

R-CAR Selection of variables/VIF test Fox and Weisberg 2019 

R-AER Modelling, Over-dispersion test Kleiber and Zeileis 2008 

R-Leaflet Dynamic Map Graul 2016 

Tidyverse/ggplot2 Plotting Wickham 2016 
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searching for basic landmarks that were not apparent in the initial moments of checking the map. 

Instructions of the researcher-facilitator aided awareness of the base map to use. The preferred base map 

is the ESRI world imagery; however, the data is available to a limited resolution in the study area. The 

dynamic map used in this exercise was from initial modelling outputs where one participant observed the 

negative “intensity” values of landslides. This was an input error that was corrected in the final map.  The 

exercise also led to some corrections in the toponym properties that were adopted by some slope units.  

 

Features to improve in the resultant mapping is obtained from observations in the video recorded user test 

and the answers in the survey questions. One suggestion is to have more satellite imagery choices.  The 

recorded user test also revealed that the colour transparency of the landslide map layer needs adjustment 

to reveal features of the base map used. 

 

  



 
INDIGENOUS TOPONYMS IN LANDSLIDE HAZARD MAPPING FOR LAND USE AND INFRASTRUCTURE PLANNING 

55 

 

5.  Discussion 

5.1 TOPONYMIC CHARACTERIZATION 

5.1.1 Toponym collection and meanings 

A significant part of the toponyms collected was previously mapped by the researcher before the research 

started through direct in-person FGDs officially organized for each administrative unit, which provided a 

good base for discussion in social media where this was presented for verification. If there were no initial 

map to begin with, the information would have been incomplete given the limited time to map this under 

pandemic constraints. However, the advantage of social media cannot be ignored. In this case, it has 

enriched the data with narratives from residents of the study area who are knowledgeable about the topic 

but are not available in person or would not have been invited as official representatives in FGD 

workshops on site.  

 

5.1.2 Toponymic Characterization 
The method developed here focused on toponym relation with landslides that requires a basic 

understanding of the elements (landslide inventory and causal factors) in landslide susceptibility 

modelling. It also requires a basic understanding of the local landscape pattern and the language. 

Toponym characterization is a process of deciphering its meaning and translating it into a quantifiable 

form that involves several decision-making steps where local knowledge is paramount. Thus, more 

prolonged engagement with the locals would have led to richer and more contextual information on the 

semantics. During the latter part of the research, new inputs from the locals that relate the abundance of 

vegetation to sun exposure or slope aspect (a landslide causal factor) were not incorporated in the 

computation because there was not enough time for a complete review of vegetation properties. From 

cross-checking with the slope aspect derived from DEM, there is a correlation between special 

vegetation-derived toponyms and slope aspect and landslide occurrence.  

 

While this information is covered in the model, it is not exhaustive, which means that there may be other 

vegetation-derived toponyms that correspond with slope aspect that were not included. Exhaustive 

extraction of information from vegetation-derived toponyms may have to include experts in botany. 

Another toponym expressed information that may need consideration is how wind direction can affect 

landslide occurrence. Literature on the correlation of wind direction and landslide occurrence is scarce; 

hence this was not factored in. Although these predictors were not defined and therefore not counted, the 

correlating toponymic variables cover unexplained effects. The model is also designed to be iterative, 

where usage of the mapping product opens opportunities to enrich the basic information used.  

 

Characterization also identified landslide causal factors to consider in the locality. Toponyms only 

identify their presence in general terms but provide leads for further studies. Lithology, for instance, is 

only associated with descriptions of loose rocks in specific areas that provide information for geologic 

mapping. 

 

5.2 REGIONALIZATION 

 

5.2.1 Optimizing slope units  
Optimizing slope units using toponym meanings was a preliminary step to establish the minimum area of 

slope units that do not reduce the information content of toponyms. The attention was on identifying and 

ensuring that the closest pair of toponyms with distinct morphological properties are in separate slope 
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units. Because it is based on toponym semantics, it is subject to other interpretations, which introduces 

subjectivity.  

In this case, the determinants are toponyms describing geomorphology, which define discrete land 

features. This could be taken as a simplification of an optimization process but offers a simple method of 

determining when information may be lost from a model element.  

 

The optimized partition of SUs also removed zeros within finer partitions. Excessive zeros would have 

required either a different distribution or models that specifically address zero inflation. Fewer and larger-

sized slope units, however produced coarser rendering in the final mapping. As realized later in the 

selected model, the gradation of values from a “hot spot” (very high intensity) to surrounding slope units 

is based on this granularity, where the intensity values depend on the nearness of neighbours, regardless 

of the distance length.  

5.2.2 Connecting toponym with SUs 

The imaginary boundary between toponyms which served as a guide to determine which slope units 

(SUs) should connect to specific toponyms, employed Voronoi polygons from a QGIS geometry tool 

operation. Ideally, this imaginary line should have been set by the study area residents who can quickly 

sketch where a toponym description ends or which areas cover the line where toponyms meet. However, 

the purpose of this model is not to find discrete boundaries of toponyms. It is instead designed to identify 

polygons or SUs that contain toponym properties through points or possible boundaries. The model’s 

proposed set of rules that apply to slope units containing these boundaries works to combine toponym 

properties in these areas rather than making distinctions between toponyms. In this model, SUs, where 

toponyms meet, provide information on all possible effects of present toponyms. Any incorrect toponym 

placement is checked and updated when users of the resultant map offer better approximations of 

toponyms that each SU adopts.  

 

An SU is a half-basin that may cover the line where a landslide related toponym meets a settlement 

toponym. Typically, this is from the middle slope of a hill down to the valley part. To predict the 

downward path of a landslide and the distance that it can reach on the inhabited valley parts, the SUs that 

capture these toponym combinations provide rich information of both probabilities and areas at risk.  

 

5.2.3 Construction of toponymic regions 
The toponymic regions represent different composites of predictors, which assume categorical values or 

the maximum effect of predictors. The method also assumes that the effect of the composite of predictors 

is constant over the surface area. It takes a conservative view which is preferable in hazards modelling. 

However, the predictors present in toponymic regions are based on interpretations of toponym meanings 

that may miss other variables. Regions, however, cover this because they already represent the presence 

of predictors regardless of the number of predictors.   

 

The application of toponymic regions in modelling filters out areas where predictors are assumed to be 

absent. In effect, this eliminates noise which could happen when predictors cover areas that they do not 

describe. In traditional landslide susceptibility models, predictors such as elevation and slope steepness 

are treated as continuous variables covering the entire area, possibly introducing noise when applied in 

the study area. For instance, slope steepness would have included active rice terraces where landslides do 

not occur.  

 

An option that was not studied is whether it makes a difference if these predictors assume their statistical 

units for these regions. For example, elevation as a predictor would instead assume a standardized value 

from a range of 500 to 1500 masl rather than a categorical value of 1. A comparative study would reveal 

if this approach is better than the proposed model.  
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5.2.4 Landslide Inventory 
This inventory focuses on flows defined by Varnes (1978), which are precipitation-triggered events and 

frequent occurrences in the study area. From an 11-year count, 499 events in the study area were observed 

compared to the events recalled and toponym-deducted information that dates back to about 400 years. It 

is not clear, too, if all these toponym-based events are triggered by precipitation. The 11-year observation 

shows frequent landslide events that may differ from Type 2 toponyms. Type 2 toponyms describe 

landslide events or parts left by a landslide. They are named as such because they are indelible. Based on 

the local community’s recollection of the last time that landslides occurred in areas covered by Type 2 

toponym, the erosion of Atade was “powerful”, as described by eyewitnesses with reference to the details 

of what they were doing that day. There are considerable gaps in the inventory, but these records of 

events carry weight in inferring probabilities of recurrence for these non-frequent, episodic events. More 

time dedicated to research would have allowed exploration in this direction.   

 

5.3 MODELLING  

5.3.1 Goodness of fit 

Model 3 has the best value for goodness-of-fit compared to all considered models. Parsimony was the 

criterion that prevailed in the selection of the best model.  In this case, it is the model where random 

effects were accounted for by the convolution of unstructured and structured effects.  It is the best 

explanation at this point. In general, the use of toponymic priors is more compatible with the CAR 

models.Further exploration of other models may better represent the problem.  Also, information criteria 

aside from DIC may be considered. An expansion of the study area within the same linguistic group can 

confirm the strong correlation of some variables. This may yield information on a list of toponymic 

variables that can be used in heuristic landslide assessments in similar areas where data are hard to obtain. 

 

 

The model suits this study area where landslides are not apparent on the slope units adjacent to rivers. 

However, its application in other areas must be checked because the smoothening of random effects does 

not distinguish terrain and assumes as if the entire area is a flat surface. In areas where landslide events 

are observed to be intense beside rivers, the smoothening could extend to the slope units across the river. 

The range at which autocorrelation fades in this space needs to be checked by prior knowledge.  Local 

knowledge input is essential. 

 

5.3.2 Toponymic priors 

Bayesian modelling does not limit how prior beliefs are incorporated, nor does it discriminate against any 

belief, including biases. In this proposed model, the bias on using toponyms as explanatory variables is 

laid out for scrutiny, confronted with evidence and known landslide hazard predictors. The use of 

toponymic variables is based on the prior belief that they have value. On the opposite end of this is a prior 

belief that they have zero value. For as long as both beliefs acknowledge mounting evidence, both will 

eventually converge on the right answer. The difference lies in how long it would take for both to arrive at 

that point, which is crucial in disaster risk preparedness, where evidence is in the form of a likely 

disastrous event.  

 

Toponyms by themselves embody observed history, marking events and terrain properties. In this model, 

some are treated as observed data, and some are treated as explanatory variables. Those considered 
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"observed" data from time periods that are not recent, add evidence otherwise unavailable. Those treated 

as explanatory variables are assessed using this "observed" data plus current observations. Toponyms that 

are characterized as both Type 1 (causal factors) and Type 2 (landslide count) are a convolution of both. 

In the model, it would appear as if it is a circular reference when the same toponym is used as the 

explanatory and dependent variable. However, the reference to the same toponym does not mean a 

reference to the same dimension. These dimensions of the toponym cannot be treated individually as 

different members.  

 

5.3.3 A partial solution 
Toponyms offer opportunities to explore a deeper insight of the problem because it provides a 

conversation interface between scientific and indigenous knowledge. In this model, the conversation 

continues in the mapping output, which serves as a platform to highlight issues about underlying risk 

drivers which were previously unacknowledged. This is only a partial solution to a wicked problem. But 

the information needed to define a local problem has improved and the modelling product is potentially 

useful. 

 

The proposed model highlights the needed participation of different disciplines. Knowledge, expertise and 

skills are required to handle the conjunction of substantive and statistical areas. One researcher is not 

enough. This study was conducted from the perspective of a researcher who is an architect and an urban 

planner with a personal bias for indigenous knowledge. Some knowledge areas are outlined in this study 

and need finer research. Other perspectives and insights are also needed to improve the model.  

5.6 USAGE TEST 

If the usage test were done in person with potential users, an in-depth discussion of usefulness would 

have ensued. Tests from public users would also provide a broader perspective.  These tests would have 

revealed more specific cartographic features to improve as well as information that needs highlighting.  

However, the current resultant mapping already offers a starting point for further improvements and 

refinements.  The positive responses of two planners who are themselves government employees indicate 

that the hazards map can be used as a tool for local spatial planning and policy decisions.  The timeline of 

this study does not bound usage testing.   
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6.  Conclusion and Future Developments 
 

5.1 CONCLUSION  

In this study, indigenous toponyms were translated as input variables for landslide hazard modelling. The 

process explored the dimensions of toponyms, then designed their translation as inputs to a set of 

Bayesian models analyzed for their goodness-of-fit. The selected model underwent limited usage testing 

to assess its usefulness among actual users. The process involved matching information content from 

toponyms with landslide hazard assessment requirements. The procedure is iterative, where methods 

adopted drew from what is found in literature and from data gathered from the study area through a series 

of consultations and engagement of local community representatives.   

 

The following summarizes answers to the research questions posed in Chapter 1. 

 

RQ1.1 What are the considerations in representing a toponym as an input variable for landslide hazard 

modelling? 

 

Relation to landslides is the primary consideration in translating a toponym as a variable for landslide 

hazard modelling. This governs the translation process where other considerations also arise, such as:  

• the multiple dimensions of toponyms which characterize them as explanatory variables (causal 

factors) and observed variables (landslide events), 

• the choice of the spatial unit that is common to both toponyms and landslide assessment, and 

• the context of the causal factor in the study area, which specifies it as a local variable (e.g. planar 

curvature only refers to convex curvature, slope aspect refers to the south to southwest-facing 

faces). 

 

Toponym interpretations are relative to the study area where prior knowledge of the researcher and the 

local community is also considered throughout this translation process. 

 

RQ1.2 How is co-production employed in translating toponyms into model variables? 

 

First, the purpose of the toponym collection was announced to a large discussion group in social media. 

Second, a structured (focus group) group dedicated to toponym collection and landslide hazard mapping 

was organized. Third, unstructured discussions in the large group were facilitated to enrich the existing 

data. The small group focused on the map and placement of toponyms during the toponym collection 

stage, whereas the large group served as a validating group, where toponym meanings were discussed at 

length. From these discussions, the relation between toponyms and landslides were clarified. The FGD 

played a part in the survey checklist, testing of the dynamic map, and updating incorrect connections 

between toponyms and SUs.  

 

 

RQ2.1 Factoring in the answers to RQ1.1, which methods are suited to generate quantitative input 

variables for modelling from toponyms?   

 

Two general methods are designed to suit the given toponymic information: Systematic characterization 

and regionalization. Toponyms undergo systematic characterization to match their properties with the 

elements of landslide hazard modelling and regionalization to translate these properties into 

georeferenced quantified variables. From their given meanings and associations, the toponyms were 

characterized into three types: Type 1) landslide causal factors; Type 2) landslide events, and; Type 3) 
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land cover/use, where the difference with present-day land cover/use counts as a landslide causal factor. 

These causal factors are spatially referenced through geoprocessing operations by joining the respective 

toponym with slope unit (SU) partitions of the study area. An SU is a spatial unit that is deemed suited to 

both toponyms and landslides. The SUs carrying the same number and combination of causal factors are 

grouped into “toponymic geospatial regions’ or tg, which are then used as explanatory variables. The 

value of a tg is the sum of causal factors (referred to in the region as the number of predictors) present.  

Toponyms characterized as Type 2 or landslide events are added as “counts” of the observed variable. 

 

RQ2.1 What probability distribution captures the information provided by the data and 

toponyms?  

 

The data and toponyms provided information on the count of landslide events for a given area. 

The Poisson probability distribution applies.     

 

RQ3.1 What are the criteria to evaluate and select toponymic variables for landslide hazard 

modelling?  

 

The selection of variables for modelling used a combination of Akaike Information Criterion 

(AIC) and multicollinearity diagnosis to select toponymic variables. The selection of significant 

variables used a 95% Credible Interval (CI). 

 

RQ3.2 Based on which criteria and which process are models selected for their goodness-of-fit?  

 

The Deviance Information Criterion (DIC) which measures fit and complexity was used in model 

selection. Among competing models, the model with the lowest DIC and the least number of 

parameters was selected. 

 

RQ4.1 Which factors define the usefulness of the resultant mapping as a piece of base 

information for land use and infrastructure planning in the study area?  

 

The factors that define the usefulness of the resultant mapping are: 

• its utility or functionality to guide spatial planning interventions in order to reduce 

disaster risks,  

• the usage process of the actual users (official) and public users in the study area, and 

• usability or ease of use.   

 

The process by which each actual user uses the map interface depends on their individual 

mapping exposure and group learning dynamics (e.g. during a legislative session to adopt a 

proposed spatial planning intervention).  

 

 

RQ4.2 Based on the factors defined in RQ4.1, what testing method can measure the usefulness of 

the resultant map among users in the study area?  

 

Remote moderated, and remote unmoderated testing methods can measure the usefulness of the 

resultant map. The remote moderated method attempts to assess the usability of grouped users by 

incorporating the dynamics of a map interface use, where reactions of observer-participants could 

influence map navigation. The remote unmoderated testing is more focused on the overall 

usefulness of the resultant mapping, where mapping activity is done by individual users guided 

by instructions and questions to extract information from the given map. 
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For this study, both methods tested the resultant dynamic map. The moderated testing method 

was conducted through a videoconference, where map navigation of a first-time user in the 

presence of another user was recorded for analysis.   

 

 

RQ4.3 What features in the landslide hazard map needs improvement to make it more usable?  

 

From the limited tests, satellite base maps that are available in the study area were preferred. In 

addition, findings from the video recording of map navigation showed that the transparency of the 

landslide probability map needs to be improved.  

This will reveal details of the selected base map, which allows the user to find landmarks easily. 

 

 

The conceptualization of indigenous toponym-based co-production landslide hazard modelling follows a 

process that begins and ends with the local community. The methodology is anchored on the principles of 

co-production and the modelling gaps described in Chapter 2, which emphasize usefulness. As a 

motivation and a guide in designing the modelling steps, usefulness also fulfils an ethical responsibility of 

this research. The inclusion of an evaluation of map usefulness for the target users is an extra step here as 

it is seen as good practice in local community engagement. In co-production modelling, the information 

elicited from the local community returns to them in a processed form that they can use. Underpinning the 

entire process is informed-decision making, which results from modelling steps that are reasonable and 

explicable. These become digestible to the local community, who contributed to its production.  

 

There is a significant departure from the usual modelling process when indigenous toponyms are used to 

improve usefulness. This is indicated in the treatment of using landslide causal factors. The significance 

of each variable is not rendered in the resultant map. In the proposed process, toponyms are translated and 

used both as data and as explanatory variables after these are matched with landslide causal factors. In the 

resultant mapping, landslide causal factors (elevation, slope, curvature etc.) are still presented together 

with the history of landslide occurrence in specific areas. Current models do not present this. The model 

works so that regions of implementation in the final zonation map reflect landslide causal factors that 

need attention. This gives pieces of explicit information that aid decisions on land use and infrastructure 

planning.  

 

5.2 FUTURE RESEARCH WORK 

 

This study opened the subject of using indigenous toponyms in landslide hazard modelling, touching on 

areas that need further investigation and topics for further exploration, not limited to geospatial studies. 

 

For modelling, these are the list of recommendations for further research: 

  

  

• Further case studies within the region that share the same language family validate the 

significance of toponyms in landslide hazard assessment in the area. A sufficient number of 

samples and analysis is expected to fine-tune the identification of significant toponyms. The 

foreseen result is a “better” toponymic model that can be adopted in a heuristic approach to 

assessing landslides in areas in the region where landslide data are scarce.   

• Estimate the temporal exceedance probability of landslides using the terminus post ante 

quem of toponyms 



 
INDIGENOUS TOPONYMS IN LANDSLIDE HAZARD MAPPING FOR LAND USE AND INFRASTRUCTURE PLANNING 

62 

 

• Explore the combination of landslide causal factors that are specific to place and setting. In 

particular, investigate the effects of wind direction in forested high slopes and the exacerbating 

effect of land use within these areas.  

• Develop a module that facilitates the joining of slope units with the nearest toponym that is 

constrained within half-basins 

• Apply other models that account for the random effects that are not covered by toponyms 

• Apply other methods of analysis using the current landslide data and toponym collection.  

• Test toponymic approaches to optimize slope unit partitioning  

• Explore application of toponyms to predict other hazards  

• Compare the proposed mode with other model constructions using the standardized statistical 

values values of the same predictors  

 

 

In the area of co-production, the following lists some recommendations:   

• Design a platform that allows citizens to contribute local knowledge of toponym meanings and 

associations 

• Explore toponymic information for modelling with other disciplines such as linguists, 

ethnobotanists, ethnopedologist, archaeologists, etc. 
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APPENDIX A.  SAMPLE SURVEY CHECKLIST 
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APPENDIX B.  OPTIMIZING SLOPE UNITS WORKFLOW DETAIL 
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APPENDIX C.  TWO-STEP PROCESS OF JOINING ATTRIBUTES 
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APPENDIX D.  ADDING NEIGHBOURING SLOPE UNITS TO SET A AND SET B 
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APPENDIX E.  SELECTION OF SIGNIFICANT VARIABLES MODEL 0 AND MODEL 1   

mean sd 0.025quant 0.5quant 0.975quant 

(Intercept) -12.9917 0.18982 -13.3799 -12.9859 -12.6358 
tg1 0.466708 0.184696 0.097224 0.468825 0.824368 
tg2 0.688038 0.168565 0.344525 0.692357 1.007905 
tg6 0.49259 0.196657 0.091828 0.497628 0.865766 
tg8 0.342162 0.070986 0.201195 0.342699 0.480021 
tg9 0.653126 0.235988 0.172214 0.659172 1.100935 
tg10 1.455169 0.142821 1.177829 1.454007 1.739065 
tg14 0.542353 0.16276 0.20527 0.548351 0.845527 
tg19 0.423098 0.208342 -0.00737 0.430541 0.811028 
tg20 1.169348 0.457907 0.192674 1.197085 1.994864 
tg23 0.782822 0.344151 0.050026 0.803192 1.403503 
tg24 0.679906 0.133806 0.414734 0.680539 0.941372 
tg25 0.32281 0.066027 0.187585 0.324746 0.447156 
tg26 0.496092 0.043893 0.411568 0.495508 0.584022 
tg27 0.857087 0.343431 0.124582 0.877888 1.476231 
tg28 0.554143 0.180796 0.172832 0.56334 0.884335 
tg29 0.440905 0.097277 0.242069 0.443646 0.624409 
tg30 0.466658 0.120541 0.218869 0.470474 0.693054 
tg33 0.453479 0.149087 0.139872 0.46075 0.726537 
tg34 0.539305 0.196658 0.138543 0.544343 0.912481 
tg35 0.600144 0.079749 0.442223 0.600563 0.755577 
tg36 0.561415 0.090543 0.380422 0.562484 0.736326 
tg37 0.69035 0.053876 0.586706 0.689636 0.798157 
tg38 0.707863 0.115259 0.477647 0.709085 0.931144 
tg39 0.494351 0.057223 0.382361 0.494213 0.606994 
tg40 0.623355 0.041021 0.545063 0.622574 0.706138 
tg41 0.922166 0.116787 0.693671 0.92177 1.152606 
tg42 1.006662 0.165236 0.680682 1.006962 1.330658 
tg43 0.767727 0.11352 0.545524 0.767339 0.991824 
tg44 0.573819 0.146255 0.273781 0.578268 0.848876 
tg45 0.48202 0.15184 0.165575 0.488337 0.762702 
tg46 0.589128 0.101343 0.38383 0.591292 0.782357 
tg48 0.505557 0.274743 -0.08044 0.522197 1.000872 
tg49 0.472179 0.138974 0.186782 0.476552 0.732806 
tg50 0.823697 0.277039 0.269479 0.826872 1.360176 
tg55 0.479974 0.187331 0.089463 0.487789 0.82612 
tg56 0.666145 0.173485 0.312436 0.670677 0.994769 
tg57 0.834945 0.184697 0.465459 0.837061 1.192605 
tg58 0.554199 0.11551 0.324635 0.554988 0.779229 

 
ITERATION 1 
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APPENDIX F.  SELECTION OF SIGNIFICANT VARIABLES MODEL 0 AND MODEL 1  
  

mean sd 0.025quant 0.5quant 0.975quant 

(Intercept) -12.8701 0.176279 -13.2304 -12.8649 -12.5394 
tg1 0.446002 0.18528 0.075479 0.448076 0.804922 
tg2 0.670258 0.169033 0.325925 0.674533 0.991178 
tg6 0.471847 0.197204 0.070127 0.476834 0.846251 
tg8 0.310083 0.068654 0.173139 0.310812 0.442862 
tg9 0.628234 0.236644 0.146174 0.63422 1.077517 
tg10 1.413847 0.141492 1.139066 1.412692 1.695153 
tg14 0.517167 0.162693 0.180212 0.523162 0.820246 
tg20 1.127674 0.458833 0.149389 1.155307 1.955317 
tg23 0.718791 0.342908 -0.01182 0.739274 1.33677 
tg24 0.664389 0.13426 0.398401 0.664994 0.926815 
tg25 0.306761 0.065612 0.172213 0.308738 0.430185 
tg26 0.482443 0.043393 0.398897 0.481861 0.569404 
tg27 0.825829 0.344127 0.092114 0.846552 1.446569 
tg28 0.524327 0.180577 0.143327 0.533568 0.854 
tg29 0.415369 0.096449 0.217918 0.418181 0.597059 
tg30 0.445762 0.120353 0.198301 0.449588 0.671778 
tg33 0.428057 0.148801 0.114944 0.435352 0.700517 
tg34 0.518561 0.197204 0.116842 0.523549 0.892966 
tg35 0.568087 0.077846 0.413513 0.568637 0.719461 
tg36 0.529791 0.08891 0.351659 0.530977 0.701206 
tg37 0.665416 0.052085 0.565054 0.664772 0.769513 
tg38 0.682735 0.114848 0.45327 0.683971 0.905193 
tg39 0.469147 0.055484 0.360247 0.469112 0.578131 
tg40 0.602674 0.03937 0.527449 0.601952 0.682054 
tg41 0.891143 0.11593 0.664282 0.890756 1.119903 
tg42 0.975498 0.165105 0.649813 0.975779 1.299298 
tg43 0.74284 0.113216 0.521251 0.742442 0.966391 
tg44 0.542004 0.145603 0.243048 0.546511 0.815637 
tg45 0.449973 0.151182 0.134607 0.456362 0.729216 
tg46 0.56376 0.100635 0.359701 0.565976 0.755473 
tg49 0.42909 0.137092 0.14679 0.43365 0.685471 
tg50 0.792638 0.277915 0.236863 0.795749 1.331006 
tg55 0.436687 0.186316 0.047782 0.444637 0.780549 
tg56 0.634353 0.173252 0.281009 0.638908 0.962484 
tg57 0.814238 0.185281 0.443714 0.816312 1.173158 
tg58 0.536495 0.115634 0.306726 0.537266 0.761819       

      

 
ITERATION 2 
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APPENDIX G.  SELECTION OF SIGNIFICANT VARIABLES MODEL 2 AND  MODEL 3 

 
 
ITERATION 1 
 

 
mean sd 0.025quant 0.5quant 0.975quant 

(Intercept) -13.3537 0.243717 -13.8555 -13.3453 -12.8997 

tg1 0.71178 0.19322 0.331766 0.711767 1.091623 

tg2 0.6316 0.189426 0.249647 0.63492 0.995147 

tg6 0.608575 0.180887 0.236631 0.614312 0.948406 

tg8 0.320453 0.104368 0.115828 0.320308 0.525689 

tg9 0.82604 0.200384 0.409643 0.833884 1.198165 

tg10 1.593948 0.167301 1.27101 1.591995 1.928018 

tg13 0.376056 0.218467 -0.07659 0.384259 0.781991 

tg14 0.638765 0.164883 0.298931 0.644302 0.947341 

tg17 0.676041 0.304787 0.036774 0.690267 1.2355 

tg18 0.852853 0.420405 -0.04828 0.880281 1.604374 

tg19 1.014462 0.301826 0.42127 1.014487 1.606977 

tg20 1.572006 0.507943 0.508823 1.594597 2.50944 

tg23 0.906617 0.348918 0.165646 0.926466 1.537912 

tg24 0.567582 0.133673 0.301957 0.568529 0.827801 

tg25 0.291301 0.09518 0.099839 0.292809 0.474239 

tg26 0.444024 0.060854 0.326244 0.443402 0.56529 

tg27 0.901072 0.353308 0.150862 0.921073 1.541592 

tg28 0.545141 0.187094 0.150479 0.55471 0.886558 

tg29 0.576393 0.112514 0.351637 0.57764 0.794061 

tg30 0.536581 0.135201 0.259133 0.54075 0.790516 

tg31 0.467281 0.190368 0.059082 0.479764 0.807543 

tg32 0.467405 0.290278 -0.14822 0.483546 0.994158 

tg33 0.487073 0.169027 0.139502 0.492499 0.804132 

tg34 0.530214 0.179336 0.160137 0.536386 0.865525 

tg35 0.630204 0.092984 0.448388 0.629905 0.813517 

tg36 0.525061 0.101853 0.323059 0.525728 0.723188 

tg37 0.605959 0.064245 0.482407 0.605083 0.734593 

tg38 0.53499 0.142185 0.250255 0.536817 0.809381 

tg39 0.477665 0.080217 0.322247 0.476938 0.637131 

tg40 0.512223 0.06419 0.388472 0.51143 0.640532 

tg41 1.034788 0.142036 0.759892 1.033359 1.317724 

tg42 1.054466 0.15883 0.740436 1.055057 1.364955 

tg43 0.910086 0.118907 0.679966 0.908871 1.14704 

tg44 0.720412 0.15422 0.408955 0.723343 1.015458 

tg45 0.677277 0.154186 0.36167 0.681751 0.967809 

tg46 0.688619 0.113393 0.463265 0.689464 0.909113 

tg48 0.534765 0.252431 -0.01023 0.553021 0.981148 

tg49 0.835425 0.205323 0.433529 0.834901 1.239867 

tg50 0.641913 0.20722 0.214691 0.648953 1.029317 

tg55 0.675865 0.197029 0.27574 0.680527 1.049917 

tg56 0.822595 0.1811 0.457452 0.825801 1.169775 

tg57 1.00514 0.195405 0.617641 1.006179 1.386631 

tg58 0.680548 0.115003 0.452947 0.681028 0.905294 
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,APPENDIX H.  SELECTION OF SIGNIFICANT VARIABLES MODEL 2 AND  MODEL 3,  
 

mean sd 0.025quant 0.5quant 0.975quant 

(Intercept) -13.1129 0.213562 -13.5503 -13.1063 -12.7129 

tg1 0.617176 0.184788 0.251066 0.618091 0.977992 

tg2 0.608717 0.187028 0.231118 0.612176 0.967171 

tg6 0.549691 0.177552 0.183178 0.555815 0.881732 

tg8 0.284139 0.101329 0.084881 0.284201 0.482857 

tg9 0.754462 0.196577 0.344345 0.762755 1.118015 

tg10 1.492756 0.158933 1.184504 1.491358 1.808737 

tg14 0.593705 0.162112 0.258515 0.599516 0.895961 

tg17 0.578521 0.299275 -0.05139 0.593327 1.12573 

tg19 0.908818 0.292236 0.332143 0.909625 1.480474 

tg20 1.440978 0.500219 0.39068 1.464491 2.360881 

tg23 0.79341 0.342647 0.063676 0.813769 1.410975 

tg24 0.547873 0.131748 0.2858 0.548903 0.804093 

tg25 0.272568 0.093613 0.084066 0.274121 0.452308 

tg26 0.425916 0.059387 0.310833 0.425352 0.544138 

tg27 0.790556 0.347696 0.049644 0.811379 1.417513 

tg28 0.496554 0.184155 0.10715 0.506347 0.831609 

tg29 0.519888 0.108078 0.302704 0.521553 0.727693 

tg30 0.472094 0.132096 0.200174 0.476452 0.719308 

tg31 0.377433 0.18283 -0.0172 0.390622 0.70054 

tg33 0.438073 0.166212 0.095089 0.443821 0.748556 

tg34 0.470229 0.176184 0.105184 0.476824 0.797926 

tg35 0.567877 0.087778 0.395071 0.567994 0.739866 

tg36 0.484348 0.098635 0.287849 0.4853 0.675401 

tg37 0.563777 0.060416 0.446805 0.563201 0.683972 

tg38 0.506866 0.139865 0.22638 0.508805 0.776397 

tg39 0.44722 0.077653 0.296337 0.446653 0.601161 

tg40 0.485705 0.061878 0.366041 0.485054 0.609046 

tg41 0.969187 0.13647 0.704127 0.968114 1.240148 

tg42 0.981699 0.153436 0.677004 0.982734 1.280425 

tg43 0.856008 0.114592 0.63351 0.855069 1.0837 

tg44 0.632394 0.148979 0.329909 0.635854 0.91559 

tg45 0.596551 0.148125 0.290806 0.6017 0.873057 

tg46 0.623319 0.108778 0.405863 0.624586 0.833602 

tg49 0.766277 0.199374 0.374629 0.76623 1.157811 

tg50 0.581703 0.203751 0.160226 0.589112 0.961088 

tg55 0.597316 0.190959 0.20783 0.602487 0.957934 

tg56 0.744091 0.175529 0.388775 0.747734 1.079072 

tg57 0.93752 0.191111 0.557389 0.938943 1.309558 

tg58 0.628999 0.111526 0.407458 0.62975 0.846202 

 
ITERATION 2 
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APPENDIX I.  ANSWERS TO USAGE TEST EXERCISES, RESPONDENT 1 
This is a usage test of a dynamic map on landslide hazard probability. Kindly answer the following questions while 
exploring the attached “webM2.html” dynamic map. Map coverage: Julongan, Nagacadan, Poblacion, Ambabag, 
Tuplac drainage basins. 
  
Code of Landslide Causal Factors: 
E = Elevation, S=slope, plC=planar curvature, prC=profile curvature 
L=Lithology, A=slope aspect, M=moisture, Bu=built-up, Vc=Vegetation cover change(land conversion) 
  
The area is partitioned into slope units that define the movement of slope failure. 
  
--------------------------------------------------------------------------------------------------------------------- 
   
Interview questions:  
1. Please identify at least 3 villages/settlements that are exposed to landslide occurrence:  

a. Poblacion area down to Mabbalat-Dumanayan-Malpao including Kiangan Central School at the foot of 
Mount Atade.  It has a history of landslides in the past. 
b. Gode-Domang – There are now increasing settlements along the road going up to Patukan. It also has a 
history of slides as the name denotes. “Gode” means slide 
c. Bilong – Also has increasing settlements and history of slides. 
 
Note: although Indalmogan is a high risk community, there are no known settlement in that area as far as I 
know. 
 

2. Give two (2) sites with a very high value of landslide probability: 
  

       a. Mount Atade 
       b. Indalmogan 
 
Write “Y” if Yes, “N” if No for the statements below. For “N” answers, you may answer which part is difficult.  

  
I can gauge how exposed my house is to landslide occurrence. Yes 
I can understand the map and its elements - Yes 
This map can help identify alternative safe routes, or where to construct them.- Yes 
I can identify which factors cause landslide occurrence. Yes 
I can easily identify which areas are not safe from landslides. Yes 
I am able to identify possible infrastructure interventions to minimize landslide effects in specific areas. - Yes 
This map can help me suggest zoning policies to minimize exposure to hazards (examples: forest protection 
policy, drain cleaning). Yes 
I can identify which settlements are likely to be affected by landslides. Yes 

  
  
3. Given a choice between a static map and this dynamic map, what do you prefer to use? A. Static map B. 
Dynamic map C. Both  
  
4. What other information would you like to see on this map? 
     None. 
  
5. Will  you recommend this map to others in your locality for disaster risk reduction? Yes  Why? To save lives 
and property  by clearly understanding what is indicated in the map on what would likely to happen in any 
disaster situation and to improve on zoning policies that would minimize exposures to hazards. 



 
INDIGENOUS TOPONYMS IN LANDSLIDE HAZARD MAPPING FOR LAND USE AND INFRASTRUCTURE PLANNING 

80 

 

 

APPENDIX J.  ANSWERS TO USAGE TEST EXERCISES, RESPONDENT 2 

Interview questions: 
1.     Please identify at least 3 villages/settlements that are exposed to landslide 
occurrence: 
- Kadibdib (Code 40) with intensity 15.65 
- Indalmogan-Nabangkawan (code 26) with intensity 13.61 
- Atade (code 43) with intensity 12.99 
 
2.     Give two (2) sites with a very high value of landslide probability: 

Indalmogan-Napukliyan (code 40) and 
Gode-Domang (code 35) 
 

               Write “Y” if Yes, “N” if No for the statements below. For “N” answers, you may  
answer which part is difficult. 

ð      I can gauge how exposed my house is to landslide occurrence. (if you do not 
have a house there, choose a building)  “Y” 
ð      I can understand the map.  “Y” 
ð      This map can help identify alternative safe routes, or where to construct 
them. “Y” 
ð      I can identify which factors cause landslide occurrence. “Y” 
ð      I can easily identify which areas are not safe from landslides. “Y” 
ð      I am able to identify possible infrastructure interventions to minimize 
landslide effects in specific areas. “N” 
ð      This map can help me suggest zoning policies to minimize exposure to 
hazards (examples: forest protection policy, drain cleaning). “Y” 
ð      I can identify which settlements are likely to be affected by landslides. “Y” 

  
 3. Given a choice between a static map and this dynamic map, what do you prefer to 
use? A. Static map B. Dynamic map C. Both    Answer=C 
  
4. What other information would you like to see on this map? 3-D map sana, para 
Makita ang elevations and slopes parang google map. Sana yung creeks/streams or 
drainage ay color coded din to reflect intensity.  
 
Translation:  3-D map would be cool, so that elevations and slopes are visible like Google 
Map. The creeks/streams/drainage could have been color coded, too to reflect intensity 
   
5. Will  you recommend this map to others in your locality for disaster risk reduction? 
Why? Yes, I will recommend this map for them to include in their plans like MDRRM risk 
reduction plan, CLUP, ADSDPP among others.  
MDRRM – Municipal Disaster Risk Reduction Plan 
CLUP – Comprehensive Land Use Plan 
ADSDPP – Ancestral Domain Sustainable Development and Protection Plan 


