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ABSTRACT

Discovering how a species adapted to a specific environment over a long period, and how
this affected the evolution of that species is of great importance to researchers. A major force
that drives the shaping of the evolution of a species is positive selection. Positive selection
provides information on how a species evolved, and therefore how the species adapted to its
environment. The act of positive selection leaves a selective sweep in the genetic material of
a species. The detection and localization of selective sweeps and therefore traces of positive
selection is a goal for the development of various methods and tools. For sweep detection,
various signaturebased methods and tools are developed. Besides these signaturebased
methods and tools, the use of convolutional neural networks (CNN) for wholegenome sweep
detection is not yet explored. This work presents ASDEC (Accurate Sweep Detection Enabled
by a CNN), a CNNbased method for wholegenome sweep detection. ASDEC was devel
oped in a userconfigurable way and shows great performance against current signaturebased
methods and tools. ASDEC is, to the best of my knowledge, the first wholegenome CNNbased
sweep detection method. For the development of ASDEC, a handdesigned neural architec
ture search (NAS) was used and led to a final CNN architecture (dubbed SweepNet). ASDEC
was compared with signaturebased methods and tools such as RAiSD, OmegaPlus, SweeD,
and SweepFinder2. ASDEC showed equal to increasing performance for almost all datasets
compared with the top performer signaturebased method. The performance evaluation of AS
DEC consisted of three different confounding factors bottleneck, migration, and recombination.
Besides the use of simulated datasets, ASDEC can be deployed for real genomic datasets. A
scan of the first chromosome of the human genome (Yoruba population, 1000Genomes data
set) was performed, showing nine different candidate genes. The nine candidate genes dis
covered by ASDEC have already been identified by previous research to be targets of positive
selection. ASDEC provides support for conventional hardware such as multicore CPUs and
GPUs. Extending the usability of ASDEC even further a CNN inference accelerator is imple
mented and compared with a multicore CPU in terms of performance. Execution on a state of
the art FPGA achieves a 10.7x faster processing than a generalpurpose sixcore CPU.
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1 INTRODUCTION

Populations genetics studies the variations within the evolution of all genetic material (genome)
in populations[6]. Finding variations within genomic data is coupled to finding a locus or a
subgenomic region, where a locus refers to a position within the genome. A milestone within
population genetics with great importance is the sequencing of the complete human genome
which is part of the Human Genome Project (HGP)[7], and paved the way to population genet
ics becoming a research field where large and complex datasets are ample. The information
provided by the HGP can for example be deployed to develop new ways to treat, cure or prevent
human diseases.

Besides the ability to sequence a complete human genome, modern population genetics also
includes the generation of genomewide sequence datasets. Generation is achieved with the
help of the coalescent process[8],[9], and thereby enabling softwarebased on coalescent sim
ulation such as ms[10] to create vast amounts of synthetic data with relatively low afford. Pro
cessing genomic information with high throughput techniques enables researchers to use the
vast amounts of data available to them. These high throughput techniques are (mostly) based
on machine learning methodologies, and more recent deep learning techniques[11].

Besides all the advancements made with regards to the population genetics research field, an
other research field has also seen vast improvements. This is the research field of image recog
nition and computer vision. Techniques from computer vision are based on machine learning
and in more recent years deep learning methodologies. A driving force behind these advance
ments in computer vision has been the improvement of deep learning methods that led to the
evolution of Convolutional Neural Networks (CNN). CNNs are most prominent in stateofthe
art image classification & object detection tooling [12]. A wellknown application for CNNs and
Neural Networks (NN) in general is for example the classification of the MNIST data set, which
was first introduced in 1998 by LeCun et al. [13].

Convolutional Neural Networks are not restricted to applications regarding image processing,
but could also be used for speech recognition, natural language processing and speech synthe
sis. Genomic data can be represented as single or multiple images, enabling the use of CNNs.
Combining both the research field of population genetics, and the research field of computer
vision and image processing. The problem of finding certain locations within the genome can
now be regarded as a pattern recognition problem. This translation provides a way to make use
of CNNs for the field of population genetics as presented earlier by Flagel et al.[14].

Twenty years ago central processing units (CPUs) used to be the mainstream options for im
plementing machine learning algorithms, back then matrix multiplication and factorization tech
niques were not widely used[15]. Nowadays graphical processing units (GPUs) are popular due
to their high level of parallelism and even natively supported by many CNN software libraries
such as TensorFlow[16]. Another hardware solution that could make use of the distinct compu
tational features of a CNN is the fieldprogrammable gate array (FPGA), and can be a strong
competitor to the highspeed GPU implementation as shown by Wang and Gu[17]. Consider
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ing that genomic datasets are quite large, and therefore vast amounts of images are needed
to represent a single genomic dataset the need for fast acceleration techniques are of great
importance to provide reasonable execution times.

1.1 Motivation

The identification and locating of (new) genetic variants and evolutionary forces in genomewide
datasets have a relation to topics such as complex diseases as autoimmune diseases[18].
In genomewide data sets, various genetic variants and evolutionary forces can be identified
these variants for example transcription start sites (TSSs), splice sites, positive selection, pro
moters, enhancers or positioned nucleosomes[19]. The presented research focuses on the
detection and localization of one of the beforementioned evolutionary forces called positive
selection. Positive selection is a major contributor to the shaping of the evolution of a species.
The possibility to accurately locate positive selection can yield information regarding forces that
drive adaption. Which could be for example used for identifying drugresistant mutations in
pathogens. The region that was under positive selection is also denoted as a selective sweep,
and the detection of this region is named sweep detection.

Locating a region that has undergone positive selection can be done in various ways. One ap
proach is to use signatures left by positive selection and resulting forces such as the hitchhiking
effect[20]. While in cases where the positive selection is easily identifiable (strong selection)
performance of sweep detection tools is good. The performance of sweep detection tools de
teriorates significantly for cases where positive selection becomes harder to identify (weak se
lection) as shown by Alachiotis and Pavlidis[21]. Signaturebased sweep detection approaches
assume that certain evolutionary effects are present and are caused by positive selection, while
other evolutionary effects could also create similar signatures. Signaturebased methods and
tools counter this problem by adjusting for these faulty evolutionary factors, but considering that
these faulty signatures exist could make signatures based methods and tools more errorprone.

Instead of using signaturebased methods and tools for sweep detection, another option is to
use methods and tools based on machine learning. One of the major advantages of deploying
machine learning methods and tools instead of signaturebased methods and tools is the ability
to automatically identify patterns in data, this is especially true when expert knowledge is in
complete, inaccurate and/or when data is too large to be manually checked as stated by Yip et
al.[22]. Using machine learning and more recently deep learning methods and tools for sweep
detection has multiple differences with regards to more conventional approaches (signature
based). Such a difference is for example by employing a more blackbox technique instead of
the more whitebox techniques now employed. This results in a model that trains itself to find
features to determine if a genomic region has undergone positive selection. Especially Con
volutional Neural Networks (CNNs), a deep learning technique have proven to be able to yield
great results for problems such as sweep detection as discussed by Flagel et al.[14], Kern &
Schrider[23] and Torada et al.[24].

While CNNs promise great performance they are not yet to my knowledge applicable to whole
genome datasets (able to locate positive selection within a larger genomic dataset) as the
signaturebased approaches are. Meaning that there exists the need for a CNN based method
that can perform wholegenome sweep detection. A major challenge concerning the whole
genome CNN method is the number of images needed to represent the whole dataset. The
number of images required to represent all positions of for example an ms generated dataset
quickly goes into the thousands. Consider the numbers provided by Wang and Gu[17], who
achieved 31.7 frames per second (fps) with a commercial GPU for the YOLOv3[25]. When
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thousands of images need to be processed times quickly go towards multiple minutes or even
hours depending on the length of the genomic datasets. Wang and Gu[17] also showed great
improvements (around 2.4 faster) by deploying Field Programmable Gate Arrays (FPGAs) for
CNN acceleration, this is to my knowledge not yet available for CNN sweep detection methods
and tools. The application of sweep detectionmethods based on CNN’s acceleration techniques
could yield great benefits due to the amounts of images and computation required. The ASDEC
(Accurate Sweep Detection Enabled by a CNN) framework presented in this research can pro
cess wholegenome datasets and uses acceleration techniques to increase performance.

1.2 Research question

Sweep detection methods and tools based on signatures do not yield the desired results for
genomic datasets where weak selection is present[21]. To increase the performance with re
gards to these weak selection datasets CNN basedmethods and tools can be applied for sweep
detection[14]. The current CNN based sweep detection methods and tools[14], [24], [23] are
to the best of my knowledge not yet able to perform sweep detection on wholegenome data
sets, by enabling a CNN based sweep detection method to process wholegenome datasets,
a comparison with signaturebased methods and tools can be made possible. A disadvantage
of CNN based sweep detection methods and tools is the computational intensity, acceleration
with the help of either an FPGA or Deeplearning Processing Unit (DPU) can greatly reduce the
execution time.

Main research question

Can an accelerated convolutional neural network outperform currently available methods and
tooling, regarding sensitivity, accuracy, success rate, and execution times for the detection of a
selective sweep?

research subquestions

1. Is it possible to design a CNN that can be used in the detection of selective sweeps?
2. How should the CNN be modelled to achieve sufficient results with regards to the qualita

tive evaluation?
3. Which parts of the model should be performed on the accelerator?
4. What is the performance potential for acceleration of the developed sweep detection

method?

1.3 Contributions

Due to the absence of CNN based methods and tools for sweep detection within wholegenome
datasets, this research introduces a framework Accurate Sweep Detection Enabled by a CNN
(ASDEC). ASDEC provides a complete workflow starting from coalescent[8],[9] simulations to
a final list of probabilities including performance metricises (sensitivity, accuracy, success rate,
and execution times). With the help of the ASDEC framework, further research is performed
by providing a manual neural architecture search (NAS) to determine the best performing CNN
network architecture regarding various free parameters. Also, one of the major disadvantages
of a CNN based method is tackled by providing acceleration techniques for the ASDEC frame
work in combination with a model taken from the NAS.

The contributions are the following:

3



• The ASDEC framework provides a CNN based method to perform sweepdetection on
wholegenome datasets. ASDEC includes all steps consisting of data generation, custom
data inputs, image generation, data preprocessing, CNN model training, CNN model in
ference, postprocessing, and determining performance metrics. The framework is based
upon TensorFlow[16] and Keras[26], and allows custom models to be easily implemented
within separate files and given using input parameters. ASDEC has support for multiple
coalescent simulation software tools, supports multiple types of postprocessing, and is
fully configurable by a user. The ASDEC software is available at
https://github.com/SMattieS/ASDEC.

• With the help of ASDEC, a manual NAS is performed consisting of various CNN designs
with a total of 48 CNN designs, 190 trained models, and 380 inferences. Resulting in a
final CNN architecture dubbed Sweepnet, which was the top performer concerning the
given metrics of sensitivity, accuracy and success rate.

• ASDEC being computationally expensive and having native support for both CPU and
GPU, because of the support directly provided by TensorFlow. Still more computational
operation (operations per second) can be achieved by employing an FPGA and/or DPU
acceleration solution, which is achieved with the help of Vitis AI[3]. Quantization is per
formed on the Sweepnet model, and a theoretical possible throughput is calculated with
a given architecture. The ASDEC hardware implementation is available at
https://github.com/SMattieS/ASDEC_HARDWARE.

1.4 Report outline

Chapter 2 provides an introduction to the subjects of genetics, selective sweeps, artificial in
telligence, artificial neural networks, convolutional neural networks and accelerators. Chapter
3 describes related work including both signaturebased methods and CNN based methods.
Chapter 4 elaborates the method, describing and discussing all the different techniques used
for sweep detection. Chapter 5 focuses on the NAS performed with the help of the developed
ASDEC framework. This chapter leads to a sufficient CNN architecture which is determined
with the help of predefined metrics. Chapter 6 describes the hardware acceleration and perfor
mance of a chosen model based on Chapter 5. Chapter 7 gives the final results with regards to
ASDEC and acceleration. Lastly, chapter 8 concludes the thesis and provides a conclusion in
combination with possible future work.
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2 BACKGROUND

This Chapter describes the relevant background regarding population genomics, sweep detec
tion and positive selection, artificial intelligence (AI), artificial neural networks (ANN), CNNs, and
accelerators.

2.1 Population genetics and genomics

The field of population genomics provides the basis for the performed research and is a growing
field stemming from almost a century of developments within the study of population genetics[6].
The research field of population genetics studies genetic variation in populations[6]. Genetic
variance is present within the genome of for example a human population. Here a genome
stands for all genetic material of an organism. If for example two individuals out of a single pop
ulation are taken and a variation between them is present each variant is called an allele. This
variation could be that one individual has for example blue eyes, which is the first allele and the
other individual which has brown eyes having the second allele. To localize the genetic vari
ance of the given example or any other genetic variance in a population, the examination and
modelling of changes in the frequencies of genes and alleles over space and time is needed[27].

The occurrence of genetic variance is due to differences in the genetic length and/or the nu
cleotide content[6]. The nucleotide content is divided into four distinct types (adenine (A),
thymine (T), guanine (G), and cytosine (C)). Furthermore, various genes that are present within
the population are denoted as a singlenucleotide polymorphism (SNP). SNPs are defined in
the following way: ”A singlenucleotide polymorphism (SNP) is a single genetic code variation
(i.e., polymorphic). Although multiallelic SNPs do exist, the SNPs are usually biallelic (two alter
native bases occur) and require a minimum frequency (>1%) in the population”cited from [28].
This is illustrated in Fig. 2.1.

The field of population genetics had accumulated a substantial amount of mathematical theory
by 1966[29]. Pioneers within this field include Fisher, Haldane and Wright, but the research
field also greatly benefited from a collection of large amounts of data provided by laboratory
research. Charlesworth and Charlesworth provided a view into the fields growth and changes
starting from 1966 going to 2016 [29].

Where the field of population genetics focuses on the study of genes and the way alleles are
affected by evolution. Population genomics focuses more on the study of all genomic material
of an organism and for example largescale comparison of Deoxyribonucleic acid (DNA) and
Ribonucleic acid (RNA) sequences. The field of population genetics and the research field of
population genomics are related to each other. Both research fields play their role within health
and diseases. Within the remainder of this section, the focus is on modern population genomics
as described in the book Statistical Population Genomics by Dutheil[6].
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Figure 2.1: Example of Single Nucleotide Polymorphism (SNP), given two individuals within the
same populations

2.1.1 Mutations

An important molecular event is a mutation which is a change in the genome. A mutation can
be of various types including the substitution of a nucleotide into another nucleotide. But also
the addition or removal of one or several nucleotides and lastly the multiplication of a part of
the genome. New alleles are created when a genome has undergone mutation. Mutations can
occur on different locations within the genome, a location within a genome is better known as a
locus.

2.1.2 data preparation and the infinite site model

Obtaining the sequenced data from populations of interest is another challenge within the re
search field of population genomics. First of all the samples of the genomic material should
be obtained from the population of interest. With the help of this genomic material various
techniques for obtaining the sequence can be deployed such as the ‘shotgun‘[30] technique
deployed for the initial sequencing of the human genome[7]. These sequencing techniques
takes as input raw genomic material (for example DNA), and provide as output an assembly
containing the different nucleotides.

”...ACCGTAAATGGGCTGATCATGCTTAAACCCTGTGCATCCTACTG...”

Then Multiple Sequence Alignment (MSA) is applied to create multiple biological sequences
of a similar length, this is done to study the evolutionary relationships between the sequences.
Within the MSA data, different mutations can be present, and these mutations can be modelled.

The model deployed for describing the mutations that occur during a given time frame is the
infinite site model (ISM)[31] of molecular evolution. Within the ISM, the term ”sites” is defined
as a single nucleotide pair. Although the author Kimura[31] also denotes that the term ”sites”
can within the theory still be appropriate for a small group of nucleotides. The infinite site model
makes various assumptions, first of all, during the time frame of evolution each locus has un
dergone at most one mutation. Secondly, it is assumed that each mutation creates a new allele
and finally that no backward or reverse mutations exist[6]. Here a backward mutation means
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Figure 2.2: A: shows neutral genomic data and B: shows partial selective genomic data. Both
show on the left image: in blue the derived (mutant) alleles and red the beneficial/positive alleles.
Both show on the right image: in white the derived alleles and black the ancestral alleles.

that the process is reversed. This causes a site in a mutant gene to restore to its original state.
The normal or reversed site is also denoted by the term wild type.

2.1.3 Positive selection and selective sweeps

Positive selection is a driving force in shaping the evolution of species. Alleles that are under
positive selection are alleles that increase fitness. These alleles increase in frequency within a
population over time. Until at some point in time, the fitness increasing (beneficial) alleles be
come fixed within the population, thereby substituting the nonfitness increasing alleles. Infor
mation provided by the identification of genes affected by positive selection can yield information
about forces driving adaption[32]. But also provides practical information about for example the
identification of drugresistant mutations in pathogens [33] and the design of more effective drug
treatments [34]. Not all selection is by definition positive. A different type of selection is nega
tive selection, also known as purifying selection. Negative selection decreases the frequency
of alleles that impair fitness. Both positive and negative selection decrease the genetic diversity.

When positive selection is present meaning that an allele is favoured by natural selection. The
advantageous allele spreads throughout the population and produces a loss of variation near
the locus of positive selection. The loss of variation is explained by the closely linked neutral
alleles also increasing in frequency because they were originally linked to the beneficial allele,
while the remaining nonlinked neutral alleles decrease in frequency. The effect is denoted
as the hitchhiking effect[20]. This effect can be described as a neutral allele getting a lift by
a closely linked beneficial allele. The genetic diversity in the region of the allele with positive
selection is swept away referring to this region by the term of ”selective sweep”.

Finding subgenomic regions associated with selective sweep yields information about an indi
vidual and or species history. Two major types of regions are defined, first of all, a neutral region
that has experienced no positive selection and therefore does not show hitchhiking effect. The
second region is the selective region (the strength of the selective sweep within the selective
region can vary) which has experienced positive selection and also shows the hitchhiking ef
fect. The difference between neutral and selective regions in genomic data is illustrated in Fig.
2.2. In Fig. 2.2 neutral genomic data (A) and selective genomic (B) data are compared using a
schematic example. Detection of positive selection is possible due to three distinct signatures
left in the genome by a selective sweep as defined in [35]:

1. Shift in the site frequency spectrum (SFS) toward low and highfrequency derived variants
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Figure 2.3: In the monochrome image (polymorphic table) in white the derived alleles and black
the ancestral alleles. The plot next to the polymorphic table’s show a schematic SFS, here the
effect of a selective sweep is observed (A no selective sweep B selective sweep).

2. Reduced genetic diversity in the region surrounding the locus of positive selection
3. A distinct pattern of linkage disequilibrium (LD)

The first signature of a selective sweep is a shift towards the high and lowfrequency derived
variants in the SFS, and is shown in the following studies [36],[37]. The causes of the shift in
SFS is (as described earlier in this chapter) ”the closely linked neutral alleles also increasing
in frequency because they were originally linked to the beneficial allele. While the remaining
nonlinked neutral alleles decrease in frequency”. An schematic example is provided in Fig.2.3,
which draws inspiration from [35]. The second signature is simply the loss of variation asso
ciated with positive selection, by determining the amount of lost variation sweep detection is
possible. The third and final signature of a selective sweep denotes a distinct pattern of link
age disequilibrium (LD) where it is defined as. ”Linkage disequilibrium (LD) is the nonrandom
association of alleles of different loci. There is no single best statistic that quantifies the extent
of LD. Several statistics have been proposed that are useful for different purposes.” cited from
[38].

Figure 2.4: LD signature around a region of positive selection, the beneficial mutation is shown
in black and becomes fixed in the population. Hitchhiking is affecting the neutral variants and
finally, two regions on each side of the beneficial mutation are provided with the help of the
dotted lines.

The pattern in LD describes a pattern that emerges between SNPs around the area of positive
selection. This pattern emerges during the process of fixation of the positive selection within
the genome and is defined by an emerging LD on both sides, of the area of positive selection.
While decreased LD levels are observed between the sites found on the different sides of the
positive selection area. This process is graphically represented in Fig.2.4, which draws inspira
tion from [35]. When a single rearrangement within the genome (recombination event) happens
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the existing SNPs on the side of the selective sweep can escape the sweep. While the SNPs
on the opposite side need at least two recombination events to be able to escape. Given that no
relations between different recombination events exist, the decreased LD levels on the different
sides of the area of positive selection are present[35].

For more information please refer to the book of Dutheil[6], which was extensively used in the
section.

2.2 Artificial Intelligence

Artificial Intelligence (AI) is the simulation of intelligence by a machine and is an overarching
name for a field such as Machine Learning. Machine learning is a method of data analysis that
enables a computing system to learn how to solve a problem, instead of providing all information
explicitly by for example a programmer. Within Machine Learning different techniques exist such
as support vector machines, dataclustering and artificial neural networks (ANN) just to name
some. This research focuses on artificial neural networks and then specifically on a subset
of artificial neural networks called Deep Learning. To keep an overview of all these different
relations see Fig.2.5 [1].

Figure 2.5: Deep Learning in the context of Artificial Intelligence[1]

2.2.1 Artificial Neural Networks

An artificial neural network draws its inspiration from the biological working of the human brain
shown in Fig.2.6, hence the name. An ANN is built out of artificial neurons that resemble simpli
fied neurons in a brain. To perform complicated tasks these artificial neurons are connected to
build complex networks. ANNs are in stark contrast with the more conventional computational
paradigms where an explicit set of instructions are provided, whereas an ANN enables itself to
learn the solution to the problem by studying a given set of examples[2].

In a paper by McCulloch and Pitts[39], a mathematical expression for a single artificial neuron
is presented. Were a single artificial neuron can be expressed by a set of input values ranging
from x1 to xn as a vector x = [x1...xn]. First of all the inputs are multiplied by a weight denoted
by wi, and the results of the multiplications are summed together. The final result after sum
mation (a) is the input for the activation function (denoted by g). The final result z is the output
of the activation layer. The complete equation is given in Equation.2.1 and is shown in a more
graphical way in Fig.2.7. Within an artificial neuron one special type of weight exists, which is
called the bias w0. The bias is an extra input whose value x0 is always equal to +1. With this
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Figure 2.6: Two biological neurons schematic illustrated. To provide an input performed by den
drites, and upon firing the action potential propagates in the direction of the arrow along the axon.
The interaction between two biological neurons takes place in the region called synapse[2].

knowledge Equation.2.1 can be rewritten to Equation.2.2 with the input vector x = [1, x1...xn].

z = g(
n∑

i=1

wixi + w0) (2.1)

z = g(

n∑
i=0

wixi) (2.2)

Figure 2.7: A single artificial neuron with an input vector of x, weight vector w, summation (s),
and an activation function (g)

As mentioned earlier an artificial neuron includes an activation function (g). There exists various
different activation functions, some well known examples are given in Fig.2.8. These include
for example the identity activation function which simple passes the input (x) to the output (y),
shown in Equation.2.3, and also the sigmoid activation function (Equation.2.6). One of the more
well known and used activation functions is the Rectified Linear Unit (ReLU) activation func
tion (Equation.2.4), which has a extended version called Leaky ReLU (Equation.2.5). Which is
present in for example the YOLO[40] network. Lastly also the Tanh activation function is pro
vided in Equation.2.7.

y(x) = x (2.3)
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y(x) = max(0, x) (2.4)

y(x) =

{
αx if x < 0 where αϵ(0, 1)
x if x ≥ 0

(2.5)

y(x) =
1

1 + e−x
(2.6)

y(x) =
2

1 + e−2x
− 1 (2.7)

Figure 2.8: Activation functions, A identity, B Rectified Linear Unit (ReLU) , C Leaky Rectified
Linear Unit (Leaky ReLU) with α = 0.25, D sigmoid , E Tanh

Now with the definition of a single artificial neuron (Fig.2.7) it is possible to combine all these
neurons into a network called an artificial neural network (ANN). By defining an input vector
x = [x0...xd], where x0 is known as the bias and equal to 1 and a vector which is defining
the weights w. The weight vector (w) has a more complex description, because it is present
between for example the input and a hidden layer w = [w

(1)
10 ..w

(1)
md]. The activation function

of all the artificial neurons present in each individual artificial neuron is denoted by g(x) (see
Fig.2.7). The final output of the ANN is the output vector y = [y1...yk]. A generic description
of a feedforward neural network is provided in Fig.2.9 in combination with Equation.2.8 which
formulates the figure (Fig.2.9) [41].

yk(x,w) = g(

m∑
j=1

w
(2)
kj g(

d∑
i=0

w
(1)
ji xi)) (2.8)
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Figure 2.9: Feedforward neural network

2.2.2 Types of machine learning problems

ANNs and more generally machine learning techniques are used to solve different types of
problems. One of the simplest problems that can be solved by deploying machine learning
techniques is the binary classification problem, here two classes are defined with their label.
Consider for example a problem where the result is either true or false, here two classes are
provided with the corresponding labels (true and false). An extension of a binary classification
problem is the multiclass classification problem, here more than two classes are present. This
class of problem is for example present when the output of our classification problem could
not only be either true or false but also a class unknown. Until now a label had a fixed range
of values or a fixed value, but labels could also have a continuous value, these continuous
problems are known as regression problems[22]. An overview of the three different types of
problems are also provided in Fig.2.10 [42].

Figure 2.10: Different types of problems left shows binary classification problem, centre shows
multiclass classification problem, right shown regression problem

2.2.3 Training and inference

ANNs know two different applications where the output of one of the applications is the input
for the other one. These two applications are the training of a neural network and the inference
performed by a trained neural network model. During the training of a model the weight (w) are
normally first of all filled with random values. Then first a normal forward phase is performed
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where all inputs are simply propagated through the entire CNN. Then the backward phase is
performed, here the gradients are backpropagated and weights are updated. A more exten
sive description of backpropagation is provided in [41]. With the trained model inference can
be performed which provides a probability of an input belonging to a certain class (classifica
tion) or value (regression). When performing inference the weights (w) are fixed. Training and
inference can be performed for all types of earlier mentioned problems (shown in Fig.2.10).

Different types of training are known (mostly) depending on the availability of training data. First
of all supervised learning, where a model is constructed from a set of observed training data
with a known label. Supervised learning assumes there exists sufficient data to be able to train
a model. When no training data is available or the objective is to cluster data then unsupervised
learning can be applied. Unsupervised learning relates data based on their distribution of feature
values alone. Unsupervised learning could also yield great success if the amount of classes is
still undefined. Both types of training are depicted in Fig.2.11. There also exist situations where
supervised learning is preferred but simply not enough training data is available to sufficiently
train a model. This could be tackled by combining both supervised learning and unsupervised
learning by providing partly labelled data and partly unlabeled data, this technique is called
semisupervised learning.

Figure 2.11: Supervised learning (left image) and unsupervised learning (right image)

2.2.4 Convolutional Neural Networks

One specific type of neural network is the Convolution Neural Network (CNN) this type of neural
network has various applications in the image processing field. CNNs have had groundbreaking
results in research fields related to pattern recognition in for example image applications[43].
Concerning this research, CNNs are mostly considered by their application in the image pro
cessing field, but this is not the only field where CNNs can be applied. Other fields include for
example voice processing or voice recognition.

CNNs are built out of various layers, each layer has properties that could make it useful for
certain applications. The size and complexity of a CNN are determined by the number of layers
and the complexity and/or size of the layer itself. A CNN can be explained by describing the
different layers where it consists of, the following sections will describe the layers considered in
this research.

The layers of a CNN can be divided into two different classes featureextraction and classifi
cation, both types of layers serve their specific purpose [44]. First of all the feature extraction
layers contains various convolutional layers followed by pooling layers and some type of acti
vation function (see Fig.2.8). Within these layers, the features in images are found which could
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later be used to perform classification. As a rule of thumb the deeper the featureextraction
layers go the more complex features are found. For example, the first featureextraction layer
only finds edges while a deeper featureextraction layer finds complex shapes like faces. The
other part of the CNN is the classification layers which are various fully connected layers also
called the earlier discussed ANNs.

Figure 2.12: Schematic Convolutional Neural Network

Rescale layer

Providing a rescaling step to the input before any other layers are done to increase the perfor
mance of the final model. The rescaling provides further layers with inputs that are proportion
ally scaled by a scalar factor of the pixel value. Rescaling is normalizing all values between
[0,1] or [1,1], one does not provide a great benefit over the other, but by exploring both options
a preference can be determined. In Equation. 2.9 the rescaling to the range of [0,1] is given
and in Equation. 2.10 the rescaling to the range of [1,1] is given. Here Ā denotes the resulting
matrix and A denotes the original matrix. The other values are just applied piecewise to all the
elements in the input matrix.

Ā =
1

255
·A (2.9)

Ā =
1

127.5
·A− 1 (2.10)

Convolutional layer

One of the layers that are essential within a CNN is the convolutional layer. Mathematically a
convolution takes two functions as input and outputs a function, the convolution operator (∗) is
given in Equation.2.11 (continuous). Here the input function f(x) is our image or the output of
a previous layer, and the function g(x) shifts over the input f(x) and is called the convolutional
filter. Within the convolutional filter, the different weights and parameters are present. The final
output function is called the feature map. With regards to CNNs and this research, the input is
always of a finite size with an input (image) (I) array of a certain dimension (N ) and secondly
as input a kernel (K) of arbitrary size. In Equation.2.12 (discrete) an output i = [i1...iN ] is
calculated based on the input coordinates j = [j1...jN ][45]. In Fig.2.13 an example is provided
with respect to an red, green, blue (RGB) input image with a kernel (K) of shape ([2, 2]), a stride
shape of ([1, 1]) and ”valid” padding. ”Valid” padding simply stands for no padding applied, next
to ”valid” padding also ”same” padding exists which applies padding around the edges of the
data. Resulting in output with the same dimensions as the input. Only a single filter with bias is
represented in the example (Fig.2.13) there could be multiple filters present that will correlate
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to our larger output dimension.

(f ∗ g)(t) =
∫ ∞

−∞
f(x)g(t− x)dx (2.11)

(I ∗K)(i) =
∑
j

I(j)K(i− j) (2.12)

Figure 2.13: Convolution operation on a RGBimage, with a kernel (K) of shape ([2, 2]), a stride
shape of ([1, 1]) and ”valid” padding

Figure 2.14: Maxpooling 2Dimensional example, with a kernel of d = [2, 2] and a stride of
s = [2, 2]

Pooling layer

Pooling layers provide a way to reduce the dimensionality of feature data. The pooling layers
provide a downsampling operation by taking for example the average or maximum of a certain
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subset, called the kernel (d) of the feature data[46]. The factor to which the amount of down
sampling is correlated is the stride (s). The stride is the amount of shift per kernel, so when
the kernel size is 2, the stride is 3 and an input of x = [1, 2, 3, 1, 2, 3] is provided the result is
the output y = [3, 3] when maxpooling is applied. This example applies maxpooling to a 1
dimensional example in Fig.2.14 a 2dimensional example is provided with a kernel of d = [2, 2]
and a stride of s = [2, 2]. During training pooling layers do not provide any trainable parameters.

Regularization

The dimensionality of the data set is generally determined by the number of input and output
units. Whereas the design of the neural network includes various free parameters such as the
number of hidden units (denoted by M ) in the network. These free parameters are adjusted in
such a way that the best predictive performance is obtained. Note thatM , in this case, controls
the number of parameters (weights and biases) in the neural network. There exists an opti
mal value forM that gives the best generalization results, corresponding to an optimal balance
between under and overfitting[41]. Overfitting corresponds to fitting too closely to a limited
data set, and underfitting is when the model neither fits well to the training and validation data.
When underfitting occurs it is (normally) concluded the model does not fit the data sufficiently.
An approach to determine the optimal value for M is to choose a relatively large value for M ,
and also adding a regularization term to the error function to control for the complexity obtained.

Various types of regularization exist the following ones are either mentioned in this research or
common types of regularization and are explained in further detail in this section.

1. Drop out
2. Bath Normalization
3. L1 regularization
4. L2 regularization

Drop out layer
The dropout layer is a technique for regularization in an ANN and serves the purpose to prevent
a model from overfitting. A dropout layer achieves this task by generating a number (ρ) be
tween 0 and 1 using a uniform distribution, for each neuron in a network. If ρ is less than a given
value α, the neuron is dropped out from the network, including all its connections within the net
work [46]. After the dropout is completed both the forward and backward passes are computed
on the network with the dropped neurons, this process is done for all samples in the training set.

Batch Normalization
During the training of an ANN, the distribution of each layer’s inputs changes, as the parame
ters of the previous layers change. The effect caused is the slow down of the training process
by the requirement of a lower learning rate and careful parameter initialization. To tackle this
problem batch normalization performs normalization on the layer inputs (denoted by x). By in
cluding batch normalization into the model architecture, a higher learning rate can be used in
combination with a less careful initialization[47].

Batch normalization performs the following transformation on the input(x), resulting in the output
(z) see Equation.2.13[46]. Here meanvariance normalization on the input x using µ and σ, the
method they apply is the exponential moving average. For the current layer over the training
set. Moreover linearly scaling is applied by γ and shifting by β [46].

z =
x− µ√
σ2 + ϵ

γ + β (2.13)
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L2 and L1 regularization
L2 regularization is a way for regularizing an ANN. L2 regularization computes the L2 norm of the
weights and adds the results to a loss function. The resulting function is shown in Equation.2.14,
hereW denotes the weights of all layers. Instead of the original method of minimizing L(x). The
∥W∥2 is the L2 norm of the weights and λ can be used to control the amount of L2 regularization
applied to the loss function. Therefore the value of λ should be considered to not create weights
too close to zero or too large [46].

LL2(x) = L(x) + λ ∥W∥2 (2.14)

Besides L2 regularization also L1 regularization exists, here the same principle is applied only
concerning the use of an L1 norm instead of an L2 norm. This leads to the following Equation.2.15,
here the same user control parameter λ is present and serves the same purpose. L1 regulariza
tion differs from L2 regularization by the reason it can but not always produces a sparse weight
vector, where some weights are very close to zero or even exactly zero. L1 regularization also
lends itself very well for classification tasks. Important to note is that L1 and L2 regularization
can also be combined[46].

LL1(x) = L(x) + λ |W| (2.15)

Flatten and dense layer

The flatten layer marks a point in the architecture of a CNN that moves from the feature
extraction layers into the classification layers. From this point forwards the features extracted
out of an image are used to perform classification. The flatten layers reshape the data into a 1D
vector as illustrated in Fig.2.15. For example, if the input layer of a flatten layer is [(20, 50, 3)]
([(imageheight, imagewidth, amountofcolourchannels)]) the output of the flatten layer is of size
[(3000)]. The output of the flatten layer is normally the input to a dense layer, the dense layer
is simply a fully connected layer also known as an artificial neural network (ANN) which was
already discussed in detail in this chapter.

Figure 2.15: Flatten and dense layer, where the flatten layers reshape the data into a 1D vector
and the dense layer is simply a fully connected layer also known as an artificial neural network
(ANN)

For more information please refer to the books of Bishop[41], and Aghdam & Heravi[46], which
were extensively used in this section.
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2.3 Convolutional Neural Network Accelerators

Developments in the field of CNNs have led to the support of various hardware platform imple
mentations which can perform training and/or inference. These hardware platforms include cen
tral processing units (CPU), graphical processing units (GPU), Applicationspecific integrated
circuits (ASIC) and Fieldprogrammable gate arrays (FPGA). There also exists a special type of
ASIC introduced by google back in 2017 named a tensor processing unit (TPU)[48] this specific
architecture is aimed towards datacentre applications.

Both a CPU (multicore) and GPU are present in most to almost all conventional comput
ers nowadays, both are natively implemented in CNN frameworks such as TensorFlow[16],
Pytorch[49] and Caffe[50]. TensorFlow is an endtoend opensource platform for machine
learning, introduced by Google and therefore also includes support for Google’s TPUs.

2.3.1 CNN FPGA acceleration

To perform the acceleration of a CNN on an FPGA various methods can be deployed, such
methods include designing an intellectual property (IP) from scratch or using already existing
IPs. Implementing and designing IPs can be done with for example tools such as Vivado[51] by
Xilinx. But IP design and implementation can also be done by the use of HighLevel Synthesis
(HLS) tooling which provides the user with a hardware implementation given as input a higher
level language such as C or C++. HLS tooling includes for example Vitis HLS[52], Catapult[53],
and LegUp[54] just to name some. A completely different approach is to solely make use of
predefined IPs and abstracting the FPGA design further. An example of tooling that can per
form this task is Vitis AI[3] the successor of DNNDK[55] both are developed by Xilinx. The main
advantage of this approach is that highly optimized IP cores, tools, libraries, and models are
available and therefore it is possible to greatly reduce design time.

Vitis AI performs AI inference acceleration on different Xilinx hardware platforms, including both
Edge devices and Alveo accelerator cards. A workflow for Vitis AI is presented in Fig.2.16 and
shows three distinct blocks. First of all the build model flow includes the conversion from 32bit
floatingpoints weights and activation’s to fixedpoint such as INT8. Models designed in either
TensorFlow, Caffe and Pytorch are supported. After quantization of the model, the model can be
compiled here the quantized model is transformed into Deeplearning Processing Unit (DPU)
instruction. Here the hardware architecture connects with the model and the final compiled
model can be deployed by building the software in either C, C++ or Python on the targeted
hardware platform/architecture. Xilinx also presents some benchmarks for some wellknown
applications in [56].
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Figure 2.16: Vitis AI workflow[3]
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3 RELATED WORK

With regards to the related work, two different types of sweep detectionmethods are considered.
First of all various signaturebased sweep detection methods and secondly various CNN based
sweep detection methods.

3.1 Signature based sweep detection

Determining the locus of positive selection within a genomic dataset is an important research
topic. This topic has seen development and applications in the past years, including numerous
statistical methods to identify these loci within a genomic dataset[18]. Signaturebased sweep
detection methods and tools use signatures (explained in Chapter 2) to perform sweep detec
tion, the methods and tools considered with respect to this research are: SweepFinder2[57],
SweeD[58], OmegaPlus[59] and RAiSD[21].

3.1.1 SweepFinder2

SweepFinder2[57] is based upon SweepFinder[60], which uses a composite likelihood ratio
(CLR) test for positive selection developed by Kim and Stephan[61]. The CLR consist of the like
lihood of a sweep at certain loci in the genome divided by the neutral model[35]. The information
required for the CLR is provided with the use of an empirical background frequency spectrum
(based on SFS). SweepFinder2 extends upon Sweepfinder with some improvements such as
accounting for background selection (caused by negative selection), local recombination rate,
and general improvements in stability, flexibility and performance[57]. While SweepFinder2 still
performs sweep detection based on the statistical framework provided by SweepFinder.

3.1.2 SweeD

SweeD (Sweep Detector)[58] focuses on rapid sweep detection in the whole genome, based on
the SFS signature and is also represented as an extension on Sweepfinder[60]. The promise
of SweeD is mostly aimed towards being less computationally expensive and being able to use
multicore processors resulting in vastly improved execution times. Overall SweeD is a more
stable, and scalable implementation of Sweepfinder.

3.1.3 OmegaPlus

OmegaPlus[59] uses the LD signatures to determine the locus of positive selection and focuses
on the rapid detection of selective sweeps within the whole genome dataset. The author of
OmegaPlus reported up to two orders of magnitude faster execution than existing programs in
combination with up to two orders of magnitude smaller memory requirements and improved
scalability. OmagePlus uses thew statistic first proposed by Kim andNielsen[62]. Thew statistic
is given in Equation.3.1. The omega statistic assumes a genomic region with S SNPs that is
split into two subregions, one on the left denoted by L and one on the right denoted by R both
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with l and S − l SNPs. The correlation coefficient between sites i and j are presented by the
common measure of LD denoted as r2ij . Positive selection is characterised by a high w value.

w =
(( l2) +

S−l
2 )−1)(

∑
i,jϵL r2ij +

∑
i,jϵR r2ij))

(l(S − l))−1
∑

iϵL,jϵR r2ij
(3.1)

3.1.4 Raisd

Raisd (Raised Accuracy in Sweep Detection)[21] is one of the latest tools developed by Alachi
otis and Pavlidis. The authors of Raisd report a higher sensitivity and accuracy than the current
state of the art(SweepFinder2, OmegaPlus, and SweeD) for a large set of the selected tested
cases, while the computational complexity is greatly reduced (up to 1000 times faster execu
tion) in combination with negligible memory requirements. Where the tools discussed until now
only used a single signature to locate positive selection, Raisd introduces a composite statistic
based on multiple signatures. The composite signature is called the ”µ statistic” (Equation.3.2)
and relies on all three sweep signatures. The µ statistic assumes a dataset (D) consisting of
S individuals, secondly, the amount of SNPs in a genomic region is denoted by DSZ and its
length is denoted by Dln. Each of the signatures is computed separately and all results are
summed in combination with the length of the genomic region (Dln). The final µ statistic is
computed for a given amount of windows (W ) with a fixedsize SNPs which is further split into
two nonoverlapping subregions of equal amounts of SNPs denoted by left(L) and right(R).
For a complete description of the computations of all individual signatures see [21].

µt = Dln × µV AR
t × µSFS

t × µLD
t (3.2)

3.2 CNN based sweep detection

Besides the signaturebased approaches, another relevant approach is the use of CNNs. Var
ious methods and tools which use CNNs to perform sweep detection are already developed.
The methods and tools presented in this section are: ImaGene[24], a tool by Flagel et al.[14],
and DiploS/HIC[23].

3.2.1 ImaGene

ImaGene[24] is a tool that applies CNNs (supervised learning) on population genomic data for
the detection and quantification of natural selection. The classification classes considered by
ImaGene are not only divided into neutral and selection but also consider the selective strength
(S). The number of classes to classify are variable and either binary classification or multiclass
classification are supported. The authors present a multiclass classification problem consist
ing of three classes: neutral evolution, weak positive selection (S = 200) and strong positive
selection (S = 400).

The training set is built with the use of msms[63] coalescent simulation software. msms in
cludes the functionality of the coalescent simulation software ms[10] with the addition of a model
for deme and timedependent selection using forward simulations. This is used by ImaGene
to generate hard and soft selective sweeps. The exact parameters provided to ImaGene are
provided in [24]. With regards to the images representation of the coalescent simulation, pop
ulations are arranged along the rows, loci along the columns, and the sampling frequency of
each allele in the depth (colour). So each pixel/position within the image contains information
about the frequency of each nucleotide (A, C, G, T). Concerning this definition, the colours are
presented by their red, green and blue (RGB) value, also a monochrome approach is presented
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by the authors, to reduce the dimensionality. Lastly also sorting based on rows and columns is
presented and supported by ImaGene and shows great potential for increasing the accuracy.

ImaGene directly interacts with Keras[26] and supports defining custom CNN architectures.
Various CNN architectures are presented by the authors of ImaGene for different classification
and regression problems. The provided CNN architecture is for the multiclass classification
problem in Fig.3.1. The binary problem changes only the filter size of the 2D convolutional layer
to a constant value of 32 and the number of classes to 1. The authors of ImaGene state accurate
predictions, when sorting based on rows is applied. For the execution time, a bottleneck is
present in the coalescent simulation software.

Figure 3.1: ImaGene multiclass classification CNN architecture

3.2.2 Flagel et al. sweep detection

The research presented by Flagel et al. in [14], does not present a complete program for the use
of sweep detection. But none the less their research shows promising results and can be seen
as a valid design. Within this research, CNNs are applied to several evolutionary questions
consisting of identifying local introgression, estimating the recombination rate, detecting selec
tive sweeps, and inferring population size changes. The focus with regards to this research is
sweep detection, and therefore from this point forwards the research presented by Flagel et
al.[14] is regarded by only the sweep detection sections.

The method used by Flagel et al. in [14] for sweep detection is based on the S/HIC method
presented by Schrider and Kern[64]. This method performs the casting into a classification task
where five different classes are considered: recent (classic) hard sweep, recent soft sweep, re
gion linked to a nearby hard sweep, a region linked to a nearby soft sweep, or a neutral region.
A hard sweep is the more classical type of sweep as described in Chapter 2. Summarized a
hard sweep is an event when a single haplotype (group of genes inherited from a single parent)
with an advantageous allele rises in frequency. A soft sweep is an event where multiple haplo
types with advantageous alleles rise in frequency simultaneously.
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The image representation is an alignment image, where each pixel/position is the allele present
in a given chromosome at a given site. Meaning that each row represents a chromosome and
each column represents a segregating site. Similar to ImaGene also sorting is present, within
this paper sorting is done based on rows. Given that the goal of the paper was not to introduce a
framework, but the prove the feasibility of CNNs within the research field of population genetics
no extensive framework is provided. The method of Flagel et al. in [14] shows an increase in
performance concerning S/HIC is for sweep detection. With regards to computation complexity,
the training time of the sweep detection is provided for an Nvidia K80 GPU of 6.6 hours by the
authors of [14].

Concerning the training data of the CNN, the same coalescent simulation software is used as
Schrider[65] in combination with coalescent simulation data from Discoal[66] (ms[10] like pro
gram able to generate both hard sweeps and soft sweeps). Next, the JPT population (Japanese
individuals from Tokyo) from phase 3 of the 1000 Genomes dataset[67] are used for inference.
The network architecture is provided in Fig.3.2. Two different inputs are defined input1 takes
an alignment image as input, and input2 takes positions of polymorphisms as input.

Figure 3.2: Flagel et al. CNN architecture for sweep detection

3.2.3 DiploS/HIC

DiploS/HIC[23] is CNN based approach that is from the authors of S/HIC[64]. The development
of Diplo/HIC is a direct effect of S/HIC disadvantage of not being able to process unphased hap
lotypes. Meaning that it should be known on which chromosome the allele is located, Diplo/HIC
resolves this problem. Diplo/HIC is based on 12 summary statistics, including for example the
w statistic discussed in the section describing OmegaPlus. The final image representation of
DiploS/HIC is on each row a summary statistic, each column a subwindow, and each pixel/po
sition presents the resulting value.

Because DiploS/HIC is based on S/HIC it consists of the same classes: recent (classic) hard
sweep, recent soft sweep, region linked to a nearby hard sweep, a region linked to a nearby soft
sweep, or a neutral region. Both the training and testing data are generated with the coalescent
simulation software Discoal[66]. The network architecture is provided in Fig.3.3 and passes the
input image to three different branches which are later concatenated.
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DiploS/HIC offers a complete approach with the possibility to use custom genomic datasets
by either Discoal or other coalescent simulations if they follow the same format. It is shown
by the authors that DiploS/HIC is quite powerful compared to S/HIC. The main downside of
DiploS/HIC comes with the fact that summary statistics are still used and therefore including all
the complexity and disadvantages that are present in signaturebased sweep detectionmethods
and tools.

Figure 3.3: DiploS/HIC CNN architecture for sweep detection

3.3 Novelties of ASDEC

ASDEC differs compared to the tools and methods discussed in this chapter. ASDEC is com
pared separately to both the signaturebased methods and the CNN based methods.

3.3.1 Signature based methods and tooling

The discussed signaturebased methods and tools could be less beneficial than just using the
raw data directly. By for example only using one signature information could be missed and this
could negatively affect the accuracy of the prediction, this problem is partly solved by RAISD[21]
but it is still unclear if all information is present in the used signatures of RAISD. Also, false
positives could be present as was for example the case with SweepFinder[60] and background
selection which left a similar signature as positive selection. A method such as ASDEC is based
on the raw data as input and has, therefore, no reliance on signatures which possibly can have
great benefits.
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3.3.2 CNN based methods and tooling

While all CNN based methods and tools provide a way to classify genomic datasets in a variety
of different classes. With regards to sweep detection, they are all, to the best of my knowledge
not easily able to process wholegenome data. Meaning that only small examples/datasets
can be provided and the result is simply the probability of that dataset having a certain strength
of positive selection per image and not the loci of the sweep.

The processing of the wholegenome datasets enables researchers to not only determine if a
certain region has undergone positive selection. But also pinpoint the loci within complete ge
nomic datasets that have undergone positive selection. ASDEC is just like the signaturebased
methods and tools able to perform sweep detection with regards to wholegenome datasets.

ASDEC does not rely on summary statistics as other methods and tools such as DiploS/HIC, and
also provides support for multiple coalescent simulation software programs (ms, mssel, mbs and
msHOT). Besides support for coalescent simulation datasets ASDEC is also able to process
real genomic datasets. ASDEC provides support for easily importing custom CNN network
architectures. A disadvantage shared by most CNN based methods and tools is the relatively
long execution time, this is due to the vast number of images needing to be processed (can
be in the thousands to millions depending on the input). ASDEC alleviates the long execution
times by implementing an acceleration possibility on an FPGA or DPU. Acceleration is to my
knowledge not yet possible with current CNN based sweep detection methods and tooling.

25



4 ASDEC FRAMEWORK

The ASDEC framework is built upon many independent blocks, by combining these blocks a
complete solution for sweep detection is achieved. The blocks present in the ASDEC frame
work are data generation, data encapsulation, preprocessing, CNN inference, CNN training
and postprocessing. The relation between them is illustrated in Fig.4.1.

When using the ASDEC framework a user while possible, does normally not interact with all
separate blocks but rather interacts with multiple blocks using overarching calls. While all in
dependent blocks are still usable by themselves (with one exception preprocessing and data
encapsulation can only be called together by image generation) providing flexibility. Two over
arching blocks are available one focused on training an ASDEC CNN based on a given CNN
network architecture, and one for calling a trained model for inference. Both overarching blocks
include data generation, data preprocessing, and data encapsulation, logging (time and exe
cution parameters), when calling inference also the postprocessing is included (also illustrated
in Fig.4.1). The overarching calls greatly reduce complexity and provide greater usability. The
final result of the ASDEC framework is either a TensorFlow model (.pb format) when performing
training or a list of probabilities of selectivity on a certain position within a genomic dataset.

Figure 4.1: Relation between all separate blocks implemented in the ASDEC framework

To elaborate the inner workings of the ASDEC framework an explanation with the help of the
independent blocks is provided in the following sections, as illustrated in Fig.4.1. The connection
between the blocks is a direct passthrough of the output of a block to the input of another block.
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4.1 Data generation

ASDEC implements direct data generation to facilitate for example the neural architecture search
(NAS). The direct data generation provides an easy way to compare ASDEC with the signature
basedmethods and tools discussed in chapter 3. Besides an easy comparison, it enables others
to recreate the obtained results in this research. The implementation of ASDEC supports both
the ms file format, the VCF file format, and the FASTA file format (parsing with RAiSD to VCF
required). With regards to this research both simulated genomic datasets, and the first hu
man chromosome of the Yuruba population (1000Genomes dataset[68]) are used. Genomic
dataset samples are generated under a variety of neutral and selective models. The tooling
required for the simulated dataset generation consists of ms[10], mssel (kindly provided by
R.R. Hudson), msHOT[69] and mbs[70]. Here the ms tool generates genomic datasets which
contain no selective sweep, and the tool mssel generates genomic datasets which contains a
selective sweep on a predefined location in the genome. The coalescent simulation software
mbs generates samples of DNA sequences when in both copies of a particular gene a mutation
is present on a site (biallelic) targeted by selection[70]. The tool mbs is based upon the tool ms.
The coalescent simulation software msHOT is also based on ms and ”allows for implementation
of multiple crossover hotspots and/or multiple gene conversion hotspots in the simulated ge
netic region” as stated by Hellenthal & Stephens[69]. All the supported datasets are present in
Table.4.1 and this table is a subset of the datasets previously used by Alachiotis & Pavlidis [21]
for evaluation and comparison. To enable the processing of VCF files (another format such as
the ms file format) that are for example describing the first human chromosome of the Yuruba
population a separate parsing tool (based on RAiSD) is integrated into ASDEC.

Table 4.1: Datasets supported by ASDEC out of the box

Dataset Sweep
type

Confounding
factor

Simulation
software

Varying
parameters

Range of
values

160 Hard,
complete bottleneck Hudson’s ms

and mssel

Severity (−eN) 0.005–0.5

Duration (−eN)
80–400
(4N0

generations)

Beginning (−eN)
800–20,000
(4N0

generations)

6170 Hard,
complete Migration Hudson’s ms

and mssel Population join (−ej)
0.003–3
(4N0

generations)

71–91 No sweep Recombination msHOT Hotspot region size (−v) 5–10 kb
Hotspot intensity (−v) 2100

92–101 Hard,
complete Recombination msHOT

and mbs
Hotspot region size (−v) 5 kb
Hotspot intensity (−v) 220

In the following sections, the different confounding factors are elaborated.

4.1.1 Bottleneck

A population bottleneck is a fast shrinkage in the population size, this effect can be caused
by various events such as environmental disasters[6]. The effect of a population bottleneck is
the reduction of variation in the gene pool and therefore a (possible) reduction in the genetic
diversity. ASDEC includes 60 bottleneck simulations, each simulation comprises both a neutral
dataset and a dataset with a selective sweep at the centre of the simulated region. The bot
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tleneck simulations use the same parameters as used in [21]. The severity of each bottleneck
is ranging from 0.5 to 0.005. The severity is determined by the relative population size dur
ing a bottleneck compared to the presentday population size. The bottleneck duration varied
between 80 and 400 generations, and the beginning of the bottleneck lays between the 800
and 20,000 generations backwards in time. Lastly, the conversion from coalescent time units
to generations includes the assumption that the presentday population size consists of 50,000
haploid genomes.

4.1.2 Migration

Genetic migration is the transfer of alleles (genetic variants) from one subpopulation to another
subpopulation [6]. For the migration models, 10 datasets are presented as taken from [21].
The migration models implement a continentisland model, within this model the population size
of the island is 20 times smaller than the population size of the continent, where the continent
acts as a population without any information (ghost population). The migration rate is set to 3
(Mic) and tmerge denote the time that the island and continent population merged into a common
population. The value of tmerge (in Table.4.1 denoted as population join) varies from very recent
(0.003) to very old (3) and is expressed in the usual coalescent timescale (4Nc where Nc is
the effective population size of the continent)[21]. Both the population mutation rate (θ) and
recombination rate (ρ) are fixed to 2000 for the whole genomic region[21].

4.1.3 Recombination

Genetic recombination refers to both the shuffling of nonhomologous (chromosomes that do
not belong to the same pair) chromosomes and the breaking and rejoining of homologous chro
mosomes [6]. The recombination events are divided into two sets, where the first set includes
recombination intensity relative to the rest of the genome and ranging from 2 to 100, and the
hotspot region sizes of 5kb, 10kb, and 3 times 5kb [21]. The second set includes recombination
hotspots that include a selective sweep, with a recombination intensity ranging from 2 to 20,
and a hotspot region size of 5kb [21].

4.2 Image generation

The generation of the image after the generation of data is divided into two separate blocks
on the one hand the data needs to be preprocessed and afterwards encapsulated inside an
image.

4.2.1 Preprocessing

Processing a complete genomic dataset in a single image does not result in a clear indication of
the possible loci of a selective sweep. The reason for this is that each image leads to a single set
of probabilities regarding selective sweep presence in that complete image. This means when
the whole genomic dataset is offered as a single image the result is not able to determine the
locus/loci of selection in the genomic dataset. This problem is tackled in the preprocessing,
here the genomic data is first divided into smaller subsets and afterwards, multiple images are
saved all containing a different subset of the complete genomic dataset.

The division into subregions is performed with the help of a sliding window approach. This
approach is based on SNPs, it enables a user to specify a window size in SNPs and a step
size between windows in SNPs. This results in a large set of images per genomic dataset. By
presenting each image individually to the CNN it is possible to predict the location of a selective
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sweep.

In more detail first, the obtained simulated genomic datasets (represented in Fig.4.2 top half)
is loaded and a variety of different parameters of the dataset are recovered, dubbed simulation
parameters in Fig.4.2. The simulation parameters relate to the parameters used during the
coalescent simulation or for real data are provided. The simulation parameters are used to
retrieve the number of populations (number of datasets) and individuals within each population
(amount of rows in a single dataset/population). The number of populations determines the
number of times to execute the complete process.

Figure 4.2: Genomic data in the ms format, A derived allele is presented by ’1’, An ancestral
allele is presented by ’0’, and a blank is represented by a ’.’

The processing of a single population starts with the localization of the beginning of a popu
lation, within the file denoted by ’//’ (also shown in Fig.4.2). With the start of the population
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determined various arbitrary parameter checks are performed, and next the number of segsites
are extracted from the file (number of columns in a single dataset/population) in Fig.4.2 de
noted by population parameters. Next, the position vector is extracted (p), this vector relates
a position in the genome with the position of an SNP (SNPs are not uniformly spaced). To
support modern biological applications multiplication with a constant value for all values of (p)
is supported. From the position vector (p) two special positions are denoted, the minPosition
stating the first SNP position of a window and maxPosition denoting the last SNP position of a
window. Before applying the sliding window the minPosition and maxPosition are set to the
first SNP position and the last SNP position of the whole population(also shown in Fig.4.2). In
the line after the position vector the genomic data is presented, this data consists of a matrix
(A) containing: ’1’, ’0’ and ’.’, here the ’1’ represents a derived allele, ’0’ represents an ancestral
allele and a ’.’ represents a blank spot.

Within the preprocessing two further options are provided, Genomic extraction where a subset
of A is created based on given parameters, and a slidingwindow that creates multiple subsets
ofA using a slidingwindow approach. Both these options are further elaborated in the following
two subsections.

Genomic extraction

With both the genomic matrixA and the position vector p a genomic extraction option is provided
to the user. The extraction works by extracting a given amount of SNPs (extractionRange) of
the genomic matrix A on both the left and right of a given position (extractionPosition). The
given position for extraction (extractionPosition) is related to SNP index by finding the closest
value in the position vector p to extractionPosition, and the index of the closest value in the
vector p is the SNP index (extractionIndex). Genomic extraction is (mostly) used for training
to extract only the subgenomic region that has a selective sweep present and discards the
remaining genomic data. The algorithm is presented in Algorithm 1.

Algorithm 1 Genomic extraction
1: function Genomic extraction(A, p, extractionRange, extractionPosition)
2: extractionIndex = GetClosestPositionIndex(p, extractionPosition)
3: minIndex = extractionIndex  extractionRange ▷ left most SNP index
4: maxIndex = extractionIndex + extractionRange ▷ right most SNP index
5: if not IndexWithinRange(minIndex, maxIndex) then
6: ERROR
7: end if
8: A = A[:, minIndex:maxIndex]
9: p = p[minIndex:maxIndex]
10: minPosition = p[0]
11: maxPosition = p[len(p)1]
12: return A, p, minPosition, maxPosition
13: end function

Slidingwindow

The slidingwindow implementation in ASDEC converts the wholegenomic dataset (defined in
the matrix A) to multiple subgenomic regions for inference. The slidingwindow requires both
a windowSize and stepSize (distance between two windows), both expressed in a number of
SNPs. Each subgenomic region is presented by its ownminPosition,maxPosition and matrix
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(Ā ⊂ A). The sliding window approach is also presented in Fig.4.2 (lower half) and Algorithm
2.

Algorithm 2 Slidingwindow approach
1: function Slidingwindow(A, p, windowSize, stepSize)
2: if not SufficientSizeForWindow(windowSize, A) then
3: ERROR
4: end if
5: for i in range(0, AmountOfColumns(A)windowSize+ 1, stepSize) do
6: Ā = A[:,i:i+windowSize]
7: minPosition = p[i]
8: maxPosition = p[i+ windowSize− 1]
9: SaveImage(Ā, minPosition, maxPosition)
10: end for
11: end function

4.2.2 Data encapsulation

To encapsulate the Genomic data Ā (if extraction mode is not used Ā = A) with the informa
tion regarding the minPosition, and maxPosition both the image itself and the filename are
required. Starting with the creation of the image firstly all the ′.′ are parsed to a value of ′2′, this
creates an Āparsed containing only the values ′0′,′ 1′,′ 2′. Then Āparsed = Āparsed ⊙ 127, where
⊙ is an elementwise multiplication with all values in Āparsed. The final result is a grayscale
image as shown in Fig.4.3. Still, Āparsed does not contain any position information to relate the
SNP locations with positions in the genome, this is encoded in the filename with the help of
minPosition and maxPosition. The position of each SNP within the image is not preserved,
because after the image is processed the probability is based on a complete image and not on
a single SNP within the image. An image filename example is provided in Fig.4.4.

Figure 4.3: Genomic data encapsulated inside a monochrome image, grey pixels denote de
rived alleles, black pixels denote ancestral alleles, white pixels denote blank spots. Each column
represents a SNP.

Figure 4.4: Example image filename with elaboration on information encoding

4.3 Convolutional Neural Network

Parsed and encapsulated genomic data can be provided to a CNN for either training or infer
ence. Both training and inference are defined as black boxes and are elaborated with the help
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of their inputs and outputs. For both the training and inference all the values are rescaled to a
range between 0 and 1.

4.3.1 Training

When training a CNNwith ASDEC a couple of parameters need to be defined, these parameters
include the model name, image directory, batch size, epochs, image height, image width, and
model design. An important parameter is the model design, this is a separate file that can be
included by a user of ASDEC to use a custom CNN model design using Tensorflow [16] and
Keras [26]. Also, the image directory should include two different folders (neutral and selection),
where each folder should contain image’s coupled to the folder name (label). Lastly, both the
image height and image width should correspond to the size of the images present in the image
directory. When training is finished the final model is saved in a .pb format and log files are
included regarding the accuracy and loss of each epoch during training of both the training
and validation data. Next to the standard logging present by ASDEC also TensorBoard[71]
(extension of TensorFlow) is included to provide extra logging in the form of accuracy and loss
of both the training and validation data overall epochs, and more importantly profiling of the CNN
architecture. In Fig.4.5 an illustration containing all the various inputs and outputs are provided.

Figure 4.5: Black box showing IO of training ASDEC

4.3.2 Inference

Inference with ASDEC only requires three parameters: the model, directory with images (cre
ated in the image generation step), and a directory for storing the results. The final output is a
file containing for each image theminPosition(left most SNP position),maxPosition(rightmost
SNP position), average position of the minPosition & maxPosition (avgPosition), probability
of neutrality, and probability of selection.

Figure 4.6: Black box showing IO of inference ASDEC

4.4 Postprocessing

The output of the inference performed by the CNN has a high level of granularity to provide
sensible arguments for the obtained results a postprocessing step is provided, but not required.
The reduction in granularity also reduces the number of outliers by different methods elaborated
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Figure 4.7: Effect of postprocessing in green the probability of selectivity and in red the prob
ability of neutrality, with mode Grid mode normal, a = 4000, b=10000

in more detail in this section. The ASDEC framework includes four different postprocessing
modes, all these postprocessing modes apply some sort of averaging on the CNN raw output
data after inference. Each postprocessing mode also results in a new file where each line no
longer represents a single image but multiple images, when averaging is applied tominPosition
andmaxPosition are set accordingly based on the leftmost and rightmost image. Next to the
normal information present in the file such as the minPosition, maxPosition, avgPosition,
probability of neutrality, and probability of selection another column is added which gives the
number of images used in the postprocessing of that entry. Postprocessing is an integral part
of the ASDEC framework, and the effects can be observed in Fig.4.7.

4.4.1 Window based on SNPs

This type of postprocessing applies another slidingwindow based approach (equal to the pre
processing) over the raw output of the CNN. The input for this type of postprocessing is a
windowSize in combination with a stepSize, both expressed in SNPs. This postprocessing cre
ates a new file where theminPosition is equal to the firstminPosition SNP of an image within
the window and the maxPosition is equal to the maxPosition of the last images SNP in the
window. The new avgPosition can be calculated with the new minPosition and maxPosition.
The new probabilities are the average of all probabilities of all images within the window, lastly,
the number of images used for averaging is added to the last column in the file. This is illustrated
in Fig.4.8.
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Figure 4.8: Windowbased on SNPs/Position, in green the probability of selectivity and in red
the probability of neutrality, the dotted lines represent a window (W ). A window is defined by
both the windowSize and stepSize from the previous window, both can be defined either in
positions or SNPs. The first window always starts on the first position or SNP depending on the
mode.

4.4.2 Window based on position

Concerning this type of postprocessing, a slidingwindow based approach over the raw CNN
data is applied. When calling this type of postprocessing both a windowSize and stepSize
should be inputted, both are expressed in positions of base pairs (bp). The process starts by
getting the closest SNP to the given position of the first image, and afterwards, theminPosition
is taken from the first image. Afterwards, the whole process is run accumulating all probabili
ties, until the process runs out of the given windowSize. Now the process is stopped and the
maxPosition of the last image within the window is taken. All averages are calculated, and a
line is added providing the number of images used for averaging to the new result file, then a
given stepSize (in bp) is taken and the process is repeated. This is done until no longer one
whole window fits in the remainder of the raw CNN data. This is illustrated in Fig.4.8.

4.4.3 Grid mode normal

The grid size approach for postprocessing deploys a vastly different strategy than the ap
proaches discussed until now. The grid size approach requires a grid size and a max distance
range in positions of base pairs. This type of postprocessing works by that the amount of grid
size given is uniformly disturbed over the complete genome, and on every single position (grid
point) a certain range is taken for both sides in positions (max distance range) this is further
illustrated in Fig.4.9. All points that fall within such a grid points range are averaged and the
corresponding maxPosition and minPosition are taken. When the amount the user inputted
grid size is larger than the amount of data entries/images in the raw CNN output data, the
amount of entries/images in raw CNN output data is enforced as grid size. This again leads to
a new file consisting of all the needed information including the number of old entries within a
new entry (after postprocessing).
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Figure 4.9: grid mode, in green the probability of selectivity and in red the probability of neutrality,
the dotted lines represent grid points, the lines represent the area taken in average, and the
double arrow indicates the max distance range in positions of base pairs

4.4.4 Grid mode always enforced

The grid mode always enforced performs exactly the same process as the grid mode normal
discussed before with one exception. When the given grid size by the user is larger than the
amount of data entries/images in the raw CNN output data, the grid size is still enforced instead
of enforcing the amount of data entries/images as in grid mode normal. This will lead to duplicate
points inside the postprocessed data, but the advantage is that the amount of data entries in
the final postprocessing output file can be fully controlled.
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5 NEURAL ARCHITECTURE SEARCH

A handdesigned neural architecture search (NAS) was performed to explore CNN architec
tures that can be deployed for sweep detection. The full NAS was performed with the ASDEC
framework discussed in Chapter 4. As discussed in Chapter 4 ASDEC supports the input of
custom CNN designs, and this feature was extensively used during the NAS. The NAS finally
presents a final CNN design dubbed SweepNet that represents the overall top performer within
the NAS.

The NAS initial CNN architecture draws its inspiration from ImaGene presented in Chapter 3,
CNN architecture illustrated in Fig.3.1. To ensure compatibility with Vitis AI in later stages only
layers and activation functions are used that are supported by the quantization of a TensorFlow
2 model by Vitis AI. All supported layers by Vitis AI version 1.3 are stated in table 5.1.

5.1 NAS setup

The setup of the NAS is defined by the input datasets, the used metrics for evaluation, and
finally, the explored ASDEC attributes. The naming of the different CNN architectures follows
the following convention ModelDesignCαFβγLϕSρ. In the name α refers to the number of
combined layers (combination of 2Dconvolution layers and maxpooling layers), β refers to
the filter size deployed in each layer (can be 4816 defined as starting from 48 to 16 over the
combined layers). γ can either be E: equal, D: decreasing, or I: increasing depending on the
value β overall combined layers (α), ϕ refers to the number of dense layers present in the CNN,
and ρ refers to the size of the dense layers (equal overall dense layers).

5.1.1 Deployed datasets

The datasets used for the NAS are implemented within the ASDEC framework as stated in table
4.1 in Chapter 4. With regards to the NAS only datasets 1 to 60 (bottlenecks) were deployed,
where inference was performed with both dataset 1 (easiest scenario) and dataset 60 (hardest
scenario) for all steps in the NAS. The training datasets for steps 1, 2, 3, and 4 were datasets
1 to 10, datasets 51 to 60, dataset 1, and dataset 60, meaning that each CNN architecture
consisted of 4 trained models with each 2 inference runs (8 inferences per CNN architecture in
total). Training for steps 5 and 6 was performed with all datasets (1 to 60). Within each step,
all models were trained with an equal number of training images.

5.1.2 Metrics

The evaluation metrics used for comparing the various CNN architectures are equal to the eval
uation metrics presented by Alachiotis and Pavlidis[21]. The evaluation metrics provide a way
to evaluate wholegenome datasets. The metrics are directly implemented into the ASDEC
framework as standalone tooling to make it easy to assess the performance of the framework.
The evaluation metrics are a) the detection accuracy, b) the success rate, and c) sensitivity
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Table 5.1: Vitis AIsupported Operations and APIs, as stated in the manual of Vitis AI[3]
Supported Operations and APIs for quantization of TensorFlow 2

tf.keras.layers.Conv2D
tf.keras.layers.Conv2DTranspose
tf.keras.layers.DepthwiseConv2D

tf.keras.layers.Dense
tf.keras.layers.AveragePooling2D
tf.keras.layers.MaxPooling2D

tf.keras.layers.GlobalAveragePooling
tf.keras.layers.UpSampling2D

tf.keras.layers.BatchNormalization
tf.keras.layers.Concatenate

tf.keras.layers.Zeropadding2D
tf.keras.layers.Flatten
tf.keras.layers.Reshape
tf.keras.layers.ReLU

tf.keras.layers.Activation
tf.keras.layers.Add

(True Positive Rate (TPR)).

The detection accuracy is expressed by the distance error (Dist) (measured in base pairs). The
reported position by ASDEC is the position with the highest probability in the population (i) and
is denoted by (si), and the distance is defined between the reported position (si) and the real
selection target at position X. The distance error is calculated for multiple populations (N ), and
its inverse to the value of the detection accuracy, meaning a lower distance error means a higher
detection accuracy. The formula for calculating the distance error is provided in Equation.5.1.

Dist =

∑N
i=1 |si −X|

N
(5.1)

The success rate (suc) gives the number of populations (N ) that fall within a range (ϵ for the
NAS is 1% in bp in both directions) of the real selection target position (X). were when the
detected selection position (si) is within the range the return is 1, and otherwise is 0 (Iverson
bracket notation) expressed in Equation.5.2.

Suc =

∑N
i=1[|si −X| < e]

N
(5.2)

The true positive rate (TPR) uses the probabilities of selection of the neutral populations (pi),
so give N neutral populations, and a probability threshold (thr) defined by an userdefined
false positive rate (FPR) a TPR can be determined. The equation for calculating the TPR is
provided in Equation.5.3.

TPR =

∑N
i=1[pi > thr]

N
(5.3)

Besides the mathematical presentation of the various evaluation metricises a graphical exam
ple is provided in Fig.5.1.

37



0

1

1000

X = 500
490 510

s1 s2
s3 s4

s5

Selective

Neutral

Position
(bp)

Probability of
selection

thr

S = [300,  498, 495, 504, 507]

Dist = 43.6
Dist_% = 43.6/1000*100 = 4.36 %

Succ = 80%
FPR = 5% -> TPR = 80%

p1

p3
p2

p4 p5

e = 10, (1% of 1000)

Figure 5.1: Example of all presented metrics, for a population size of 5 (N = 5)

To provide an easy comparison between the various CNN architectures all different CNN archi
tectures are described by a single score. This single score is based on the various evaluation
metricises (Equation.5.4). Equation.5.4 describes the final score Si

m, were i is the performed
test, and m is the model under evaluation. In the equation w is the multiplication factor of each
score, and considering the NAS themultiplication are defined aswDist =

1
6 , wsuc =

2
6 , wTPR = 1

2 .
Next, the comparison between the model under evaluations obtained scores and the best per
former of the signaturebased methods and tools, for example, Distimin is made with the best
scores obtained by either RaisD, OmegaPlus, SweeD or SweepFinder2, while Distim refers to
the ASDEC model under evaluation.

Si
m = wDist ×

Distimin

Distim
+ wsuc ×

Sucim
Sucimax

+ wTPR × TPRi
m

TPRi
max

(5.4)

5.1.3 Explored ASDEC and CNN attributes

The NAS consists of two different stages, where steps 1 till, and including 3 include the explo
ration of different CNN designs (CNN layers and CNN layer sizes). Secondly, steps 4 till, and
including step 6 include different inputs and input sizes of both ASDEC and the CNN within
ASDEC. In Fig.5.2 the complete NAS is illustrated, and in table 5.2 in combination with table
5.3 more detail is provided for the individual steps. Concerning the first 3 steps of the NAS,
after each step multiple, CNN architectures are selected based on an individual assessment
and taken to the next step. Steps 4 and 5 get all the CNN architectures selected from steps 1,2,
and 3, lastly step 6 gets all the CNN architectures selected from steps 4 and 5 (as illustrated
in Fig.5.2). Training of all models is performed with an evenly distributed number of images for
both classes.

In more detail step 1 explores the number of combined layers in combination with the 2D
convolutional constant filter size. Step 2 explores an increasing and decreasing 2Dconvolutional
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Figure 5.2: NAS for the SweepNet model exploration with ASDEC

filter size (with a factor of 2 or addition/subtraction with a constant value of 8 between combined
layers). Step 3 explores the number of dense layers in combination with a constant size of
the dense layers (see table 5.2). Step 4 doubles the number of training images together with
doubling the number of training epochs. Step 5 uses a broader training dataset instead of the
more narrow training sets used in the earlier steps. Step 6 deploys a vast amount of training
images of the broader training dataset (see table 5.3).

5.2 NAS results

Within this section, the results of each step as illustrated in Fig.5.2 are discussed per step. The
results of each step are both considered concerning the results of the easy bottleneck scenario
(dataset 1) and the hard bottleneck scenario (dataset 60). The CNN architectures picked are
selected by their ability to outperform or equal the performance of signaturebased methods
and tools. While the score provides a well defined first indication a further observation is used
to select CNN architectures based on regions where for example other CNN architectures are
lacking.

For each step, all possible combinations of training data and testing data are included. Both
model misspecification (nonmatching training and testing datasets) and correctly specified
trained models (matching training and testing datasets) are considered. The score based on
Equation.5.4 is calculated for all 8 cases and the summation of 2 final scores one for testing with
dataset 1 and one for testing with dataset 60 are compared. This leads to two final scores one
solely for testing with dataset 1 and one solely for testing with dataset 60, which both include
model misspecification and the correct model specification.
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Table 5.2: NAS of SweepNet with values and ranges performed with ASDEC consisting of the
first 3 steps

Step

Number of
combined
layers
(Conv2D
and MaxPooling)

Conv2D
filter size

Filter Size
between
Conv2D
layers

Number
of
dense
layers

Size of
all
Dense
layer

1 [2,3,4,5] [8,16,32,64] Equal 1 32

2 3
[32,
(81632),
(32168)]

[Equal,
Increasing,
Decreasing]

1 32

2 4

[64,
(16243240),
(40322416),
(128643216),
(163264128)]

[Equal,
Increasing,
Decreasing]

1 32

2 5

[32,
(4840322416),
(8163264128),
(1286432168),
(1624324048)]

[Equal,
Increasing,
Decreasing]

1 32

3 3 32 Equal [1,2] [16,32,64]

Table 5.3: NAS consisting of training, and testing information for all NAS steps
Step Epochs Number of images Training datasets Testing datasets
1, 2, 3 3 210.000 [1, 60, 5160, 110] [1, 60]
4 6 420.000 [1, 60, 5160, 110] [1, 60]
5 6 420.000 160 [1, 60]
6 6 2.500.000 160 [1, 60]
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Figure 5.3: NAS trained with dataset 5160 and inference on dataset 1 versus top performer
signaturebased tooling

5.2.1 Step 1

In step 1 correctly specified trained models for testing with dataset 60 are outperforming (score
> 1, lowest score 3.267846027 of ModelDesignC2F8EL1S32_ for training with dataset 60)
the current highest signaturebased score. The only exception is one trained (dataset 51
60) model (ModelDesignC5F64EL1S32_) which was unable to be trained (underfitting), with
both validation accuracy and training accuracy around 50%. Because all CNN architectures
performed well concerning testing with dataset 60, testing with dataset 1 was used to identify
the initial selection of CNN architectures to use in the next step of the NAS. Both Fig.5.3 and
Fig.5.4 were used, were again the top performers were selected ModelDesignC5F32EL1S32_
and ModelDesignC4F64EL1S32_. This leads to the CNN architectures in table 5.4 being taken
to the next step of the NAS. In table 5.4 all scores of the trained models are summed together
(with model misspecification 4 scores summed, and without model misspecification 2 scores
summed), therefore these scores can not be compared with the signaturebased topperforming
methods and tools.

Table 5.4: NAS selected top performers step 1
With model misspecification without model misspecification

CNN architecture name dataset 1 dataset 60 dataset 1 dataset 60
ModelDesignC3F32EL1S32_ 2.839228198 6.994511736 1.767661136 5.418889531
ModelDesignC4F32EL1S32_ 2.763063559 8.132298953 1.768040753 5.931920118
ModelDesignC5F32EL1S32_ 2.624992724 7.745378593 1.567285399 6.955005094
ModelDesignC4F64EL1S32_ 2.635501731 6.072803885 1.595990812 5.605119981

5.2.2 Step 2

Step 2 of the NAS starts with the selection of the CNN architectures provided from step 1 of the
NAS. All the selected CNN architectures, get an adjusted CNN architecture where the filter size
of the 2Dconvolutional layers over the layers is multiplied with a factor of 2 in both increasing
and decreasing directions. For CNN architectures with more than 3 combined layers, an addi
tion/subtraction with a value of 8 between each combined layer to simulate a narrower range of

41



Figure 5.4: NAS trained with dataset 0110 and inference on dataset 1 versus top performer
signaturebased tooling

the filter size is provided. This is not done for the CNN architecture with 3 or fewer combined
layers, because the range was already considered to be quite narrow.

Regarding step 2 no major improvements were observed compared to testing with dataset 1
with both correct model specification and model misspecification. This led to the conclusion
to take the highest scoring CNN architecture from dataset 1 from step 1 to step 3, ModelDe
signC3F32EL1S32_. Only one CNN architecture was taken to step 3, to reduce the time re
quired for the step. To still introduce a CNN architecture with a variable filter size between
combined layers ModelDesignC5F4816DL1S32_ was included in steps 4 and step 5.

5.2.3 Step 3

Step 3 of the NAS starts with the CNN architecture ModelDesignC3F32EL1S32_ and adjusts
the CNN architecture by changing both the number and size of the dense layers (see table 5.2).
The CNN architecture ModelDesignC3F32EL1S64_ outperforms ModelDesignC3F32EL1S32_
with regards to the score of both testing with dataset 1 and dataset 60 when nomodel misspec
ification is included. When model misspecification is introduced ModelDesignC3F32EL1S64_
achieves a higher score concerning dataset 60. ModelDesignC3F32EL1S64_ is the best per
former in step 3 and therefore selected. ModelDesignC3F32EL2S16_ is also selected for it the
secondbest performance for testing with dataset 60, only being outperformed by ModelDe
signC3F32EL1S64_. The selected models with their scores are included in table 5.5.

Table 5.5: NAS selected top performers step 3
With model misspecification without model misspecification

CNN architecture name dataset 1 dataset 60 dataset 1 dataset 60
ModelDesignC3F32EL1S32_ 2.839228198 6.994511736 1.767661136 5.418889531
ModelDesignC3F32EL1S64_ 2.757579202 8.384038711 1.781945128 7.451762528
ModelDesignC3F32EL2S16_ 2.664883728 7.603784454 1.641056034 6.676355522
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5.2.4 Step 4

Step 4 of the NAS doubled both the number of training images and the number of training epochs
(see table 5.3). No significant performance increasewas observed forModelDesignC3F32EL1S32_
which still showed sufficient performance for testing with dataset 1 and top performance (out
performing signaturebased tooling) for testing with dataset 60. ModelDesignC4F64EL1S32_
stands out in step 4, because of the really good performance for testing with dataset 1 un
der model misspecification and average performance for testing with dataset 60 (see table
5.6). Both ModelDesignC4F64EL1S32_ and ModelDesignC3F32EL1S32_ are for these rea
sons taken towards step 6 (see Fig.5.2).

Table 5.6: NAS selected top performers step 4
With model misspecification without model misspecification

CNN architecture name dataset 1 dataset 60 dataset 1 dataset 60
ModelDesignC3F32EL1S32_ 2.818561467 6.915314581 1.775626395 5.272820092
ModelDesignC4F64EL1S32_ 3.295490546 5.809527147 1.635601187 4.185958158

5.2.5 Step 5

Step 5 of the NAS performs training with all bottleneck datasets as shown in table 5.3. where
the total number of images used for training is equal to the number of images used for training
in step 4. In step 5 of the NAS, model misspecification is no longer present because all models
are trained with all the datasets. The two top performers concerning testing with dataset 1
were selected (see table 5.7). Testing with dataset 60 was considered less important because
all trained models achieved scores higher than 1 (no longer summation is presented as was the
case in steps 1, 2, and 3), meaning that they outperform signaturebased methods and tools.

Table 5.7: NAS selected top performers step 5
CNN architecture name dataset 1 dataset 60

ModelDesignC4F32EL1S32_ 1.019286828 1.49107955
ModelDesignC5F4816DL1S32_ 0.984521145 1.217286052

5.2.6 Step 6

Step 6 of the NAS performs training with all bottleneck datasets as done in step 5, but now
approximately the same number of images per trajectory as in step 4 are used. The use of
the same number of images per trajectory led to a significant increase in the total number of
training images up to 2.5 × 106, which was equally distributed over the two classes. While a
drop in performance is observed for step 5, with this large number of training images a clear
conclusion can be drawn from step 6. In step 6 of the NAS, the final SweepNet architecture is
based on the input CNN architectures provided from both step 4 and step 5 of the NAS. The
decision for ModelDesignC3F32EL1S32_ was motivated by having the highest score for both
testings with dataset 1 and testing with dataset 60 as shown in table 5.8.

Table 5.8: NAS selected top performers step 6
CNN architecture name dataset 1 dataset 60

ModelDesignC3F32EL1S32_ 0.953962911 1.19765561
ModelDesignC4F32EL1S32_ 0.908503305 1.194135433
ModelDesignC4F64EL1S32_ 0.817546643 0.594967188
ModelDesignC5F4816DL1S32_ 0.918062245 0.728434178

43



6 ASDEC HARDWARE IMPLEMENTATIONS AND PER
FORMANCE

The focus until now was to introduce the concepts that drive ASDEC and the deployed CNN
architecture natively used by ASDEC, dubbed SweepNet. This chapter discusses the use of
more conventional hardware such as the CPU, and GPU, and the use of acceleration using
DeepLearning Processor Unit (DPU) architectures implemented by the use of Vitis AI. While
this chapter focuses mostly on the setup and argumentation, Chapter 7 discusses all the results
and a comparison between all the implementations.

6.1 Hardware support ASDEC

One of the drawbacks of the ASDEC framework is the performance concerning execution time
compared with signaturebased tooling. Provided an example for the execution time on the
CPU, where the assumption is made that the scaling of the populations and threads is linear,
the assumptions are only made for this example justifying the usecase for acceleration.

ASDEC running on 25 threads has, for sweepdetection on dataset 1, with an execution time
for 1 neutral population of 416.89 seconds, and, 1 selective population of 354.87 seconds, while
RAiSD, a signaturebased tool, performs the same task in 9.91 seconds and 6.89 seconds, re
spectively. RAiSD is considered one of the signaturebased tools with the lowest execution
time, whereas SweepFinder2 has respective execution times of 760.18 seconds and 1332.89
seconds for a neutral and selective population, respectively. All execution times are normalized
to 1 thread to make different thread counts comparable. ASDEC is in its current CPU implemen
tation able to achieve comparable execution times concerning slower signaturebased tooling
(SweepFinder2 and SweeD).

ASDEC provides support for the following hardware platforms: CPU with multicore support,
and GPU. A large part of this support is provided by TensorFlow 2 out of the box, for example,
the support for the GPU for both training and inference, while the multicore CPU support is
for a large part provided by ASDEC, and relies partly on the Tensorflow 2 CPU multithreading.
ASDEC uses this out of the box support and extends it by also multithreading preand post
processing.

6.1.1 GPU support

When using TensorFlow 2 automatic checks for supported GPUs is done. If the system that
ASDEC is deployed on has a supported GPU in combination with correctly installed drivers
as instructed in [16], ASDEC provides TensorFlow 2 with the instructions to use the desired
hardware (user can add parameters to the commandline to specify which hardware platform
should be used). Significant performance increases when using more parallel optimized hard
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ware such as a GPU is possible.

GPU support is only available for CNN training and CNN inference, whereas the preprocessing
(image generation), datageneration, and postprocessing still rely on the CPU to perform the
instructed tasks.

6.1.2 Multicore CPU support

Besides using ASDEC on more parallel optimized hardware, affords to reduce the execution
time when using a CPU are made in the form of multithreading. The CPU multithreading is
focused on inference because training is under normal circumstances only performed once.
Meaning that a speedup for inference yields greater usability for ASDEC. Initial speedups were
made with the introduction of multithreading for ASDEC inference and training. The number of
threads spawned (T ) is controlled by the user. When training a model ASDEC relies partly on
the multithreading support provided by TensorFlow 2. In Fig.6.1 the implementation of training
with ASDEC is given, and in Fig.6.2 the implementation of inference with ASDEC is provided.
Within these figures, the solid lines represent control lines and show the flow, and the dotted
lines show data dependencies between operations or blocks of threads illustrated by an en
closing dotted box. The blue dotted lines present in both figures show the possibility to start a
specified number of threads given by the user, and the large arrows illustrate stages that can
be omitted by a user. Lastly upwards arrows illustrate parts that can be executed multiple times
to accommodate for example processing of multiple files.

Training

The multicore implementation of ASDEC training (Fig.6.1) starts with the generation of data
sets. When no data generation is required this section is skipped until the second synch illus
trated by the arrow from initializing to the first synch of the master thread to the second synch
of the master thread. When datageneration is required it first of all starts by accessing a script
consisting of all supported commands (see Chapter 4 table 4.1). After accessing the supported
commands the commands are run for the neutral files when for example 10 datasets are re
quired and 5 threads are given each thread runs twice illustrated by the upward arrow between
the two synchs. When for example 3 datasets are required and 5 threads are given only 3
threads are used. After the generation of the neutral files is completed the same is done for the
selective files.

After datageneration is finished or ASDEC is called with a custom input (requiring no data gen
eration), all other threads are closed and a synch is performed. Then all files are collected for
image generation, the master thread is now (mostly) passive. Each thread during image gener
ation is responsible for processing a complete file to images, when more threads than files are
provided the number of threads is down scaled to the number of available files. When more files
than threads are available the process is repeated for the given number of threads illustrated by
the upward arrow in Fig.6.1. After the image generation is completed the training is performed
the threads settings given by the user (T ) are provided to TensorFlow 2, where floor(T/2) is
provided for processes within an independent operation, and ceil(T/2) are deployed for use
between independent operations.
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Figure 6.1: Multithreading diagram of CNN training with ASDEC. Solid lines represent control,
and dotted lines represent datadependencies between threads, and blocks of threads (rep
resent in blocks in dotted lines). Blue dotted lines present the possibility to start a specified
number of threads given by the user. When the main thread starts with the CNN training the
multithreading provided by TensorFlow 2 is used (not elaborated in this figure)
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Inference

The multicore implementation of ASDEC inference (Fig.6.2) start equal to the multicore im
plementation of ASDEC training by performing data generation if required. After the data gen
eration, a file to process is taken or provided, and a userspecified number of threads (T ) are
started. Each thread is responsible for processing a given number (α) of populations (referred
to as a population batch) within the file. For example, when a single file with 100 populations
is provided for inference, 10 threads are given, and a population batch size of 5 (α = 5). Then
worker thread 1 should process population 1 to 11, worker thread 2 should process population 11
to 21, worker thread 3 should process population 21 to 31, and so on. Now per preprocessing,
inference, and postprocessing a population batch size of 5 was given so each worker thread
runs the complete process twice. When a thread finishes a batch it saves the results in a per
sonal thread summary file, and all personal thread summary files are afterwards collected by
the master thread and written to the final results file, this is done to avoid data races.

Algorithm 3 Thread termination
1: function Threadtermination(T , P , α)
2: if T > P then
3: T = P
4: end if
5: startPop = 1
6: step = floor(P/T )
7: extraPop = P − step ∗ T
8: for i in range(1, T ) do
9: endPop = startPop+ step− 1
10: if extraPop > 0 then
11: endPop = endPop+ 1
12: extraPop = extraPop− 1
13: end if
14: if endPop− startPop > α then
15: α = endPop− startPop
16: end if
17: StartThread(startPop, endPop, α)
18: startPop = endPop+ 1
19: end for
20: end function

When the number of threads (T ) is provided all populations to process (P ) are divided between
all the threads. When modulo(P, T ) is not equal to 0 it is considered not possible to evenly
distribute all populations (P ) overall threads (T ). To alleviate this problem the minimal amount of
populations to process (step) for each thread are calculated using Equation.6.1, and the missing
number of populations (extraPop) are calculated using Equation.6.2. Now with both the step,
and extraPop the first started threads are all provided with one extra population until all extra
populations defined in extraPop are divided between the threads. The final algorithm is provided
in Algorithm 3 and shows each thread being started with a start population (startPop) and end
population (endPop). The multithreading is optimized for the usecase of files with a large
number of populations. If the distance between the start and end population (endPop−startPop)
is smaller then the userdefined population batch size (α) then the population batch size is
adjusted to the end population minus the start population (α = endPop− startPop).

47



Figure 6.2: Multithreading diagram of CNN inference with ASDEC. solid lines represent control,
and dotted lines represent datadependencies between threads, and blocks of threads (repre
sent in blocks in dotted lines). In blue dotted lines present the possibility to start a specified
number of threads given by the user. CNN inference is performed on the user’s selected hard
ware platform (GPU, CPU)

step = floor(P/T ) (6.1)
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extraPop = P − stepSize ∗ T (6.2)

6.2 Profiling

When either performing training or inference with ASDEC timing reports are created to show the
total execution time in combination with a breakdown of all separate processes. The training
and inference are both performed on a CPU (Intel(R) Core(TM) i77700 CPU @ 3.60GHz),
where singlecore, andmulticore (5 threads) parameters are provided to ASDEC, the number of
threads is arbitrarily selected. Data generation was not profiled, because while ASDEC supports
data generation it is not subject to hardware acceleration, and ASDEC is only responsible for
starting the coalescent simulation software with the correct parameters.

6.2.1 Training

For training, datasets 1 until and including 5 are used (see table 4.1), which all have 3000 popu
lations. All datasets were pretrained to avoid differences in input data between runs, therefore
datageneration is 0 seconds for all runs. A chromosome length of 100.000 in combination with
extraction at the centre region (location of the sweep in each population, position 50.000), and
the extent of the extraction is 28 SNPs in both directions. The window size was 50 SNPs, and
the step size between windows was 1 SNP. This leads to a final number of 35.000 images,
where 80% are used for training and 20% are used for validation. Finally, the CNN architecture
of SweepNet was used to define the model in Keras.

When performing training with ASDEC, a breakdown is provided for all processes taking more
than 1% of the execution time (Fig.6.3). From Fig.6.3, it can be concluded that around 96% and
90% of the execution time is used for training on Tensorflow 2 for multicore and singlecore
respectively. Other tasks that take less than 1% of the execution time are initialization tasks
and clean up after execution tasks.

Figure 6.3: Execution time breakdown training with ASDEC

6.2.2 Inference

For inference dataset 1, was used, which consists of 10 populations and is pretrained to avoid
differences in input data between runs. A chromosome length of 100.000, where the complete
genome was taken (no extraction). The window size was 50 SNPs, and the step size between
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windows was 1 SNP. The trained model created from run 5 was used for profiling the inference.
Lastly, a population batch size of 2 was used, meaning that each file only consists of 1 full run
of a thread (as illustrated in Fig.6.2 (image generation, inference, postprocessing)), and a total
of two files were provided (one neutral, one selective) so each thread completes two runs, one
for each file. The number of images created for inference is around 13.000 per thread per file,
resulting in approximate 130.000 images to create, and process.

In Fig.6.4 the results are provided and show all processes taking more than 1% of the execution
time. Fig.6.4 shows two CNN executions (multicore execution and the singlecore execution) of
the neutral file and the selective file of dataset 1. Then 46% of the execution time is required for
processing the selective file (TEST), and 54%of the execution time is required for processing the
neutral file (BASE). The small difference is because the selective file contains more SNPs, and
therefore more images are required. When observing the log files of ASDEC, it was observed
that around 99% of the time per thread is spent on the prediction performance within TensorFlow
2. The image generation and postprocessing are together only responsible for around 0.6%
of the total execution time. The other tasks that require less than 1% of the execution time are
initialization and clean up processes.

Figure 6.4: Execution time breakdown inference with ASDEC

6.3 DPU hardware acceleration

While the current implementation of ASDEC already provides a vast array of supported hard
ware a significant speedup could still yield importance to compete with the low execution times
of some signaturebased methods and tools. While it is not achievable to surpass or achieve
comparable execution times with tools such as RAiSD, a significant speedup increases the us
ability of ASDEC. To achieve this hardware acceleration with the help of FPGAs and DPUs
(Alveo cards) using Vitis AI is explored. DeepLearning Processor Unit (DPU) hardware ac
celeration with Vitis AI provides inference acceleration, where still for example a GPU can be
used for training in the earlier discussed way. The version of Vitis AI used in this research is 1.3.

Vitis AI is used for inference acceleration because of the use of only predefined optimized
IP cores, and its design aimed towards high efficiency and ease of use[3]. Also earlier per
formed research showed great performance increases by using Xilinx FPGA boards such as
the ZCU102, and ZCU104 in combination with Vitis AI as presented by Wang and Gu[17], and
Qasaimeh et al. [56]. The acceleration with the help of Vitis AI was considered during the com
plete research, wherein steps such as the NAS represented in Chapter 5 considered Vitis AI
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support.

To integrate the workflow of both ASDEC and Vitis AI more work is performed by addressing
quantization, evaluation, and compilation of the model. In Fig.6.6 the combination of the tool
ing is shown here first of all the setup of the used tooling is required. While it is possible to
only use presynthesized hardware configurations the options for synthesizing parameter driv
ing hardware designs is possible and shown by the yellow blocks in Fig.6.6. The green blocks in
Fig.6.6 show the steps already implemented in ASDEC, this consists of steps such as training
a model and performing an evaluation. In the blue blocks in Fig.6.6 the steps performed by
Vitis AI are shown. Notice that up until the compilation step all models are independent of a
hardware platform. In Vitis AI the hardware platform is introduced by the synthesized model de
livering a hardware architecture configuration in the form of .json file, and by combining this file
with the quantized model a platformspecific model is created. The crosscompilation of Vitis AI
is performed on a device (FPGA, Alveo card, etc.) or a host, and generates the final executable.

After evaluation it is possible to further finetune the quantized model, while this possibility is
provided by Vitis AI, it is not used and/or implemented during this research. Nonetheless the
step is provided in Fig.6.6 for completeness.

Two different DPUs are considered within this research, namely the DPUCZDX8G [5] and DPU
CAHX8H [4]. Both DPUs are programmable engines optimized for deep neural networks but
offer different optimized platforms. The DPUs are elaborated more in the following subsections.
To be able to estimate a theoretical throughput of a DPU the number of model operations is de
fined by the number of multiplies and accumulate (MAC) operations. The DPUs will only be
used for inference, and still need a host system for image generation, image preprocessing,
and postprocessing. In Fig.6.5 the relation between the host system and the accelerator is il
lustrated. The communication between the host system and the accelerator can be made using
different standards such as Peripheral Component Interconnect Express (PCIe) (Alveo U50),
Universal Serial Bus (USB), or Ethernet. A pretrained SweepNet model created with ASDEC
was used for this flow and resulted in a final quantized .xmodel for a SweepNet model. The
steps present in Fig.6.6 were followed, and the following chapter will go deeper into the error
created by the quantization, and two DPUCZDX8G and DPUCAHX8H.

Figure 6.5: Host system and accelerator were the host systems that performs image generation,
image preprocessing, and postprocessing and the accelerator performs the inference
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Figure 6.6: Overview of the acceleration workflow by the usage of ASDEC, Vitis, and Vitis AI
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6.3.1 Size of SweepNet

For the exact specification defined by Xilinx, and possibly efficiency numbers Xilinx was con
tacted using their forum[72]. It was determined that a CNN architecture is defined by the num
ber of model operations, and these model operations (flops, in TensorFlow terminology) are
defined by their number of MACs. As instructed by Xilinx the number of MACs was multiplied
by a factor of 2 to account for the DPUs counting the multiply and accumulate as 2 separate
operations. Flops are based on the number of floatingpoint operations performed by hardware,
after quantization floatingpoint operations are no longer performed, and therefore it is assumed
that floatingpoint operations and 8bit integer operations are equal, or less resulting in a more
conservative estimate. The output of the determination of the flops for SweepNet is provided in
listing 6.1 and uses a window size of 50. The final output presented in the listing 6.1 assumes
nonfused MACs as also done by Xilinx.

Listing 6.1: Output flops determination
==================Model Ana lys is Report======================

Doc :
scope : The nodes in the model graph are organized by t h e i r
names , which i s h i e r a r c h i c a l l i k e f i l e sys t em .
f l o ps : Number o f f l o a t opera t ions .
Note : Please read the implementat ion for the math behind i t .

P r o f i l e :
node name | # f l oa t_ops
_TFProfRoot ( − −/13.94m f l ops )

conv2d_1 /Conv2D (6 .55m/6 .55m f l ops )
conv2d_2 /Conv2D (5 .53m/5 .53m f l ops )
dense / MatMul (1 .26m/1 .26m f l ops )
conv2d /Conv2D (238.34k /238.34 k f l ops )
max_pooling2d / MaxPool (110.59k /110.59 k f l ops )
max_pooling2d_1 / MaxPool (94.21 k /94.21 k f l ops )
max_pooling2d_2 / MaxPool (78.85 k /78.85 k f l ops )
conv2d / BiasAdd (29.79 k /29.79 k f l ops )
conv2d_1 / BiasAdd (25.57 k /25.57 k f l ops )
conv2d_2 / BiasAdd (21.60 k /21.60 k f l ops )
dense_1 / MatMul (128/128 f l ops )
dense / BiasAdd (32/32 f l ops )
dense_1 / Softmax (10/10 f l ops )
dense_1 / BiasAdd (2 /2 f l o ps )

======================End of Report==========================
Flops : 13 ,935 ,692
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6.3.2 DPUCAHX8H

The DPUCAHX8H DPU is provided within Xilinx Vitis AI inference acceleration software frame
work and offers programmable core optimized for high throughput application, and CNNs [4].
The DPU cores on the programmable logic (PL) of various Alveo cards (U280, U50, U50LV
(Low Voltage)), these cards are aimed towards data centre application. The Alveo U50 is opti
mized for workloads in financial computing, machine learning, computational storage, and data
science application. The U50 is built on Xilinx UltraScale+ architecture, and offers a maximum
power draw of 75Watts, for more information see the datasheet of the Alveo U50 [73].

In Fig.6.7, a toplevel block diagram of the DPUCAHX8H is given, within this toplevel diagram,
various parameters can be used to control the speed, and therefore the resource requirements.
The parameters of the DPUCAHX8H are the number of DPU cores which can vary between 1
to 3, and each DPU core can contain five processing engines (PE) [4]. The Alveo cards also
have a High Bandwith Memory (HBM) interface, and this HBM is divided by the DPUCAHX8H
for both the storage of temporary data (virtual banks), and the storage of instructions, input im
ages, output results, and user data (system memory) [4].

The instructions for the DPU are created in the compilation step illustrated in Fig.6.6 and are ran
on the host server (present on system memory of the host system). Lastly, the onchip memory
consists of private local memory for each PE, and the global memory is shared between all PEs
per DPU core [4].

Figure 6.7: Toplevel DPUCAHX8H[4]
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Figure 6.8: Vitis Analyzer DPUCAHX8H on an Alveo U50 System Info, two DPU core with three
PEs, running on 300MHz, synthesized, A shows resource usage, B shows timing summary, and
C shows power summary
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Figure 6.9: Vitis Analyzer DPUCAHX8H on an Alveo U50 System Diagram, two DPU cores with
three PEs, running on 300MHz

From the documentation presented in [4] the peak performance defined by the number of Giga
Operations Per Second (GOPs) on the Alveo U50, running a frequency of 300MHz is 7373
GOPs, and the DPU architecture contains 2 DPU cores both running 3 PEs. To account for
losses, an efficiency range of between 15% and 70% is used, with 30% as a conservative
estimate [72] (kindly provided by Xilinx during personal contact, provided for the DPUCZDX8G).
The final formula for estimation of the number of operations is given in Equation.6.3.

OpsEstimation = (NumberModelOps/DPUOps) ∗ Efficiency (6.3)

For compilation, the provided DPUCAHX8H arch.json can be used to adjust the generic .xmodel
for the Alveo U50. The crosscompilation is performed on the host machine because no Alveo
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card is available the deployment is skipped, but the theoretical throughput provides the infor
mation for a comparison with the other hardware implementations. In Fig.6.8 the synthesized
design is shown for the Alveo U50 card and shows the resources used, as recommended in the
manual [4].

While the suggested design by Vitis AI, consisting of 2 DPU cores both running 3 PEs should
meet all constraints. After synthesizing problems concerning timing constraints that were not
met, according to Vivado were observed. Because a prebuilt was used to generate the bit
stream there is no easy ability for this version of Vitis AI (1.3) to decrease the number of PEs,
DPU cores or clock frequency. Future versions of Vitis AI are going to add support for this,
therefore for now the execution numbers (theoretical throughput) are used with a side note that
timing constraints could be a problem for this design. See Fig.6.9 for the System diagram, and
Fig.6.8 for the system info implemented (generating bitstream, not deployed) design using Vitis
Analyzer and Vivado, and Vivado.

6.3.3 DPUCZDX8G

The DPUCZDX8G architecture is provided within the Xilinx Vitis AI inference acceleration soft
ware framework and is designed for the Zynq UltraScale+ MPSoC [5]. Equally to the DPU
CAHX8H, the DPUCZDX8G architecture offers a configurable computation engine optimized
for CNN inference. The FPGA used in combination with this architecture is a generalpurpose
evaluation board. The FPGA is the Xilinx ZCU 102, containing a Zynq UltraScale+ XCZU9EG
2FFVB1156E MPSoC (multiprocessor systemonchip), with highspeed DDR4 SODIMM and
component memory interfaces, and various features were most importantly the FPGA posses
programmable logic for implementation a DPU [74]. More information on the Xilinx ZCU102 is
provided in the manual [74].

Just like the DPUCAHX8H DPU instructions are stored on offchip memory, and the DPU in
structions controlling the execution of the ZCU102 are generated by the compiler step shown
in Fig.6.6. Buffers are implemented on onchip memory for fast access, and data is reused as
much as possible to reduce the number of calls to external memory[5].

Usage of resources such as digital signal processing (DSP) slices, look up tables (LUT), block
randomaccess memory (RAM), and UltraRam can be controlled by parameters presented in
the DPUCZDX8G architecture, and are based on the programmable logic resources. The
parameters include various DPUCZDX8G architectures as shown in table 6.1, and multiple
DPUCZDX8G can be combined together [5]. Each DPUCZDX8G architecture achieves a dif
ferent level of parallelism, parallelism is divided into pixel parallelism (PP), input channel paral
lelism (ICP) (depth of parallelism on input matrix), and output channel parallelism (OCP) (depth
of parallelism on output matrix). The final peak performance per clock cycle is calculated with
the help of Equation.6.4 [5].

PeakPerformance/perClock = PP ∗ ICP ∗OCP ∗ 2 (6.4)

Each DPU has its global memory pool, and the various DPUs share a highspeed data tube
as shown in Fig.6.10. Besides controlling the number, and size of the DPU it is possible to set
extra parameters based on the use case options include: Average pooling, various activation
functions, Elementwise multiplication, Low power mode, randomaccess memory (RAM) us
age, and much more as described in [5]. To account for losses an efficiency range of between
15% and 70% is used, with 30% as a conservative estimate[72].
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Figure 6.10: Toplevel DPUCZDX8G[5]

Table 6.1: DPUCZDX8G configuration settings[5]

DPUCZDX8G
Architecture

Pixel
Parallelism
(PP)

Input Channel
Parallelism
(ICP)

Output Channel
Parallelism(OCP)

Peak(operations
/per clock)

B512 4 8 8 512
B800 4 10 10 800
B1024 8 8 8 1024
B1152 4 12 12 1152
B1600 8 10 10 1600
B2304 8 12 12 2304
B3136 8 14 14 3136
B4096 8 16 16 4096

Two different designs were tested using the ZCU102 FPGA, one of them showing a really small
design running one B512 DPUCZDX8G core, and another showing a large design running 3
B4096 DPUCZDX8G cores. Both designs are synthesized, and implemented (generating bit
stream, not deployed), and are used in comparison to more conventional hardware such as
CPU and GPU. The summaries of the one DPUCZDX8G B512 is shown in Fig.6.13, and the
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summaries of the design with 3 DPUCZDX8G B4096 is shown in Fig.6.11 and Fig.6.12. The
final results of both designs is a folder containing the files to flash to the ZCU102 FPGA and an
arch.json file used for the compilation step in Fig.6.6.

The final throughput is calculated using Equation.6.5 of the one B512 DPUCZDX8G core design
on the ZCU102 (running on 150MHz) is this 1 image per 6.05 × 10−4 seconds for efficiency of
30%. For the 3 B4096 DPUCZDX8G cores design (running on 150MHz) this is 1 image per
2.52×10−5 seconds for an efficiency of 30%. Equation.6.5 and the efficiency percentages were
kindly provided during personal contact with Xilinx [72].

Throughput = NumberModelOps/(DPUOps ∗ Efficiency ∗ ClockFrequency) (6.5)

Figure 6.11: Vitis Analyzer DPUCZDX8G on a ZCU102, 3 DPU core B4096, running on
150MHz, synthesized, A shows resource usage, B shows timing summary, and C shows power
summary
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Figure 6.12: Vitis Analyzer DPUCZDX8G on a ZCU102, 3 DPU core B4096, running on
150MHz, synthesized System Diagram
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Figure 6.13: Vitis Analyzer DPUCZDX8G on a ZCU102, 1 DPU core B512, running on 150MHz,
synthesized, A shows a toplevel overview, B shows resource usage, C shows timing summary,
and D shows power summary
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6.3.4 Quantization error

As stated in the manual of Vitis AI (version 1.3) [3], a drop in accuracy is possible when per
forming quantization. To compare the performance of the 32bit floatingpoint (FP32), and 8bit
integer (INT8) SweepNet models, 9 different FP32 models are trained using datasets 1 to 60,
dataset 1, dataset 9, datasets 61 to 70, dataset 61, dataset 70, datasets 97 to 101, dataset
97, and dataset 101. After training, thesemodels are quantized using the quantization provided
by Vitis AI. For quantization, an evaluation dataset created from completely new coalescent
simulation files equal to the dataset(s) used for training in ASDEC (around 2500 images per
dataset) are used. After quantization, each model has two versions one INT8, and one FP32.
Next, a completely new dataset created from completely new coalescent simulation files equal
to the dataset(s) used for training in ASDEC (around 2500 images per dataset) are used to
evaluate the performance of each model. Both for quantization and evaluation the default batch
size of 50 was used. The final results are presented in table 6.2, while some datasets show
a small increase in accuracy (negative difference in table 6.2) after quantization for the other
datasets a decrease in accuracy is observed. While there is a loss in accuracy for some of
the tested datasets the loss is within (around 2% to 4%) margins, compared with quantization
losses presented by Qasaimeh, et al.[56].

Table 6.2: Quantization results
Training dataset 32bit Floating Point 8bit Integer Deviation

accuracy loss accuracy loss accuracy loss
01 98.36% 0.3315 98.00% 0.332 0.37% 0.15%
60 89.21% 0.4413 88.93% 0.4455 0.31% 0.95%
0160 92.78% 0.3927 93.41% 0.3854 0.67% 1.86%
61 96.96% 0.3478 97.04% 0.3498 0.08% 0.58%
70 83.39% 0.4888 80.29% 0.5047 3.86% 3.25%
6170 82.96% 0.5051 82.93% 0.5086 0.04% 0.69%
97 89.00% 0.4199 88.93% 0.4203 0.08% 0.10%
101 83.21% 0.4685 83.50% 0.4674 0.35% 0.23%
97101 91.04% 0.4121 90.82% 0.412 0.24% 0.02%
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7 RESULTS AND DISCUSSION

This chapter focuses on the final evaluation of ASDEC in comparison with the signaturebased
methods and tools for the defined metrics presented in Chapter 5 and execution time. Next to
the comparison with signaturebased tooling, also a comparison between the different hardware
implementations of ASDEC is provided. These include CPU (multicore), GPU, DPU (FPGA),
DPU (Alveo U50). Lastly a scan of the first human chromosome from the Yoruba population,
1000Genomes project [67] is run to identify possible candidate genes for selection.

7.1 Experimental setup

The first experimental setup is deployed for comparison between the ASDEC framework and
the wholegenome signaturebased methods and tools. To keep execution times reasonable a
separate experimental setup is created for the ASDEC acceleration comparison. Lastly, a setup
is created for running the human chromosome.

7.1.1 Quality of ASDEC

To compare ASDEC with signaturebased methods and tools, a large scale comparison is cre
ated, which includes all datasets implemented within the ASDEC framework (see table 4.1).
For training of the various CNNs required for inference, equal parameters are used consisting
of the SweepNet CNN architecture, a window size of 50, step size of 1, extraction mode with
an extent of 28 SNPs, batch size of 1, and 6 epochs. Besides training equal parameters are
deployed for inference consisting of window size of 50, step size of 1, population batch size of
5, and postprocessing mode ”Grid mode normal” with a grid size of 4000, and a grid range of
1% of the chromosome length in both directions(see Chapter 4).

The corresponding metrics are computed as presented in Chapter 5, and the results from
signaturebased tools as presented in [21] are used. Onemajor difference between the signature
based tools, and ASDEC is the number of populations in ASDEC are limited to 100, while in
[21] a population size of 1000 was used. The reduction in population size was needed due to
the great number of experiments to perform, and the given timeframe (multiple weeks of com
putation required over multiple machines).

The experiment is divided within the different confounding factors present in table 4.1. Starting
with the bottleneck confounding factor the following datasets were used for both training (ex
traction point 500.000 bp, chromosome length 1.000.000), and inference (chromosome length
1.000.000): 1, 9, 12, 23, 24, 36, 45, 48, 57, 60, and 160 (all datasets). For the Migration
confounding factor for training (extraction point 50.000 bp, chromosome length 100.000), and
inference (chromosome length 100.000) the following datasets were used: 61, 62, 63, 64, 65,
66, 67, 68, 69, 70, 6170 (all datasets). For migration, three different scenarios are present in
dataset 9297 both the recombination, and the sweep is present in the centre of the genome,
ASDEC was unable to train with these datasets (underfitting). Migration datasets 97101
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contained the migration region again in the centre of the genome, but the sweep was located
at 30% of the genome. It was concluded to train the CNN with an extraction point of 30.000
bp with a chromosome length of 100.000 on datasets: 97, 98, 99, 100, 101, and 97101. For
migration inference (chromosome length 100.000) the following datasets were used: 92, 93,
94, 95, 96, 97, 98, 99, 100, 101. In the final migration scenario, no sweep was present meaning
that no training data exists for this scenario. The earlier trained migration models were used
(dataset 97 to 101), and for inference (chromosome length of 100.000) the following datasets
were used: 71, 74, 77, 78, 81, 84, 85, 88, and 91.

7.1.2 ASDEC hardware performance

To compare the various hardware platforms where ASDEC could be run on, a small test is
designed with a runtime of around 10 minutes including both training, and inference. The ex
periment consists of the training of pretrained coalescent simulation files from dataset 1 to
5 (see table 4.1), and inference on dataset 1. For the comparison between CPU, and GPU
inference only 1 population is used, because of timing constraints of the used Google Colab
service, and for a comparison between threads a local machine is used and the number of pop
ulation was increased to 10. The results are only used for the comparison of execution times
concerning the comparison of other metrics the test does not contain enough complexity. To
compare the execution time of ASDEC with the signaturebased methods and tools a linear
relation between execution time and the number of populations is assumed. Considering AS
DEC this assumption is tested by running with 1 population, and running 10 populations and
determining the throughput of 24.6 and 24.8 images per second respectively. The small differ
ence is due to the variation in the size of the input data. For the signaturebased methods and
tools, the assumption is justified because each population is considered as a separate dataset.

During training, a chromosome length of 100.000 is provided, extraction is used on 50.000
positions of base pairs (bp), the extent of the extraction is 28 SNPs in both directions, a window
size of 50 SNPs, step size of 1 SNP, 17.500 neutral images, 17.500 selective images, and a
split of 80% used for training, and 20% used for validation. For inference only dataset 1 is used
consisting of 10 or 1 population(s). The number of populations in dataset 1 is dependent on the
test being performed, for Google Colab only 1 population is used due to the timing constraint
of the Google Colab service. Lastly, a chromosome length of 10.000, no extraction, a window
size of 50 SNPs, and a step size of 1 is used.

7.1.3 Human Genome

To demonstrate the handling of real data with ASDEC a scan is performed of the first chromo
some of the human genome (Yoruba population, 1000Genomes dataset [68]). The scan was
used to identify several candidate genes (top 0.05%). ASDEC with SweepNet was trained with
all evolutionary models that include a sweep, and a window size of 50 in combination with a step
size of 1. A total number of 800.000 data points were generated using postprocessing mode
”grid position normal” (postprocessing based on gridpoints and a range from each gridpoint
as discussed in Chapter 4), with an extent of 2.500 positions of base pairs (bp) in both directions
of each of the 800.00 grid points.

7.2 Quality of ASDEC

The quality of ASDEC in comparisonwith signaturebasedmethods and tools such as SweepFinder2,
SweeD, OmegaPlus, and RAiSD is considered for 5 scenarios. The various scenarios are de
fined by the confounding factor (definition of the confounding factors presented in Chapter 4)
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and the location of the sweep in combination with the confounding factor.

The first confounding factor is the bottleneck (datasets 1 (weak bottleneck) to 60 (severe bottle
neck) in table 4.1) where the sweep is located at the centre of the genome. In Fig.7.1A,B,D no
model misspecification is considered. In Fig.7.1A the TPR rates are provided for an FPR of 5%,
for weak to mild bottlenecks (datasets 1, 9, 12, and 45) equally high TPR values for all tools
are observed. When considering more severe bottlenecks ASDEC achieves a higher degree
of sensitivity in comparison with the signaturebased methods and tools RAiSD, OmegaPlus,
SweeD, and SweepFinder2. For the most severe bottleneck (dataset 60) ASDEC achieves
4.1x, 4.7x, 5.9x, and 5.9x higher TPR values respectively. Generally, ASDEC considerably
outperforms the signaturebased methods and tools for the more severe bottleneck cases and
achieves a similar TPR value for the mild bottleneck scenarios.
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Figure 7.1: Evaluation of the bottleneck confounding factor with varying severity, begin time,
and duration. A shows the TPR (by a 5% FPR), B shows evaluation with model misspecification
(color represents log10( TPRii

TPRij
) were i is the training dataset, and j is the evaluation dataset),

C shows success rate (e = %1×L), and D shows the distance from the real selection target as
a percentage of the total genome length.

Fig.7.1B presents the TPR values when model misspecification is considered, where the diag
onal correspond to the correct model specification. Each cell is defined by its training train data
set (i), and its testing dataset (j), were the value of each cell corresponds to log10(TPRii/TPRij).
Notice that TPRii corresponds to the correctly specified models. The heat map shows that AS
DEC is relatively robust to model misspecification, with an observable decrease in TPR values
when increasing the deviation between the training dataset (i) and the testing dataset (j).

Fig.7.1C provides the success rate, and Fig.7.1D provides the distance error. Bot the success
rate and distance error show similar results as were observed for the TPR values presented
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in Fig.7.1A. Were for the mild bottleneck scenarios, equal performance to a small decrease in
performance is observed (some datasets for example dataset 24 a decrease in performance is
observed). Considering the more severe bottleneck scenarios a clear increase in performance
for both the success rate and the distance error is observed. When the performance of ASDEC
is compared with the signaturebased methods and tools for dataset 57 an increase of 1.4x,
1.8x, 19.4x, and 19.4x for the success rate, and a decrease of 1.3x, 1.6x, 4.0x, and 4.0x is
observed for the distance error (lower is better) compared with RAiSD, OmegaPlus, SweeD,
and SweepFinder2 respectively.
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Figure 7.2: Evaluation of the migration confounding factor with varying population join time. A
shows the TPR (by a 5% FPR), B shows evaluation with model misspecification (color repre
sents log10( TPRii

TPRij
) were i is the training dataset, and j is the evaluation dataset), C shows

success rate (e = 1% × L), and D shows the distance from the real selection target as a per
centage of the total genome length.

Fig.7.2 presents the migration confounding factor. An equal comparison as presented for the
bottleneck confounding factor (Fig.7.1) is used for the migration confounding factor. In Fig.7.2A
the TPR values by an FPR of 5% are presented and show that the performance of ASDEC is
comparable with the results of RAiSD. The tools based on only a single signature (either SFS
or LD) perform poorly for all migration cases. For the hardest migration scenario (dataset 70)
ASDEC achieves 1.1x, 100x, 250x, and 250x the TPR value of RAiSD, OmegaPlus, SweeD,
and SweepFinder2 respectively. Fig.7.2B presents the model misspecification with the correct
model specification on the diagonal it can be observed that ASDEC is relatively robust to model
misspecification, but is more affected more by an increasing population join time of the training
dataset to the evaluation dataset.

Fig.7.2C, and Fig.7.2D show that for both the success rate and distance error ASDEC outper
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forms all signaturebased methods and tools for all datasets. Achieving a 5.26x higher success
rate than the previously highest achieved success rate, which was achieved by RAiSD. While
ASDEC outperforms all signaturebased methods and tools for all datasets it is still confounded
by migration, as observed by the relatively low TPR and success rate, and relatively high dis
tance error.

A neutral evolutionary model with single 5kb or 10kb recombination regions, and a model with
three 5kb recombination regions in combination with an intensity range from 2 to 100, relative
to the rest of the genome. No sweep is present within all datasets and the difference between
the neutral data, and selective data is the presence of recombination. ASDEC was trained
with recombination scenarios where a sweep is present outside of the recombination region
(datasets 97 to 101). In the assessment of the effect of recombination heterogeneity (false
specifying recombination as a selective sweep) on the FPR, the cutoff frequency was set on the
95th percentile. Comparing the neutral data without recombination and the neutral data with
recombination it was concluded that there is a negligible effect on the FPR as shown in table
7.1 where the expected value is 5% for all methods and tools, while ASDEC is slightly more
sensitive than the signaturebased methods and tools. The average values over all selected
runs are as followed: SweepFinder2: 3.81%, SweeD: 3.78%, OmegaPlus: 5.84%, RAiSD: 4.93
and ASDEC+SweepNet: 6.44%.

Table 7.1: The effect of recombination on the FPR
Dataset # 71 74 77 78 81 84 85 88 91
Recombination region size 5kb 10kb 5kb×3
Recombination intensity 2 10 100 2 10 100 2 10 100
SweepFinder2 3.9 4.4 3.8 3.8 3.6 4.2 3.7 3.6 3.3
SweeD 3.9 4.4 3.7 3.7 3.5 4.2 3.7 3.6 3.3
OmegaPlus 5.9 5.4 7.0 5.1 6.2 5.9 5.6 5.4 6.1
RAiSD 5.1 5.5 5.6 6.4 4.0 5.2 4.9 3.1 4.6
ASDEC+SweepNet 6.0 11.0 10.0 7.0 4.0 5.0 3.0 4.0 8.0

For the other recombination scenarios (datasets 92101), a sweep is present. The location
of the sweep is equal to the location of the recombination hotspot at 50kb for dataset 92 to
96, and for dataset 97 to 101 the sweep is at 30kb outside of the recombination hotspot.
Concerning the overlapping recombination hotspot and selective sweep scenarios, no ASDEC
models could be trained due to the accuracy during training not achieving a value higher than
50%. Therefore Fig.7.3A, Fig.7.3C, Fig.7.3D for datasets 92 to 96 are based upon a model
misspecification scenario where the training datasets are 97 to 101 (no overlap). In Fig.7.3A
a TPR value by a 5% FPR value, showing that when the recombination hotspot and sweep
region are overlapping ASDEC in combination with the other tools struggle to correctly classify
the locus of the selective sweep. The performance impact of an overlapping recombination
hotspot and selective region is also reflected in the low success rates, and high distance error
provided in Fig.7.3C and Fig.7.3D.
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Figure 7.3: Evaluation of the recombination confounding factor with varying recombination in
tensity, and a selective sweep within the recombination region (dataset 92 to 96) and outside
the recombination region (datasets 97 to 101). A shows the TPR (by a 5% FPR), B shows eval
uation with model misspecification (color represents log10( TPRii

TPRij
) were i is the training dataset,

and j is the evaluation dataset), C shows success rate (e = 1%×L), and D shows the distance
from the real selection target as a percentage of the total genome length.

For the datasets that have no overlap in the recombination hotspot, and a selective sweep the
TPR value by a 5% FPR value are provided in Fig.7.3A. For the obtained TPR value ASDEC
outperforms or matches the performance of the topperforming signaturebased methods and
tools, where for example for dataset 100 an increase of 1.3x, 1.5x, 6.8x, and 6.8x compared
with RAiSD, OmegaPlus, SweeD, and SweepFinder2 respectively. Fig.7.3B provides the model
miss specification cases equally as elaborated before, the effect of model misspecification with
recombination hotspots with a lower recombination intensity than the correct recombination
model tends to mostly overestimate the TPR. When a higher recombination intensity than the
correct recombination model is considered then the TPR is mostly underestimated.

Fig.7.3C and Fig.7.3D provide results in line with the results observed in Fig.7.3A, where ASDEC
outperforms signaturebased methods and tools. ASDEC only takes a slight performance hit
when considering dataset 101. When considering for example dataset 100 a success rate of
1.1x, 1.3x, 2.1x, and 2.1x and a distance error decrease of 1.9x, 1.9x, 3.9x, and 3.9x for ASDEC
compared with RAiSD, OmegaPlus, SweeD, and SweepFinder2 respectively.

7.3 ASDEC hardware performance

In table 7.2 training in combination with inference is executed for multiple hardware platforms
using Google Colab. For inference, only 1 population in dataset 1 was used, and therefore
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a thread count of 1 is used for all runs because a higher thread count will still default to the
number of populations as discussed in Chapter 6.

Table 7.2: Execution time (in seconds) of different hardware architectures for both inference
and training using ASDEC (* denotes not meeting a time constraint). Times of DPUs include
required CPU execution time and therefore provide the complete required time/throughput.

Hardware Thread
Count

Total Number
of Training
Images

Total
ASDEC
Training
Time

Total
Number

of
Inference
Images

Total
ASDEC
Inference
Time

Images
Per

Second
Inference

LOCAL: AMD
FX 6300
6 cores

1 35000 1092.71579 12911 524.4974 24.6159

Google
Colab
CPU

Virtual CPU

1 35000 1044.257 12911 588.2169 21.9493

Google
Colab
Tesla
P4
GPU

1 35000 409.2712 12911 405.3848 31.8488

ZCU102
DPUCZDX8G
3 DPU CORES,
B4096, 150MHz

1   12911

15%:
17.7934
30%:

17.4680
70%:

17.2821

15%:
725.6061
30%:

739.1187
70%:

747.0736

ZCU102
DPUCZDX8G
1 DPU CORES,
B512, 150MHz

1   12911

15%:
32.7610
30%:

24.9518
70%:

20.4894

15%:
394.0966
30%:

517.4376
70%:

630.1307

Alveo U50*
DPUCAHX8H
2 DPU CORES,
3PEs, 300MHz

1   12911

15%:
17.3053
30%:

17.2240
70%:

17.1775

15%:
746.0720
30%:

749.5935
70%:

751.6228

Table 7.2 shows a vast improvement between running ASDEC on for example a CPU (Google
Colab), and a GPU (Google Colab) with a 1.45x more images per second for inference, and an
improvement of 2.55x faster execution for training. To determine the estimate for the throughput
of the various DPUs first of all a run is performed where the image generation, preprocessing
for the CNN (normalization of the input matrix), and postprocessing is measured on the Google
Colab CPU coming on an average time of 3 runs of 17.14264 seconds. The time required for
the DPU to run is added to this average time giving a final estimate for running the complete
ASDEC framework on a DPU.
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Table 7.3: Inference on multiple hardware platforms considering power consumption measure
ments or estimation in watts, and timing information in seconds as throughput(* denotes not
meeting a time constraint). Execution times are given in seconds. Times of DPUs include
required CPU execution time and therefore provide the complete required time.

Hardware Thread
Count

Total
Number

of
Images

Total
Inference
Time

Images
Per

Second

Total
Average
Power

Consum
ption

Power
Host

Power
Acceler
ator

CPU
AMD FX6300

1 130343 5252.536 24.81525 66.23368 66.23368 
2 130343 2753.697 47.33382 90.40422 90.40422 
3 130343 2292.204 56.86361 90.49029 90.49029 
4 130343 1837.615 70.93054 92.21419 92.21419 
5 130343 1410.788 92.39018 93.98667 93.98667 
6 130343 1414.861 92.12424 93.78833 93.78833 

ZCU102
DPUCZDX8G
3 DPU CORES,
B4096, 150MHz

1 130343

15%:
135.9067
30%:

132.6218
70%:

130.7447

15%:
959.0624
30%:

982.8173
70%:

996.9276

48.4728 74.3055 22.640

ZCU102
DPUCZDX8G
1 DPU CORES,
B512, 150MHz

1 130343

15%:
287.0122
30%:

208.1746
70%:

163.1245

15%:
454.1375
30%:

626.1235
70%:

799.0400

39.8018 74.3055 5.298

Alveo U50*
DPUCAHX8H
2 DPU CORES,
3PEs, 300MHz

1 130343

15%:
130.9793
30%:

130.1581
70%:

129.6888

15%:
995.1420
30%:

1001.4206
70%:

1005.0444

59.2673 74.3055 44.229

Another feature of the ASDEC framework is the CPU multithreading for all stages of the frame
work. To show the scaling of the CPU multithreading inference on 10 populations of datasets
1 is performed. Besides the CPU multithreading, the DPUs are considered for a comparison to
the multicore performance. The DPU throughput is calculated with the theoretical throughput
given in Chapter 6, and CPU execution times for image generation, preprocessing for the CNN
(normalization of the input matrix), and postprocessing. The final CPU time required by the
DPU is measured on the AMD FX 6300 CPU for one thread with a resulting time of 129.3369
seconds (average of 3 runs). For the various DPUs, no multithreading is used, since the host
system delivers the preprocessed images to the design. Therefore having multiple threads
means that there should be a solution to known which image corresponds to which thread, and
this case is not considered within this research. Besides the correct correlation of images and
threads, sufficient bandwidth between the CPU and DPU should be ensured to obtain stable ex
ecution. In table 7.3 the results of the various runs are provided, the idle power consumption of
the AMD FX 6300 is measured and determined to be around 41.178 Watts. The idle power con
sumption was measured by reading the power sensor of the CPU with the lm_sensors software.
The measurement was done after a reboot and after the completion of all startup processes.
The power was measured over a period of multiple minutes and averaged to reduce the effects
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of possible outliers. Table 7.3 shows that increasing the number of threads yields significant
performance gains while the scaling between different thread counts is not linear. The non
linear property only holds when the number of populations (in this experiment 10) modulo of
the number of threads equals zero. When the modulo is not zero there exists an imbalance
between the threads by the number of populations assigned to them (see Chapter 6). While
the throughput can be greatly increased by multithreading a DPU implementation provides the
most throughput with lower power consumption as shown in table 7.3.

Table 7.4: Comparison between signaturebased tools and ASDEC on various different hard
ware platforms(* denotes not meeting a time constraint) for dataset 1 (see table 4.1). Dataset
1 contained an average population size for both the neutral and selective file of 7000 SNPs and
6000 SNPs respectively. Times of DPUs include required CPU execution time and therefore
provide the complete required time.

Tool Thread Count Populations per second
RAiSD  2.8583

OmegaPlus  0.2644
SweeD  0.03699

SweepFinder2  0.02293
ASDEC

CPU: AMD FX
6300

1 0.001904

ASDEC
CPU: AMD FX

6300
6 0.007068

ASDEC
Google Colab
GPU: Tesla P4

1 0.002467

ASDEC
ZCU102

DPUCZDX8G
3 DPU CORES,
B4096, 150MHz

1

15%:
0.07358
30%:

0.07540
70%:

0.07648

ASDEC
ZCU102

DPUCZDX8G
1 DPU CORES,
B512, 150MHz

1

15%:
0.03484
30%:

0.04804
70%:

0.06130

ASDEC
Alveo U50*
DPUCAHX8H
2 DPU CORES,
3PEs, 300MHz

1

15%:
0.07635
30%:

0.07683
70%:

0.07711

In table 7.4 the results are provided, where there is assumed that there is a linear relationship
between the number of populations and the required execution time (as stated at the start of
this chapter). The results in table 7.4 are obtained by the execution of dataset 1 (see table 4.1).
Dataset 1 contained an average population size for both the neutral and selective file of 7000
SNPs and 6000 SNPs respectively. ASDEC on a ZCU102 (efficiency of 30%) in comparison
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with signaturebased tools RAiSD, OmegaPlus, SweeD, and SweepFinder2 performs 0.026x,
0.285x, 2.039x, and 3.289x respectively. ASDEC in combination with a ZCU102 running 3
DPUCZDX8G B4096 cores can outperform SFSbased tools SweepFinder2 and SweeD, while
the LD, and composite based tools OmegaPlus and RAiSD still outperform ASDEC. The usage
of an accelerator such as the ZCU102 (3 DPUCZDX8G B4096 cores (efficiency of 30%)) leads
to a performance increase of 10.7x over CPU AMD FX 6300 running 6 threads.

7.4 Human Genome

In table 7.5 the final results of the scan of the first chromosome of the human genome (Yoruba
population, 1000Genomes dataset[68]) are shown. The scan consists of 800.000 data en
tries, were the top 0.05% of the outliers have been selected resulting in a final number of 500
datapoints. The exact parameters used during the scan are provided at the start of this chap
ter. Within the scan 9 different candidate genes (top 0.05%) were identified. All 9 candidate
genes located by ASDEC have already been identified previously by other methods as targets
of positive selection [75],[76],[77],[78],[79],[80],[81],[82],[83].

Table 7.5: 9 candidate genes in human chromosome 1 of the 1000Genomes project, Yoruba
population (GRCh37/hg19assembly) performed with ASDEC (scores of top 0.05%)
Gene Position Region identified Previous candidate
name (startend, in bp) by ASDEC gene identification

and method used
SCMH1 41,492,87141,627,104 41,570,58041,625,444 Johnson and

Voigh[75], iHS [84]
VAV3 108,113,782108,507,545 108,244,669108,652,426 Scheinfeldt

et al[76], iHS [84]
MAGI3 113,933,475114,224,924 114,013,341114,284,515 Ji et al

[77], iHS [84]
SPAG17 118,496,288118,727,848 118,716,729118,742,182 Kuhlwilm and

Boeckx[78], n/a
FCRL2 157,715,523157,746,922 157,570,369157,926,03 Matos et al.

[79], dN/dS [85]
ALDH9A1 165,631,449165,667,900 165,085,221165,724,772 Landini et al

[80], nSL [86]
DISP1 222,988,431223,179,337 223,016,450223,038,632 Wagner

[81], dN/dS [85]
CDC42BPA 227,177,566227,505,826 227,177,271227,199,703 Grossman

et al[82], CMS
SLC35F3 234,040,679234,460,262 234,368,359234,383,563 RefoyoMartínez

et al.[83], GRoSS

Johnson and Voight [75] showed in their research that by identifying shared selective events
genomic loci (including selective sweeps) could be identified. Scheinfeldt et al. [76] presented
a genomic analysis of highaltitude populations, and showed sweep detection resulted in tar
gets present for adaption for high altitude. Ji et al. [77] showed adaptions to various solar
energyrelated traits, resulting in a genomewide adaptation study concerning the presented
solar energyrelated traits concerning climate ambient temperature (CAT), ultraviolet radiation
(UVR), and sunlight duration (SD). Kuhlwilm and Boeckx [78] identified 571 genes with a nu
cleotide mutation that changed a corresponding amino acid in the protein at high frequency.
Matos et al. [79] showed the presence of a specific gene (FCRLS) is more widespread and
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older than was previously considered across mammals. The presence of this gene is stated
by this research to be functional (under positive selection). Landini et al. [80] present the
changes based on the adoption of cereal and ricebased diets. This research showed selective
sweeps in 2379 individuals from 124 East Asian and South Asian populations. Wagner [81]
proposed a simple and rapid sweep detection test, and applied this test to several thousand
humanchimpanzee genes in different species (orthologs). Grossman et al. [82] developed a
method to detect underlying genes and the advantageous mutations, combining multiple signals
of selection. The method (dubbed Composite of Multiple Signals (CMS)) was used to identify
candidate regions from the international haplotype map. RefoyoMartínez et al. [83] present a
method that can detect signatures of strong local adaptation across the genome. The presented
method graphaware Retrieval of Selective Sweeps (GRoSS) is used on bovine, codfish, and
human population genomic data and new genes were discovered.

Variousmethods are used by earlier research for the identification of targets of positive selection.
Johnson and Voight [75], Scheinfeldt et al. [76], and Ji et al. [77] used the method intergrated
haplotype score (iHS) [84] to identify their candidate genes. Landini et al. [80] performed sweep
detection with the haplotypebased statistic (nSL) developed by FerrerAdmetlla et al. [86].
Both RefoyoMartínez et al. [83] and Grossman et al. [82] deployed their own methods named
GRoSS, and CMS respectively to identify their candidate genes. Lastly Matos et al. [79] and
Wagner [81] used dN/dS [85] to identify their candidate genes for targets of positive selection.
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8 CONCLUSION AND FUTURE WORK

This chapter provides the conclusion of the presented research and also provides various pos
sible improvements that could be made in the future.

8.1 Conclusion

This work presented and accelerated ASDEC a framework for wholegenome sweep detec
tion. The ASDEC framework showed superior performance over the current state of the art
signaturebased methods and tools. ASDEC can be deployed by other researchers for whole
genome sweep detection research. Other researchers should still consider appropriate param
eters for their data when using ASDEC. ASDEC still required long execution times on conven
tional hardware to alleviate this ASDEC accelerated was introduced. ASDEC accelerated was
designed and evaluated using ASDEC and Vitis AI in combination with Xilinx hardware (FPGA,
datacentre accelerator card). Overall the presented work delivered an impressive result for
the use of CNN based sweep detection methods. To conclude this work the various research
(sub)questions are answered. Before answering the main research question all research sub
questions are answered.

The first research subquestion provides the basic question on how to perform sweep detection.
This question provides the initial starting point of the presented work.

”Is it possible to design a CNN that can be used in the detection of selective sweeps?”

To answer this question first of all the ASDEC framework was developed to be able to bring
the data to an input that can be processed by a CNN. ASDEC also includes postprocessing
to reduce the granularity of the raw probabilities outputted by the CNN. With the help of the
ASDEC framework, it now is possible to perform sweep detection with a CNN based method.
For more information on how to perform sweep detection with ASDEC see Chapter 4.

To determine a sufficient CNN architecture for sweep detection with the ASDEC framework the
next research subquestion was formulated.

”How should the CNN be modelled to achieve sufficient results with regards to the qualitative
evaluation?”

Firstly the qualitative evaluation is defined by the sensitivity, accuracy, and success rate of each
model. Next, a handdesigned NAS is used given a variable number of 2Dconvolutional lay
ers, maxpooling layers, 2Dconvolutional filter sizes, dense layers, and the size of each dense
layer. Within the NAS various input datasets were used in combination with varying image
numbers. The NAS resulted in a final CNN architecture dubbed SweepNet which is considered
to be sufficient given the qualitative evaluation. The complete NAS is formulated in Chapter 5.
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Before implementing a CNN accelerator it should be known which part should be accelerated,
therefore the following research subquestion is formulated.

”Which parts of the model should be performed on the accelerator?”

The use of acceleration was only researched for CNN inference because training is only per
formed once while inference needs to be done multiple times for a single trained model and
input dataset. To be able to answer the question of which part of ASDEC should be acceler
ated, profiling embedded in ASDEC was used. The ASDEC profiling showed that around 99%
of the execution time of ASDEC was used for CNN inference (preand postprocessing are re
sponsible for around 0.3% of the execution time). To reduce the execution time of the ASDEC
framework it was determined to accelerate the complete inference on an FPGA or Alveo card
with the help of Vitis AI, with the exception of image normalization which was done on the host
system. Furthermore, preand postprocessing is still done on the host system. In Chapter 6
the profiling of ASDEC is presented.

After deciding which part of the CNN should be accelerated the performance potential should
be considered therefore the following research subquestion is formulated.

”What is the performance potential for acceleration of the developed sweep detection method?”

Comparing ASDEC on a generalpurpose CPU (AMDFX 6300 (6 threads)) and a general
purposeCPU (AMDFX 6300 (1 thread)) in combination with Xilinx ZCU102 FPGA (3DPUCZDX8G
B4096 cores) showed a theoretical decrease of 10.7x in execution time when using an FPGA
accelerator. The performance potential is elaborated in Chapter 7. Furthermore, when exe
cuting ASDEC on a GPU (Tesla P4), the execution time is reduced by 1.3x over a singlecore
CPU (AMD FX 6300). The Tesla P4 was available from Google Colab, greater improvements
when using local hardware can be observed. The improvement with local hardware is due to
constraints of cloud services such as queuing of hardware.

The various research subquestions led up to the main research question presented at the be
ginning of this document is.

”Can an accelerated convolutional neural network outperform currently available methods and
tooling, regarding sensitivity, accuracy, success rate, and execution times for the detection of
a selective sweep?”

It can be concluded that the ASDEC framework which is an accelerated convolutional neu
ral network can outperform the topperforming signaturebased methods and tools concerning
sensitivity, accuracy, and success rate. ASDEC (accelerated) is not able to compete with the
topperforming signaturebased method and tool (for example RAiSD) considering execution
times. Considering the execution time, ASDEC is outperforming the SFSbased methods and
tools (SweepFinder2 and SweeD), because of their computational complexity and being out
performed by the composite (RAiSD) and LDbased (OmegaPlus). Overall it is concluded that
ASDEC can outperform or match the performance of currently available methods and tools.

8.2 Future work

The current state of ASDEC is a fully usable and configurable framework for CNN based sweep
detection. ASDEC in its current state can process ms formatted files, VCF formatted files, and
FASTA formatted files (FASTA formatted files should first be converted by RAiSD). Besides
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datasets generated by coalescent simulation software, ASDEC is also able to process real ge
nomic data. ASDEC combined with SweepNet already showed great performance compared
against signaturebased methods. ASDEC is implemented on various hardware platforms con
sisting of CPU multicore, GPU, FPGA (theoretical), and Alveo (DPU) (theoretical). ASDEC
in its current state already shows promising performance and usability further improvements
could build upon the existing ASDEC framework. The remainder of this section provides further
possible improvements to the ASDEC framework.

A completely new feature for the ASDEC framework that can be implemented is the sorting of
rows within images on genetic similarity. This feature was already discussed in research of
Torada et al. [24] and Flagel et al. [14]. Within these two studies ([24] and [14]), it was dis
cussed that sorting of rows within images based on genetic similarity can greatly improve sweep
detection performance.

ASDEC could also benefit from a more extensive NAS. In this case, the NAS should not nec
essarily be restricted by the operations supported by Vitis AI. By not restricting the NAS to only
Vitis AIsupported operations, a larger set of operations can be researched such as the drop out
layer, L1 regularization, L2 regularization, and various activation functions. This could lead to
more CNN architectures, and possibly CNN architectures with vastly better performance than
the CNN architecture presented in this research (SweepNet). Besides the NAS itself, more
extensive research can be put into the parameters used during preand postprocessing which
was for this research empirically determined. Determining improved parameters for both pre
and postprocessing could greatly improve the performance of ASDEC and maybe even tailor
preand postprocessing for specific confounding factors.

Another improvement to the ASDEC framework could be the scaling of the CPU inference multi
threading. The scaling of the CPU inference multithreading is now optimized for scenarios
where a large number of populations are present within a single file. Optimization for the case
when only one population is present (for now ASDEC will default to one thread) could yield
greatly improved execution times for files with a single population. This optimization could for
example be done internally in ASDEC. ASDEC then should be able to divide one large popula
tion into multiple smaller populations, and later combine the results on the correct positions.

Also, the prepared deployment on for example the Xilinx ZCU 102 FPGA can be performed
providing realworld performance. This realworld performance should be compared with the
theoretical performance presented in this research. Besides the implementation of the DPU
also the multithreading of the DPUs can be research possibly leading to great improvements
in execution times as shown by Wang and Gu [17].

All the mentioned future improvements build upon the already existing ASDEC framework and
should increase the usability of ASDEC further. While in its current state ASDEC is already a
completely functional sweep detection method.
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