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MANAGEMENT SUMMARY 
Within the financial services sector P2P lending platforms are rapidly expanding, since they offer the 

borrower an attractive alternative option for a loan compared to traditional lenders. In recent years it has 

caught the interest of researchers to develop models aiming to reduce the financial risks whilst increasing 

the related profits. Academics and practitioners are increasingly applying Artificial Intelligence (AI) and 

Machine Learning (ML) models in credit risk prediction to classify the creditworthin ess of borrowers. 

These complex machine learning models have already shown remarkable performance but supporting real -

world finance applications remains challenging. To a great degree because the increased performance 

comes at the cost of a clear interpretation and lack of explainability of these models.  
 

In this paper, we explore three state-of-the-art post-hoc model agnostic explainable AI (XAI) techniques 

named Local Interpretable Model Agnostic Explanations (LIME), Anchors, and Shapley Additive 

exPlanations (SHAP) to assess their effect on interpretably and explainability. To do this, we come up with 

an exploratory framework called ARRGUS to assess the impact of the XAI techniques, as no assessment 

framework exists for it at present. We have based ARRGUS on the existing regulations of the Netherlands, 

the European Commission, and the GDPR law on the use of algorithm decision making. ARRGUS is 

composed of the indicators Accuracy, Readability, Robustness, Generalizability, Usability, and Stability to 

assess the effect of the XAI techniques. 
 

To assess the effect of the XAI techniques we apply them to ML-based credit scoring models. The ML 

models consist of both transparent and black box models and are trained on a classification proble m for 

determining whether a customer is creditworthy. We trained the ML models on an open-access dataset 

provided by the P2P lending platform LendingClub based on the period 2007-2018. We prepare the data by 

using some feature engineering techniques and apply the Synthetic Minority Oversampling TEchnique 

(SMOTE) to deal with the class imbalance problem in the dataset.  
 

We use LIME and Anchors to explain the same instances locally since both techniques are only suitable for 

explaining individual predictions. We use SHAP to explain these same instances locally and explain the 

working of the ML models using global explanations. We present multiple comparisons by comparing the 

explanations for the same instances between the different XAI techniques. On top of that, we discuss the 

results in detail to see if explanations are in line with financial logic and compare them with the provided 

input data to get a better understanding of the functioning of the XAI techniques.  
 

Our results show that all three XAI techniques provide fairly consistent explanations that are in line with 

financial logic and are supported by the input data. We observed some dominant features in all three 

techniques, which strengthens our confidence in stable outcomes provided by the techniques . Based on 

ARRGUS, the SHAP technique scores best on the indicators and is the most compliant.  
 

We conclude that XAI techniques generate explanations that are understandable for all users involved or 

affected by the outcome of ML models and certainly add value to the outcome by indicating whether and to 

what extent each input parameter has contributed to the outcome of the prediction. XAI techniques show 

promising and useful results for improving the explainability of decision-making in AI models, however, 

these XAI techniques still need to overcome some practical challenges to support real -world finance 

applications. 
 

While every dataset and use case is unique and has its own characteristics, the applied XAI techniques and 

exploratory framework ARRGUS in our research provide a helpful starting point for further research in the 

explanation and assessment of the working of different ML models.  
 

Keywords: Explainable AI, Peer-to-Peer lending, Credit risk prediction, Machine Learning, LIME, 

Anchors, SHAP 
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 INTRODUCTION 
Presently, the financial services sector represents one of the major big data sources. The global 

digital lending platform market size was valued at 4.87 billion USD in 2020 and is expected to 

expand at a compound annual growth rate of 24.0% from 2021 to 2028 (Grand View Research, 

2021). The outbreak of the COVID-19 pandemic has had a positive impact on the growth of the 

digital lending platform market since institutions have to better meet the needs of their customers. 

 

Researchers try to develop models aiming to reduce the financial risks whilst increasing the 

related profits based on the available data. One of these risks is credit risk (Basel Committee on 

Banking Supervision, 2020). Credit risk is the risk that a loss will be experienced because of 

default by the counterparty in a transaction (Hull, 2018) and represents about 60% of the total 

risks that banks face (Buehler, Freeman, & Hulme, 2008). Credit risk is also the main risk that 

Social Lending Platforms, better known as Peer-to-Peer (P2P) lending, face.  

 

Peer-to-peer (P2P) lending enables individuals to obtain loans directly from other individuals  by 

cutting out the financial institution as the middleman. This makes it possible for any number and 

size of individual lenders to participate in the fundraising process of the borrower. In the 

Netherlands, the volume of P2P lending is limited with a total of 147.5 million EUR in 2018, 

though it is rapidly increasing (Ziegler, et al., 2020). For factors explaining the increasing role of 

P2P platforms in finance, we refer the reader to the work of (Giudici, 2018). Credit risk analysis 

for the lenders' risk concerning their investment is mainly based on the probability of the 

borrowers' failure to pay back the loans. The estimation of this probability is the credit risk 

assessment, the so-called credit scoring. The credit risk assessment problem of financial 

operations, including those supported by social lending platforms, is usually modeled as a binary 

classification problem based on debt repayment (Moscato, Picariello, & Sperlí, 2021). Fully paid 

loans are denoted as “0”, while default loans are represented as “1”.  

 

There are two types of predictive models in credit risk assessment: i) Statistical approaches and ii) 

Artificial Intelligence methods (Namvar, Siami, Rabhi, & Naderpour, 2018). Statistical 

approaches have been developed for a long time, for example, by classifying solvent and insolvent 

companies using financial statement data (Altman, 1968). Since then, researchers have sought to 

improve bankruptcy forecasting models using various statistical approaches, applying logistic 

regression analysis to default estimation (Ohlson, 1980). Statistical approaches remain popular 

because of their high accuracy and ease of implementation; however, they have a major drawback 

since they do not properly cover non-linear effects among different variables (Moscato, Picariello, 

& Sperlí, 2021). 

 

Therefore, current academics and practitioners are exploring and increasingly applying artificial 

intelligence (AI) and machine learning (ML) models in credit risk management (Giudici, 

Financial data science, 2018). Algorithms can be used to classify the creditworthiness of 

counterparties, since credit risk analysis is like pattern-recognition problems, by improving upon 

traditional models that are based on simpler multivariate statistical techniques  (Kruppa, Schwarz, 

Arminger, & Ziegler, 2013). The application of these AI algorithms seems promising and complex 

machine learning models have already shown remarkable performance and made their way into a 

large number of systems (Miller T. , 2019) (Barboza, Kimura, & Altman, 2017).  

 

The downside of this revolutionary performance is that it comes at the cost of a clear 

interpretation of the models' inner workings (Freitas, 2014). These models are better known as 

Black Box models and are described as systems that hide their internal logic to the user (Guidotti, 

et al., 2018). In real-world scenarios, there are numerous instances known which show that society 



 

2 

cannot rely on black box models because of their lack of transparency and the systematic bias they 

have shown (Larson, Mattu, Kirchner, & Angwin, 2016) (Liang, et al., 2018). The absence of 

proper explanations also has ethical implications, reported in the General Data Protection 

Regulations (GDPR), and approved by the European Parliament. Art. 22 of the GDPR provides 

restrictions on decisions based solely on automated processes, including profiling, which concerns 

or affects the data subject (General Data Protection Regulation, 2020). This means that GDPR 

introduces a right to meaningful explanations when one is subject to automated AI systems. The 

Fair Credit Reporting Act (FCRA) of 1970 requires lenders to explain the models they use to 

approve and deny credit applicants (Federal Trade Commission, 2012). Both GDPR and FRCA 

make black box models not suitable in regulated financial services without meaningful 

explanations. To meet the requirement of meaningful explanations, significant efforts are being 

made to make black box models more trustworthy and controllable by humans (Nassar, Salah, 

Rehman, & Svetinovic, 2019).  

 

One of the most promising state-of-the-art approaches to meet this requirement is using the so-

called eXplainable Artificial Intelligence (XAI) techniques, especially in the domain of being 

model-agnostic (Moscato, Picariello, & Sperlí, 2021). Model-agnostic means that the explanation 

is separated from the model and the explanation is extracted post-hoc by treating the original 

model as a black box (Ribeiro, Singh, & Guestrin, 2016). A model is called agnostic when it is 

technologically neutral and can be applied to the predictive output, regardless of which model 

generated it (Bussmann, Giudici, Marinelli, & Papenbrock, 2021). This involves learning an 

interpretable model on the predictions of the black box model, distressing inputs, and seeing how 

the black box model reacts, or both (Ribeiro, Singh, & Guestrin, Model-Agnostic Interpretability 

of Machine Learning, 2016). By separating the explanations from the original model, the 

constraint of restricting the model to be interpretable can be overcome. Otherwise, the result will 

be a limited original model which is less flexible, accurate, and usable.  

 

In this research, we assess if the current state-of-the-art post-hoc model-agnostic XAI techniques 

are a viable solution in P2P lending to explain the decision for credit risk prediction. To achieve 

this, the XAI techniques will be tested on ML classifiers that are trained to predict if a loan will 

be repaid based on an open-access dataset from the P2P lending platform LendingClub. We 

evaluate the XAI techniques in what way and to what extent they can contribute to improving the 

explainability of decision-making by AI models.   

 

1.1 INTRODUCTION TO THE COMPANY 

The research has been conducted with the professional guidance and support of the Amsterdam 

office of Ernst & Young (EY). EY is a worldwide firm with revenues of 31.4 billion USD and 

offers services in five areas: Assurance, Tax & Law, Consulting, Strategy & Transaction, and 

Core Business Services with its 247.000 employees globally. In the Netherlands, EY consists of 

5000+ employees of which around 900 are active in Consulting. This research is carried out 

within Financial Services - Technology Consulting, and specifically within the team ‘Digital & 

Emerging Technologies’ (D&ET). D&ET provides services focused on the use of both new and 

existing technologies in the financial services sector. Results from this research provide the 

company with the latest insights on the application of AI models that can help to better serve its 

clients. 
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1.2 PROBLEM CONTEXT 

Nowadays, there is a shift towards using black box models instead of simpler linear model 

architectures (Shim, 2019). As stated before, black models are less suitable in financial services, 

mainly because of their explanation problem.   

 

One of the current solutions to this explanation problem is to use transparent models, also called 

“simple” statistical learning models, like linear models and simple decision trees. These types of 

models have the possibility of inspecting the components directly, such as a path in a decision tree 

or the weight of a specific feature in a linear model (Ribeiro, Singh, & Guestrin, Model-Agnostic 

Interpretability of Machine Learning, 2016) (Bussmann, Giudici, Marinelli, & Papenbrock, 2021). 

However, providing high interpretability could result in limited predictive accuracy. On the other 

hand, complex ML classifiers like neural networks provide high predictive accuracy at the 

expense of limited interpretability and currently require more research to be understood. 

Therefore, we focus on the more complex ML classifiers in this research.  

 

Decision-making by AI models has become too complicated in human terms, which makes their 

adoption in many sensitive disciplines difficult, raising concerns about an ethical, privacy, 

fairness, and transparency perspective (Islam, Eberle, & Ghafoor, 2019). Instead of using 

transparent models, an alternative approach in machine learning is post-hoc evaluation in the form 

of model-agnostic models as we already introduced.  

 

A lot of interest has been directed to the understanding of black box models via post-hoc 

explanations. However, the transition from explaining traditional models to explaining black box 

models is complicated. Problems within the P2P lending domain are mainly caused by: 

- Non-uniform terminology (Arrieta, et al., 2020) (Ribeiro, Singh, & Guestrin, 2016) 

(Islam, Eberle, & Ghafoor, 2019); 

- No assessment framework for model explainability (Bhatt, Weller, & Moura, 2020) 

(Singh, Sengupta, & Lakshminarayanan, 2020) (Islam, Eberle, & Ghafoor, 2019) (Nassar, 

Salah, Rehman, & Svetinovic, 2019) (Setzu, et al., 2021) (Molnar, Casalicchio, & Bischl, 

2020) (Scholbeck, Molnar, Heumann, Bischl, & Casalicchio, 2020); 

- Data quality problems in P2P lending (Zhang, Wang, Zhang, & Wang, 2020) (Namvar, 

Siami, Rabhi, & Naderpour, 2018) (Namvar & Naderpour, 2018) (Zhou, Zhang, & Luo, 

2018) (Malekipirbazari & Aksakalli, 2015) (Ha, Lu, Choi, Nguyen, & Yoon, 2019).  

Non-uniform terminology: what is explainability?  

Throughout the literature, non-uniform terms are used for concepts such as model explainability, 

interpretability, and transparency. Some consider these as the same and stick to one, others 

differentiate among them, and still, others use them ambiguously. Until there is a consensus on the 

concrete definition of these terms, the quantification of explainability will remain another open 

and difficult challenge (Islam, Eberle, & Ghafoor, 2019). This research cannot solve this problem, 

but it provides the most used definitions of the terms often used in XAI communities in Chapter 2. 

Evaluating XAI explanations: what model explains it better? 

Post-hoc explanations are receiving great interest in understanding black box machine learning 

models since this type of explanation offers more freedom in modeling choices compared to 

transparent models (Bhatt, Weller, & Moura, 2020). Post-hoc explainability algorithms can be 

divided into Model-Agnostic and Model-Specific (Arrieta, et al., 2020). We focus on Model-

Agnostic explainability algorithms in this research. Given the many candidate explanation 

functions, it is difficult to pick the explanation function that best captures the working of the 

model. The main problem is that there is no framework available to assess how well the model is 

explained. 
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Data quality of P2P lending platform: quantity versus quality? 

Within P2P lending platforms, different challenges arise concerning traditional credit risk 

predictions methods due to the sparse and imbalanced data. Next to that, the default risk in P2P 

lending platforms increases compared to the traditional methods because of a lender, possibly, not 

being able to effectively evaluate the risk level of the borrowers. The main challenge concerns the 

evaluation of loan applicants’ creditworthiness due to the lack of borrower’s credit history whose 

results could not improve by adding more features. Therefore, P2P platforms produce a large 

amount of unlabeled data that require analysis for supporting lenders’  real-time decisions 

(Moscato, Picariello, & Sperlí, 2021). 

 

It has become clear that more research is needed on the working and decision-making process of 

AI models to become more transparent. Without a proper explanation, it is impossible to 

guarantee that the AI model makes the correct decisions and assumptions. Even if the AI model 

makes the correct decisions, poor data quality can cause an incorrect decision. XAI is a promising 

technique, however, the lack of a proper assessment framework makes it difficult to show the 

added value XAI techniques can add. In our opinion, the main problem can be summarized as:   

 

“Users of ML classifiers and those affected by its outcomes lack the tools and an evaluation 

framework to assess the performance of models that are being used in P2P lending credit risk 

prediction, causing that the impact and fairness of the decisions from ML classifiers cannot be 

determined adequately.” 

1.3 RESEARCH DESIGN 

To solve the main problem, we formulate the main research question of this research as: 

 

“In what way and to what extent can explainable AI algorithms improve the explainability of 

decision-making in AI models used in P2P credit risk prediction?” 

 

We identify ‘improve the explainability’ as a solution in which the model’s prediction becomes 

more explainable by a transferable, qualitative understanding of the relationship between model 

input and its prediction. In this research, we develop an evaluation framework that is suitable for 

practical implementation to measure to assess in what way and to what extent XAI leads to more 

explainable models.  

 

We identified the following research objectives to answer the main question.  

 

Identify: currently used credit risk prediction models, regulation on the use of AI models, most 

used ML classifiers to predict if a loan will be repaid in a P2P platform, and most promising XAI 

techniques. 

 

Develop: an evaluation framework to assess the added value of the different XAI techniques on 

ML classifiers. 

 

Investigate: the difference in how explainable an ML classifier becomes by applying different 

XAI techniques. 

 

Conclude: on XAI techniques as a viable solution against the limited interpretability of black box 

models and the potential of more explainable models.  
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1.4 ASSUMPTIONS AND SCOPE 

This research considers some decisions to ensure that the scope is manageable, valuable, and can 

be completed within time constraints. Therefore, the scope of this research is limited to:  

 

- The current available XAI techniques that are classified as post-hoc. This research, 

therefore lets pre-model and in-model outside of the scope. Pre-model methods are 

independent of the actual model and In-models are explainable models that are integrated 

into the model itself. Both these types of models are too specific and are more 

concentrated on the actual development of an explainable model. The actual development 

of an explainable machine learning model is not feasible, given the time constraints on 

this research.  

 

- The current available model-agnostic algorithms from the literature can be classified as a 

component of XAI. Based on (Arrieta, et al., 2020), this research lets model-specific 

algorithms outside of the scope. Model-Specific algorithms are outside of the scope since 

it would require this research to focus on a single ML classifier, while this research 

develops an evaluation metric from a broad perspective to assess the explainability of 

more ML classifiers. Therefore, it is decided to focus on model-agnostic algorithms.   

 

- The currently available ML classifiers in the domain of credit risk prediction, specific to 

P2P platforms. The choice for P2P is because it is an emerging market and therefore 

research will likely help the market to become more mature. Next to that, the P2P market 

must base its models on different data compared to the traditional credit risk prediction 

models that financial institutions are using.  

 

- Lastly, for this research, we are dependent on publicly available market data. Based on the 

availability of the dataset from LendingClub, period 2007-2018, the decision is made to 

focus on credit risk predictions in P2P platforms. This dataset is also used in other studies, 

for example: (Moscato, Picariello, & Sperlí, 2021).  

 

For this research, a couple of assumptions have been made to simplify the real world, whilst 

keeping the research realistic. These assumptions are the following: 

 

- As of 31-12-2020, LendingClub has retired its P2P platform (LendingClub , 2021). To the 

best of our knowledge, this retirement has nothing to do with the performance of the P2P 

platform. Since the dataset for this research contains data until 2018, we assume that 

LendingClub is a market example for other companies that are active as P2P lending 

platforms. 

 

- As stated by (Islam, Eberle, & Ghafoor, 2019), the quantification of explainability is an 

open challenge until there is a consensus on the concrete definition of terms as 

explainability and transparency. We clarify those terms in Chapter 2 and assume that these 

are sufficient as a definition for this research.  
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1.5 METHODOLOGY AND THESIS OUTLINE 

The use of ML classifiers in the financial services sector, and especially the use of XAI 

techniques, are still a relatively new topic, meaning that there is limited scientific literature 

available about the applications of XAI techniques on ML classifiers within credit risk prediction 

in a P2P lending domain. Therefore, we additionally consult research reports from other sectors 

on XAI. For the credit risk predictions that are currently used, we consult the related work in the 

literature. At the moment of writing the European Commission has released both a whitepaper on 

a European approach to AI (European Commission, 2020) and an Ethics Guideline for trustworthy 

AI (High-level expert group on artificial intelligence, 2019). In combination with the information, 

we can receive from the Dutch regulators, De Nederlandsche Bank (DNB) and Autoriteit 

Financiële Markten (AFM), we come up with the evaluation framework ARRGUS. We train the 

found ML classifiers on the publicly available dataset of the P2P platform LendingClub since a lot 

of information is available to support our research with this dataset. To assess the effect of the 

XAI techniques we apply them to ML-based credit scoring models. After which we will assess the 

effectiveness of XAI techniques based on the ARRGUS framework. All these steps are required to 

enable answering the main research question and are captured in Figure 1. 

 

Table 1 presents the research questions with their research objective and the general thesis 

outline. In this chapter, we elaborated on the motivation for using post-hoc model-agnostic XAI 

techniques based on the problems that occur in the current situation. In Chapter 2 we discuss the 

current methods for credit risk prediction, an in-depth literature review on XAI techniques and we 

look at the properties of human-friendly explanations from a social science perspective. In 

Chapter 3 we develop the valuation framework ARRGUS to be able to assess the XAI techniques. 

In Chapter 4 we discuss all the choices made regarding the dataset and the chosen ML classifiers 

and present their results when trained on the dataset. In Chapter 5 we experiment with 

implementing the XAI techniques on the different ML classifiers and evaluate the results based on 

the ARRGUS framework. In Chapter 6 we present our conclusions, and the discussion and 

recommendations for further research are elaborated on in Chapter 7.  

Figure 1: Methodology of this research. 
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Chapter Research questions Research objective 

1. Introduction What are the current challenges 

with using AI models in P2P 

lending credit risk prediction? 

Summarize the current challenges with 

the use of AI models in P2P lending 

credit risk prediction. 

2. Theoretical 

Review 

 

What are the differences in 

credit risk prediction for 

traditional institutions versus 

P2P lending platforms? 

To gain insight into credit risk 

prediction for P2P lending platforms. 

What is XAI and how can it 

play a role in credit risk 

prediction? 

To gain insight into XAI and how it can 

effectively be used for credit risk 

prediction. 

3. Evaluation 

Framework 

How can we design a 

framework in which we can 

assess the explainability of a 

classifier? 

Design a valuation framework to assess 

the explainability of an XAI technique 

outcome. 

4.  Data & 

Models 

Which data and what ML 

classifiers do we need as a 

basis to experiment with the 

evaluation framework? 

Select the most suitable dataset and ML 

classifiers to experiment with the 

different XAI techniques and be able to 

validate the outcomes of the ML 

classifiers. 

5. Experimental 

results 

Which XAI technique performs 

the best on explainability, 

based on our valuation 

framework ARRGUS? 

Have an overview of how the different 

XAI techniques are performing on a 

P2P lending credit risk prediction 

dataset. 

6. Conclusion “In what way and to what extent can explainable AI algorithms improve 

the explainability of decision-making for ML classifiers used in P2P 

credit risk prediction?” 

7. Discussion 

and Further 

Research 

Discussion and Further Research on the application of XAI in P2P credit 

risk prediction.  

Table 1: Outline of the research 

.
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 THEORETICAL REVIEW 
 

2.1 TRADITIONAL CREDIT RISK MODELING 

Financial lending institutions, lenders, governments, and other players that participate in the 

financial lending market seek to develop and use models to efficiently assess the probability that 

the borrower, also called the counterparty, will show some undesirable behavior in the future 

(Barboza, Kimura, & Altman, 2017). These credit scoring systems aim to prevent bad debt loss by 

identifying, analyzing, and monitoring customer credit risk (Kruppa, Schwarz, Arminger, & 

Ziegler, 2013). The benefits obtained by developing a reliable credit scoring system are: i) 

reducing the cost of credit analysis, ii) enabling faster decision, and iii) ensuring credit collections 

and diminishing possible risk (Nanni & Lumini, 2009). 

 

Lending institutions make use of credit scoring systems to provide them with the Probability of 

Default (PD) of the counterparty and to satisfy a minimum-loss principle for their sustainability. 

Therefore, credit scoring systems are important in the decision-making for credit applications to 

manage credit risks and are directly influencing the amount of non-performing loans that can lead 

to bankruptcy (Munkhdalai, Munkhdalai, Namsrai, Lee, & Ryu, 2019). Credit models from 

traditional financial institutions estimate creditworthiness based on a set of explanatory variables, 

also called features, from application forms, customer demographics, and transactional data from 

customer history (Lessmann, Basesens, Seow, & Lyn C. Thomas, 2015).  

 

In regulated financial lending, The Basel III Capital Accord requires financial institutions to 

estimate, respectively, the Probability of Default (PD), the Exposure at Default (EAD), and the 

Loss Given Default (LGD) as inputs in the measurement of credit risk. PD models are well 

researched compared to EAD and LGD models and are used as the performance indicator for this 

research.  

 

The main methods to develop PD models are classification and survival analysis. Survival 

analysis estimates not only whether but also when a counterparty might default. On the other 

hand, classification analysis represents the classic approach and benefits from an unmatched 

variety of modeling methods to estimate whether a counterparty defaults (Lessmann, Basesens, 

Seow, & Lyn C. Thomas, 2015).  

 

Within classification analysis the credit risk models can be classified as a binary classification 

problem: borrowers that have a high probability of performing financial obligations are assigned 

to a “good credit” group and those that have a low probability of performing financial obligations 

to a “bad credit” (Akkoç, 2012). 

 

2.2 DIFFERENCES BETWEEN TRADITIONAL AND P2P CREDIT RISK MODELING 

Over the years, traditional financial institutions have divided their reference markets over specific 

business activities, increasing their expertise and the accuracy of their ratings. Differently, P2P 

platforms are based on a ‘universal’ banking model, which is a model that encompasses all 

banking activities, and makes developing an accurate rating model a more difficult task (Giudici, 

Financial data science, 2018). 

 

However, P2P lending as a financial model has been studied extensively in recent years. Just like 

the classical financial institutions, credit risk evaluation in P2P lending commonly involves 

statistical approaches and machine learning methods that aim to predict the creditworthiness of 



 

9 

 

borrowers by considering loan evaluation as a binary classification problem. Compared to the 

plentiful literature on loan evaluation for traditional banking institutes, there are a limited number 

of studies on credit risk prediction in P2P lending (Namvar & Naderpour, 2018).  

 

The main challenge for a lender in a P2P lending marketplace is making an appropriate risk 

assessment that can support its decision-making. The lenders aim to assess the expected return 

and credit risk of each loan accurately and this can be done by using traditional loan evaluation 

models, which are a subset of the earlier described classification methods. However, classification 

methods may be too unsophisticated to meet the needs of personal lenders in P2P lending (Guo, 

Jiang, Chen, Li, & Luo, 2019).  

 

The traditional loan evaluation techniques used by financial institutions assume a balanced dataset 

and distribution of misclassifications. However, P2P lending usually occurs in situations with a 

high level of information asymmetry. Meaning that lenders do not have complete information 

about the borrowers’ credit history. The result is an imbalanced dataset and can make it difficult 

for the model to effectively discriminate between good borrowers and potential defaulters 

(Namvar, Siami, Rabhi, & Naderpour, 2018). Next to that, P2P lending often contains irrelevant 

and redundant features which reduce the classification accuracy. Applying a feature engineering 

strategy helps to eliminate redundant features and select an optimal subset of relevant features  

(Ha, Lu, Choi, Nguyen, & Yoon, 2019).  

 

Malekipirbazari & Aksakalli (2015) already found that using a machine learning approach is 

much more effective than relying on the existing financial metrics, like FICO grades, which 

LendingClub provides to help lenders making loan investment decisions. Nevertheless, it remains 

difficult to design new models for credit risk prediction in P2P lending due to the high number of 

missing values and class-imbalanced data (Moscato, Picariello, & Sperlí, 2021). Therefore, it tries 

to compensate for the high number of missing traditional used values by adding more features that 

can tell something about the borrower’s creditworthiness like social media usage. In chapter 4 we 

discuss the different types of models that we used in modeling the credit risk prediction and 

discuss the feature engineering strategy we applied to the dataset of LendingClub. Adding more 

features is out of the scope of this research. 

 

To conclude, although P2P lending is different from traditional loans from commercial banks in 

terms of lending style, they are both loan relations generated based on credit essentially, and the 

biggest risk is still the borrower’s credit risks. By considering a feature engineering strategy, 

omitting available features, to increase the accuracy on an imbalanced dataset in P2P lending, the 

same methods can be applied as in credit risk modeling for traditional loans.  

 

2.3 EXPLAINABLE AI  

In the previous sections, we discussed the concept behind credit risk modeling that can be used in 

both traditional financial institutions and P2P lending platforms. However, just showing the 

results if a borrower is ‘good’ or ‘bad’ is not satisfactory for most lenders and borrowers. 

Explaining how the models generate their answers is the next step in improving these models.  The 

best explanation of a simple model is the model itself, since it perfectly represents itself, and is 

easy to understand. For complex models, the original model cannot be used as its own explanation 

because it is not easy to understand (Lundberg & Lee, 2017). Instead, a simpler explanation model 

must be used, which we define as an interpretable approximation of the original model (Lundberg 

& Lee, 2017).  
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Model-agnostic XAI is proposed as an interpretable approximation of the original model since 

these techniques do not limit the effectiveness of the current generation of machine learning 

models. XAI tries to create a collection of machine learning techniques that i) produce a more 

explainable model while maintaining a high level of prediction accuracy, and ii) enable humans to 

understand and effectively manage artificially intelligent models (Arrieta, et al., 2020). Figure 2 

confirms the rising interest in XAI by showing the number of contributions in the literature on 

XAI in recent years. 

 

 
Figure 2: The number of total publications whose title, abstract, and/or keywords refer to the field 

of XAI during recent years. *Data retrieved from Scopus (April 19th, 2021) by using the search 

terms indicated in the legend. 

 THE DEFINITION OF EXPLAINABILITY AND XAI 

Before proceeding with our literature study, it is convenient to first establish a common point of 

understanding on what the term explainability stands for in the context of AI. We use the 

definition of explainability by (Islam, Eberle, & Ghafoor, 2019) because it captures clearly and 

extensively what an explainable model should contain. We extend this definition of explainability 

by the definition based on the extensive literature research by (Arrieta, et al., 2020) to get as clear 

a definition as possible against which we can measure the aim of this research. We define 

explainability for this research as follows: 

 

Explainability: An AI model’s prediction is explainable in the extent of transferable qualitative 

understanding of the relationship between model input and prediction that, at the same time, is 

both an accurate proxy of the decision-maker and comprehensible to humans. 

 

Given the same lack of consensus on the definition of the term Explainable Artificial Intelligence, 

we make use of the definition of the term given by (Gunning & Aha, 2019) as a starting point: 

 

XAI: Has the goal to create a collection of new or modified ML techniques that produce 

explainable models that, when combined with effective explanation techniques, enable end-users 

to understand, appropriately trust, and effectively manage the emerging generation of AI systems.  

 

In our research, explainability is connected to post-hoc explainability because it covers the 

techniques used to convert a non-interpretable model into an explainable one by using an 

interpretable approximation of the original model. The design of a model is beyond the scope of 

this research, similarly to the focus on managing the emerging generation of AI systems.  
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Thus, the term ‘Explainable Artificial Intelligence’ refers to an explanatory agent revealing 

underlying causes to its or another agent’s decision-making. It is important to realize that the 

solution to explainable AI is not to just have more AI. Ultimately, it can be seen as a human-agent 

interaction problem. Human-agent interaction can be defined as the intersection of artificial 

intelligence, social science, and human-computer interaction in which XAI is just one problem 

within human-agent interaction, as can be seen in Figure 3. 

 

Therefore, we specify the definition of XAI for this research to: 

 

XAI: Explainable Artificial Intelligence is an algorithm that produces explainable models that 

details or reason the working of ML models to make their functioning clear or easy to understand 

in an interaction between humans and an agent.   

 

 
Figure 3: The scope of Explainable Artificial Intelligence, source: (Miller T. , 2019). 

 TAXONOMY OF EXPLAINABILITY APPROACHES  

To classify different explainability methods the literature proposes several taxonomies.  In section 

2.2 we already concluded that we model credit risk as a classification problem. Therefore, we 

searched in the literature on XAI techniques that can be applied to a classification problem. 

Classification techniques are, generally, not absolute and can vary widely depending upon the 

characteristics of the methods; furthermore, they can be classified into several overlapping or non-

overlapping classes simultaneously (Singh, Sengupta, & Lakshminarayanan, 2020). We briefly 

discuss different kinds of taxonomies based on the available literature, taking (Singh, Sengupta, & 

Lakshminarayanan, 2020) as a basis.  

Model-Specific vs Model-Agnostic  

Model-specific explanations methods are based on the parameters of individual models and 

therefore can only be used on this specific model type. As described earlier, model-agnostic 

means that the explanation is separated from the model, and the explanation is extracted post-hoc 

by treating the original model as a black box (Ribeiro, Singh, & Guestrin, Model-Agnostic 

Interpretability of Machine Learning, 2016). Model-agnostic models do not have direct access to 

the internal model weights or structural parameters and are therefore not limited to a specified 

model architecture. 

 

In this research, we focus on Model-Agnostic explanation techniques.  
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Pre-model vs in-model vs post-model 

Pre-model methods are independent of the actual model and do not depend on the specified model 

architecture to use it on. In-models are explainable models that are integrated into the model 

itself. Finally, post-models are implemented after building a model. Post-models can potentially 

develop meaningful insights about what exactly a model learned during the training.  

 

In this research, we focus on Post-model, better known as Post-Hoc, explanation techniques. 

Global Methods vs Local Methods 

Global methods try to explain the behavior of the model in general by making use of the overall 

knowledge of the model, its training, and the associated data. An example of a global method is 

feature importance, which tries to determine the features that are in general responsible for better 

performance of the model among all the different features. Local methods are relevant for 

explaining a single outcome of the model. This can be obtained by designing methods that can 

explain the reason for a particular prediction or outcome. Local methods are, for example, 

interested in specific features and their characteristics.    

 

In this research, we focus on Local Methods since we want to provide a borrower/lender with an 

explanation for its situation. However, we do not exclude global methods since the XAI technique 

SHAP, which will be later explained, also supports global explanations. 

Surrogate Methods vs Visualization Methods 

Surrogate methods include different models as a so-called ‘ensemble’ and are used to analyze 

other black-box models. The black box models can be understood better by interpreting the 

surrogate model’s decisions by comparing the black-box model’s decision and the surrogate 

model’s decision. An example of a surrogate method is the decision tree. The visualization 

methods are not a different model; however, it helps to explain some components of the models 

by visual understanding like activation maps.  

 

In this research, we focus on Surrogate explanation techniques. 

 

To conclude, we will focus on post-hoc model-agnostic techniques, using local and surrogate 

methods. We do not exclude global and visualization methods since we believe that these can 

complement the other methods in gaining a more complete explanation. In the next section, we 

explore the different techniques covered by post-hoc model-agnostic techniques based on local 

and surrogate methods. 
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2.4 POST-HOC EXPLAINABILITY TECHNIQUES FOR MACHINE LEARNING MODELS  

Post-hoc explainability targets models that are not readily interpretable by design . This can be 

done by applying different techniques to increase their interpretability, such as text explanations, 

visual explanations, local explanations, explanations by example, explanations by simplification , 

and feature relevance explanations techniques (Arrieta, et al., 2020). These techniques are 

inspired by the methods humans use to explain systems and processes by themselves. Below is a 

brief description of each of them.  

Explanations by simplification  

Explanations by simplification explain the model by building a new system based on the trained 

model to be explained. This new, simplified model usually follows an optimizing strategy to its 

antecedent functioning, while reducing its complexity, and keeping a similar performance score. 

The simplified model is, in general, easier to implement due to the reduction in complexity 

concerning the model it represents. Explanations by simplification are considered the broadest 

technique under the category of post-hoc model-agnostic methods (Arrieta, et al., 2020). 

Simplified models are, sometimes, only representations of certain sections of a model and 

therefore Local explanations are also present in the category of Explanations by simplification. 

 

Most of the techniques used in Explanations by simplification are based on rule-extraction 

techniques. One of the most known contributions to this technique is that of Local Interpretable 

Model-Agnostics Explanations (LIME) (Ribeiro, Singh, & Guestrin, 2016), which will be further 

discussed in section 5.1.1. (Arrieta, et al., 2020) concludes that the popularity of model 

simplification is evident, given it temporally coincides with the most recent literature on XAI, 

including techniques such as LIME. This reveals that this post-hoc explainability approach is 

regarded to continue playing a central role in XAI. 

Feature relevance explanations 

Feature relevance explanation clarifies the inner functioning of the model by computing a 

relevance score for its managed variables. It aims to describe the functioning of an opaque model 

by ranking or measuring the influence, relevance, or importance each feature has in the prediction 

output by the model to be explained (Arrieta, et al., 2020). A variety of techniques is found within 

this category, each resorting to a different algorithmic with the same targeted goal. One of the 

most known contributions to this technique is that of Shapley Additive exPlanations (SHAP) 

(Lundberg & Lee, 2017), which will be further discussed in section 5.1.2. 

Visual explanations  

Visual explanations explain the model by applying techniques that aim at visualizing the model’s 

behavior. According to the review of (Arrieta, et al., 2020), most literature makes use of 

dimensionality reduction techniques to make simple visualizations that can be easily interpreted 

by humans. Visual explanations are considered the most suitable way of introducing complex 

interactions within the variables involved in the model to users not acquainted with ML modeling 

(Arrieta, et al., 2020). 

Local explanations 

Local explanations explain the model by dividing the solution space into smaller subspaces and 

from there give explanations to less complex solution subspaces that are relevant for the complete  

model. This subspace can be a single or several outcomes.  

Counterfactual examples 

Counterfactual examples, also known as explanations by example, explains a single decision with 

a statement of how the value of the input features should change for a desirable outcome to occur. 

Its statement is a causal argument of the form: ‘if A has not occurred then B would not have 
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occurred.” (Nassar, Salah, Rehman, & Svetinovic, 2019). It is interesting to look up the smallest 

change to the feature values that would flip the outcome of the prediction. Counterfactual 

explanations are computed by minimizing a loss function which is composed of the norm of 

change in the feature vector and the norm that is composed of the difference between the instance 

prediction and the targeted prediction. 

Text explanations  

As the name suggests, text explanations explain the model by learning to generate text 

explanations, including generating symbols that represent the functioning of the model, that help 

to explain the outcomes of the model.  

 

In this research, we use Explanations by simplification, Feature relevance explanations, Visual 

explanations, and Local explanations as post-hoc model-agnostic techniques. Counterfactual 

examples and Text explanations are out of scope for this research. A visualization of the different 

techniques is shown in Figure 4. 

 

In this section, we described the post-hoc model-agnostic techniques to explain systems and 

processes that are based on methods humans use. We use these post-hoc techniques in our 

research in Chapter 5, since they are designed to be understandable by humans. However, both the 

research of (Molnar, Casalicchio, & Bischl, 2020) and (Islam, Eberle, & Ghafoor, 2019) state that 

these explanations are not necessarily human-friendly. We, therefore, discuss the properties of 

human-friendly explanations in the next section.   

 

 
Figure 4: Conceptual diagram showing the different post-hoc explainability approaches available 

for an ML model Source: (Arrieta, et al., 2020). 
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2.5 PROPERTIES OF HUMAN-FRIENDLY EXPLANATION 

As stated in section 2.3.1, XAI can be seen as a human-agent interaction problem and is based on 

social science interaction. Humans usually prefer short explanations that disagree with the current 

situation to a situation in which that event would not have occurred. Since explanations are a 

social interaction among the explainer and the recipient of the explanation, the social context can 

also be seen as an important factor for a good explanation. However, a human-friendly 

explanation is selective in nature and does not consider all factors for a particular prediction  

(Islam, Eberle, & Ghafoor, 2019).  

 

(Miller T. , 2019) conducted a literature survey into this topic and based on their research and the 

research of (Islam, Eberle, & Ghafoor, 2019) we summarize the six properties that are important 

for explainable AI and the way explanations are constructed in a human-friendly way.  

 

- Explanations should be contrastive. 

This means that people do not ask why event X happened, but they rather ask why even X 

happened instead of some event Y. This has important social and computational consequences 

for explainable AI.  

 

- Explanations should be selective. 

People seldom, if ever, expect an explanation that consists of a complete and actual cause of 

an event. Humans are adept at selecting one or two causes from many causes to be the 

explanation. People tend to use inherent features rather than extrinsic features to explain the 

object. An inherent feature describes “how an object is established” and an extrinsic feature is 

for example a historical factor.  

 

- Explanations should be social. 

Explanations are a transfer of knowledge, presented as part of social interaction between the 

explainer and the recipient of the explanation. Therefore, explanations are presented relative 

to the explainer’s beliefs about the recipient of the explanation beliefs. 

 

- Probabilities should be accompanied by a causal consequence. 

Truth and likelihood are important factors in explanations. Probabilities are also a factor that 

does matter, however referring to probabilities or statistical relationships in an explanation is 

not as effective as referring to causes. The most likely explanation is not always the best 

explanation for a person, and importantly, using statistical generalizations to explain why 

events occur is unsatisfying, unless accompanied by an underlying causal explanation for the 

generalization itself. 

 

- Explanations should be truthful & consistent. 

An explanation should be as truthful as possible. However, selectiveness can sometimes come 

first which might exclude some of the true reasons. 

 

- Explanations should be general and feasible. 

Acceptable explanations are general and feasible. 
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2.6 CONCLUSION ON THEORETICAL REVIEW 

In this chapter, we focused on answering two research questions from the first of which read as 

follows: “What are the differences in credit risk prediction for traditional institutions versus P2P 

lending platforms?”. Based on sections 2.1 and 2.2 we conclude, although P2P lending is 

different from traditional loans from commercial banks in terms of lending style, that they are 

both loan relations generated based on credit essentially, and the biggest risk is still the 

borrower’s credit risks. By considering a feature engineering strategy to increase the accuracy on 

an imbalanced dataset in P2P lending, the same methods can be applied as in credit risk modeling 

for traditional loans. 

 

We conclude the second research question: “What is XAI and how can it play a role in credit risk 

prediction?” as XAI being an algorithm that produces explainable models that details or reasons 

the working of ML models to make its functioning clear or easy to understand in an interaction 

between humans and an agent. This interaction is crucial for all the stakeholders in credit 

prediction to be able to understand why and on which basis decisions regarding credit and its 

associated risks are made. Based on sections 2.3, 2.4, and 2.5 this research use Explanations by 

simplification, Feature relevance explanations, Visual explanations, and Local explanations as 

post-hoc model-agnostic techniques to see if XAI can play a role for all stakeholders to better 

understand the working behind credit risk prediction. 

 

In this chapter, we considered XAI with the question of devising viable criteria for evaluating the 

quality of explanations. Even though the usual consumer of explanations is the human end-user, 

frameworks are required when it is difficult to have a human in the loop to judge ‘good’ from 

‘bad’ explanations. In the following chapter, we will construct a framework to be able to judge if 

an explanation, generated by an XAI algorithm, explains the model clearly and can thus be judged 

as good. We build this framework based on the information from this chapter and the guidelines 

given by the different regulations. 

 



 

17 

 

 EVALUATION FRAMEWORK 
 

3.1 REGULATION ON FINANCIAL MODEL EXPLAINABILITY  

Regulation can be seen as the minimum standard a model must comply with. Therefore, we 

consult the current regulations on model explainability issued by regulators from the Netherlands 

and the European Commission. Next to that, we also consult the GDPR framework to understand 

what indicators these institutions and this regulation use to define a minimum standard for model 

explainability. 

 REGULATION BY FINANCIAL INSTITUTIONS IN THE NETHERLANDS 

The DNB has formulated a few general principles, called ‘SAFEST’, for the responsible use of AI 

in the financial sector. These principles together constitute a framework in which companies can 

responsibly design the use of AI. However, compliance with these principles is not a hard 

requirement (DNB, 2019). The following principles are part of SAFEST: 

 

- Soundness: AI applications must be reliable and accurate and operate predictably within the 

limits of applicable laws and regulations. 

- Accountability: Organizations must be accountable if AI applications unexpectedly 

malfunction since this could harm different stakeholders. 

- Fairness: AI applications must not unintentionally disadvantage certain groups of people.  

- Ethical: Ensure that customers and other stakeholders are treated appropriately and not 

harmed using AI. 

- Skills: Everyone in the organization must have the right level of expertise and must know the 

benefits and limitations of the AI systems they work with. 

- Transparency: Organizations must be able to explain how and why they use AI in their 

business processes, and how exactly these applications work. 

 

The SAFEST principles are general and leave room for their own interpretation and therefore do 

not provide a strong guideline. The DNB and AFM together have carried out an exploration of AI 

in the insurance sector and propose some points of interest on both model and social 

explainability (DNB & AFM, 2019). Summarizing the report, the main points to take into 

consideration are: i) To what extent is it possible to trace relationships between input parameters 

and model results and ii) what level of explainability is appropriate for that process?  

 

The report states it is important for models that are used to accept or refuse a decision, to have the 

possibility to indicate for individual input parameters whether and to what extent they have 

contributed to the outcome of the model as well as which changes in input parameters are 

necessary to achieve a change in the model outcome. The reason behind this is that these kinds of 

models have a direct impact on the individual and are often used in automated decision-making.  

Social explainability goes beyond the ability to explain the technology or the outcomes of AI 

models. It touches on the question of whether the outcomes of models are seen as socially and 

ethically acceptable and fair. Having an explanation with an intuitive cause-and-effect 

relationship increases the social acceptance of the parameter.  

 

To the best of our knowledge, the AFM on its own does not have any further documentation 

available on its view on model explainability. The AFM is optimistic that we can use the GDPR 

as a regulatory building block for financial regulation to provide more guidance on model 

explainability (Ethics in AI, a way to avoid regulation?, 2019).  
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 REGULATION BY THE EUROPEAN COMMISSION  

The European Commission recognizes that the transparency of algorithms is crucial since they 

affect more and more decisions in our lives (European Commission, 2018). Therefore, the 

European Commission proposed a regulatory proposal to provide AI developers, deployers, and 

users with clear requirements and obligations regarding specific uses of AI (European 

Commission, 2021). The proposed framework is a risk-based approach and consists of four layers 

of risk, namely: Unacceptable risk, High-risk, Limited risk, and Minimal risk.  

 

Credit scoring is identified as a High-risk AI system in the category of Essential private and public 

services and therefore will be subject to strict obligations before such an AI system can be put on 

the market (European Commission, 2021). Below is a list of obligations the credit scoring AI 

system should adhere to: 

 

- Adequate risk assessment and mitigation systems. 

- High quality of the datasets feeding the system to minimize risks and discriminatory 

outcomes.  

- Logging of activity to ensure traceability of results. 

- Detailed documentation providing all information necessary on the system and its purpose 

for authorities to assess its compliance.  

- Clear and adequate information to the user.  

- Appropriate human oversight measures to minimize risk.  

- High level of robustness, security, and accuracy. 

 

Once the AI system will be on the market, authorities will oversee the market surveillance, its 

users will ensure human oversight and the monitoring of the AI system, and providers will have to 

have a post-market monitoring system in place. Providers and users also will have to have the 

opportunity to report serious incidents and malfunctioning. However, according to the European 

Commission, the earliest time this regulation could become applicable to operators is the second 

half of 2024 (European Commission, 2021).  

 

At present, other national governments - such as the United States, the United Kingdom, Canada, 

China, Singapore, France, and New Zealand - are still making plans focusing on developing 

ethical standards, policies, regulations, or frameworks and are therefore not taken into 

consideration (Dutton, 2018). 

 GENERAL DATA PROTECTION REGULATION FRAMEWORK 

As stated earlier, the GDPR already includes some regulations to provide more guidance on model 

explainability and is often referred to as the minimum requirements that an interpretable model 

must meet. Considering GDPR Article 15.1(h) and Recital 71 the individual data subject, the 

individual whom it concerns, has the right to ask the organization how the system came to its 

decision. Next to that, the earlier mentioned GDPR Article 22 gives the individual the right not to 

be subject to a decision based solely on automated processing. Meaning that the individual may 

ask for a human to review the AI’s decision to determine if the system made a mistake or not 

(General Data Protection Regulation, 2020). To be compliant with the GDPR, it requires all 

stakeholders to understand how the result or decision came about.  

 SUMMARIZING REGULATION ON FINANCIAL MODEL EXPLAINABILITY  

Based on section 3.1, we conclude that there is no clear overview or detailed framework on what 

makes a model explainable or how to measure this. We have consulted the most applicable 

institutions and regulations and summarized them in Table 2. 
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DNB DNB & AFM European Commission GDPR 

Safest Principle 

Soundness 

Accountability 

Fairness 

Ethical 

Skills 

Transparency 

Model explainability 

For every individual input 

parameter whether and to 

what extent they have 

contributed to the outcome. 

 

For every input parameter 

which changes are necessary 

to achieve a change in the 

model outcome. 

 

Social explainability 

Having an explanation with 

an intuitive cause-and-effect 

relationship. 

 

High-risk AI system: Essential 

private and public services 

Adequate risk assessment 

and mitigation systems. 

High quality of the datasets. 

Logging of activity. 

Detailed documentation on 

the system and its purpose 

for authorities. 

Clear and adequate 

information to the user. 

Appropriate human 

oversight. 

High level of robustness, 

security, and accuracy. 

Article 15.1(h) & Recital 71 

The individual data subject 

has the right to ask the 

organization how the system 

came to its decision. 

 

Article 22 

The individual data subject 

has the right to ask for a 

human to review the AI’s 

decision. 

 

Table 2: Summary of the most important and applicable regulation on explainable models  

 

Based on Table 2 we conclude that, from a regulatory standpoint, for a model to be explainable, it 

should at least present the following: 

 

- The outcome shows for every individual input parameter whether and to what extent they have 

contributed to the outcome. 

- The outcome shows for every input parameter which changes are necessary to achieve a 

change in the model outcome. 

- The individual data subject can ask the organization how the system came to its decision and a 

human to review this decision. 

 

The other requirements from Table 2 are achieved by fulfilling the requirements listed above or 

are outside the scope of this study. In the next section, we will come up with some indicators to 

measure model explainability to meet and extend these requirements, thereby enabling us to build 

a framework.  

 

3.2 EVALUATING MODEL EXPLAINABILITY  

As we have seen in section 3.1, there is no real consensus on how to evaluate model 

explainability, nor it is clear how to measure this properly. Several exploratory studies have been 

carried out on this subject and will be used as a starting point in this section.  Starting at a higher 

level, (Doshi-Velez & Kim, 2017) propose three main levels for the evaluation of explainability, 

as outlined in section 3.2.1. 

 

 LEVELS OF EVALUATION OF EXPLAINABILITY 

Application-level evaluation (real task): Put the explanation into the product and have it tested 

by the end-user. This level requires a good experimental setup and a human understanding of how 

to assess quality. How good a human would be at explaining the same decision can be used as a 

baseline. 
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Human-level evaluation (simple task): The difference from the application-level evaluation is 

that these experiments are not carried out with domain experts, but with non-professionals. An 

example would be to show a non-professional user a different explanation and let the user choose 

the best one. 

 

Function level evaluation (proxy task): This level does not require humans and works best when 

the class of model that is used has already been evaluated by someone else in a human level 

evaluation. For example, if the user understands decision trees, an indicator for explanation 

quality may be the depth of the tree. A shorter tree would get a higher score in this case. Of 

course, a constraint can be added so that the predictive performance of the tree remains above a 

certain threshold and does not decrease too much compared to a larger tree. 

 

We will focus on the explanations for individual predictions on the function level using the 

relevant properties of explanations that we consider for the model evaluation.  

 PROPERTIES OF EXPLANATIONS 

We want to explain the predictions of a machine learning model.  With the research of (Robnik-

Šikonja & Bohanec, 2018) and (Arrieta, et al., 2020) we take a closer look at the properties of 

explanation methods and explanations. We will use these properties to judge how good an 

explanation method or explanation is. One of the challenges is to find a method to calculate and 

measure all these properties since that is currently not the case.  

 

Properties of machine learning explanations 

Expressive power: the structure of the explanations the method can generate. For example, an 

explanation method could generate IF-THEN rules, decision trees, or something else.  

 

Translucency: describes the degree to which the explanation method relies on looking into the 

machine learning model. Explanation methods that rely on decomposing the internal 

representation of the model are highly translucent. Methods that treat the model as a black box, 

manipulating inputs and observing the predictions, are the lowest level of translucent. High 

translucency has the advantage that the method can make use of more information to generate 

explanations. Low translucency has the advantage that the explanation method is more portable.  

 

Portability (or Transferability): is the range of machine learning models on which the 

explanation method can be used.  

 

Algorithmic complexity: deals with the computational complexity of the method that generates 

the explanation. 

 

Properties of explanation methods / Quality of explanations  

Accuracy: the ability that an explanation of a given decision generalizes to other yet unseen data. 

For example, if explanations are in the form of rules, are these rules general, and do they cover 

unseen data. Low accuracy can be acceptable if the goal is to explain the working of the black-box 

model. In this case, only fidelity is important.  

 

Fidelity: How well does the explanation approximate the prediction of the black box model? 

Having a high fidelity can be regarded as one of the most important properties of an explanation 

because an explanation with low fidelity is useless to explain the machine learning model. Fidelity 

and accuracy are closely related. A black-box model that has high accuracy and its explanation a 

high-fidelity score, results in its explanation also having high accuracy. Local fidelity means that 
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the explanation only approximates the model prediction for a subset of the data or an individual 

data instance. Local fidelity does not imply general fidelity.  

 

Consistency: The degree to which similar explanations are generated on different models that 

have been trained on the same task. Similar models may produce similar predictions; however, 

explanations of similar instances may vary because of the variance of certain explanation 

methods. Highly consistent means that the explanations are very similar.  

 

Stability: The degree to which similar explanations are generated for similar instances. While 

consistency compares explanations between models, stability compares explanations between 

similar instances for a fixed model. High stability means that a slight variation in one of the 

features of an instance does not considerably change the explanation.  

 

Comprehensibility: The readability of explanations is difficult to define and measure since many 

people agree that it depends on the audience. Usually, a human can comprehend 7, plus or minus 2 

pieces of information at a time (Miller G. A., 1956). Measuring comprehensibility can include the 

size of the explanations (e.g., number of decision rules) or by testing how well people can predict 

the behavior of the machine learning model from the explanation. Next to that, the 

comprehensibility of the features used in the explanation should also be considered.  

 

Certainty: Does the explanation reflect the certainty of the machine learning model about its 

predictions? Several machine learning models give a prediction without a statement that tells how 

confident the model is about the correctness of the prediction. An explanation that includes the 

model’s certainty on the 5% probability of default of one lender is as certain as the 5% probability 

of default on another lender, with different feature values. 

 

Degree of Importance: To what degree does the explanation reflect the importance of features or 

parts of the explanation? For example, does the generated explanation reflect the importance of 

the explained features? 

 

Novelty: To what degree does the explanation reflect whether an explained instance is from a new 

region, meaning that it is far removed from the distribution of training data. If that is the case, the 

model may be unreliable, and the explanation may be useless. Novelty and certainty are related in 

that a higher novelty is more likely to result in a low certainty of the model due to the lack of 

data.  

 

Representativeness: How many instances, outcomes for different individuals, do an explanation 

cover? A model explanation may cover the entire model, just a part of it or only an individual 

prediction.  

 

Fairness: From a social standpoint, explainability can be considered as the capacity to reach and 

guarantee fairness in ML models. In a certain literature strand, an explainable ML model suggests 

a clear visualization of the relations affecting a result, allowing for fairness or ethical analysis of 

the model at hand.  

 

Accessibility: A minor subset of the reviewed contributions argues for explainability as the 

property that allows end-users to get more involved in the process of improving and developing a 

certain ML model. 
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3.3 MODEL EXPLAINABILITY EVALUATION FRAMEWORK: ARRGUS 

In this section, we propose an evaluation framework by which we evaluate the performance of the 

XAI models later in this research. Provided with the knowledge of sections 3.1 and 3.2, we 

conclude that there is currently no evaluation framework available that is based on measurable 

indicators on human-friendly explainability and considers the minimum requirements from a 

regulation perspective for model explainability evaluation. Using all the different properties of 

sections 3.1 and 3.2 on its own makes the evaluation, to our opinion, unclear and not user 

friendly, and is thus not sufficient for comparing different XAI models.  

 

Therefore, we thought of what the end-user, an average borrower/lender on a P2P platform, would 

like to see in its explanation on the outcome of why a loan is granted or rejected. The most 

important factors for the end-user are that it would like to see how its score is build up, how the 

class of a good and bad borrower is defined, what needs to change to switch class , and potentially 

a visualization of the different aspects to facilitate the understanding. These conditions will at the 

same time help with the regulatory demand that a human must be able to justify how a decision is 

arrived at. We use these preferences as building blocks for our evaluation framework to determine 

if the XAI models help with obtaining more explainable model outcomes. 

 

Based on the above, we propose our evaluation framework ARRGUS in which we combine the 

earlier mentioned properties into six different indicators namely: Accuracy, Readability, 

Robustness, Generalizability, Usability, and Stability. The objective of ARRGUS is to evaluate 

model explainability at a more general level. Future studies could look at the different indicators 

of ARRGUS and measure them quantitively at the level of the different properties. However, this 

is outside the scope of this research.  

 

The goal behind ARRGUS is to measure to which extent the different XAI methods can fulfill the 

requirements mentioned earlier and validate the effectiveness of XAI models. The proposed 

model explainability evaluation framework ARRGUS can be found in Table 3.  

 

3.4 CONCLUSION ON THE EVALUATION FRAMEWORK 

In this chapter, we focused on answering the research question “How can we design a framework 

in which we can assess explainability of a classifier?”. Based on Chapter 2, sections 3.1 and 3.2 

we proposed the evaluation framework ARRGUS, by which we are able to assess the 

explainability of an XAI technique outcome on the indicators: Accuracy, Readability, Robustness, 

Generalizability, Usability, and, Stability. In the next chapter, we will discuss the different ML 

classifiers that are available for a classification problem and model them on the LendingClub 

dataset.  
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Indicator Explanation Based on properties To what degree present?  

On a scale of 1 (Very Poor) 

to 5 (Very Good) 

Accuracy To what degree can the XAI technique 

explain how well the explanations reflect 

the behavior of the prediction model? 

2.5: Explanations should be 

truthful & consistent. 

3.1: The individual data 

subject can ask the 

organization how the system 

came to its decision and a 

human to review this 

decision. 

3.2: Accuracy, Novelty, 

Translucency, Fairness, 

Fidelity. 

Some questions to support 

the measurement:  

 

How well do the 

explanations reflect the 

behavior of the prediction 

model? 

 

How well does the XAI 

model generate similar 

explanations for similar 

instances? 

 

Are explanations reflecting 

the certainty of a model 

about its predictions? 

Readability To what degree can the XAI technique 

generate explanations that are 

understandable for the targeted audience 

group, the average borrower/lender? 

2.5: Explanations should be 

contrastive, Explanations 

should be selective, 

Explanations should be 

social. 

3.1: The individual data 

subject can ask the 

organization how the system 

came to its decision and a 

human to review this 

decision. 

3.2: Accessibility, 

Expressive power, 

Comprehensibility. 

 

Some questions to support 

the measurement:  

 

Can the explanation be 

customized to give a 

selective number of causes in 

the form of a top 5? 

 

Are the explanations 

understandable for the 

targeted audience group, the 

average borrower/lender? 

Robustness To what degree can the XAI technique 

explain whether and to what extent each 

individual input parameter has 

contributed to the outcome.  

2.5: Probabilities should be 

accompanied by a causal 

consequence 

3.1: The outcome shows for 

every individual input 

parameter whether and to 

what extent they have 

contributed to the outcome, 

the outcome shows for every 

input parameter which 

changes are necessary to 

achieve a change in the 

model outcome, the 

individual data subject can 

ask the organization how the 

system came to its decision 

Some questions to support 

the measurement:  

 

Does the model give one or 

more causes why the 

customer is labeled as a 

good/bad credit group? 

 

Can the explanation be 

customized to show for each 

individual input parameter 

whether and to what extent 

they have contributed to the 

outcome? 

 

Can the explanation show for 

every input parameter which 
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and a human to review this 

decision. 

3.2: Degree of Importance. 

 

changes are necessary to 

achieve a change in the 

model outcome? 

 

Can the probabilities used 

for the outcome be used as 

causes for the final 

explanation? 

Generalizability To what degree can the XAI technique 

generate similar explanations on 

Machine Learning models that are 

trained on the same task.  

2.5: Explanations should be 

general and feasible. 

3.1: The individual data 

subject can ask the 

organization how the system 

came to its decision and a 

human to review this 

decision. 

3.2: Consistency, 

Representativeness. 

Some questions to support 

the measurement: 

  

To what degree are similar 

explanations generated that 

are general and feasible? 

Usability To what degree can the XAI technique 

be used effectively on a range of 

machine learning models as an 

explanation method? 

2.5: - 

3.1: The individual data 

subject can ask the 

organization how the system 

came to its decision and a 

human to review this 

decision. 

3.2: Algorithmic 

complexity, Portability. 

Some questions to support 

the measurement: 

  

How many instances can the 

explanation of the XAI 

technique cover? 

Stability To what degree can the XAI technique 

generate similar explanations for similar 

instances and do these explanations 

reflect the same amount of certainty of a 

model about its predictions? 

2.5: - 

3.1: The individual data 

subject can ask the 

organization how the system 

came to its decision and a 

human to review this 

decision. 

3.2: Stability, Certainty. 

Some questions to support 

the measurement:  

 

To what degree are similar 

explanations generated on 

different models that have 

been trained on the same 

task? 

Table 3: our proposed model explainability evaluation framework ARRGUS 
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 DATA & MODELS 
 

4.1 CREDIT SCORECARD CONSTRUCTION 

We illustrate the development of a credit scorecard in the context of application scoring  based on 

(Lessmann, Basesens, Seow, & Lyn C. Thomas, 2015) one of the most comprehensive classifier 

comparison studies to date. Let 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝑅𝑛 be an n-dimensional vector with borrower 

application characteristics and let 𝑦 = {0; 1} be a binary variable that differentiates good (𝑦 = 0) 

and bad loans (𝑦 = 1). A credit scorecard estimates the probability 𝑝(𝑦 = 1|𝑥𝑖) that a default 

event will be observed for loan 𝑖. To decide on an application, a credit analyst compares the 

estimated default probability to a threshold 𝜏. The gets approved if 𝑝(𝑦 = 1|𝑥𝑖) ≤ 𝜏 and rejected 

otherwise. The task of estimating 𝑝(𝑦 = 1|𝑥𝑖) belongs to the field of classification. A scorecard is 

a classification model that results from applying a classification algorithm to a dataset 𝐷 =
(𝑦𝑖 , 𝑋𝑖)𝑖=1

𝑛  of past loans.  

4.2 CLASSIFICATION ALGORITHMS FOR CREDIT SCORING 

In this section, we focus on the different classification algorithms that are used as credit scoring 

models for predicting the default probability of new credits. In parallel with the growing credit 

volume of the financial sector, many different credit scoring models have been developed by 

banks and researchers to evaluate credit applications.  

 

The industry standards are the traditional statistical methods: Linear Discriminant Analysis (LDA) 

and Logistic Regression Analysis (LR) (Akkoç, 2012) (Kruppa, Schwarz, Arminger, & Ziegler, 

2013) (Lessmann, Basesens, Seow, & Lyn C. Thomas, 2015). An alternative to these models are 

the newer ML classifiers, like Decision Trees (DT), Random Forest (RF), Extreme Gradient 

Boosting (XGBooster), Support Vector Machines (SVM) ) and Artificial Neural Networks (ANN) 

(Akkoç, 2012) (Kruppa, Schwarz, Arminger, & Ziegler, 2013) (Barboza, Kimura, & Altman, 

2017) (Petropoulos, Siakoulis, Stavroulakis, & Klamargias, 2018) (Wang, Zhang, Lu, & Yu, 

2020).  

 

Both LDA and LR models are criticized because these make use of the assumption that there is a 

linear relationship among variables. This can result in lower predictive accuracy in credit risk 

prediction if there is no linear relationship present (Akkoç, 2012) (Namvar, Siami, Rabhi, & 

Naderpour, 2018). Looking at the last two decades, the mentioned ML classifiers are becoming 

more popular in research and show impressive results (Lessmann, Basesens, Seow, & Lyn C. 

Thomas, 2015). The analysis of (Doko, Kalajdziski, & Mishkovski, 2021) on ML classifiers for 

credit risk prediction shows that RF and Boosters, like XGB, are achieving the highest 

performance scores. The same analysis shows that the other mentioned ML classifiers are showing 

similar performance. In our research, we use the LR, DT, RF, XGB, SVM, and ANN as ML 

classifiers on which XAI algorithms are applied. The remainder of this section briefly explains the 

different ML classifiers that are applied in our research. 
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 TRANSPARENT CLASSIFIERS 

Logistic Regression Analysis 

LR is a commonly used model in credit risk modeling and is one of the most popular statistical 

modeling techniques for classification problems, in which the probability of an outcome depends 

on a group of independent variables. The equation of an LR model is given by: 

 

𝑙𝑛
𝑃(𝑦 = 1 | 𝑥𝑖)

1 − 𝑃(𝑦 = 1 | 𝑥𝑖)
= 𝑏0 + ∑ 𝑏𝑚𝑥𝑖𝑚

𝑚

 
   (1) 

𝑤ℎ𝑒𝑟𝑒 

𝑃(𝑦𝑖 = 1 | 𝑥𝑖)  the probability of default for borrower 𝑖 
𝑥𝑖𝑚      a vector of the borrower-specific independent variables    𝑥𝑖1,, … , 𝑥𝑖𝑚 

b0    the intercept parameter 

bm    the regression coefficients 𝑓𝑜𝑟 𝑚 = 1, … , 𝑀, 

 

The objective of an LR model in credit scoring is to determine the conditional probability of a 

specific observation belonging to a class, given the values of the independent variables of that 

credit applicant (Lee & Chen, 2005). The LR performs well in many applications, however, its 

accuracy drops when the relationships in the data are non-linear.  

Decision Tree 

Based on the dataset, a decision tree can identify and derive a visualize with a series of if-then-

else decision rules. The model is fitter if the tree is deeper since there are more complex if -then-

else decision rules. A decision tree has a flowchart structure that mimics the activity of human 

thinking. This algorithm uses the tree representation to make classification choices. An example 

of a decision tree can be seen in Figure 6 since a Random Forest makes use of multiple decision 

trees. 

 

 BLACK BOX CLASSIFIERS 

Random Forest 

RF is based on decision tree models and can be used for both classification and regression 

problems. In the building process of decision trees, the RF models randomly choose k independent 

variables from all available variables and then uses these sub-variables to build a decision tree. 

This process is independently repeated m times to obtain m decision tree classifiers. The elements 

of each set have a label if they are correct or not. For each element, the m decision trees vote on a 

label. The label with the most votes is chosen as the preferred classification of the element 

(Zhang, Wang, Zhang, & Wang, 2020) (Barboza, Kimura, & Altman, 2017). Figure 6 shows an 

example of an RF that consists of three DTs. 

Extreme Gradient Boosting 

XGB is a decision-tree-based ensemble ML-classifier that uses a Gradient Boosting framework. 

Gradient Boosting is an approach where new models are trained to predict the errors of prior 

models. Something that a Random Forest does not consider. The XGBooster algorithm was 

developed as a research project at the University of Washington in 2016. Since then, it is being 

applied as the driving force for several cutting-edge industry applications. The extreme comes 

from a special case of boosting where errors are minimized by a gradient descent algorithm. 
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Support Vector Machines 

The SVM method is currently one of the most popular ML algorithms for solving classification -

related problems in almost every field (Zhang, Wang, Zhang, & Wang, 2020). The SVM separates 

the data into two regions, one for each class, by trying to locate a maximum hyperplane with the 

maximum margin width between instances of the two classes to avoid the misclassification of 

samples to the greatest extent possible (Malekipirbazari & Aksakalli, 2015). Figure 6 shows an 

example of an SVM.  A larger margin width decreases the complexity of the model and the 

overall risk of errors. In practice, it is usually not possible to separate the data by a hyperplane 

and a soft margin is used instead. In this situation, a positive slack is added to the instances on the 

wrong side of the margin. This slack increase is proportional to how far the corresponding 

instance is from the margin. The goal is to minimize the sum of these slacks while maximizing the 

width of the margin (Malekipirbazari & Aksakalli, 2015). However, the SVM is less suited for 

large datasets because the training complexity of SVM is highly dependent on the size of the 

dataset.  

Artificial Neural Networks 

ANNs are mathematical representations inspired by the functioning of the human brain. ANN is 

composed of several processing elements and these elements come together within the frame of 

particular rules, the so-called nodes, or neurons. Generally, an ANN consists of three layers of 

interconnects neurons as shown in Figure 5. The number of layers can be increased by adding 

more ‘Hidden Layers’. The first layer is called the ‘Input Layer’, where external information, 

corresponding to corresponding to independent variables in statistics, is received. From each 

neuron in the input layer, signals are sent to the second layer, called the “Hidden Layer”. In the 

hidden layer, the information received from the input layer is processed. The third layer called the 

“Output Layer” transmits all the information outside the networks. This corresponds to a 

dependent variable in statistics. Since the 1990s, ANNs have been widely used in financial 

prediction studies and most of those studies report that prediction accuracies of ANNs are better 

than conventional statistical techniques, like LR and LDA. 

Figure 5: An example of an SVM Figure 7: Structure of ANN with one hidden layer 

 

Figure 6: Simplified example of an RF 
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4.3 DATASET DESCRIPTION  

The growth in P2P lending markets has generated a large amount of data on real -world P2P 

lending transactions. We used the dataset of LendingClub for our experimentation, which is 

obtained from the online data scientist community of Kaggle. The dataset contains over 2.25 

million borrower records and 151 different features in total, all issued through the LendingClub 

platform. From each loan the outcome is known, either fully paid or charged off as a loss. With 

this information, we build the different ML classifiers that focus on achieving high accuracy in 

classifying customer instances as either the class “Fully Paid” or “Charged Off”.  

 

The dataset of LendingClub consists of 151 features that try to indicate the creditworthiness of the 

consumer to the best of its ability. The dataset from LendingClub is highly imbalanced, a common 

problem in credit risk prediction as described earlier, and a lot of features have missing values. 

This suggests that a limited number of available features can be used. Therefore, before we started 

configuring the data we plotted the distribution of the features to gain a better understanding of 

the values that are present in the dataset for each feature. Next to that, we plotted the boxplots of 

the continuous values to gain a better understanding of which values of the features are causing a 

default based on simple statistics. For the discrete features, we plotted the percentage of the total 

loans that are marked as “Charged Off” loans for the different values of the feature. By this, we 

could get a better understanding of how the distribution of the values of the features are impacting 

and/or causing the outcome of someone being a creditworthy borrower. To get useful input data, 

we performed several steps to configure the data as correctly as possible based on the information 

we obtained from our observations that we just described.  

4.4 CONFIGURATION OF THE DATA 

As discussed in section 2.2, we configure the data by applying a feature engineering strategy in 

our research. The goal of feature engineering is to improve data reliability by cleaning data and 

selecting the subset of features that have the most discriminatory power (Namvar, Siami, Rabhi, & 

Naderpour, 2018). In credit risk prediction, ignoring irrelevant features can increase classification 

accuracy and decrease computational complexity. Next to that, by applying feature selection the 

dimensionality of the data is reduced which helps to prevent the risk of overfitting. We applied six 

important steps to configure our data: removal of data leakage (4.4.1), data cleaning (4.4.2), 

correlation analysis (4.4.3), data transformation (4.4.4), normalizing the data (4.4.5), and 

oversample the minority class (4.4.6).  

 DATA LEAKAGE  

We identified the features that may cause data leakage. Data leakage occurs when information is 

used in the model's training process which would not be expected to be available at the time when 

we would predict the outcome of the class in which the customer belongs, for example, by 

allowing the model to learn beyond the training set by also learning from the test set. This causes 

the predictive scores to overestimate the model's utility when run in a production environment . It 

sounds like “cheating” but most of the time users are not aware of it, so it is called “leakage”. 

This ‘leaking’ of data defeats the purpose of having a test set since it is described as unseen data. 

Only the features in our dataset that are available for the lender at the moment of deciding to grant 

a loan to a borrower are kept in the dataset. The LendingClub has stopped as a P2P lending 

platform and no clear documentation is available on the available information the lender received 

at the time. Therefore, we have selected the features that we assumed available to the lender based 

on the explanation of the different features. A sample of the features we selected, including their 

description1, can be found in Table 4. The total list of selected features can be found in Table A1.  

 

 
1 The LendingClub dictionary can be accessed via https://resources.lendingclub.com/LCDataDictionary.xlsx  

https://resources.lendingclub.com/LCDataDictionary.xlsx
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The result is a new feature space of 31 features. We observed that only a few earlier studies that 

relied on data from LendingClub have considered data leakage. This could mean that their training 

models have made unrealistically good predictions. One of the studies that did take data leakage 

into account is that of (Namvar, Siami, Rabhi, & Naderpour, 2018), however, they also labeled the 

features grade and interest rate as leaky data. We have checked online videos and articles to 

conclude that both grade and interest rates were available for the lender before they decided to 

invest (Rose, 2018), (Hogue, 2019), (Rose, 2020). Therefore, grade and interest rate are not 

labeled as leaky data and kept in the dataset for this stage of our feature engineering strategy. 

 DATA CLEANING  

The dataset is cleaned by removing missing and null values from the dataset. We plotted the 

missing values per feature based on the ratio of missing and “NaN” values . We observed that the 

features employment length and mortgages accounts had a too high percentage of missing values 

to drop these rows and required some additional work.  

 

Feature Description Data Type 

annual_inc The self-reported annual income provided by the borrower during 

registration. 

Numeric 

earliest_cr_line The month the borrower's earliest reported credit line was opened Numeric 

grade LC assigned loan grade Categorical 

installment The monthly payment owed by the borrower if the loan originates.  Numeric 

loan_amnt The listed amount of the loan is applied for by the borrower.  Numeric 

loan_status Current status of the loan Categorical 

mort_acc The number of mortgage accounts. Numeric 

purpose A category is provided by the borrower for the loan request.  Categorical 

revol_bal Total credit revolving balance Numeric 

term The number of payments on the loan. Values are in months and can be 

either 36 or 60. 

Categorical 

title The loan title provided by the borrower Categorical 

Table 4: Sample features from LendingClub dataset 

For employment length, we assumed that a missing record means that the employment length is 

less than a year and filled the missing values with the minimum value of 0. For mortgages 

accounts, we assumed to fill the missing values with the mean value of the feature of 1.55. There 

are multiple ways of filling these missing values. For example, by filling the missing values with 

a mean value based on a strong correlation the feature has with another feature. However, we 

decided to keep it as simple as possible. All the remaining rows which contained missing values 

were dropped.  

 

Next to removing the missing values from the dataset, we also checked the number of unique 

values for each feature to prevent overfitting. The features id and employment title had too many 

unique values and were removed from the dataset in this step. 
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 DATA CORRELATION 

The next step is removing the features that are highly correlated with each other . Correlated 

features will not necessarily worsen the model, but they will not always improve it either. We 

computed for both the numeric and categorical features the correlation with respect to each other, 

as well as the correlation to loan status to gain a better understanding of the data and its features.  

 

The correlation between numerical features is obtained by calculating the Pearson’s R correlation 

coefficient. It calculates the covariance between feature X and Y and divides this by the standard 

deviation of feature X times feature Y. The Pearson’s R equation is: 

 

𝜌𝑋,𝑌 =  
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
 

(2) 

𝑤ℎ𝑒𝑟𝑒, 
𝑐𝑜𝑣(𝑋, 𝑌)   the covariance between feature X and Y 

𝜎𝑋     the standard deviation of feature X 

𝜎𝑌    the standard deviation of feature Y 

 

We plotted the correlation between numerical features in Figure 8 in the form of a heatmap.  

 

 
Figure 8: Heatmap of the correlation between numerical features from the LendingClub dataset , 

rounded off to one decimal place. 

From Figure 8 we observe that the features fico range low and fico range high are perfectly 

correlated, and we, therefore, combined these into a new feature fico score with the equation:   

 
𝑓𝑖𝑐𝑜 𝑠𝑐𝑜𝑟𝑒 = 0.5 ∗ fico_range𝑙𝑜𝑤 + 0.5 ∗ fico_rangehigh    (3) 

 

The features loan amount and installment are also highly correlated. The description in Table A1 

logically explains this correlation. The value for the installment, the monthly payment, depends on 

the total loan amount and explains the correlation between the two features. The features interest 

rate and grade are perfectly correlated, and we decided to drop the feature grade. 
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The correlation between categorical features is obtained by using Cramér’s V correlation 

coefficient, which is based on a chi-square test. The equation for Cramér’s V is:  

 

𝑉 =  √
𝜒2

𝑁 min (𝑐 − 1, 𝑟 − 1)
 

   (4) 

𝑤ℎ𝑒𝑟𝑒, 

𝜒2 =  ∑
(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖

𝑘

𝑖=1

 
   (5) 

 

N     is the sample size involved in the test  

𝑐     number of columns 

𝑟   number of rows 

𝑂𝑖     observed frequency counts in each category 

𝐸𝑖     expected frequency counts in each category 

𝑘     number of categories 

 

The highly correlated categorical features, with a correlation value equal or greater than 0.9, are 

grade and subgrade, purpose and title, and zip code and address state. We decided to remove the 

feature subgrade to prevent the overfitting of the model. We decided to remove the feature title 

since this information can already be obtained from the fourteen fixed values of the feature 

purpose. In the United States, there is less regulation on the usage of personal information and 

therefore the features zip code and address state are present in the dataset. We decided to drop the 

feature zip code since it contains more unique values compared to address state, which could lead 

to overfitting the model. For Europe, it is questionable whether address state may be used since it 

contains personal information and may create conflicts to be compliant with the GDPR. Our 

experiments showed no significant predictive power from the feature address state and therefore 

we decided to also drop this feature.  

 

The correlation to our target variable loan status is presented in Figure 9. From this figure, we 

observe that the features interest rate, term, and dti are having the highest correlation with loan 

status. Based on their low values we conclude that all the features have little if any linear 

correlation with our target feature loan status and therefore none of the features have to be 

removed based on this observation. 

 
Figure 9: Correlation between the feature loan status and the other features 

 

The features installment, grade, fico range low, fico range high, subgrade, title, zip code, and 

address state were removed from the dataset in this step. 
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 DATA TRANSFORMATION 

The next step is to transform the data from one format or structure into another format or structure 

that the model can interpret. We changed the features term from a categorical type into a 

numerical one. The feature term transformed 36 months and 60 months into the integers 36 and 

60. For the feature home ownership, we added the categories ‘None’ and ‘Any’ to the category of 

‘Other’ based on the variables that should be present in this feature according to the dictionary of 

Table A1. 

 

We performed a log transformation on the features' annual income and revolving balance to 

reduces skewness in the data distributions. Through the log transformation, a normal distribution 

is created for these features. 

 

Some classification algorithms, such as logistic regression, are unable to manage categorical 

features and these are therefore transformed into binarized data. This means that every feature is 

split into the different options and assigned the value ‘1’ if it is present in this instance and ‘0’ 

otherwise. We illustrated a transformation in Figure 10. The five categorical features of the 

dataset were transformed into binarized data: verification_status (3), purpose (14), initial_list (2), 

application_type (2), and home_ownership (4). The result is 3 + 14 + 2 + 2 + 4 = 25 numerical 

features that replaced the initial six categorical attributes.  

 

Customer application_type  application_type_INDIVIDUAL application_type_JOINT 

1 INDIVIDUAL → 1 0 

2 JOINT 0 1 

3 INDIVIDUAL  1 0 

Figure 10: Example of a transformation of the categorical feature application type into a 

numerical feature.  

The features issue date and earliest credit line are transformed to a DateTime format to plot some 

time series analysis, an example is shown in Figure 11, to gain a better understanding of the data. 

From Figure 11 we see that the total amount of loans steadily increased over the years as a true 

emerging market. The feature issue date is removed after this since it can cause data leakage.  

 
Figure 11: Total amount of loans over the years. 

As a final step, we convert the target variable loan status into a binary numerical variable. The 

original nine categories with their count are displayed in Table 6. The new category “Fully Paid” 

consists of loans with the status “Fully Paid” and “In Grace Period” and is equal to “0”. The new 

category “Charged Off” consists of all other statuses except that of “Current” and is equal to “1”. 
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Loans with the status “Current” have not reached maturity and, therefore, do not contain 

information on the borrower’s creditworthiness.  

 

The result and a brief description of our final dataset are presented in Table 5. 

 

Number of instances Features % Fully Paid % Charged Off Imbalance Ratio 

1.362.575 41 78.65 21.35 3.68 

Table 5: Description of the final dataset 

 

Status Count 

Fully Paid                                              1.063.380 

Current                                                  869.943 

Charged Off                                              265.432 

Late (31-120 days)                                      21.134 

In Grace Period                                            8313 

Late (16-30 days) 4276 

Does not meet the credit policy. Status: Fully Paid  1528 

Does not meet the credit policy. Status: Charged 

Off 

543 

Default                                                      40 

Total  2.234.589 

Table 6: Distribution of the target variable Loan Status 

 NORMALIZING THE DATA 

After these feature engineering steps, we divided the dataset into a training and testing set based 

on a 75:25 ratio. After the splitting, we standardized the data by using the min-max normalization. 

This normalization ensures that all parameters use the same scale between a value of 0.0 and 1.0 

using: 

 

𝑋𝑛 =  
𝑋 − 𝑋𝑚𝑖𝑛 

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

    (6) 

where,  

𝑋𝑛     the normalized value 

𝑋    value of this feature for the data instance 

𝑋𝑚𝑖𝑛/𝑚𝑎𝑥    the lowest/highest value of this feature in the dataset 

 RESAMPLING APPROACH 

It has been shown that class imbalance obstructs classification (Lessmann, Basesens, Seow, & 

Lyn C. Thomas, 2015). The problem that occurs most is the classifier placing too much emphasis 

on the majority class while neglecting the minority class, resulting in a high accuracy score that 

shows an incorrect picture. 

  

To deal with the imbalance problem in our dataset, we applied a resampling technique known as 

the synthetic minority over-sampling technique (SMOTE) since it has been proposed in the 

literature (Verbeke, Dejaeger, Martens, Hur, & Baessens, 2012) and already shown good results in 

(Namvar, Siami, Rabhi, & Naderpour, 2018). SMOTE uses a k-nearest neighbors’ algorithm to 

produce new instances based on the distance between the minority data and some randomly 

selected nearest neighbors, visualized in Figure 12.  
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We applied a special form of SMOTE, namely SMOTENC, which can take into account 

categorical variables. It puts a constraint on the categorical variables’ verification_status, purpose, 

initial_list, application_type, and home_ownership to be either 0 or 1 and the sum of each feature 

must be equal to 1. This means that always exactly one of the values for each feature must be 

chosen. SMOTENC prevents the synthetic generated categorical variables to be a continuous 

value. 

 

One of the drawbacks of SMOTE(NC) is that it does not take into consideration that neighboring 

examples can be from other classes. This can increase the overlapping of classes and can 

introduce additional noise. The use of SMOTENC results in a new training dataset and is 

described in Table 7. 

 

Training dataset 

before SMOTE 

Training dataset 

after SMOTE 

Balance of positive and 

negative classes (%) before 

SMOTE 

Balance of positive and negative 

classes (%) after SMOTE 

Rows: 1.021.931 Rows: 1.607.540 0: 78.65% 0: 50.00% 

Features: 41 Features: 41 1: 21.35% 1: 50.00% 

Table 7: Description of the training dataset before and after applying SMOTE   

 

 
Figure 12: An example of the working of SMOTE. Based on a k-nearest neighbors algorithm 

SMOTE connects with other minority class samples (black dots) and synthetically generates new 

instances (red dots) on these connections. Source: (Hu & Li, 2013) 

4.5 PERFORMANCE CRITERIA 

There are several performance metrics for binary classification. The confusion matrix is one of the 

most intuitive metrics used in statistical classification that allows visualization of the performance 

of an algorithm. The confusion matrix in itself is not a performance measure as such, but almost 

all the performance metrics are based on the confusion matrix and the numbers inside it. 

Therefore, we briefly explain the confusion matrix before we discuss the actual performance 

metrics.  

 CONFUSION MATRIX 

The confusion matrix is a table with two dimensions “True” and “Predicted” and sets of “classes” 

in both dimensions. Our True classifications are rows and Predicted ones are columns. In Table 8 

the classes of the confusion matrix are explained. We may use a different convention for the axes 
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compared to other references, this may be because we kept the default axes from the Scikit-learn 

library used in Python. 

 

 Predicted = Fully Paid (0) Predicted = Charged Off (1) 

True = Fully Paid (0) True Negatives (TN): are the cases when 

the actual class of the data point was 0 

and the predicted is also 0. 

False Positives (FP): are the cases when 

the actual class of the data point was 0 

and the predicted is 1.  

 

True = Charged Off (1) False Negatives (FN): are the cases when 

the actual class of the data point was 1 

and the predicted is 0. 

True Positives (TP): are the cases when 

the actual class of the data point was 1 

and the predicted is also 1. 

Table 8: Confusion Matrix with an explanation of all its classes 

In our case of a binary classification problem with good (Fully Paid) and bad (Charged Off) class 

labels, the classification model is considered successful if the true negative and true positive 

values, of Table 8, are large and the values of false negatives and false positives are small (Gong 

& Kim, 2017). There are several performance metrics for binary classification that we will use 

both as a benchmark to compare our results with other studies as well as to make sure that our 

models are having a decent performance so we can test our XAI models for realistic models and 

outcomes. We measure if the classification model is successful using the following metrics: 

Accuracy (ACC), Area Under the Receiver Operating Characteristic (AUROC), the Matthews 

Correlation Coefficient (MCC), and the G-mean. 

 ACCURACY  

ACC is the most common performance metric to use in binary classification problems and is 

calculated by the equation:   

 

The downside of accuracy is that, in imbalanced datasets, it tends to highlight the majority class 

and therefore neglect the minority class.  

 

Another downside that accuracy does not consider, is that the false positives are more harmful 

than false negatives in the case of credit risk prediction (Caouette, Altman, Narayanan, & Nimmo, 

2008). For the lender, it is more harmful to invest in a borrower who is incorrectly predicted as 

creditworthy compared to missing an investment opportunity through not investing in a borrower 

who incorrectly is predicted as not creditworthy since no money is lost in the latter case. 

Therefore, accuracy can be a misleading criterion that gives incorrect results. Since we applied 

SMOTENC to solve the imbalance problem, the accuracy metric will work better, and based on its 

popularity we will use it as one of the performance metrics.  

 RECEIVER OPERATING CHARACTERISTICS  

The Receiver Operating Characteristic (ROC) shows a curve by plotting the true positive rate 

(TPR) against the false positive rate (FPR) at various threshold settings.  The area under the curve 

(AUC) measures the area under the ROC curve and determines the AUROC score, which shows 

the ability of a classifier to distinguish between classes. The ROC curve based on the result of our 

ML classifiers can be seen in Figure 13.  

 
 

𝐴𝐶𝐶 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
 

 (7) 
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Figure 13: ROC curve based on the result of our ML classifiers. The minimal AUROC score is 0.5 

and represents the performance of a random classifier and the maximum value of 1.0 would 

correspond to a perfect classifier 

 MATTHEWS CORRELATION COEFFICIENT  

MCC is used instead of the more commonly used F-measure since it has been proven a more 

reliable statistical rate which produces a high score only if the prediction obtained good results in 

all the four confusion matrix categories (Chicco & Jurman, 2020). The equation of MCC is: 

 

 

where the denominator is a normalization constant so that result of the MCC is in the range -1 and 

1, the only measure we used that is not between 0 and 1. A score of ‘-1’ indicates the total 

dissimilarity between the prediction and the true value, ‘0’ indicates a prediction that is no better 

than random and ‘1’ indicates perfect similarity between the prediction and the true value. To the 

best of our knowledge, the MCC metric has not been previously used in any study considering 

LendingClub data. 

 G-MEAN 

The G-Mean measure makes use of both Sensitivity and Specificity. Sensitivity is calculated as 

the number of correct positive predictions divided by the total number of positives and Specificity 

is calculated as the number of correct negative predictions divided by the total number of 

negatives. Taking both measures into account by multiplying them against each other, the G-Mean 

is an effective performance metric for both balanced as imbalanced datasets (Namvar, Siami, 

Rabhi, & Naderpour, 2018). The equations for calculating the G-Mean:   

 

𝐺-𝑀𝑒𝑎𝑛 =  √𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦  (9) 

where,  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(10) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
  

(11) 

𝑀𝐶𝐶 =  
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

(8) 
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4.6 MACHINE LEARNING CLASSIFICATION RESULTS 

The objective of our research is to determine the effectiveness of the post-hoc XAI techniques, by 

implementing XAI techniques on ML classifiers. With the use of feature engineering, we tried to 

create a realistic input dataset, so that we can test our XAI models on realistic data. Adjusting the 

hyperparameters for the best performance of the different models is outside the scope of our 

research and is left for future work. Therefore, we have not applied a Grid-search to find the 

optimal hyperparameters of a model which results in the most 'accurate' predictions  and can be 

regarded as further research. We trained and tested an LR model, four ML classifiers, and one 

ANN binary classifier on the configured data described in section 4.2. 

 

To compare the explainability of the different ML classifiers we trained a basic but transparent 

LR model. We trained a basic DT model that can hardly be classified as a transparent model since 

the decision tree consists of many nodes, each with its branches, that are not easily interpretable. 

Our decision tree is displayed in Figure 14. Next, are the ML classifiers that are not transparent by 

design but are widely used. These types of classifiers are the focus of this research and are 

represented by an RF, XGBooster, and SVM model. Next to that, we also wanted to expand our 

classification models even further into the direction of an ANN model, since these are becoming 

more popular in the financial sector (Barboza, Kimura, & Altman, 2017). For this, we build a 

Neural Network. After the training of the different models, we have evaluated them on the 

described criteria of section 4.5. The information about the hyper-parameter settings and the 

evaluation of the models on the model performance metrics are shown in Table 9. 

 

 

 
Figure 14: Our Decision Tree visualized. With all the different branches is becomes unreadably 

on the size of this page, however it gives the reader an idea of the models working. 
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Model Hyper-Parameter Performance 

ACC MCC SE SP G-Mean AUROC 

LR penalty = ’l2’, random_state = 42, solver = 

‘lbfgs’ 

0.69 0.21 0.4

9 

0.3

4 

0.41 0.62 

DT criterion = ‘entropy’, max_depth = ‘None’, 

random_state = 42 

0.68 0.10 0.3

3 

0.2

9 

0.31 0.55 

RF n_estimators = 100, random_state = 42 0.77 0.20 0.2

4 

0.4

4 

0.32 0.57 

XGBooste

r 

booster='gbtree', n_estimators = 100,  

max_depth = 3, random_state = 42 

0.79 0.18 0.1

2 

0.5

3 

0.25 0.55 

SVM kernel = ‘rbf’, probability=True, 

class_weight='balanced', 

random_state = 42 

0.69 0.16 0.3

9 

0.3

2 

0.35 0.58 

ANN n_hidden = 2,  

dropout = 0.2, neurons = [78, 39,19],  

activations = RelU,  

loss = binary_crossentropy, Optimizer = 

adam 

0.70 0.20 0.4

7 

0.3

4 

0.40 0.62 

Table 9: Models, parameters settings, and performance-based on different metrics 

From Table 9 we can conclude that none of the classifiers performs significantly better. Their 

prediction performance is subpar to be applied effectively. The results of the research from 

(Wang, Zhang, Lu, & Yu, 2020) are showing the same ranking in the performance of some of the 

ML classifiers that we have used. However, the performance of our classifiers is poor compared to 

that of them. 

4.7 COMPARISON WITH OTHER LENDINGCLUB STUDIES 

As the final step, we compared the obtained results to the results in the work of (Namvar, Siami, 

Rabhi, & Naderpour, 2018) (Song, et al., 2020) (Moscato, Picariello, & Sperlí, 2021) and (Li, 

Cao, Li, Zhao, & Sun, 2020). We have chosen these studies as a comparison since they are 

currently the best ones in the field that also make use of either SMOTE or another oversampling 

technique.  

 

It is difficult to compare the actual values of these studies with our study since they all have taken 

different data pre-processing steps and used other hyper-parameters settings. However, we can 

conclude that our values are in most cases in the same range as the values of these studies, except 

for (Li, Cao, Li, Zhao, & Sun, 2020) and therefore we can classify our results as representative. 

Next to that, their results give a good idea of the relative performance of the different ML 

classifiers. From Table 10, it is clear that RF has a high performance in most studies. The LR in 

these studies is performing similarly to the performance of the LR in our study. The study of (Li, 

Cao, Li, Zhao, & Sun, 2020) also confirms that the XGBooster classifier has a high performance 

on the LendingClub data.  

 

The downside of these studies is that none of them used ANN classifiers to predict the 

creditworthiness of the borrowers in the LendingClub dataset. We found some studies that 

performed a classification study with a neural network, however, these used different and more 

complex variants of the neural network and are therefore not comparable with our ANN classifier. 
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Namvar (2018) ACC SE SP G-Mean AUC 

LR-SMOTE 0.65 0.64 0.64 0.64 0.70 

RF-SMOTE 0.68 0.73 0.49 0.59 0.66 

Song (2020)      

LR-Oversampling 0.56 0.56 0.56 0.56 0.56 

DT-Oversampling 0.65 0.64 0.64 0.64 0.70 

RF-Oversampling 0.68 0.73 0.49 0.59 0.66 

Moscato (2021)      

LR-SMOTE 0.66 0.66 0.64 0.65 0.71 

RF-SMOTE 0.77 0.98 0.1 0.31 0.71 

Li (2020)      

LR-Oversampling 0.86 - - - 0.85 

DT-Oversampling 0.87 - - - 0.80 

RF-Oversampling 0.91 - - - 0.89 

XGB-Oversampling 0.92 - - - 0.94 

Table 10: Results of other studies on the LendingClub dataset  

4.8 CONCLUSION ON DATA & MODELING 

In this chapter, we focused on answering the research question “Which data and what ML 

classifiers do we need as a basis to experiment with the evaluation framework?”. Based on 

section 4.2, we selected a few ML classifiers mentioned in the literature and selected the dataset 

of LendingClub to test these ML classifiers on. In line with Chapter 2, we first performed some 

feature engineering steps to configure the dataset and after this performed experiments with the 

ML classifiers. We compared those results with the results of other studies on the LendingClub 

dataset to verify the outcomes as trustworthy enough. In the next chapter, we will discuss the 

different XAI techniques we use to explain how our ML classifiers came to their predictions. 

After which we assess the XAI techniques based on our proposed ARRGUS framework. 
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 EXPERIMENTAL RESULTS 
 

5.1 EXPLAINABLE MODEL ALGORITHMS  

In this section, we explain the most promising state-of-the-art post-hoc XAI techniques that are 

used in the literature or other practices and are available to us. In our view, it is important to test 

different post-hoc explainability techniques to see if the results are giving full transparency of 

decisions for our credit risk prediction problem. We do not get into the technicalities of them as it 

is beyond the scope of our research. Improvement of the technicalities of these algorithms can be 

regarded as a different research direction. 

 LIME 

Locally Interpretable Model Agnostic Explanations (LIME) can be classified as a post-hoc model-

agnostic explanation technique that aims to approximate any black-box machine learning model 

with a local, interpretable model to explain each prediction (Ribeiro, Singh, & Guestrin, 2016). 

LIME presents an explanation that is locally faithful, which means that it can give explanations 

for every specific observation it has. This can come in handy in the case the original model may 

be too complex to explain globally. LIME uses an approximation to fit a local model using sample 

data points that are like the instance being explained. This local model describes the local 

behavior of the model using a linearly weighted combination of the input features to provide 

explanations. The working of LIME is explained in Figure 15. Linear functions can capture the 

relative importance of features in an easy-to-understand manner. The drawback of linear 

explanations is that it is not clear whether they apply to an unseen instance since they are local, 

and it is unclear on which region its explanation applies. The human user may therefore think that 

the model is explaining an unforeseen instance when this may not be the case. Mathematically, the 

explanation produced by LIME can be expressed as follows: 

 
𝑒𝑥𝑝𝑙𝑒𝑛𝑎𝑡𝑖𝑜𝑛 (𝑥) =  𝑎𝑟𝑔 𝑚𝑖𝑛

𝑔∈𝐺
𝐿(𝑓, 𝑔, 𝜋𝑥) +  𝛺(𝑔) (12) 

Where the explanation model for instance 𝑥, or customer 𝑥 in our case, is the model 𝑔 (e.g., a 

linear regression model) that minimizes loss 𝐿 (e.g., a mean squared error). Loss 𝐿 measures how 

close the explanation of model 𝑔 is to the prediction of the original model 𝑓, the ML classifier in 

our case, while the model complexity 𝛺(𝑔) is kept low by preferring fewer features. 𝐺 is the 

family of possible explanations, which can for example be all possible linear regression models. 

The proximity measure 𝜋𝑥 defines how large the size of the neighborhood around instance 𝑥 is 

that we consider for the explanation. For further details on LIME, we refer the reader to the 

research of (Ribeiro, Singh, & Guestrin, 2016). 

 

 
Figure 15: Example to present intuition for LIME, in which the dashed line is the learned linear 

regression explanation model that locally explains the bold red cross based on the instances that 

are captured by the learned linear regression explanation model. Source: (Ribeiro, Singh, & 

Guestrin, 2016). 
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 ANCHORS 

Anchors can be classified as a post-hoc model-agnostic explanation technique based on if-then 

rules. An anchor explanation is a rule that sufficiently “anchors” the prediction locally. In this 

way, a change to the rest of the feature values of the instance does not matter  (Ribeiro, Singh, & 

Guestrin, 2018). In other words, for instances on which the anchor holds, the prediction is almost 

always the same. Anchors are intuitive, easy to understand, and have clear coverage. With 

coverage, the region on which the explanation applies is meant. Anchors only apply when all the 

conditions in the rule are met and can be based on a high precision depending on the preference of 

the user. The working of Anchors is explained in Figure 16. Formally defined, the explanation 

produced by an Anchor A can be expressed as follows: 

 

𝐸𝐷𝑥(𝑧|𝐴)[1𝑓(𝑥)=𝑓(𝑧)] ≥ 𝜏, 𝐴(𝑥) = 1 (13) 

 

where, 

𝑥   represent the instance, in our case the customer, being explained. 

A   is a set of rules, like 𝑙𝑜𝑎𝑛 𝑎𝑚𝑜𝑢𝑛𝑡 ≥ 5000, that returns ‘1’ when all rules in the set  

correspond to 𝑥’s feature values. The set of rules from 𝐴 is also called the anchor. 

𝑓   denotes the classification model to be explained. In our case one of the ML 

classifiers. 

𝐷  denotes the perturbation space, a smaller representative area of the input.  

𝐷𝑥(∙ |𝐴) indicates the area of neighbors’ instances of 𝑥 for which 𝐴 holds.  

So 𝐷𝑥(𝑧|𝐴)  indicates the area of neighbors’ instances of 𝑥 in which we predict sample 𝑧 for which 

𝐴 holds  

1𝑓(𝑥)=𝑓(𝑧) states the condition that the classification model is equal for data instance 𝑥 and the 

random sample 𝑧  

0 ≤ 𝜏 ≤ 1   specifies a precision threshold. Only rules that achieve a local approximation of the

  prediction of the classification model of at least 𝜏 are considered as a valid result. 

 

𝐴 is an anchor if the expected value of a random sample 𝑧, within the area 𝐷 of neighbors’ 

instances of 𝑥 for which 𝐴 holds, has the same prediction by the classification model as instance 𝑥 

(1𝑓(𝑥)=𝑓(𝑧))  and has a precision greater than 𝜏, given that all the rules are true 𝐴(𝑥) = 1.  

 

Since Anchors are developed by the same researchers as LIME, we also include the comparison 

between the working of LIME and Anchors in Figure 17 from the research of (Ribeiro, Singh, & 

Guestrin, 2018). From this figure, we see that LIME on the right gives a better local 

approximation of the black box model than LIME does on the left. Anchors gives a better local 

prediction in both cases and its boundaries are clearer compared to LIME. For further details on 

Anchors, we refer the reader to the research of (Ribeiro, Singh, & Guestrin, 2018).  

 

 

Figure 16: Example of Anchors in which the presence of the words “not bad” almost guarantees 

a prediction of positive sentiment and the words “not good” a negative sentiment. Source: 

(Ribeiro, Singh, & Guestrin, 2018). 
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Figure 17: Comparison of two problems explained by Anchors and LIME. Perturbation space D is 

shown by a circle which both models use as their area/input to explain the model. LIME explains 

the prediction result by learning the line. Anchors uses a “local region” to learn how to explain 

the model. As we can see the “local region” refers to better construction of the generated data set 

for an explanation. Source: (Ribeiro, Singh, & Guestrin, 2018). 

 SHAP 

Shapley Additive exPlanations (SHAP) is a method to explain the prediction of an instance 𝑥 

based on Shapley values from coalitional game theory, whose aim is to investigate how each 

feature affects the prediction (Lundberg & Lee, 2017). The research of (Lundberg & Lee, 2017) 

states that SHAP is a game-theoretic approach to explain the output 𝑓(𝑥) of any machine learning 

model. The feature values of a data instance 𝑥 act as players in a coalition. Shapley values tell us 

how to fairly distribute the “payout”, in our case the prediction among the features. In our case of 

tabular data, a player is the equivalent of an individual feature value. One of the innovations that 

SHAP offers is that it connects LIME and Shapley Values by representing the latter as an additive 

feature attribution method, a linear model. Mathematically, the explanation produced by SHAP 

can be expressed as follows: 

𝑔(z′) =  ϕ0 + ∑ ϕ𝑗𝑧𝑗
′

𝑀

𝑗=1

 
(14) 

 

 

where 𝑔, again, is the explanation model, 𝑧′ ∈ {0, 1}𝑀 is the simplified feature, M is the maximum 

coalition size and ϕj ∈ ℝ is the feature attribution for a feature j, the Shapley Values. In the 

simplified features, an entry of 1 means that the matching feature value is “present” and 0 that it is 

“absent”. To compute Shapley Values, SHAP simulates that only some of the feature values are 

“present” and some are “absent”. This is equivalent to playing or not playing in the coalition from 

a game theory perspective. SHAP represents the coalitions a linear model to compute the ϕ′s.  
Referring back to our instance 𝑥, the simplified features 𝑥’ is a vector of all features that are 

“present”. This simplifies the formula to:  

𝑔(x′) =  ϕ0 + ∑ ϕ𝑗

𝑀

𝑗=1

 
(15) 

 

 

Several variants of SHAP are available and since this research focuses on post-hoc model-

agnostic XAI techniques, we make use of KernelSHAP. KernelSHAP is a model-agnostic method 

to approximate SHAP values using ideas from LIME and Shapley values and can therefore be 

used on any ML classifier. KernelSHAP estimates for an instance 𝑥 the contributions of each 

feature value to the prediction. Simplified, KernelSHAP creates sample coalitions 𝑧′, get 

predictions for each 𝑧′, compute the weight for each 𝑧′ with the SHAP kernel and fit a weighted 

linear model on this. The coefficients from the linear model are the Shapley Values ϕ′. This is 
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translated into a base value 𝐸[𝑓(𝑧)] that is the average of all predictions.  SHAP values can be 

very complicated to compute since they are NP-hard in general. The working of SHAP is 

explained in Figure 18. An advantage of SHAP compared to LIME is that SHAP can obtain both 

local and global explanations compared to the local instances explained by LIME. For further 

details on SHAP, we refer the reader to the research of (Lundberg & Lee, 2017).  

 

 
Figure 18: SHAP values attribute to each feature the change in the expected model prediction 

when conditioning on that feature. They explain how to get from the base value E[f(x)] that would 

be predicted if we didn’t know any features, to the current output f(x). Source: (Lundberg & Lee, 

2017). 

 THE CUSTOMER INSTANCES THAT WE EXPLAIN 

To be able to compare the performance of the different XAI techniques, we apply them to the 

same data instances. In this way, we can assess how the different XAI techniques are working and 

see where they differ from each other. We randomly choose two customer instances from the test 

data, one that belongs to the class “Fully Paid” and the other to the class “Charged Off”. We 

presented these two customer instances with their values for each feature in Table 11. The 

transformed data represents the data that is used by the ML classifiers and the XAI technique and  

for reader convenience, we also provided the actual value of each feature. For the remainder of 

this chapter, we refer to the customer instance “Fully Paid” as Customer A and to the customer 

instance “Charged Off” as Customer B shown in Table 11.  

 

We approach all three XAI models in the same way by first mentioning the additional steps and 

challenges we faced in the configuration of the explainer after which we show the results for all 

ML classifiers on Customer B. In the next section, we explain what the XAI technique is showing 

us after which we continue with an in-depth interpretation of the explanations for the LR 

(Transparent model), XGBooster (Tree model), and ANN (Neural Network model) to see if these 

explanations are in line with financial logic and/or can be justified from the input data. We end 

every section with an overall conclusion on the XAI technique and its performance.  

5.2 APPLYING LIME TO EXPLAIN LOCAL INSTANCES 

After performing the steps involved in getting the explanations from the LIME framework, we 

applied the procedure on the trained ML classifiers. The main challenge we faced in implementing 

the LIME framework was explaining our ANN classifier. The ANN classifier returns a 2D array 

for which LIME expects a 1D. We solved this problem by defining a new function that collapses 

the 2D array into 1D and updates it with both positive and negative probabilities so that the 

predict function understands the outcomes. Another challenge we faced was generating 

probabilities from the SVM output since an SVM training algorithm is a non-probabilistic binary 

linear classifier. We solved this problem by setting the hyperparameter “probability” to “True”. 

This setting makes it possible to use the “predict_proba” function, which can obtain prediction 

probabilities.  
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Customer A classified as “Fully Paid” Customer B is classified as “Charged Off” 

Feature 

Transformed 

value 

Actual 

value Feature 

Transformed 

value Actual value 

loan_amnt 0,24 10000,00 loan_amnt 0,37 15000,00 

term 0,00 36,00 term 1,00 60,00 

int_rate 0,03 6,03 int_rate 0,53 19,03 

emp_length 1,00 11,00 emp_length 0,00 0,00 

dti 0,00 0,88 dti 0,11 111,52 

earliest_cr_line 0,69 1990,00 earliest_cr_line 0,96 2012,00 

open_acc 0,09 9,00 open_acc 0,13 13,00 

pub_rec 0,00 0,00 pub_rec 0,00 0,00 

revol_util 0,06 20,70 revol_util 0,11 39,50 

total_acc 0,10 18,00 total_acc 0,07 14,00 

mort_acc 0,02 1,00 mort_acc 0,00 0,00 

pub_rec_bankruptcies 0,00 0,00 pub_rec_bankruptcies 0,00 0,00 

fico_score 0,51 747,00 fico_score 0,22 687,00 

annual_inc_log 0,63 4,88 annual_inc_log 0,48 4,00 

revol_bal_log 0,58 3,72 revol_bal_log 0,58 3,73 

verification_status_Not_Verified* 1,00 1,00 verification_status_Not_Verified* 1,00 1,00 

purpose_debt_consolidation* 1,00 1,00 purpose_debt_consolidation* 1,00 1,00 

initial_list_status_f* 1,00 1,00 initial_list_status_w* 1,00 1,00 

application_type_Individual* 1,00 1,00 application_type_Joint* 1,00 1,00 

home_ownership_MORTGAGE* 1,00 1,00 home_ownership_MORTGAGE* 1,00 1,00 

Table 11: Two customer instances, Customer A and B, from different classes that we use in our 

research to see how the different XAI techniques are working. The features are presented with 

their transformed values, the values the ML/XAI models use, and their actual values for reader 

convenience. *We only listed the categorical features that are present in the user instances. 

 EXPLANATION OF LIME 

To illustrate the working of LIME, we show the explanations given by the LIME technique in 

Figure 19 (a-f). The figure shows on the left side the model's confidence about its prediction. On 

the right side, the top ten features that contributed to the model’s decision are presented. Lastly, in 

the middle, these same features are shown along with the contributions that they make in forcing 

the prediction made by the model towards that class.  

 

We interpret the LIME explanation of the LR, XGBooster and Neural Network models in section 

5.2.2 and based on this explanation the other explanations by LIME can also be better understood. 
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(a): LR explanation for “Charged Off” by LIME 

 
(b): DT explanation for “Charged Off” by LIME 

 

 
(c): RF explanation for “Fully Paid” by LIME 

 
(d): XGBooster explanation for “Charged Off” by LIME 
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(e): SVM explanation for “Fully Paid” by LIME 

 

 
(f): ANN explanation for “Fully Paid” by LIME 

Figure 19: Results from the LIME explainer for each ML classifier on Customer B. We observe 

incorrect predictions by the RF and ANN model. 

 INTERPRETATION OF LIME 

In this section, we discuss the local explanations given by the LIME explainer for the outcomes of 

the Logistic Regression, XGBooster, and Neural Network model on both customers A and B, 

described in detail in Table 11. We expand further on the interpretations of these explanations to 

check if they are in line with financial logic and compare them with the provided input data to get 

a better understanding of the functioning of LIME. 

 

Table 12 present the total count of loans for each categorical feature and which percentage of 

these loans are signed off from the training data. We will refer to this table often since it provides 

us information on what data the models are trained for and help us interpret the explanations.  

 

Feature: 

Purpose 
Count 

% of loans Charged 

Off  

Feature: Home 

Ownership 
Count 

% of loans Charged 

Off 

Debt 

Consolidation 
1.033.427 55,53% 

 
Rent 689864 55,56% 

Credit Card 290.133 36,97%  Mortgage 755831 45,65% 

Educational 273 34,80%  Own 124749 30,96% 

Small Business 11.944 32,34%  Other 408 27,45% 

Other 66.860 31,23%  Feature: Initial List Status 

Moving 7.378 25,83%  Fractional 639412 48,20% 
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Renewable 

Energy 
683 24,60% 

 
Whole 968128 51,80% 

Medical 11.907 24,05%  Feature: Verification Status  

Home 

Improvement 
70.416 23,83% 

 
Verified 517500 54,06% 

House 5.648 23,78%  Source Verified 624572 50,68% 

Major Purchase 22.827 21,92%  Not Verified 408973 36,91% 

Vacation 6.904 20,22%  Feature: Term 

Car 11.131 16,44%  36 months 1111945 42.61% 

Wedding 1.742 13,49%  60 months 495595 66,61% 

Feature: Application Type   
  

Individual 1583802 50,19%     

Joint 23738 37,66%     

 
Table 12: All categorical features with their possible values presented. For each feature , the 

amount of loans with this feature in the training set is shown. Also, the percentage of these loans 

that are “Charged Off” are shown.  

XGBooster model 

In Figure 20, we present an example of a loan contract that belongs to Customer A which the 

XGBooster model predicted correctly. We can interpret this explanation as follows: 

 

 
Figure 20: XGBooster explanation for “Fully Paid” for Customer A by LIME. 

Customer A has been categorized as the class "Fully Paid", meaning that they are expected to 

fully repay the loan. The model is 97% sure about its prediction, as can be seen on the left.  

The fact that the purpose of the loan was not for "wedding", "vacation" or "house" forced the 

prediction toward the class “Charged Off”. The same rule applies for the loan not being applied to 

as a type “Joint”.  

 

The earliest credit line is equal to 0,69 (1990). This is smaller than 0,75 (1995), the value used by 

the model for deciding. This difference forced the prediction towards the class “Fully Paid”. The 

same applies for the features “public records” and “dti” having a value smaller than 0.00 and 0.01 

respectively and therefore forcing the prediction towards the class “Fully Paid”.  The FICO score 

of this customer is equal to 0.51 (747), which is larger than 0.33 (712), and therefore forces the 

prediction towards the class “Fully Paid”. 
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We observe that the weights for the top ten features are small, almost unimportant. This could 

mean that: i) The LIME technique does not present the weights correctly through modeling and/or 

input errors from our side. 2) The model treats the features as evenly important, which is unlikely.  

 

In Figure 19 (d), we present an example of a loan contract that belongs to the class “Charged Off”, 

Customer B, which the XGBooster model predicted correctly. We can interpret this explanation as 

follows: 

 

Customer B has been categorized as the class "Charged Off", meaning that they are expected to 

fail to fully repay the loan. The model is 62% sure about its prediction, as can be seen on the left. 

This low certainty of the model can be caused by a very poor predictive performance of the 

XGBooster. 

 

The fact that the purpose of the loan was not for "wedding", "vacation", “small business”, 

“moving” or "home improvement" forced the prediction toward the class “Charged Off”. The fact 

that the purpose of the loan was not for "renewable energy" or "educational" forced the prediction 

toward the class “Fully Paid”. The same rule applies for the number of mortgage accounts for the 

customer of the loan not being larger than zero. We observe that, as opposed to the XGBooster 

model prediction for the “Fully Paid” instance, the last three features are not contributing towards 

a prediction of one of the two classes.    

 

Based on Table 12 it makes sense that the fact that the purpose of the loan was not for "wedding", 

"vacation" or “House” forced the prediction toward the class “Charged Off”  since these purposes 

have a relatively low value of loans that end up to be “Charged Off” compared to the other 

categories of purposes. Meaning that the purposes that have a higher percentage of being 

“Charged Off” remain and therefore this loan must be one of those riskier purposes.  

 

The same logic applies to the application type. Application type “Joint” has a lower percentage of 

loans that are Charged Off compared to that of application type “Individual”. Application type 

“Joint” having the value zero, means that the loan application type  is “Individual” and therefore 

forces the prediction towards the class “Charged Off”. 

 

However, based on Table 12 all the described cases above have a lower amount of occurrence in 

the training set and therefore can have an unjustified impact. Significant fewer cases can mean 

that only a biased set of instances can be present in the dataset, while if all the features had the 

same number of occurrences the percentage of loans Charged Off could be higher for the 

described cases.  

 

In Figure 21 the distribution of loans based on the earliest credit line of the customer is presented  

while on the second y-axis the percentage of “Charged Off” loans is visualized. In this figure, the 

impact of the synesthetic-generated instances by the SMOTE sampling technique can be seen. 

SMOTE generated the most “Charged Off” instances in the area 1995 – 2010 and this increases 

the percentage of loans that are classified as “Charged Off” for the same period in the original 

training set. The earliest credit line of the “Fully Paid” customer is equal to 1990 (0,69) which is 

smaller than 1995 (0,75), the value used by the model for deciding. The fact that the loans with 

the earliest credit line smaller than 1995 have a lower percentage of loans that  are “Charged off” 

forced the prediction toward the class “Fully Paid”. 

  



 

49 

 

In case the SMOTE sampling technique was not used, the rule of the model to decide for which 

value it forces the prediction towards the class “Fully Paid” could have been the opposite since 

the original test set, presented by the red line, has a decrease in the percentage of loans that are 

Charged Off after 1995.  

 

In Figure 22 the distribution of FICO scores of the customers is presented while on the second y-

axis the percentage of “Charged Off” loans is visualized. We see fewer high FICO scores, the 

more creditworthy borrowers. These higher FICO scores also show a lower percentage of loans 

that are “Charged Off”, which is in line with financial logic. The FICO score of the “Fully Paid” 

customer is equal to 747 (0.51), which is larger than 712 (0.33), and therefore forces the 

prediction towards the class “Fully Paid”. From Figure 22 we see that the percentage of loans that 

are “Charged Off” become less than 30% from around a FICO score of 712 and it seems like an 

acceptable value used by the model for deciding. However, a more risk-averse person and/or 

model can of course choose a higher FICO score as a threshold and vice versa. 

 

Figure 21: Total counts of loans based on the earliest credit reported by the customer against the 

percentage of these loans that are Charged Off. In this figure, we also show the effect of SMOTE 

on the training set. Data is from our training set. 
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Figure 22: Total counts of loans based on the FICO score of the customer against the percentage 

of these loans that are Charged Off. Data is from our training set. 

Logistic Regression model 

In Figure 23 we present an example of a loan contract that belongs to Customer A which the LR 

model predicted correctly. Customer A has been categorized as the class "Fully Paid", meaning 

that they are expected to fully repay the loan. The model is 97% sure about its prediction, as can 

be seen on the left.  

 

Again, based on Table 12, it makes sense that since the purpose of the loan was not for "vacation" 

or “car”, forcing the prediction toward the class “Charged Off” since these purposes have a 

relatively low value of loans that end up to be “Charged Off” compared to the other categories of 

purposes. This means that the purpose of this loan is more likely to have a higher likelihood of 

becoming “Charged Off”. However, this logic makes no sense for the three other purposes 

"other", " medical " and “moving” since these have a higher percentage of loans that are “Charged 

Off”.  

 

We observe that even though the total count of the top ten features is in favor of pushing the 

prediction towards the class "Charged Off", the total sum of all the features combined is in favor 

of the class "Fully Paid". We also observe the similarity in features of the LR model used to 

predict the “Fully Paid” customer in Figure 23 and the “Charged Off” customer in Figure 19 (a).  

 
Figure 23: LR explanation for “Fully Paid” for Customer A by LIME. 
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Artificial Neural Network model 

In Figure 24 we present an example of a loan contract that belongs to the “Fully Paid” customer 

whom the ANN model predicted incorrectly. Customer A has been categorized as the class 

"Charged Off", meaning that they are expected to fail to fully repay the loan. The model is 91% 

sure about its prediction, as can be seen on the left. However, the actual customer actual belongs 

to the class “Fully Paid”, and the Artificial Neural Network model is therefore wrong. 

 

The fact that the purpose of the loan was not for "wedding", "medical", “car”, “moving” or 

"vacation" forced the prediction toward the class “Fully Paid” and this is opposite of what we 

observed from the other explainers that correctly predicted Customer A. From Table 12 we can 

see that the mentioned purposes are having a relatively low percentage of loans that are “Charged 

Off”. Since these purposes are not the reason for the loan of Customer A, it increases the 

likelihood that the loan has a purpose with a higher chance of being in the class “Charged Off” 

and therefore it should force the prediction of the model towards the class “Charged Off”. 

However, as we can see from the LIME framework, the ANN model uses these rules to force the 

prediction towards the class “Fully Paid”. 

 

The feature initial list status not being “Whole” forced the prediction towards the class “Charged 

Off”. Based on Table 12, this seems to be another contradicting rule by the ANN model since the 

feature initial list status “Whole” has a higher percentage of loans that are “Charged Off” 

compared to the other option “Fractional”.  

 

We observe that a small number of features is contributing a lot to the specific outcome of the 

model. This can explain the relatively poor prediction performance of the Artificial Neural 

Network. However, due to the described challenges in implementing LIME on the Artificial 

Neural Network model, it can also be that the LIME technique is not working correctly in our 

case.  

 

Since an ANN model is a classic opaque Black-Box model we are not able to get a better insight 

into the inner working of the model than the LIME framework is currently providing us. The 

lacking amount of information and decision rules gives us only a tip of the iceberg of how the 

ANN model has made its predictions. However, this limited information is not enough to 

understand the model but suggests going back to the drawing board to improve the model before 

implementing it. 

  

 
Figure 24: ANN explanation for “Charged Off” for Customer A by LIME. 
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 CONCLUSION ON LIME 

Going in-depth to find the actual information behind the explanation and rules provided by the 

LIME framework resulted in a better understanding of how the different ML classifiers work. The 

explanations of the LIME framework were, except for the ANN model, in line with the logic, we 

would expect based on the provided input data. The reasoning of the models  given by the model 

for making a prediction is also in line with financial logic. We would however expect that the 

continuous features make more of an impact than the categorical features. Customers with a 

purpose of the loan of “Vacation”, “Car” or “Wedding” are marked as less risky compared to a 

“small business”, a higher FICO score and people who own their own house are considered less 

risky and are more likely to have their loans approved. This was evident from the examples we 

discussed above. Similarly, high-risk customers can be identified by riskier purposes, lower FICO 

scores, and other ownerships of their houses. This information is helpful information for model 

developers, users that provide loans, and the end-users since it offers more transparency and 

increases trust in the predictions. The ANN model prediction shows some habits that are not in 

line with financial logic. Model developers therefore can observe these discrepancies to increase 

the model performance accuracy by having more knowledge on the rules and/or features that are 

causing these problems.  
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5.3 APPLYING ANCHORS TO EXPLAIN LOCAL INSTANCES 

We followed the work of (Ribeiro, Singh, & Guestrin, 2018) and their guidelines on the GitHub 

page2 for the additional configuration of the Anchors explainer. The main challenge we faced in 

implementing the Anchors technique was explaining our ANN classifier. Anchors expect the ML 

classifier to have the same dimensions for all the input arrays, however, our ANN classifier 

returns an array that has different dimensions for different indexes of the input array. We were not 

able to solve this challenge and therefore the Anchors explanation of the ANN is missing. The use 

of Anchors on an ANN classifier is left for further research.  

 EXPLANATION OF ANCHORS 

Figure 25 (a-e) shows the Anchors' explanations on the prediction of the ML classifiers. The 

prediction is shown, followed by the conditions the Anchor framework identified that will result 

in the same prediction outcome, the precision of the Anchor framework, and the coverage on the 

region where the explanation applies to. As mentioned in section 5.1.2, Anchors works with easy-

to-understand IF-THEN rules. We set a minimum threshold for the precision being at least equal 

to or larger than 95% to guarantee, with a high probability, that the predictions on instances where 

the anchor holds will be the same as the original prediction at least 95% of the time. A higher 

precision, most of the time, comes at the expense of a lower coverage since a higher precision 

explanation will be applicable on a smaller region of instances.  

 

The generated explanations given by the Anchors framework are presented in Figure 25 (a-e). We 

explain the Anchors' explanation on the LR, XGBooster and Support Vector Machine models in 

section 5.3.2 and based on this explanation the other explanations by Anchors can also be better 

understood. 

 

 
(a): LR explanation for “Charged Off” by Anchor 

 
(b): DT explanation for “Charged Off” by Anchor 

 
(c): RF explanation for “Fully Paid” by Anchor 

 
2 GitHub - marcotcr/anchor: Code for "High-Precision Model-Agnostic Explanations" paper 

https://github.com/marcotcr/anchor
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(d): XGBooster explanation for “Charged Off” by Anchor 

 
(e): SVM explanation for “Charged Off” by Anchor 

Figure 25: Results from the Anchor explainer for each ML classifier for Customer B. We observe 

an incorrect prediction by the RF model. 

 INTERPRETATION OF ANCHORS 

In this section, we discuss the explanations given by the Anchors explainer for the outcomes of 

the Logistic Regression, XGBooster, and Support Vector Machine model on the customer 

instances “Fully Paid” and “Charged Off” from Table 11. We replaced the ANN model with that 

of the SVM model since we were not able to get the explainer working for the ANN model. The 

SVM represents another class of models than the Logistic Regression and XGBooster models and 

is, therefore, a worthy replacement to test how “model-agnostic” these XAI techniques are. We 

expand further on the explanation to check if they are in line with financial logic and/or justify the 

explanation based on the input information.  

Logistic Regression 

In Figure 26, we see the correct prediction of the LR model for the customer instance that is in the 

class “Fully Paid”. As we can see from the figure, this prediction is based on the rule that both the 

feature verification status must be “Not Verified”, and the interest should be equal to or below 

0.32 (= 13.6%). From Table 12 we see that a “Not Verified” loan that has this type of verification 

has a lower percentage of the loans that are “Charged Off” with only 37% compared to the 50%+ 

of the other values the feature verification status can take. From Figure 27 we see that the 

percentage of “Charged Off” loans for an interest rate with the value of 13.6 is around 45%. A 

lower interest rate means that the borrower is more creditworthy and therefore it makes sense to 

apply a rule that selects loans with low interest rates to use as an indicator for a customer that is in 

class “Fully Paid”. With a coverage of 0.17, we can tell that this anchor is applicable on quite a 

region of instances.  

 

However, the same does not hold for the prediction of the LR model on the customer instance that 

is in the class “Charged Off” in Figure 25 (a). As a result, we only have a single if-then rule that 

results in this prediction of “Charged Off” by having an application type with the value “Joint”. 

From Table 12 we see that this application type has a lower percentage of loans that are “Charged 

Off” and therefore it is not a logical choice to use as an indicator for a customer to be classified as 

“Charged Off”. Due to the low value of coverage, this explanation of the prediction can be unique 

for this case and does not tell us more about more general rules the LR classification model uses 

to predict if a customer is classified as “Charged Off”.  

 

 
Figure 26: LR explanation for “Fully Paid” for Customer A by Anchors. 



 

55 

 

 
Figure 27: Total counts of loans based on the interest rate of the customer against the percentage 

of these loans that are Charged Off. Data is from our training set. 

XGBooster model 

In Figure 28 we see the correct prediction of the XGBooster model for the customer instance that 

is in the class “Fully Paid”. As we can see from the figure, this prediction is based on more rules 

than we have seen in the earlier Anchor explanations. To classify a customer as “Fully Paid”, it 

must have an interest rate equal to or smaller than 0.22 (= 11%) which is more risk-averse than we 

saw in the case of the LR model. Like the LR model, the verification status should be “Not 

Verified”. Since it is a binary variable, the greater than zero values mean that it should be ‘1’ and 

therefore the value “Not Verified”. The home ownership not being “Other” seems to be 

contradicting. From Table 12 we see that home ownership “Other” has the lowest percentage of 

Charged Off predictions with 27,45%. The rule of employment length being smaller or equal to 1 

is a redundant rule, since it applies to all cases. The same applies for the rules on initial list status, 

home ownership rent, and purpose debt consolidation.  

 

The term being smaller than or equal to zero means that the term should be the shorter variant of 

36 months. This makes sense since a loan with a shorter maturity is safer than one with longer 

maturity and can also be seen from the data in Table 12. The rule of the loan not having as 

purpose “Renewable Energy” is debatable. From Table 12 we see that this purpose is amongst the 

middle compared to the other purposes, so it would have made more sense to choose a rule that 

with a higher percentage of loans that are Charged Off. However, due to this loan already having 

the purpose with the highest percentage of loans that are Charged Off, namely debt consolidation 

with 55.53% and still being the class “Fully Paid”, makes this explanation more complicated.  
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Figure 28: XGBooster explanation for “Fully Paid” for Customer A by Anchors. 
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The loan amount being smaller or equal to 0.49 (= +/- 19.500) makes sense, since a smaller loan 

amount is less risky than a large one since it can be more easily repaid. This reasoning is 

confirmed from the data in Figure 29. The last line refers to a rule on the Debt-To-Income (DTI) 

ratio with a rule that this ratio must be smaller than or equal to 0.01 (= 10). The low value of 0.01 

is caused by outliers with a maximum of 999 and these ratios are not representative for the DTI 

score. We, therefore, plotted the DTI ratios with at least 2000 records of loans, since SMOTE 

caused a lot of noise, and these are presented in Figure 30. In line with financial logic, we see a 

lower percentage of Charged Off loans for lower DTI ratios. A low DTI ratio indicates sufficient 

income relative to debt servicing and makes a borrower more attractive. This rule is therefore in 

line with what we expect for forcing the prediction towards the class of “Fully Paid”. We observe 

that the Anchor explainer does not have enough precision compared to the minimum threshold we 

set, however, its reasoning is in line with financial logic.  

 

 
Figure 29: Total counts of loans based on the loan amount of the customer against the percentage 

of these loans that are Charged Off. Data is from our training set. 

 
Figure 30: Total counts of loans based on the DTI ratio of the customer against the percentage of 

these loans that are Charged Off. Data is from our training set. 
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The Anchors framework also provides the user with a user-friendly, interactive dashboard that 

shows the precision based on the selected criteria of the user. In Figure 31 (a), we see on the left 

the instance that is taken as an example for this explanation, in the middle the prediction of the 

ML classifier, and on the right the precision of the ML classification based on certain rules. On 

the bottom side, the user can see more examples for both the class “Fully Paid” as for the class 

“Charged Off” when clicked on. 

 

Now we deselect a rule, in this case, the rule of dti <= 0.01, the rule becomes a white box, and the 

precision of the ML classifier is changed accordingly as shown in Figure 31 (b). This dashboard 

also confirms our explanation about the rules of employment length, initial list status, home 

ownership rent, and purpose debt consolidation are redundant rules since the precision does not 

change as we can see from Figure 31 (c) and (d). The reason why these features are still in the 

explanation is probably caused by the fact that we could not map the categorical features in the 

correct way for the Anchors explainer. At the moment this would have been the case, we would 

expect that only one of the categorical features would have shown for each feature.  

 

 
(a) The result of the Anchors explanation. The example can be folded out to show all feature 

rules. 

 

 
(b) The result of the Anchors explanation when we do not fulfill the requirement of the dti. 
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(c) The result of the Anchors explanation when we do not fulfill several requirements. 

 

 
(d) The result of the Anchors explanation when we do not fulfill the requirement of the dti. 

Figure 31: Interactive dashboard of the Anchors framework. 

For the prediction of the XGBooster model on the customer instance that is in the class “Charged 

Off” we see fewer rules that lead towards this prediction, however, the coverage of this 

explanation is minimal with a score of zero. Both verification statuses “Verified” and “Source 

Verified” must be zero, resulting in the verification status “Not Verified” must be one. Based on 

Table 12, we observe that this is not logical for predicting the customer as “Charged Off” since 

this status has the lowest percentage of loans that are Charged Off. This can be explained by the 

Anchor trying to explain this specific customer instance in which the verification status is “Not 

Verified” and therefore tries to generate an explanation that takes this into account. This also 

explains why the coverage is minimal. Next to that, the interest rate must be larger than 0.46 (= 

17%) to predict this customer as “Charged Off”. This makes sense and is in line with financial 

logic since a higher interest rate in the case of the LendingClub means that the borrower is 

classified as less creditworthy, and a higher interest rate means that the loan is more difficult to 

pay off and therefore riskier. The term being equal to 60 months and a DTI score larger than 0,03 

(= 30) is again in line with financial logic and can be explained in the same way as we did for the 

“Fully Paid” customer of the XGBooster model the opposite way around. The last rule of the 

FICO score having to be less than or equal to 0.22 (= 688) to predict this instance as “Charged 

Off” is also in line with the earlier described financial logic of a lower FICO score meaning that 

the borrower is less creditworthy and therefore granting a loan is riskier.  
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Support Vector Machine model 

In Figure 32 we see the correct prediction of the SVM model for the customer instance that is in 

the class “Fully Paid”. As we can see from the figure, this prediction is based on only two rules: 

the verification status must be “Not Verified”, and the term must equal 36 months. We observed 

these rules already for the LR and XGBooster models and based on these explanations we can say 

that these rules are in line with the expected logic. We see a high value for the coverage of this 

explanation, this can be caused by the method of the SVM of applying different hyperplanes and 

meaning that these two features are in the same hyperplane for customers that are classified as 

“Fully Paid”.  

 

 
Figure 32: SVM explanation for “Fully Paid” for Customer A by Anchors 

For the prediction of the SVM model on the customer instance that is in the class “Charged Off”  

from Figure 22 (e), we observe rules that are in line with financial logic. We already discussed 

that a term of 60 months and a higher interest rate are riskier, especially the combination of the 

two is risky and therefore push the prediction towards the class of “Charged Off”. The rule of not 

having more than 0 mortgages accounts seems to contradict financial logic. Having no mortgage 

accounts could mean that the customer already paid off their mortgage and are therefore more 

creditworthy. However, looking at the visualization of the data on the number of mortgage 

accounts against the percentage of loans that are Charged Off in Figure 33 we see the importance 

of data quality, almost half of the observations in our training set are customers that do not have 

any mortgage accounts, resulting in a highly imbalanced feature. This imbalance has a major 

impact on the prediction of the ML classifiers, resulting in a rule that is not in line with financial 

logic. If the number of cases per unit was the same, we would expect an upward trend instead of 

the current downward one. This will of course have a major impact on the way our ML classifiers 

are currently assessing the value of the feature mortgage accounts.  

 

 

 

Figure 33: Total counts of loans based on the number of mortgage accounts of the customer 

against the percentage of these loans that are Charged Off. Data is from our training set.  
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 CONCLUSION ON ANCHORS 

Going in-depth to find the actual information behind the explanation and rules provided by the 

Anchor framework resulted in a better understanding of how the different ML classifiers work. 

The explanations of the Anchors framework are in line with financial logic or what we would 

expect based on the provided input data. The if-then rules provided by the Anchors framework 

work the best with the tree models like the XGBooster and give these models the best 

understanding. It would have been nice if the Anchors framework explained the instances for 

other ML classifiers with some more rules since we were now limited with two rules. However, 

this is also caused by the high threshold of 95% precision we set for the Anchors explainer. One 

of the drawbacks of the Anchors explainer is the challenge to implement the ANN model, making 

the explainer less suitable as a practical model-agnostic explainer. We find the explanation 

generated by the Anchor completer and more useful compared to that generated by the LIME 

explainer. The coverage gives us a better understanding of the region the rules generated by the 

Anchor explainer apply to.  
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5.4 APPLYING SHAP TO EXPLAIN LOCAL INSTANCES 

After we conducted the steps for getting the explanations from the SHAP framework, we applied 

the technique to the trained ML classifiers. Based on our research focusing on model-agnostic 

XAI techniques, we decided to use the SHAP kernel explainer from the SHAP library of 

explainers. The SHAP kernel explainer is model-agnostic and is, therefore, more suited for our 

research instead of the model-specific explainers that the SHAP library offers. A drawback of the 

SHAP kernel explainer is the slow exponential time complexity of this explainer and therefore we 

were not able to generate SHAP values for the entire dataset of 1.6 million data instances. We 

used a small sample of 1500 data points to generate the SHAP values. This results in an 

approximation rather than exact Shapley values. In this section, we focus on explaining the local 

instances by the SHAP framework, while in section 5.5 we focus on the global explanation of the 

different ML classifiers using the SHAP framework.  

 EXPLANATION OF SHAP – LOCAL 

To illustrate the working of the SHAP framework, we present in Figure 34 (a-f) the SHAP 

explanations on the different ML classifiers for Customer B. The base value is the value that 

would be predicted if we did not know any features for Customer B, meaning that the base value 

is equal to the mean prediction. The output value 𝑓(𝑥), shown in bold, is the actual prediction for 

the data instance that we selected, in our case Customer B. The output of the SHAP technique is 

presented in a log odds ratio instead of a probability space. In the figure, we see how each feature 

contributes to forcing the model output from the base value to the output value. The Shapley 

values in our figures are explanations with respect to the negative class “Fully Paid” , meaning that 

we see if features are contributing positively or negatively to the prediction of our negative class 

“Fully Paid”. The red bars present the top features that contribute positively to the prediction of 

the class “Fully Paid”. The blue bars present the top features that contribute negatively to the 

prediction of the class “Fully Paid” or viewed differently, contribute positively to the prediction 

of the class “Charged Off”. At the moment a red feature is dropped, the output value will move 

the length of the bar of that feature to the left. This means that prediction becomes less likely to 

be the class “Fully Paid”. In case a blue feature is dropped, the prediction will move the length of 

that bar of that feature to the right and making it more likely the class “Fully Paid” is predicted.  

 

In section 5.4.2, we interpret the SHAP local explanation of the LR, XGBooster and Neural 

Network models in more detail and based on this interpretation the other explanations by SHAP 

can also be better understood. 

 

 

 
(a): Logistic Regression: SHAP explanation for “Charged Off” 

 

 
(b): Decision Tree: SHAP explanation “Charged Off” 
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(c): Random Forest: SHAP explanation for “Fully Paid” 

 
(d): XGBooster: SHAP explanation for “Charged Off”  

 

 
(e): Support Vector Machine: SHAP explanation for “Charged Off”  

 

 
(f): Neural Network: SHAP explanation for “Charged Off” 

Figure 34: Results from the SHAP explainer. We observe an incorrect prediction for the RF and 

ANN model. 

 INTERPRETATION OF SHAP – LOCAL 

In this section, we discuss the local explanations given by the SHAP explainer for the outcomes of 

the Logistic Regression, XGBooster, and Neural Network model on both customers A and B, 

described in detail in Table 11. We expand further on the interpretations of these explanations to 

check if they are in line with financial logic and compare them with the provided input data to get 

a better understanding of the functioning of SHAP. 

Logistic Regression  

In Figure 35 we see the correct prediction of the LR model for Customer A. From the figure we 

see that the feature verification status being “Not Verified” has the highest positive contribution to 

the prediction being the class “Fully Paid”. Next are the features of initial list status being not 

“Whole”, home ownership being “Mortgage” and the purpose being “Debt Consolidation” that 

have a positive contribution of forcing the base value to the prediction being the class “Fully 

Paid”. Based on Table 12 almost all features with their values are in line with what we would 

expect since these values have a lower percentage of loans that are Charged Off. However, the 

purpose being “Debt Consolidation” is contrary to what we would expect and cannot be logically 

explained from a financial point of view either. Borrowing to pay off debt makes one less 

creditworthy. 
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Figure 35: SHAP local explanation predicted “Fully Paid” for Customer A for the LR model  

On the other hand, we see that the features initial list status being “Fractional” and verification 

status being not “Source Verified” having a negative contribution to the prediction being the class 

“Fully Paid”.  The initial list status being “Fractional” is the value with a lower percentage of 

loans that are Charged Off compared to the other value of “Whole”. We therefore would expect 

that the initial list status being “Fractional” contributed positively to the prediction being the class 

“Fully Paid’ and initial list status not being “Whole” having a negative contribution to the 

prediction. The opposite of the situation we see now. The verification status being not “Source 

Verified” increases the likelihood of verification status being “Verified” and could mean that it, 

therefore, has a negative contribution on the prediction being the class “Fully Paid”. 

 

In Figure 34 (a) we see the correct prediction of the LR model for Customer B. The low output 

value shows that most features are having a negative contribution to the prediction being the class 

“Fully Paid”, which is correct for Customer B. We see that the feature application type not being 

“Individual” and verification status being “Not Verified” have a positive contribut ion to the 

outcome being in the class “Fully Paid”. However, these features are domina ted by the features 

that have a negative contribution to the class being “Fully Paid”. In Figure 33 (a) only a few of the 

negative contributors are shown, the high interest rate and low annual income of Customer B are 

also having a negative contribution of the class being “Fully Paid” but are not shown in the figure. 

A high interest rate and low annual income are in line with financial logic to have Customer B 

classified as class “Charged Off” since a lower annual income makes it more difficult to pay off a 

loan, especially with a high interest rate.   

XGBooster  

In Figure 36 we see the correct prediction of the XGBooster model for Customer A. The high 

output value shows that the values of the features interest rate, FICO score, number of mortgages, 

and open accounts have the highest positive contribution to the prediction being the class “Fully 

Paid” followed by the verification status being “Not Verified” and the home ownership being 

“Mortgage”. The values of these features resulting in a prediction of the class “Fully Paid” are in 

line with financial logic. Having a relatively low interest rate of 6% (see also Figure 27) with a 

relatively high FICO score of 747 (see also Figure 22) shows that Customer A can be considered 

creditworthy, supported by having only one mortgage account and a relatively low amount of 

open accounts with a value of 9. Having a smaller number of open credit lines means that the 

customer has less debt and is therefore financially healthier. Verification status being “Not 

Verified” and the home ownership being “Mortgage” have already been discussed as logical 

contributors to the score based on Table 12. 

 
Figure 36: SHAP local explanation predicted “Fully Paid” for Customer A for the XGBooster 

model 
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In Figure 34 (d) we see the correct prediction of the XGBooster model for Customer B. The lower 

output value shows that more features are having a negative contribution to the prediction being 

the class “Fully Paid”, which is correct for Customer B. The feature verification status being “Not 

Verified” has a large positive contribution to the outcome being in the class “Fully Paid”, as can 

be seen from the size of the bar. However, the total of positive features is dominated by the 

features that have a negative contribution to the class being “Fully Paid”. From Figure 33 (a) we 

see that the high interest rate, the term being 60 months, and a high DTI ratio are having a 

negative contribution for the prediction being the class “Fully Paid”. The high interest rate is 

already discussed in the interpretation of the Logistic Regression. Having a loan for a longer 

period is riskier since there is a higher chance of something will go wrong and the borrower won't 

pay the loan back, this is also supported by Table 12. From a financial perspective, the riskier 

longer loan most of the time has a higher interest rate to compensate for this risk. This means that 

the features are likely to be related in some way. Another feature that has a negative contribution 

is the high DTI ratio of being 111. A DTI of 111 is highly unlikely to be an actual value since it 

means that Customer B spends more than his income on debt payments. Such a high DTI ratio is a 

good indicator for classifying Customer B as “Charged Off”. However, from this explanation , we 

can also conclude that we should have checked the data on outliers to increase the data quality and 

get a situation that best simulates the real world. 

Neural Network  

In Figure 37 we see that the prediction of the Neural Network model for Customer A is incorrect 

with a low output value for Customer A being in the class “Fully Paid”. The low output value 

shows that the feature initial list status being “Fractional” and the purpose not being “Credit 

Card” have the highest positive contribution to the prediction being the class “Fully Paid” . Based 

on Table 12, we see that the initial list status “Fractional” has a lower percentage of loans that are 

Charged Off compared to the other value of “Whole”. Purpose not being “Credit Card” has a 

positive contribution since this purpose has a high percentage of loans that are Charged Off. 

However, we would not expect that feature contribution in our explanation since the purpose is 

“Debt Consolidation” which is already shown as a feature that has a negative contribution to the 

prediction being the class “Fully Paid”. This negative contribution makes sense since the purpose 

“Debt Consolidation” has a high percentage of loans that are charged off. The initial list status not 

being “Whole” and verification status being “Not Verified” having a negative contribution to the 

prediction being the class “Fully Paid” is not supported by Table 12. Especially from the 

verification status being “Not Verified” we would expect that it contributed positively to the 

prediction being the class “Fully Paid”, as we also observed for the LR and XGBooster models.  

The same holds for the low interest rate and DTI ratio having a negative contribution to the 

prediction being the class “Fully Paid”. We would expect those feature values to have a positive 

contribution to the outcome of prediction being the class “Fully Paid”.  This suggests that the 

Neural Network model in this case made the wrong prediction based on interpreting the feature 

values in a way that is not in line with financial logic. 

 

 
Figure 37: SHAP local explanation predicted “Charged Off” for Customer A for the Neural 

Network model 

  



 

65 

 

In Figure 34 (f) we see the incorrect prediction of the ANN model for Customer B. The high 

output value shows that the model predicts Customer B as the class “Fully Paid”. We see that 

most features are having a positive contribution to the prediction being the class “Fully Paid”, 

which is incorrect for Customer B. Based on Table 12, the initial list status “Fractional” can be 

expected to contribute positively to the prediction being the class “Fully Paid”. However, the high 

feature values of interest rate and DTI ratios are expected to contribute negatively to the 

prediction being the class “Fully Paid”. As we can see from the figure, the opposite is happening. 

Again, this suggests that the Neural Network model in this case made the wrong prediction based 

on interpreting the feature values in a way that is not in line with financial logic. 

 CONCLUSION ON SHAP – LOCAL 

Going in-depth to find the actual information behind the local explanations and rules provided by 

the SHAP framework resulted in a better understanding of how the different ML classifiers work. 

Most of the explanations of the SHAP framework were in line with financial logic or what we 

would expect based on the provided input data. The figures provided by the SHAP framework are 

easy to read and clearly show how each feature contributes to a prediction. The user just needs to 

understand from which class we are viewing the Shapley values so that the direction of the 

contribution is correctly interpreted. We observed that the ANN model made the wrong prediction 

for both Customer A and B, by interpreting the feature values in a way that is not in line with 

financial logic. Therefore, it is interesting to see if the global explanation of the ANN model is 

explaining the instances in the same way or that our examples happen to be exceptions to the 

rules.  

 

Customers with a low interest rate, high FICO score, low DTI ratio, and a low number of 

mortgages and open accounts are marked as less risky and are more likely to have their loans 

approved. This was evident from the examples we discussed above and is in line with financial 

logic. Similarly, high-risk customers can be identified by riskier purposes, lower FICO scores, 

higher interest rates, and a higher DTI ratio. This information is helpful information for model 

developers, users that provide loans, and the end-users since it offers more transparency and 

increases trust in the predictions. 
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5.5 APPLYING SHAP TO EXPLAIN GLOBAL INSTANCES 

In this section, we focus on the global explanation of the different ML classifiers using the SHAP 

framework. The generated global explanations given by the SHAP framework are presented in 

Figure 38 (a-f). In the same way, as for the local explanations, we used the SHAP kernel explainer 

and a small sample of 1500 data points to generate the SHAP values. This results in an 

approximation rather than exact Shapley values.  

 EXPLANATION OF SHAP – LOCAL 

To illustrate the working of the SHAP framework, we present in Figure 38 (a-f) the global 

explanations of the different ML classifiers by SHAP. The figure shows the global impact of the 

top 20 features on the prediction of the different ML classifiers. The features that are presented on 

the top have more impact than the features that are presented below them. In this figure, the red 

and blue colors present the value of the feature. Red means a high value of the feature, in the case 

of loan amount it represents a high loan amount. Blue means a low value of the feature, in the 

case of loan amount it represents a low loan amount. On the X-axis the feature impact on the 

model predicting a data instance as the class “Fully Paid” is presented. Feature values that are 

plotted to the right have a positive impact on the prediction being the class “Fully Paid”. On the 

other hand, feature values that are plotted to the left have a negative impact on the prediction 

being the class “Fully Paid”, meaning it forces the prediction towards the class of “Charged Off”.  

 

Taking Figure 38 (b) as an example, we see that the interest rate is the most important feature 

after the amount of mortgages accounts and that a high feature value of interest rate contributes 

negatively to the prediction being the class “Fully Paid”. The lower the feature value of interest 

rate becomes, the more it has a positive impact on the prediction being the class “Fully Paid” as 

we see by the color becoming more light blue.  

 

In section 5.5.2, we interpret the SHAP global explanation of the LR, XGBooster, and Neural 

Network models in more detail, and based on this interpretation the other global explanations by 

SHAP can also be better understood. 

 
(a) Logistic Regression: Global SHAP explanation 
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(b) Decision Tree: Global SHAP explanation 

 

 
(c): Random Forest: Global SHAP explanation 
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(d): XGBooster: Global SHAP explanation  

 

 
(e): Support Vector Machine: Global SHAP explanation. Due to the long computation time for the 

SVM model, only 10 data points are used instead of the 1500 instances. 
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(f): Neural Network: SHAP explanation for “Charged Off 

Figure 38: Results from the SHAP explainer on the global impact 

 INTERPRETATION OF SHAP – GLOBAL 

In this section, we discuss the global explanations given by the SHAP explainer for the outcomes 

of the Logistic Regression, XGBooster, and Neural Network model. We expand further on the 

explanation to check if they are in line with financial logic and/or justify the explanation based on 

the input information. 

Logistic Regression 

In Figure 38 (a) we see the global explanation of the LR model with the corresponding feature 

importance. From the figure, we see that the categorical features are having the most impact on 

the prediction of the model. In the case of these categorical features are a high value, so 1, they 

have a positive impact of the prediction being the class “Fully Paid” except for the feature initial 

list status. We would expect that a high value of the feature values purpose “Debt Consolidation” 

and “Credit Card” would have a negative impact on the prediction being the class “Fully Paid” if 

we take the high percentage of loans that are charged off from Table 12 into account. We see that 

a high feature value for the purposes “Major Purchase” and “Car” have a greater impact on the 

prediction of the model compared to that of the purposes “Debt Consolidation” and “Credit Card”. 

Based on Table 12 this makes sense since these purposes have a lower amount of loans that are 

charged off and therefore are more likely to result in a customer paying back its loan. However, 

these features are considered of less importance by the LR model as we can see in the lower 

ranking. 

 

In line with financial logic, we see that a high interest rate and a longer term have a negative 

impact on the prediction being the class “Fully Paid”. The same holds for a high FICO score and a 

high annual income having a positive impact on the prediction being the class “Fully Paid”. This 

is all in line with financial logic since it gives a good estimation of the financial health of a 

customer and therefore the chance that this customer will or will not pay back his loan.  
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XGBooster  

In Figure 38 (d) we see the global explanation of the XGBooster model with the corresponding 

feature importance. From the figure, we see that the continuous features amount of open credit 

and mortgages accounts are considered the most important by the XGBooster model, followed by 

the interest rate and FICO score. We see that a lower amount of open credit accounts has a 

positive impact on the prediction being the class “Fully Paid”, which is in line with financial 

logic. However, we see that only the highest values of this feature are having a negative 

contribution to the prediction being “Fully Paid”. We would expect that this distribution was more 

shifted to the left so that any amount of open credit accounts greater than the average would have 

a negative contribution to the prediction being “Fully Paid”. This can be caused by the training 

dataset not being represented with the situation we expect based on financial logic or it is a better 

distribution to present the creditworthiness of a customer that the XGBooster discovered.  

For the feature mortgage accounts, we see the inverse distribution than we would expect based  on 

financial logic. Having many mortgage accounts has a positive contribution to the prediction 

being “Fully Paid” and having no mortgage accounts result in less creditworthiness of the 

customer. We already discussed this observation in the interpretation of the Anchors model for the 

SVM model and the cause is probably the quality of the input data as we have shown in Figure 33. 

It shows us that this wrong input data if we are basing ourselves on financial logic, can have a 

great impact on the prediction results of our model. It also shows us where we can improve the 

models to improve their performance. 

 

We see that a longer-term, higher loan amount, higher DTI ratio and lower annual income as 

feature values have a negative impact on the prediction being “Fully Paid”. This is in line with 

financial logic since these are all factors that make a customer less creditworthy and the loan more 

difficult to pay back and therefore can be considered as riskier to pay back the loan. For the 

feature earliest credit line, we see a random distribution from which it is difficult to draw 

conclusions. 

Neural Network  

In Figure 38 (f) we see the global explanation of the Neural Network model with the 

corresponding feature importance. It confirms the explanations we observed for the local 

instances of Customer A and B that were incorrectly predicted. Comparing the global explanation 

of the Neural Network with all other ML classifiers, we observe that is presented exactly in the 

opposite way. Therefore, we think the configuration of the Neural Network for the XAI 

techniques is done in the opposite way. Meaning that it now predicts the importance of the feature 

to contribute to the class of “Charged Off”. This is a modeling error by us and can explain the 

opposite explanation we observed for the LIME technique. We think this is the case, otherwise, 

the prediction accuracy of the ANN would have been considerably lower. However, this is a topic 

that can be researched in further research. 
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 CONCLUSION ON SHAP - GLOBAL 

The SHAP framework providing us with the global explanations, and therefore inner workings, of 

the ML classifiers gives a better understanding of how the different ML classifiers work. The 

explanations the SHAP framework provided us on the global working of the models were mostly 

in line with financial logic. The impact of features that are not in line with financial logic we can 

explain based on the provided input data. It shows us the features that we still need to configure 

before we use them as training data for our ML classifiers to improve their performance. This is 

also needed before the ML classifiers may be considered for use since a current explanation of the 

working of the ML classifier to a customer affected by their outcome can have disastrous 

consequences. We take the feature mortgage accounts as an example.  

 

Suppose a customer is rejected for a loan and goes to one of the model explainers and asks why 

the loan has been rejected. The model explainer explains why the model made this decision and 

the customer asks how it can improve its likelihood of being granted a loan. The model explainer 

then says, based on the explanation of the model, that the likelihood can be increased by having 

more mortgages accounts. If both parties follow this blindly, it will of course have major 

consequences for the customer who suddenly starts taking more risky mortgages.  

 

The global explanation figures provided by the SHAP framework are easy to read and clearly 

show how each feature contributes to a prediction. Again, the user needs to understand from 

which class we are viewing the Shapley values so that the direction of the contribution is correctly 

interpreted.  

 

From the global explanations, it becomes clear that customers with a low interest rate, high FICO 

score, low DTI ratio, short term of the loan, low loan amount, high amount of mortgages accounts 

are marked as less risky and are more likely to have their loans approved. This was evident from 

the examples we discussed above and is mostly in line with financial logic. Similarly, the opposite 

of these mentioned feature values results in customers being marked as riskier. This information is 

helpful information for model developers, users that provide loans, and the end-users since it 

offers more transparency and increases trust in the predictions. 
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5.6 APPLYING THE ARRGUS FRAMEWORK TO THE XAI TECHNIQUES 

By applying the ARRGUS framework that we constructed in Chapter 3, we are be able to assess 

the XAI techniques on the different indicators an XAI technique must comply with. With the 

ARRGUS framework, we can give the XAI techniques scores on the different indicators based on 

our opinion. These scores together form the final total score for the XAI technique and based on 

that total score we can determine which XAI technique performs the best. We present the 

assessment of the XAI techniques in Table 13. 

 

Table 13: Overview of the score per indicator for each XAI technique.  

From Table 13 we conclude that SHAP has the best performance followed by Anchors and LIME 

in that order. We like to stress that this assessment is based on our opinion and therefore we 

support each score per indicator with a brief explanation on why we awarded the score. All these 

scores are based on our opinion based on how we experienced the whole process from 

implementation to the results of the XAI technique. 

Accuracy 

We awarded Anchors with the highest score for this indicator since it is the only XAI technique 

that shows a precision score on how well it reflects the behavior of the ML classifier. Therefore, 

we assigned a higher score of 4 to this technique and a general score of 3 to the LIME and SHAP 

technique since they still are able to reflect the behavior of the ML classifier but without an 

indicator on how accurate they are doing this.  

Readability  

SHAP is awarded the lowest score since the user must understand how Shapley values work and 

that they are based on the class that is actually predicted. This can lead to a lot of 

misinterpretation of what the explainer is telling us. Next to that, it can confuse the user with the 

base and output value. We awarded LIME with the middle score for this indicator since the rules 

  LIME Anchors SHAP 

Indicator Explanation Rating: 1 (Very Poor) to 5 (Very 

Good) 

1. Accuracy To what degree can the XAI technique explain how 

well the explanations reflect the behavior of the 

prediction model? 

3 4 3 

2. Readability To what degree can the XAI technique generate 

explanations that are understandable for the targeted 

audience group, the average borrower/lender? 

3 4 2 

3. Robustness To what degree can the XAI technique explain 

whether and to what extent each individual input 

parameter has contributed to the outcome.  

2 3 5 

4. Generalizabi

lity 

To what degree can the XAI technique generate 

similar explanations on Machine Learning models that 

are trained on the same task.  

4 4 4 

5. Usability To what degree can the XAI technique be used 

effectively on a range of machine learning models as 

an explanation method? 

4 2 4 

6. Stability To what degree can the XAI technique generate 

similar explanations for similar instances and do these 

explanations reflect the same amount of certainty of a 

model about its predictions? 

3 3 4 

Average score: 3,17 3,33 3,67 
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and the impact of the different features were not always clear from the provided explanation. 

Anchors is given a higher score since it presents the explanation in a more intuitive way and 

offers an interactive dashboard to experiment with the explanation and see other examples.  

Robustness  

SHAP is awarded the highest score for robustness since it shows perfectly how each feature 

contributes to the prediction and it can show for each feature what happens to the prediction if the 

input value is changed, both on a local and global level. Anchors shows for which value the 

feature contributes to the actual prediction and by the interactive dashboard the impact of each 

feature can be shown, resulting in the middle score for this indicator. On the other hand, LIME 

shows the top ten features that are contributing to the outcome but the impact that these features 

have on the prediction is most of the time not clear.  

Generalizability 

For this indicator, we awarded the XAI techniques with the same score, since we observed that 

they almost generate similar explanations for the different ML classifiers that we trained. We 

observe some differences in the importance of certain features, however in general they show the 

same explanations for the same ML classifiers.  

Usability 

Anchors is awarded the lowest score for this indicator since we could not configure the explainer 

to generate an outcome on the Neural Network model. This reduces the effectiveness of Anchors 

as a model-agnostic XAI technique enormously. Both LIME and SHAP did not have the exact 

problem, however, the configuration of the Neural Network model is a tricky one and results in 

questionable results.   

Stability 

SHAP is awarded a higher score since we can check this XAI technique on generating similar 

explanations for its local instances and its overall global explanation of the model. Based on this 

comparison we can observe how certain the model is about its prediction. This is an option that 

the local explanations of LIME and Anchors cannot provide.  

5.7 CONCLUSION ON THE EXPERIMENTAL RESULTS  

In this chapter, we focused on answering the research question “Which XAI technique performs 

the best on explainability, based on our valuation framework ARRGUS?”. Based on our result we 

can answer this research question by stating that SHAP performs the best based on our ARRGUS 

framework, of which the scores are determined based on our opinion. If more research is done, the 

ARRGUS’ indicators can be made quantifiable and the performance of the XAI explainers could 

be assessed on an objective basis to see which meets the requirements and expectations of both 

industry and stakeholders the best. 
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 CONCLUSION 
The main aim of this paper is to research the current knowledge on AI and ML applications in the 

credit risk prediction industry, to develop an exploratory framework to assess XAI techniques 

based on the current regulation, and finally to implement three advanced model-agnostic post-hoc 

explainability techniques (LIME, Anchors, and SHAP) on outputs obtained from current used 

ML-classifying credit scoring models. To achieve this goal, we came up with the following 

research question for our research:  

 

“In what way and to what extent can explainable AI algorithms improve the explainability 

of decision-making in AI models used in P2P credit risk prediction?” 

 

We designed our exploratory framework ARRGUS based on the current state-of-the-art research 

in the areas of Credit Risk, Machine Learning Classifiers, Explainable AI, and Social Sciences in 

combination with the regulation on the application of advanced AI models in financial services. 

With ARRGUS we assessed the different XAI algorithms on Accuracy, Readability, Robustness, 

Generalizability, Usability, and Stability to see how well they comply with our developed 

standards on the added value of applying XAI algorithms. 

 

Our results show that all three XAI algorithms provide a fairly consistent explanation that we can 

justify based on the input data provided and are in line with financial logic. We observed some 

dominant features in all three explainers, which strengthens our confidence in stable outcomes 

provided by the explainers. From the explanations of our XAI algorithms, it became clear that 

customers with a low interest rate, short term for the loan, low loan amount, low DTI ratio, high 

FICO score, and a high amount of mortgages accounts are marked as less risky and are more 

likely to have their loans approved. 

 

The XAI algorithms can provide all the stakeholders of AI usage with added value by providing 

some glimpse into what a black box model was previously. Our results show clearly that the XAI 

techniques can generate explanations that are understandable for the model builders, users of the 

model, and the end customers affect by its decision. Next to that, from our results, it is clear that 

the XAI techniques can explain whether and to what extent each input parameter has contributed 

to the outcome of the prediction. The Anchors and SHAP XAI techniques even provide the user 

with information on which features they can adjust to change the outcome of the prediction. 

Whether this is an option that we should want to pursue and/or make available to the public is 

another discussion, as it can lead to desired behavior or fraud/misrepresentation of the application 

form for example.  

 

To conclude on in what way can XAI algorithms improve the explainability of decision-making in 

AI models, we conclude that the understandability of the explanations is different for each XAI 

technique and some require more explanation than others, but in general, we conclude that they 

are understandable for the user and certainly add value to a plain outcome of the model. 

 

To conclude on what extent can explainable AI algorithms improve the explainability of decision-

making in AI models we observe from our results that the XAI techniques can reflect the behavior 

of the prediction model, based on the outcome and rules we expect from the data and the Anchors 

explainer even give a precision score. From our results, we also see that the XAI techniques can 

generate similar explanations for the ML classifiers that are trained on the same task, which 

increases our confidence in the added value of using XAI techniques in practice. We also observe 

from our result that the XAI techniques can effectively be used on a range of ML classifiers 

models, but that there is still progress to be made to easily apply these correctly to all the different 
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ML models to be truly model-agnostic. Lastly, from our results, we see that the XAI techniques 

generate similar explanations for similar instances. However, as we can see from the Anchor 

explainer the explanations do not reflect the same amount of certainty of a model about these 

different predictions. Which leaves room for incorrect predictions based on the same set of rules. 

In this section we conclude that explainable AI algorithms show promising and useful results for 

improving the explainability of decision-making in AI models, however, these XAI techniques 

still need to take a maturity step in being more consistent in mimicking the inner workings of a 

model to be applied in practice. 

 

We conclude that XAI techniques generate explanations that are understandable for all users 

involved or affected by the outcome of ML models and certainly add value to the outcome by 

indicating whether and to what extent each input parameter has contributed to the outcome of the 

prediction. XAI techniques show promising and useful results for improving the explainability of 

decision-making in black box AI models. Based on ARRGUS, the SHAP technique scores best on 

the indicators and is the most compliant and therefore we are of the opinion that this technique is 

the most promising to be applied in practice, especially given the variety of this technique, which 

was not discussed in this study.  

 

However, these XAI techniques still need to overcome some practical challenges to support real -

world finance applications. More research and practical examples are therefore needed before 

these techniques can be used responsibly and on a large scale. Given the growth in the use of AI 

applications, it would not surprise us if a new market emerged in the provision of services to make 

AI-solutions explainable and transparent. Therefore, the question will no longer be if we can 

explain black box decision-making but who can explain its black box decision-making the best 

with these XAI techniques. 
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 DISCUSSION AND FURTHER RESEARCH 
As concluded in Chapter 6, this research shows the possibilities and opportunities that XAI 

techniques have to offer in the financial ML industry for credit risk prediction and other fields 

where ML models are used. We conducted a research to investigate a possible solution to the 

current problems on the lack of algorithmic transparency in credit risk prediction. The lack of 

algorithmic transparency forms a barrier for adopting more automated, AI-based modeling 

solutions in credit risk prediction and many more. As humans, whether we are model builders, 

model users, or end customers, we must better understand the inner working of more advanced AI 

agents to trust them. The more we can prove the advantages of these advanced AI agents and 

overcoming the lack of transparency problem, the more the general public will trust AI. This will 

result in more credit providers deploying these advanced AI agents and encourage innovation in 

this area to keep developing more sophisticated systems 

 

The results of our work are promising, however, there is still significant potential in developing 

more robust and reliable XAI techniques in the ML industry. During the research, we identified 

several topics that are left for further research, based on the shortcomings of our research and 

general topics that must be tackled before XAI can be successfully implemented. We divided our 

findings into further research topics based on our research and discussion topics based on the 

general field of XAI that we experienced and would like to shed some light on.  

7.1 FURTHER RESEARCH BASED ON OUR STUDY 

Hyper-parameter optimization 

In this research, we have not focused on optimizing the hyper-parameter settings of our ML 

classifiers. We decided to leave the problem of choosing a set of optimal hyper-parameters 

outside the scope of this research since our main objective was to explore the potential of XAI 

techniques and not to find the optimal results for our ML classifiers. This can be regarded as a 

drawback of our research and we encourage any further research to use hyper-parameter 

optimization. To find the optimal hyper-parameter settings we suggest using a Grid-search with 

several iterations. When the ML classifiers can optimally solve the credit problem the results will 

differ and the XAI techniques could find different explanations for the working of the ML 

classifiers.  

Prioritization on data preparation 

With our in-depth analysis of the XAI techniques, we discovered several strange patterns in the 

training dataset that were either not representative of the real world or were wrongly provided by 

the customer. This showed, that even with a thorough preparation of the data, we still missed 

some inconsistencies within the data that may have caused some results not to be in line with 

financial logic and/or decrease the performance of the ML classifiers. These errors were amplified 

through the use of SMOTENC. The preparation of the data can be regarded as the most crucial 

step for the ML classifiers to work correctly and an enormously extensive investigation is required 

to pick out all the possible errors that could harm the correct working of the ML classifiers. 

Regardless of the research area, we recommend that further research pay more attention to 

ensuring the data quality rather than the performance of machine learning models. From the  

literature used, it also appears that there is more focus on the performance of machine learning 

models than on ensuring a correct data quality that these models say something about. Machine 

learning models that say something about incorrect data is of no practical use to us.  
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Explanations that are missing details / not making sense 

In this research we only showed explanations for Customer A and B, two observations out of a 

test set of over 300.000 observations, to demonstrate the working of the different XAI techniques. 

By explaining two observations from different classes, we tried to prevent the classical error of 

only demonstrating the correct class since this can be misleading. Only showing the correct class 

can give unjustified confidence in the explanation technique and the black box. This is especially 

the case at the moment we miss a lot of details in the explanations or the explanations rules are 

not making sense. We observed this with the LIME explainer as we had to dive deeper into the 

training set to be able to understand why the ML classifiers had to make certain choices. Even 

after this deep dive, some of the explanations were not making sense to us making both the ML 

classifiers as the LIME explanations useless in practice.    

Focus further research on the possibilities of the SHAP Explainer 

We concluded that the SHAP XAI technique is the most promising technique based on our 

ARRGUS framework. In this research we only showed the model-agnostic Kernel explainer from 

the SHAP library, however, this library has many more explainers and functionalities to offer. For 

the tree models, a faster Tree explainer can be used for example, if one is interested in applying 

model-specific explainers. We showed only two types of plots for the SHAP explainer and 

encourage further research to also look into the other plots the SHAP explainer has to offer. These 

plots may help to get an even better idea of how the ML classifiers work or can be applied in a 

complete dashboard to show all possibilities attractively and clearly to all stakeholders. Therefore, 

we recommend further research to focus on the SHAP explainer to get the full potential out of this 

explainer for both local and global explanations. 

7.2 DISCUSSION TOPICS ON MODEL-AGNOSTIC POST-HOC XAI 

Are XAI explanations faithful to what the original model computes? 

Our used XAI techniques cannot have perfect fidelity concerning the original model, otherwise, 

the explanation was completely faithful to what the original model computes. This means that the 

XAI model would equal the original model and the original model would be already interpretable. 

The consequence is that any explanation method for a black box model can be an inaccurate 

representation of the original model and therefore providing incorrect information. An inaccurate, 

so low-fidelity, explanation model limits trust in the explanation and with that also a limited trust 

in the black box that it is trying to explain. To illustrate this principle, suppose we have an 

explainable model that has a 95% precision compared to the original model. This is the same as 

the minimum threshold we set for our Anchors explainer. The explanation model is correct 95% 

of the time and wrong 5% of the time, meaning that one-twentieth of the explanations are 

incorrect and these explanations cannot be trusted. As a result, the original black box model also 

cannot be trusted for these explanations. Without 100% precision, we cannot know which 

explanations are incorrect and therefore we cannot fully trust both the explanation and the original 

black box model. 

Assessing Algorithmic Risk  

One of the solutions that can be investigated for further research is by assigning a role to an 

algorithmic decision-making supervisor, as a data protection officer within the GDPR. Next to 

that, an algorithmic impact assessment, like the Third-Party Risk Assessment, can be made 

mandatory to estimate the risks of automated decision-making. If the risk is high, additional legal 

quality requirements can then be imposed. 

The danger of typographical errors  

Typographical errors are an important drawback of using overly complicated black box models 

for prediction purposes since they can cause incorrect calculations and therefore incorrect 
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outcomes in practice. Typographical errors can occur because people enter the data incorrectly in 

the application form. This can result in a type of procedural unfairness, whereby two identical 

individuals might be randomly granted different loan decisions. These kinds of mistakes would be 

hard to discover within the actual model and therefore have the potential to reduce the in-practice 

accuracy of complicated black box models. In our opinion, it is crucial to discuss how these 

typographical errors can be prevented or noticed in time as they may have far-reaching 

consequences. 

The term Explanation 

As already mentioned in Chapter 1 there is no consensus on the term “explanation”, resulting in 

researchers using the term in different ways. We also want to make a small contribution to this 

discussion because explanatory models do not always try to mimic the calculations of the original 

model. An explanatory model seeks to explain the choices made by the original model. Even an 

explanatory model that performs almost identically to a black box model may use completely 

different features or relationships between features, and thus not be faithful to the black box 

calculation. Even without perfect fidelity, the XAI techniques still provide explanations that show 

useful trends in how predictions are related to the features. It might be an idea to calling these 

explanations “feature trends” rather than “explanations” to be less misleading. 

Implementing XAI techniques in a P2P platform 

A difficult challenge before XAI techniques can be implanted in a P2P platform and act a as real 

gamechanger is how the technique can be applied on a large scale without taking too long to 

generate an explanation. The time to generate explanations is based on the ML classifier, type of 

XAI technique and within the XAI technique, the type of Kernel used. These choices are also 

greatly affecting the type and accuracy of the explanations and with that the readability for the 

users of the P2P platforms. Next to that, the lender wants to see from the explanations what 

feature values are making the potential borrower worthy to invest while the borrower wants to see 

on which features values and rules he or she is assessed with a certain credit decision. Providing 

the borrower with all the information as to why he or she has been turned down for a loan may 

cause that person not to fill in the application form truthfully or otherwise engage in desirable 

behavior to cheat. However, under the GDPR, any individual subject to such a decision has this 

right. This could lead to a system that does not work as intended and such problems should be 

seriously considered before implementing XAI techniques in a P2P platform environment.    

Human precision, the real bottleneck? 

The core of interpretability and/or explainability is whether humans understand a model well 

enough to make accurate predictions about its behavior on unseen instances. At the moment 

humans can confidently predict the behavior of a model, let the ‘human precision’ be the part in 

which they are correct (so not the model precision). A high level of human precision is necessary 

for real interpretability. A human can hardly say they understand a model if they consistently 

think they know what it will do, but are often mistaken. So an important discussion is how do we 

get on with explaining black box models if we as humans are unable to understand them at all?  

7.3 CONTRIBUTION OF THIS RESEARCH 

The contributions of our research can be summarized by: 

- The first study that used three different XAI algorithms to explain ML classification models. 

- A set-up framework ARRGUS for assessing the explainability of machine learning models. 

- Applying a feature engineering strategy, including an resampling technique, on the 

LendingClub dataset.  

 

Our research can be seen as an exploratory study within the field of applying XAI techniques and 

from here more focused studies can be done to further prove the value of the XAI techniques.   
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APPENDIX A. 
 

Table A1. Used features LendingClub dataset 

Feature Description Data Type 

addr_state The state provided by the borrower in the loan application  Categorical 

annual_inc The self-reported annual income provided by the borrower during registration.  Numeric 

application_type Indicates whether the loan is an individual application or a joint application with 

two co-borrowers 

Categorical 

dti A ratio calculated using the borrower’s total monthly debt payments on the total 

debt obligations, excluding mortgage and the requested LC loan, divided by the 

borrower’s self-reported monthly income. 

Numeric 

earliest_cr_line The month the borrower's earliest reported credit line was opened  Numeric 

emp_length Employment length in years. Possible values are between 0 and 10 where 0 means 

less than one year and 10 means ten or more years.  

Categorical 

emp_title The job title supplied by the Borrower when applying for the loan. * Categorical 

fico_range_high The upper boundary range the borrower’s FICO at loan origination belongs to.  Numeric 

fico_range_low The lower boundary range the borrower’s FICO at loan origination belongs to.  Numeric 

grade LC assigned loan grade Categorical 

home_ownership The home ownership status provided by the borrower during registration  or 

obtained from the credit report. Our values are: RENT, OWN, MORTGAGE, 

OTHER 

Categorical 

id A unique LC assigned ID for the loan listing. Numeric 

initial_list_status The initial listing status of the loan. Possible values are – W (Whole), F 

(Fractional) 

Categorical 

installment The monthly payment owed by the borrower if the loan originates.  Numeric 

int_rate Interest Rate on the loan Numeric 

issue_d The month which the loan was funded Numeric 

loan_amnt The listed amount of the loan applied for by the borrower. If at some point in time, 

the credit department reduces the loan amount, then it will be reflected in this 

value. 

Numeric 

loan_status Current status of the loan Categorical 

mort_acc Number of mortgage accounts. Numeric 

open_acc The number of open credit lines in the borrower's credit file.  Numeric 

pub_rec Number of derogatory public records Numeric 

pub_rec_bankruptcies Number of public record bankruptcies Numeric 

purpose A category provided by the borrower for the loan request.  Categorical 

revol_bal Total credit revolving balance Numeric 

revol_util 

Revolving line utilization rate, or the amount of credit the borrower is using 

relative to all available revolving credit. Numeric 

sub_grade LC assigned loan subgrade Categorical 

term 

The number of payments on the loan. Values are in months and can be either 36 or 

60. Categorical 

title The loan title provided by the borrower Categorical 

total_acc The total number of credit lines currently in the borrower's credit file  Numeric 

verification_status 

Indicates if income was verified by LC, not verified, or if the income source was 

verified Categorical 

zip_code 

The first 3 numbers of the zip code provided by the borrower in the loan 

application. Categorical 
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