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Abstract

For malware to be successful, it should stay unde-
tected by anti-virus software for as long as possible.
One method for avoiding detection is the use of code
injection, which is the process of injecting code into
another running application. Despite code injection
becoming one of the main features of today’s mal-
ware, there has been a general lack of a systematic
approach in analyzing and detecting the use of it.
In this research, we conduct a study on well-known
methods for performing code injection, and propose
a taxonomy that groups these methods into classes
based on common characteristics. We then introduce
Behavior Nets, our novel modelling language that we
use to express these methods in terms of observable
events. We continue by implementing a system
that uses these models to collect empirical evidence
for the prevalence of code injection in the malware
scene. Our experiments suggest that at least 11.15%
of malware between 2017 and 2020 performs some
type of injection. They also show that Process
Hollowing is the most commonly used technique, but
that this trend is slowly shifting towards other, less
traditional methods.

Keywords: Malware, detection avoidance, code injec-
tion, software reverse engineering, dynamic analysis,
modelling language, black box testing.

1 Introduction

In the world of cyberspace, one of the main driving
forces that make cyber security incidents a reality, is
the use of malware. The term malware is a conjuction
of the words malicious and software, and is an um-
brella term for software that is intentionally designed
to cause harm. There are many types of malware,
and each type has a different profile of behaviors that
they may exhibit. For example, some malware sam-
ples might steal or destroy important files stored on
the disk, while others will steal important informa-
tion such as login credentials instead. Typically, the
ultimate end goal of malware developers is to profit
financially [9], 2T, B8], 65].

Malware has existed for a long time, and has be-

come infamous in today’s society. One of the first
instances of malware that gained significant media
recognition was the Morris Worm, created by Robert
Morris in 1988 [55]. Since then, many other mali-
cious programs were developed, and the number of
malware samples is growing steadily [6].

To fight against the malware epidemic, several par-
ties have started developing software that is specifi-
cally designed to detect malware stored or running on
the protected machine. These anti-malware solutions
have gained a lot of popularity over the past years,
and are nowadays installed by default on virtually
every general purpose computer.

For malware to be successful, it is therefore in the
creator’s best interest to make sure that it stays un-
der the radar of these anti-malware solutions for as
long as possible. One of the techniques that can be
used to avoid detection is known as code injection.
Code injection can be defined as the process in which
an application injects pieces of its own code into an-
other running program. This running program is
then tricked into executing the injected code, mak-
ing it do something it was not originally intended
to do [12], 13]. By extension, if a malicious program
copies its malicious code into a legitimate application,
it is not the original malware itself that exhibits the
malicious behaviour, but rather the application that
was previously considered to be benign. As a con-
sequence, scanning an executable file existing on the
disk for suspicious code might not be sufficient, mak-
ing the task for automating threat detection systems
significantly more involved.

Currently, detection of the presence of code injec-
tion is either done by manually reverse engineering
a sample and looking for code constructs that would
indicate this behavior, or with the help of heuristics
such as testing for known byte patterns or used sys-
tem calls. However, there are various ways of per-
forming code injection, and it is expected that new,
more sophisticated methods will be discovered and
implemented in the future. Furthermore, the rise of
the amount of computers that people own, combined
with the increase in malware prevalence, render both
manual analysis and the use of these relatively prim-
itive heuristics as insufficient for reliable detection of
code injection. There is a need for a better, more



fundamental understanding of what a code injection
entails, as well as a more systematic and more scal-
able method for detecting this type of behavior.

1.1 Contributions

In this research, we conduct a systematic study on
the most well-known methods that can be used to
achieve code injection. We do this by collecting im-
plementations for every technique, and test them to
see if they are still working on software and hardware
that is commonly used at the time of writing this pa-
per. We then continue by comparing every technique
to each other, and identify reoccurring features and
characteristics. From this, we derive a more funda-
mental understanding of code injection, and propose
a categorization of all the studied techniques based
on these common characteristics.

After building up this classification, we move
on by developing a modelling language that allows
us to build up formal representations for every
technique. We call these models Behavior Nets, and
they express the techniques in terms of observable
events and the dependency relations between them.
We then implement an automated system that
uses these behavior nets to determine whether an
arbitrary sample uses one of the fingerprinted code
injection techniques. Finally, we evaluate our system
by running it through a data set of 3075 real world
malware samples, and show that not only that our
system works, but also how prevalent the use of
code injection is in the malware scene as of the time
writing this paper.

In short, the main contributions of this paper can be
summarized in the following:

e A Taxonomy of Code Injection: We con-
ducted a survey on 17 different code injection
techniques, and propose a taxonomy which clas-
sifies the different techniques based on a set of
identified common traits.

e The concept of Behavior Nets: A modelling
language that can be used to detect certain types
of behavior exhibited by a sample in a black-box
manner.

e A Code Injection Detection System: An
implementation of a system that detects the
presence of code injection in a malware sample.

e An Assessment on the Prevalence of Code
Injection: We have examined a set of 3075
malware samples, and determined the prevalence
and distribution of different code injection tech-
niques in the wild.

We have made our implementations, as well as our
test files for the studied code injection techniques,
open sourceE| for the sake of open science.

1.2 Paper Structure

The remainder of this paper is organized as follows.
We start off by introducing the topic of code injection
in more detail, and cover certain concepts in the area
of reverse engineering in Section 2l We then continue
with a survey on state-of-the-art code injection, and
provide a classification of the different existing tech-
niques based on common characteristics in Section [3]
In Section [4] we move on to describing the process
on how we detect these types of behaviors in a given
sample. We continue by outlining the architecture
of our test environment that implements this type of
detection system in Section |5 and present our find-
ings in Section [f] We discuss our results in Section [7]
and relate them to previously conducted research in
Section[J] Finally, we conclude by summarizing what
was done in our research in Section

2 Background

Since the focus on this paper lies in studying and
detecting the presence of code injection techniques
within samples of malware, it is important to un-
derstand the fundamentals of some of the concepts
in this field. In this section, we will introduce the
notion of what a code injection entails, and explore
how it can be used legitimately as well as maliciously.
Furthermore, since one contribution of this paper is
an automated system for detecting these types of be-
haviors, we will also go over the fundamental concepts
in the world of program analysis, and what kinds of

Ihttps://github.com/jstarink/code-injection
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strategies can be employed to infer certain types of
behavior in an application.

2.1 Code Injection Techniques

As briefly stated in the introduction, a code injec-
tion can be defined as the act of injecting code into
another running process. The basic steps usually in-
volve finding a victim process, selecting some existing
executable memory or dynamically allocating some
new memory in this process, copying over the new
code into this memory, and then making sure the vic-
tim process executes it. The goal of code injection is
usually to ensure that the injected code is executed in
the context of the victim process, making the victim
process do something it was not originally designed
to do.

2.1.1 Legitimate Use-Cases

One of the main reasons someone might want to in-
ject code into another process is for debugging pur-
poses. A debugger allows a developer to step through
the compiled code of their own software, and observe
the state changes that their program goes through by
inspecting the program’s internal memory. Many de-
buggers rely on placing software breakpoints into the
target application. Software breakpoints are small
temporary changes in the code that signal an inter-
rupt. This effectively pauses the execution of a pro-
gram, leaving the developer with time verify whether
the program is doing as was expected. Examples of
software breakpoint implementations are the int3
instruction on the Intel x86 platform [36] p. 457] and
the bkpt instruction on ARM [I].

Another legitimate use-case for code injection tech-
niques is to increase software compatibility with the
help of shims. As time progresses, the operating
systems that people run on their machines evolve.
Changes in the operating system’s code might range
from small bug fixes to complete API redesigns. Soft-
ware that relies on old legacy designs might therefore
not be compatible with newer versions of the operat-
ing system. An API might simply not exist any more,
or may exhibit different behavior after the version
update. A shim infrastructure allows for redirecting
APIT calls to shim code on a per-process level. By

doing this, the shim can masquerade as the old API,
and make up for the changes that were introduced in
the version update, by calling the new or appropri-
ate APIs instead. Examples of shim infrastructure
implementations are the Microsoft Application Com-
patibility Toolkit (ACT) for Windows [45], and the
LD_PRELOAD environment variable on various Linux
distributions [5].

2.1.2 Malicious Use-Cases

As alluded before, injecting code into another run-
ning process is a very effective way to hide the true
behavior of an executable file. For this reason, code
injection has been prevalent in many different mal-
ware families, each using their own variant of per-
forming the injection of their malicious code in an-
other running process. Since the malicious code is
not executed by the malware anymore, the original
sample might seem benign at first glance, and there-
fore bypass all kinds of detection mechanisms imple-
mented by anti-virus software. This way, malware
can easily stay undetected for long periods of time.

One famous example is the Stuxnet worm, which
was first seen in 2009. Stuxnet used a technique
called DLL injection, where the target process is
tricked into loading a custom (malicious) dynamically
loaded library. By spawning a new thread in the vic-
tim process (e.g. using the CreateRemoteThread
function) with carefully chosen starting parameters,
it is possible to let the process call the LoadLibrary
function with the path to the malicious DLL with
very few changes in the original memory of the pro-
cess [25]. Using this technique, Stuxnet was able to
infect approximately 100,000 machines by September
2010 [34].

Another example is the ZeroAccess botnet, which
was discovered around 2011. By abusing certain fea-
tures of the Asynchronous Procedure Call (APC)
queue of running threads, ZeroAccess successfully in-
jected and ran code in the context of explorer.exe
and svchost .exe, two known core processes of the
Windows operating system. It was estimated that
the botnet was installed around 9 million times in
2012 [65].



2.2 Malware Analysis and Reverse
Engineering

Since malware is a special form of software, exam-
ining malware samples is a special case of software
analysis. The challenge here is that malware is often
shipped as a compiled binary, and does not include
source code that we can look into easily. This means
that our options for inferring something about the
behavior of such a sample are somewhat limited. In
fact, if we want to have any success in recognizing
any type of nefarious behavior, we are forced to apply
some form of Software Reverse Engineering. Software
Reverse Engineering (SRE) is the process of analyz-
ing a software system, with the goal to recover (parts
of) the original design or implementation [19]. Typ-
ically, SRE is used to recover lost source code of an
application that has been in development for a long
period of time. However, it has been used by many
security experts to analyze and neutralize many types
of malware as well.

In the following, we will go over the basic concepts
of the two main paradigms in software analysis,
called static and dynamic analysis. For both
paradigms, we will put them in the context of SRE,
and list certain advantages and challenges when
applying them to malware analysis.

2.2.1 Static Analysis

Static analysis is a form of program analysis that
stems from the fundamental principle that comput-
ers are deterministic machines. Given the same input
state and set of instructions to execute, a program or
algorithm always produces the same result, regard-
less of the number of repetitions. Therefore, if a pro-
gram were to exhibit a certain behavior at run time,
it must mean that this behavior is somehow encoded
in its instructions. Let us define static analysis as the
following:

Definition 1 Static analysis is any form of pro-
gram analysis that makes an assessment on the pro-
gram’s behavior solely based on the code of the input
program, without actually running the program itself
17, [31)].

Static analysis often relies on analyzing the orig-
inal source code of the program. As mentioned be-
fore, usually in the context of malware analysis, only
compiled binaries are available and source code is
not included. However, we can often still make use
of this methodology if we perform some additional
steps. For example, by disassembling the input file,
it is possible to split up the binary code into basic
blocks, and reconstruct a control flow graph that en-
codes all possible paths that the program might take.
Let us introduce these two concepts more formally:

Definition 2 A basic block (BB) in a program
is a sequence of instructions that only has incoming
branches at the entry, and only has outgoing branches
at the exit of the block [22, p. 231].

Definition 3 A control flow graph (CFG) of a
program P is a directed graph G = (V, E) such that
every v € V represents one basic block in P, and for
the basic blocks s,t € V there exists an edge (s,t) € E
if and only if s can transfer control to t [22, p. 231].

An example CFG can be found in Figure[I] In this
CFG, the basic blocks contain disassembled x86 code
of an if-statement. Depending on the value of the eax
register, the program either jumps to block2 and
call the function foo, or fall through into blockl
and call bar instead. However, no matter which path
is taken, the program will always end up in block
block3 that invokes the function baz, and continue
execution from there on.

From these CFGs, higher abstractions can be de-
rived, such as a call graph (which encodes the rela-
tionship between different functions), and sometimes
even source code that is semantically equivalent to
the original [I7, I8]. Once these types of models
are reconstructed, the same techniques used in tradi-
tional static analysis can be performed to infer certain
properties on a program’s behavior.

Advantages The main advantages of static analy-
sis in the context of malware examination is evidently
that by definition it does not require the malware to
be executed. This ensures that the environment of
the researcher does not get contaminated with infec-
tions while performing the analysis.



blockO:
cmp eax, 3
jz block2
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Figure 1: An example subgraph of a CFG implement-
ing an if statement.

Furthermore, since programs can be modelled us-
ing control flow graphs, formal proofs can be derived
from the structures within the graph, as all code exe-
cution paths can be considered. Often, these kinds of
problems can also be rewritten as code optimization
problems, which have been widely used in the field of
compiler theory [22] [30] and formal software verifica-
tion [29]. Since there has been a lot of research put
into these fields, static analysis benefits a lot from
the advances that are made, and can therefore be a
very powerful tool for malware analysis.

Challenges One of the main challenges that re-
verse engineers face while performing static analysis,
is dealing with code obfuscation. The main goal of
code obfuscation is to transform the original program
into a new one that is semantically equivalent in ex-
ecution, but very hard to understand for a human
reverse engineer [I1]. One reason for doing this is
to protect the code from being stolen, or to prevent
changes being made [57, [60]. Transformations that
are often applied to the original program include but
are not limited to; symbol renaming or removal, en-
cryption of constants such as strings, control flow ob-
fuscation, dead code insertion, or even transpiling the
original code into a different language using a virtual

machine [16, 28], [35] 40l 43, 57, [67]. Obfuscation is an
effective way to increase the complexity of a program,
and is therefore also proven to be successful way to
combat the process of reverse engineering it. For this
reason, malware developers also have been using it to
hide their malicious code, and use it as a detection
evasion technique [59] [60].

Next to obfuscation, programs can also be com-
pressed or encrypted using what is known as a packer.
In such a case, upon execution of the application,
the program first reconstructs the original binary
code from the compressed or encrypted data, and
then jumps into this dynamically allocated code [42].
While one of the main goals for software packing is
to simply reduce the size of the final binary, it can
also be used as an anti reverse engineering technique
[66, 64, 59]. As the original code is not put in a
readable format any more, it renders standard meth-
ods for extracting basic models, such as a control
flow graph, completely useless. For this reason, mal-
ware authors have used it to not only lower the size
of their payload, but also to circumvent detection by
anti-virus software. Packers that are specifically built
for evading anti-virus detections are sometimes also
referred to as crypters [10] [14].

2.2.2 Dynamic Analysis

In contrast to static analysis, dynamic analysis works
under the assumption that if a program is performing
some kind of operation, its effects should be observ-
able in the environment, regardless of how compli-
cated the implementation is. The application is often
treated as more of a black box, and the focus is put
more on what the end result is, rather than on how
exactly it achieves this result. Let us define dynamic
analysis as follows:

Definition 4 Dynamic analysis is any form of
program analysis that makes an assessment on the
program’s behavior, by executing the program and di-
rectly observing how it affects the internal state of the
program, or the environment it runs in [J1|].

Side effects produced by a program can be observed
in many different ways. For example, the analyst can
get a rough overview of the program’s behavior by



monitoring the calls it makes to system libraries or
the kernel at run time. Another way is to look for
changes in the computer itself, such as changes in
the file system or registry. Other programs will in-
teract with remote hosts over the internet, and will
open network sockets and transmit large chunks of
data through them. In the context of malware anal-
ysis, these kinds of events can be very important in
determining what kind of damage it inflicts on the
underlying system.

Advantages One of the main advantages of dy-
namic analysis, is that it can be very computationally
cheap in comparison to static analysis. As alluded to
in the previous section, a lot of the indicators do not
require deep analysis of the code, as is the case with
static analysis. Instead, most side effects can be di-
rectly observed from the environment, without even
looking into the actual program itself. This bypasses
a lot of the anti reverse engineering tricks, such as
code obfuscation or packing, something that static
analysis has trouble with.

Challenges Dynamic analysis does not come with-
out challenges. One of the main limitations of dy-
namic analysis is that it is not guaranteed to explore
the entire state space of a program. Rather, it heavily
relies on single execution traces that a program pro-
duces every time it is ran. A program might exhibit
different behavior the next time it is started, or only
starts doing something after a certain criteria was
met [20]. Furthermore, dynamic analysis often re-
quires some form of preparation or instrumentation,
which can introduce all kinds of technical problems
which might affect the program’s behavior [4I]. An
assessment on the behavior of a program that is fully
based on dynamic analysis might therefore not be
an accurate description of the actual behavior that a
program would exhibit during normal execution.

In the context of malware analysis, these points are
extra important. For example, some malware stays
dormant for days before it starts exhibiting notice-
able malicious behavior [38]. Dynamic analysis can-
not run indefinitely, which raises the question; for
how long should we run the program before we abort

the analysis? Clearly, this is an undecidable prob-
lem: If dynamic analysis is set to stop execution af-
ter t seconds, there will always be a possibility for
the existence of a sample that starts showing illicit
behavior after ¢t + 1 seconds.

Additionally, as an analyst it is important to re-
main completely unnoticed by the malware. There
are many different approaches a program can take to
detect that it is being observed by a reverse engineer.
For example, the presence of a debugger program on
the system can be verified in many different ways
[63]. Furthermore, since it is in the analyst’s best
interest to not cause damage to their own machine,
some form of sandboxing or virtualization is required
as to not get exposed to any of the malicious behav-
ior that the sample might exhibit. The problem with
this is that existing technologies for hardware virtual-
ization are not always accurate or necessarily built to
be stealthy. A program could look for irregularities
that instrumentation or a virtual machine might in-
troduce as a result of ad-hoc code patches, or slow or
incorrect emulation of hardware [4I]. Once malware
detects one of these artifacts, it can then decide to
show “normal” harmless behaviour instead, such as
exiting early or staying dormant. This might make
the analyst believe the program is benign, whereas in
reality it is not.

3 Systematic Study of
Code Injection Techniques

Since we want to move towards a system that is able
to detect the presence of code injection in an arbi-
trary sample, we require a more fundamental under-
standing of code injection itself. To get to this un-
derstanding, we conducted a survey on 17 most well-
known state-of-the-art code injection techniques that
are used in wild and are talked about a lot by peo-
ple in the security community. The techniques where
gathered by collecting various blog posts and tech-
nical reports that dissect malware samples in detail,
and explain how these samples implement code in-
jection. These reports were published by anti-virus
companies, incident-response teams, as well as other
people active in the security community.



For each technique, we either reimplemented it our-
selves, or collected an existing open source implemen-
tation from code hosting websites such as GitHub.
This way, we end up with a small set of samples that
acts as a form of a ground truth, where each tech-
nique is represented by at least one sample for which
we have the source code available.

We then continued by identifying similarities and
differences between these techniques, and extracted
common characteristics that we then use to group
them into different classes. These classes can then
aid in the development of a detection algorithm that
eventually looks for the presence of such a technique
in an arbitrary malware sample found in the wild.

Table [I| presents a summary of our findings. In
the following sections we will go over the identified
characteristics, as well as the rationale behind the
classes that we extracted from these characteristics.

3.1 Common Characteristics

As mentioned before, one of the first steps in classify-
ing code injection techniques is to identify character-
istics that describe the general nature of the imple-
mented technique. In the following, we will introduce
these characteristics, and explain the meaning behind
the columns in Table [l

Moment of Execution. This trait describes the
moment in which the code can be injected and ex-
ecuted in the victim process. Some techniques allow
for injecting the payload at any point in time while
the victim process is running, whereas in others it is
only possible to inject the code upon startup of the
victim process or the underlying operating system it-
self.

Transmitter. The transmitter is the process that
is responsible for performing the transmission of the
code. Some techniques require the injector to per-
form the injection themselves, whereas others make
sure that the victim process is tricked into loading
the malicious code instead.

Catalyst. The catalyst describes the process that is
eventually responsible for triggering the execution of
the final payload. Similar to the Transmitter, some

techniques implement the activation on the injector’s
side, whereas others wait for the victim process to
trigger execution on their own.

File Dependency. Some techniques require a phys-
ical copy of the injected code on the disk, usually in
the form of a dynamically loaded library file (on Win-
dows this is a file with the .d11 extension). This of-
ten means that such a file needs to be dropped before
execution can take place.

Process Model. This trait describes the way in
which malware selects and interacts with the victim
process. For example, some techniques interact with
already running processes, while others spawn new
ones. Alternatively, some do not interact with a pro-
cess directly at all, and instead let the underlying
operating system do its job.

Threading Model. Similar to Process Model, this
trait describes the dependence on threads of the tech-
nique. Some techniques require the creation of new
threads, while others depend on manipulating exist-
ing threads, or let the underlying operating system
handle this instead.

Memory Manipulation Model. This character-
istic describes the dependence on manipulating the
memory space of the victim process directly. Tech-
niques that implement a memory manipulation
model require specific parts of the victim process be-
ing tampered with, or allocate new pages of memory
instead. This trait often goes hand in hand with cre-
ating or opening a process first, and is present in most
classic code injection techniques.

Shellcode Dependency. These techniques require
a small chunk of code to be injected directly into the
victim process to let the victim process execute the
final payload. Injecting this shellcode often requires
a direct memory manipulation.

Configuration Model. Some injection techniques
depend on changing specific settings of the victim
process or underlying operating system. Samples in
this category may make changes to the Windows Reg-
istry, or install malicious plugins in a user application
such as a web browser. Often, these techniques also
rely on the existence of a file on the disk.
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1 A: At any time, P: On Process Start, L: On Library Load.

2 I: Injector Process, V: Victim Process.

3 N: New Process Creation, E: Existing Process Manipulation.

4 N: New Thread Creation, E: Existing Thread Manipulation.

5 N: New Memory Allocation, E: Existing Memory Manipulation.

Table 1: Overview of code injection techniques and their characteristics.




3.2 Taxonomy

With the help of the identified common character-
istics, we can move on to extracting different core
characteristics that place different techniques into
a set of groups. These groups are highlighted on
the left hand side of Table [[] and subdivides the
table using horizontal lines. In the following we will
discuss the rationale behind these classes.

3.2.1 Active and Passive Injections

The most important distinguishing feature that we
observed has to deal with the level of interaction that
is required by the technique. For example, a large
group of techniques either directly communicate with
the victim process (by the means of opening process
or thread handles) and either allocates new pages
of memory, or manipulates existing pages instead.
This is an important feature as it contributes to the
stealthy capabilities of the technique. Since these
kinds of interactions often translate to well known
sequences of API calls, these can be observed more
easily by monitoring software. Therefore, let us intro-
duce the concept of active code injection techniques:

Definition 5 (Active Techniques) A code injec-
tion technique is called an active injection if it re-
quires direct interaction with the wvictim process or
one of its threads, or actively makes changes in the
victim process’ memory.

A lot of the existing techniques can be considered
an active injection technique. For example, Shell-
code Injection opens a handle to the victim pro-
cess, and uses it to directly inject executable mem-
ory into it with the help of an API function such
as NtWriteVirtualMemory [32]. However, a tech-
nique that abuses for example the shims infrastruc-
ture does not directly communicate with the tar-
get process, nor does it actively change its memory.
Rather, it lets the underlying operating system load
and execute the code instead [33]. This is much more
of a passive approach, and therefore would not be
classified as an active technique.

3.2.2 Intrusiveness and Destructiveness

We can further sub-categorize active techniques by
looking at the type of interaction that is required. For
example, some techniques interrupt and manipulate
the original execution of the victim process. Some-
times this happens to such an extend, that parts of
the application or the entire process completely stop
working properly. If an application suddenly stops
working or starts doing something noticeably differ-
ent, then this can be picked up on relatively easy as
well. Therefore, let us introduce the notion of intru-
sive and destructive injection techniques:

Definition 6 (Intrusiveness) A code injection
technique is called intrusive if (parts of ) the victim
process’ memory or threads are changed.

Definition 7 (Destructiveness) A technique is
called destructive if it is intrusive and (parts of)
the application stop(s) working as a result of the in-
trusive intervention.

An example of a destructive technique is Process
Hollowing, which creates a new victim process in a
suspended state, and replaces the memory contents
with new code [52]. As a result, upon resuming,
the victim process is not doing its original work any-
more, which indicates the destructive behavior. This
is in contrast with for example Classic DLL injection,
which simply forces the target application to load a
library on the disk without interrupting any thread
[26]. Since it does not change any existing memory
or thread context, this technique therefore falls under
the non-intrusive category instead.

3.2.3 Configuration-based Injections

A final subdivision was made in the Passive code
injection techniques. This subdivision groups tech-
niques together that require specific changes in the
registry to be made. This is a direct result of the
Configuration Model trait, as these are the only tech-
niques that have this characteristic. An example of
such a technique is AppInit_DLLs Injection, which re-
quires registering a library file into the Windows Reg-
istry. On the other hand, the Windows Hook injec-
tion technique interfaces with system events directly,



and does not require a persistent configuration stored
on the disk.

4 Methodology

We now proceed with describing our methodology
that we use to decide whether a sample implements
code injection.

Since malware developers often obfuscate or pack
their samples before they are released into the wild,
static analysis is not a feasible solution. For this rea-
son, we opt for an approach that is based on dynamic
analysis instead. This means that our detection sys-
tem will run a sample in an isolated sandbox, and
record a stream of side-effects, which from now on
we will be referring to as the event stream. For our
purposes, we mainly focus on API calls and the argu-
ments passed onto them, but it is important to note
that the models that we introduce can easily be ex-
tended to any type of event that can be observed by
the underlying sandboxing technology.

The task is to map patterns within the recorded
event stream to the identified techniques. This is
quite similar to recognizing patterns in a symbol or
token stream, as is done by many different parsers
and compilers for programming languages [22]. As
such, we choose to use a similar approach.

In the following sections, we discuss how token
streams slightly differ from our event streams in
terms of quality and consistency of the data, and that
this difference introduces a couple of challenges that
need to be addressed. We do this by rewriting the
problem into a similar problem that has been stud-
ied in the field of distributed systems. We then revisit
the modelling language of Petri Nets that is used to
describe these types of systems, and introduce an ex-
tension to this language which we call Behavior Nets.
This extension allows us to overcome the challenges,
and make it possible to model the traits as identified
in the previous section.

4.1 Behavior Recognition as a
Concurrent System

In this section, we discuss two main challenges that
need to be overcome while recognizing patterns in a
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recorded event stream. We then show that the prob-
lem is equivalent to monitoring a concurrent system,
where multiple threads performing operations in par-
allel can be seen as a single thread with a random
interleaving of operations.

4.1.1 Noise and Reordering of Operations

One of the main challenges with event streams is that
the raw data within an event stream is a lot more
fuzzy than for example a source code file written in
a programming language. Since we are monitoring
an entire system, a lot more noise is present. Sig-
nals that are produced by other running processes or
internal functions within the operating system itself,
can clutter the input stream with a lot of extra data
points that needs to be discarded.

Furthermore, the exact order in which the symbols
appear in the stream is not always clear. This is es-
pecially the case when certain steps in an algorithm
or procedure are independent of each other. For ex-
ample, if an operation C depends on the execution
of A and B, but A and B are completely indepen-
dent of each other, then it does not matter whether
first A or first B is executed. As long as both are
finished before operation C' is invoked, this does not
cause any difference in the final effect of the program.
This insight has proven to be very useful for malware
developers to avoid detection. If an anti-virus only
has a signature for the sequence A, B,C, then the
malware can simply perform B, A, C instead to get
to the same result while staying undetected.

One naive solution to this problem is to enumerate
all possible orderings of a certain behavior, but this
is very inefficient in space as it grows exponentially
in the number of independent operations. Ideally, a
system that does not depend on this raw sequencing
of operations, but rather is able to detect the depen-
dency relations between them, is much more robust
against these types of mutations.

4.1.2 Reduction from Concurrent Systems

The key insight that we are going to use, is that rec-
ognizing behavior in a single event stream, where the
order of independent operations does not matter but
the general dependency does, is the same as recogniz-



ing behavior in a concurrent system where multiple
independent processes run at the same time.

Consider three threads A, B and C, where A and
B run concurrently and C' waits for A and B to finish
before it continues its execution. If we record all the
events produced by the three running threads, and
order them by time, we produce a new single event
stream. This stream starts with a random interleav-
ing of the two original event streams produced by A
and B, and is followed by the event stream of C in
its entirety.

Now consider another thread D, which performs
the exact same operations of A, B and C in this ex-
act same order. This scenario is analogous to the
example as described in section [£.1.1] What emerges
is a resulting stream that indistinguishable from the
stream we constructed earlier from the threads A, B
and C. This shows that modelling concurrent be-
havior can be reduced to modelling a single threaded
system where independent operations might be or-
dered in a non-deterministic manner. We will use
this result to build up models that can handle arbi-
trary rearrangements of independent steps.

4.2 Petri Nets

One of the ways to model concurrent systems is with
the help of Petri Nets. Let us first recall the definition
of a net:

Definition 8 (Net) A net is a tuple N = (P,T, F),
where P and T are disjoint finite sets of nodes,
representing places and transitions respectively, and
F C(PxT)U(T x P) denotes the set of arcs, such
that together they form a bipartite graph.

Petri nets are nets where places may contain any
number of marks called tokens. Furthermore, arcs
between the places and transitions are weighted [54].
More formally:

Definition 9 (Petri Net) A Petri net is a tuple
PN = (N,M,W), where N = (P,T,F) is a net,
M : P — N a function that assigns a number of to-
kens to every place, and W : F — N a function that
assigns a weight to every arc.
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Figure 2: An example Petri net with a fork-join con-
struction.

A transition is said to be enabled if there are
enough tokens on every input place according to the
weight of the incoming arc (for each input place s:
M(s) > W(s,t)). When a transition is enabled, it
can be fired. If this happens, the amount of tokens
as indicated by the weights of the arcs are consumed
from all the input places, and new tokens are pro-
duced at all the output places. This last remark
means that if a transition is a branch with two or
more output places (such as ¢y in Figure , it does
not encode a choice as is the case with other types
of state machines or control flow graphs. Rather, it
can be compared to a fork where multiple processes
start running concurrently. Conversely, two converg-
ing edges (such as the ones at t3) can be used to model
a join of multiple threads, where two processes wait
for each other to complete.

Important to note here is that the order in which
the transitions are fired can be completely non-
deterministic, as is the case with concurrent systems.

4.3 Behavior Nets

While Petri nets can model concurrent behavior, they
do not place any semantics on tokens and transitions.
Transitions can fire at any time as long as there are



enough tokens in its input places. For our purposes,
we will therefore extend the concept of a Petri net,
and introduce Behavior Nets. The main idea is to
map events observed in the system (e.g. a call to
an API function) to the transitions in the net. These
transitions will then only be enabled and fired if there
are enough tokens in its preset, and match a certain
predicate on the event.

4.3.1 Definitions

A behavior net works on a set of symbolic variables
for which concrete values are found as events are con-
sumed from the event stream. These symbolic vari-
ables are not part of the original program that is be-
ing observed, but rather are variables that solely exist
within the detector alone. A token in a behavior net
represents one concretization of such a set of symbolic
variables, and can be seen as a (partial) mapping be-
tween symbolic variables and their concrete values.
Two tokens can be combined together. The result
is a new mapping that uses the values of both orig-
inal mappings. If there exists a symbolic variable «
which is assigned two different values in both orig-
inal tokens, we speak of tokens that are in conflict.
Combining conflicting tokens results in L, the invalid
token. Combining any other token with L will also
result in L.

We add to every transition ¢ in the net a corre-
sponding transition function §;. This function takes
one recorded event from the observed system, as well
as an input token. The idea is that d; transforms
the input token into a new token if and only if the
input event and token match the expected pattern,
and otherwise returns L.

More formally, let S be the set of all symbolic vari-
ables, Z be the set of all possible values that every
s € S can be assigned with, T = P(S x Z) be the set
of all tokens, and ¥ be the set of all possible events
that can happen. Then we can define a behavior net
as follows:

Definition 10 (Behavior Net) A behavior net is
a tuple BN = (N, A, M, §), where

e N=(PT,F) is a net,

e A C P is a set containing the accepting places,
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Figure 3: Sample behavior net where the event C'
depends on the arguments a and 5. These two values
are to be observed from two independent events A
and B. p. is an accepting state, which is indicated
by the double outline.

o M : P — P(T) is a function that assigns a set
of tokens to every place in the net, and

e §:T = (XxT —=T) is a function that assigns
partial transition functions to every transition in
the net.

Once there exists at least one token in any of the
accepting places, the behavior is considered recog-
nized. Figure [3] depicts an example of a behavior net
that is able to recognize the example pattern given
in Section

The execution semantics of a behavior net are very
similar to a normal Petri net, with only a few changes.
We will discuss these differences in the following sec-
tions.

4.3.2 The Transition Functions

As with normal Petri nets, a transition ¢ is enabled
only when there are enough tokens at its input places.
However, in contrast to normal Petri nets, all possible
combinations of tokens are considered at once. Each
combination has the potential to produce a new to-
ken, depending on the implementation of ¢;. This
way we do not really have a concept of weighted arcs,
and as such this is not included in the definition. This
also means that it is possible for a transition to pro-
duce multiple tokens at the same output place.



The reason why we consider all possible combina-
tions of tokens at once, is because upon firing a tran-
sition we do not know yet which combination of input
tokens is a combination that will eventually lead to
a token in an accepting place. Choosing only a sin-
gle token arbitrarily at once might therefore result in
choosing the wrong token and making the behavior
net get stuck and not progress further.

Algorithm [I] describes the process of determining
the new tokens when a transition is fired. Every com-
bination of input tokens is combined into a single to-
ken. This new token is then fed into the correspond-
ing J; together with the current event to process. If
it returns L, then this new token is discarded. Oth-
erwise, it is added to the result and thus will be prop-
agated to every output place of the transition. In the
case that there are no input places, the empty to-
ken is provided to §;, and only one token is produced
instead.

Algorithm 1 Enumerate new tokens for transition ¢
on event e.
1: procedure ENUMNEWTOKENS(t, €)
2:  n < |input places of t|
if n =0 then
r{di(e,0)}
else
r0
Q < {M(p)|p € input places of ¢}
for all (z1,..,2,) € COMBINATIONS((®) do
2 + TOKENCOMBINE(Z1, .., Tp,)
10: if 0;(e,x) # L then
11: r+rU{o(ex)}

12: return r

© % N>k

This setup allows d; to decide whether a certain
observation is part of a chain of events that we are
interested in, and not background noise that was
introduced by other processes. For example, sup-
pose ¢; matches on calls to the Windows API func-
tion NtCreateThreadEx, which allows for creating
threads in any running process. Without also us-
ing an input token in our matching criteria, d; would
only be able to match on any instance of this event.
This makes the event indistinguishable from other

calls to the same function (see Table [2| and Table
for example traces). Since NtCreateThreadEx is a
very commonly used function, this results in a high
potential for false positives to arise. However, if d;
were to also consider the arguments that were used
to call the function, we can e.g. verify that the
first argument (the process handle) matches an ar-
gument that was observed in prior events such as
function calls to NtAllocateVirtualMemory or
NtWriteVirtualMemory (responsible for allocat-
ing and injecting the executable code respectively).
By letting transition functions assign concrete values
to symbolic variables in a token, they can communi-
cate these values to other transitions in the net. This
way, a behavior net can decide with more confidence
which events are related to each other, and which can
be filtered out. An example of a behavior net that
implements this, is given in Figure [

Time | Observed event

t NtAllocateVirtualMemory (0xAQ, ...)
t+1 NtWriteVirtualMemory (0xAO0, ...)
t+2 NtCreateThreadEx (0xAQ, ...)

Table 2: An excerpt of an events stream, recorded
from a system running a sample applying the Shell-
code Injection technique.

Time | Observed event

t NtAllocateVirtualMemory (0xAQ0, ...)
t+1 NtWriteVirtualMemory (0x42, ...)
t+2 NtCreateThreadEx (0xB8, ...)

Table 3: An excerpt of an event stream, recorded
from a system with processes running similar func-
tions as used in Shellcode Injection, but are unrelated
to each other.

4.3.3 Token Consumption

The second difference with Petri nets is that tokens
are no longer removed upon transitioning. Once a
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NtAllocateVirtualMemory(a,...)

NtWriteVirtualMemory(«,...)

NtCreateThreadEx(q,...)

T
!
v

Figure 4: An excerpt of a behavior net that cap-
tures the Shellcode Injection technique. It uses a sin-
gle symbolic variable « to link three events together
based on the first argument of the events.

token is produced and put in a place, it will always
remain in that place and never be destroyed. The
reason behind this, is that it allows for backtrack-
ing without introducing any extra logic. For exam-
ple, consider a model such as the one in Figure
and a sequence of events which contains the sub-
sequence (f(z),g(y),9(z),h(z)). Clearly, if we set
a =z and 8 = z, then this would match the pattern
(f(a),g(B),h(B)) as indicated by the net. Yet with
the default execution rules of a Petri net, this would
not be recognized. This is demonstrated in Table
Upon processing the first call to g, it would greedily
consume the token stored at pg, and the newly pro-
duced token at p; will set 8 = y. The problem is
that upon processing the second g call, the transition
between py and p; would no longer be enabled, since
no token is present any more at pg. This causes the
model to get stuck with a token that (incorrectly) as-
signs y to B, and 8 = z will never be considered as
an option. For this reason, tokens are preserved in a
behavior net. Preserving the token at py will ensure
that the second g call will also be considered as an op-
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Figure 5: A behavior net with three transitions
matching on different events f, g and h. The last
two transitions share a symbolic variable 3, indicat-
ing the arguments for both ¢ and h need to be the
same value.

fla)

9(B)

h(B)

tion, and as such the model can continue progressing.
This is demonstrated in Table El

A clear downside of this is that not consuming to-
kens can potentially result in overflowing the net
with tokens. However, since our models are rela-
tively small and do not contain cycles, this is only
a theoretical issue that would not be a problem in
practice. Furthermore, we discard any duplicated to-
kens present at a single place. This is an acceptable
change, since a duplicated token does not provide any
extra information about a potential final matching of
symbolic variables to their concrete values.

e M (po) M (p1) M (p2)
f(@) | {a=2a}
9(y) {a=1z,8=y}
9(2) {a==,8=y}
h(2) {a=1x,8=y}

Table 4: The evolution of the marking of Figure
with token consumption.

e M (po) M (p1) M (p2)
f(@) | {a=2a}
9y) | {a=2} | {a==,8=y}
9(z) | {a=2} | {a=2,8=y},
{fa=2,8==z}
h(Z) {a:x} {a:x,ﬁ:y}, {a:vaZZ}
{a=2,8=z}

Table 5: The evolution of the marking of Figure
without token consumption.



4.4 Modelling Code Injection using
Behavior Nets

We now continue by expressing the code injection
techniques as described in section [3.1| into behavior
nets. We do this by looking at the core characteristics
of each technique to build up the individual transi-
tions, and connect them in such a way that it follows
the general pattern of the behavior.

Figures [6] to [14] depict all the nets that we built.
In these nets, we can see the expression of cer-
tain traits in the form of API calls. For exam-
ple, in the Classic DLL injection technique, threads
are created after a file was dropped. This is re-
flected by the transitions matching on specific calls
to NtCreateFile, CreateRemoteThread and
NtCreateThreadEx in Figure 0] Furthermore,
in Figures [6] and [I2] we can see that in both the
APC Shell Injection and the Process Hollowing tech-
nique, threads are manipulated instead. This is
reflected by the transitions matching on calls to
NtQueueApcThread, NtSetContextThread and
NtResumeThread. Process Hollowing however, cre-
ates a new process which is expressed using the
NtCreateUserProcess transition. This is in con-
trast to manipulating an existing one, as is the case
with the former technique. As such, the former
matches on the NtOpenProcess system call in-
stead.

We can also see that some transition nodes make
use of a transition function that puts extra con-
straints on the captured symbolic variables. For ex-
ample, in Figure [6] we can see that the node match-
ing on NtWriteVirtualMemory restricts the value
of 8 to the interval {«,...,a + o}. This range is
inferred from a previous transition node matching
on NtAllocateVirtualMemory, indicating that £
should be a memory address that falls within a pre-
viously allocated address range.

Notice also that the behavior nets for configura-
tion based techniques can all be summarized using
Figure and are very small compared to the ones
for active techniques. This stems from the fact that
these techniques only require one change in the reg-
istry for them to achieve both a transmission as well
as a catalyst. After making the change in the reg-
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NtOpenProcess(n,...)

NtAllocateVirtualMemory(n, a, -, 0, ...)

NtWriteVirtualMemory(n, S, ...
Be{a,..,at+ao}

NtQueueApcThread(d, _, A, ...)
Ae{a,..,a+o}

Figure 6: A behavior net modelling the APC Shell
Injection technique. Since not all parameters in every
function call are necessary to match on, we use an
underscore (‘') and ellipses (*...”) to indicate they
are discarded.

NtOpenThread(d, ...)

)

istry, the underlying operating system will always do
the remainder of the heavy lifting afterwards auto-
matically. This means that we do not have to add
any additional transition nodes to decide that code
injection will happen, and as such, these nodes can
be omitted from the net.

5 System Architecture

We now move on to the design of our system that
uses the concepts of Behavior nets to automatically
recognize the use of code injection in a given sample.
Figure [15] depicts an overview of the system that we



NtOpenProcess(n

5

NtCreateFile(,...)

NtAllocateVirtualMemory(n, a, _, 0, ...)

NtOpenThread(, ..

X

NterteFlle

NtWriteVirtualMemory(n, [, ...

Be{a La+o}

> l

NtQueueApcThread(d, A, .
Ae{a,..,a+o0o}

Figure 7: A behavior net modelling the APC' DLL Injection technique. This is similar to Figure [] but
contains an additional branch ensuring that a file drop is registered before the call to Nt QueueApcThread.
Also the pattern matching for this last function call is slightly different: A matches on the second parameter,
rather than the third parameter of this function.
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NtOpenProcess(1, ...)

NtAllocateVirtualMemory(n, a,_,0,...)

’

NtWriteVirtualMemory(n, S, ...)
gel{a,. ,ato}

CreateRemoteThread(n, _, , A, ...) | |NtCreateThreadEx(_, _, 7, \,...)
Aed{a,...,a+o0} Aeda,...,a+o0}

Figure 8: A behavior net modelling the Generic Shellcode Injection technique. In this graph we can see that
p2 branches into two possible function calls. This is because the injector process may trigger execution in
the victim process using either of these two API functions.




NtCreateFile(y,...)

NtOpenProcess(n, ...)

@ NtAllocateVirtualMemory(7n, a, -, 0, ...)

NtWriteFile(v,...)

1
)

NtWriteVirtualMemory(n, 53, ...)

Be{a,..,a+o}

CreateRemoteThread(, -, ,w, A, ...)
Ae{a,.,ato}tANwé{a,..,a+0}

NtCreateThreadEx(_, -, -, 7, w, A, ...)
Ae{a,..,a+o}t ANwé {a,..,a+0o}

Figure 9: A behavior net modelling the Classic DLL Injection technique. Similar to Figure [7] this also
contains an additional branch that checks for a dropped file. Furthermore, we see a similar branching
construction as in Figure [8] indicating one of two possible system calls may be used in the end.
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NtOpenProcess(1, ...)

NtAllocateVirtualMemory(n, a, -, 0, ...)

NtUserFindWindowEx(_, _,7,...) &> w @
“Shell TrayWnd” C ~

NtWriteVirtualMemory(n, 5, ...)
/B € {Oé, s U}

NtUserSetWindowLongPtr(w, p, A, ...) | |NtUserSetWindowLong(w,p, A, ...)
Ae{a,..,atatAp=0 Aed{a,..,atotAp=0

Figure 10: A behavior net modelling the CTray VTable Injection technique. In this graph, we use the —
operator to indicate the return value of the function NtUserFindWindowEx is captured by the w symbolic
variable.
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NtOpenThread(d, -)

NtSuspendThread(d, _)

NtOpenProcess(n,...)

%Q%

NtGetContextThread(d, )

(&

NtAllocateVirtualMemory(n, «, _, 0, ...)

(0

NtSetContextThread(d, )

(&

NtWriteVirtualMemory(n, S, ...)
Be{a,...,a+a}

o
N

NtResumeThread(d, )

Figure 11: A behavior net modelling the Thread Execution Hijacking technique.
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NtCreateUserProcess(n, 6

O/’\O

NtAllocateVirtualMemory(n, a, _, 0, ...)

NtUnmapViewOfSection(7,...) @ NtGetContextThread(d, ...)

NtWriteVirtualMemory(n, B,...)
B e {a ,a+ o}

NtSetConteXtThread

NtResumeThread(d,...)

Figure 12: A behavior net modelling the Process Hollowing technique. Here we see the first transition
branching into three different places. This indicates that after the call to NtCreateUserProcess, three
different tasks might be executed in any order or might be interleaved into each other. However, all three
branches converge into the same node matching on the Nt SetContextThread function. This indicates
that all three tasks must complete before this system call is made.
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NtUserSetWindowsHookEx(_, 7,0, ...)
n # ” Aprocess = p

LdrLoadD11(q, )
(n CaVvnCpB)Aprocess # p Athread = 0

Figure 13: A behavior net modelling the Windows
Hook technique. In this graph, we indicate the pro-
cess and thread that are responsible for producing
the event with process and thread.

NtSetValueKey(q, 53, -)
Q(a, B)

Figure 14: The general set up for a behavior net that
models a configuration based code injection tech-
nique. In this small graph, Q refers to a predicate
that tests whether the right registry key is accessed
for this technique, according to the first and second
arguments of the observed Nt SetValueKey system
call.

developed. It consists of two components; the Detec-
tor and the Exzamination Environment. The Detector
acts as a front-end for the system, taking samples as
input, and reporting back the final verdict. It does
so by uploading the samples to the Examination En-
vironment, which runs them for a limited amount of
time in a isolated sandbox. During the execution,
an event stream of the sandbox is recorded. After
the examination has completed, the Detector then
downloads this event stream, and runs it through a
set of Behavior nets that model the different types of
techniques as identified in Section [3] Finally, based
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on the final markings of these Behavior nets, it will
then compile a detection report that includes all the
techniques that were fully recognized.

In the following, we will discuss how each compo-
nent works in more detail.

5.1 The Detector

As mentioned before, the Detector is the main driv-
ing force for uploading samples and analyzing event
streams. The input of the detector is the path to
a single sample, or a directory containing multiple
samples. All samples that need to be analyzed are
added to a queue (in the figure displayed as the Task
Queue), and are uploaded one by one to the exami-
nation environment.

The Detector is also responsible for maintaining
all Behavior nets that need to be considered while
analyzing the resulting event streams. Important to
note is that these Behavior nets are obtained from a
repository of Behavior net specifications that reside
on the disk. For this, we built a small Domain Spe-
cific Language (DSL) that is inspired by the DOT
graph modelling language [7], as well as Haskell that
features pattern matching syntax [4]. This makes the
detector easily extensible, should in the future new
types of techniques be discovered, or other types of
behaviors need to be detected.

In our DSL, we define Behavior nets with a
behavior block. Within this block, we introduce
the places, the transitions and arcs between them.

behavior "Name" ({

}

Places are defined using the place keyword, followed
by one or more identifiers. If such a declaration ends
with the word accepting, all the places within that
declaration will be included in the accepting places.
For example, the declaration for p5 below is marked
as an accepting place, while the places pO to p4 are
not.

place [p0 pl p2 p3 p4]
place p5 accepting
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Figure 15: System Architecture Overview

Transitions in a behavior net are defined using
transition blocks. Inside a transition block, the
transition function §; is configured. This starts off
by indicating the name of the event to match, fol-
lowed by a set of symbolic variables that capture the
arguments of the event. If an argument is not rel-
evant to the detection of the behavior, we use an
underscore (_) to discard it. Extra constraints can
also be added to these symbolic variables by includ-
ing a where clause. An example of such a con-
straint can be seen in transition t2 below, where
we restrict the value of x to be an address within
a chunk of memory allocated by a prior call to
NtAllocateVirtualMemory in transition t1.

within the block, and is in particular useful for en-
coding that the catalyst should be the victim process,
as is the case with Windows Hook Injection. An ex-
ample of such an in clause is shown in the following
code snippet.

transition tl1 {
NtAllocateVirtualMemory (h, a,
}

s S, s )

transition t2 {
NtWriteVirtualMemory (h, x, _, _, _)
where
x in

[a .. (a + s)]

transition t1 ({
NtUserSetWindowsHookEx (
_, cbDl1l, tidil,
in

—r o — )

process pidl

}

transition t2 {
LdrLoadDll (name, path)
in
process pid2
thread tidl
where
(cbD1ll in name)
pid2 != pidl

or (cbDll in path)

Additionally, symbolic variables can be defined for
the processes and threads that were responsible for
producing the event. This is done using an in clause

Similar to the DOT language, we use the —> operator
to add arcs between transitions and places. It is also
possible to chain multiple nodes together in the same
line by using multiple —> operators in sequence.

t0 -> p0
tl —> pl —> t2 -> p3 -> t3
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A full example of a Behavior net expressed in our
DSL can be found in Listing [I]in the appendix.

5.2 The Examination Environment

To be able to perform dynamic analysis, we rely
on running samples in an isolated execution en-
vironment. For a sandboxing solution, we chose
the DRAKVUF Sandbox as our main driver [41].
DRAKVUEF is a black-box malware analysis system
that is able to run arbitrary samples inside a Vir-
tual Machine (VM) for a limited amount of time.
Like other sandboxing solutions, it is able to monitor
for activity such as API calls, system calls, network
traffic and file system events. All these events are
recorded into a set of log files, which can be down-
loaded and processed by our Detector program after
the examination has completed.

One main advantage of DRAKVUF in compari-
son to other solutions, is that it is able to monitor
an entire system as opposed to just single processes.
Given the nature of code injection techniques, this is
a feature that greatly increases the probability of our
detector to observe the expected behavior. Further-
more, DRAKVUF observes the activity from outside
of the VM by interfacing directly into the underly-
ing virtualization software. This means that it does
not require an agent within the VM itself to do the
instrumentation and monitoring (as opposed to so-
lutions such as Cuckoo Sandbox [2]). Consequently,
this vastly reduces the risk of being fingerprinted by
a sample, and thus increases the potential for the
sample to actually activate itself.

We use Windows 10 as an operating system for
the VM, since this is the most market dominant op-
erating system by the time of conducting this re-
search [3]. To remove any potential interference from
other programs, we disable various background ser-
vices such as the Windows Search Indexer, Windows
Update, User Account Control (UAC) and Windows
Defender. This is important, as these services might
unnecessarily increase the size of the resulting event
streams, prevent the malware sample from running,
or introduce artifacts in the streams as a result of
their own use of code injection techniques to do their
own monitoring.

We do provide the malware with access to the in-
ternet, since some malware families rely on an active
connection with a remote control server, or use the
availability of internet (or lack thereof) as a means of
detecting whether it is running in a sandbox or not
[58]. However, we make sure that this internet access
is limited. All traffic goes through a set of strict fire-
wall rules, where we block several well-known ports
used by commonly used TCP and UDP based proto-
cols such as SMTP and SMB. Additionally, we make
sure that all packets whose destination is within the
IP subnet of the university are dropped, avoiding any
potential denial of service or spreading into the net-
work that our test machine was put in.

Finally, after every examination, we roll back the
VM to a clean snapshot to revert any side-effects that
might have been introduced by the malware. This
also stops any potential denial of service that still
managed to slip past our defenses.

These countermeasures were verified by our super-
visors and were approved by the Ethics Committee
of the University of T'wente.

6 Evaluation

For evaluation, next to unit testing our implementa-
tion, we conducted two experiments to collect empir-
ical evidence that show that our system is function-
ing properly. The first experiment is a small scale
experiment that aims to verify whether our system
is sufficiently equipped for detecting the presence of
code injection in a single sample. The second exper-
iment is a larger scale experiment where we look at
a large data set of real world malware samples, and
look at the general prevalence of code injection, as
well as the distribution of the different techniques.
In the following sections, we will discuss the overall
parameters of our system that we used, as well as
the samples that we considered. We then continue
by presenting our findings.

6.1 Sample Selection

As mentioned before, to verify that our models are a
correct representation of the studied injection tech-
niques, and can be used in an examination on a larger
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scale, we first compiled a small set of samples for
which we know the implemented technique. These
samples are a collection of the custom made imple-
mentations that we made ourselves as described in
Section [3.1] as well as handpicked real-world samples
for every technique. The handpicked samples are in-
cluded to verify that our behavior nets are not biased
towards our own implementations, and are generic
enough to also recognize the ones that we would find
in the wild.

For our prevalence assessment, we used a random
subset from the VirusTotal Academic Data Set [8].
To prevent overrepresentation of a single malware
family, we used AVClass [61] to classify each sam-
ple by family, and limited the number of samples per
family to 20. By this process, we selected a total
amount of 3075 samples originating from 2017, 2019
and 2020, and ran them through the system over the
course of 5 weeks. Finally, to test whether the as-
sessments made by our detector are consistent, we
picked several samples from our selection at random,
and manually verified that these indeed implement
the injection technique as determined by our detec-
tor.

6.2 Time Limit per Sample

As was discussed in section [2.2.2] an important de-
cision to make for the detector is the amount of ex-
ecution time that should be allocated for every sam-
ple. While theoretically it is possible that a sample
might delay execution for a very long time, Kuchler et
al. showed that around 65% of all malware samples
requires less than 2 minutes to run till completion,
and 81% will not need longer than 10 minutes [39].
Since code injection is very likely to be one of the
first steps that a sample might perform, we assume
that any step executed after the 10 minute mark is
very unlikely to contain anything relevant. We can
then calculate a rough expected run time required for
a single sample to perform some form of injection as
E(t) ~ 0.65-2+ 0.45 - 10 = 5.8 minutes. If we then
take an estimated execution time slowdown of 5% as
a result of the extensive logging, we deem 6 minutes
an acceptable execution time limit per sample.
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Technique ‘ Match Exact

Process Hollowing

Thread Execution Hijacking
IAT Hooking

CTray Hooking

APC Shell Injection

APC DLL Injection
Shellcode Injection

PE Injection

Reflective DLL Injection
Memory Module Injection
Classic DLL Injection

Shim Injection

Image File Execution Options
Applnit_DLLs Injection
AppCertDLLs Injection
COM Hijacking

Windows Hook Injection

NN NN

A N N N N N N N N N N NN

AN N NN NEN

Table 6: Overview of all recognized code injection
techniques. The Match column indicates some form
of code injection was recognized. The Fzact column
indicates the system was able to properly identify the
technique as well.

6.3 Results

In the following, we present the effectiveness of be-
havior nets for identifying the different techniques, as
well as our findings of the prevalence of code injection
in the general malware scene.

6.3.1 Detection Capabilities

Table [6] shows an overview of the detection capabili-
ties of our system on our handcrafted sample set. In
this table, we make a distinction between picking up
on the presence of code injection, and exact identifi-
cations of the technique.

We can see that the use of virtually any of these
techniques will result in the system noticing that
some form of injection has happened, with the ex-
ception of JAT Hooking. In this technique, a “nor-
mal” API function that is imported by the victim
process is reused as a catalyst for a piece of shell-



code injected by the malware. The malware places
a jump instruction at the start of this function, and
reroutes the control flow to the entry point of the
injected code. This means that once the victim pro-
cess invokes the function, the shellcode is activated
instead. Even though this technique is classified as
destructive, and has a very high chance of breaking
the victim process in the end, we cannot recognize
these types of injections using our system. This stems
from the fact that behavior nets can only test for the
presence of events. They are not able to pick up on
faulty or crashing behavior, nor are they able to rec-
ognize the absence of an event as a result of rerouting
a function. Furthermore, this technique only requires
two calls to the function NtWriteVirtualMemory
for transmitting and preparing the catalyst respec-
tively. While we can observe calls to this function,
DRAKVUF does not provide us with enough infor-
mation in the event stream to distinguish between
NtWriteVirtualMemory calls that place hooks or
inject other types of memory instead. This makes it
virtually impossible to recognize this kind of injection
without changing the implementation of DRAKVUF
itself.

Important to note is that this does not mean that
destructive techniques cannot be observed or iden-
tified at all. Instead, the other three destructive
techniques that were considered can be recognized
properly. This is due to the fact that in these tech-
niques the presence of the catalyst is much more ap-
parent. For example, in the Process Hollowing tech-
nique, the catalyst always results in making calls to
the Nt SetContextThread and NtResumeThread
functions. Unlike the case of TAT Hooking, these
events have very clear arguments that can be traced
back to previously observed events produced by the
transmitter. This allows us to distinguish these
events from the general noise of system calls more eas-
ily than in the case of the NtWriteVirtualMemory
calls in the TAT Hooking technique.

We can also see in the table that for the three tech-
niques PE Injection, Reflective DLL Injection and
Memory Module Injection, our system can recognize
the presence of an injection, but not exactly identify
which technique was used. This is a result of a sim-
ilar issue to the one mentioned in the above. Due
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to limited granularity of the observed event stream,
some techniques will have a very similar if not iden-
tical pattern of events for their transmitters and cat-
alysts. This is the case for these three techniques.
With the current level of detail that DRAKVUF can
provide us, these three techniques become indistin-
guishable from Shellcode Injection, and can therefore
only be classified as such. However, this is a reason-
able compromise. Since the only difference between
these techniques is in the actual contents of the in-
jected memory, they can be seen as a special case of
shell injected code. Therefore, while classifying it as
such does not completely reflect the exact behavior
that is exhibited, it is not necessarily an incorrect
classification either.

6.3.2 Prevalence Statistics

Table [7] summarizes the general observed prevalence
of code injection within the sample set. A total of 343
samples (11.15%) was found to perform at least one
type of code injection within the first 6 minutes of ex-
ecution. Additionally, Table [§] and Figure [I6] present
the distribution of the different techniques that were
implemented within these 343 samples. From these
statistics, we can see that the technique Process Hol-
lowing is with a total share of 41.69% convincingly
the most popular choice among malware developers.
We can also see that some techniques (such as CTray
and AppCertDLLs Injection) are not observed at all.
Table [J] condenses these findings by aggregating all
techniques that fall into the same class into a sin-
gle row. Here we can see that 61.52% of all sam-
ples perform an active injection, and 48.10% perform
a passive injection. Important to note here is that
these percentages do not add up to 100%. This is a
result of some samples implementing multiple code
injection techniques.

Since malware samples belonging to the same fam-
ily often employ the same type of behavior [12], and
families differ in size, some techniques might still be
overrepresented in Figure[L6] despite setting an upper
limit of 20 variations per family. Therefore, Figure [17]
presents a slightly different view on the data, where
all samples within the same malware family are con-
sidered as one instead. In this graph, if at least one



| 2017 2019 2020 | Total
Positive Samples | 121 12.06% 135 13.24% 87  9.22% | 343 11.15%
Negative Samples | 832 87.94% 885 86.76% 965 91.73% | 2732 88.85%

Table 7: Observed general prevalence of code injection in the sample sets from 2017, 2019 and 2020.

| 2017 2019 2020 |  Total
Process Hollowing | 61 50.41% 55 40.74% 27 27.84% | 143 41.69%
Thread Execution Hijacking | 2 1.65% 0 0.00% 0 0.00% 2 0.58%
CTray Injection 0 0.00% 0 0.00% 0 0.00% 0 0.00%
APC Shell Injection 0 0.00% 0 0.00% 1 1.03% 1 0.29%
APC DLL Injection 0 0.00% 0 0.00% 0 0.00% 0 0.00%
Generic Shellcode Injection | 16 13.22% 13 9.63% 11 11.34% | 43 12.54%
Classic DLL Injection 4 3.31% 18 13.33% 2 2.06% 22 6.41%
Application Shim Injection 0 0.00% 0 0.00% 0 0.00% 0 0.00%
Image File Execution Options | 6  4.96% 12 0.000% 20 20.62% | 38 11.08%
Applnit_DLLs Injection | 17 14.05% 18 8.89% 20 20.62% 55  16.03%
AppCertDLLs Injection | 0  0.00% 0 1333% 0  0.00% 0 0.00%
COM Hijacking | 20 16.53% 28 20.74% 11 11.34% 60 17.49%
SetWindowsHookEx Injection | 6  4.96% 3  2.22% 14 14.43% | 12 3.50%

Table 8: Observed distribution of code injection techniques implemented by malware in the sample sets from

2017, 2019 and 2020.

sample within a family was found to be performing
a given type of code injection, then this family is
considered to implement this technique as well. We
can see that the general trends remain very similar
to the previously found statistics. Process Hollow-
ing is still the most prevalent, and is still followed
by the collective of all passive injection techniques.
Some notable differences are an increase in popularity
for Generic Shellcode Injection and COM Hijacking,
whereas techniques such as Image File Execution Op-
tions and Applnit_DLLs Injection dropped slightly.

7 Discussion

In this section, we discuss our findings by provid-
ing an additional perspective on the general observed
prevalence, as well as the distributions of the tech-
niques that were used by the examined samples.

7.1 General Prevalence

From Table [7] we can see that 11.15% of all observed
samples uses some type of code injection. It is impor-
tant to note is that this percentage is very likely to be
an underestimation of the actual number of samples
that use code injection. This has a couple of possible
explanations, which we discuss in the following.

Firstly, while behavior nets are relatively generic
models, they still are a form of signature-based de-
tection. This means that if any of the tested malware
samples used an unknown technique or a technique
that is not captured by our models, then our system
would not be able to detect it. This might also mean
that for example the IAT hooking technique is used a
lot, but remained unnoticed since we cannot express
this technique in the form of a behavior net as was
explained in Section [6.3.1]

Additionally, despite the counter measures in
place, a sample could still not be activating itself dur-
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| 2017 2019 2020 |  Total
Active | 85 70.25% 86 63.70% 40 45.98% | 211 61.52%
Intrusive | 63 52.07% 55 40.74% 28 32.18% | 146 42.57%
Destructive | 63 52.07% 55 40.74% 27 31.03% | 145 42.27%
Non-Intrusive | 22 18.18% 31 22.96% 12 13.79% | 65 18.95%
Passive | 49 40.50% 61 45.19% 55 63.22% | 165 48.10%
Configuration-Based | 43 35.54% 58 42.96% 52 59.77% | 1563 44.61%

Table 9: Observed distribution of classes of code injection techniques implemented by malware in the sample

sets from 2017, 2019 and 2020.
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Figure 16: Observed distribution of code injection
techniques by malware in the sample sets from 2017,
2019 and 2020. This graph only includes the tech-
niques for which at least one sample was detected.

ing the examination phase. One reason could be that
the sample is waiting for a command from a remote
server before it does anything nefarious. If this server
does not exist any more or has been neutralized by
authorities such as law enforcement, this means the
sample will never activate itself, and never get to per-
forming a code injection. Naturally, the probability
that this is the case for a single sample increases the
older the sample is. Therefore, statistics pulled from
older sets (such as the one from 2017) might be an
underrepresentation of reality.

A third reason for malware not activating itself,
might be because malware sometimes is put inside

Figure 17: Observed distribution of code injection
techniques by malware in the sample sets from 2017,
2019 and 2020, after normalizing by malware family.

an installer for another (benign) software package.
The problem with this is that installation of soft-
ware on Windows usually requires some form of in-
teraction, such as the press of the “Next” button in
an installation wizard. Since our examination envi-
ronment does not support automatically performing
these kinds of interactions, malware might not have
gotten the chance to activate itself, because the in-
stallation never completed.

It could also be the case that the malware sim-
ply does not run properly on Windows 10. In 2017,
Windows 7 was the most popular operating system
in use [3]. It makes therefore sense for an attacker
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to build malware that is compatible with this oper-
ating system specifically. However, changes between
Windows 7 and 10 might have introduced incompat-
ibilities with a sample and our examination environ-
ment. Therefore, similar to the case described before,
some samples might not have run till completion, and
as such, statistics calculated from older sample sets
might be below the real numbers.

Finally, a malware sample might be activating itself
and contain a procedure that performs an injection,
but still decides against actually executing this injec-
tion. This is often the case for samples that use code
injection as a form of privilege escalation. If a sample
successfully injects malicious code into a process with
higher privileges (e.g. administrator rights), then the
malicious code will then also be executed under these
higher privileges [49]. However, if the sample is al-
ready granted these rights, then the injection is in
this use-case unnecessary and can be skipped. Some
samples therefore will only perform the injection if
they are below the desired level of privileges. Since
in our examination environment we disabled UAC,
every sample that we execute runs under these higher
privileges from the moment the process starts. This
might make these samples not perform an injection
even though there is code for it present, and as such
our system would incorrectly flag it as a negative.

7.2 Distribution of Techniques

A clear result that we can see in Figure [I6] is that
Process Hollowing is dominating convincingly across
all three years. Since this technique is one of the
more well-known methods, and the majority of mal-
ware developers tend to copy code from others [24],
this is an expected result. However, this trend seems
to go down in 2019 and 2020, while other techniques
gain more popularity. This might be an indication
that malware developers have started using less tra-
ditional methods for detection avoidance. The more
well-known a technique is, the higher the probabil-
ity that an anti-malware company will try to detect
this type of behavior. Therefore, using lesser known
methods increases the chances that malware will stay
undetected for longer periods of time, making Process
Hollowing not as much of a viable solution any more
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for malware developers as it used to be.

Despite the popularity of Process Hollowing, we
can also see from Table [J] that the use of more pas-
sive techniques are a common choice as well. This is
most likely because passive techniques often have a
second purpose that is different from just getting code
to run in the context of another process. For exam-
ple, Applnit_DLLs Injection changes specific settings
stored in the Windows Registry to let Windows load
additional (malicious) libraries upon starting a new
process. Since these settings are stored on the disk,
they will survive a reboot of the system. This tech-
nique is therefore not just a method to perform code
injection, but also a way to achieve persistence.

8 Limitations

During the development of the behavior nets and our
detection system, we encountered a couple of limita-
tions that our current implementation has.

The first main limitation is that while the theoret-
ical model of Behavior nets itself is fairly generalized,
the implementation might still be too specific and not
universal enough to be able to recognize slight muta-
tions of some forms of the techniques. One example
of such a case is a model that aims to detect a tech-
nique falling under the configuration-based injection
class. What makes it difficult to make these types
of models as generic as possible, stems from the fact
that configuration-based injections access very spe-
cific keys in the Windows Registry, and thus require
the use of very specifc paths. While we can match
on system calls such as Nt SetvValueKey with those
paths as arguments, this does not encapsulate the un-
derlying core characteristic sufficiently. Instead, we
are matching on a change in the Registry at exactly
this path, rather than the general concept of having
a malicious file being loaded as a result of a malicious
configuration. If another technique is found that uses
a different registry key, then a new model will have
to be created that matches on this new key.

Another limitation that touches on the previously
mentioned issue, is that our implementation for the
transition functions may be too specific as well. The
theoretical model leaves the definition of the transi-
tion function fairly abstract; As long as it conforms



to a certain contract (it takes an event and token
as input, and produces a new token as output), it
is able to link events together and discard the noise
in an event stream. However, in our implementation
we always use a transition function that matches on
specific API calls. This has the downside that if we
want to match on events that can be implemented in
multiple ways, we need multiple transition nodes in
our behavior nets to be able to match on all of the
options. This limitation can be seen in for example
Figure[8] where place p, branches into two transitions
matching either on the CreateRemoteThread or
NtCreateThreadEx function. One potential im-
provement that could be made to our system to over-
come this, is adding a preprocessing phase that lifts
events in the event stream into classes of events before
it is fed through the behavior nets. Alternatively, we
could extend our DSL to allow for matching on multi-
ple different types of events within a single transition
block, and build up these equivalence classes directly
in the behavior nets themselves. Both options would
allow us to match on slightly higher abstraction of
the type of events that we observe, and avoid the
additional complexity in our nets all together.

9 Related Work

In this section, we relate our work with previously
conducted research, and discuss where our system
overcomes some of the shortcomings that this pre-
vious research has.

9.1 Existing Classifications for Code
Injection

The idea of identifying common characteristics and
placing code injection techniques in classes is a rela-
tively new concept. Barabosch and Padilla were one
of the first to make an attempt in identifying the key
components of host based code injection techniques
in 2014 [I3]. In their work, they introduce two forms
of injections; the targeted and shotgun approach, and
two forms of code execution; concurrent execution
and thread manipulation. These two concepts are
similar to how we describe the process- and thread
model. While these types of definitions are a very
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good starting point on their own, they do not pro-
vide much granularity. They put heavy focus on what
the two forms of code injections entail, but not how
to decide for any given thread whether it is a thread
originating from the original application, or from the
injected code. Furthermore, their work puts heavy
focus on threads alone. It is true that running code
always requires the context of a thread to run in, and
therefore the invocation of injected code can always
be classified as either the creation of a new thread,
or the redirection of an existing thread. However, as
mentioned in section [3] there exist a lot of different
ways to perform the code execution in both classes,
including techniques that do not communicate with
the target process directly.

9.2 Existing Solutions for Automated
Behavior Analysis

Similar to our solution, most fully automated sys-
tems that perform behavior analysis rely on dynamic
analysis [2] 4T] I5]. While these systems have been
very successful and thorough with their examination,
they usually stop at providing an examination report
that is full of raw data, and do not always provide a
good interpretation for it. The final verdict is often
left to the analyst themselves.

Martignoni et al refer to this problem as the se-
mantic gap. and have attempted to address this by
constructing higher level abstractions from recorded
behavior [44]. They do this by building up a set of
what they call behavior graphs, which are quite sim-
ilar to our behavior nets. Using these models, they
were successful in detecting activity such as creat-
ing and executing files, downloading files, sending e-
mails, and logging keystrokes.

Schneider proposed in 2000 the concept of security
policies. Similar to our models, security policies are a
form of automata that operate on a stream of execu-
tion steps (which we call events in our solution), and
can be used to detect anomalies in the normal exe-
cution of a program. While this can be useful from
a victim process’ standpoint, it does assume that the
original (correct) behavior of the victim process is
known. Since we are monitoring an entire system
with lots of complex closed source applications run-



ning in the background, this task becomes infeasible
in our case. One could argue that a security policy
could also be used to model the code injection tech-
niques themselves, but since it would be expressed
using a “normal” automaton, it would not be able
to recover from arbitrary reordering of steps as de-
scribed in section without also enumerating all
possible permutations.

Next to their formal models for code injection,
Barabosch et al also proposed an automated method
for deciding whether code was injected into another
process [12]. In this work, they apply the honeypot
paradigm by imitating legitimate processes such as
a web browser, and deliberately allowing malware to
inject in these decoy processes. While they show it
can be quite effective, their system has limitations.
For one, it heavily relies on the fact that the mal-
ware is identifying these decoy processes as potential
targets. Furthermore, they also describe the limita-
tion of not being able to control child processes that
a sample might spin up themselves. This is similar
to the limitations introduced by Cuckoo Sandbox [2],
as it only provides a narrow window for a detector
to monitor the system. Our solution, on the other
hand, monitors the entire system, and thus does not
have this restriction.

10 Conclusion

We have conducted a systematic study on code in-
jection techniques, and proposed a taxonomy which
groups these techniques into classes based on a set
of common traits. We continued by introducing our
extension to the Petri Net modelling language called
Behavior Nets, which allows us to describe the tech-
niques in terms of observable events and the depen-
dency relations between them. We then presented a
system that implements these nets to automatically
determine whether an arbitrary sample uses code in-
jection or not. We used this system to collect empir-
ical evidence on the general prevalence of code injec-
tion, as well as the distribution of the used techniques
in the malware scene of 2017, 2019 and 2020. Our
experiments show that our system is capable of de-
tecting various code injection techniques, and that at
least 11.15% of all examined samples performed some
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form of code injection. Furthermore, the data sug-
gests that Process Hollowing is the most commonly
used technique. However, it also shows an indication
of a shift in trend. More traditional techniques seem
to be getting less used, while others become more
prevalent. We have made our algorithms, as well as
our test files and implementations of the studied code
injection techniques, open source for the sake of open
science.
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A Behavior Net DSL Example

Listing 1: A Behavior Net expressed using our DSL, modelling the Process Hollowing technique. This net
is equivalent to the net depicted in Figure

behavior "Process Hollowing" {
place [p0 pl p2 p3 p4 pPS5 pb6 pP7]
place p8 accepting

transition t0 {
NtCreateUserProcess (processHandle, threadHandle, _,_,_,_,_,_,_,_,_)

transition tl {
NtUnmapViewOfSection (processHandle, _)

transition t2 {
NtAllocateVirtualMemory (processHandle, baseAddress, _, size, _, _)

transition t3 {
NtWriteVirtualMemory (processHandle, address, _, _, _)
where
address in [baseAddress.. (baseAddress+size) ]

transition t4 {
NtGetContextThread (threadHandle, _)

transition t5 {
NtSetContextThread (threadHandle, _)

transition t6 {
NtResumeThread (threadHandle, _)

t0 -> p0 -> tl1 -> pl —-> tb5

t0 —> p2 —> t2 -> p3 -> t3 -> p4 —-> t5
t0 -> p5 —> t4 -> p6 —-> tb5

t5 -> p7 -> t6 -> p8
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